Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9505
Título : Improving Explanatory Power Of Machine Learning In The Symbolic Data Analysis Framework
Autor : Diday, Edwin
Palabras clave : DATA ANALYSIS;FRAMEWORK
Fecha de publicación : 2018
Editorial : Ediciones Futuro
Citación : Diday, E. (2018, septiembre). Improving Explanatory Power Of Machine Learning In The Symbolic Data Analysis Framework [ponencia]. III Conferencia Científica Internacional UCIENCIA 2018, La Habana, Cuba. https://www.youtube.com/user/informativouci?feature=BF
Resumen : Many nice machine learning methods are black box producing very efficient rules but hard to be understandable by the users. The aim of this paper is to help user by tools allowing a better comprehension of these rules. These tools are based on characteristic properties of the original variables in order to remain in the natural language of the user. They are based on three principles, first on local models fitting at best clusters to be found, second on a symbolic description of these clusters and their Symbolic Data Analysis, third on characteristic criterion increasing the explanatory power of the rules by an adaptive process filtering explanatory sub populations.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9505
Aparece en las colecciones: Conferencias Magistrales

Ficheros en este ítem:
Fichero Tamaño Formato  
Conferencias.pdf423.04 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.