Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9475
Título : Sub Band CSP Using Spatial Entropy-Based Relevance in MI Tasks
Autor : López Montes, Camilo
Cárdenas Peña, David
Castellanos Dominguez, Germán
Palabras clave : SPATIO-SPECTRAL RELEVANCE;RENYI ENTROPY;BRAIN-COMPUTER INTERFACE
Fecha de publicación : 2018
Editorial : Springer
Citación : López-Montes C., Cárdenas-Peña D., Castellanos-Dominguez G. (2018) Sub Band CSP Using Spatial Entropy-Based Relevance in MI Tasks. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_38
Resumen : In motor imagery-based Brain-Computer Interfaces (BCI), discriminative patterns are extracted from the electroencephalogram (EEG) using the Common Spatial Pattern (CSP) algorithm. However, successful application of CSP heavily depends on the filter band and channel selection for each subject. To solve this issue, this work introduces a new supervised spatio-spectral relevance analysis (named HFB) from EEG. The proposal parameters allow controlling the number of selected spatio-spectral components and CSP features. The experimental results evidence an improved accuracy in comparison with CSP, FB and SFB assessed in the BCI competition IV dataset IIa. As a conclusion, focusing on the discriminative channels and sub-bands enhances the MI classification with a neurophysiological interpretation of the components.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9475
Aparece en las colecciones: Eventos

Ficheros en este ítem:
Fichero Tamaño Formato  
A056.pdf119.14 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.