Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9476
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Velasquez Martinez, Luisa F. | - |
dc.contributor.author | Zapata Castaño, F. Y. | - |
dc.contributor.author | Cárdenas Peña, David | - |
dc.contributor.author | Castellanos Dominguez, Germán | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-07-14T12:58:33Z | - |
dc.date.available | 2021-07-14T12:58:33Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Velasquez-Martinez L.F., Zapata-Castaño F.Y., Cárdenas-Peña D., Castellanos-Dominguez G. (2018) Detecting EEG Dynamic Changes Using Supervised Temporal Patterns. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_40 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9476 | - |
dc.description.abstract | The electroencephalogram signal records the neural activation at electrodes placed over the scalp. Brain-Computer Interfaces decode brain activity measured by EEG to send commands to external devices. The most well-known BCI systems are based on Motor Imagery paradigm that corresponds to the imagination of a motor action without execution. Event-Related Desynchronization and Synchronization shows the channel-wise temporal dynamics related to the motor activity. However, ERD/S demands the application of a large bank of narrowband filters to find dynamic changes and the assumption of temporal alignment ignores the between-trial temporal variations of neuronal activity. Taking to account the temporal variations, this work introduces a signal filtering analysis based on the estimation of Supervised Temporal Patterns that decode brain dynamics in MI paradigm which result from the solution of a generalized eigenvalues problem. The signal filtering analysis detects temporal dynamics related to MI tasks within each trial. The method highlights MI activity along channels and trials and shows differences between subjects performing these kinds of tasks. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.subject | SUPERVISED TEMPORAL PATTERNS | en_US |
dc.subject | EEG SIGNAL | en_US |
dc.subject | MOTOR IMAGERY | en_US |
dc.subject | TEMPORAL DYNAMICS | en_US |
dc.title | Detecting EEG Dynamic Changes Using Supervised Temporal Patterns | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_40 | - |
dc.source.initialpage | 351 | en_US |
dc.source.endpage | 358 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A057.pdf | 119.45 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.