Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9485
Título : Low-Resolution Face Recognition with Deep Convolutional Features in the Dissimilarity Space
Autor : Hernández Durán, Mairelys
Plasencia Calaña, Yenisel
Méndez Vázquez, Heydi
Palabras clave : FACE RECOGNITION;LOW-RESOLUTION DISSIMILARITY REPRESENTATION;CONVOLUTIONAL NETWORKS
Fecha de publicación : 2018
Editorial : Springer
Citación : Hernández-Durán M., Plasencia-Calaña Y., Méndez-Vázquez H. (2018) Low-Resolution Face Recognition with Deep Convolutional Features in the Dissimilarity Space. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_11
Resumen : In video surveillance and others real-life applications, it is usually needed to match low resolution (LR) face images against high resolution (HR) gallery images. Although extensive efforts have been made, it is still difficult to find effective representations for low-resolution face recognition due to the degradation in resolution together with facial variations. This paper makes use of alternative representations based on dissimilarities between objects. Unlike previous works, we construct the dissimilarity space on top of deep convolutional features. We obtain a more compact representation by using prototype selection methods. Besides, metric learning methods are used to replace the standard Euclidean distance in the dissimilarity space. Experiments conducted on two data sets particularly designed for low-resolution face recognition showed that the proposal outperforms state-of-the-art methods, including some neural networks designed for this problem.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9485
Aparece en las colecciones: Eventos

Ficheros en este ítem:
Fichero Tamaño Formato  
A033.pdf101.13 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.