Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9468
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cepero Pérez, Nayma | - |
dc.contributor.author | Denis Miranda, Luis Alberto | - |
dc.contributor.author | Hernández Palacio, Rafael | - |
dc.contributor.author | Moreno Espino, Mailyn | - |
dc.contributor.author | García Borroto, Milton | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-07-13T14:23:15Z | - |
dc.date.available | 2021-07-13T14:23:15Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Cepero-Pérez N., Denis-Miranda L.A., Hernández-Palacio R., Moreno-Espino M., García-Borroto M. (2018) Proactive Forest for Supervised Classification. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_29 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9468 | - |
dc.description.abstract | Random Forest is one of the most used and accurate ensemble methods based on decision trees. Since diversity is a necessary condition to build a good ensemble, Random Forest selects a random feature subset for building decision nodes. This generation procedure could cause important features to be selected in multiple trees in the ensemble, decreasing the diversity of the entire collection. In this paper, we introduce Proactive Forest, an improvement of Random Forest that uses the information of the already generated trees to induce the remaining trees. Proactive Forest calculates the importance of each feature for the constructed ensemble in order to modify the probabilities of selecting those features in the remaining trees. In the conducted experiments, Proactive Forest increases the diversity of the obtained ensembles with a significant impact in the classifier accuracy. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.subject | DECISION FORESTS | en_US |
dc.subject | RANDOM FOREST | en_US |
dc.subject | DIVERSITY | en_US |
dc.title | Proactive Forest for Supervised Classification | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_29 | - |
dc.source.initialpage | 255 | en_US |
dc.source.endpage | 262 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A051.pdf | 117.08 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.