Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9459
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAcosta Mendoza, Niusvel-
dc.contributor.authorCarrasco Ochoa, Jesús Ariel-
dc.contributor.authorGago Alonso, Andrés-
dc.contributor.authorMartínez Trinidad, José Francisco-
dc.contributor.authorMedina Pagola, José Eladio-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-06-30T14:41:22Z-
dc.date.available2021-06-30T14:41:22Z-
dc.date.issued2018-
dc.identifier.citationAcosta-Mendoza N., Carrasco-Ochoa J.A., Gago-Alonso A., Martínez-Trinidad J.F., Medina-Pagola J.E. (2018) Multi-graph Frequent Approximate Subgraph Mining for Image Clustering. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_15en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9459-
dc.description.abstractIn data mining, frequent approximate subgraph (FAS) mining techniques has taken the full attention of several applications, where some approximations are allowed between graphs for identifying important patterns. In the last four years, the application of FAS mining algorithms over multi-graphs has reported relevant results in different pattern recognition tasks like supervised classification and object identification. However, to the best of our knowledge, there is no reported work where the patterns identified by a FAS mining algorithm over multi-graph collections are used for image clustering. Thus, in this paper, we explore the use of multi-graph FASs for image clustering. Some experiments are performed over image collections for showing that by using multi-graph FASs under the bag of features image approach, the image clustering results report- ed by using simple-graph FAS can be improved.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectAPPROXIMATE MULTI- GRAPH MATCHINGen_US
dc.subjectAPPROXIMATE MULTI- GRAPH MININGen_US
dc.subjectMULTI- GRAPH CLUSTERINGen_US
dc.titleMulti-graph Frequent Approximate Subgraph Mining for Image Clusteringen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_15-
dc.source.initialpage133en_US
dc.source.endpage140en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A018.pdf117.43 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.