Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9465
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernández Pérez, Leonardo Agustín-
dc.contributor.authorLópez Cabrera, José Daniel-
dc.contributor.authorOrozco Morales, Rubén-
dc.contributor.authorLorenzo Ginori, Juan Valentín-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T13:55:16Z-
dc.date.available2021-07-13T13:55:16Z-
dc.date.issued2018-
dc.identifier.citationHernández-Pérez L.A., López-Cabrera J.D., Orozco-Morales R., Lorenzo-Ginori J.V. (2018) Classification of Neuron Sets from Non-disease States Using Time Series Obtained Through Nonlinear Analysis of the 3D Dendritic Structures. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_2en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9465-
dc.description.abstractThe nonlinear dynamic analysis of time series is a powerful tool which has extended its application to many branches of scientific research. Topological equivalence is one of the main concepts that sustain theoretically the nonlinear dynamics procedures that have been implemented to characterize the discrete time series. Based on this concept, in this work a novel way to analyze dendritic trees with high complexity is reported, using features obtained through splitting the 3D structure of the dendritic trees of traced neurons into time series. Digitally reconstructed neurons were separated into control and pathological sets, which are related to two categories of alterations caused by the reduced activity of the adult born neurons (ABNs) in the mouse olfactory bulb. In the first category, a viral vector encoding a small interfering RNA (siRNA) to knock-down sodium channel expression and a second category a naris occlusion (NO) method is applied to reduce the activity of ABNs that migrate to the olfactory bulb. Using the method proposed in this study the mean result of the correct classification was improved in 4.8 and 2.76% for the NO and siRNA sets respectively, while the maximum correct classification rates were improved in 9.53 and 2.5% respectively, when compared to methods based in the use of morphological features.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectNEURON TREESen_US
dc.subjectTIME SERIESen_US
dc.subjectNEURON CLASSIFICATIONen_US
dc.titleClassification of Neuron Sets from Non-disease States Using Time Series Obtained Through Nonlinear Analysis of the 3D Dendritic Structuresen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_2-
dc.source.initialpage17en_US
dc.source.endpage25en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A022.pdf105.09 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.