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PREFACE

What is applied mathematics? Every answer to this question is likely to
initiate a debate. My definition is the use of mathematics to solve problems
or gain insight into phenomena that arise outside of mathematics. The
prototypical example is the use of mathematics to solve problems in physics.
Of course, the world of applied mathematics is much broader: important
applications of mathematics occur in all areas of science, engineering, and
technology.

The concept of this book is to introduce the reader to one aspect of
applied mathematics: the use of differential equations to solve physical
problems. To cover the full (ever expanding) range of applications of
mathematics would require a series of books, which would include invi-
tations to applied mathematics using the other branches of mathematics:
calculus, linear algebra, differential geometry, graph theory, combinatorics,
number theory, the calculus of variations, probability theory, and others. The
application of statistics (especially in experimental science) is a branch of
applied mathematics of great importance, but of a different character than
the applied mathematics considered here.

Although there are already many books and articles devoted to appli-
cations of mathematical subjects, I believe that there is room for more
introductory material accessible to advanced undergraduates and beginning
graduate students. If my invitation is accepted, perhaps the reader will
pursue further study, find a problem in applied mathematics, and make a
contribution to technology or the understanding of the physical universe.

My invitation includes a tour through a few of the historically important
uses of differential equations in science and technology. The relevant
mathematics is presented in context where there is no question of its
importance.

A typical scenario in many research papers by mathematicians is an
introduction that includes such phrases as “our subject is important in the
study of . . . ,” “this problem arises in . . . , ” or “our subject has many
applications to . . . .” The authors go on to state a precise mathematical
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problem, they prove a theorem—perhaps a very good theorem, and perhaps
they give a mathematical example to illustrate their result, but all too often,
their theorem does not solve a problem of interest in the scientific area that
they used to advertise their work. This is not applied mathematics. The
correct approach is joint work with an expert in some area of science: a
physical problem is stated, a mathematical model is proposed, a prediction
is made from the mathematical model—a step that might require some new
mathematics including mathematical theorems—and the prediction is tested
against a physical experiment. This point of view motivates the style of the
presentation in all that follows.

Although the basics of mathematical modeling is discussed, the models
to be considered arise from problems where the underlying science is easily
accessible. The simple truth is that the construction of many important
mathematical models requires a serious treatment of the corresponding
science. This is one good reason for joint work between mathematicians
and scientists or engineers on applied projects. Carefully chosen models,
along with the essential science needed for their construction, are explored
in this book.

Applied mathematics requires an understanding of mathematics, some
familiarity with the subject area of application, creativity, hard work, and
experience. The study of (pure) mathematics is essential. As an aspiring
applied mathematician approaching this book, you should know at least
what constitutes a mathematical proof and have a working knowledge of
basic analysis and linear algebra. To proceed further toward competence
in applied mathematics, you will need to know and understand more and
deeper mathematics. Along the way, part of your mathematics education
should include some study in an applied context. This book is intended to
provide a wealth of this valuable experience.

Columbia, Missouri Carmen Chicone
March 4, 2016
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I thank all the people who have offered valuable suggestions for cor-
rections of and additions to this book, especially Oksana Bihun, Michael
Heitzman, Sean Sweany, and Samuel Walsh.



TO THE PROFESSOR

This book is suitable for courses in applied mathematics with numerics,
basic fluid mechanics, basic mathematics of electromagnetism, or mathe-
matical modeling. The prerequisites for students are vector calculus, basic
differential equations, the rudiments of matrix algebra, knowledge of some
programming language, and of course some mathematical maturity. No
knowledge of partial differential equations or numerical analysis is assumed.

The author has used parts of this book while teaching courses in
mathematical modeling at the University of Missouri where students (un-
dergraduate and graduate) of engineering, the sciences, and mathematics
enrolled. This heterogeneous mix of students should be expected in a course
at the advanced undergraduate beginning graduate level with a title such
as Mathematical Modeling I. Thus, the instructor must assess the abilities
and background knowledge of the students who show up on the first day
of class. Professors should be prepared and willing to modify their syllabus
after a week or two of instruction to accommodate their students. In fact, the
most likely modification is to cover less material at a slower pace. Perhaps
learning a few concepts and techniques well is always more valuable than
exposure to a survey of new ideas.

A typical 15-week semester course might consist of one lecture on
Chapter 1, two weeks on Chapter 2 (mostly ODE), two weeks on Chapter
5 (fundamental physical modeling, reaction-diffusion systems, and basic
numerics for simple parabolic PDE), one week on Chapter 6 (electrical
signals on neurons and traveling wave solutions), and one week on Chapter 8
(basic PID control) to complete approximately half of the semester. Of
course only parts of the material in these chapters (in particular Chapter 5)
can be covered in detail in class. By this time in the semester at least three
substantial homework assignments should be completed using exercises,
problems, and projects suggested in the text. Of course, there is good reason
to also include exercises designed by the instructor. At least, students should
have written, tested, and reported applications to applied problems of a few
basic codes for approximating solutions of ODEs and PDEs. Their work
should be presented in (carefully) written reports (in English prose [or some
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other language]) where analysis and discussion of results are supplemented
with references to output from numerical experiments in tabular or graphical
formats. In-class exams are possible but perhaps not as appropriate to
the material as homework assignments. The book does not contain many
routine problems; in fact, many problems and all of the projects are open
ended. How else will students experience challenges that anticipate realistic
applied problems? Some of the projects introduce new concepts and are
fleshed out accordingly. A list of suggested projects is given in the index
(see the entry Projects). The second half of the semester might be devoted
to continuum mechanics or electromagnetism. But, the usual choice is
fluid mechanics. There will be sufficient time to derive the conservation of
momentum equation and discuss the Euler and Navier–Stokes stress tensors
as in Chapter 11. Standard applications include flow in a pipe (Chapter 12)
followed by a discussion of potential flow with applications to circulation,
lift, and drag in Chapter 13. Perhaps the end of the semester is reached with
a discussion of the Coriolis effect on drains and hurricanes. The final exam
can be replaced by a set of problems and projects taken from Chapters 10
and 19, with respect given to sufficient background material discussed in
class. In addition, each student might be required to present a project—in
the spirit of the course—taken directly from this book, related to their work
in some other class, or related to their research.

A more advanced course might be devoted entirely to continuum me-
chanics with the intention of covering more sophisticated mathematics and
numerics. In particular, basic water wave phenomena and free-surface flow
can be addressed along with appropriate numerical methods. In Chapter 16,
a complete treatment of Chorin’s projection method is given in sufficient
detail for students (and perhaps their professor) to write a basic CFD code
that can be applied to a diverse set of applied problems. This is followed
by the most mathematically sophisticated part of the book on the boundary
element method, where classical potential theory is covered and all the
ingredients of this numerical method are discussed in detail. This is followed
by a treatment of smoothed particle hydrodynamics, again with sufficient
detail to write a viable code. Channel flow provides a modeling experience
along with a discussion and application of Prandtl’s boundary layer theory,
and a solid treatment of the theory and numerics of hyperbolic conservation
laws. All of this material is written in context with applied problems. The
chapter ends with a basic discussion of elastic solids, continuum mechanics,
the weak formulation of PDEs, and sufficient detail to write a basic finite-
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To the Professor

element code that can be used to approximate the solutions of problems that
arise in modeling elastic solids.

Likewise, an advanced course might be devoted to applied problems in
electromagnetism. The material in Chapter 20 provides a basic (mathemati-
cally oriented) introduction to Maxwell’s equations and the electromagnetic
boundary value problem. An enlightening application of the theory is made
to transverse electromagnetic waves and waveguides. This is specialized to
the theory of transmission lines where the Riemann problem for hyperbolic
conservation laws arises in context and its solution is used to construct a
viable numerical method to approximate the electromagnetic waves. This
theory is applied to the practical problem of time-domain reflectometry,
which serves as an introduction to a basic inverse problem of wide interest:
shine radiation on some object with the intent of identifying the object by
analyzing the reflected electromagnetic waves.

The material in the book can be used to design undergraduate research
projects and master’s projects. Of course, it can also be used to help PhD
students gain valuable experience before approaching an applied research
problem.
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TO THE STUDENT

This book was written for you. Perhaps you intend to read on your own,
which is a good idea, or you are enrolled in a class at a college or university
where a professor will help guide you through parts of the book. By this
time in your education, you should understand a fundamental fact: you
cannot learn from a mathematics text without confronting every sentence
as a challenge to your understanding. I have tried my best to provide
enough detail so that following discussions of new ideas, writing code, or
checking calculations that appear in the text should be within your ability
to understand without too much difficulty. But serious thinking, rereading,
pencil and paper computations, and computer programming are required
to understand the material. Reading without checking details is a way to
see what topics are discussed but definitely not sufficient to understand or
use the material. There is no royal road; reading a mathematics textbook
demands a slow pace and a lot of effort. Don’t be surprised by being lost
in a sea of formulas and new concepts. Start over. Reread the text, think
about the meaning of new concepts, check each formula, and ask questions.
With enough effort you will experience wondrous breakthroughs to clarity,
understanding, and knowledge.

Problems and projects, exercises, and questions are an integral part of
the book. You should challenge yourself to solve some difficult problems.
As you gain experience and knowledge, your personal toolkit will grow and
eventually you will be prepared to work successfully on applied problems
arising in science, engineering, and business. The motivation for writing this
book is to give you some of the required experience and knowledge. Do your
homework!

An essential ingredient of scientific and mathematical research is asking
questions (and perhaps answering them). You should ask your own questions
about the topics covered in the book as you progress. Some of your questions
will be answered in the text once you fully understand what is written.
You may also have a knowledgeable professor who is willing to help. Take
advantage of the opportunities that are presented. A bit of advice is to
prepare yourself with basic knowledge before asking questions so that you
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can understand and appreciate the answers. In science and mathematics,
preparation includes understanding the language of the subject of inquiry
(for instance, the meaning of mathematical concepts such as continuity, dif-
ferentiability, convergence, iteration, ordinary differential equation, matrix
multiplication, singularity, eigenvalue, and so on). If you don’t understand
the language, you are certainly not going to understand the answer. Of
course, answers become more complex and require more understanding as
questions are asked about more advanced material.

To begin reading this book, you should have a working knowledge
of calculus (including vector calculus). You should also be familiar with
differential equations and matrix algebra. A basic undergraduate course in
differential equations is a requirement. Taking and learning the material in
an undergraduate course in matrix theory is more than enough preparation in
this important subject. Perhaps you have acquired some knowledge in matrix
theory without having taken a formal course. You should at least know what
is matrix multiplication, what is an eigenvalue, what is the determinate and
trace of a matrix, what is a matrix inverse, what is an inner product, and
what constitutes a basis of a vector space. In addition, you will need to be
able to use a programming language to write simple codes and postprocess
data to make graphs and tables. Ideally, you will already be proficient in at
least one programming language. If not, a crash course on the rudiments of
a language using widely available resources or some reading supplemented
with the guidance of a professor or knowledgeable friend should be enough
preparation to approach the introductory exercises and projects in this book.
Your coding skills will improve as you work through the more advanced
material in this book.

Writing out assignments in English prose (or some other language in
case you are using this text in a non–English-speaking country) should
be normal practice by this time in your education. Don’t be one of the
(poor) students who simply writes a few formulas with no explanation to
answer a homework assignment. Pick up any book or article on mathematics
(this book is an excellent choice) and notice how concepts and results are
written out with complete sentences, how formulas are punctuated as parts
of sentences, and how figures and tables are referenced. Don’t include too
many figures or tables in your reports and always explain to the intended
readers what they are supposed to notice in a table and what they are
supposed to see in your graphs. Emulate this style. You will soon see that
expressing your thoughts and presenting your results as prose leads to better
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understanding (and better grades). Writing good reports and making good
presentations are two of the most important skills you can acquire that will
help you secure and keep a good job and be successful in public life. Now
is the time to develop these skills. Write your homework assignments in
complete sentences.

The utility of mathematics is amazing and powerful. By reading and
understanding this book, you will certainly learn how to harness the power
to solve some important problems. As new areas of the applied mathematical
world open, perhaps you will be amazed. Enjoy.

To the Student xxi



CHAPTER 11
Applied Mathematics and Mathematical
Modeling

1.1 WHAT IS APPLIED MATHEMATICS?

Applied mathematics is the use of mathematics to solve problems or gain
insight into phenomena that arise outside of mathematics.

A prime number is an integer larger than 1 whose only divisors are itself
and one. For example, 2, 3, 5, and 7 are the first four prime numbers. How
many integers are prime numbers? This question arose inside mathematics.

Recall Newton’s second law of motion: The rate of change of the linear
momentum of a particle is the sum of the forces acting on it. Newton’s law of
universal gravitation may be described by the following two statements: (1)
The magnitude of the gravitational force that one mass exerts on a second
mass is directly proportional (with a universal constant of proportionality)
to the product of the masses and inversely proportional to the square of the
distance between their centers of mass; and (2) The direction of the force
is along the line connecting the centers of mass toward the second mass.
These laws prescribe the relative motion of two masses, each influenced
only by the gravitational force of the other. The problem of determining the
motion of two masses—the Newtonian two-body problem—is the prototype
for applied mathematics. It arises outside of mathematics.

The two-body problem is a basic question in celestial mechanics. Using
Newton’s theory, we may build a mathematical model: Let m1 and m2 be
point masses in three-dimensional Euclidean space, moving according to
Newton’s second law of motion and his law of universal gravitation. Denote
their positions in space by the position vectors R1 and R2, define the vector
R = R2−R1, the distance between their centers r = |R|, and letG0 denote
the universal gravitational constant. The equations of motion for the two
bodies are

m1R̈1 =
G0m1m2

r3
R, m2R̈2 = −G0m1m2

r3
R.

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation.
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2 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

This mathematical model consists of a pair of second-order ordinary
differential equations, which is typical in classical mechanics. We may
now make predictions about two-body motion with no further reference
to physics or observations of nature by making mathematical deductions
from these equations of motion. When this model was first proposed—in
not so compact language—Newton showed by mathematical deduction that
these equations of motion predicted Kepler’s three laws of planetary motion,
which were derived directly from observations of the motion of the planets
in the solar system. For example, Kepler stated that each planet moves
in a plane on an elliptical orbit with the sun at one focus of the ellipse.
Kepler described the motions of the planets; Newton explained their motion
by making Kepler’s laws special cases of a more general theory. Kepler’s
laws apply only to the motions of the observable planets; Newton’s law
of gravitation applies equally well to the motion of the moon or falling
bodies near Earth, and his second law applies to all forces, not just the
gravitational force. These astounding successes and many others verified
that Newton’s laws are (close approximations of) fundamental laws of
nature. Of equal importance, these applications reinforced the notion that
mathematical deductions from fundamental laws are predictive. Although
these events were proceeded by the development and important applications
of algebra, geometry, and probability, the development of calculus and
Newton’s laws (especially his second law) are the foundation of modern
mathematical modeling and applied mathematics.

Exactly why mathematical deductions from physical laws are predictive
of natural phenomena is a deep philosophical question, but this fact is
bedrock. The rationality and determinism of nature lie at the heart of
the scientific method, the power of mathematical modeling, and applied
mathematics.

Although there are many compelling arguments for the value of pure
mathematics as a subject worthy of study in and of itself, the effectiveness
of mathematics applied to understand nature and make viable predictions
legitimizes the entire mathematical enterprise.

The predictive power of mathematical deductions from Newton’s laws
cannot be overestimated. Halley’s Comet appears in the sky. Using initial
data supplied by observation, you solve the two-body problem for the sun
and this celestial object and predict the comet will return in approximately
75 years. You wait for 75 years and the comet appears in the sky. What
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other methodology exists that can predict an event with certainty 75 years
in advance? The combination of physical law, mathematical modeling,
mathematical analysis, and computation can be used to make predictions
of many other natural phenomena.

As you might know, Newton’s laws are excellent approximations of
reality but they are not correct. The true nature of gravity is much more
complicated and Newton’s second law is not valid for masses whose relative
velocities approach the speed of light. An easy thought experiment should
convince you that the law of universal gravitation is not a perfect model of
gravity. Simply note that the gravitational force is felt instantaneously with
a change in distance between two masses. If the sun started to oscillate, the
motion of the Earth would be affected immediately. By the same reasoning,
a message could be sent instantaneously anywhere in the universe: imagine
shaking the sun for a second to represent a one and pausing the shaking for
a second to represent a zero. Newton’s law of universal gravitation predicts
instantaneous action at a distance. Of course, Newton was well aware of
this fact. Although the theory of gravity was modified by Albert Einstein
and will likely be modified in the future to conform more closely with
observations, Newton’s model of motion due to gravitational interaction is
predictive up to the precision of most practical measurements as long as
the relative velocity of the masses is much less than the speed of light. It is
the prototypical example of an excellent predictive model that is routinely
used in many important applications; for instance, the planning of space
missions. The main point here is that Newton’s model is not exact, but it is
useful. Utility is a measure of quality in the realm of applied mathematics.
There are no perfect mathematical models of reality. Fortunately, utility does
not require perfection. The prime objectives of applied mathematics are to
develop, analyze, and use mathematical models to make useful predictions,
test hypotheses, and explain natural phenomena.

1.2 FUNDAMENTAL AND CONSTITUTIVE MODELS

Although there is not a bright division line, mathematical models of
physical phenomena are of two general types: fundamental and constitutive.
Fundamental models are derived with fidelity to physical laws; for example,
conservation of mass, conservation of momentum, the laws of electromag-
netism, or the laws of gravity. Constitutive models mimic physical laws with
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simplifying assumptions that agree with experiment or observation over
some limited range of applications.

As mentioned previously, Newton’s laws are not truly laws of nature, but
they are so widely applicable that for almost all practical science they can
be considered fundamental. Thus, Newton’s model for the motion of two
massive bodies is considered a fundamental model; it is derived from two
laws of nature: Newton’s second law and his law of universal gravitation.

The reader might wonder about truly fundamental models of the two-
body problem. There are at least three important cases: the motion of two
massive bodies, the motion of two charged particles, and the motion of
two massive charged particles. Fundamental models would use Einstein’s
theory of gravity (general realativity) or Maxwell’s laws of electrodynamics
and the Lorentz force law. This is not to mention the quantum nature of
reality. No one knows how to write down such models in a manner that
would be open to mathematical analysis. Thus, these problems—how do
two massive or charged particles actually move according to fundamental
physics—have not been solved. The complexity of applying fundamental
physics to realistic situations is one reason why truly fundamental models
are rarely used in practice.

Most useful models use constitutive laws. A familiar example is the usual
model for the motion of a mass attached to the free end of a spring. Let m
denote the mass and x the displacement of the spring from its equilibrium
position. Newton’s second law states that md2x/dt2 = F , where F is
the sum of the forces on the mass. Although the total force may contain
a gravitational summand, the most important summand is the restoring
force of the spring. At a fundamental level this force is electromagnetic
and it involves the atomic structure of the material in the spring. The
restoring force is never modeled using the Lorentz force law and Maxwell’s
equations of electromagnetism; instead, models are constructed from the
constitutive (also called a phenomenological) Hooke’s law: The magnitude
of the restoring force of the spring is proportional to its displacement from
equilibrium and acts in the direction opposite the displacement. Hooke’s
law is not a fundamental law of nature. It leads to the mathematical
model md2x/dt2 = −kx, where k is the constant of proportionality in
Hooke’s law. This model, often called the spring equation or the harmonic
oscillator, is used extensively in physics and engineering. It is arguably
the most important differential equation in these disciplines. Although it
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is not fundamental, predictions from the Hookean spring model closely
approximate experimental measurements for small displacements.

Imagine the nature of a fundamental model for spring motion. It would
involve, at least, a coupled system of partial differential equations to account
for the electromagnetic force and perhaps coupled equations of motion for
all the atoms in the spring. A correctly constructed model of this type would
in theory yield more accurate predictions of spring motion. But, the added
complexity of a fundamental model would certainly require sophisticated
(perhaps yet unknown) mathematics or extensive numerical computations
(perhaps beyond the limits of existing computers) to make predictions. Also,
a fundamental model would likely depend on many parameters, some of
which might not be easily measured. At present, no one knows how to
construct a fundamental model for the motion of a spring. Modern elasticity
theory, which includes the Hookean spring model, is based on constitutive
laws. The theory is imperfect, but properly applied, predictions made from
it agree with experimental measurements.

Except for theoretical physics, where the purpose of the discipline
is to determine the fundamental laws of nature, constitutive models are
ubiquitous in science because the fundamental laws are often too difficult
to apply. For many situations of practical interest, no one knows how
to construct a fundamental model. In other cases, where a fundamental
model might be constructed, constitutive models are usually preferred
because they are simpler, provide insight, and often are sufficiently close
representations of reality to provide predictions that agree with experiments
up to current experimental accuracy. The simplest model that provides
insight and consistency with experiments is usually the best.

Many scientists say they understand a natural phenomenon that can
be measured when there is a model based on fundamental or constitutive
laws whose predictions always agree with experimental measurements.
In other words, understanding in this sense means that measurements
of the phenomenon can be predicted using a theory that applies more
generally. Models derived from Newton’s law of motion, the law of universal
gravitation, or Hooke’s law are prime examples.

When a constitutive model predicts behavior that does not agree with
physical experiments, something should be changed. Usually, a more
accurate model is required. For instance, the motion of a spring might not
agree with the Hookean model to high accuracy using careful measurements.
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Perhaps a nonlinear model of the formmẍ = −kx−`x3, which generalizes
Hooke’s law to include nonlinear effects or one of the form mẍ + εẋ =
−kx − `x3, which takes into account dissipation of energy also called
damping, would be more accurate. Maybe the mass on a spring is moving
too fast in air for viscous damping to be sufficiently accurate. Instead,
dissipation of energy might be better modeled by an expression of the form
εẋ + δ|ẋ|ẋ. Incorporating such modifications to improve accuracy does
not signal a crisis in physics; rather, the process is one of refinement of
the constitutive laws. The situation is different in case a prediction made
from a fundamental model does not agree with an experiment. When this
happens there is a crisis in physics; a new understanding of basic physics
is required to construct models that agree with nature. A classic example
already mentioned is Newton’s second law mẍ = F (x). This law is not
fundamental: it simply does not agree with experiments when the velocity
of the particle with position x is near the speed of light c. The new, more
fundamental law (first given by Lorentz and Einstein in their development
of the special theory of relativity), is

d

dt

( mẋ√
1− ẋ2/c2

)
= F (x).

When models of the motion of electrons in atoms based on Newtonian
physics did not agree with experiments, quantum mechanics was discovered,
and so on.

Mathematical models are never exact representations of nature. They do
not have to be faithful to fundamental physics to be useful. Indeed, making,
analyzing, and drawing predictions from constitutive models is the core of
applied mathematics and the main theme of this book.

1.3 DESCRIPTIVE MODELS

Kepler’s laws are prototypical descriptive models: the planets move on
ellipses, the radial vector from the sun to a planet sweeps out equal areas
of the ellipse in equal time, and the square of the period of a planet is
proportional to the cube of the semimajor axis of its elliptical orbit. His
statements were not derived from fundamental or constitutive laws; they
describe observational data.
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time (sec) distance (In)
4.33 5.0
11.6 5.25
22.0 6.5
33.0 7.25
45.0 9.0
56.0 10.038
60.33 11.75

Table 1.1 The data in this table was produced by observation of the distance from its origin
of the diffusion front of a quantity of red ink deposited in a trough of water.

10 20 30 40 50 60
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Fig. 1.1 A joined plot of distance versus time for the data in Table 1.1 together with the best fitting line is depicted.
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A descriptive model is usually an equation chosen to fit experimental or
observational data. For example, Kepler’s law concerning the period of a
planet’s motion was obtained by fitting to observational data recorded by
the astronomer Tycho Brahe.

Table 1.1 lists experimental data for a crudely constructed experiment
on the diffusion of ink in pure water. A 14.5 inch trough (3.0 inches wide)
was filled to a depth of 0.75 inches with water and left undisturbed for a
period of time to diminish the strength of convection currents. Red ink was
deposited in the water near one end of the trough and allowed to diffuse.
Measurements of the changing position of the diffusion front were recorded
as a function of elapsed time. The data is plotted in Fig. 1.1. The line in the
figure is the graph of the linear function f given by f(x) = 3.84 + 0.126x;
it is a descriptive model of the measured phenomenon.

This model can be used to make predictions. For instance, it implies
that the ink front will be 12.7 inches from the origin after 70 seconds of
elapsed time. Although this might be an accurate prediction, the model tells
us nothing about why the front moves in the observed fashion. A constitutive
model for this experiment is suggested in Exercise 5.11.

Descriptive models are ubiquitous and useful in many areas of science
(especially the social sciences) and in engineering. From the point of view
adopted in this book, descriptive models are precursors to fundamental or
constitutive models. Organizing data via fitting to a function may provide
some insight into the underlying phenomena being measured, but making
such a model does not offer the predictive power of fundamental or
constitutive models.

The reader should be aware of the differences among fundamental,
constitutive, and descriptive models.

1.4 APPLIED MATHEMATICS IN PRACTICE

In an ideal world, scientists and engineers would create models and applied
mathematicians would derive predictions from them. But, in practice, the
boundaries between scientists, engineers, and mathematicians are blurred.
Perhaps one person assumes all three roles.
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The quality of applied mathematics is measured by the relevance of its
predictions in the subject area of application. Often the best way to achieve
quality results is interdisciplinary collaboration.

A major difficulty to overcome for aspiring applied mathematicians (and
textbook authors) is the necessity of learning enough of some scientific
discipline outside of mathematics to aid in the development of useful
models and the formulation of research questions that address important
science. Poor quality applied mathematics is often a result of insufficient
knowledge about the scientific area of application; mathematics is developed
and theorems are proved that do not answer questions posed by scientists
working in the area of application. Applied mathematicians should at least
be aware of the important questions in the science they seek to advance.

Fortunately, the apprentice can learn the tools of applied mathematics in
context by studying the mathematics required to understand and appreciate
known applications of mathematics to science. A journeyman does useful
applied mathematics. To achieve this status requires a deep understanding of
mathematics, understanding of the area of application, skill in computation,
and a strong motivation to advance scientific knowledge. Masters of applied
mathematics make important discoveries of lasting value. Newton was a
master: he produced a fundamental model and developed the mathematics
(calculus) that made it useful.

The usual goal for a working applied mathematician is to address a
scientific problem by constructing a model of the underlying phenomenon
and using it to make a useful prediction. Ideally, the model should be well-
posed; that is, a unique solution should exist that depends continuously on
the initial data, the boundary conditions, and the system parameters. Well-
posedness is the hunting license required to seek the particular solution that
would solve the original scientific problem. Unfortunately, realistic models
are often too complicated for mathematical analysis. Sometimes numerical
methods would require too much computer time to produce useful results.
Thus, simplified models (which are designed to capture the main features
of some phenomenon) are considered so that mathematical analysis can
produce exact solutions or where theorems about the nature of their solutions
can be proved. These results provide footholds for the climb to understand-
ing the full model. Numerical algorithms, which should be designed to
approximate solutions of the full model when possible, may be debugged
and assessed by measuring their performance against known solutions for
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special cases or by comparing their qualitative features to proved properties
of the solutions of a simplified model. Mathematical analysis of special
cases, which has historically provided some of the best applied mathematics,
is of great value for the stated reasons. With this essential step in place,
insights and approximations from numerical simulations can be employed
with high confidence to understand the original problem and make useful
predictions. Many special cases and simplifications of fundamental models
are considered in this book.

Difficult scientific problems often yield to the awesome power of clear
thinking, mathematical modeling, mathematical analysis, and computation.
This is the domain of applied mathematics.



CHAPTER 22
Differential Equations

A working knowledge of elementary differential equations (at the level
of [11]) is a useful prerequisite for understanding many of the topics in this
book. Some of the essential ideas and methods of the subject are mentioned
in this chapter. Most of the material here is in the form of exercises designed
to help the reader assess basic knowledge of differential equations and
to provide a few challenges arising from perhaps unfamiliar elementary
applications.

A first-order system of ordinary differential equations (ODEs) is an
expression of the form ẋ = f(x, t), where the overdot denotes differenti-
ation with respect to time and f is a smooth1 (vector valued) function of a
vector variable x and scalar variable t. By a basic theorem of the subject, a
first-order system of ODEs has a unique solution for each initial condition
x(t0) = x0 as long as the point (x0, t0) is in the domain of f and the
dimensions of the x and f(x, t) are the same. Such a solution t 7→ x(t) exists
at least until x(t) reaches the boundary of the domain of f or |x(t)| blows up
to infinity. Moreover, solutions of the initial value problem depend smoothly
on the initial data. In case the function f depends smoothly on a (vector)
parameter λ, so that the system has the form ẋ = f(x, t, λ), solutions
also depend smoothly on this parameter. The existence and continuity of
higher-order derivatives is assumed when needed. Thus, for ODEs, there
is a general theory that ensures unique solutions exist for the initial value
problem: the future state of a dynamical system is determined by its initial
condition—the principle of determinism.

There is no general existence theory for ODE boundary value problems
where some part of the initial data is left unspecified, and the problem is to
determine the remainder of the initial data so that some other condition is
satisfied. For example, consider a second-order differential equation of the
form ẍ = f(x, ẋ, t), where x is a scalar. Given three numbers a, b, and T ,
a typical boundary value problem is to determine ẋ(0) such that x(0) = a
and x(T ) = b. There is no general method to prove that a solution exists and

1In this book, a function is called smooth if it is at least continuously differentiable.

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation.
11Copyright c© 2017 Elsevier Inc. All rights reserved.http://dx.doi.org/10.1016/B978-0-12-804153-6.50002-6, 
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Fig. 2.1 The figure depicts a rectangular mass attached to a spring stretched between the mass and a fixed wall.

no general way to prove that the solution is unique. Indeed, there are such
boundary value problems with more than one solution or no solution.

The situation for partial differential equations (PDEs) is much more
complicated. Often both initial data and boundary conditions are imposed.
Some of the most important mathematical theories and theorems are devoted
to the existence and uniqueness problem for PDEs. Although great progress
has been made, there is no general theory for the existence and uniqueness
of solutions of PDEs.

A major part of applied mathematics is devoted to determining and ap-
proximating the solutions of differential equations that arise as mathematical
models of physical processes. Thus, a working knowledge of the basic
theory of differential equations is essential.

One of the primary goals of this book is to demonstrate the central role
played by differential equations in applied mathematics.

2.1 THE HARMONIC OSCILLATOR

The fundamental ODE for physics, mechanical engineering, and electrical
engineering is the periodically forced, damped, harmonic oscillator

mẍ+ εẋ+ kx = A sin(Ωt+ ρ), (2.1)

where (in its mechanical applications) x is a coordinate measuring an un-
known displacement, m is a given mass, ε a (viscous) damping coefficient,
k the spring constant from Hooke’s force law, and A sin Ωt a sinusoidal
external force with amplitude A, circular frequency Ω, and phase shift ρ.
The model is derived from Newton’s second law of motion: The time rate-
of-change of linear momentum on a particle is equal to the sum of the forces
acting on this particle. This statement is taken as a fundamental law of
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nature. In symbols

d

dt
(mv) = F.

Imagine a spring attached to a wall and to a mass in a horizontal
configuration so that the force of gravity does not affect the motion (see
Fig. 2.1). Also, choose a horizontal coordinate system with its origin at
the equilibrium position of the mass oriented so that the coordinate, say x,
measures displacement with positive values corresponding to the stretched
spring. The force F acting on the mass is due to the elasticity of the material
used to make the spring. By the nature of a spring, the force acts in the
direction that would restore the spring to its equilibrium position. What
is this force? Recall that there are four fundamental forces: the weak and
strong nuclear forces, gravity, and electromagnetism. The restoring force
of the spring is clearly electromagnetic. To obtain a fundamental model,
the laws of electromagnetism (Maxwell’s laws) and the Lorentz force law
would have to be used to determine the restoring force of the spring. No
one knows how to make such a model. Instead, the force may be modeled
by a constitutive law, which is meant to be a good approximation of reality.
The usual force law is Hooke’s law: the restoring force is proportional to
the displacement and in the direction toward the equilibrium position of the
mass. There is a constant k, depending on the material properties of the
spring that are ultimately due to electromagnetism, such that F = −kx.
Under the assumption of constant mass, a spring model is given by

mẍ+ kx = 0,

where a dot over a variable denotes differentiation with respect to time, two
dots denote the second derivative with respect to time, and so on. This model
is an approximation to reality. What does it predict?

From Exercise 2.2 part (a), the general solution of this ODE involves
periodic functions, which in this case are sines and cosines. Thus the
displacement x is a periodic function of time. By observation of springs,
this is the correct qualitative behavior, at least for a short amount of time.
But, a real spring will eventually stop oscillating and return to equilibrium.
Thus, our model does not take into account at least one force acting on the
mass.
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Why does the spring stop oscillating? The mass moves through air, the
spring warms up, energy is radiated away due to heat, and perhaps other
internal mechanisms are active. At a fundamental level, electromagnetic
forces are acting. But the dynamical behavior of the system, which depends
on forces at the molecular level, is so complicated that a fundamental
model of damping forces is beyond current understanding. Also, imagine
the complexity of a model that took into account molecular forces. Could
predictions be made from such a model? The usual procedure for modeling
macroscopic mechanical systems is to mimic fundamental forces with
constitutive laws.

