Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9469
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Fernández, Jorge | - |
dc.contributor.author | Rojas, Angelica | - |
dc.contributor.author | Daza, Genaro | - |
dc.contributor.author | Gómez, Diana | - |
dc.contributor.author | Álvarez, Andrés | - |
dc.contributor.author | Orozco, Álvaro | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-07-13T14:27:46Z | - |
dc.date.available | 2021-07-13T14:27:46Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Fernández J., Rojas A., Daza G., Gómez D., Álvarez A., Orozco Á. (2018) Student Desertion Prediction Using Kernel Relevance Analysis. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_30 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9469 | - |
dc.description.abstract | This paper presents a kernel-based relevance analysis to support student desertion prediction. Our approach, termed KRA-SD, is twofold: (i) A feature ranking based on centered kernel alignment to match demographic, academic, and biopsychosocial measures with the output labels (deserter/not deserter), and (ii) classification stage based on k-nearest neighbors and support vector machines to predict the desertion. For concrete testing, the student desertion database of the Universidad Tecnologica de Pereira is employed to assess the KRA-SD under a training, validation, and testing scheme. Attained results show that the proposed approach can recognize the main features related to the student desertion achieving an 85.64% of accuracy. Therefore, the proposed system aims to serve as a handy tool for planning strategies to prevent students from leaving the university without finishing their studies. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.subject | STUDENT DESERTION | en_US |
dc.subject | RELEVANCE ANALYSIS | en_US |
dc.subject | FEATURE SELECTION | en_US |
dc.subject | KERNEL METHODS | en_US |
dc.title | Student Desertion Prediction Using Kernel Relevance Analysis | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_30 | - |
dc.source.initialpage | 263 | en_US |
dc.source.endpage | 270 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A052.pdf | 136.09 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.