Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9467
Título : Semantic Loss in Autoencoder Tree Reconstruction Based on Different Tuple-Based Algorithms
Autor : Calvo, Hiram
Rivera Camacho, Ramón
Barrón Fernández, Ricardo
Palabras clave : SEMANTIC RECONSTRUCTION;PARSING;STRUCTURING WORD EMBEDDINGS
Fecha de publicación : 2018
Editorial : Springer
Citación : Calvo H., Rivera-Camacho R., Barrón-Fernndez R. (2018) Semantic Loss in Autoencoder Tree Reconstruction Based on Different Tuple-Based Algorithms. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_20
Resumen : Current natural language processing analysis is mainly based on two different kinds of representation: structured data or word embeddings (WE). Modern applications also develop some kind of processing after based on these latter representations. Several works choose to structure data by building WE-based semantic trees that hold the maximum amount of semantic information. Many different approaches have been explores, but only a few comparisons have been performed. In this work we developed a compatible tuple base representation for Stanford dependency trees that allows us to compared two different ways of constructing tuples. Our measures mainly comprise tree reconstruction error, mean error over batches of given trees and performance on training stage.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9467
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A023.pdf100.07 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.