The simplest model for the damping force assumes that it is proportional
to the velocity of the mass and acts in the direction opposite to the motion:
−εẋ, where ε is some positive constant. A more realistic model might be
−εẋ2 or ε1ẋ + ε2ẋ

2, but these latter choices lead to nonlinear ODEs that
are more difficult to analyze. With the linear damping force, we recover
the basic model [Eq. (2.1)] with A = 0. This parameter is not zero when
there is an external periodic force with circular frequency Ω and phase shift
ρ, a case that is prevalent in many applications (for example in electrical
engineering). In fact, the spring model [Eq. (2.1)] is accurate enough to
make useful predictions for many physical phenomena.

To predict the outcome of an experiment by using this model, the
parameters in the model must be identified and the initial position and
velocity (x(0) and ẋ(0)) of the mass must be specified. According to ODE
theory, once the parameters and initial data are specified, the ODE has a
unique solution. It is a prediction of the motion of the mass-spring system
with the specified data. The accuracy of such predictions has been verified
by many physical experiments. The harmonic oscillator model is widely
used to simulate reality with no need to perform physical experiments.

Models of physical processes are never exact representations of reality.
But, a good model produces predictions that agree with reality at some
acceptable level of approximation. The existence of a model that produces
physically correct predictions also provides evidence that the underlying
physical intuition used to create the model is correctly understood.

Exercise 2.1. Use Newton’s second law of motion to derive the harmonic oscillator
model for a damped, vertically mounted, mass-spring system under the influence of
gravity and an external sinusoidal force.
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Exercise 2.2. (a) Solve the harmonic oscillator equation for the case A = 0 and
ε = 0 and describe the qualitative behavior of the corresponding solutions. (b) Solve the
harmonic oscillator equation for the case A = 0 and ε 6= 0 and describe the qualitative
behavior of the corresponding solutions. (c) Solve the initial value problem

ẍ+
1

2
ẋ+ 9x = 2 sin t, x(0) = 1, ẋ(0) = 0

and determine the long-term behavior of the displacement x. In particular, what is its
approximate amplitude in the long-term?

Exercise 2.3. (a) Suppose that incoming waves oscillating at γ cycles per second are
to be detected by the motion of a mass-spring system with fixed mass m and damping
coefficient ε. Imagine, for example, a mechanical earthquake detector. How should the
spring constant k be chosen so that the response of the mass-spring system to the
incoming wave has the greatest amplitude? (b) Is the result the same for a scenario
where the spring constant is fixed and the frequency of the incoming wave is adjusted?
Explain.

2.2 EXPONENTIAL AND LOGISTIC GROWTH

The fundamental ODE for chemistry, biology, and finance is the exponential
growth equation

Q̇ = rQ,

where Q is a measure of the amount of some substance and r is a growth
(or decay) rate. Additions (or subtractions) f to the quantity per time are
included in the model via the equation

Q̇ = rQ+ f(t). (2.2)

The logistic growth model, which models limited growth, is

Q̇ = rQ(1− Q

k
),

where r and k are parameters. Here the growth rate Q̇/Q is dominated by r
when Q is small and by −rQ/k when Q is large.

Exercise 2.4. (a) Solve the initial value problem

Q̇ = −2Q, Q(0) = 3.
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(b) Solve the initial value problem

Q̇ = −2Q+ 8, Q(0) = 3.

(c) Solve the initial value problem

Q̇ =
2

t
Q+ 8, Q(1) = 3.

(d) Solve the initial value problem

Q̇ = 2Q(1− Q

10
), Q(0) = 5

and determine the fate of the solution (that is, determine the behavior of the solution as
t grows without bound).

Exercise 2.5. What is the monthly payment on a T year loan of P dollars with interest
compounded continuously at the annual rate r?

2.3 LINEAR SYSTEMS

Linear systems occur in all areas of applied mathematics. A first-order linear
system of ODEs has the form

ẋ = A(t)x+ f(t),

where x in this equation is an n-dimensional vector variable, A is an n× n-
matrix, and f is an n-dimensional vector function of the independent scalar
variable t (which is usually a coordinate measuring time). The exponential
growth equation [Eq. (2.2)] is a linear system where n = 1.

Exercise 2.6. (a) Solve the initial value problem

ẋ = 2x− y, ẏ = x+ 2y, x(0) = 1, y(0) = −1.

(b) Solve the initial value problem

ẋ = x+ 4y, ẏ = 2x+ y, x(0) = 1, y(0) = −1.

(c) Find the general solution of the system

ẋ = 4x− 2y + 2e−t, ẏ = 3x− 3y + e−t.

Hint: The key concept here is the variation of parameters formula (see Appendix A.15).

Exercise 2.7. Imagine two identical objects (perhaps wooden blocks on wheels) each
with mass m riding on a horizontal track of length L. The object on the left is connected
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by a spring to the left end of the track; the object on the right is attached by an identical
spring to the right end of the track. Also, the two objects are attached to each other by
a spring, hereafter called the connecting spring. Let x denote the distance of the object
on the left from the left end of the track and y denote the distance of the other object
from the same left end of the track. (a) Show that the following system of differential
equations is a reasonable differential equation model for the motions of the masses:

mẍ = −εẋ−K(x− ξ)− k(`− (y − x)),

mÿ = −εẏ +K((L− ξ)− y) + k(`− (y − x)), (2.3)

when K and k are the constants of proportionality using Hooke’s law for the restoring
force of the springs, ξ is the position of the left-hand object disconnected from the
connecting spring, the equilibrium length of the free connecting spring is ` ≤ L − 2ξ,
and ε is the viscous damping constant. What additional assumptions are made in the
derivation of the model? (b) Determine the equilibrium positions of the two objects and
verify that in equilibrium the mass with coordinate x is to the left of the mass with
coordinate y, x > 0, and y ≤ L − ξ. (c) The equations of motion are written for the
positions of the objects along the track. They take a simpler and more symmetric form
when the equations of motion are written for the displacements of the objects from their
equilibrium positions before the connecting spring is attached. Show that the resulting
system may be expressed in the form

mü = −εu̇−Ku+ k(v − u),

mv̈ = −εv̇ +Kv − k(v − u), (2.4)

and write explicitly the transformation from (x, y) coordinates to (u, v) coordinates.
Hint: Write the original system in matrix form and change coordinates by a translation.
(d) Suppose there is no damping (ε = 0). Find the general solution of system (2.4).
(e) Suppose there is no damping (ε = 0) for system (2.4) and the initial conditions are

u(0) = 0, u̇(0) = 0, v(0) = α, v̇(0) = 0.

Write the explicit solution. Show that this solution can be manipulated into the form

u(t) = α sin
Ω− ω

2
t sin

Ω + ω

2
t,

v(t) = α cos
Ω− ω

2
t cos

Ω + ω

2
t,

Discuss the predicted motion. Hint: The circular frequency Ω−ω is small compared with
Ω + ω. Thus, both solutions can be viewed as amplitude modulated sinusoids. Also, it
is possible to have the amplitude of u (respectively v) very near zero so that at such
times most of the energy of the system corresponds to the motion with coordinate v
(respectively u). The resulting motion is a beat phenomenon. (f) Determine initial data
so that the two objects move with equal displacements from equilibrium.
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2.4 LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Applied mathematics is sometimes equated with the study of PDEs. Skip
this section if you are unfamiliar with PDEs; the subject will be discussed
later in this book.

Exercise 2.8. (a) Solve the initial boundary value problem

ut = uxx, u(t, 0) = 1, u(t, 1) = 1, u(0, x) = 1− sinπx.

The PDE is called the heat equation. (b) Determine T such that u(T, 1/2) = 3/4.

Exercise 2.9. (a) Suppose that f : R → R is a twice continuously differentiable
function. Solve the initial value problem

utt = uxx, u(0, x) = f(x), ut(0, x) = 0.

The PDE is called the wave equation. (b) Show that the function f given by f(x) =

−(10x− 1)3(10x+ 1)3 for x in the interval (−1/10, 1/10) and zero otherwise is twice
continuously differentiable. (c) Using f defined in (b), find the smallest time t > 0 when
u(t, 20) = 1/4. (A numerical approximation correct within 1% is an acceptable answer.)

Exercise 2.10. Let Ω denote the open set bounded by the unit square in the plane
and let Ω̄ denote its closure. The unit square has vertices with coordinates (0, 0), (1, 0),
(1, 1), and (0, 1). Find the value of u : Ω̄ → R at the point (1/2, 1/2) in case u is
harmonic (that is, uxx + uyy = 0 in Ω) and u(x, y) = 1 everywhere on the boundary of
Ω. The PDE is called Laplace’s equation.

Exercise 2.11. (a) Find a nonconstant solution of the PDE

sin2 φ
∂2f

∂φ2
+
∂2f

∂θ2
+ sinφ cosφ

∂f

∂φ
= 0

that is periodic in each variable separately and with the additional property that it
is continuous at φ = 0. Hint: Use separation of variables. (b) For the reader who
has studied differential geometry, the PDE has a geometric interpretation (see [50]).
The Laplace–Beltrami operator is a generalization of the Laplacian to Riemannian
manifolds. The usual Riemannian metric on a sphere of radius R is given in spherical
coordinates by R2(dφ2 + sin2 φdθ2). It is a covariant 2-tensor, which—in the present
case—can be written more precisely as

Edφ⊗ dφ+ Fdφ⊗ dθ + Fdθ ⊗ dφ+Gdφ⊗ dφ.

The Laplace–Beltrami operator ∆ is given by

∆f =
∂

∂φ

(
1√

EG− F 2

(
G
∂f

∂φ
− F ∂f

∂θ

))
+

∂

∂θ

(
1√

EG− F 2

(
E
∂f

∂θ
− F ∂f

∂φ

))
.

The PDE of part (a) is equivalent to the Laplace equation ∆f = 0 on the round sphere.
(c) Prove the last statement.
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2.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Newton’s second law states that a particle with constant mass influenced by
forces moves so that its mass times its acceleration equals the sum of these
forces. As an example, suppose the force law is Newton’s law of universal
gravitation. It states that the gravitational force on a body due to a second
body is directly proportional to the product of their masses and inversely
proportional to the square of the distance between them. The direction of
the force is toward the center of mass of the second body. Clearly, the force
is a nonlinear function of the particle’s position. Thus, models that involve
gravitational forces are fundamentally nonlinear.

As a review, recall that a force is called conservative if it is given as the
negative gradient of a potential U . In this case, Newton’s second law leads
to the classical differential equation

mẍ = −∇U(x), (2.5)

where x is the position of the particle and U(x) is its potential energy at
position x. In fact, this ODE is often called Newton’s equation. The kinetic
energy of the particle is, by definition, 1

2mẋ
2. Because potential energy is

often a nonlinear function, this differential equation is a fundamental source
of nonlinear ODEs.

Exercise 2.12. (a) Show that the (total) energy (the sum of the potential and kinetic
energies) is constant on solutions of Newton’s equation [Eq. (2.5)].
(b) Determine the total energy for Duffing’s equation

ẍ− x+ x3 = 0

and draw its phase portrait. Describe the qualitative behavior of the system.
(c) Determine the total energy for the mathematical pendulum

θ̈ + sin θ = 0

and draw its phase portrait. Describe the qualitative behavior of the system.
(d) Draw the phase portrait for (the alternate form of) Duffing’s equation

ẍ+ x− x3 = 0.

Describe the qualitative behavior of the solution with initial condition x(0) = 0 and
ẋ(0) = 7/10.
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(e) Determine the qualitative behavior of the solutions of the differential equation

ẍ+
1

10
ẋ− x+ x3 = 0.

(f) Is the gravitational force conservative? If so, what is the gravitational potential?
(g) Suppose that two point masses fall from rest in the gravitational field due to a third
mass, which might be Earth. And, suppose they move on the same line through the center
of the third mass. Does the distance between them remain constant as they fall? If not,
describe the relative distance as a function of time. Hint: A numerical approximation
of the solution might be necessary. See the next section for a brief review of numerical
methods for ODEs.
(h) Determine the fate (as time increases without bound) of the solution of the initial
value problem

ẍ+
1

10
ẋ− x+ x3 = 0, x(0) =

1

2
, ẋ(0) = 0.

(i) Draw the phase portrait (for x ≥ 0) of the differential equation

ẋ = x− x
√
x

and find the general solution. Does your phase portrait agree with your solution? Does
your solution include all orbits depicted in your phase portrait?

Exercise 2.13. A circular hoop with radius a > 0 made of thin wire is spinning with
angular velocity Ω about a vertical axis that passes through the center of the hoop. A
bead with mass m threaded on the hoop slides with viscous friction (that is, the bead’s
motion is opposed by a force proportional to its velocity along the hoop). Assume that
the bead is free to move except through the highest point on the hoop, where a rod is
fastened to the hoop and used (by connection to a motor) to maintain the constant angular
velocity. Imagine the bead is held (by some external unknown force) at a position near
but not at the bottom of the rotating hoop and released at time t = 0. Describe the
qualitative motion of the bead.

Exercise 2.14. Imagine an object with mass m sliding on a horizontal plane
connected by identical springs (each with spring constant K) to fixed positions on the
plane at a distance L = 2(` + α) apart, where ` is the natural length of each spring
and α > 0 is the extra distance each spring is stretched to make its attachment to
the mass. When the mass is pulled in the direction of the perpendicular bisector of
the line connecting the attachments to the plane and let go from rest, it moves along
the perpendicular bisector due to the symmetry of the apparatus. Suppose the mass is
pulled out a distance d units from its rest position on the intersection of the line and the
perpendicular bisector and released from rest. The idealization just described might be
a crude model of a crossbow. At least two phenomena are of interest: The frequency of
oscillation and (for the crossbow application) the velocity of the mass at the moment
it passes through the equilibrium position of the mass-spring system. Both of these
quantities are functions of all the parameters: L, `, α, M , and d. (a) Show that the initial
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value problem for the displacement of the object from equilibrium (ignoring damping)
can be expressed in the form

Mẍ = −2Kx
(

1− `√
x2 + (`+ α)2

)
, x(0) = d, ẋ(0) = 0.

(b) What can you say about the key questions using pencil and paper? At least consider
the case where d is very small. What exactly is meant by saying d is small? Small
compared to what? In a real application, the parameters would be assigned units. The
spring constant is expressed in different units than the mass or the natural length of
the spring. How can the sizes of the parameters be compared? Does asking such a
question make sense? Hint: Make the model dimensionless by a change of variables.
Linearize the differential equation near its equilibrium. (c) Incorporate viscous damping.
Physical intuition suggests that the displacement of the damped system (perhaps caused
by air resistance or friction on the horizontal plane) will approach the equilibrium
position as time increases. Although physical intuition is very important, the purpose
of mathematical models is to gain physical insight. Using physical intuition to describe
a prediction of a mathematical model tacitly assumes the model agrees with reality.
Perhaps it does not. If so, we learn that there is something wrong with the model. Either
the model must be modified to more closely approximate the physics, or the physical
assumptions used to construct the model must be incorrect. To make predictions, we
must use mathematical deductions from the model itself. Can the model just constructed
(with viscous damping included) be used to predict that every motion will decay toward
equilibrium as time increases? State and prove a precise mathematical result.

Exercise 2.15. Imagine a spring attached to a peg on a vertical wall so that the spring
can turn freely around the peg. A ball of mass m is attached to the other end of the
spring. Assume the motion is confined to a plane parallel to the wall. Write the equations
of motion for the ball taking into account the gravitational force but ignoring damping
forces. (a) Determine the steady states of the system. Do these agree with your physical
intuition? (b) Show that an initial position on the vertical line through the peg and no
velocity component in the horizontal direction initiates a motion that is confined to the
vertical line. (d) Show that the total energy is a constant of the motion. (e) Is the angular
momentum a constant of the motion?

2.6 NUMERICS

The reader may be familiar with some methods for approximating solutions
of ODEs. Key words here are Euler method, improved Euler method,
trapezoidal method, Runge–Kutta method, Adams method, and others.
Some of these methods are discussed in detail in this book. The purpose
of this section is to provide some simple exercises designed to refresh (or
initiate) a practical working knowledge of this important part of applied
mathematics.
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For the ODE ẋ = f(x, t) with initial condition x(t0) = x0 (which may
be a first-order system of ODEs), the most basic method for approximating
the solution of the initial value problem is to choose a time discretization
increment ∆t and then iterate a procedure to approximate the solution at
the discrete time steps x1 ≈ x(t0 + ∆t), x2 ≈ x(t0 + 2∆t), . . . , xn ≈
x(t0 + n∆t) according to the following and similar recipes.

1. Euler’s method:

tn+1 = tn + ∆t,

xn+1 = xn + ∆tf(xn, tn);

2. The improved Euler method:

tn+1 = tn + ∆t,

yn+1 = xn + ∆tf(xn, tn),

xn+1 = xn +
∆t

2
(f(xn, tn) + f(yn+1, tn+1));

3. The trapezoidal method:

tn+1 = tn + ∆t,

xn+1 = xn +
∆t

2
(f(xn, tn) + f(xn+1, tn+1)).

Although there is a wealth of knowledge on approximations of solutions
of ODEs and much more sophisticated approximation methods exist, these
simple algorithms are adequate for many applications. There is much to be
gained by students of the subject who build personal libraries of numerical
methods that are used to make predictions from mathematical models.
Improvements to basic methods may be incorporated as the need arises.
Using black box software instead will usually produce more accurate ap-
proximations, but reliance on black boxes does not enhance understanding.

Exercise 2.16. (1) Write a code to implement the Euler method, the improved Euler
method, and the trapezoidal method. For the trapezoidal method you may wish to review
Newton’s method for finding roots of systems of equations (see Appendix A.14). Apply
your codes to approximate (x(3π/2), y(3π/2)) for the system

ẋ = −y + x(1− x2 − y2), ẏ = x+ y(1− x2 − y2), (2.6)
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with initial condition x(0) = 1 and y(0) = 0. The exact answer is (0,−1). Also, apply
your codes to approximate (x(3π/2), y(3π/2)) for the system

ẋ = −y + x(x2 + y2 − 1), ẏ = x+ y(x2 + y2 − 1),

with initial condition x(0) = 1 and y(0) = 0. The exact answer is (0,−1). Which
system of differential equations is more amenable to the numerical methods? Explain
the difference. Why does numerics work so well for one of the systems and not so
well for the other? Hint: Change to polar coordinates. (2) Discuss, for each method,
the largest step size ∆t that will produce less than a 1% error in approximating the
final value for system (2.6). (3) For system (2.6), make tables to show that the Euler
method is first order and the other two methods are second order. The idea here is to
start with some ∆t and record in a table the absolute error (the absolute value of the
difference between the exact solution and the approximation) produced by your code
in computing the approximate final value for ∆t, ∆t/2, ∆t/4, and so on. The absolute
error when using a second order method should be (approximately) 1/4 of the previous
absolute error each time the step size is divided by 2. Give evidence that your code has
this property.

Exercise 2.17. (a) Consider the system

ẋ = 1, ẏ = axy,

where a is a parameter. Solve this system with initial data x(0) = y(0) = −1, and show
that the exact value of the solution at t = 2 is (x, y) = (1,−1) independent of a. (b)
Generalize the result of part (a); that is, given x(0) < 0, show that there is a time T > 0

(which is independent of a) such that the solution starting at (x(0), y(0)) reaches the
point with coordinates (−x(0), y(0)) at t = T .

Exercise 2.18. Use various numerical methods to approximate solutions of the system
of ODEs in Exercise 2.17 at least for the parameter values a = 1, 102, and a = 104 with
x(0) ≤ −1. Do your computer codes produce correct results? Discuss your experiments
(compare to Exercise 5.52).

Exercise 2.19. (a) Show that t 7→ (t, t2) is a solution of the system of differential
equations

ẋ = 1, ẏ = 2x+ ax(y − x2)

independent of the parameter a. (b) For a = 10 and initial data x(0) = 0 and y(0) = 0,
the value of the solution at t = 10 is x(10) = 10, y(10) = 100. Use a numerical method
to approximate the solution of the initial value problem and compare the output with
the exact value of the solution. (c) The ODE in this exercise is the same as the ODE in
Exercise 2.17 via a change of coordinates. What is this change of coordinates?

Exercise 2.20. Determine the fate of the solution of the initial value problem

ẍ+
1

10
ẋ− x+ x3 = 0, x(0) = 0, ẋ(0) = 1

as time grows without bound.
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Exercise 2.21. Consider the system of differential equations

ẋ1 = −k1x1,

ẋi = ki−1xi−1 − kixi, i = 2, 3, 4, . . . , n− 1,

ẋn = kn−1xn−1.

It arises in situations that may schematically be described by a process X1 → X2 →
X3 → · · · → Xn where the amount or concentration xi of some substance in a region
Xi (perhaps a tank) is determined by the amount of the substance coming into Xi from
Xi−1 minus the amount going out. The parameter ki is the rate constant for the amount
of substance leaving Xi. Suppose initial data xi(0) = ξi is also given. (a) Show that the
system can be solved explicitly. (b) Let n = 10, ki = i/1000, and ξi = 1 − 10i/101.
Determine x10 at time t = 2000. Compare the exact solution with approximations using
numerical methods for ODEs.

Exercise 2.22. (a) In the context of Exercise 2.15, discuss the typical motion via a
series of well-conceived numerical experiments. (b) The system certainly has periodic
motions when the initial data is confined to the vertical line through the peg. Are there
other periodic motions?

Exercise 2.23. In the context of Exercise 2.7, suppose that the two springs are
different; that is, the springs may have different natural lengths or different spring
constants. (a) Write a model for the displacement of the mass in the horizontal plane.
(b) Predict typical motions that remain near the equilibrium position of the system. (c)
Predict typical motions in the horizontal plane of the object connected to the springs. (d)
Are there periodic motions? If so, how do the periods depend on the parameters. (e) It
is possible to adjust the apparatus so that the motion is along a line as in Exercise 2.7.
Is the symmetric configuration the only one that allows such motions? (f) Is it possible
to adjust the apparatus and the initial data so that the motion stays on a circle? (g) What
happens when viscous damping is taken into account?

Exercise 2.24. A network of 20 sensor stations is to be constructed on the surface
of the moon. The sensors are required to be distributed uniformly to cover the entire
surface. How should they be placed? Hint: Consider four sensors first, then eight sensors,
and so on. Hint: One possible approach to this problem is to imagine the sensors
are electrons confined to the surface of a sphere. The electrons all repel each other
according to Coulomb’s law. If the elections are placed on the sphere and allowed to
move according to this law, they should come to rest in a desired configuration at least
when their motions are damped by some force that acts in the direction opposite to the
directions of their velocities on the surface of the sphere. (b) For a fixed number (say
eight sensors) if a solution exists, there are infinitely many other configurations obtained
by rigid rotation of the given solution. Can there be two solutions such that one cannot
be rotated to the other?

Exercise 2.25. [Buckling] Suppose a compression force is applied to the ends of a
thin flat strip of elastic material of length `. Depending on the strength of the force and
its material properties, the strip might deform in a direction normal to one of its faces.
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Assuming no twist occurs in the strip, which might be the case when the ends of the strip
are appropriately clamped, the position of the deformed strip is specified by the position
of its deformed central axis. Once the deformed strip is in equilibrium, the forces acting
on it must balance. A crude but informative model may be constructed by balancing the
applied force with the restoring force that would tend to move the bent strip back to its
flat state (see Chapter 18 for a more complete introduction to elasticity and Exercise 19.6
for a related problem). This second force may be assumed to be proportional to the
(signed) curvature of the deformed strip. In the case considered here, where the strip is
thin, the curvature of the strip is approximated by the curvature of its central axis. Note
that in differential geometry, curvature is taken to be an intrinsic property of a curve; in
particular, its value for a curve does not depend on the parameterization. For this force
balance problem, directions are important. Suppose the undeformed strip resides in the
(x, z) plane of a Cartesian coordinate system and its central axis is along the x-axis of
these coordinates. Bending deflections are measured by deviations of the y-coordinate
from zero. For convenience, define the unit tangent vector T = (cos θ, sin θ) where θ
is the angle between the positive direction of the x-axis and the velocity vector with
respect to the parameterization. For definiteness, consider the parameterization R(s) =

(x(s), y(s)), where s measures arc length from the left end of the clamped strip. In this
case the normal vector N is defined to be (− sin θ, cos θ), which is the positive 90 ◦

rotation of T with respect to the usual orientation of the plane. The unit tangent vector
T is also given by T = dR/ds. Because T · T = 1, the vector dT/ds is perpendicular to
T . Thus, this vector is some scalar multiple of N . This scalar is defined to be the signed
curvature κ; it can take on positive, negative, and zero real values. In symbols,

dT

ds
= κN.

To make the curvature intrinsic, the definitions are slightly different: The normal N is
defined to be the unit vector in the direction of dT/ds and κ is the length of dT/ds.
(1) Show that κ = dθ/ds.
A model for the deformed elastic strip is constructed using the following theory: The
signed curvature at a point on the deformed strip is proportional to the bending moment,
which is the magnitude of the applied force times the displacement of the point from
its equilibrium position. For the compressed strip, the latter force with magnitude F
acts in the direction of the usual basis vector e1. To construct the model, the sign of the
curvature and the bending moment must be the same. The constant of proportionality is
taken to be the flexural rigidity defined to be the product of Young’s modulusE (the ratio
of stress to strain) for the deformed material and the second moment I =

∫
Σ
y2 dydz of

the transverse cross section Σ of the physical strip. Using this theory, the model equation
is

EI
dθ(s)

ds
= −Fy(s).

As the position R is given by

R(s) =

∫ s

0

dR

ds
ds =

∫ s

0

T (s) ds,
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the second component of position y is recovered from the integral

y(s) =

∫ s

0

sinσ dσ.

(2) Show that

EI
d2θ

ds2
+ F sin θ = 0.

There are many other ways to obtain the same result using different ideas from
classical mechanics. Can you derive the same model using a different methodology?
The physical reasoning used here is not based on fundamental principles, but it has the
virtue of simplicity. Assume the strip is clamped at each end to the (x, z) plane. The
corresponding boundary conditions are

θ(0) = 0, θ(`) = 0.

Under the assumption that F is a positive constant, the change of variables s = `τ

renders the two-point boundary value problem dimensionless.
(3) Show that the dimensionless system is

d2Θ

dτ2
+ λ sin Θ = 0, Θ(0) = 0, Θ(1) = 0,

with λ = `2F/(EI) and Θ(τ) = θ(`τ).
(4) The important question for the applied problem is easily stated: How large must λ be
to allow a nontrivial solution of the boundary value problem? Note that θ = 0 is always
a solution. Are there other solutions? Although there is a pencil and paper answer to
this problem, it requires a few new ideas that might not be familiar. Start with numerical
experiments. A simple idea (which is not the best, but is adequate for this problem) is to
employ the shooting method. The idea is very simple, use a numerical method, perhaps
the trapezoidal rule, to solve the initial value problem for the ODE with initial data
Θ(0) = 0 and Θ′(0) = σ, where σ is a real parameter. This initial value problem has a
unique solution. The parameter σ is to be adjusted until some choice of σ determines a
solution for which Θ(1) = 0. Try it. Can you devise an adjustment algorithm that goes
beyond trial and error? Hint: Recall Newton’s method for solving nonlinear equations
(see Appendix A.14). It can be used to solve implicitly for the value of the state at
each step of the trapezoidal method. In the context of this problem, some algebraic
manipulations can be used to reduce the system of equations to be solved at each step to
one scalar equation in one unknown. Note that the solution of the initial value problem
depends on σ. Thus, we may consider the solution in the form τ 7→ (Θ(τ, σ), Θ̇(τ, σ)).
The objective of shooting is to solve the equation Θ(1, σ) = 0. Newton’s method can be
used a second time to approximate the solution of this equation:

σi+1 = σi −
Θ(1, σi)

Θσ(1, σi)
.
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The only difficulty is approximating the partial derivative of Θ with respect to σ at
(1, σi). This quantity may be found using an appropriate variational equation (see
Appendix A.16). In fact, the desired quantities are obtained by approximating (via the
trapezoidal method) the solution of the initial value problem

Θ′ = V,

V ′ = −λ sin Θ,

U ′ = W,

W ′ = −λU cos Θ,

Θ(0) = 0, V (0) = σi, U(0) = 0, W (0) = 1,

where U = Θσ and W = Vσ . Note that derivatives of state variables in a differential
equation model can be obtained by solving a variational equation simultaneously with
the given differential equation. Here the model together with the variational equation
is four-dimensional. Can you construct a better numerical method based on some idea
other than shooting?
(5) With some experimentation with numerical approximations you should find evidence
for the following scenario. If λ > 0 is sufficiently small, the only solution of the
boundary value problem is the zero solution. There is a critical value of λ > 0 such
that for every λ less than this value the only solution of the boundary value problem
is the zero solution; and, for every λ exceeding the critical value, there is a nonzero
solution. What is this critical value? The physical interpretation is clear: the critical
value corresponds to the strength of the applied force necessary for the strip to buckle.
Describe your findings in detail.
(6) What is the shape of the strip for an applied axial force whose strength is 5% larger
than the critical value? Draw a graph.
(7) Consider the same strip configuration and an applied force G in the direction normal
to the strip instead of the axial direction. What is the shape of the deformed surface when
a constant normal force is applied? Does the strip deform for every nonzero applied force
or must the strength of the force exceed some critical value?
(8) Suppose one or both ends of the strip are attached so they can pivot. What are the
corresponding boundary conditions? How do the deformed configurations for the two
possible forces change from the clamped case?
(9) Suppose there is no axial force and the applied normal force is not constant.
For definiteness, suppose the force is constant on the interval 1/2 ≤ τ ≤ 3/4 and
zero otherwise. Show the difference between the shape of this deformation and the
deformation due to a force with the same total magnitude in case the force is distributed
over the entire strip.

Exercise 2.26. Return to Exercise 2.14 and use numerical methods to gain insight
(which is the purpose of numerical approximations of dynamical systems) into the key
questions stated in the problem. At least (partially) answer the following questions and
write a report on your findings. Be careful to state precisely the parameter values (or
ranges of parameter values) used in your numerical experiments. Organize your work
to make predictions about the behavior of the system. (a) How do the frequency and
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the velocity at the crossing of the equilibrium position depend on the parameters? (b)
How would you write a data sheet for a manufactured version of the apparatus in a case
where the tension on the springs (via changes in α) was adjustable? (c) How would
you manufacture a version of the apparatus to achieve a desired velocity or a desired
frequency for a specified initial displacement? As a specific case, consider the following
data for the mass-spring system:

K = 200 kg / sec2, M = 0.25 kg, ` = 0.4 m, α = 0.05 m .

The mass is to be pulled exactly d meters from its equilibrium position and released
from rest. The problem is to determine d so that the mass crosses the equilibrium
position at time T = 0.1 sec. What is d? Answer this question, but also discuss the
problem and design your solution so that other parameters could be considered. Hint:
Use a modification of the shooting method discussed in Exercise 2.25. Write code that
automatically returns an approximation of the value of d so that your code could be used
to approximate d for other choices of T . Is there a critical value (for some parameter
or combination of parameters) that must be considered to ensure that a solution exists?
Hint: Perhaps rescaling the problem to a dimensionless form would be useful in your
analysis of this question.

Exercise 2.27. Second-order linear ODEs with nonconstant coefficients are impor-
tant. For example, they play a fundamental role in the study of the solutions of some
linear PDEs, especially when there is circular or spherical symmetry. An example is
in Section 23.1 on waveguides. You should be familiar with solution methods for such
equations. (a) Consider the ODE

ry′′ + (2− r)y′ + 4y = 0.

