Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9449
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Acevedo Galán, Danyer L. | - |
dc.contributor.author | Quiñones Grueiro, Marcos | - |
dc.contributor.author | Prieto Moreno, Alberto | - |
dc.contributor.author | Llanes Santiago, Orestes | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-06-30T13:21:21Z | - |
dc.date.available | 2021-06-30T13:21:21Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Acevedo-Galán D.L., Quiñones-Grueiro M., Prieto-Moreno A., Llanes-Santiago O. (2018) A New Approach for Fault Diagnosis of Industrial Processes During Transitions. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_39 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9449 | - |
dc.description.abstract | This paper presents a new approach for fault diagnosis of industrial processes during transitions. The proposed diagnosis strategy is based on the combination of the nearest-neighbor classification rule and the multivariate Dynamic Time Warping time series similarity measure. The proposal is compared with four different classification methods: Bayes Classifier, Multi-Layer Perceptron Neural Network, Support Vector Machines and Long Short-Term Memory Network which have high performance in the specialized scientific bibliography. The continuous stirred tank heater benchmark is used under scenarios of faults occurring at different moments of a transition and scarce fault data. The proposed approach achieves a classification performance approximately 20% superior compared to the best results of the four instance-based classifiers. | en_US |
dc.language.iso | spa | en_US |
dc.publisher | Springer | en_US |
dc.subject | FAULT DIAGNOSIS | en_US |
dc.subject | TRANSITION PROCESS | en_US |
dc.subject | DYNAMIC TIME WARPING | en_US |
dc.title | A New Approach for Fault Diagnosis of Industrial Processes During Transitions | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_39 | - |
dc.source.initialpage | 342 | en_US |
dc.source.endpage | 350 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A020.pdf | 117.09 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.