Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9469
Título : | Student Desertion Prediction Using Kernel Relevance Analysis |
Autor : | Fernández, Jorge Rojas, Angelica Daza, Genaro Gómez, Diana Álvarez, Andrés Orozco, Álvaro |
Palabras clave : | STUDENT DESERTION;RELEVANCE ANALYSIS;FEATURE SELECTION;KERNEL METHODS |
Fecha de publicación : | 2018 |
Editorial : | Springer |
Citación : | Fernández J., Rojas A., Daza G., Gómez D., Álvarez A., Orozco Á. (2018) Student Desertion Prediction Using Kernel Relevance Analysis. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_30 |
Resumen : | This paper presents a kernel-based relevance analysis to support student desertion prediction. Our approach, termed KRA-SD, is twofold: (i) A feature ranking based on centered kernel alignment to match demographic, academic, and biopsychosocial measures with the output labels (deserter/not deserter), and (ii) classification stage based on k-nearest neighbors and support vector machines to predict the desertion. For concrete testing, the student desertion database of the Universidad Tecnologica de Pereira is employed to assess the KRA-SD under a training, validation, and testing scheme. Attained results show that the proposed approach can recognize the main features related to the student desertion achieving an 85.64% of accuracy. Therefore, the proposed system aims to serve as a handy tool for planning strategies to prevent students from leaving the university without finishing their studies. |
URI : | https://repositorio.uci.cu/jspui/handle/123456789/9469 |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A052.pdf | 136.09 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.