Here the name r of the independent variable is supposed to suggest a radius (that is, the
distance to the origin). Also, because r multiplies the highest-order derivative, setting
r to zero changes the order of the ODE. The equation is singular at this value of r.
For this reason, an important issue is the behavior of solutions at or near r = 0. Recall
the power series method for representing solutions. The idea is simple and powerful:
Look for a solution r 7→ y(r) of the differential equation in the form of a power
series y(r) =

∑∞
n=0 anr

n where the coefficients an are to be determined, substitute
the power series into the ODE, use the theorem that a power series represents the zero
function if its coefficients are all zero, collect like powers of r on the left-hand side of
the equation, and try to solve for the unknown coefficients by equating the coefficients of
each power of r (starting with the lowest power) to zero. There might be free variables
in this process. This is to be expected because a solution multiplied by a number is
again a solution of the linear ODE. Also, to specify a solution uniquely requires two
conditions; for example, the value of the independent variable y and its derivative y′ at
some value of the independent variable. Use the power series method to determine a
nonzero solution of the ODE valid near r = 0. (b) The solution found in part (a) will
be defined as a continuous function on an interval of real numbers containing the origin.
A second-order linear ODE has a pair of solutions defined near each regular point—
points that are not singular points—such that every solution is a linear combination of
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these two fundamental solutions. The solution of part (a) can be paired with another
solution to form such a fundamental set. A second solution of the given ODE with
this property is not defined at r = 0. In fact, the second solution is always unbounded
as r approaches zero. Demonstrate this fact. Hint: It is possible (but not easy) to find
a series representation of a second solution using the method of Frobenius. Another
way to produce an appropriate second solution is reduction of order. You are not asked
to represent the second solution as a convergent series. The problem is to show that a
second solution is unbounded at the origin. (c) What happens to solutions when r is large
(that is, as r →∞)? One might look at the equation, divide by r, and say that for large r
the equation is nearly the same as the constant coefficient ODE y′′−y′ = 0. Solving this
later equation suggests that most solutions of the original ODE grow exponentially fast
as r increases. Is this true? Gather evidence from analysis or numerics for an answer
to this question. Remark: The ODE discussed in this problem belongs to a class of
ODEs that is important in the quantum mechanical computation of the energy states of
the hydrogen atom. (d) Approximate the value y(1) of the solution of the ODE with
initial data y(2) = 1 and y′(2) = 0. Use power series and compare with a numerical
approximation.

Exercise 2.28. Suppose you are the captain of a ship and intend to steer a
predetermined course. Let θ denote the deviation angle of the ship from the direction
along the desired course. A crude model for the motion of the ship is

Iθ̈ + εθ̇ = f(t),

where I denotes the magnitude of the moment of inertia of the ship, εθ̇ is a sum of the
forces (water pressure for example) that oppose the turning of the ship, and f is the sum
of the external forces transverse to the ship heading. The ship is steered by a rudder. The
turning force should be proportional to the rudder angle ψ (relative to the longitudinal
axis of the ship). Thus, a simple model for steering the ship is

Iθ̈ + εθ̇ = −kψ + g(t)

where k is the constant of proportionality for the rudder force and g(t) represents
unknown and unexpected forces that might change the course of the ship. (a) Why is
there a minus sign for the rudder force term? (b) What happens (according to the model)
in case the ship is not steered and there is no external force? (c) Does this model predict
the possibility to overcome every deviation from a straight heading by steering?

Exercise 2.29. [Automatic Control of Steering a Ship] As a continuation of Ex-
ercise 2.28, imagine the possibility of an automatic control system for the ship. The
problem is to maintain the desired course. That is, the control system is designed to
maintain the deviation at or near θ = 0 by automatically moving the rudder in response
to changes in the ship’s current heading. To make a control system, there must be some
sensor mechanism that detects the heading and an actuator to move the rudder. To keep
the model simple, let us suppose that the sensor records the heading deviation and its rate
of change. The controller is designed by feedback of this information to the actuator. A
simple model is to assign two control gains a and b, which can be adjusted, and change
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the rudder angle according to the rule

ψ = aθ + bθ̇.

The closed loop model is then

θ̈ + εθ̇ = −k(aθ + bθ̇) + g(t).

(a) Suppose there is no external force influencing the motion and the ship has some
initial deviation (a specified (θ(0), θ̇(0))). What happens under these circumstances to
the future course deviation of the ship? How does the outcome depend on a and b? More
precisely, for which choices of the gains does the model predict that the deviation will
become small as time increases. Roughly speaking, the desired outcome is stabilization
of the ship’s motion. (b) Suppose g(t) = A sin(ωt), perhaps for some relatively small A
and ω so as to have a small amplitude slowly changing external force. How should the
gains a and b be chosen to most efficiently keep the ship on course? (c) Try at least one
other physically motivated choice for g. Explain why your g is a good choice and discuss
the best choice of gains for the automatic control system. (d) In a real control system,
some time elapses while the sensor determines the rate of change of heading and the
actuator moves the rudder in response. Thus the control actuation is not instantaneous.
Instead, there is some τ > 0 (which for simplicity we may assume is fixed with respect
to time) that enters the control system as a time delay. The corresponding model is

θ̈ + εθ̇ = −k(aθ(t− τ) + bθ̇(t− τ)) + g(t).

Is the inclusion of the delay significant in the stabilization problem? Hint: This
is not a trivial question. The subject here is differential delay equations or more
generally retarded functional differential equations. There is a useful theory for this
type of dynamical equation. The reader familiar with this theory might use it to
answer the stabilization question. Alternatively, perform some well-conceived numerical
experiments to gather evidence for your conclusions about the significance of the time
delay.



CHAPTER 33
An Environmental Pollutant

Consider a region in the natural environment where a waterborne
pollutant enters and leaves by stream flow, rainfall, and evaporation. A
plant species absorbs this pollutant and returns a portion of it to the
environment after death. A herbivore species absorbs the pollutant by eating
the plants and drinking the water. It returns a portion of the pollutant to
the environment in excrement and after death. We are given (by ecologists)
the initial concentrations of the pollutant in the ambient environment, in the
plants, and in the animals, together with the rates at which the pollutant is
transported by the water flow, the plants, and the animals. A basic problem
is to determine the concentrations of the pollutant in the water, plants, and
animals as a function of time and the parameters in the system.

Fig. 3.1 depicts the transport pathways for our pollutant, where the state
variable x1 denotes the pollutant concentration in the environment, x2 its
concentration in the plants, and x3 its concentration in the herbivores. These
three state variables all have dimensions of mass per volume (in some
consistent units of measurement). The pollutant enters the environment at
the rate A (with dimensions of mass per volume per time) and leaves at the
rate ex1 (where e has dimensions of inverse time). Likewise, the remaining
rate constants a, b, c, d, and f all have dimensions of inverse time.

The scenario just described is typical. We will derive a model to track the
environmental pollutant from the fundamental law of conservation of mass:
the rate of change of the amount of a substance (which is not created or
destroyed) in some volume is its rate in (through the boundary) minus its
rate out, or in other words,

time rate of change of amount of substance = rate in− rate out.

The conservation of mass law is simply applied by taking the units of
measurement into account. For example, we might be given the volume V
of a container, compartment, or region measured in some units of volume;
the concentration x of some substance in the compartment measured in
amount (mass) per volume; and rates k of inflow and ` of outflow for some
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Fig. 3.1 Schematic representation of the transport of an environmental pollutant.

medium carrying the substance measured in units of volume per time. The
rate of change dx/dt in this case, where t denotes time measured in some
consistent unit, has units of amount per volume per time. The product of the
rate of outflow ` and the concentration x has units of amount per time. In
this situation, the time derivative must be multiplied by the total volume to
achieve consistent units in the differential equation

d(V x)

dt
= rate in− `x,

where the inflow rate must have units of amount per time. When V is
constant, both sides of the equation may be divided by V . The quantity
`/V has units of inverse time. It is the rate constant for the outflow of the
substance.

For the environmental pollutant, the rate constants are given and the
state variables x1, x2 and x3 represent concentrations as in Fig. 3.1. Using
conservation of mass, the transport equations are

ẋ1 = R+ ax2 + bx3 − (c+ d+ e)x1,

ẋ2 = cx1 − (a+ f)x2,

ẋ3 = dx1 + fx2 − bx3. (3.1)

This type of model, which is ubiquitous in mathematical biology, is called a
compartment model.
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The parameters in model (3.1) would be measured by the field work of
ecologists. When these parameters are determined, the model can be used
to make quantitative predictions of the future concentrations of the pollutant
by solving the system of ordinary differential equations (ODEs) [Eqs. (3.1)].

Some of the rates might be difficult to measure directly (for example, the
rate constant f that determines the transport of the pollutant from plants to
the herbivore). These rates might be estimated using a two-step procedure:
The pollutant concentrations are measured in the field over some suitable
period of time and the parameters are chosen in the model to match these
measurements. Exactly how to choose the parameters based on available
data is the parameter estimation problem; it is one of the most important
and difficult issues in mathematical modeling.

Our model may also be used to make qualitative predictions. For
example, we might make a mathematical deduction from the form of the
equations that determines the long-term substance concentrations for some
range of parameter values. We might also use our model to predict the
outcome of some intervention in the environment. For example, suppose
that some portion of the plants are harvested by humans and removed
from the region under study. The effect of this change can be predicted
by solving our model equations with appropriate assumptions. The ability
to make predictions without conducting new field studies is one of the most
important motivations for developing a mathematical model. Another reason
to develop a model is to test hypotheses about the underlying physical
process. For example, a model that leads to predictions that do not agree
with data obtained from field observations must be based on at least one
false assumption.

Linear system [Eq. (3.1)] can be solved explicitly. But, since the
eigenvalues of the system matrix are roots of a cubic polynomial, explicit
formulas for the time evolution of the state variables x1, x2, and x3 are
complicated. This is to be expected. Differential equations with simple
explicit solutions are rare. Most differential equations do not have explicit
solutions and most explicit solutions are too complicated to be useful. For
this reason, model validation and predictions are usually obtained by a
combination of qualitative methods, analytic approximations, and numerical
approximations. The most valuable information is usually obtained by
qualitative analysis.
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Physically meaningful concentrations are all nonnegative. Hence, our
model should have the property that nonnegative initial concentrations
remain nonnegative as time evolves. Geometrically, the positive octant of
the three-dimensional state space for the variables u, v, and w should be
positively invariant (that is, a solution starting in this set should stay in the
set for all positive time or at least as long as the solution exists). To check the
invariance, it suffices to show that the vector field given by the right-hand
side of the system of differential equations is tangent to the boundary of the
positive octant or points into the positive octant along its boundary, which
consists of the nonnegative parts of the coordinate planes. In other words,
positive invariance follows because ẋ3 ≥ 0 whenever x3 = 0, ẋ2 ≥ 0
whenever x2 = 0, and ẋ1 ≥ 0 whenever x1 = 0.

What happens to the concentrations of the pollutant after a long time?
Our expectation is that the system will evolve to a steady state (that is, a
zero of the vector field that defines the ODE). To determine the steady state,
we simply solve the system of algebraic equations obtained by setting the
time derivatives of the system equal to zero. By a computation under the
assumption that be(a+ f) 6= 0, the solution of the linear system

R+ ax2 + bx3 − (c+ d+ e)x1 = 0,

cx1 − (a+ f)x2 = 0,

dx1 + fx2 − bx3 = 0 (3.2)

is

x1 =
R

e
, x2 =

Rc

e(a+ f)
, x3 =

R(ad+ (c+ d)f)

be(a+ f)
.

If be(a + f) > 0, then there is a steady state in the positive first octant. If
b = 0, e = 0, or (a+f) = 0, then there is no steady state. This is reasonable
on physical grounds. If the pollutant is not returned to the environment by
the herbivores, then we would expect the pollutant concentrations in the
herbivores to increase. If the pollutant does not leave the environment, then
the concentration of the pollutant in our closed system will increase. If the
plants do not transfer the pollutant to the environment or the herbivores, we
would expect their pollutant concentration to increase.

Suppose that there is a steady state. Do the concentrations of the
pollutant approach their steady state values as time passes? This basic
question is answered for our linear system by determining the stability of
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the corresponding rest point in our dynamical system. The stability of a
steady state can usually be determined from the signs of the real parts of
the eigenvalues of the system matrix of the linearization of the system at
the steady state (see Appendix A.17). In particular, if all real parts of these
eigenvalues are negative, then the steady state is asymptotically stable.

The system matrix at our steady state is −c− d− e a b
c −(a+ f) 0
d f −b

 . (3.3)

To show the asymptotic stability of the rest point, it suffices to prove that
all the real parts of the eigenvalues are negative. This follows by a direct
computation using the Routh–Hurwitz criterion (see Appendix A.17 and
Exercise 3.1). Of course, this also agrees with physical intuition. Because
the system is linear, we can make a strong statement concerning stability:
If e 6= 0, then all initial concentrations evolve to the same steady state
concentrations.

Our qualitative analysis makes numerical computation unnecessary for
answering some questions about our system, at least in those cases where
we can reasonably assume the system is in steady state. For example, if
the rate at which the pollutant leaves the environment is decreased by 50%,
then we can conclude that the pollutant concentration in the plants will be
doubled. On the other hand, we may resort to numerical computation if we
wish to predict some transient behavior of our system (see Exercise 3.2).

Exercise 3.1. (a) Prove that if a, b, c, d, e, and f are all positive, then all the roots of
the characteristic polynomial of matrix (3.3) have negative real parts. (b) Show that the
same result is true if a, b, e, and f are positive and the constants c and d are nonnegative.

Exercise 3.2. Suppose that the parameters in model (3.1) are

R = 10, a = 1, b = 1/100, c = 3, d = 1, e = 1, f = 4.

See Section 5.4 if you are not familiar with numerical methods for ODEs. (a) For the
initial concentrations (at time t = 0) x1 = 0, x2 = 0, and x3 = 0, determine the time
t = T such that x3(T ) = 1/2. (b) Suppose that the pollutant enters the environment
periodically,R = 10+5 sin(2πt) instead of the constant rateR = 10. Argue that the state
concentrations fluctuate periodically and determine the amplitude of this fluctuation in
the plant species.
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a gal�min

Α lb�gal

b gal�min

Β lb�gal

k gal�min

h gal�min

c gal�min

Tank I Tank II

VI VII

X lb Y lbx lb y lb

Fig. 3.2 Schematic representation of tanks with inflow, outflow, and connecting pipes.

Exercise 3.3. Consider the arrangement of tanks and pipes depicted in Fig. 3.2.
Liquid is pumped into, out of, and between the tanks at the indicated rates. The first
(respectively, the second) tank has initial liquid volume VI (respectively, VII ). Two
solutions enter the first tank via pipes that feed the system. The concentration of the
solute x in one pipe is α lbs/gal, and the concentration of the second solute y in the other
pipe is β lbs/gal. These enter at the flow rates of a gal/min and b gal/min (respectively).
The solutions are exchanged between the two tanks in the indicated directions at the rates
h and c gal/min. The concentrations of the two solutes in the second tank are denoted
X and Y . The solution leaves the second tank at the rate k gal/min. Assume that both
tanks are stirred so that the solutes have uniform concentrations at each instant of time
in each tank, the liquid volume of each tank is constant during the process, and the initial
amounts of the solutes in both tanks are given. (a) What constraints are imposed on the
flow rates? (b) Determine the amounts of the solutes in each of the tanks as functions of
time. (c) What happens to the concentrations of the solutes in each tank in the long run?

Exercise 3.4. Imagine three tanks each containing three different substances in
solution. The tanks are connected by equal sized pipes to form a closed loop; that is,
tank 1 feeds tank 2 and is fed by tank 3, tank 2 feeds tank 3 and is fed by tank 1, and
tank 3 feeds tank 1 and is fed by tank 2. There are pumps in the pipes that maintain the
circulation in the indicated direction at a fixed flow rate and the contents of the tanks are
stirred so that the mixtures are homogeneous. (a) Make a model for the concentrations of
the first substance in the three tanks and use it to predict concentrations as functions of
time. What does the model predict? (Hint: Use pencil and paper to determine the steady
states.) (b) Consider three bins each containing a mixture of red, blue, and green balls.
The same number of balls (less than the minimum number of balls in a bin) is chosen at
random from each bin and redistributed. Those chosen from the first bin are moved to
the second, those from the second bin are moved to the third, and those from the third
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bin are moved to the first. This process may be repeated. Write a computer simulation
of the process and track the concentration of red balls in each bin. (c) A simple model of
the process in part (b) is given by the differential equations model of part (a). How well
does the model predict the concentrations of red balls? Discuss the assumptions of the
model and their validity for the redistribution process. (Hint: Make sure the initial states
are the same for the process and the ODE model.) (d) Suppose a fixed amount of the first
substance is created continuously in tank 2 and the same amount is destroyed in tank 1.
What happens in the long run? Compare with a bin simulation. Note: The bin simulation
is an example of a Markov process, for which there is a well-developed theory that is
beyond the scope of this book.

Exercise 3.5. [PID Controller] (a) Imagine a tank partially filled with water. A
pipe feeds water to the tank at a variable flow rate, and there is also a drain pipe
with a computer-controlled variable flow valve connected to a sensor in the tank that
measures the tank’s volume. The valve opens exactly enough to let water drain from
the tank at a rate proportional to the volume of the tank. The program allows the user
to set one number: the constant of proportionality. Write a model for this physical
problem. Be sure to define all the variables in your model. (b) Suppose the inflow
rate is constant. How should the proportionality constant in the control mechanism
be set to keep the tank near a constant desired volume? (c) Suppose the inflow rate
is periodic. To be definite, take the flow rate to be sinusoidal and known exactly. How
should the constant of proportionality be set for the controller to best keep the tank
at a constant desired volume? Part of the problem is to define “best." Explain your
choice. The abbreviation PID stands for proportional–integral–derivative. This exercise
is about proportional control, which is implemented by a feedback controller, where the
feedback is proportional to the volume as a function of time. Adding into the feedback a
constant times the integral of the volume change would create a PI control. Adding into
the feedback a constant times the derivative of the volume function would create a PD
control. A feedback control given by a linear combination of the volume as a function of
time, the integral of the volume, and the derivative of the volume creates a PID control.
(d) Find the constants of proportionality for the PID control of the tank volume that
tunes the control to best keep the tank volume constant for the case of constant inflow
and for periodic inflow.



CHAPTER 44
Acid Dissociation, Buffering, Titration, and
Oscillation

Dissociation is a basic chemical process that is amenable to a simple
mathematical description. We will discuss the dissociation of acetic acid
in water, titration with sodium hydroxide, and buffering. Two of the main
purposes of the chapter are to introduce dynamic modeling of chemical
reactions using the law of mass action and to further illustrate the important
role played by autonomous systems of differential equations in applied
mathematics.

4.1 A MODEL FOR DISSOCIATION

In a beaker of water containing a small amount of acetic acid, the acid
dissociates into acetate ions and hydronium ions, which are properly
denoted H30+, but often called protons and denoted H+. Subscripted +
or − signs denote the sign of the charge on the ion. In chemical symbols

CH3COOH +H2O 
 CH3COO
− +H+,

or in shorthand,

AcH 
 Ac− +H+ (4.1)

with Ac− used here to denote the acetate ion CH3COO
−. The arrows

indicate that the reaction occurs in both directions: the acid molecules
dissociate and the ions recombine to form the acid.

Water molecules also ionize into protons and negatively charged ions
consisting of an oxygen atom with one hydrogen attached. For simplicity,
the reaction is usually written

H2O 
 H+ +OH−;

but, more realistically and viewed as a dissociation of an acid, the chemical
reaction is

H2O +H2O 
 H3O
+ +OH−, (4.2)
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39Copyright c© 2017 Elsevier Inc. All rights reserved.http://dx.doi.org/10.1016/B978-0-12-804153-6.50004-X, 



40 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

which is abbreviated by writing

H2O +H2O 
 H+ +OH−. (4.3)

A simple chemistry experiment is to put some acetic acid in water. What
happens?

The changing concentrations of four chemical species are of interest:
acetic acid, acetate, protons, and OH ions:

AcH, Ac−, H+, OH−.

To make a mathematical model, we will use conservation of mass. But this
is not enough; the reactions among the species must be taken into account.
A basic model from chemical kinetic theory is the principle of mass action:
the rate of reaction of two chemical species is proportional to powers of the
products of their molar concentrations. One mole (mol) is approximately
6× 1023 molecules and molar concentrations are usually reported in moles
per liter. For the principle of mass action in symbols, consider species A
and B that combine in solution to produce C, written A + B → C. Also,
using the conventional notation [A] for the (molar) concentration of A and
the symbol ′ to denote differentiation with respect to time, the rate of change
of the concentration of C is

[C]′ = k[A]p[B]q,

where k is the constant of proportionality and the powers p and q must be
determined by experiment. For elemental reactions, p = 1 and q = 1. Such
a reaction is called a first-order reaction. Acid dissociation reactions are all
believed be of this type. The constant k depends on the temperature of the
solution. But, for the simple models constructed here, this fact can safely be
ignored.

For our reactions [Eqs. (4.1) and (4.3)], consider the rate of change
of the concentration of the OH+ ion. It is created and destroyed during
the reaction. Using the conservation of mass (that is, taking into account
the creation and destruction of the ion in the reaction [Eq. (4.3)]) and the
principle of mass action, we have that

[OH−]′ = Wf [H2O]2 −Wb[H
+][OH−],
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where Wf and Wb are the forward and backward constants of proportional-
ity for the dissociation of water, the products [H2O][H2O] and [H+][OH−]
are due to the principle of mass action, and the difference on the right-hand
side is rate in minus rate out for theOH+ ions. Doing the same for the other
species produces the system of differential equations.

A complete model would include an equation for the rate of change of
water concentration. But, under the assumption that there is much more
water than acid, we may safely ignore the change in water concentration and
treat this quantity as if it were constant. This is an example of a simplifying
assumption in mathematical modeling. Under the assumption that water
concentration is constant, the model is less realistic but perhaps more useful.
To implement this idea, we define new parameters (quantities that for our
model do not change with time)

wf := Wf [H2O]2, af := Af [H2O], wb = Wb, ab = Ab

and rewrite the model in the form

[OH−]′ = wf − wb[H+][OH−],

[AcH]′ = ab[H
+][Ac−]− af [AcH],

[Ac−]′ = af [AcH]− ab[H+][Ac−],

[H+]′ = af [AcH]− ab[H+][Ac−] + wf − wb[H+][OH−].

With this simplification, the model consists of four first-order ordinary
differential equations in four unknowns. By the existence theory for ordinary
differential equations, there is a unique solution of the system starting at
each choice of initial concentrations (see Appendix A.3).

Mathematicians generally do not like extra decorations on variable
names. Let us follow this convention by defining new state variables

W = [OH−], X = [AcH], Y = [Ac−], Z = [H+]

[OH−]′=Wf [H2O]2 −Wb[H
+][OH−],

[AcH]′=Ab[H
+][Ac−]−Af [AcH][H2O],

[Ac−]′=Af [AcH][H2O]−Ab[H+][Ac−], (4.4)

[H+]′=Af [AcH][H2O]−Ab[H+][Ac−]+Wf [H2O]2−Wb[H
+][OH−].
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and parameters

a = af , b = ab c = wf , d = wb

so that our model has the more aesthetically pleasing form

W ′ = c− dWZ,

X ′ = bY Z − aX,
Y ′ = aX − bY Z,
Z ′ = aX − bY Z + c− dWZ.

(4.5)

Unfortunately, the parameters in our model are difficult to measure
directly. Instead, experimental measurements are made at equilibrium and
involve ratios of concentrations.

At equilibrium, the concentrations of our species are not changing. For
example, the rate of change of [OH−] is zero; that is,

Wf [H2O]2 −Wb[H
+][OH−] = 0.

Define the dimensionless dissociation constant for water to be

Kw =
Wf

Wb
; (4.6)

and, by rearranging the steady state equality, note that

Kw =
[OH−][H+]

[H2O]2
.

Warning: In the chemistry literature this number is usually replaced by the
number

Kw := Kw[H2O]2.

In addition to the possible confusion about exactly which number is
reported, note that Kw is dimensionless but Kw is not. This later quantity
can be measured; it has the value

Kw ≈ 10−14
(mol

liter

)2
, (4.7)
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which is usually written without units. To extract the exponent, the standard
practice is to define the number.

pKw := − log10Kw,

which is also treated as a dimensionless quantity. The underlying reason is
that usually reactions take place by adding small amounts of some chemicals
to water, and the water molar concentration remains nearly constant during
the reaction. In fact, the molar concentration of water is approximately

ρ := [H20] = 55.5
mol

liter
.

This constant value is used for [H20] in the dynamical equations. The
approximate dimensionless value of Kw is

Kw =
10−14

ρ2
≈ 3× 10−18.

Similar conventions are used in defining K and pK constants in general.
These numbers have dimensions, but usually they are reported without
dimensions. Here, the corresponding dimensionless numbers are denoted
using K with an appropriate subscript.

By observation, water does not dissociate easily. Thus, a reasonable
choice of the model parameters might be

c = wf = Wf [H2O]2 = 10−14 mol

m3 sec
, d = wb = Wb = 1

m3

mol sec
.

For acetic acid, the dissociation constant is

Ka =
[Ac−][H+]

[AcH][H2O]
.

Again, in the chemistry literature this equilibrium constant is usually
reported to be

Ka = Ka[H2O] ≈ 10−4.75

and

pKa := − log10Ka ≈ 4.75.

In both numbers the dimensions are usually ignored.



44 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

There is no obvious way to choose the forward and backward rate
constants. Thus, some chemical intuition is required to make a reasonable
choice; for example,

a = af = Af [H2O] = 105 sec−1, b = Ab =
Af [H2O]

Ka[H2O]

so that again Ka = Af/Ab.

In summary, determination of the transient behavior of the system
requires knowledge of the parameters a, b, c, and d, but the only quantities
we can measure are the ratios a/(bρ) and c/(dρ2). These ratios are sufficient
to determine the steady state behavior of the system.

We are using parameters in our dynamic model derived from experiments
at equilibrium. Is this justified? Perhaps this is a good time to emphasize
that no mathematical model is a perfect representation of reality. If the
model confirms other experimental data, we can be reasonably certain that
the underlying chemistry (including rate constants, dissociation equations,
elementary reactions [p = 1 and q = 1 in the law of mass action], and
the constant water concentration assumption) is correct. We could then
make predictions of the outcomes of new experiments with some confidence
that the predictions will agree with nature. Of course, the final word in
science is determined by experiment. On the other hand, we have very strong
reasons to believe the universe is rational: if we start with fundamental
laws and make logical deductions (for example, by applying mathematics),
the conclusions will agree with new experiments. This is one of the main
reasons why mathematics is important in science.

Rest points—solutions of our model that do not change with time—
correspond to states in physical equilibrium. The rest points are exactly the
solutions of the equations

Simple algebraic manipulation shows that this nonlinear system has in-
finitely many solutions that are given by the relations

X =
bY Z

a
, W =

c

dZ
;

that is, there is a two-dimensional surface of rest points, which may be
parametrized by the two variables Y and Z. These rest points cannot be

c−dWZ= 0, bY Z−aX= 0, aX−bY Z= 0, aX−bY Z+c−dWZ = 0.
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asymptotically stable (see Appendix A.17) for a simple reason. Each rest
point lies on an entire surface of rest points. Nearby rest points are not
attracted to each other; they stay fixed. What about the evolution in time
of initial states that are not rest points? Are they attracted to rest points as
time approaches infinity? To obtain some insight, let us linearize as usual
and see what happens.

The Jacobian matrix of the vector field is given by
−dZ 0 0 −dW

0 −a bZ bY
0 a −bZ −bY
−dZ a −bZ −bY − dW

 . (4.8)

At a rest point we have that W = c/(dZ); thus, after this substitution, we
would like to find the eigenvalues of the matrix

J :=


−dZ 0 0 − c

Z
0 −a bZ bY
0 a −bZ −bY
−dZ a −bZ −bY − c

Z

 . (4.9)

There are several ways to proceed. Perhaps the most instructive method
uses basic geometry and linear algebra. The rest points lie on a two-
dimensional surface of rest points in four-dimensional space. The function
defined by

(Y,Z) 7→ (
c

dZ
,
bY Z

a
, Y, Z)

parameterizes the surface. When Z is held fixed, the function traces out
a curve, parameterized by Y on the surface of rest points, whose tangent
vector must be tangent to the surface. Likewise, with Y fixed the tangent
vectors of the curve parameterized by Z are all tangent to the surface. These
vectors (obtained by differentiation with respect to Y and Z, respectively)
are 

0
bZ
a
1
0

 ,


− c
dZ2

bY
a
0
1

 .
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The linearization of our system of differential equations approximates the
dynamics of the nonlinear system. On the set of rest points, the nonlinear
system does not move points. Thus, we might expect that the linear system
does not move points in the directions of tangent vectors to the surface of
rest points. This means these vectors should be eigenvectors corresponding
to zero eigenvalues of the system matrix J for the linearization at each of the
rest points. This fact is easily verified by simply multiplying each vector by
J . Once we know the matrix J has two zero eigenvalues, it follows that there
are exactly two more eigenvalues. These have to be roots of the characteristic
polynomial p of the matrix J ; in symbols, p(λ) = det(J − λI). This
characteristic polynomial has degree four. Because it has two zero roots,
this polynomial is divisible by λ2; therefore, the desired roots are the roots
of a quadratic polynomial. By an easy computation, this polynomial p is
found to be

p(λ) = ac+bcZ+adZ2+bdY Z2+bdZ3+(c+aZ+bY Z+(b+d)Z2)λ+Zλ2.
(4.10)

Under our hypotheses, all the coefficients of this quadratic polynomial are
positive. By Exercise 4.6, the real parts of its roots are negative.

We have not proved that every solution converges to a rest point, but
this conclusion is supported by the linearization. In fact, every physically
relevant solution of our model system is asymptotic to exactly one steady
state as time grows without bound. This result requires some phase plane
analysis and hypotheses derived from the underlying chemistry.

To make further progress, it is useful to compare the sizes of the system
parameters. Although size comparisons can be made in the simple case
studied here, such a comparison requires some thought simply because the
parameters do not all have the same units of measurement. The remedy,
which should be employed in the analysis of all physical models, is to
change variables so that the model system is dimensionless; that is, the
variables, the independent variable corresponding to time, and the system
parameters are all dimensionless.

The state variables in the original model [Eq. (4.4)] are all concentra-
tions, which we may assume are measured in moles per volume. The system
parameters Wf , Wb, Af , and Ab all have the same units, which may be
abbreviated to be concentration per time. It is traditional to specify the units
of a quantity α by [α]. Square brackets also are used to denote concentrations
in chemistry, but the appropriate meaning should always be clear from the
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context. By the definitions of a, b, c, and d, their units (using the abbreviation
con for concentration) are easily determined to be

[a] =
1

time
, [b] =

1

con time
, [c] =

con

time
, [d] =

1

con time
. (4.11)

A natural rescaling to dimensionless form with the new dimensionless
variables w, x, y, z, and s is given by defining

W = ρw, X = ρx, Y = ρy, Z = ρz, t =
s

a
,

where ρ is the previously defined water concentration. By using the chain
rule, for example, writing

dW

dt
=
dW

ds

ds

dt
= aρ

dw

ds
,

substituting for the state variables, and dividing by the coefficient aρ of each
derivative, system (4.5) is recast in the dimensionless form

w′ = α(Kw − wz),

x′ =
1

Ka
yz − x,

y′ = x− 1

Ka
yz,

z′ = x− 1

Ka
yz + α(Kw − wz) (4.12)

with the dimensionless parameters

Kw =
c

dρ2
, Ka =

a

bρ
, α :=

dρ

a
.

The physical meaning of the new dimensionless parameter α is simply
Wb/Af . Inspection of the dimensionless system (4.12) reveals that the
transient behavior of this dissociation model depends on the dimensionless
parameter α; the steady state behavior does not. It is not clear that α can be
measured by experiment.

The set of nonnegative states N (corresponding to the concentrations)
is positively invariant for system (4.12). For instance, on the coordinate
hyperplaneH corresponding to the coordinates x, y, and z (that is, the set of
all states whose first coordinatew is zero), the tangent vectors to solutions of
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the differential equation at a point onH are transposed vectors of the form

(αKw,
1

Ka
yz − x, x− 1

Ka
yz, x− 1

Ka
yz + αKw).

The first coordinate of such a vector is positive. Thus, this vector is not in
the tangent space of the hyperplane H; the vector points into the region N .
In other words, it is impossible for a solution that starts in N to exit this set
through the hyperplane H. A similar argument (which might require noting
that on the boundary of N the coordinates are always nonnegative) applied
to each of the coordinate hyperplanes bounding N can be used to complete
the proof of a simple result: the vector field corresponding to the system of
differential equations [Eqs. (4.12)] points into the regionN on its boundary.
Thus, this region is positively invariant, as it should be to reflect the correct
chemistry: concentrations do not become negative as they evolve in time.

The second and third components of the vector field corresponding to
the ODEs (4.12) are the same up to a sign. Addition of these two differential
equations yields the identity x′+ y′ = 0. Hence, there must be a constant c1

such that x+y = c1. Similarly, there is a constant c2 such that z−y−w = c2.
In other words, the functions

(w, x, y, z) 7→ x+ y, (w, x, y, z) 7→ z − y − w

stay constant along all solutions. Such a function is called a first integral of
the system.

Our model is designed to determine the concentration of the chemical
species after a small amount of acid is added to water. At time t = 0,
when the water has partially dissociated but the acid is all associated, the
number of OH− ions should be equal to the number of H+ ions. In view of
the scaling that makes all the dimensionless variables proportional with the
same constant of proportionality to the unscaled variables, a correct choice
for the initial data is

w(0) > 0, w(0) = z(0), x(0) = x0 > 0, y(0) = 0.

