Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9466
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía Borroto, Milton-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T13:57:01Z-
dc.date.available2021-07-13T13:57:01Z-
dc.date.issued2018-
dc.identifier.citationGarcía-Borroto M. (2018) A Restriction-Based Approach to Generalizations. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_27en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9466-
dc.description.abstractGeneralizations, also known as contrast patterns, are in the core of many learning systems. A key component to automatically find generalizations is the predicate to select the most important ones. These predicates are usually formed by restrictions that every generalization must fulfill. Previous studies are mainly focused on the types of generalizations, each one associated to a particular predicate. In this paper, we shift the focus from predicates to restrictions. Restrictions are analyzed based on a set of intuitions that they materialize. Additionally, an analysis of the restrictions used in a large collection of existing generalizations suggests interesting conclusions.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectGENERALIZATIONSen_US
dc.subjectEMERGING PATTERNSen_US
dc.subjectCONTRAST PATTERNSen_US
dc.subjectSUBGROUP DISCOVERYen_US
dc.titleA Restriction-Based Approach to Generalizationsen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_27-
dc.source.initialpage239en_US
dc.source.endpage246en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A050.pdf116.63 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.