Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9478
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLasso Arciniegas, Laura-
dc.contributor.authorViveros Melo, Andres-
dc.contributor.authorSalazar Castro, José A.-
dc.contributor.authorBecerra, Miguel A.-
dc.contributor.authorEduardo Castro Ospina, Andrés-
dc.contributor.authorRevelo Fuelagán, E. Javier-
dc.contributor.authorPeluffo Ordóñez, Diego H.-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T13:06:54Z-
dc.date.available2021-07-14T13:06:54Z-
dc.date.issued2018-
dc.identifier.citationLasso-Arciniegas L. et al. (2018) Movement Identification in EMG Signals Using Machine Learning: A Comparative Study. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_42en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9478-
dc.description.abstractThe analysis of electromyographic (EMG) signals enables the development of important technologies for industry and medical environments, due mainly to the design of EMG-based human-computer interfaces.There exists a wide range of applications encompassing: Wirelesscomputer controlling, rehabilitation, wheelchair guiding, and among others. The semantic interpretation of EMG analysis is typically conducted by machine learning algorithms, and mainly involves stages for signal characterization and classification. This work presents a methodology for comparing a set of state-of-the-art approaches of EMG signal characterization and classification within a movement identification framework. We compare the performance of three classifiers (KNN, Parzendensity-based classifier and ANN) using spectral (Wavelets) and timedomain-based (statistical and morphological descriptors) features. Also, a methodology for movement selection is proposed. Results are comparable with those reported in literature, reaching classification performance of (90.89±1.12)% (KNN), (93.92±0.34)% (ANN) and 91.09±0.93 (Parzen-density-based classifier) with 12 movements.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectANNen_US
dc.subjectEMG SIGNALSen_US
dc.subjectFEATURE EXTRACTIONen_US
dc.subjectKNNen_US
dc.subjectPARZENen_US
dc.subject.otherMACHINE LEARNINGen_US
dc.titleMovement Identification in EMG Signals Using Machine Learning: A Comparative Studyen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_42-
dc.source.initialpage368en_US
dc.source.endpage375en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A058.pdf104.18 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.