Note also that the acetate ion concentration cannot be larger than the original
concentration of acetic acid, and this relation holds for the scaled variables
as well. In symbols, y ≤ x(0) during the dissociation process.

Using the initial data, the constant values of the first integrals are
determined: c1 = x(0) and c2 = 0; therefore, the evolving states satisfy
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the relations

x(t) = x(0)− y(t), w(t) = z(t)− y(t). (4.13)

The model system of four differential equations can therefore be reduced to
the two equations

y′ = (x(0)− y)− 1

Ka
yz,

z′ = (x(0)− y)− 1

Ka
yz + α(Kw − (z − y)z); (4.14)

and, if desired, the states x and w may be recovered using the relations.

We have proved that the evolving states, with physical initial values,
must remain positive. Repeating a similar argument for the system of
ODEs (4.14) and using our assumption that y ≤ x(0), it follows that the
region bounded by the horizontal y-axis, the vertical axis, and the line with
equation y = x(0) is positively invariant. For z sufficiently large, z′ < 0
in this strip because the dominant term is −αz2 (see Exercise 4.2). Thus,
we have proved that system (4.14) has a positively invariant rectangle R.
Moreover, we can arrange the choice of the upper boundary of R so that
all solutions starting above it eventually enter R. This rectangle is the only
possible location for rest points or periodic solutions.

Are all solutions of system (4.14) asymptotic to a rest point inR?

To answer the question, let us first determine the existence of rest points
inR by simultaneously solving the equations

(x(0)− y)− 1

Ka
yz = 0, (x(0)− y)− 1

Ka
yz+α(Kw− (z− y)z) = 0

or, equivalently, the system

y =
Kax(0)

Ka + z
, (4.15)

y =
z2 −Kw

z
. (4.16)

By eliminating y, it suffices to find the roots of the cubic polynomial

KaKw + (Kw + Kax0)z −Kaz
2 − z3. (4.17)
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It has exactly one positive root (see Exercise 4.3). The corresponding value
of y given by Eq. (4.15) is positive. Thus, this rest point must be in the
rectangleR.

Linearization at the rest point produces the system matrix

A =

( −1− z
Ka − y

Ka
−1− z

Ka + αz − y
Ka + α(y − 2z)

)
with characteristic equation

λ2 − tr(A)λ+ det(A) = 0

where

tr(A) = −(1 +
y

Ka
+

z

Ka
+ αz) + α(y − z), (4.18)

det(A) = −αy + 2αz +
2αz2

Ka
.

Using Eq. (4.16) to substitute for y, the expression for the determinant
becomes

det(A) =
α

Kaz
(KaKw + Kaz

2 + 2z3) > 0.

Because w = z − y, the last term in the expression for the trace is negative.
The same result is obtained by again using Eq. (4.16) to substitute for y in
the expression y − z to see that

y − z = −Kw

z
.

Thus, det(A) > 0 and tr(A) < 0 at the rest point. The roots of the
characteristic polynomial are

λ =
tr(A)±

√
tr(A)2 − 4 det(A)

2
.

If tr(A)2 − 4 det(A) < 0, the roots are complex conjugates with negative
real parts because tr(A) < 0. If tr(A)2 − 4 det(A) > 0, the square root of
this quantity is less |tr(A)| because det(A) > 0 and both roots are negative.

Thus, we have proved that there is exactly one rest point in the first
quadrant (the physically realistic region) and this rest point is asymptotically
stable.
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A strategy that can be used to prove the global asymptotic stability of
the rest point (that is, this rest point is stable and it is the limit as s goes
to infinity of every solution) is to show that the system has no periodic
orbits and then apply the Poincaré–Bendison theorem (see Appendix A.18,
theorem A.12).

Suppose an autonomous system of differential equations

ẏ = P (y, z), ż = Q(y, z)

in the plane has a periodic orbit Γ. Let Ω be the bounded open region
enclosed by the simple closed curve Γ. This statement contains a hidden
assumption: A simple closed curve in the plane is the boundary of exactly
two open regions, one bounded and the other unbounded. On first sight, this
result may seem obvious; it is actually a deep theorem called the Jordan
curve theorem. The difficulty arises because simple closed curves in the
plane can have complicated shapes. Let us assume this important fact.

Write Γ = ∂Ω to denote that the boundary of Ω is Γ, let X := (P,Q)
denote the vector field corresponding to the differential equation, and let η
denote the outer unit normal on ∂Ω. Green’s theorem states that∫

Ω
divX dA =

∫
∂Ω
X · η d`

The right-hand side of the last equality is the line integral around Γ of the
inner product of X , which is tangent to Γ, and the normal vector field η
on this curve. Clearly, X · η = 0 everywhere on Γ. Thus, the area integral
of the divergence of X must vanish. In other words, if the divergence of a
vector field has a fixed sign in some (simply connected) region of the plane,
then this region contains no periodic orbits of the corresponding system of
differential equations. This result is called Bendixson’s theorem (Ivar Otto
Bendixson, 1900).

The divergence of X for the reduced model equation is the trace of the
matrix A [Eq. (4.18)] not evaluated at the rest point; that is,

divX = −(1 +
y

Ka
+

z

Ka
+ αz) + α(y − z)

= −1−
(1− αKa

Ka

)
y − z

Ka
− 2αz.

Although the sign of the divergence does not seem to be fixed in general, the
sign is negative whenever αKa ≤ 1.
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What happens for αKa > 1?

There is a useful generalization of Bendixon’s theorem called Dulac’s
Theorem (Henri Dulac, 1923; see Exercise 4.8). It states that the divergence
of every positive function multiple of X must change sign in a region
containing a periodic orbit. We can prove there are no periodic orbits by
finding a positive function multiple—called a Dulac function—of X that
has positive divergence. A useful function to try is an exponential of one
of the state variables. The reason is that exponentials survive differentiation
and the constant in the exponent can be used as an extra parameter to make
it more likely the divergence has a fixed sign. Multiply X by the function
ery and compute the divergence

div(eryX) = −ery
(
1− rx(0) + (r − α)y +

z + y

Ka
+

r

Ka
yz + 2αz

)
.

Take r = α to eliminate the term (r−α)y so that the divergence is negative
whenever x(0)α ≤ 1. This latter inequality is not always true, but recall the
meaning of x(0) and the physical process being modeled. The quantity x(0)
is the initial concentration of acetic acid divided by the water concentration.
The model is constructed under the assumption that a small amount of acetic
acid is put into a beaker of water. The desired result is obtained when the
initial amount of acetic acid is so small that x(0)α < 1.

We have outlined a proof of a useful fact: For physically meaningful ini-
tial data and system parameters, every solution of the system of ODEs (4.5)
is asymptotic to a rest point where all state variables are positive. The steady
state depends on the initial data; that is, the choice of x(0) determines the
steady state (compare to Exercise 4.7). Or, from a chemical perspective, a
small amount of acetic acid in water dissociates and the corresponding ion
concentrations reach positive steady states.

Exercise 4.1. Chemists will agree with mass action modeling of acid dissociation, but
they would not see the necessity for writing the differential equations model. Instead,
they would work with the equilibrium equations and not mention the rates of change of
concentrations. Is their simplified modeling process justified? Discuss.

Exercise 4.2. Prove that the set R described in the text is a positively invariant
rectangle for system (4.14) and that every solution with positive initial conditions enters
this rectangle after some finite amount of time.

Exercise 4.3. Prove that cubic polynomial (4.17) has exactly one positive root. Hint:
Use calculus to sketch the graph of this cubic.
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Exercise 4.4. Consider the prototype reaction A+B → C with forward rate constant
k. (a) Determine the steady state behavior of the concentration of C. (b) Find an explicit
formula for the concentration of C as a function of time. (c) What is the steady state
behavior in case the reverse reaction C → A+B with rate constant ` is included?

Exercise 4.5. [Michaelis–Menton Enzyme Kinetics] An enzyme, by definition, is
a catalyst for a biochemical reaction. In a typical situation there is a substrate S,
an enzyme E, and a product P . In the presence of the enzyme (perhaps a protein),
biochemical elements that compose the substrate combine to form the product; in
symbols, S + E → E + P . This is an example of a situation where the principle of
mass action leads to a prediction that is inconsistent with experimental evidence.
(a) By applying the principle of mass action, show that the rate of change of concen-
tration of the product (called the velocity of the reaction) grows (without bound) as the
concentration of substrate is increased without bound and the enzyme concentration is
held constant.
A better model was proposed in 1913 by Lenor Michaelis and Maud Menton. They
hypothesized the existence of an intermediate substance I produced by the combination
of substrate and enzyme; it is included in the chain of reactions

S + E 
 I → E + P.

(b) Suppose the forward and backward rate constants for the first reaction are kf and kb
and the forward rate constant for the second reaction is `. Write the rate equations for
the complete reaction. Hint: There are four species and hence four rate equations.
We wish to know the rate of change of the product concentration as a function of the
substrate concentration and the initial enzyme concentration.
(c) Show that the concentration of the intermediate substance plus the enzyme concen-
tration is constant and this constant must be the initial enzyme concentration E0. In
1925, G. E. Briggs and J. B. S. Haldane proposed a modification of the Michaelis–
Menton substrate concentration assumption: The intermediate product concentration is
(nearly) constant.
(d) Determine the rate of change of the product concentration as a function of the
substrate concentration and the initial enzyme concentration under the Briggs–Haldane
assumption.
(e) Conclude that the speed of the reaction is asymptotic to a maximum constant speed.
In particular, the speed of the reaction does not increase without bound as the substrate
concentration is increased.

Exercise 4.6. Prove that the roots of the polynomial for the dissociation model
[Eq. (4.10)] have negative real parts. Are the roots real?

Exercise 4.7. (a) Specify a method to obtain the steady state of a solution of acetic
acid and water (where all the pure acetic acid is assumed to be added all at once to
water) that is already in steady state as predicted by model (4.5) without solving the
system of differential equations. Your result should determine a function of the initial
concentration of acetic acid at the instant it is added to the water. (b) Using a numerical
method, approximate the length of time (in seconds) for the solution to reach steady
state after the addition of one mole of acetic acid. According to the model, the solution
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never reaches steady state. Why? For this exercise, assume that (for practical purposes)
steady state has been reached once the final concentrations are within 0.1% of their
theoretical steady state values. (c) Discuss how the time to reach steady state is related
to the amount of added acetic acid. Does the time to steady state increase or decrease
with an increase in the amount of acetic acid? Discuss your answer. Does your result
agree with physical intuition?

Exercise 4.8. Prove Dulac’s generalization of Bendixon’s theorem: If a vector field
has a periodic integral curve in the plane and the vector field is defined on the entire
planar region bounded by this curve, then every positive function multiple of the vector
field must have its divergence change sign in the region bounded by the curve. This result
is useful when the divergence of a given vector field X does not have a fixed sign in a
region to be tested for the existence of periodic orbits. If there is a positive function f
defined on the region, and the divergence of the new vector field fX has a fixed sign,
then there are no periodic orbits in the region.

Exercise 4.9. Suppose that a certain environment contains a population of rabbits and
foxes. The rabbits grow (in the absence of foxes) according to the law Ṙ = aR − bR2

and the foxes (absent rabbits) die off according to the law Ḟ = −dF . The interaction
between the rabbits and foxes may be modeled by the system of differential equations

Ṙ = aR− bR2 − cRF, Ḟ = −dF + eRF,

where a, b, c, d, and e are positive constants. In case b = 0 this is called the Volterra-
Lotka model. (a) Write a justification for the model. (b) Determine a rescaling of the
system into the dimensionless form

ẋ = x− x2 − xy, ẏ = −αy + βxy,

and specify the definition of the dimensionless parameters α and β. (c) Show that a
solution starting in the first quadrant (corresponding to the physically realistic values
of the state variables) stays in the first quadrant for all positive time. In fact, the closed
positive quadrant is an invariant set: solutions starting there, stay there for all positive
and negative time. (d) Find the steady states of the dimensionless system and determine
their local stability types. (e) Conjecture the fate of the rabbits and foxes according to
the values of α and β. Will they coexist, or will the foxes go extinct? (f) Perhaps the
population of rabbits or foxes goes to infinity. Prove that the model predicts this does
not occur. (g) Perhaps the populations become periodic. In case b > 0, prove that the
model predicts this does not occur. Hint: If b = 0 in the original model, then most orbits
are periodic. Show this and try to use this fact to determine what happens when b > 0.
Or, apply Dulac’s criterion from Exercise 4.8.

4.2 TITRATION WITH A BASE

Imagine the following titration experiment: A beaker contains a solution
of acetic acid and water made by combining a known amount of acetic acid
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with a known volume of water. Water with a known concentration of sodium
hydroxide, stored in a graduated pipe (buret), is released slowly into the
beaker; the solution is stirred continuously, and the pH of the solution is
measured at specified time intervals. A rate equation model for the changing
pH is discussed in this section.

The pH of a solution is a measure of the number of hydronium ions in the
solution. Recall from the last section that a hydronium ion is also called a
proton and denoted H+. In modern chemistry there are at least two ways to
define pH: via activity or concentrations. For simplicity of the chemistry, the
classical definition is used here: pH is defined to be the negative logarithm,
base ten, of the molar concentration of protons H+. This number should
be—as explained in the last section—the dimensionless quantity

pH := − log10

[H+]

[H2O]
,

but in practice it is taken to be

pH := − log10[H+]. (4.19)

As an example, consider the dissociation of water. A pair of ionsH+ and
OH− combine to form exactly two water molecules as in Eq. (4.3). Thus,
their molar concentrations are equal. Taking the measured value pKw = 14
from Eq. (4.7) and using definition (4.19), the pH of water must be half this
number; that is, pH = 7. Of course, this is just an approximation in which
the temperature of the solution is ignored, but this number gives the standard
pH that divides acidic and basic solutions: pH < 7 is called acidic; pH > 7
is called basic.

For sodium hydroxide dissolved in water, the chemical equation is

NaOH 
 Na+ +OH−.

Sodium ions react with acetic acid to form sodium acetate. For pH calcula-
tion, only the OH− ions are important during the titration as they may be
protonated to form water. In case its concentration is not too high, almost
all of the sodium hydroxide dissociates to sodium and OH− ions. Thus,
a solution of A mol / liter of NaOH is assumed to have A mol / liter of
OH−.
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The sodium hydroxide solution enters the beaker at a rate of
B ml / sec. To keep consistent units, this concentration is measured as
B/1000 liter / sec, and the OH− ions enter the acetic acid solution at the
rate of

AB
mol

sec
.

The concentration of this ion changes during the addition ofNaOH because
the volume is changing from 100 ml via the function

vol =
1

10
+

B

1000
t.

A model of the ion concentration entering the solution (measured in
mol / liter) as a function of time is

t 7→ AB

( 1
10 + B

1000 t)
. (4.20)

Using function (4.20) to model the addition of OH− ions (during the
addition of the NaOH solution), the rate equation model [Eq. (4.5)] is
modified to

W ′ = c− dWZ +
AB

( 1
10 + B

1000 t)
,

X ′ = bY Z − aX,
Y ′ = aX − bY Z,
Z ′ = aX − bY Z + c− dWZ. (4.21)

The flow rate B does not remain constant. In fact, the flow is turned on
after the acetic acid solution is in steady state and turned off when the
measurement device is stopped or the reservoir of NaOH is empty. The
model can be used to make predictions via numerical integration.

An experiment was performed where a solution of one mol / liter of
NaOH is added to a solution of one mol / liter of acetic acid at the rate
of 0.5 ml / sec. The beaker containing the solution was stirred continuously
and a pH sensor recorded the pH of the solution every 2 sec for an
experimental duration of 74 sec (see Table. 4.1). The flow of NaOH was
started at 5 sec. The results of this experiment and a simulation using the
model [Eq. (4.21)] are depicted in Fig. 4.1. The agreement is excellent
(compare to Exercise 4.10).
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sec pH sec pH sec pH sec pH sec pH
0 2.567 16 3.590 32 4.196 48 4.490 64 4.677
2 2.563 18 3.738 34 4.240 50 4.514 68 4.717
4 2.563 20 3.852 36 4.283 52 4.540 70 4.737
6 2.563 22 3.923 38 4.327 54 4.564 72 4.755
8 2.689 24 3.979 40 4.363 56 4.590 74 4.771
10 3.038 26 4.042 42 4.396 58 4.607
12 3.279 28 4.094 44 4.436 60 4.632
14 3.418 30 4.148 46 4.462 62 4.656

Table 4.1 The data in this table is produced by a pH meter while a one molar sodium
hydroxide solution is added to a one molar solution of acetic acid and water.
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Fig. 4.1 Plots of pH versus time in seconds are depicted for the addition of NaOH in acetic acid. The continuous
graph is from the mathematical model [Eq. (4.21)]; the discrete graph is from the data in Table. 4.1.
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We note that the solution pH does not rise significantly during the
titration if not too much base is added. The presence of acid buffers
the solution to the addition of the strong base. Buffering is an essential
process in living organisms. The pH of essential fluids, for example blood,
must remain within some narrow range for biochemical processes to work
properly. Although our model is viable for small concentrations of the base,
sodium hydroxide, it does not seem to predict the correct titration curve (pH
versus the amount of added base) over a larger range of additional OH−.
An improved model is the subject of the next section.

Exercise 4.10. (a) The results depicted in Fig. 4.1 of physical experiments and
numerical simulation using the mathematical model (4.21) show excellent agreement.
On the other hand, the transient parts of the solutions of the model are very short.
Good results can also be obtained by a static model based on the assumption that the
mixtures are instantaneously in steady state. Discuss this alternative. Hint: This approach
is used in textbooks on basic chemistry. (b) The accuracy of predictions from the model
should depend on the accuracy of its parameters. How sensitive is the result to the given
parameters? (c) Which choice of parameters best fits the experimental data?

4.3 AN IMPROVED TITRATION MODEL

The titration of a weak acid by a strong base (for example, titration of acetic
acid by sodium hydroxide) stays in the buffer region, where the change in
pH is not too great for small additions of the base until some critical amount
of base is added. At this point a sharp rise in pH occurs. The pH levels off as
more base is added. This general behavior is typical and is easily observed
in experiments. Appropriate mathematical models, which are discussed in
this section, predict the observed behavior.

Recall the chemical reactions for the dissociation of water, acetic acid,
and sodium hydroxide. In shorthand, these are

H2O 
 H+ +OH−,

AcH +H2O 
 Ac− +H+,

and

NaOH 
 Na+ +OH−.
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Fig. 4.2 The simulated titration curve (that is, pH versus initial molarity) of sodium hydroxide added to an 0.1 molar
acetic acid solution is depicted.

The water concentration is considered to be very large compared with the
concentrations of the other species. To account for the additional OH− ions
from the dissociated sodium hydroxide, one additional reaction should be
included:

AcH +OH− 
 Ac− +H2O. (4.22)

In the previous section, we ignored the rate constants in this equation and
simply changed the OH− concentration in the mixture. This simplification
leads to a model that does not agree with the experiment. It must be
modified.

Using the notation of the system of ODEs (4.5), incorporating water
concentration into the forward rate constant for the dissociation of water,
and defining f to be the forward rate constant for reaction (4.22) and e to be
the backward rate constant times the water concentration, we have the rate
equations

W ′ = c− dWZ + eY − fXW,
X ′ = bY Z − aX + eY − fXW,
Y ′ = aX − bY Z − eY + fXW,

Z ′ = aX − bY Z + c− dWZ. (4.23)
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Recall the units of parameters from display (4.11) and note the units of e
and f to obtain the complete set

[a] =
1

time
, [b] =

1

con time
, [c] =

con

time
, [d] =

1

con time
,

[e] =
1

time
, [f ] =

1

con time
. (4.24)

Also, using the concentration of water (ρ = 55.5 mol / liter), we have the
values

10−4.75

ρ
= Ka =

a

bρ
,

10−14

ρ2
= Kw =

c

dρ2
.

The ratio of the rate constants e and f is determined at equilibrium using the
first equation of system (4.23), which when written in full, is

Wf [H2O]−Wb[H
+][OH−] = f [OH−][AcH]− e[Ac−].

The left-hand side vanishes at equilibrium; therefore, using ρ as before to be
the molar concentration of water, we have that

fρ

e
=

[Ac−]ρ

[AcH][OH−]
=

Ka

Kw
≈ 1011.

Approximate values of the parameters (with the units just listed) are taken
in this section to be

a = 1, b = 5× 104 c = 10−8, d = 106, e = 10−5, f = 2× 104.
(4.25)

The titration curve depicted in Fig. 4.2 is computed using the following
procedure. The parameters e and f are set to zero in system (4.23) to
simulate the acid dissociation before the base is added. Starting at time t = 0
at the initial data

W (0) = 0, X(0) = 0.1, Y (0) = 0, Z(0) = 0

(which represents the moment at which a small amount of acetic acid is
added), the system is integrated forward until a steady state is reached. The
equilibrium pH is approximately 2.88. The equilibrium values of X , Y ,
and Z are used as the initial conditions during the titration simulation (see
Exercise 4.12). A new initial OH− concentration (that is, an initial value
of W ) is set and the system with e and f restored to their given values is
evolved forward in time (by numerical integration) until (an approximation
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of) equilibrium is reached. The corresponding pH is computed at equilib-
rium. In other words, the pH is approximated as a function of the initial
OH− concentration. This function is plotted in Fig. 4.2. The figure shows a
buffered region, where the pH remains relatively constant for a range of low
concentrations of the added base, a region of rapid pH increase, and a region
of high pH for the addition of high concentrations of the base. As mentioned,
buffering is important in many applications, in particular in biochemistry.
Solutions may also be buffered relative to the addition of additional acid.

Although the steep change in pH when the initial OH− concentration
is increased past a certain value is easily observed using numerical exper-
iments (as in Fig. 4.2), this behavior is not an obvious prediction from the
model.

To gain some insight into the shapes of titration curves, start by making
the model dimensionless and reducing the dimension of the system of
differential equations.

Using the rescaling

W = ρw, X = ρx, Y = ρy, Z = ρz, t =
s

a

and the dimensionless groups

Kw =
c

dρ2
, Ka =

a

bρ
, α =

dρ

a
, β :=

e

a
, γ :=

fρ

a
,

system (4.23) is equivalent to the dimensionless model

w′ = αKw + βy − γxw − αwz,

x′ = −x+ βy − γxw +
1

Ka
yz,

y′ = x− βy + γxw − 1

Ka
yz,

z′ = αKw + x− αwz − 1

Ka
yz. (4.26)

In view of the dimensioned parameter values [Eq. (4.25)], the dimension-
less parameters are approximately

Ka = 32× 10−8, Kw = 3.25× 10−18, α = 55.5× 106,

β = 10× 10−6, γ = 1.11× 106. (4.27)
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The ordering of the dimensionless parameters is approximately maintained
by defining

µ = 10−2, Ka = 32µ4, Kw = 3µ9, α = 50µ−3,

β = 10µ3, γ = µ−3. (4.28)

The process begins by preparing the acid bath. In dimensionless vari-
ables, the initial data is w(0) = y(0) = z(0) = 0 and x(0) equal to the
initial amount of acetic acid divided by ρ. This value for the experiment
described here is approximately

x(0) = 20× 10−4 = 20µ2.

After the process reaches its steady state the dimensionless concentrations
are wss, xss, yss, and zss. A variable dimensionless amount of the base
ω is added and the steady state (dimensionless) proton concentration z is
measured to determine the titration curve.

Note that the first integrals (see the discussion on page 48) for the system
with the base added are

x+ y = xss + yss = x(0), z − y − w = zss − yss − wss − ω = −ω.

Using them, the titration model reduces to

y′ = x(0)− y − 1

Ka
yz − βy + γ(x(0)− y)(ω + z − y),

z′ = x(0)− y − 1

Ka
yz + αKw − α(ω + z − y)z. (4.29)

The steady state dependence of z on ω is determined by eliminating y
from the equations

0 = x(0)− y − 1

Ka
yz − βy + γ(x(0)− y)(ω + z − y),

0 = x(0)− y − 1

Ka
yz + αKw − α(ω + z − y)z. (4.30)

Fortunately, y appears linearly in the second equation. By solving for this
variable and substituting the result into the first equation, a quartic equation
for z is obtained. This equation can be solved explicitly (for example, by
the Cardano–Tartaglia formula), but the result is complicated. There are



Improved Titration 63

four roots. Thus, the correct root must be determined. Also, as suggested
by Fig. 4.2, the roots of this quartic are very small. The root size varies from
approximately 10−3 down to 10−13. There are at least two ways to make the
sizes of the real roots more manageable: scale the variable z by λ > 0 and
look for λz, or seek ζ := λ/z for some λ instead of z. Given the range of
the root size, λ = 10−10 = µ5 is chosen here for the scaling factor in the
change of variables ζ := λ/z. Other choices are also viable. For ζ := µ5/z,
the problem reduces to finding the appropriate root of the quartic polynomial

F(ζ, ω) := a(ω)ζ4 + b(ω)ζ3 + c(ω)ζ2 + d(ω)ζ + e(ω)

whose coefficients are functions of ω.

The leading coefficient of the quartic is

a(ω) = K2
a(−αKw − βx(0)−αβKw +αγx(0)Kw +α2γK2

w −αγKw ω).
(4.31)

Using the approximate values of the parameters given by the Eqs. (4.3), the
coefficient a is (up to a positive multiple)

56µ2 − 3µ3 + 420µ6 − 3ω.

Thus, the coefficient of ζ4 vanishes at

ω∗ :=
1

3
(56µ2 − 3µ3 + 420µ6).

Using µ = 1/100, this number is approximately

ω∗ ≈ 0.0019.

The roots of a monic polynomial depend continuously on its coefficients
(see Exercise 4.16). The dependence of the roots of a polynomial on
its leading coefficient is problematic. Behavior near the parameter value
corresponding to a zero of the leading coefficient may include abrupt
changes or discontinuities. Inspection of Fig. 4.2 suggests that the steep rise
in the titration curve is near the number ω∗.

The constant coefficient e is given by

e(ω) = α(1−Ka(α− γ))µ20 = 50µ10(1− 1568µ),

which is very small. Our goal is to explain the steep rise in the titration
curve. It seems reasonable to simply ignore this small term. In doing so,
the resulting explanation is no longer rigorous. Part of the purpose of this
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Fig. 4.3 The approximate titration curve (pH versus initial molarity) of sodium hydroxide added to an 0.1 molar acetic
acid solution obtained as positive root of the quadratic a(ω)ζ2 + b(ω)ζ + c(ω) is depicted.

section is to introduce the reader to this possibility in applied mathematics.
In applied mathematics, useful insights are often gained from arguments that
are not mathematical proofs. Order relations and series expansions often
appear in reasoning of this type.

Because ζ = 0 is not a physically relevant value, the function F may be
replaced by the approximation

F (ζ, ω) := a(ω)ζ3 + b(ω)ζ2 + c(ω)ζ + d(ω).

Because, a(ω∗) = 0, the desired approximation of the physical root at this
parameter value should be the solution of the quadratic equation

b(ω∗)ζ
2 + c(ω∗)ζ + d(ω∗) = 0.

In fact, this quadratic has a positive root ζ∗, which can be computed using
the quadratic formula. Thus, we have

F (ζ∗, ω∗) = 0.

Nearby roots are determined by an application of the implicit function
theorem—which is an essential tool in mathematics (see, for example, [20]).
A computation shows that Fζ(ζ∗, ω∗) 6= 0. By the implicit function theorem,
the root ζ is a unique (smooth) function of ω; that is,

F (ζ(ω), ω) ≡ 0.
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Note that this formula can be used to obtain the derivative of ζ with respect
to ω; in fact,

Fζ(ζ(ω), ω)ζω(ω) + Fω(ζ(ω), ω) = 0.

Recall that the titration curve is the graph of the function

ω → − ln z(ω)

ln 10
.

The derivative of this function at ω∗ is equal to

1

ζ∗ ln 10
ζω(ω∗) =

1

ζ∗ ln 10
× −Fω(ζ∗, ω∗)

Fζ(ζ∗, ω∗)
, (4.32)

which (using the parameter values set in this section) has the approximate
value 3465.6; certainly a large slope of the approximate titration curve at
ω∗.

What counts in the chemistry? The dominant term in the expression

ω∗ = x(0) + αKw −
1 + β

γ
− βx(0)

αγKw
(4.33)

(obtained by solving for ω when a(ω) from Eq. (4.31) is equated to zero)
is x(0) (see Exercise 4.15). Thus, the pH rises rapidly in the titration as the
concentration of OH− ions begins to exceed the concentration of H+ ions.

The titration curve away from the graph over a small interval around ω∗
(where the slope is steep) is well approximated by roots of the quadratic
equation

a(ω)ζ2 + b(ω)ζ + c(ω) = 0

obtained by ignoring the linear and constant terms of the quartic polynomial
(see Exercise 4.17).

The kinetic theory expressed in the models discussed here predicts
phenomena that are in complete agreement with physical experiments. Thus,
we may have a high level of confidence that the underlying theory is correct.
To make such a statement about a class of mathematical models is satisfying;
the validation (and invalidation) of models is, of course, a strong motivation
for doing applied mathematics.
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Exercise 4.11. Redraw Fig. 4.1 using the improved titration model. Is there a
difference?

Exercise 4.12. Redraw Fig. 4.2 using an alternative method: do not integrate the
differential equations; solve for the steady states. Which method is more efficient?

Exercise 4.13. A titration of 0.1 molar acetic acid with sodium hydroxide is
discussed in the section. The point of mutual neutralization occurs for the addition of
approximately 0.1 mole of the base. Repeat the analysis, using the same methods, for
titration of 0.3 molar acetic acid with sodium hydroxide.

Exercise 4.14. Consider the function

F (ζ, ω) := an(ω)ζn + an−1(ω)ζn−1 + · · ·+ a0(ω).

Suppose that F (ζ∗, ω∗) = 0 and a(ω∗) = 0. State a condition on the polynomial

an−1(ω)ζn−1 + · · ·+ a0(ω)

that ensures the existence of a smooth function φ(ω) defined on some interval containing
ω∗ such that φ(ω∗) = ζ∗ and F (φ(ω), ω) ≡ 0. Hint: Use the implicit function theorem.

Exercise 4.15. Show that the dominant term on the right-hand side of Eq. (4.33), for
the choice of parameter values given in this section, is the term x(0).

Exercise 4.16. (a) Prove that the roots of a monic polynomial depend continuously
on its coefficients. Hint: Use the implicit function theorem. (b) What happens if the
polynomial is not monic?

Exercise 4.17. (a) Show in detail how to recover the value 3465.6 for the steep part
of the slope via Eq. (4.32). Why is it reasonable to ignore constant and linear terms in
the quartic polynomial whose positive root determines the titration curve? (b) Write and
discuss a computer code to recover Fig. 4.3.

Exercise 4.18. The titration curve depicted in Fig. 4.2 is obtained by a static model;
that is, we set the new OH concentration, integrate to steady state, determine the pH,
and iterate this process. A dynamic model would predict results for a titration where
the sodium hydroxide solution is poured continuously into the acetic acid solution.
Eq. (4.21) is a first approximation of such a model. Create a model that can be used
to predict titration curves consistent with Fig. 4.2.

4.4 THE OREGONATOR: AN OSCILLATORY REACTION

The physically interesting chemistry previously discussed takes place in
steady state. In fact, until the 1960s most chemists believed that oscillations
in chemical reactions were impossible. A class of reactions discovered
by B. P. Belousov and popularized by A. M. Zhabotinsky proved that
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oscillations are possible. Although the recipes for such reactions are widely
available and easy to reproduce, the exact underlying chemistry is not
completely understood. Mathematical models, which are based on the
principle of mass action for the reactions that are believed to occur for
the chemicals that appear as the ingredients of the recipes, predict good
approximations of the observations. Thus, chemists know they are on the
right path to understanding the reactions. These models also have rich
mathematical structures. A simple model for oscillations of concentration
of the chemical species in the Belousov–Zhabotinsky (BZ) reaction are
discussed in this section.

One of many proposed models for the BZ reaction is called the Orego-
nator (because it was developed in Oregon). In one of its popular forms, it
is the mass action model derived from the following reactions for chemical
species A, B, P , X , Y , and Z and rates ki:

A+ Y
k1−→ X + P,

X + Y
k2−→ 2P,

A+X
k3−→ 2X + 2Z,

X +X
k4−→ A+ P,

B + Z
k5−→ ρY. (4.34)

The constant ρ is a dimensionless (stochiometric) parameter that determines
the number of molecules of Y produced by the last reaction.

