Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9463
Título : | Robust K-SVD: A Novel Approach for Dictionary Learning |
Autor : | Loza, Carlos A. |
Palabras clave : | DICTIONARY LEARNING;K- SVD;ROBUST ESTIMATION |
Fecha de publicación : | 2018 |
Editorial : | Springer |
Citación : | Loza C.A. (2018) Robust K-SVD: A Novel Approach for Dictionary Learning. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_21 |
Resumen : | A novel criterion to the well-known dictionary learning technique, K-SVD, is proposed. The approach exploits the L1-norm as the cost function for the dictionary update stage of K-SVD in order to provide robustness against impulsive noise and outlier input samples. The optimization algorithm successfully retrieves the first principal component of the input samples via greedy search methods and a parameterfree implementation. The final product is Robust K-SVD, a fast, reliable and intuitive algorithm. The results thoroughly detail how, under a wide range of noisy scenarios, the proposed technique outperforms KSVD in terms of dictionary estimation and processing time. Recovery of Discrete Cosine Transform (DCT) bases and estimation of intrinsic dictionaries from noisy grayscale patches highlight the enhanced performance of Robust K-SVD and illustrate the circumvention of a misplaced assumption in sparse modeling problems: the availability of untampered, noiseless, and outlier-free input samples for training. |
URI : | https://repositorio.uci.cu/jspui/handle/123456789/9463 |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A021.pdf | 100.65 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.