Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9481
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMadera, Julio-
dc.contributor.authorOchoa, Alberto-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T13:21:09Z-
dc.date.available2021-07-14T13:21:09Z-
dc.date.issued2018-
dc.identifier.citationMadera J., Ochoa A. (2018) Evaluating the Max-Min Hill-Climbing Estimation of Distribution Algorithm on B-Functions. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_3en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9481-
dc.description.abstractIn this paper we evaluate a new Estimation of Distribution Algorithm (EDA) constructed on top of a very successful Bayesian network learning procedure, Max-Min Hill-Climbing (MMHC). The aim of this paper is to check whether the excellent properties reported for this algorithm in machine learning papers, have some impact on the efficiency and efficacy of EDA based optimization. Our experiments show that the proposed algorithm outperform well-known state of the art EDA like BOA and EBNA in a test bed based on B-functions. On the basis of these results we conclude that the proposed scheme is a promising candidate for challenging real-world applications, specifically, problems related to the areas of Data Mining, Patter Recognition and Artificial Intelligence.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectESTIMATION OF DISTRIBUTION ALGORITHMSen_US
dc.subjectB- FUNCTIONSen_US
dc.subjectBAYESIAN NETWORKSen_US
dc.subjectDEPENDENCY LEARNINGen_US
dc.subjectEVOLUTIONARY OPTIMIZATIONen_US
dc.titleEvaluating the Max-Min Hill-Climbing Estimation of Distribution Algorithm on B-Functionsen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_3-
dc.source.initialpage26en_US
dc.source.endpage33en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A029.pdf101.8 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.