The concentrations of all six species change during the reaction. But, the
concentrations of speciesA,B, and P remain nearly constant in comparison
to the concentrations of species X , Y , and Z. Thus, after a chemist tells us
that treating the first three species as constants is a close approximation to
the dynamical part of the reaction, it suffices to write the three rate equations

[X]′ = k1[A][Y ]− k2[X][Y ] + k3[A][X]− k4[X]2,

[Y ]′ = −k1[A][Y ]− k2[X][Y ] + ρk5[B][Z],

[Z]′ = 2k3[A][X]− k5[B][Z]. (4.35)

To make the system dimensionless, set

[X] = ax, [Y ] = by, [Z] = cz, t = τs.
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The equivalent system of differential equations is

dx

ds
=
τk1b[A]

a
y − τk2bxy + τk3[A]x− τk4ax

2,

dy

ds
= −τk1[A]y − τk2axy +

τk5c[B]ρ

2b
z,

dz

ds
=

2τk3[A]a

c
x− τk5[B]z. (4.36)

There are many ways to choose the scales in system (4.36). The most
popular choice is derived after consideration of measured quantities for the
BZ reaction; this scaling is

a :=
k3[A]

k4
, b :=

k3[A]

k2
, c :=

2k2
3[A]2

k4k5[B]
, τ :=

1

k5[B]
.

With the additional dimensionless constants

ε :=
k5[B]

k3[A]
, δ =

k4k5[B]

k2k3[A]
, α :=

k1k4

k2k3
,

the dimensionless model is

ε
dx

ds
= αy − xy + x− x2,

δ
dy

ds
= −αy − xy + ρz,

dz

ds
= x− z. (4.37)

By measurement and chemical intuition, the parameters have approximate
values

ε = 10−2, δ = 2× 10−5, α = 10−4, ρ ∈ [0, 3]. (4.38)

The small parameter δ is much smaller than ε. This suggests setting δ =
0, solving for y = ρz/(α + x) in the second equation, and substituting to
obtain the planar system

ε
dx

ds
= ρ

α− x
α+ x

z + x− x2,

dz

ds
= x− z. (4.39)
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Fig. 4.4 The bifurcation diagram in the ρ-ε parameter space—0 < ρ < 3 and 0 < ε < 1—at α = 10−4 for
system (4.39) is depicted. A Hopf bifurcation occurs as a curve in parameter space crosses the boundary of the wedge-
shaped region. For parameter values inside the region there is an asymptotically stable limit cycle; outside the region
the system has an asymptotically stable rest point.

Perhaps the product of the derivative of y and δ is not small because dy/ds
is large. This is certainly a problem. But, the reason for initially ignoring this
issue is clear: a two-dimensional system should be easier to analyze than a
three-dimensional system.

The first quadrant—corresponding to nonnegative concentrations—is
positively invariant. The rest points in this physically meaningful region are
the origin (x, z) = (0, 0) and a point with both coordinates equal to the
positive solution (for x) of the equation

ρ
x2 − α2

(x+ α)2
= 1− x, (4.40)

which is obtained after substitution of z = x and some algebraic manipula-
tion of the right-hand side of the first equation of system (4.39) set to zero.

The rest point at the origin is a saddle point. More precisely it is a
hyperbolic saddle point defined as the rest point of an autonomous system of
first-order ordinary differential equations (ODEs) such that its linearization
at this rest point has all real eigenvalues and at least two of opposite signs.
In the present two-dimensional case, the stable manifold of the saddle
corresponds to the negative eigenvalue and is contained in quadrants two and
four, while its unstable manifold (corresponding to the positive eigenvalue)
lies in quadrants one and three. Here, the stable and unstable manifolds
are one-dimensional invariant curves passing through the rest point with
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their tangent lines at the rest point given by one of the eigenspaces of the
system matrix of the linearized system. Solutions of the ODE approach the
rest point along the stable manifold and recede from the rest point along
the unstable manifold. In particular, solutions starting on the portion of the
unstable manifold in the first quadrant stay in this quadrant for all s > 0.

The linearization at the interior rest point has system matrix

A =

(
1−2x
ε − 2αρz

ε(α+x)2

ρ(α−x)
ε(α+x)

1 −1

)
.

with

det(A) =
1

ε

(
2x− 1 +

2αρz

(x+ α)2
+ ρ

x2 − α2

(x+ α)2

)
.

Using Eq. (4.40) to substitute for the last term in this expression, the
determinant of A is easily proved to be positive.

The trace of A is given by

tr(A) = −1 +
1− 2x

ε
− 2αρz

ε(α+ x)2
.

Recall that the characteristic polynomial for the eigenvalues of A is

λ2 − tr(A)λ+ det(A)

with roots

tr(A)±
√

tr(A)2 − 4 det(A)

2
.

The eigenvalues of A are pure imaginary exactly in case tr(A) = 0;
otherwise, the rest point is a source for tr(A) > 0 and a sink for tr(A) < 0.
There are three parameters: α, ρ, and ε. The trace of A depends on all these
parameters and the position of the rest point. As the position coordinates
are the same (z = x) at rest points, Eq. (4.40) and tr(A) = 0 must
hold simultaneously at a rest point whose linearization has pure imaginary
eigenvalues. Eq. (4.40) is essentially a quadratic in x; its positive root is

x =
1

2

(
1− α− ρ+

√
(1− α− ρ)2 + 4α(1 + ρ)

)
.
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The result of substituting this expression into the equation tr(A) = 0, is
an equation for a hypersurface in the three-dimensional parameter space
corresponding to parameter values such that the system of differential
equations has a rest point with pure imaginary eigenvalues. For simplicity,
this hypersurface is reduced to a curve in the ρ-ε parameter plane depicted
in Fig. 4.4 by fixing α = 10−4. The equation for the hypersurface can be
solved explicitly for ε as a function of α and ρ (see Exercise 4.19).

For parameter values inside the region bounded by the curve depicted in
Fig. 4.4, the rest point with positive coordinates of system (4.39) is a source;
outside the region this rest point is a sink.

The vector field given by the right-hand side of system (4.39) points
to the left along the line x = 1 and points down along the line z = 2
as long as 0 < x < 1. In other words, the rectangle bounded by sides
along the coordinate axes, the line x = 1 and the line z = 2 is positively
invariant. Solutions starting in this rectangle stay in the rectangle for all
positive time. In case the rest point in the interior of this rectangle is a source,
the Poincaré–Bendison theorem (see Appendix A.18, theorem A.12) implies
that there is a stable limit cycle in the rectangle; thus, the (two-dimensional)
Oregonator model predicts oscillations in the concentrations of the chemical
reactants whenever the parameters are such that the interior rest point of the
model is a source.

Clearly something interesting happens as parameter values cross the
boundary into the bounded region in Fig. 4.4. Imagine that this change
happens along a curve in the parameter space. The phase portrait changes
from having a stable rest point to having an unstable rest point and a stable
limit cycle. This is an excellent example of the Hopf bifurcation; it occurs
along a curve in the parameter space for a system of ODEs when a pair
of complex conjugate eigenvalues of the system matrix of the linearized
system at a rest point crosses the imaginary axis in the complex plane with
nonzero speed. Of course, the position of the rest point, the system matrix
and its eigenvalues are all allowed to change with the parameter values
as they move along the curve in parameter space. In this case, under an
additional hypothesis (see, for example, [20]) on the nonlinear part of the
system that is almost always satisfied, a limit cycle is born (in a supercritical
Hopf bifurcation) at the rest point and grows in amplitude as the eigenvalues
cross the imaginary axis or a limit cycle decreases in amplitude and dies (in
a subcritical Hopf bifurcation) as the eigenvalues cross this axis.
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Fig. 4.5 The approximate oscillation of the x-concentration for system (4.39) with ρ = 1.5, and ε = 0.01, and
α = 10−4 is depicted .

The Hopf bifurcation is detected in autonomous systems of ODEs, in
exactly the manner discussed for the Oregonator, by finding the curve(s) in
the parameter space where the characteristic equation of the linearization
at a rest point has pure imaginary eigenvalues. Generically, there is a Hopf
bifurcation as a curve in the parameter spaces crosses this “Hopf curve.”

Fig. 4.5 shows a computer-generated graph of the oscillation of concen-
tration of the chemical species corresponding to x for a physically realistic
choice of parameters inside the bounded region in Fig. 4.4. Note the nearly
constant state punctuated with spikes of higher concentration.

The Hopf bifurcation analysis can be extended to n-dimensional systems
with n > 2. The basic approach is the same as for two-dimensional systems:
Locate and track a rest point of the system as it changes position with
respect to a single parameter, and look for an interval of parameters over
which the stability type of the rest point changes from a source to a sink
or from a sink to a source. The signature of the Hopf bifurcation is a pair
of complex conjugate eigenvalues of the system matrix of the linearized
system at the rest point whose corresponding paths in the complex plane
cross the imaginary axis with nonzero speed as the parameter changes
on the interval. Under an additional requirement on the nonlinear part of
the system of differential equations that is almost always satisfied, a limit
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cycle is born or dies at the rest point as the parameter changes through
the critical value when the corresponding eigenvalues are pure imaginary.
This approach can be used to prove the existence of a stable limit cycle
for the three-dimensional Oregonator [Eq. (4.37)] for some choices of its
parameters. Thus, the full Oregonator predicts the existence of oscillations
in the concentrations of the chemical species for the reaction sequence it
models.

An alternative approach to the dynamics of the Oregonator takes further
advantage of the assumption that the parameter δ is small relative to the
other parameters of the system. The case where δ is simply set to zero has
been discussed. What is the behavior of the Oregonator for small nonzero
values of this parameter? An answer is obtained using singular perturbation
theory.

Perturbation is a fundamental idea in applied mathematics. Suppose
the behavior of a system of differential equations is known when some
parameter of the system is set to a special value (which, without loss of
generality, is usually assumed to be zero). A natural question is to describe
the behavior of the system when the parameter value is near this special
value. We say the system with nearby parameter values is perturbed from
the system with the special parameter value.

To give a simple example, consider a system ẋ = f(x, λ), where f :
Rn × Rk → R is a continuously differentiable function. The state variable
is x, the (vector) parameter is λ. Perhaps f(0, 0) = 0; that is, x = 0 is
a rest point for the system ẋ = f(x, 0) with parameter value λ = 0. By
changing λ to nonzero values, the corresponding systems may be viewed
as perturbations of the special system ẋ = f(x, 0). It might happen that
the derivative Df(0, 0) of the transformation x → f(x, 0) at x = 0 is an
invertible n × n matrix. In this case, the implicit function theorem implies
there is a function β mapping some neighborhood V of the origin in Rk to
a neighborhood U of the origin in Rn such that β(0) = 0 and f(β(λ), λ) ≡
0 for every λ ∈ V . Moreover, if (ξ, `) ∈ U × V and f(ξ, `) = 0, then
β(`) = ξ. In other words, under the assumption that Df(0, 0) is invertible
(equivalently, the system matrix of the linearization at the rest point x = 0
for the system with parameter value λ = 0 has no zero eigenvalue), then
every perturbation of the unperturbed system ẋ = f(x, 0) has an isolated
rest point near the origin.
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The last example illustrates regular perturbation, which in the present
context refers to the parameterized family of differential equations ẋ =
f(x, λ), where this family remains a differential equation as the parameter
λ changes. In contrast, consider the system

ẋ = y2 − x, εẏ = −y, (4.41)

where ε is a small parameter. At ε = 0, this system reduces to the scalar ODE
ẋ = −x. This one-dimensional dynamical system has a globally attracting
rest point at the origin. With ε 6= 0, there are two cases: If ε > 0, then
the original system has a globally asymptotic rest point at the origin, but if
ε < 0, then the original system has a rest point of saddle type at the origin.
The perturbed systems (ε 6= 0) do not all behave as might be predicted from
the dynamics of the unperturbed system at ε = 0. This result is typical of
a singular perturbation problem, which in this case refers to two families
of differential equations (one for ε > 0, one for ε < 0) connected at ε =
0 by a differential algebraic equation (DAE). In other words, the system
changes character at ε = 0, usually because at least one of the highest-order
derivatives is multiplied by ε.

Singular perturbation theory is a venerable subject with a long history
in applied mathematics. One modern development in this theory is called
geometric singular perturbation theory. The adjective “geometric” refers to
consideration of perturbation problems in view of their geometry in phase
space.

The phase space for system (4.41) is the (x, y) plane. One of the tools of
geometric singular perturbation theory relies on the recognition that singular
perturbation problems for differential equations usually involve at least two
timescales. By rearranging the system of ODEs to the form

ẋ = y2 − x, ẏ = −1

ε
y, (4.42)

it is apparent that for small ε 6= 0 the y component of the solution moves
much faster than the x component because ẏ is large compared with ẋ. Also,
by the change of temporal variable t = εs (which is defined for ε 6= 0), the
system is transformed to

ẋ = ε(y2 − x), ẏ = −y. (4.43)

Thus, it appears that the singular perturbation problem (4.42) is transformed
to the regular perturbation problem (4.43). This is true except at the critical
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Fig. 4.6 Computer-generated approximations of solutions of system ẋ = ε(y2 − x), ẏ = −y for ε = 0.01 with
initial data x(0) = 2 and y(0) = 1 are depicted for 0 ≤ s ≤ 100. The left-hand panel shows solution in the phase
plane; the right-hand panel shows y versus s.

parameter value ε = 0. The two systems are not equivalent as families:
system (4.43) makes perfect sense at ε = 0; system (4.42) does not. But,
they are equivalent for ε 6= 0. This is the essential point. System (4.43)
may be analyzed as a regular perturbation problem near ε = 0 to help
determine the singular behavior of system (4.42) for nonzero values of the
parameter. In other words, it is often useful to make singular changes of
coordinates at singular points. Generally, there is no interest in a system
at a singular parameter value; the important behavior is near the singular
parameter value. Such singular coordinate transformations produce systems
that are equivalent away from the singular value of the parameter.

Note that one unit of time measured in the original t variable is 1/ε units
of time in the s variable. Thus, s-time is moving fast relative to t-time. For
this reason, system (4.42) is called the slow (or slow-time) system and (4.43)
is called the fast (or fast-time) system.

The x-axis is invariant for the fast-time system at ε = 0 and this invariant
set consists entirely of rest points. Linearization at each of these rest points
produces the system matrix (

0 0
0 −1

)
.

It has two eigenvalues: zero, whose eigenspace is parallel to the x-axis,
and the eigenvalue −1, whose eigenspace is parallel to the y-axis. The
linearized system has all fixed points along the x-axis, and every vertical line
is invariant with a globally attracting sink at its intersection with the x-axis.
For ε 6= 0, the behavior of the regularly perturbed family (4.43) behaves
as might be expected. The x-axis remains invariant but it now supports a
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slow flow toward the origin in case ε > 0 and away from the origin in
case ε < 0. As shown in Fig. 4.6, the global flow exhibits two timescales:
rapid motion toward the invariant x-axis followed by slow motion once
the trajectory is near this invariant set. The graphs of the corresponding
solutions for system (4.42) look exactly the same, but they are traversed
on a slower timescale.

The analysis of system (4.41) is typical for a class of singular perturba-
tion problems of the form

ẋ = f(x, y, ε), εẏ = g(x, y, ε), (4.44)

where the behavior of the system is desired near ε = 0. The state variables x
and y may be vector variables and the corresponding fast-time system (with
the new temporal variable s := t/ε ) is

ẋ = εf(x, y, ε), ẏ = g(x, y, ε). (4.45)

At ε = 0, system (4.45) has the set of rest points {(x, y) : g(x, y, 0) = 0}. In
a case where gy(x, y, 0) is an invertible linear transformation of the y space
at each rest point (or on some connected subset of rest points), the implicit
function theorem implies that there is a function β defined on an open subset
of the x space such that g(x, β(x), 0) = 0. In other words, a subsetM of the
rest points is parameterized by the function x 7→ (x, β(x)). Linearization at
a rest point onM produces a system matrix whose dimension is the same
as the dimension of the (x, y) space. Because gy is invertible at points in
M, each such system matrix has the same number of zero eigenvalues as
the dimension of the x space. The set M is called a normally hyperbolic
invariant manifold if in addition the eigenvalues of the transformation gy
(which account for the remaining eigenvalues of the system matrix) all
have nonzero real parts. If all these eigenvalues have negative real parts,M
attracts nearby solutions; if all eigenvalues have positive real parts it repels;
and, if it has some eigenvalues with positive and some with negative real
parts, it behaves like a saddle rest point. Some solutions are attracted; others
are repelled.

This is exactly the case in the last example where the x-axis, which plays
the role of M, is parameterized by x 7→ (x, β(x)), where β(x) ≡ 0. The
function g is given by g(x, y, ε) = −y and its partial derivative with respect
to y is the 1 × 1 matrix (−1), which accounts for the nonzero eigenvalues
of the system matrix of the linearization of each rest point on the x axis. For
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a real 1 × 1 matrix there are no complex eigenvalues to consider. The only
eigenvalue is −1, which has nonzero real part. Thus the x axis is a normally
hyperbolic invariant manifold.

An important theorem due to Neil Fenichel and independently by Morris
Hirsch, Charles Pugh, and Stephen Smale states that normally hyperbolic
invariant manifolds persist. In our simple case, persistence means that there
is a continuous family of invariant setsMε such that each member of this
family is given as the graph of a function over the x space, M0 = M,
and the dynamical behavior in the normal direction (attracting, repelling,
or saddle-like) also persists. There is a smooth function (x, ε) 7→ B(x, ε)
such that B(x, 0) = β and Mε is parameterized by the function x 7→
(x,B(x, ε)).

The perturbed manifold Mε is called the slow manifold. For small |ε|,
this manifold is close to the manifold M0 that consists entirely of rest
points. Thus, the flow on the nearby manifold moves slowly with respect
to the flow at ε = 0 that does not move at all. The slow flow for a general
singular perturbation problem can be arbitrarily complicated; for example,
it can contain isolated rest points and periodic orbits. As in the example,
the two timescales remain important in the global flow for ε 6= 0. Orbits
move toward or away from the slow manifold Mε rapidly; orbits on the
slow manifold move slowly. Of course, the signs of the eigenvalues of the
linear maps gy determine the direction of the flow near, but not on, the slow
manifold. In most cases of interest in applications, the slow manifold attracts
orbits. Thus, after a fast transient, the dominant behavior of the system
is determined by the dynamics on the slow manifold. The transient and
dominant behaviors are the same for the original singularly perturbed system
(for ε 6= 0) except that the motion occurs on a slower timescale. Thus, this
analysis gives one way to approach the dynamical behavior of some singular
perturbation problems for systems of ODEs.

The general definition of normal hyperbolicity and the formulation
and proof of the persistence theorem require a sophisticated mathematical
analysis that is beyond the scope of this book. The results of this theory are
used here to illustrate its utility in applied mathematics.

Returning to the Oregonator [Eq. (4.37)],

ε
dx

ds
= αy − xy + x− x2,
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δ
dy

ds
= −αy − xy + ρz,

dz

ds
= x− z, (4.46)

rewritten for convenience, it should now be clear that this system, for fixed
ε and α, yields a singular perturbation problem for δ near δ = 0. Perhaps it
should be considered as a singular perturbation problem in both ε and δ for
fixed α, but only the former case is considered here.

The fast-time system (obtained using the change of temporal variable
s = δτ ) is

dx

dτ
=
δ

ε
(αy − xy + x− x2),

dy

dτ
= −αy − xy + ρz,

dz

dτ
= δ(x− z). (4.47)

At δ = 0, there is a two-dimensional invariant surface M (in the first
octant) consisting entirely of rest points that is parameterized by the function
(x, z) 7→ (x, ρz/(α + x), z) whose domain is the open first quadrant of
the (x, z) plane. This invariant surface is a normally hyperbolic invariant
manifold. In fact, the system matrix obtained by linearization at each point
on M has two zero eigenvalues corresponding to the tangent directions
along the two-dimensional surface of rest points and the negative eigenvalue
−(α+x). Thus,M attracts all solutions starting near it in the positive octant
of the (x, y, z) space. Actually, it attracts all solutions starting in this space.
According to the geometric singular perturbation theory, this invariant two-
dimensional slow manifold persists as a two-dimensional surfaceMδ (given
by the graph of a function over the (x, y) space) that rapidly attracts nearby
orbits. Solutions move slowly on the perturbed slow manifold Mδ and it
contains the important dynamical behavior, perhaps rest points or periodic
orbits.

The perturbed slow manifold Mδ and the flow on this manifold are
determined by exploiting the persistence theory. In particular,Mδ is given
as the graph of a function over the (x, z) space. In fact, Mδ is a regular
perturbation of M = M0. It is the graph of a function that must be
expressible as a power series in δ at δ = 0; that is, Mδ is the graph of a
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function given by

y =
ρz

α+ x
+B1(x, z)δ +B2(x, z)δ2 +O(δ3), (4.48)

where the functions Bi(x, z), for i = 1, 2, 3 . . . ,∞, are to be determined.
The defining property of the graph is its invariance under the flow of the fast
system (4.47). In particular, if τ 7→ (x(τ), y(τ), z(τ)) is a solution of this
system (at parameter value δ) that is on the manifoldMδ, then

y(τ) = B(x(τ), z(τ), δ)

=
ρz(τ)

α+ x(τ)
+B1(x(τ), z(τ))δ +B2(x(τ), z(τ))δ +O(δ2).

Using the smoothness of all functions in sight, differentiate with respect to
τ at τ = 0 to obtain the invariance relation

dy

dτ
= Bx(x, z, δ)

dx

dτ
+Bz(x, z, δ)

dz

dτ
. (4.49)

By substitution for dx/dτ , dy/dτ , dz/dτ , and y from Eq. (4.48) and by
equating coefficients of like powers of δ in the resulting expression, it is
possible to solve for the Bi in the order i = 1, 2, 3 . . . ,∞; in fact, for i = 1,

B1(x, z) =− ρ

(x+ α)4ε
(α2ε(x− z) + 2αεx2 − α(1 + 2ε)xz − αρz2

+ εx3 + (α− 1− ε)x2z + ρxz2 + x3z).

The flow on the slow manifold is simply the restriction of the fast system
[Eq. (4.47)] to this invariant set; in effect, the vector field defining the system
is evaluated at points in the (x, y, z) space where y = B(x, z, δ). The flow
is determined by the x and z components of the resulting system. More
precisely, consider the form of the fast system

x′ = δp(x, y, z), y′ = q(x, y, z), z′ = δr(x, y, z).

Substitution as described yields

x′ = δp(x,B(x, z, δ), z),

y′ = q(x,B(x, z, δ), z),

z′ = δr(x,B(x, z, δ), z).

Note that the y component decouples from the system of ODEs. Thus, we
may view the differential equation on the two-dimensional slow manifold to
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Fig. 4.7 Approximate graphs of the x, y, and z concentrations for the Oregonator (4.46) with ρ = 1.5, and ε = 0.01,
δ = 2× 10−5, and α = 10−4 are depicted .

be the two-dimensional ODE consisting of the x and z components of this
system. The flow on the slow manifold is approximated by expanding the
system of ODEs in δ at δ = 0 and truncating.

At δ = 0, the flow is already known on the unperturbed slow manifold
x′ = 0 and z′ = 0, and every solution is a rest point. To obtain the first-
order approximation in δ, expand the ODEs to first-order in δ and truncate
at this order to obtain (with no surprise) the fast-time transformation of
system (4.39):

ε
dx

dτ
= δp(x,B(x, z, 0), z) = δρ

α− x
α+ x

z + x− x2,

dz

dτ
= δr(x,B(x, z, 0), z) = δ(x− z). (4.50)

Thus, the system already investigated approximates (as it should) the full
Oregonator on the slow manifold. The second-order approximation is

ε
dx

dτ
= δρ

α− x
α+ x

z + x− x2 + δ2(α− x)B1(x, z),
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dz

dτ
= δ(x− z). (4.51)

In principle, there is a function whose graph is exactly the slow manifold
Mδ and there is a system of differential equations for the exact flow on this
manifold. The differential equations have the form

ε
dx

dτ
= δρ

α− x
α+ x

z + x− x2 + δ2P (x, z, δ)

dz

dτ
= δ(x− z), (4.52)

where P is a smooth function. Returning to the slow time, we have exactly
the same system but with the right-hand sides of the ODEs divided by δ:

ε
dx

ds
= ρ

α− x
α+ x

z + x− x2 + δP (x, z, δ)

dz

ds
= x− z. (4.53)

Using the implicit function theorem and these slow-time equations, it is
easy to see that rest points for these equations with parameter value δ = 0
persist in this family as rest points for members of the family with parameter
values |δ| 6= 0 and sufficiently small. Likewise but with more mathematics
required, the full Hopf bifurcation scenario persists. In particular, limit
cycles for the unperturbed system at δ = 0 persist. Thus, it is possible
to prove that the Oregonator has periodic solutions; therefore, this model
predicts the existence of oscillations in the concentrations of the chemical
reactants in the BZ reaction. Fig. 4.7 depicts (numerical approximations
of) concentration oscillations for physically realistic parameter values. The
oscillations for small |δ| are very close to the oscillations obtained by
perturbation theory at first-order in this parameter (compare Fig. 4.5).

Exercise 4.19. (a) Recreate Fig. 4.4 by solving explicitly for ε as a function of α
and ρ, fixing α = 10−4 and graphing the resulting function. (b) Draw a graph of
the corresponding surface over the α-ρ plane restricted to the regions where all three
parameters are positive.

Exercise 4.20. (a) Use a computer to verify the validity of the claims made about
the Hopf bifurcation for the two-dimensional system (4.39) as a curve in the parameter
space crosses the Hopf curve depicted in Fig. 4.4. Take, for example, the horizontal line
in the parameter space ε = 0.01 and show that a limit cycle is born as ρ increases from 0

and the point (ρ, 0.01) moves across the Hopf curve. Also show that the corresponding
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family of limit cycles dies as ρ is increased further and passes out of the bounded region.
(b) Draw graphs of the amplitudes (with respect to variation in x) and periods of the limit
cycles along the parameter curve of part (a). Describe the qualitative changes in these
quantities. (c) Find the value of ρ such that the limit cycle corresponding to a parameter
value (ρ, 0.1) has maximum amplitude with respect to x.

Exercise 4.21. How many units of time t are required to reproduce the left-hand panel
of Fig. 4.6 using the slow-time system (4.42)? Make the graph to verify your result.

Exercise 4.22. Determine the invariance relation, given by Eq. (4.49), by computing
the normal to the surface and taking its inner product with the vector field corresponding
to the fast system.

Exercise 4.23. (a) Suppose the initial concentration of species A is increased. How
does the concentration oscillation period of the chemical species corresponding to x

change as a prediction from the two-dimensional system (4.39)? Discuss. (b) Suppose
the initial concentration of B is increased. How does the oscillation amplitude change
as a prediction from the two-dimensional system (4.39)? Discuss.

Exercise 4.24. The Brusselator model for a hypothetical oscillating chemical reaction
is

A→ X,

B +X → Y +D,

2X + Y → 3X,

X → E.

Assume that the concentrations of A and B are constant. (a) Write the rate equations
for the concentrations of the species X and Y . (b) Determine a change of variables
(including time) for your model to obtain its dimensionless form

ẋ = a− bx+ x2y − x,
ẏ = bx− x2y.

(c) Determine the steady state(s) of the dimensionless system and their stability types.
(d) Show that oscillations can occur for some parameter values. (e) Draw a bifurcation
diagram for oscillatory solutions in the (a, b) parameter space.

Exercise 4.25. Consider the system

ẋ = αx− βy − γxz + εxz2,

ẏ = βx+ αy − γyz + εyz2,

εż = −z + x2 + y2 + 2ε(x2 + y2)(α− γ(x2 + y2)),

where α, β > 0, γ > 0 are parameters and ε is a small parameter. (a) Use singular
perturbation theory to show that this family of ODEs has periodic solutions for some
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values of these parameters where ε 6= 0. (b) The system has a slow manifold given as
the graph of a function B defined on the (x, y) plane. It may be expressed as a series in
ε of the form

B(x, y) = B0(x, y) +B1(x, y)ε+B2(x, y)ε2 +O(ε3).

Determine the coefficients B0, B1, and B2. (c) Is it possible to determine a function
whose graph is exactly the slow manifold for small |ε|? (d) Prove that limit cycles in this
family always lie in planes that are parallel to the (x, y) plane. How does the position of
this plane depend on the parameters in the system? Find a formula for the limit cycles
that depends on the parameter values.



CHAPTER 55
Reaction, Diffusion, and Convection

Conservation of mass is a fundamental physical law used to model many
physical processes.

5.1 FUNDAMENTAL AND CONSTITUTIVE MODEL
EQUATIONS

Suppose that some substance is distributed in Rn and let Ω denote a bounded
region in Rn with boundary ∂Ω and outer normal η. The density of the
substance is represented by a function u : Rn × R → R, where u(x, t)
is the numerical value of the density in some units of measurement at the
site with coordinate x ∈ Rn at time t. Usually n ∈ {1, 2, 3}, but the
following model is valid for an arbitrary dimension. To avoid using the
names for geometric objects in each dimension, the derivation is given with
respect to the geometry of n = 3 where area and volume have their usual
meanings. Also, recall from vector calculus the following concepts: gradient
of a function (grad f or∇f ), divergence of a vector field (divX or∇ ·X),
and Laplacian of a function (∆f or ∇ · ∇f or ∇2f ).

The time rate of change of the amount of the substance in Ω is given
by the negative flux of the substance through the boundary of Ω plus the
amount of the substance generated in Ω; that is,

d

dt

∫
Ω
u dV = −

∫
∂Ω
X · η dS +

∫
Ω
f dV,

where X is the vector field on Rn (sometimes called the diffusion flux) of
the substance pointing in the direction in which the substance is moving and
with the magnitude of the amount of substance per area per time passing
through the plane perpendicular to this direction; dV is the volume element;
dS is the surface element; the vector field η is the outer unit normal field on
the boundary of Ω; and f (a function of density, position, and time) is the
amount of the substance generated in Ω per volume per time. The minus sign
on the flux term is required because we are measuring the rate of change of
the amount of substance in Ω. For example, when the flow is all out of Ω,
the inner productX ·η is not negative and the minus sign is required because
the rate of change of the amount of substance in Ω is negative.

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation.
85Copyright c© 2017 Elsevier Inc. All rights reserved.http://dx.doi.org/10.1016/B978-0-12-804153-6.50005-1, 



86 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

Using the divergence theorem (also called Gauss’s theorem) to rewrite
the flux term and by interchanging the time derivative with the integral of
the density, we have the relation∫

Ω
ut dV = −

∫
Ω

divX dV +

∫
Ω
f dV.

Moreover, because the region Ω is arbitrary in this integral identity, it
follows that

ut = −divX + f. (5.1)

To obtain a useful dynamical equation for u from Eq. (5.1), we need
a constitutive relation between the density u of the substance and the
flow field X . In most applications, it is not at all clear how to derive
this relationship from the fundamental laws of physics. Thus, we have an
excellent example of a class of important modeling problems where physical
intuition must be used to propose a constitutive law whose validity can only
be tested by comparing the results of experiments with the predictions of
the corresponding model. Problems of this type lie at the heart of applied
mathematics and physics.

For Eq. (5.1), the classic constitutive relation—called Darcy’s, Fick’s, or
Fourier’s law depending on the physical context—is

X = −K gradu+ µV (5.2)

where K ≥ 0 and µ are functions of density, position, and time; and V
denotes the flow field for the medium in which our substance is moving. The
minus sign on the gradient term represents the assumption that the substance
diffuses from higher to lower concentrations.

By inserting the relation (5.2) into the balance law [Eq. (5.1)], we obtain
the dynamical equation

ut = div(K gradu)− div(µV ) + f. (5.3)

Also, by assuming that the diffusion coefficient K is equal to k2 for some
constant k, the function µ is given by µ(u, x, t) = γu where 0 ≤ γ ≤ 1 is
a constant that determines the amount of u that moves with the velocity
field V , and V is an incompressible vector field (div V = 0) such as
the velocity field for the motion of water, we obtain the most often used
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reaction-diffusion-convection model equation

ut + γ gradu · V = k2∆u+ f. (5.4)

The quantity γ gradu · V is called the convection term, k2∆u is called the
diffusion term, and f is the source term.

In case no diffusion in involved in the motion of the substance (K = 0
in Eq. (5.3)), all of the substance moves with the velocity field V (that is,
γ = 1), the source function f vanishes, and the velocity V is not necessarily
incompressible, the balance law reduces to the differential form of the law
of conservation of mass, also called the continuity equation, given by

ut + div(uV ) = 0. (5.5)

Because Eq. (5.4) is derived from physical laws and generally accepted
constitutive laws, this partial differential equation (PDE) is used to model
many physical processes where reaction, diffusion, or convection is in-
volved.

In case the substrate medium is stationary (that is, V = 0), the model
[Eq. (5.4)] is the diffusion (or heat) equation with a source

ut = k2∆u+ f. (5.6)

This equation, where u is interpreted as temperature, is the standard
model for heat flow. In this application, the conserved substance may be
viewed as the average kinetic energy of the particles under consideration
(molecules in a metal, molecules in a gas, electrons, and so on). Temperature
is a measure of the density of this kinetic energy. A deeper understanding of
heat and temperature requires a study of thermodynamics. Here, an intuitive
understanding of these concepts is sufficient to apply the model equation for
temperature to many heat flow scenarios.

