Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9463
Título : Robust K-SVD: A Novel Approach for Dictionary Learning
Autor : Loza, Carlos A.
Fecha de publicación : 2018
Editorial : Springer
Citación : Loza C.A. (2018) Robust K-SVD: A Novel Approach for Dictionary Learning. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_21
Resumen : A novel criterion to the well-known dictionary learning technique, K-SVD, is proposed. The approach exploits the L1-norm as the cost function for the dictionary update stage of K-SVD in order to provide robustness against impulsive noise and outlier input samples. The optimization algorithm successfully retrieves the first principal component of the input samples via greedy search methods and a parameterfree implementation. The final product is Robust K-SVD, a fast, reliable and intuitive algorithm. The results thoroughly detail how, under a wide range of noisy scenarios, the proposed technique outperforms KSVD in terms of dictionary estimation and processing time. Recovery of Discrete Cosine Transform (DCT) bases and estimation of intrinsic dictionaries from noisy grayscale patches highlight the enhanced performance of Robust K-SVD and illustrate the circumvention of a misplaced assumption in sparse modeling problems: the availability of untampered, noiseless, and outlier-free input samples for training.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9463
Aparece en las colecciones: Eventos

Ficheros en este ítem:
Fichero Tamaño Formato  
A021.pdf100.65 kBAdobe PDFVisualizar/Abrir

Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.