Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9479
Título : Feature Extraction of Automatic Speaker Recognition, Analysis and Evaluation in Real Environment
Autor : Campbell, Edward L.
Hernández, Gabriel
Ramón Calvo, José
Palabras clave : AUTOMATIC SPEAKER RECOGNITION;FEATURE EXTRACTION ROBUSTNESS
Fecha de publicación : 2018
Editorial : Springer
Citación : Campbell E.L., Hernández G., Calvo J.R. (2018) Feature Extraction of Automatic Speaker Recognition, Analysis and Evaluation in Real Environment. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_43
Resumen : An Automatic Speaker Recognition is a biometric system that allows you to identify and verify people, using voice as a discriminatory feature. The purpose of this paper is the feature extraction stage, performing an analysis of effectiveness in real environment. The features extraction has as objective to capture the associated characteristic space of the speaker, being the Mel features and its linear variant the most used methods. In real conditions, the environment over which the speech signal is processed tends not to be ideal, nor is the duration of the speech, so it’s necessary to use robust techniques for assuring a lower degradation grade of system effectiveness; techniques such as Power Normalization, Hilbert Envelope and Modulation of Mean Duration are described, analyzed and evaluated.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9479
Aparece en las colecciones: Eventos

Ficheros en este ítem:
Fichero Tamaño Formato  
A059.pdf117.33 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.