An understanding of the derivation of the model equation [Eq. (5.4)]
should also explain the widespread appearance of the Laplacian in applied
mathematics: It is the divergence of the gradient vector field whose flow is
supposed to carry some substance from regions of its higher concentration
toward regions of lower concentration.
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Exercise 5.1. Show that the gradient of a function evaluated at a point p points in the
direction of maximum increase of the function at p. Also, the gradient is orthogonal to
each level set of the function at each point on a level set.

Exercise 5.2. Discuss the meaning of the divergence of a vector field. In particular,
discuss positive divergence, negative divergence, and zero divergence. Give examples.
Hint: You may wish to consider the equation

divX(p) = lim
Ω→{p}

1

vol(Ω)

∫
∂Ω

X · η dS,

where the limit is taken over all bounded open sets with smooth boundaries that contain
the point p whose diameters shrink to zero.

5.2 REACTION-DIFFUSION IN ONE SPATIAL DIMENSION:
HEAT, GENETIC MUTATIONS, AND TRAVELING WAVES
5.2.1 One-Dimensional Diffusion
Imagine the diffusion of heat in an insulted bar with insulated ends (that is,
zero heat flux through the surface of the bar) under the further assumptions
that the temperature is the same over each cross section perpendicular to
the bar’s axis and there are no heat sources or sinks along the bar. Given
the initial temperature distribution along the bar, the basic problem is to
determine the temperature at each point of the bar as time increases.

Under the assumptions, we need only consider the spatial distribution of
heat along the axis of the bar that we idealize as an interval of real numbers.
For a bar of length L, we thus let x denote the spatial coordinate in the open
interval (0, L). The model equation [Eq. (5.6)] is

ut = κuxx, (5.7)

where u(x, t) is the temperature at position x along the bar at time t ≥ 0
and κ > 0 is a constant (called the diffusivity) that depends on the material
used to construct the bar. The value of κ must be determined by experiment.
(How would you set up and conduct such an experiment?) Eq. (5.7) is often
called the heat equation.

A function f : (0, L)→ R representing the initial temperature along the
bar gives the initial condition

u(x, 0) = f(x). (5.8)
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Zero flux conditions at each end of the bar provide the boundary
conditions

ux(0, t) = 0, ux(L, t) = 0. (5.9)

These boundary conditions are also called the zero Neumann boundary
conditions.

The problem is to find a function u that satisfies the heat equation
[Eq. (5.7)], the initial condition [Eq. (5.8)], and the boundary conditions
[Eqs. (5.9)]. This is a classic problem first solved by Joseph Fourier in 1822.
His basic ideas, which have far-reaching consequences, are milestones in
the history of science. Fourier’s law of heat conduction—heat flows from
regions of high temperature to regions of lower temperature—is used in the
derivation of the PDE (5.7). His mathematical solution of the heat equation
with initial and boundary conditions introduced Fourier series, one of the
main tools of mathematical analysis.

A fundamental technique that often works to solve linear PDEs with
rectangular spatial domains is separation of variables: Look for solutions
of the form u(x, t) = X(x)T (t), where X and T are unknown functions.
Inserting this guess into the heat equation [Eq. (5.7)] yields the formula

X(x)T ′(t) = κX ′′(x)T (t),

which must hold if (x, t) 7→ X(x)T (t) is a solution. Assume for the moment
that X(x) and T (t) do not vanish and rearrange the last formula to the form

T ′(t)

κT (t)
=
X ′′(x)

X(x)
.

If X(x)T (t) is a solution that does not vanish, then the left-hand side of the
equation is a function of t alone and the right-hand side a function of x alone.
It follows that the left-hand side and the right-hand side of the equation are
equal to the same constant c. In other words, there must be a constant c such
that

T ′(t) = cκT (t), X ′′(x) = cX(x);

that is, X and T must be solutions of the given ordinary differential
equations (ODEs). Whether or not solutions X and T of these ODEs vanish
at some points, u defined by u(x, t) = X(x)T (t) satisfies PDE (5.7).
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The ODE X ′′(x) = cX(x) is easily solved for each of the usual cases:
c > 0, c = 0, and c < 0. Indeed, an essential requirement of the method
is to find all solutions of this ODE that satisfy the boundary conditions. For
c = λ2 > 0, the general solution (expressed with arbitrary constants a and
b) is

X(x) = aeλx + be−λx;

for c = 0,

X(x) = ax+ b;

and, for c = −λ2 < 0,

X(x) = a cosλx+ b sinλx.

Solutions of the PDE are required to satisfy the boundary conditions.
This is possible only for c = 0 and X(x) = b or c < 0 and

X(x) = a cos
nπ

L
x,

where n is an integer. As cosine is an even function, all of the solutions for
c < 0 are obtained with n ranging over the nonnegative integers.

For c = −λ2 = −
(
nπ
L

)2, the corresponding solution of T ′(t) = cκT (t)
is

T (t) = e−(κn2π2/L2)t.

An infinite number of solutions have been constructed:

un(x, t) = Xn(x)Tn(t) := e−(κn2π2/L2)t cos
nπ

L
x, n = 0, 1, 2, . . . ,∞.

The principle of superposition for the PDE with the zero Neumann boundary
conditions is valid and easy to prove. It states that if u and v are solutions
of the PDE that also satisfy the zero Neumann boundary conditions, then so
is every linear combination au + bv of these solutions, where a and b are
scalars. As a corollary, every finite sum

u(x, t) = b0 +

N∑
n=1

bne
−(κn2π2/L2)t cos

nπ

L
x (5.10)
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is a solution of the PDE and the boundary conditions. Warning: The super-
position principle is not valid for nonzero Neumann boundary conditions
(for instance, ux(0, t) = a and ux(L, t) = b where a and b are constants and
at least one of them is not zero).

What about the initial condition? One fact is clear: If

f(x) = b0 +

N∑
n=1

bn cos
nπ

L
x

for some choice of b0, b1, b2, . . . , bN , then the function u in Eq. (5.10) is a
solution of the PDE, boundary conditions, and initial conditions. This result
suggests the question: Which functions f can be written as a sum of cosines?
The surprising answer, first given by Fourier, is that most functions defined
on the interval [0, L] can be written as an infinite sum of cosines (or sines).
We will discuss this result in more detail in subsequent sections. A more
precise (but not the most general) fact is that every piecewise continuously
differentiable function f defined on [0, L], with at most a finite number of
jump discontinuities, can be represented by a (pointwise) convergent Fourier
cosine series; that is,

f(x) = b0 +

∞∑
n=1

bn cos
nπ

L
x. (5.11)

If in addition f is continuous (no jump discontinuities), then the partial
sums of the Fourier series converge uniformly to f . This is a powerful
result. By applying it, we know that the PDE model with zero Neumann
boundary conditions has a solution for all initial conditions that are likely to
be encountered. In fact, once the initial condition f is expressed as a Fourier
series, the function u defined by

u(x, t) = b0 +

∞∑
n=1

bne
−(κn2π2/L2)t cos

nπ

L
x (5.12)

is a solution of our PDE that satisfies the boundary and initial conditions.

It turns out that there is a simple method to determine the Fourier
coefficients bn of a function f defined on [0, L]. Using the convergence
theorem and assuming for simplicity that f is continuously differentiable,
this function may be expressed as in Eq. (5.11) and the sum on the right-
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hand side of the equation may be integrated term-by-term. Thus,∫ L

0
f(x) dx =

∫ L

0
b0 dx+

∞∑
n=1

∫ L

0
bn cos

nπ

L
xdx.

Every integral in the infinite summation vanishes. Hence,

b0 =
1

L

∫ L

0
f(x) dx.

For each positive integer m, we have that

As before, the first integral on the right-hand side of the equation vanishes.
The integrals of products of cosines behave in the best possible way: they all
vanish except for the product where n = m. (Check this statement carefully;
it is a basic result that makes Fourier series useful.) By an application of this
fact, ∫ L

0
f(x) cos

mπ

L
xdx =

∫ L

0
bm cos2 mπ

L
xdx = bm

L

2
,

and we have the general formula

bm =
2

L

∫ L

0
f(x) cos

mπ

L
xdx.

All the Fourier coefficients may be computed simply by integrating the
product of the given function and an appropriate cosine. A similar result
holds for Fourier sine series. Indeed, a function f in the same class of
functions may be represented as the Fourier sine series

f(x) =

∞∑
n=1

an sin
nπ

L
x.

A solution for the heat equation with zero Neumann boundary conditions
and arbitrary piecewise continuously differentiable initial value has been
constructed. This is a wonderful result, but using the PDE with the given
boundary and initial data as a model would be useless if there were other
solutions not detected by the construction of the solution using separation
of variables and Fourier series. Which solution would we choose? To

∫ L

0
f(x)cos

mπ

L
xdx=

∫ L

0
b0 cos

mπ

L
xdx+

∞∑
n=1

∫ L

0
bn cos

nπ

L
x cos

mπ

L
xdx.
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be predictive, a proposed model should have a unique solution. Suppose
there were two solutions u and v in the class of piecewise continuously
differentiable functions. By superposition, w := u − v is also a solution of
the same boundary value problem (BVP) but with zero initial condition; that
is,

wt = κwxx, w(x, 0) = 0, wx(0, t) = 0, wx(L, t) = 0.

Note that ∫ L

0
wtw dx =

∫ L

0
κwxxw dx.

By an application of integration by parts on the right-hand integral and
taking the time derivative outside the left-hand integral, we have the equality

d

dt

∫ L

0

1

2
w2 dx = κwwx

∣∣L
0
− κ

∫ L

0
w2
x dx.

Using the boundary conditions,

d

dt

∫ L

0

1

2
w2 dx = −κ

∫ L

0
w2
x dx ≤ 0.

It follows that the function

t 7→
∫ L

0

1

2
w2 dx

is nonnegative and it does not increase as t increases. But, at t = 0, the
initial condition is w = 0. Hence, w must be the zero function for all t > 0
for which the solution exists; therefore, u = v as desired. The proof method
used here is called the energy method.

The reader may ask: Could a solution exist that is not piecewise contin-
uously differentiable? If so, then perhaps solutions of the model problem
are not unique. A full answer to the question goes beyond the mathematics
developed here. At least the assumptions used in the proof of uniqueness
are reasonable for the basic heat flow model. But, the desire to answer such
questions is a very good reason to pursue more advanced mathematics.

The solution of our diffusion model equation can be used to answer
questions and make predictions. For example, the solution [Eq. (5.12)]
predicts that the temperature distribution on the rod will go to a constant
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Ui

j+1

x

t

j

j+1

Ui

j

i-1 i i+1
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j
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j

Fig. 5.1 A schematic discretization of space and time is depicted for numerical solutions of the diffusion equation.
The discrete solution values are Uji := u(i∆x, j∆t). The unknown interior value Uj+1

i is computed using the
previously computed values Uji−1, Uji , and Uji+1.

steady state as time increases and this steady state is the average value of the
initial heat distribution.

In case heat sources and sinks are included in the model or other
physical phenomena are taken into account, especially those that produce
nonlinear terms, Fourier solution methods will likely fail. In fact, there are
no methods that will produce exact solutions for all such models. Thus, to
make predictions from PDE model equations, approximation methods are
often used. The most important approximation methods are called numerical
methods; they use arithmetic to approximate solutions of partial differential
equations.

New methods are best applied to problems where the exact answer is
known. Here, the diffusion model serves as a simple example to illustrate a
numerical method, called a finite difference method, that is often used for
approximating solutions of PDEs.

To make a numerical approximation of a solution of the heat equation,
the diffusivity k, the length of the spatial domain L, and the initial data f
must be known. The first step of a finite difference method is to discretize
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space and time. This may be done by choosing a positive integer M with
corresponding spatial increment ∆x := L/M , a temporal increment ∆t,
and by agreeing to consider the value of u only at the interior spatial domain
points with coordinates xi := i∆x = iL/M for i = 1, 2 . . .M − 1 and
temporal coordinates j∆t for j = 0, 1, 2, . . ., where we leave unspecified
the (finite) number of time steps that might be computed. In other words, the
basic idea is to determine approximate values of u at the interior gridpoints
U ji = u(i∆x, j∆t) as depicted in Fig. 5.1.

Having discretized space and time, the second step is to discretize
the time and space derivatives that appear in the PDE. For this, we use
Taylor’s theorem. Recall that if a function f is (n + 1) times continuously
differentiable at a point a, then the value of f at a nearby point x is given by

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 +

1

3!
f ′′(a)(x− a)3

+ · · ·+ 1

n!
fn(a)(x− a)n +

1

(n+ 1)!
fn+1(c)(x− a)n+1

for some number c that lies between a and x. We often say that the right-
hand side of the last formula is the Taylor expansion of the function f at a.

Consider a point (x, t) and the nearby point (x, t+∆t). By an application
of Taylor’s formula to the function ∆t 7→ u(x, t+ ∆t) at ∆t = 0, we have
the expansion

u(x, t+ ∆t) = u(x, t) + ut(x, t)∆t+
1

2!
utt(x, c)∆t

2.

A rearrangement yields the equation

ut(x, t) =
u(x, t+ ∆t)− u(x, t)

∆t
− 1

2!
utt(x, c)∆t.

and the approximation

ut(x, t) ≈
u(x, t+ ∆t)− u(x, t)

∆t

with an error of order ∆t. The left-hand side of our PDE may be approxi-
mated by

ut(i∆x, j∆t) ≈
U j+1
i − U ji

∆t
. (5.13)
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Using a similar procedure,

u(x−∆x, t) = u(x, t)−ux(x, t)∆x+
1

2
uxx(x, t)∆x2 − 1

3!
uxxx(x, t)∆x3,

u(x+ ∆x, t) = u(x, t) +ux(x, t)∆x+
1

2
uxx(x, t)∆x2 +

1

3!
uxxx(x, t)∆x3,

up to an error of fourth-order in ∆x. These approximations may be added
and rearranged to obtain the formula

uxx(x, t) ≈ u(x−∆x, t)− 2u(x, t) + u(x+ ∆x, t)

∆x2

with an error of order ∆x2, which is one order more accurate than the
approximation chosen for the time derivative. This discrepancy will be
addressed further on; finite difference methods that are second order in both
space and time are certainly desirable and will be constructed. Here, the
right-hand side of our PDE is approximated by

uxx(i∆x, j∆t) ≈ U ji−1 − 2U ji + U ji+1

∆x2
. (5.14)

Equating the last two approximations [Eqs. (5.13) and (5.14)] and
rearranging the result, a discrete approximation of the PDE is

U j+1
i = U ji +

κ∆t

∆x2
(U ji−1 − 2U ji + U ji+1). (5.15)

The left-hand side of Eq. (5.15) is the value of u at the (j + 1)st time
step; all values of u on the right-hand side are evaluated at the jth time
step. As the values of u at the zeroth time step (j = 0) are given by the
U0
i via the initial condition, the approximate values of u at the first time

step (j = 1) are given by U1
i at the nodes on the grid by Eq. (5.15).

The values U j+1
i , corresponding to the time step (j + 1), are determined

using the previously computed values at the jth time step. Well, almost. . . .
There is a problem: The values of U0

i for i = 0, 1, 2, 3 . . .M are given by
the initial data; thus, all is well when computing U1

i at the interior nodes
(i = 1, 2, 3, . . . ,M − 1). But, the boundary values U1

0 at the left end and
U1
M at the right end, which will be needed in the next time step, must be

determined from the boundary conditions. (The subject of PDEs would
be simple absent boundary conditions, but there is no reprieve; boundary
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conditions are essential in modeling and in numerical approximations. Be
careful.)

For an approximation of the zero Neumann boundary conditions (which
require the partial derivative ux to vanish at each end of the computational
domain), one possibility is to insist that for all time steps

U j0 = U j1 , U jM = U jM−1. (5.16)

These conditions impose an approximation of the zero first derivatives
at the ends of the bar, whose spatial coordinates are x0 and xM , by
viewing the approximation of u to be constant over the intervals [x0, x1]
and [xM−1, xM ]. This is not the only possible approximation of the zero
Neumann boundary conditions, but this approximation is consistent with
the desired condition and has the virtue of being simple to implement in
computer code. For the case j = 1, simply set U1

0 equal to the already
computed (interior) value U1

1 and set U1
M equal to the already computed

interior value U1
M−1. The same procedure is used for all subsequent time

steps.

All the ingredients are now in place to approximate solutions of the
heat equation [Eq. (5.7)] with Neumann boundary conditions [Eqs. (5.9)]
and the initial condition [Eq. (5.8)]. Determine the initial data U0

i , for
i = 1, 2, 3, . . . ,M−1, from the initial condition. Set j = 1 and compute U1

i

for i = 1, 2, 3, . . . ,M − 1 using Eq. (5.15) and impose the end conditions
[Eqs. (5.16)]. Repeat the process to compute U2

i using the previously
determined values U1

i , and continue to compute in turn U j+1
i , for j ≥ 2,

over i = 1, 2, 3, . . . ,M − 1 using the previously computed values U ji . The
process is stopped when j reaches some preassigned integer value N . The
size of the increment ∆t can be adjusted so that after a finite number of steps
j = 1, 2, 3, . . . , N , the time T = N∆t is equal to a preassigned final value.

The numerical scheme may also be viewed in vector form. Define
the (M − 1) vector W j to be the transpose of the row vector
(U j1 , U

j
2 , U

j
3 , . . . , U

j
M−1), let α := κ∆t/∆x2, and define the (M − 1) ×

(M − 1) matrix A whose main diagonal is (1 − α, 1 − 2α, 1 − 2α, 1 −
2α, . . . , 1− 2α, 1− α) (that is, the first and last components are 1− α and
the other components are all 1 − 2α), whose first superdiagonal and first
subdiagonal elements are all α, and all remaining elements are set to zero.
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In case M = 5, the matrix is

A =


1− α α 0 0
α 1− 2α α 0
0 α 1− 2α α
0 0 α 1− α

 .

The iteration scheme [Eq. (5.15)] (including the boundary conditions) takes
the vector form

W j+1 = AW j .

In other words, the iteration scheme is simply matrix multiplication by A.
The special first and last rows of A are due to the Neumann boundary
conditions.

The initial vector W 0 is determined by the initial condition for the PDE.
Subsequent iterates are W 1 = AW 0, W 2 = AW 1, and so on. Or, in a more
compact form,

W j+1 = AjW 0,

where Aj denotes the jth power of the matrix A and W j is the jth element
in the sequence of iterates whose first three elements are W 1, W 2, and
W 3. This type of iteration scheme, iterating a function (which is a linear
transformation here), is ubiquitous in applied mathematics. Learning the
corresponding theory is certainly worthwhile.

There are at least two reasons to expect difficulties: (1) The discrete
first-order approximation of the time derivative ut is less accurate than the
second-order approximation of the spatial derivative uxx; and (2) perhaps
the approximate values U ji begin to grow or oscillate due to discretization
errors and thus the approximation does not remain close to the solution of
the continuous model.

Alternative numerical algorithms that overcome difficulty (1) are avail-
able. In fact, a viable method that makes the time discretization second-order
is discussed in Section 5.5.4.

Numerical instability will occur (see Exercise 5.9) unless the space
and time increments chosen to discretize the model satisfy the Courant–
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Friedrichs–Lewy (CFL) condition

κ
∆t

∆x2
≤ 1

2
, (5.17)

a requirement that is revisited and explained more fully in Section 5.4.4. In
practice, the CFL condition determines the maximum allowable time-step
size for our numerical method after a spatial discretization is set.

To appreciate the CFL condition for numerical approximations of the dif-
fusion model, suppose that a roundoff error is introduced in the computation
at the first time step. Instead of computing the exact valueW 1 from W 0, the
machine computes W 1 + ε (where ε is an (M − 1) vector representing the
error). Of course, further errors might be introduced at subsequent steps.
But, for simplicity, consider only the propagation of the first error, and
assume that the computed results are exact after the first error occurs. Under
these assumptions, the computed values are

W 2 = AW 1 +Aε, W 3 = A2W 1 +A2ε, W 4 = A3W 1 +A3ε, . . . .

Note that the vectorAjε represents the error at each step. The algorithm will
produce useless results if the norm (which may be taken to be the Euclidean
length) of the vector Ajε grows as j increases.

What happens in case the matrix A were the diagonal 2× 2 matrix

A =

(
a 0
0 b

)
?

Clearly

Aj =

(
aj 0
0 bj

)
.

If either |a| > 1 or |b| > 1 and there is a corresponding nonzero element of
the vector ε, then the size of the propagated error will grow. For example,
if |b| > 1 and ε is the transpose of the vector (0.01, 0.035) the number
bj0.035 will grow to infinity as j goes to infinity. In this case, roundoff errors
are amplified under iteration and the numerical approximation of the PDE
becomes increasingly less accurate as the number of time steps increases.
On the other hand, if both |a| or |b| are less than or equal to 1, then the
propagated error will remain bounded as j goes to infinity.
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The matrix A that appears in our numerical scheme is not diagonal. But,
it has a special form: A is symmetric; that is, A is equal to its transpose.
Every symmetric matrix is diagonalizable; in other words, ifA is symmetric,
then there is an invertible matrix B such that B−1AB is diagonal. Also,
every eigenvalue of a symmetric matrix is real. Using these facts, let us
suppose that every eigenvalue of our matrix A lies in the closed interval
[−1, 1]. The matrix C := B−1AB has the same eigenvalues as A. (Why?)
Iterations of a vector v by C remain bounded because C is diagonal and all
its eigenvalues have absolute value less than or equal to 1. In fact,

|Cjv| ≤ |v|

for all vectors v and all positive nonzero integers j. Iteration of v by the
matrix A also remains bounded because

|Ajv| = |(BCB−1)jv| ≤ |BCjB−1v| ≤ ‖B‖|B−1v| ≤ ‖B‖‖B−1‖|v|.

The CFL condition [Eq. (5.17)] implies that all eigenvalues of A are in the
closed interval [−1, 1] (see Section 5.4.4).

The heat equation is well established as a model and is widely used.
But, as for all mathematical models that rely on constitutive laws, it is not
in complete agreement with nature. To reveal a basic flaw, reconsider the
Fourier series solution [Eq. (5.12)]

u(x, t) := b0 +

∞∑
n=1

bne
−(κn2π2/L2)t cos

nπ

L
x

of this model [Eq. (5.7)]. The Fourier coefficients are determined by the
initial data. Imagine the initial temperature is zero everywhere along the bar
except near some place x = ξ along the rod. In fact, the temperature far away
from this point will remain zero for some finite time interval: the effects of
the motions of the molecules near ξ cannot be transferred instantly to some
distant location. In more prosaic language, there is no action at a distance.
The model does not agree with this physical reality. Indeed, every Fourier
coefficients bne−(κn2π2/L2)t in the series representation of u is changed
from its initial value by a different exponential factor for arbitrarily small
t > 0. At some prespecified distance along the rod from ξ and for arbitrarily
small t > 0, the model predicts nonzero temperatures at points at least this
distance from ξ. The influence of the nonzero temperature at ξ is predicted
to be felt instantly at every point along the rod. Of course, the predicted
influence is so small in practical situations that it is not measurable. In
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most practical applications, predicted temperatures agree with measured
temperatures. Thus, although the heat equation model predicts a violation
of a physical law at a fundamental level, it is an excellent model for
applications to heat transfer phenomena. The violation is due to Fourier’s
constitutive law X = −K gradu, not the conservation of mass.

Exercise 5.3. (1) Write the Fourier sine series for the function f(x) ≡ 1 on the
interval [0, 2] and make graphs of a few of the partial sums to indicate its convergence.
(2) Repeat the exercise for the Fourier cosine series. (3) Write the Fourier sine series for
the unit step function that is zero on the interval [0, 1) and one on the interval [1, 2]. (3)
Show that the series evaluated at x = 1 converges to 1/2. Also, draw graphs to indicate
the convergence of the partial sums. Describe the behavior of the partial sums on a small
interval [1, 1 + ε). The (perhaps strange) behavior is called the Gibbs phenomenon.

Exercise 5.4. Let h be a smooth function defined on the interval [0, L] and consider
the function f given by

f(x) =

N∑
n=1

an sin(
2πn

L
x).

Define the error in approximating h by f to be

Λ =

∫ L

0

|f(x)− h(x)|2 dx.

(1) Find the numbers {a1, a2, a3, . . . , aN} that minimizes the error. Compare with the
Fourier coefficients. (2) Approximate the least error in caseN = 4,L = 2, and h(x) = 1.
(3) What is the minimum N so that the error is less that 0.01?

Exercise 5.5. (a) Solve the diffusion equation on the spatial domain [0, L] with initial
condition and zero Dirichlet boundary conditions:

ut = κuxx, u(x, 0) = f(x), u(0, t) = 0, u(L, t) = 0.

(b) Show that your solution is unique.

Exercise 5.6. Solve the diffusion equation on the spatial domain [0, L] with initial
condition and nonzero Neumann boundary conditions:

ux(0, t) = a, ux(L, t) = b,

where a and b are real numbers. Hint: Look for a solution u = v + w, where v is
a function that satisfies the boundary conditions and w satisfies the PDE with zero
boundary conditions.

Exercise 5.7. Solve the diffusion equation on the spatial domain [0, L] with initial
condition and nonzero Dirichlet boundary conditions:

u(0, t) = a, u(L, t) = b,
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where a and b are real numbers.

Exercise 5.8. The zero flux boundary condition for the diffusion equation has the
physical interpretation that no substance is lost as time increases. Prove this fact by
showing that the time derivative of the total amount of substance (its integral over the
spatial domain) vanishes.

Exercise 5.9. (a) Write computer code to implement the numerical method described
in this section to approximate the solution of the diffusion equation in one space
dimension on a finite interval with zero Neumann boundary conditions and given initial
condition. As a test case, consider the spatial domain to be one unit in length, the
diffusivity κ = 1, and the initial data given by f(x) = 1 + cosπx. Compare your
numerical results with the analytic solution. (b) Test the CFL number with at least two
discretizations, one such that ∆t/∆x2 = 0.4 and the other with ∆t/∆x2 = 0.6. Discuss
your results.

Exercise 5.10. (a) Modify your code written for Exercise 5.9 to approximate the
solution of the diffusion equation in one space dimension on a finite interval with mixed
boundary conditions and given initial condition. As a test case, consider the spatial
domain to be one unit in length, the diffusivity κ = 10−3, the initial data given by
f(x) = 1, and the boundary conditions

ux(0, t) = 0.01, u(1, t) = 1.

Draw a graph of the initial heat profile, its steady state profile, and five profiles at equally
spaced times between these extremes. (b) Determine the value of u at the midpoint of the
space interval (that is, at x = 0.5 at t = 10). The engineers who need this result want it
correct to 4 decimal places. Can you assure them that your value meets this requirement?
(c) Draw a graph of the function t 7→ u(0.5, t) on the time interval 0 ≤ t ≤ 20.

Exercise 5.11. [Ink Diffusion] The following is a constitutive model for the ink
diffusion experiment in Section 1.3: Let u(x, t) denote the concentration of ink at
position x at time t and L the trough length. Also, let a and b be positive constants.
The model equation of motion for u is the initial BVP

ut = kuxx, ux(0, t) = ux(L, t) = 0, u(x, 0) =

{
a, 0 ≤ x ≤ b,
0, x > b.

(a) What constitutive law is used to construct this model? (b) Show that the model
predicts the presence of ink at every position along the trough for every positive time.
Does this fact invalidate the model? (c) Show that the model predicts that the total
amount of ink remains constant in time. (d) Define the diffusion front to be the largest
distance from the origin where the ink concentration is 1% of a. Use the model to
determine the diffusion front. If necessary, choose values for the parameters in the
problem. (e) Is the distance of the diffusion front from the origin a linear function
of time? If not, what type is this function? (f) Calibrate the model to the data given
in Section 1.3 and discuss the model prediction in view of the experimental data. (g)
Construct a model that takes into account two (or three) space dimensions. Compare
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the new front speed with the front speed obtained for the one-dimensional model. (h)
Can you refine the model to give a more accurate representation of the experiment? You
may wish to perform your own experiment. Note: Perhaps diffusion is not the dominant
mechanism that causes the ink to disperse. The water was left undisturbed for a long
period of time to minimize residual fluid motions, but perhaps the effects of temperature
cause convection currents that drive the ink movement. Could the proposed model be
based on incorrect physics for the process under consideration? Discuss.

Exercise 5.12. Imagine a chemical element that dissolves in water and a mixture of
50 grams per liter of this element and water poured into the bottom of a round cylindrical
flask. Pure water is added on top of the fluid mixture in a very careful manner so that
no stirring takes place. The pure water has a depth of 10 centimeters above the surface
Σ of the mixture. The flask has a small hole located exactly 2 centimeters above Σ

that allows small samples to be extracted and tested for their chemical concentrations
every 24 hours for 10 days. Here are the experimental results given in the form (days,
grams/liter of the chemical element):

days concentration days concentration
1 0.0 6 2.598
2 0.0 7 3.806
3 0.096 8 5.031
4 0.594 9 6.23
5 1.484 10 7.382

What is the diffusion coefficient for this chemical element in water?

Exercise 5.13. (1) Consider a manufactured rod with uniform cross sections. The
rod is 1 meter long and the thermal diffusivity of the construction material has been
previously measured to be 10−4 square meters per second. Also, the rod is in an
insulating jacket so that no heat can escape to the ambient environment. The initial
temperatures along the rod, measured in degrees celsius at 21 positions along the rod,
are given in the following table where the first coordinate is the position along the rod
measured in meters and the second is the corresponding measured celsius temperature.
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position temperature position temperature
0.00 200.00 0.55 254.37
0.05 200.25 0.60 264.33
0.10 201.00 0.65 274.29
0.15 202.25 0.70 284.31
0.20 204.00 0.75 294.00
0.25 206.27 0.80 279.50
0.30 209.00 0.85 264.18
0.35 214.40 0.90 249.32
0.40 224.21 0.95 234.49
0.45 234.38 1.00 219.05
0.50 244.88

Heat sources are removed and the heat in the rod is allowed to diffuse. Determine a good
approximation for the temperature of the rod at its midpoint 10 minutes later. Consider
a numerical approximation and an approximation using Fourier series. Compare your
results. (2) Assume the same conditions and data as in part (1) except that the rod is
no longer completely insulated; only its ends are insulated. Heat is transferred from
positions along the rod to the environment such that the rate of change of temperature
is proportional to their temperature differences with the constant ambient temperature
of 20 degrees celsius. The constant of proportionality is 0.05 per minute. Determine a
good approximation for the temperature of the rod at its midpoint 10 minutes later. (3)
An early version of part (2) stated a constant of proportionality of 0.5 per minute. A
fall of 1/2 a degree per minute does not seem unreasonable. But, this reasoning is not a
correct interpretation of the influence often constant of proportionality. What is a correct
interpretation?

Exercise 5.14. [Oscillations Carried by Diffusion] Consider the diffusion model
defined on the interval [0, 1]:

ut = k2uxx, u(0, t) = f(t), ux(1, t) = 0, u(x, 0) = g(x),

where g gives the initial data and f(t) is a periodic function (perhaps f(t) = A sinωt).
Determine h(t) := u(1, t). Is h periodic? If so, what is its period? Could the amplitude
of h ever exceed the amplitude of f? Hint: Use analytic and numerical methods. The
best method to determine a Fourier series solution is the expansion method described
in [103].

5.2.2 Propagation of a Mutant Gene
Consider a population with a mutant gene whose concentration is u. Its
allele (the parent gene) has concentration 1 − u. The individuals in the
population diffuse along a one-dimensional spatial domain (for example a
shoreline) and they interact with each other to produce offspring. A simple
model (introduced in 1937 independently by R. A. Fisher [38] and A.
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N. Kolmogorov, I. Petrovskii, and N. Piscounov [58]) is

ut = κuxx + au(1− u). (5.18)

The choice of the model interaction term, given by f(u) = au(1 − u), is
akin to the principle of mass action and may be more fully justified using
probability theory (see [58]). Of course, this term may also be viewed as
perhaps the simplest model of interaction that agrees (qualitatively) with
experiments. The constant a is meant to model the utility of the gene for
the organism to survive: a > 0 for an advantageous mutation; a < 0 for
a disadvantageous mutation. When the concentration of the mutant gene
is zero—no mutant genes in the population—the reaction term au(1 − u)
has value zero and u = 0 is a solution of the model equation; and, when
the entire population has the mutant gene—the concentration is one—the
function u = 1 is a solution of the model equation.

There is a natural scientific question: How will an advantageous mutation
spread if it occurs in some individual or group of individuals at a specified
spatial location?

