Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9468
Título : Proactive Forest for Supervised Classification
Autor : Cepero Pérez, Nayma
Denis Miranda, Luis Alberto
Hernández Palacio, Rafael
Moreno Espino, Mailyn
García Borroto, Milton
Palabras clave : DECISION FORESTS;RANDOM FOREST;DIVERSITY
Fecha de publicación : 2018
Editorial : Springer
Citación : Cepero-Pérez N., Denis-Miranda L.A., Hernández-Palacio R., Moreno-Espino M., García-Borroto M. (2018) Proactive Forest for Supervised Classification. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_29
Resumen : Random Forest is one of the most used and accurate ensemble methods based on decision trees. Since diversity is a necessary condition to build a good ensemble, Random Forest selects a random feature subset for building decision nodes. This generation procedure could cause important features to be selected in multiple trees in the ensemble, decreasing the diversity of the entire collection. In this paper, we introduce Proactive Forest, an improvement of Random Forest that uses the information of the already generated trees to induce the remaining trees. Proactive Forest calculates the importance of each feature for the constructed ensemble in order to modify the probabilities of selecting those features in the remaining trees. In the conducted experiments, Proactive Forest increases the diversity of the obtained ensembles with a significant impact in the classifier accuracy.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9468
Aparece en las colecciones: Eventos

Ficheros en este ítem:
Fichero Tamaño Formato  
A051.pdf117.08 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.