Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9469
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFernández, Jorge-
dc.contributor.authorRojas, Angelica-
dc.contributor.authorDaza, Genaro-
dc.contributor.authorGómez, Diana-
dc.contributor.authorÁlvarez, Andrés-
dc.contributor.authorOrozco, Álvaro-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T14:27:46Z-
dc.date.available2021-07-13T14:27:46Z-
dc.date.issued2018-
dc.identifier.citationFernández J., Rojas A., Daza G., Gómez D., Álvarez A., Orozco Á. (2018) Student Desertion Prediction Using Kernel Relevance Analysis. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_30en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9469-
dc.description.abstractThis paper presents a kernel-based relevance analysis to support student desertion prediction. Our approach, termed KRA-SD, is twofold: (i) A feature ranking based on centered kernel alignment to match demographic, academic, and biopsychosocial measures with the output labels (deserter/not deserter), and (ii) classification stage based on k-nearest neighbors and support vector machines to predict the desertion. For concrete testing, the student desertion database of the Universidad Tecnologica de Pereira is employed to assess the KRA-SD under a training, validation, and testing scheme. Attained results show that the proposed approach can recognize the main features related to the student desertion achieving an 85.64% of accuracy. Therefore, the proposed system aims to serve as a handy tool for planning strategies to prevent students from leaving the university without finishing their studies.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectSTUDENT DESERTIONen_US
dc.subjectRELEVANCE ANALYSISen_US
dc.subjectFEATURE SELECTIONen_US
dc.subjectKERNEL METHODSen_US
dc.titleStudent Desertion Prediction Using Kernel Relevance Analysisen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_30-
dc.source.initialpage263en_US
dc.source.endpage270en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A052.pdf136.09 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.