The quantity u(x, t) is the number of individuals at time t at shoreline
position x with the mutant gene divided by the total number of individuals
in the population at x. Of course this is an idealization. In reality, we would
measure this ratio over some area (a fixed width times a length of shoreline).
The concentration is more precisely defined to be the limit of this ratio as
the area of the region shrinks to zero at x for the fixed time t. Thus, u—the
ratio of two tallies—is a dimensionless quantity. The time derivative ut has
the dimensions of inverse time. In symbols, we write [ut] = 1/T , where in
this formula the square brackets denote units of the enclosed expression and
T denotes the unit of time (perhaps T is years). With the choice of a unit L
of length, the diffusion term has units [κuxx] = [κ]/L2. These must agree
with the units of the time derivative. Thus, [κ]/L2 = 1/T and [κ] = L2/T .
Likewise, the units of the interaction term are carried by a and [a] = 1/T ;
thus, a has the units of a rate.

We are unlikely to know good values of the diffusivity κ (a measure of
how fast the organisms carrying the mutant gene spread along the shoreline)
or a (which is the growth rate of the population with the mutant gene). Thus,
we should not expect to make reliable quantitative predictions; rather, we
should use the model to predict the qualitative behavior of the spread of a
mutant gene.
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Fig. 5.2 Graphs of the spatial distribution of the mutant gene modeled by PDE (5.20) at times t = 5, 15, 30, and 45

are depicted for the initial condition (5.21) with a = −2, b = 2, and µ = 0.01. The plotted curves are thicker as
time increases. The numerical method is forward Euler (for the temporal variable) with time step 0.25, with Neumann
boundary conditions, and a spatial grid of 200 interior points on the spatial domain [−100, 100].

The qualitative behavior of the solutions of our model are independent
of the (positive) parameters κ and a. In fact, we can simply eliminate the
parameters by a change of variables. Let t = τs, where [τ ] = T (that is,
τ has the dimensions of time), and x = `ξ, where [`] = L. The change of
variables is accomplished by applying the chain rule. Ignoring the temporal
variable for this computation, note that

du

dt
=
du

ds

ds

dt
=

1

τ
us,

du

dx
=
du

dξ

dξ

dx
=

1

`
uξ,

d2u

dx2
=

1

`2
uξξ.

By substitution into the model PDE [Eq. (5.18)]

1

τ
us = κ

1

`2
uξξ + au(1− u)

and, by rearranging, we have the equation

us = κ
τ

`2
uξξ + τau(1− u).

We may choose

τ =
1

a
, ` =

√
κ

a
, (5.19)
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to obtain the desired dimensionless model

us = uξξ + u(1− u).

Reverting to the usual notation, the PDE

ut = uxx + u(1− u) (5.20)

is discussed here.

For the biological application, the model PDE [Eq. (5.20)] may be
considered for mathematical convenience with the spatial variable x defined
on the whole real line, or we may impose boundary conditions at the ends
of some interval. For instance, the zero Dirichlet boundary condition (u
vanishes at an end of the portion of the shoreline under consideration) or
the zero Neumann boundary condition (ux vanishes) may be used. In the
present context, the Dirichlet condition means that individuals at the end of
the shoreline where it is imposed never carry the mutant gene; the Neumann
condition means that no individuals with the mutant gene leave or enter
the population through the end of the shoreline where it is imposed. More
generally, nonzero constant or time-dependent boundary conditions might
also have plausible physical meanings.

The model [Eq. (5.20)] is a nonlinear PDE; the superposition of solutions
is generally not a solution. There is no known general explicit solution (cf.
Exercise 5.15). But, it is possible to prove that unique solutions exist for
appropriate initial conditions u(x, 0) = f(x) (see, for example, [89]). Let
us assume these results.

The simplest model has no diffusion. In this case, the PDE reduces to the
ODE u̇ = u(1−u) (see Exercise 2.4). There are two steady states u = 0 and
u = 1. If 0 < u(x, 0) < 1 (that is, some individuals at the position x have
the mutation), then the corresponding solution u(x, t) grows monotonically
to u = 1 as t goes without bound. Thus, with the passage of time, the mutant
gene eventually is established in the entire population at each location along
the shoreline where there were some individuals with the mutant gene.

Does the model predict that an advantageous mutant gene will spread to
the entire population when diffusion (and thus spatial dependence) is taken
into account?

To begin the analysis of the PDE with diffusion, suppose that the initial
population with the mutant gene is found only in one location along the
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Fig. 5.3 Graphs of the spatial distribution of the mutant gene for Fisher’s model [Eq. (5.20)] at times t = 20, 40, 60,
and 80 are depicted for the initial condition (5.21) with α = −100, β = −90, and µ = 1. The plotted curves are
thicker as time increases. The numerical method is forward Euler on the spatial domain [−100, 100] with Neumann
boundary conditions, time step 0.1, and a spatial grid of 200 interior points.

shoreline. This situation may be modeled by the initial function

u(x, 0) = f(x) =


0; x < α,
µ; a ≤ x ≤ β,
0; x > β,

(5.21)

where α < β and 0 < µ ≤ 1. Numerical experiments are used to obtain
the population profiles depicted in Fig. 5.2. The spread of the mutant gene
seems to be a wave spreading in both directions from the spatial location
of the initial population that carried the mutation. The wave speed for this
simulation is approximately 10.

To help determine the wave speed in general, let us note that in our
scaling [Eq. (5.19)], the characteristic velocity is length divided by time.
Our length scale is ` =

√
κ/a and our time scale is τ = 1/a. There is a

unique characteristic velocity given by

characteristic velocity =
√
κa. (5.22)

The wave speed should be a function of this characteristic velocity. Thus
the dependence of the wave speed of a wave solution of the original
model [Eq. (5.20)] should be h(

√
κa) for some scalar function h (see

Exercise 5.19). This argument is a simple example of an application of
dimensional analysis, which is often useful to help determine the functional
dependence of some phenomenon on the parameters in a model. Dimen-
sioned characteristic quantities (such as wave speed) should be functions of
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terms that are ratios of monomials in the scales (such as τ and `), which are
used to make the model dimensionless.

Numerical experiments, using the PDE model for the spread of a mutant
gene from a location where the mutation arises, suggest a basic prediction:
The spread of the mutant gene has a wave front moving in both directions
away from the initial location with the concentration of the mutant gene and
the mutant gene saturates the population as the wave passes each remote
location.

A related physical phenomenon is the spread of a mutant gene that is
already dominant on the left side of a location along our beach but not
present on the right side. Some of the results of numerical experiments
are reported in Fig. 5.3; they suggest the local concentration of the mutant
gene rises to dominate the population where the mutation is already present
and it spreads to the right at a constant speed with each location being
fully saturated as the wave front passes. A mathematical idealization of this
situation leads to the question: Is there a solution u of the dimensionless
model [Eq. (5.20)] such that, for each fixed position x,

0 ≤ u(x, t) ≤ 1, lim
t→−∞

u(x, t) = 0, lim
t→∞

u(x, t) = 1? (5.23)

The existence of a solution of this type would show that some solutions of
the PDE have the same qualitative behavior as a solution of u̇ = u(1 − u)
(that is, the model differential equation without diffusion) with initial value
u(0) restricted to 0 < u(0) < 1.

Inspection of Fig. 5.3 (or better yet an animation of the wave) suggests
that the spatial concentration quickly approaches a wave that maintains its
profile while moving to the right with constant velocity. Ideally, there is
some function φ : R→ R such that

u(x, t) = φ(x− ct), (5.24)

where c > 0 is the wave speed. A solution of this form is called a traveling
wave with wave form φ.

By substitution of Eq. (5.24) into PDE (5.20), we obtain the differential
equation

− cφ′(x− ct) = φ′′(x− ct) + φ(x− ct)(1− φ(x− ct)), (5.25)
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Fig. 5.4 A portion of the phase portrait for the ODE system (5.28) with c = 3 is depicted. The flow crosses each thick
line segment in the same direction. The thick curve is an approximate trajectory connecting the rest points at (0, 0)

and (1, 0).

which we may view as an ODE for the unknown wave profile φ with
auxiliary conditions

0 ≤ φ ≤ 1, lim
s→−∞

φ(s) = 1, lim
s→∞

φ(s) = 0. (5.26)

A basic fact is that if c ≥ 2, then there is a solution of the ODE

φ̈+ cφ̇+ φ(1− φ) = 0 (5.27)

that satisfies the auxiliary conditions (5.26). This result implies that Fisher’s
model [Eq. (5.20)] has a traveling wave solution that satisfies the original
auxiliary conditions (5.23).

The second-order ODE [Eq. (5.27)] is equivalent to the first-order system
of ODEs

φ̇ = v,

v̇ = −cv − φ(1− φ) (5.28)

in the phase plane.
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Fig. 5.5 The figure depicts an approximation of the graph of the function φ that is the first coordinate function of the
solution of the ODE system (5.28) with c = 3 along the unstable manifold of the saddle point at (1, 0) that connects
this point to the sink at the origin.

First-order system (5.28) has two rest points at coordinates (0, 0) and
(1, 0) in the phase plane. The rest point at the origin is asymptotically stable
and the rest point at (1, 0) is a saddle point. If c ≥ 2, then the triangle
depicted by thick line segments is positively invariant. The horizontal
segment connects the rest points, the ray with negative slope is in the
direction of the eigenspace corresponding to the negative eigenvalue of the
linearized system matrix at (0, 0) with the largest absolute value, and the
ray with positive slope is in the direction of the eigenspace corresponding to
the unstable manifold of the linearized system matrix at (1, 0). For c < 2,
the eigenvalues of the linearized system at the origin are complex. Thus, the
incoming unstable trajectory from the saddle point winds around the origin
and φ has negative values, violating the condition that 0 ≤ φ ≤ 1 (see [20]
for a detailed proof and Exercise 5.22).

The connecting orbit in Fig. 5.4 corresponds to the desired function φ
that defines a traveling wave solution. Of course, φ is the first coordinate
function of the corresponding solution of the ODE system (5.28). Its
graph, which has the profile of the expected traveling wave, is depicted in
Fig. 5.5. Kolmogorov, Petrovskii, and Piscounov [58] proved that solutions
of PDE (5.20) with initial data such that 0 ≤ u(x, 0) ≤ 1, u(x, 0) = 1 for
x ≤ α, and u(x, 0) = 0 for x ≥ β > α approach a traveling wave solution
with wave speed c = 2 (see Exercise 5.21).
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Exercise 5.15. Show that u(x, t) = φ(x − ct) is a solution of PDE (5.20) in case
c = 5/

√
6, K is a constant, and

φ(z) = (1 +Kez/
√

6)−2.

Exercise 5.16. (a) Repeat the experiment reported in Fig. 5.2. (b) Repeat the
experiment with Dirichlet boundary conditions and compare the results.

Exercise 5.17. How does the speed of the wave front(s) of solutions of PDE (5.20)
depend on the amplitude of the initial population with the mutant gene?

Exercise 5.18. How does the speed of the wave front(s) of solutions of PDE (5.20)
depend on the length of the spatial interval occupied by the initial population with the
mutant gene?

Exercise 5.19. Use numerical experiments to test the characteristic velocity approxi-
mation in Eq. (5.22). Set an initial mutant gene concentration and vary the parameters κ
and a in PDE (5.18).

Exercise 5.20. Reproduce Figs. 5.3–5.5.

Exercise 5.21. Use numerical experiments to verify the theorem of Kolmogorov,
Petrovskii, and Piscounov [58] that solutions of Fisher’s model [Eq. (5.20)] with initial
data such that 0 ≤ u(x, 0) ≤ 1, u(x, 0) = 1 for x ≤ α, and u(x, 0) = 0 for x ≥ β > α

approach a traveling wave solution with wave speed c = 2.

Exercise 5.22. (a) Find the system matrix at each rest point of system 5.28, find the
eigenvalues and eigenvectors, and determine the stability types of the rest points. Show
the triangle as in Fig. 5.4 is positively invariant by proving the vector field corresponding
to the system of differential equations points into the region bounded by the triangle
along the boundary of the region.

Exercise 5.23. Consider Fisher’s equation with a disadvantageous gene (a < 0) in
Eq. (5.18). (a) What happens when the disadvantageous gene is carried by all individuals
counted in a finite interval of the spatial domain? (b) Does the disadvantageous gene
always disappear as time increases? Discuss.

Exercise 5.24. Consider the PDE

ut = uxx + u(1− u2)

and restrict attention to solutions u such that |u| ≤ 1. Note that u = 0 and u = ±1 are
steady states. (1) Which pairs of these steady states have solutions connecting them in
the space of solutions of the ODE ut = u(1−u2) obtained by ignoring the diffusion term
uxx? (2) Which pairs of these steady states have traveling wave solutions connecting
them in the space of solutions of the PDE? Hint: Gather evidence using numerical
experiments before attempting a pencil and paper solution.

Exercise 5.25. Consider Jin-ichi Nagumo’s equation

ut = uxx + u(1− u)(u− a),
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where 0 < a < 1 is a parameter. A traveling wave f(x− ct) is called a front if its profile
f has finite distinct limits at ±∞ and a pulse if these limits are equal. Does the Nagumo
equation have front or pulse type traveling waves for some parameter values? Discuss
using analysis and numerical experiments. If such solutions exist, graph typical front
and pulse profiles and determine the corresponding wave speeds.

Exercise 5.26. Consider a population where the concentration of individuals with an
advantageous gene u (which is the number with the gene divided by total number at a
given spatial position) is modeled by Fisher’s equation ut = κuxx + au(1 − u), where
time is measured in months and distance in kilometers. The population resides on a
shoreline 0.8 kilometers long where at the left end of the shore no individuals can enter
or leave the population, but at the right end of the shoreline, individuals without the
advantageous gene enter cyclically so that during the summer months of June, July,
August, and September the concentration u at the right end of the beach is always
measured to be approximately 20% less than the concentration at the left end. During
the winter months (December, January, February, and March) the concentration at the
right end of the beach is unaffected by migration. Spring and fall are transitional periods
where the concentration builds up in fall and tapers off during spring to the mentioned
levels. Suppose that the system constants are κ = 0.002 square kilometers per month
and a = 0.05 per month. The initial population with the advantageous gene is measured
in June to be 10% over three-quarters of the beach measured from left to right and 8%

over the remainder of the beach. What is the percent of the population with the gene
halfway along the beach after 5 years? Hint: There could be more than one viable model
for the boundary conditions. Discuss your choice(s).

5.3 REACTION-DIFFUSION SYSTEMS: THE GRAY–SCOTT
MODEL AND PATTERN FORMATION

Consider two concentrations u and v of two substances in some process
involving diffusion and interaction. Imagine, for example, interacting popu-
lations (perhaps a predator and its prey) or a chemical reaction.

Absent diffusion, the interaction of two species is often modeled by a
(nonlinear) system of ODEs

u̇ = f(u, v), v̇ = g(u, v). (5.29)

For example, the basic interaction between a predator concentration u and
its prey concentration v might be modeled by

u̇ = −au+ buv, v̇ = cv(1− 1

k
v)− buv. (5.30)

Here, a is the death rate of the predator, c is the growth rate of the prey,
k is the carrying capacity of the prey’s environment, and b is the success
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rate of the predator. By taking into account the (spatial) diffusion of the two
species, we obtain the reaction-diffusion model

ut = λ∆u− au+ buv, vt = µ∆v + cv(1− 1

k
v)− buv, (5.31)

where now u and v are functions of space and time.

At a practical level, the derivation of phenomenological reaction-
diffusion models of the form

ut = λ∆u+ f(u, v), vt = µ∆v + g(u, v) (5.32)

can be as simple as our derivation of a predator-prey model. The derivation
of more accurate models of course requires a detailed understanding of the
underlying reaction [79, 84].

A famous and influential paper [113] by Alan Turing suggests reaction-
diffusion models to explain pattern formation in biological systems (mor-
phogenesis). Indeed, the patterns we see in nature (for example, mammalian
skin spots and stripes, fish skin patterns, snow flakes, and many others)
can all be generated approximately from graphs of solutions of reaction
diffusion equations. The wider application of his idea suggests a broad form
of Turing’s principle: Reaction and diffusion are the underlying mechanisms
for pattern formation in the natural world. Although Turing’s principle is
controversial, the application of mathematics to understand reaction and
diffusion has proved enormously successful.

One of the models Turing considered is

ut = λ∆u+ r(α− uv), vt = µ∆v + r(uv − v − β). (5.33)

Another widely studied reaction-diffusion model for pattern formation is the
dimensionless Gray–Scott model [31, 45, 78, 83, 123]

ut = λ∆u+ F (1− u)− uv2,

vt = µ∆v + uv2 − (F + κ)v. (5.34)

It is derived from a hypothetical chemical reaction of the form

u+ 2v → 3v, v → P,

where the second reaction creates an inert product; the coefficient F is the
dimensionless feed/drain rate (which feeds u and drains u, v, and P ), and
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κ is the dimensionless rate of conversion in the second reaction v → P .
A standard theory in chemical kinetics, called the law of mass action,
assumes that the rate of a reaction is proportional to the product of the
concentrations of the chemicals involved in the reaction. For a reaction of
the form nA + mB → C the reaction rate is r = k[A]n[B]m, where the
square brackets denote concentration, k is the constant of proportionality
called the rate constant, and n and m are the stoichiometric coefficients
that specify the number of molecules of the corresponding chemical species
that combine in the reaction. Thus, according to the first reaction equation
u+ 2v → 3v, the rate at which v is increased by the reaction is proportional
to uvv—one molecule of u plus two molecules of v combine to form three
molecules of v.

For a system of reaction-diffusion equations

Ut = λ∆U +H(U),

Turing’s fundamental idea—which has had a profound influence on devel-
opmental biology—is that spatial patterns can form even for the case of
small diffusion for a reaction ODE

U̇ = H(U)

that has an attracting steady state. In effect, the diffusion can act against the
tendency of the process to proceed to the steady state of the reaction. The
implication is that a pattern (for example, the spots and stripes of animal
skins) might arise from a chemical process involving reaction and diffusion.
Thus, there is an ongoing field of research devoted to describing pattern for-
mation and understanding the underlying mechanisms that produce patterns.
The mathematical models are systems of reaction-diffusion equations.

Initial and boundary conditions must be specified to obtain a unique
solution of a reaction-diffusion PDE.

Consider a two-dimensional spatial domain Ω and the concentration
vector U = (u, v), which is a function U : Ω × [0, T ] → R2. The initial
condition simply gives the initial spatial distribution of the concentration
vector; that is,

U(x, 0) = U0(x) (5.35)

for some function U0 : Ω→ R2.
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The boundary conditions depend on the underlying physical problem. A
Dirichlet boundary condition is used for the case where the concentration
vector at the boundary of Ω is a known (vector) function g : ∂Ω× [0, T ]→
R2; that is,

U(x, t) = g(x, t) (5.36)

whenever x ∈ ∂Ω and t ∈ [0, T ]. A Neumann boundary condition is used
when the reactants are known to penetrate the boundary at some specified
rate; that is, the flux through the boundary is known. In this case, let η denote
the outer unit length normal on ∂Ω. The Neumann boundary condition states
that the normal derivative of the concentration vector is a known function on
the boundary; that is,

η · ∇U(x, t) = g(x, t) (5.37)

whenever x ∈ ∂Ω and t ≥ 0.

A computationally convenient (but perhaps less physically realistic)
boundary condition is the periodic boundary condition

U(x+ a, y) = U(x, y), U(x, y + b) = U(x, y),

where a and b are fixed positive constants. In other words, the concentration
vector is supposed to be defined on a torus given by a rectangle with opposite
sides identified with the same orientations.

A reaction-diffusion system defined on a bounded domain Ω with a
piecewise smooth boundary, either Dirichlet, Neumann, or periodic bound-
ary conditions, and an initial condition, has a unique solution that exists for
some finite time interval 0 ≤ t < τ (see [84, 99]). This is our hunting
license. In the next section we will consider qualitative and numerical
methods that can be used to understand some of the evolution of species
concentrations predicted by the Gray–Scott model, which is used here as
a mathematically rich prototype for reaction-diffusion models and as a
specific example where numerical methods can be used to approximate
solutions.



Reaction, Diffusion, and Convection 117

5.4 ANALYSIS OF REACTION-DIFFUSION MODELS:
QUALITATIVE AND NUMERICAL METHODS

The mechanism for pattern formation is not well understood. At least
it is very difficult to define the properties of the patterns that arise and
prove their existence. To show that patterns arise begins with numerical
approximations. But, as we will see, qualitative methods for understanding
the solutions of differential equations arise naturally in this investigation.

Numerical methods and numerical analysis for differential equations are
vast subjects, which are essential tools for applied mathematics. This section
is meant as a glimpse into a few numerical methods together with some
discussion of the issues that are encountered in practice. Our context will
be an analysis of the Gray–Scott model [Eq. (5.34)]. What is the fate of the
concentrations of the reactants for this hypothetical chemical reaction?

5.4.1 Euler’s Method
To begin the adventure into the world of reaction-diffusion, recall Euler’s
method. It is the prototypical method for solving ODEs; for example, the
system of ODEs

u̇ = f(u, v), v̇ = g(u, v) (5.38)

obtained by ignoring the spatial dependence in our reaction-diffusion
system [Eq. (5.32)]. The idea is to discretize the time derivatives and thus
approximate the continuous flow of time by a series of discrete steps that
can be easily computed.

To accomplish the desired discretization, recall from calculus that if F :
R → R is a sufficiently smooth function of one variable, then the functions
h → F (x + h) and h → F (x − h) each have Taylor series expansions at
h = 0:

F (x+ h) = F (x) + F ′(x)h+
1

2!
F ′′(x)h2 +

1

3!
F ′′′(x)h3 +O(h4),

F (x− h) = F (x)− F ′(x)h+
1

2!
F ′′(x)h2 − 1

3!
F ′′′(x)h3 +O(h4),

(5.39)
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where the bigO notation is explained in Appendix A.8 and Taylor’s formula
in Appendix A.9. Using the first equation of the display, it follows that

F ′(x) =
F (x+ h)− F (x)

h
+O(h).

Thus, by replacing F ′(x) with the (forward) difference quotient F (x+h)−
F (x)/h, we make an error of order h.

The numerical method is to make this replacement; the numerical
analysis is to prove the error has order h.

The replacement of the derivative of F with the forward difference
quotient leads to Euler’s method for approximating solutions of the system
of ODEs [Eqs. (5.38)]: For an initial time t0 and initial state (u, v) =
(u0, v0), future times at the regular time increment ∆t and the corresponding
future states are given recursively by

un = un−1 + ∆tf(un−1, vn−1),

vn = vn−1 + ∆tg(un−1, vn−1),

tn = tn−1 + ∆t. (5.40)

The discretization error is O(h); it is proportional to the step size h. The
local truncation error, or the error per step, is the norm of the difference
between the solution and the approximation after one step. In vector form
(U̇ = H(U)) and using Taylor’s formula, this error is

|U(t0 + ∆t)− U1| = |U(t0) + ∆tU ′(t0) +
∆t

2!
U ′′(τ)− (U0 + ∆tH(U0))|

= |∆t
2!
U ′′(τ)|

= O(∆t2),

where τ is a number between t0 and t0 + ∆t.

5.4.2 The Reaction Equations
Euler’s method can be applied to the Gray–Scott reaction model
[Eq. (5.34)]; that is, the system of ODEs

u̇ = F (1− u)− uv2,

v̇ = uv2 − (F + κ)v. (5.41)
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Fig. 5.6 A plot of the parabola F = 4(F + κ)2 with horizontal axis κ and vertical axis F is depicted. Outside the
curve, system (5.41) has one rest point at (u, v) = (1, 0). Inside the curve it has three rest points.

To compute an approximate solution, we must set values for the parame-
ters κ > 0 and F > 0, an initial condition (u(0), v(0)), and a time step ∆t.
How should these choices be made? This question does not have a simple
answer. The choices depend on the intended application. For the Gray–Scott
model, we are interested in the fate of a typical solution. Thus, the choice
of initial condition is not essential as long as it is generic. On the other
hand, the reaction model has a two-dimensional parameter space. We will
be computing for a very long time if we wish to exhaust all the possible
parameter values. A wiser course of action is to rely on a fundamental
principle of applied mathematics: Think before you compute.

Our current goal is to understand the general behavior of system (5.41).
How does this behavior depend on the parameter values?

The state variables u and v are supposed to represent chemical concen-
trations; thus, their values should be nonnegative. Moreover, the evolution
of the system from a physically realistic state (u(0) ≥ 0 and v(0) ≥ 0)
should produce only physically realistic states. In other words, the closed
first quadrant in the state space should remain invariant under the flow. This
fact is easily checked. Simply note that the u-axis is invariant (because v̇ = 0
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whenever v = 0), and the vector field points into the first quadrant along the
positive v-axis (because u̇ > 0 whenever u = 0).

The simplest dynamics is given by rest points; that is, constant solutions
of the system of ODEs given by solutions of the algebraic equations

F (1− u)− uv2 = 0, uv2 − (F + κ)v = 0.

Note that (u, v) = (1, 0) is a solution for all values of κ and F . Also,
(1/2, F/(2(F + κ))) is a double root whenever F = 4(F + κ)2 and
F > 0. Fig. 5.6 depicts this curve (a parabola) in the parameter space.
It meets the vertical axis at (κ, F ) = (0, 0) and (κ, F ) = (0, 1/4); the
point (κ, F ) = (1/16, 1/16) is the point on the curve with the largest first
coordinate. Our ODE has three rest points for the parameter vector (κ, F )
in the region bounded by the curve and the vertical axis and one rest point
outside of this region. For parameter values inside the region, the two new
rest points have coordinates

u =
1

2

(
1±

√
1− 4(F + κ)2/F

)
, v =

F

F + κ
(1− u). (5.42)

The system matrix for the linearization of the system of ODEs at (1, 0)
is the diagonal matrix whose main diagonal has the components −F and
−(F+κ) (see Appendix A.17 for a discussion of linearization and stability).
These negative numbers are the eigenvalues of this matrix; hence, (1, 0) is
asymptotically stable independent of the parameter values.

The new rest points appear as the parameters cross the curve from outside
to inside; on the curve a double root appears “out of the blue.” This is called
a saddle-node bifurcation or a blue sky catastrophe. The prototype for this
bifurcation (called a normal form) is given by

ẋ = b− x2; ẏ = ±y,

where b is the bifurcation parameter. Note that for b < 0 (which corresponds
in our case to being outside the parabola F = 4(F + κ)2), there are no rest
points. The system with b = 0 has a semistable rest point called a saddle-
node. For b > 0, there are two rest points: one saddle and one sink in the +
sign case, and one saddle and one source in the − sign case. This scenario
is exactly what happens for the reaction model [Eq. (5.41)]. (The rest point
at (1, 0) plays no role in this bifurcation.)
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Fig. 5.7 The figure (with horizontal axis κ and vertical axis F ) depicts with a solid curve the parabola F = 4(F +

κ)2 (the saddle-node bifurcation curve) and with dashed curve F = 1/2(
√
κ − 2κ −

√
κ− 4κ3/2) (the Hopf

bifurcation curve). Outside the saddle-node curve, the system (5.41) has one stable rest point at (u, v) = (1, 0).
Inside this curve the system has three rest points. Above the Hopf bifurcation curve and inside the saddle-node curve
there are three rest points, two sinks, and one saddle. Below the Hopf curve and above the saddle-node curve there is
one sink, one source, and one saddle. For F decreasing and κ < 0.0325 (approximately), the Hopf bifurcation is
supercritical; for κ > 0.0325, the Hopf bifurcation is subcritical.
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The system matrix at the rest points [Eqs. (5.42)] is

A =

(
−F − v2 −2uv

v2 2uv − (F + κ)

)
. (5.43)

At these rest points uv = F + κ; therefore, we have the formulas

Trace (A) = κ− v2, Determinant (A) = (F + κ)(v2 − F ). (5.44)

The eigenvalues of A are the roots of the characteristic equation

Determinant (A− λI) = 0,

where I denotes the 2 × 2 identity matrix. By an easy computation, the
characteristic equation is seen to have the general form

λ2 − Trace (A)λ+ Determinant (A) = 0

and the roots

λ =
Trace(A)±

√
Trace(A)2 − 4Determinant(A)

2
.

The stability types of rest points are determined from the signs of
Trace(A) and Determinant(A). For example, if Trace(A) < 0 and
Determinant(A) > 0, then the radicand is either complex or, in case it
is real, less than Trace(A) < 0. Hence, both roots have positive real parts
and the corresponding rest point is a source.

Consider Trace(A) on the parabola F = 4(F + κ)2. Using the formulas
for the corresponding rest points [Eqs. (5.42)], it follows that

v =
F

2(F + κ)
;

hence,

Trace(A) = κ− v2

= κ− F
( F

4(F + κ)2

)
= κ− F

=

√
F

2
− 2F.
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By simple analysis of the function F 7→
√
F

2 − 2F , we see that Trace(A)
is positive for 0 < F < 1/16, zero at F = 1/16, and positive for
1/16 < F < 1/4. Also, by the continuity of Trace(A) as a function of
κ and F , it maintains its sign along curves in the parameter space that cross
the parabola, except those that cross at the point (κ, F ) = (1/16, 1/16).

The quantity Determinant(A) as a function of κ and F vanishes on the
parabola. To determine its sign along a curve in the parameter space that
crosses into the region bounded by the parabola and the coordinate axes,
note that F > 4(F +κ)2 in this region; thus, in the bounded region and near
the boundary parabola, there is some (small) ε > 0 such that

4(F + κ)2

F
= 1− ε.

The value of v at the corresponding rest points is

v2
± =

F

F + κ

(1

2
∓ 1

2

√
1− (1− ε)

)
=

F

2(F + κ)
(1∓ η),

where η :=
√
ε. The sign of Determinant(A) is determined by the sign of

v2 − F , which is given by

v± − F =
F 2

4(F + κ)2
(1∓ 2η + η2)− F

= F
( F

4(F + κ)2
(1∓ 2η + η2)− 1

)
= F

( 1

1− η2
(1∓ 2η + η2)− 1

)
=

2Fη

1− η2
(∓1 + η).

From this computation, it is clear that Determinant(A) is positive (re-
spectively, negative) at the rest point whose second component is v−
(respectively, v+). Also, the value of this determinant goes to zero as ε > 0
approaches zero.

In summary, a source and a saddle appear in a saddle-node bifurcation
upon crossing the parabola into the bounded region at points on the parabola
corresponding to 0 < F < 1/16; a sink and a saddle appear in a saddle-node
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bifurcation upon crossing the parabola into the bounded region at points on
the parabola corresponding to 1/16 < F < 1/4.

Another type of bifurcation, called Hopf bifurcation, occurs in the regime
where A has complex eigenvalues; it occurs whenever, along a curve in
the parameter space, a pair of complex conjugate eigenvalues crosses the
imaginary axis in the complex plane with nonzero speed. A normal form
for this important bifurcation is most easily understood in polar coordinates
(r, θ); it is given by

ṙ = br ± r3, θ̇ = ω + ar2.

the corresponding system in Cartesian coordinates has the linear part

ẋ = bx− ωy, ẏ = ωx+ by. (5.45)

With ω 6= 0 and a 6= 0 fixed, a pair of complex conjugate eigenvalues (b ±
iω) crosses the imaginary axis as the bifurcation parameter b passes through
zero in the positive direction. The rest point at the origin thus changes from
a sink to a source. For the plus sign and b < 0, there is an unstable limit
cycle (that is, an isolated periodic orbit), which is a circle of radius

√
−b

that disappears into the rest point at b = 0. The bifurcation in this case is
called a subcritical Hopf bifurcation. For the minus sign, a stable limit cycle
(which in this special case is the circle with radius

√
b) emerges out of the

rest point as b increases from zero.

Hopf bifurcations are detected by finding the curve(s) in the parameter
space where the characteristic equation of the linearization at a rest point has
pure imaginary eigenvalues. Generically, Hopf bifurcations occur whenever
some other curve in the parameter space crosses this “Hopf curve.”

The eigenvalues of the matrix A are pure imaginary whenever its
trace vanishes and its determinant is positive. For parameter values in the
region of parameter space bounded by the saddle-node bifurcation curve,
the system matrix of the linearization at the rest point v+ has positive
determinant. From its formula [Eq. (5.44)], the trace of this matrix at v+

is given by κ− v2
+. Using the rest points [Eqs. (5.42)] and

G := 1− 4(F + κ)2

F
,



Reaction, Diffusion, and Convection 125

the trace vanishes if and only if (κ, F ) lie on the Hopf curve

κ =
F 2

4(F + κ)2
(1 +

√
G)2.

After some algebra, the Hopf curve in the first quadrant is also given by

(κ+ F )2 = F
√
κ ,

a quadratic equation for F that has solutions

F =

√
κ− 2κ±

√
κ− 4κ3/2

2
. (5.46)

Because the trace of A (given by κ− v2) vanishes and the determinant of A
(given by (F + κ)(v2 − F )) is positive on the Hopf curve, F < κ on this
curve. By inspection of the graphs of the solutions [Eqs. (5.46)], it follows
that this condition is satisfied only with the minus sign on the interval 0 <
κ < 1/16 = 0.0625. The corresponding graph, depicted in Fig. 5.7, is the
Hopf curve. It meets the saddle-node curve at (κ, F ) = (0, 0) and (κ, F ) =
(1/16, 1/16).

Outside the saddle-node curve, our first-order system (5.41) has one
stable rest point at (u, v) = (1, 0). Inside this curve the system has three
rest points. Above the Hopf bifurcation curve and inside the saddle-node
curve there are three rest points, two sinks, and one saddle. Below the Hopf
curve and above the saddle-node curve there is one sink, one source, and one
saddle. There is a critical value κ∗ ≈ 0.0325 of κ such that for F decreasing
and κ < κ∗, the Hopf bifurcation is supercritical; for κ > κ∗, the Hopf
bifurcation is subcritical.

To prove the statements about the subcritical and supercritical Hopf bi-
furcations is not trivial. An idea for a proof is to translate the corresponding
rest point to the origin of a new coordinate system and then transform (by
a linear transformation) the resulting first-order system of ODEs so that its
linearization has the normal form for the Hopf bifurcation given by first-
order system (5.45). After this process is complete, the resulting second-
and third-order terms of the right-hand side of the system of differential
equations determine the stability index, which gives the direction of the
Hopf bifurcation (see [20]). For our differential equation in the form

ẋ = αx− y + p(x, y), ẏ = x+ αy + q(x, y)
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Fig. 5.8 The left panel depicts the phase portrait for system (5.41) for the parameter values κ = 0.05 and F =

0.02725. An orbit in the unstable manifold of the saddle point is asymptotic to a spiral sink. In the opposite direction
on the stable manifold, an orbit is asymptotic to the sink at (1, 0). The right panel depicts the phase portrait for the
parameter values κ = 0.05 and F = 0.0265. The positions of the stable and unstable manifolds have crossed. An
orbit in the stable manifold of the saddle point is asymptotic to an unstable limit cycle, which surrounds a spiral sink
(not depicted).

where p =
∑∞

j=1 pj(x, y) and q =
∑∞

j=1 qj(x, y) with

pj(x, y) :=

j∑
i=0

aj−i,ix
j−iyi, qj(x, y) :=

j∑
i=0

bj−i,ix
j−iyi,

the sign of the stability index is given by the sign of the expression

L4 =
1

8
(a20a11 + b21 + 3a30 − b02b11

+ 3b03 + 2b02a02 − 2a20b20 − b20b11 + a12 + a02a11). (5.47)

If the quantity L4 > 0 (respectively, L4 < 0), then our Hopf bifurca-
tion is subcritical (respectively, supercritical). The bifurcation diagram in
Fig. 5.7 is not complete. For example, the existence of the subcritical Hopf
bifurcation for κ > κ∗ as F decreases through the Hopf curve means that
an unstable limit cycle disappears into the corresponding rest point at this
bifurcation. Where did the limit cycle come into existence for some larger
value of F ? The answer is that there is a third bifurcation in our system
called a homoclinic loop bifurcation.
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Fig. 5.9 The phase portrait of system (5.41) is depicted for the parameter values κ = 0.02 and F = 0.0039847. An
orbit in the unstable manifold of the saddle point is asymptotic to a stable limit cycle. In the opposite direction on the
stable manifold, an orbit is asymptotic to the sink at (1, 0).

Two phase portraits (corresponding to a value of the parameter F slightly
larger than its critical value and slightly smaller than its critical value) are
depicted in Fig. 5.8. Pay attention to the portion of the unstable manifold
of the saddle point (which is at the point where two curves appear to cross)
that lies above and to the left of the saddle; the other part of the unstable
manifold goes to the sink at (u, v) = (1, 0). In the left panel, the unstable
manifold lies below the stable manifold; in the right panel, it lies above.
Between the parameter values corresponding to these phase portraits, there
is a value of F where the stable and unstable manifolds meet to form a
(homoclinic) loop. During this process, there is a sink surrounded by the
loop. In the second panel the stable manifold winds around this sink. But,
it can’t be asymptotic to the sink. So, (by the Poincaré–Bendixson theorem)
there must be an unstable periodic orbit surrounding the sink and surrounded
by the spiral formed by the stable manifold (see [20]). This is an example of
a homoclinic loop bifurcation.

A homoclinic loop bifurcation also occurs for κ < 0.035 as F decreases
to a critical value below the Hopf curve. In this case the homoclinic loop
bifurcation absorbs a stable limit cycle. An example of this cycle near the
homoclinic loop bifurcation is depicted in Fig. 5.9.
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The conjectural position of the homoclinic loop curve in the bifurcation
diagram is between the saddle-node and Hopf curve for κ < 0.035 and
above the Hopf curve for κ > 0.035. Its end points are the same as the end
points of the Hopf curve (see Exercise 5.28 and [3] for more details of the
bifurcation analysis of this system).

Exercise 5.27. Show that there is a critical value κ∗ ≈ 0.0325 of κ such that, for
κ < κ∗, system (5.41) has a supercritical Hopf bifurcation as F decreases through Hopf
curve (5.46).

Exercise 5.28. Make a numerical study of the homoclinic loop curve for sys-
tem (5.41) and plot it together with the saddle-node and Hopf curves. Hint: Public
domain software such as AUTO or XPPAUTO can approximate bifurcation curves. Even
better, write your own code.

Exercise 5.29. Add a periodic forcing term to system (5.41) and compute the
stroboscopic Poincaré map (that is, start at some initial condition, integrate forward
for one period of the forcing, plot the final point, and iterate this process). Vary the
amplitude and frequency of the forcing and plot some typical phase portraits of the
Poincaré map.

Exercise 5.30. Add a periodic parametric forcing term to system (5.41) and compute
the stroboscopic Poincaré map (that is, start at some initial condition, integrate forward
for one period of the forcing, plot the final point, and iterate this process). Here the
most interesting scenario is to make F or κ periodically time dependent so that these
parameters sweep through some of their bifurcation values (cf. [53]). For example, fix
κ = 0.02 and replace F by

F = 0.004 + 0.00005 sin(ωt),

where ω is small (perhaps ω = 0.0001) so that F changes relatively slowly. See if you
can obtain a long transient that exhibits beats. Our system is not well-suited to dynamic
bifurcation because the basin of attraction of the sink at (1, 0) is likely to capture our
orbit.

5.4.3 Diffusion and Spatial Discretization
We have succeeded in understanding the bifurcation diagram for the Gray–
Scott model without diffusion. What happens when diffusion is introduced?

It is reasonable to assume that adding sufficiently small diffusion (λ and
µ) and choosing parameters κ and F in the region where the unique steady
state (u, v) = (1, 0) resides will produce a spatially constant steady state for
the Gray–Scott model (5.34). On the other hand, it is not at all clear what
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happens in this model for parameter values close to the bifurcations of the
reaction ODEs [Eqs. (5.41)]. But, the dynamical behavior of this PDE near
these values may be explored using numerical approximations.

By adding the Taylor series (5.39) and rearranging terms, note that

F ′′(x) =
F (x+ h)− 2F (x) + F (x− h)

h2
+O(h2). (5.48)

This approximation is used to discretize the second derivatives in our PDE.

The first step of our numerical procedure is to choose a spatial dis-
cretization of a spatial domain. For the Gray–Scott model there is no natural
spatial domain; it is just some region in two-dimensional space. Following
Pearson [83], let us consider the spatial domain to be the square [0, L]×[0, L]
in the (x, y) plane. A lattice (or grid) in this square is defined by the points
(i∆x, j∆y) (called nodes), for i = 0, 1, 2, . . . ,m and j = 0, 1, 2, . . . , n,
where ∆x := L/m and ∆y := L/n. As in Euler’s method for ODEs, let us
also choose a time step ∆t. The concentration u(i∆x, j∆y, k∆t) is denoted
by Uki,j and v(i∆x, j∆y,∆t) by V k

i,j .

The next step is to approximate the PDE by difference quotients; this
idea leads to many possible alternatives. Perhaps the simplest viable scheme
is the forward Euler method given by

Uk+1
i,j = Uki,j + ∆t

[ λ

∆x2
(Uki+1,j − 2Uki,j + Uki−1,j)

+
λ

∆y2
(Uki,j+1 − 2Uki,j + Uki,j−1) + F (1− Uki,j)− Uki,j(V k

i,j)
2
]
,

V k+1
i,j = V k

i,j + ∆t
[ µ

∆x2
(V k
i+1,j − 2V k

i,j + V k
i−1,j)

+
µ

∆y2
(V k
i,j+1 − 2V k

i,j + V k
i,j−1) + Uki,j(V

k
i,j)

2 − (F + κ)V k
i,j

]
;

(5.49)

it is exactly Euler’s method applied to PDEs.

The third step is to impose the boundary conditions. For periodic
boundary conditions, the concentrations are updated at (what are called)
the interior nodes corresponding to i = 0, 1, 2, . . . ,m − 1 and i =
0, 1, 2, . . . ,m−1. Updates are required also at the remaining fictitious nodes
with (i, j) coordinates (−1, j), for j = 0, 1, 2, . . . , n − 1 and (i,−1), for
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Fig. 5.10 The figure depicts the u concentration for a computer-generated approximate state of the Gray–Scott model,
with periodic boundary conditions, for the parameter valuesκ = 0.06,F = 0.038,λ = 2×10−5, andµ = 10−5.
The system evolves from the depicted state to states with similar configurations for at least 200,000 time steps of unit
length.

i = 0, 1, 2, . . . ,m− 1. These are given by

Uk−1,j = Ukm−1,j , V k
−1,j = V k

m−1,j ,

Uki,−1 = Uki,n−1, V k
i,−1 = V k

i,n−1.
(5.50)

Likewise, values at the unassigned portion of the boundary of the square are

Ukm,j = Uk0,j , V k
m,j = V k

0,j ,

Uki,n = Uki,0, V k
i,n = V k

i,0.
(5.51)

To complete the grid (for graphics), define Ukm,n = Uk0,0.

To implement this procedure, start at k = 0 and assign (initial) values
of the concentrations at all the interior nodes. The periodic boundary
conditions are used to assign values to the unassigned portion of the
boundary of the square and at the fictitious nodes. Update the values of the
concentrations (toU1

ij and V 1
ij) at all the interior nodes using Eqs. (5.49), and

update the values of the concentrations at the reminder of the boundary and
the fictitious nodes using Eqs. (5.50) and (5.51). This process is continued
until some preassigned final time is reached, or until some other test applied
to the array of concentrations is met.
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To reproduce the numerical experiments in [83] (which are reported with
color graphics), use the assignments

L = 2.5, m = n = 256, λ = 2× 10−5, µ = 10−5, ∆t = 1.0

with (κ, F ) chosen near the bifurcation curves in Fig. 5.7 and impose the
initial data as follows: Set the initial concentrations to the spatial steady
state value (u, v) = (1, 0), reset the values in the 20 × 20 central square of
nodes to (u, v) = (0.5, 0.25), and then perturb every grid point value by a
random number that changes the originally assigned value by no more than
1%. Integrate forward for some number of time steps, usually chosen in the
range of 100,000–200,000, and plot the final approximate concentrations.

The result of a typical numerical experiment, for the parameter values
κ = 0.06 and F = 0.038, 100,000 time steps of unit length, and a rendering
of the value of the function (x, y) 7→ u(100000, x, y) into a gray scale on
the interval [0, 1], is depicted in Fig. 5.10. This pattern seems to evolve over
a long time interval and eventually it reaches a (time-dependent) steady state
that retains the basic qualitative features in the figure (see Exercise 5.32).

5.4.4 Numerical Stability
A virtue of the forward Euler method is that it is easy to program. Its error
per step is O(∆x2 + ∆y2) in space and O(∆t) in time. Unfortunately, there
is a hidden danger: the discretization can introduce instabilities that are not
present in the PDE.

To understand how a numerical instability might occur, imagine that the
values of the concentrations at the interior grid points are written as a column
vector W (of length 2mn). The update given by Eqs. (5.49) can be recast in
the matrix form

W k+1 = AW k +H(W k),

where A is the matrix corresponding to the discretization of the second
derivatives and H is the nonlinear function whose components are the
reaction terms. Is this process stable?

The linear part of our update equation is W k+1 = AW k. At some step
of our numerical computation a vector error ε might be introduced into the
computed value of W k. Let us suppose the error occurs in the computation
of W 1 so that the computed value is W 1 + ε instead of W 1. This error will
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propagate in future steps as follows:

W 2 = AW 1+Aε, W 3 = A2W 1+A2ε, . . . ,W k+2 = Ak+1W 1+Ak+1ε.

The error will not cause too much trouble if its propagation by the iteration
process remains bounded; that is, if there is some constant M such that
|Akε| ≤ M |ε| for all k > 1. A sufficient condition for the desired stability
is that all eigenvalues of A are in the open unit disk in the complex plane,
or equivalently, the spectral radius of A is strictly less than one. If at least
one eigenvalue of A lies outside the closed unit disk, then a generic error
will grow without bound. (The error will not grow in the unlikely situation
that it remains in the eigenspace of an eigenvalue that is in the open unit
disk, but all other errors will grow.) In case there are eigenvalues on the
unit disk, a stability analysis requires additional information. Consider two
simple examples:

A =

(
1 0
0 1

)
, B =

(
1 1
0 1

)
.

In this example, A is the 2 × 2 identity matrix; its eigenvalues are both 1.
Because Akv = v for every vector v and every integer k, it follows that
|Akv| = |v|. Thus, the propagation of v remains bounded. The eigenvalues
of B are also both equal to 1; but, for this matrix(

1 1
0 1

)k (
v1

v2

)
=

(
v1 + kv2

v2

)
.

Thus, if v2 6= 0, the propagation of v by iteration ofB grows without bound.
These examples are indicative of the general situation. To fully analyze
the general case requires some concepts from linear algebra, especially the
Jordan canonical form. A simple result, adequate for our purposes, states
that if all the eigenvalues of a matrix A lie in the closed unit disk and the
matrix is diagonalizable (that is, there is an invertible matrix B such that
B−1AB is a diagonal matrix), then errors remain bounded under iteration
by A.

To apply these observations to the stability of our numerical methods,
consider theAmatrix for the forward Euler method in case there is only one
spatial dimension. The forward Euler update equation is given by

Uk+1
i = Uki + λ(Uki+1 − 2Uki + Uki−1),
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for i = 1, 2, . . .m, where λ := µ∆t/∆x2 and µ ≥ 0. Using the
rearrangement

Uk+1
i = (1− 2λ)Uki + λUki+1 + λUki−1

and assuming that Uk−1 = 0 and Ukm+1 = 0, it follows that

A =



1− 2λ λ 0 0 0 0 · · · λ
λ 1− 2λ λ 0 0 0 · · · 0
0 λ 1− 2λ λ 0 0 · · · 0
...

...
0 0 · · · 0 0 λ 1− 2λ λ
λ 0 0 · · · 0 0 λ 1− 2λ


.

(5.52)
The matrix A is symmetric (A is equal to its transpose). By a result
from operator theory, a symmetric matrix has real eigenvalues. Thus, the
propagation of errors will remain bounded if all eigenvalues lie in the
closed interval [−1, 1]. By an application of Gerschgorin’s theorem (A.5),
the eigenvalues of A all lie in the interval [1 − 4λ, 1]. Thus, there is the
possibility of an eigenvalue outside the unit disk if 1 − 4λ < −1; that is, if
λ ≥ 1/2. To eliminate this possibility our stability criterion is

µ
∆t

∆x2
≤ 1

2
, (5.53)

the Courant–Friedrichs–Lewy (CFL) condition. Instabilities that lead to
meaningless numerical results might occur if this condition is not met (see
Exercise 5.34). The forward Euler method is called conditionally stable
because inequaltiy (5.53) must be met to avoid instabilities. Unfortunately,
the number 1 is an eigenvalue of A (see Exercise 5.31). Thus, although the
propagation of errors will remain bounded, the errors will not be reduced
under iteration by A.

Exercise 5.31. Show that 1 is an eigenvalue of the matrix (5.52).

Exercise 5.32. (a) Perform numerical experiments (using the forward Euler method
with periodic boundary conditions) that reproduces a pattern for the Gray–Scott model
similar to the pattern in Fig. 5.10. (b) Demonstrate that the qualitative results for part (a)
do not change with the choice of the choice of step sizes in space and time. For example,
repeat the experiment(s) in part (a) with a spatial grid containing twice the number of
nodes. (b) Use the code written for part (a) to find a pattern generated by the Gray–Scott
model that is clearly different from the pattern in Fig. 5.10 and does not correspond to a
constant value of u.
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Exercise 5.33. Explore the parameter space for the Gray–Scott model (using the
forward Euler method with no flux boundary conditions).

Exercise 5.34. Write a forward Euler code for the one dimensional heat equation
ut = λuxx with Neumann boundary conditions on the interval [0, 1]. Taking into account
the stability condition [Eq. (5.17)], demonstrate with carefully designed numerical
experiments that numerical instability occurs when the stability condition is not met.

Exercise 5.35. Determine a stability criterion analogous to inequality (5.17) for the
forward Euler scheme with periodic boundary conditions for PDE (5.34).

We have explored some of the qualitative long-term behavior of the
Gray–Scott model. The forward Euler method converges to the solution
of the PDE as the discretization step sizes in space and time approach
zero. But, how do we know that the qualitative behavior—for example, the
qualitative behavior depicted in Fig. 5.10—is present in the solution of the
PDE? This is a difficult question. The correct answer: We don’t know! The
only way to be sure is to prove a mathematical theorem. On the other hand,
confidence in the correctness of the results of a numerical experiment can
be gained in several ways that will be discussed. For example, the answer
might be computed with different step sizes in (space and time) to confirm
that the qualitative features of the computed values do not change (see
Exercise 5.32), or the same solution might be approximated with a different
numerical scheme.

Good practice suggests starting with a moderately small step size
(perhaps the step size equal to 1) that is decreased systematically until
the result of the experiment does not appear to change with the choice of
the step size. A decease in step size theoretically decreases the truncation
error. On the other hand, a decrease in step size tends to increase the
number of numerical operations (additions, subtractions, multiplications,
and divisions) thus increasing the effects of roundoff error due to the finite
number of decimal digits stored in the computer. Another source of error
is called condition error. One manifestation of this type of error is due
to the big O estimates that determine the order of the numerical method.
Recall that these estimates state that the error in some approximation is
proportional to a power of the step size. But, the size of the constant of
proportionality is ignored. It might happen that these constants are very large
for a particular application, in which case it is called ill-conditioned. The
errors due to roundoff and condition tend to accumulate with subsequent
iterations of our numerical method. Hence, the global error will generally
decrease with step size to some minimum value as the order estimates
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dominate, but it will increase (perhaps not monotonically) as the step size is
decreased farther due to the accumulation of roundoff and condition errors.

5.4.5 Quantitative PDE: A Computational Challenge
The interesting qualitative behavior of the Gray–Scott model is pattern
formation. Because it is difficult to quantify a particular pattern, we will
consider a simpler quantitative problem as a vehicle for discussing the
fundamental problem of numerical computation: Do we obtain a good
approximation of the correct answer?

Let us suppose we are interested in an accurate and efficient computation
of the concentrations u and v over some finite time interval on the spatial
domain [0, L] × [0, L] with (zero) Neumann boundary conditions and
given initial data. We must define (or have our scientific collaborator with
expertise in chemistry define) what is meant by “accurate.” For an applied
problem, the desired accuracy will often be determined by the accuracy
of the measurements in some experiment or the accuracy of the measure-
ments of some physical parameters. The relative error (percent error) for
approximation of numbers larger than 1 is usually more meaningful than
the absolute error. Recall that for numbers a and b, where b is viewed as an
approximation of a, the absolute error is |a − b|; and, in case a 6= 0, the
relative error is

relative error :=
|a− b|
|a| .

For the concentrations in the Gray–Scott model, which will all be in the
interval [0, 1], the absolute error is the better choice. In practice, we do not
know the number a that we are trying to approximate. But, it is sometimes
possible to obtain a theoretical error estimate.

Suppose that an approximation of the solution of the Gray–Scott PDE is
desired with an absolute error of less than 10−2.

To meet the expectations and desires of our imaginary collaborator, let
us set the following mathematical problems:

Problem 5.1. For the Gray–Scott model (5.34) on the spatial domain [0, L] × [0, L]

with (zero) Neumann boundary conditions, with L = 2.5, the diffusions

λ = 2× 10−5, µ = 10−5,
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the parameters

F = 0.0225, κ = 0.05,

and initial data (at time t = 0)

u(x, y) = 1− 0.5
28

L8
(x2y2(x− L)2(y − L)2),

v(x, y) = 0.25
28

L8
(x2y2(x− L)2(y − L)2), (5.54)

approximate the average values of the concentrations u and v over the spatial domain at
time T = 1024 with an absolute error of less than 10−2.

Problem 5.2. Using the data of Problem 5.1, approximate the average values of the
concentrations u and v at time T = 10 with an error of less than 10−2.

The initial state in Problem 5.1 satisfies the boundary conditions and is
chosen to lie between the steady states of the system. (No technical meaning
is intended for the word “between.”)

In practice, an “efficient” method is one that can be used to obtain the
desired accuracy in a short time. This definition is not precise; the idea is
that efficient methods are fast.

Our theoretical estimate of the global error for the forward Euler method
is O(∆t) and O(∆x2 + ∆y2). This means that we can expect the absolute
error, which is defined to be the norm of the difference between the solution
and its approximation, to be proportional to a quantity controlled by the
sizes of |∆t| and |(∆x,∆y)|2. There are many possible choices for norms.
In a finite-dimensional space all norms are equivalent, so the choices are not
of fundamental importance. On the other hand, the choices of norms might
be dictated by the physical problem.

A practical choice for the norm might lead to the representation of the
theoretical error estimate in the form

|u− uappx|+ |v − vappx| ≤M(|∆t|+ ∆x2 + ∆y2),

where M is some unknown constant and the norms on the left-hand side
of the inequality are Euclidean norms, maximum norms, or `1 norms.
The maximum norm would be appropriate if we desire the computed
concentrations at all points in the spatial grid to differ from the exact values
by no more than some specified amount; that is, we would hope to achieve
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the result

max
i,j,k
{|u(k∆t, i∆x, j∆y)− ukij |} < 10−2,

max
i,j,k
{|v(k∆t, i∆x, j∆y)− vkij |} < 10−2,

where i = 0, 1, 2, . . . ,m− 1, j = 0, 1, 2, . . . , n− 1, and k = T/∆t.

For Problems 5.1 and 5.2, we are challenged to approximate the average
values of the states u and v over the spatial domain. Our numerical method
produces approximations of the state variables on a grid of points covering
the square [0, L] × [0, L]. The desired averages are the integrals of the
states over this domain divided by its area. Hence, we must approximate
the integrals. For definiteness and simplicity, the trapezoidal rule is a viable
choice. With kend ∆t = T (that is, kend corresponds to the final time T ),
we wish to achieve the error estimates

| 1

L2

∫ L

0

∫ L

0
u(T, x, y) dxdy − 1

L2
Trap(u)| < 10−2,

| 1

L2

∫ L

0

∫ L

0
v(T, x, y) dxdy − 1

L2
Trap(v)| < 10−2, (5.55)

where

Trap(u) :=
∆x∆y

4

∑
i,j

(ukend
i,j + ukend

i+1,j + ukend
i+1,j+1 + ukend

i,j+1).

There is no simple method known to prove that the desired error is
achieved. Of course, if we know the error exactly, we know the solution.
So we cannot expect to prove that a numerical approximation achieves a
desired error bound except in some special cases. On the other hand, we can
test our numerical results in various ways to achieve a high confidence level
that they are correct (cf. [10]).

5.4.6 Use a Convergent Algorithm
The numerical algorithms (for instance, the forward Euler method) used in
this book are known to converge to the corresponding exact solutions. The
proofs for their convergence are given in books on theoretical numerical
analysis. The issue of convergence is fundamental. But, the mathematics
required to present the proofs is beyond the scope of this book.
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5.4.7 Use a Numerically Stable Algorithm
Algorithms for numerical computation must be either unconditionally stable
or satisfy appropriate conditional stability criteria. For example, to success-
fully employ the forward Euler method in one space dimension, its stability
criterion (5.17) must be respected. The appropriate stability criterion for two
space dimensions will be discussed in the next subsection (see Eq. (5.57)).

5.4.8 Test Code against Known Solutions
The first confidence-building step is to test the numerical code that imple-
ments an algorithm against an example where the exact solution is known.
The preferred choice for an example is a special case of the problem under
consideration. For the Gray–Scott model with Neumann boundary data, it
seems that no explicit solution is known. The next best choice is to use an
exact solution for a model with similar features.

Let us test the forward Euler method with Neumann boundary data
against the exact solution

v(t, x, y) = e(−F−2λπ2/L2)t cos
π

L
x cos

π

L
y, u(t, x, y) = 1 + v(t, x, y)

of the linear system

ut = λ∆u+ F (1− u),

vt = λ∆v − Fv,
ux(t, 0, y) = ux(t, L, y) = uy(t, x, 0) = uy(t, x, L) = 0,

vx(t, 0, y) = vx(t, L, y) = vy(t, x, 0) = vy(t, x, L) = 0 (5.56)

defined on the square [0, L]× [0, L].

The Neumann boundary condition, which in our case states that the
normal derivative vanishes on the boundary, is implemented using the
central difference approximation of the first derivative. For example, the
vanishing of the partial derivative ux(t, 0, y) (along the left-hand boundary
of the spatial domain) leads to the numerical approximation

u(k∆t,−∆x, j∆y) = u(k∆t,∆x, j∆y).

After the boundary data is imposed, the forward Euler difference equa-
tions are applied to all grid points including the grid points on the boundary
of the rectangular domain. The required values of the concentrations outside
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the spatial domain (which are required in the difference equations applied
to grid points on the boundary of the spatial domain) are assigned by the
Neumann boundary data to values at grid points in the spatial domain.

How should we make a numerical experiment to test against the known
solution of the linear problem? The simplest idea would be to simply choose
a grid size, compute over some time interval, and compare the results of the
numerical experiment with the exact answer. How do we judge the success
of our experiment? Which time-step size and grid size should we choose?
How small an error is acceptable?

To answer the questions posed in the last paragraph, let us design an
experiment that uses some numerical analysis.

Recall the stability criterion for the forward Euler method: For the
diffusion equation in the case of one space dimension, the method is stable
if

λ
∆t

∆x2
≤ 1

2
.

For two space dimensions and ∆x = ∆y, the stability criterion is

CFL := λ
∆t

∆x2
≤ 1

4
. (5.57)

The denominator on the right-hand side of this inequality comes from the
factor 4 in the forward Euler difference equations written in the form

Uk+1
i,j = (1− 4 CFL)Uki,j + CFL

[
(Uki+1,j + Uki−1,j) + Uki,j+1 + Uki,j−1

]
,

V k+1
i,j = (1− 4 CFL)Uki,j + CFL

[
(Uki+1,j + Uki−1,j) + Uki,j+1 + Uki,j−1

]
.

The quantity 1−4 CFL (which replaces 1−2λ in our stability analysis of the
one-dimensional forward Euler scheme) appears along the diagonal of the
matrix representation of these difference equations. The abbreviation CFL
stands for Courant–Friedrichs–Lewy. Indeed, this quantity is often called
the Courant–Friedrichs–Lewy number (see [25]).

A prosaic way to describe the meaning of the CFL number is to say that
once the spatial discretization is set, the time step must be set small enough
so that nothing important happens over the space of one computational cell
during one time step. The CFL number answers the question: How small? In
truth, there is a subtlety that is not fully addressed here: The CFL condition
as treated in this book is related to stability of numerical methods. But, a
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numerical method applied to a PDE might be stable and yet not give a
good approximation of the desired solution. To be sure the solution does
give a good approximation; exact discretized solutions should approach the
solution of the PDE as the discretization sizes in space and time approach
zero. A necessary condition to capture a reasonable approximation to the
solution without passing to the limit—as we hope to do in every numerical
simulation—is to at least use in the numerical scheme the part of the initial
data that determines the solution at the desired point in space at some desired
finite time. The necessity of this condition more accurately describes the
CFL condition; it is not directly related to the numerical stability of the
discrete time-marching scheme. A slightly more precise way to describe
the prosaic meaning of CFL is to assume some measure V of the velocity
of change of the solution in the spatial domain; perhaps the velocity of a
passing wave of the velocity of a fluid. Also, consider the maximum number
num in the normal direction to a face of a grid cell that are used to discretize.
For example, this number for the centered difference, approximation of the
second derivative is num = 1, as only one neighboring cell in each direction
is used. The corresponding CFL condition is

∆t ≤ num∆x

V
.

The trouble is in determining V . Note that for our diffusion processes, the
given CFL condition involves the diffusion speed.

According to theory, the global error for the forward Euler method is
O(∆t) and O(∆x2). If we fix CFL ≤ 1/4 and choose the time step

∆t = CFL
∆x2

λ
,

then the global error should be O(∆x2). This observation is the basis for
a useful test: Put λ = 2 × 10−5, µ = λ, F = 10−3, and L = 2.5; for
` = 3, 4, . . . , 8, set m = 2`, ∆x = ∆y = L/m, and choose the grid
(i∆x, j∆y) with i = 0, 2, . . . ,m and j = 0, 2, . . . ,m; define

CFL = λ
2562

L2
≈ 0.2097,

∆t = CFL
∆x2

λ
= 216−2`;

and apply the forward Euler method for 22`−6 time steps ` = 3, 4, . . . , 8
so that the final time is always T = 1024. For each choice of ` compute
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Interior Grid ∆t error pe/ce
8× 8 1024 0.362346

16× 16 256 0.05383 6.7313
32× 32 64 0.0126742 4.24721
64× 64 16 0.00312647 4.05384

128× 128 4 0.000779079 4.01304
256× 256 1 0.000194612 4.00323

Table 5.1 Results of a numerical experiment are listed for system (5.56) with λ = 10−3,
F = 10−1, and total integration time T = 1024. The last column is the previous maximum
absolute error (over all the nodes in the spatial domain) divided by the current absolute error.

the error e` to be the maximum norm of the difference of the exact and
computed values at the final time over all interior grid points; and, for ` > 3,
also compute the quantity e`−1/e`. Note that if

e`−1 = K∆x2 and e` = K
(

∆x
2

)2
,

then
e`−1

e`
= 4;

in other words, our code is performing properly if the computed quotients of
the errors approaches 4 as the number of nodes in the grid increases. On the
other hand, note that the time-step size decreases as the grid size increases.
For very large grids, roundoff errors are likely to accumulate and destroy the
expected second-order global error.

The results of a numerical experiment are given in Table 5.1. It seems
that the code is performing as expected with a second-order global error
relative to the spatial discretization provided that the time step is chosen so
that the CFL condition is met. Moreover, with a grid size of 256× 256 and
∆t = 1, the computed value agrees with the exact value to three decimal
places; the error is less than 10−3.

Warnings for the novice programmer: Implementing algorithms into
computer code for solving partial differential equations is complicated.
Standard mistakes occur when indexing arrays. Be careful when coding
arrays with indices starting at zero (or some other number not equal to
one). Remember that in most computer systems, the equality sign is used
to mean replacement; for example, the statement a = a + 1 replaces
the current value of a with the value a + 1. When updating arrays while
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solving difference equations, it might be tempting to replace an array Uij
with its updated value as defined perhaps by the forward Euler formulas.
But, using the same symbol Uij could lead to trouble: the original value
Uij might be needed later. Be sure to incorporate comments on every
block within your code. Without thoughtful comments, your code will be
incomprehensible when you return to check, debug, or modify its content.
Write code using subroutines that can be checked independently. This
method helps to preserve modularity. Also, well-tested subroutines can be
used without modification in other projects. Declare the types of all variables
used in your code. The only way to debug a code is by printing out computed
values at strategic locations within your code.

5.4.9 Test Approximation Order Using Richardson
Extrapolation
How can we test a code to see if it performs as expected with respect
to the theoretical global error in case the exact solution is not available?
Our answer to this question uses a gem of numerical analysis: Richardson
extrapolation. We will discuss this method and apply it to the Gray–Scott
model.

By adding Eqs. (5.39) and rearranging the resulting expression, the
centered difference approximation of the second derivative is easily seen
to be given by

U0(h) :=
F (x+ h)− 2F (x) + F (x− h)

h2
= F ′′(x) + 2

∞∑
j=1

F (2j)(x)h2j

(2j)!
.

(5.58)
Take note of the form of the error, which is a Taylor series in h2. Richardson
extrapolation requires knowledge of the form of the error written as a series
in powers of some parameter, which is usually the size of the discretization
as in this example. We will proceed under the assumption that the form of
the error is a power series in even powers of the discretization size h, but this
requirement is not essential (see Exercise 5.37 and compare [10, Appendix
A]). Let us assume U0(h) is used to approximate some quantity U such that

U0(h) = U +

∞∑
j=1

K0
2jh

2j , (5.59)
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Table 5.2 A Richardson table for centered difference approximation of the second derivative
of sinx at x = 1/

√
2 is listed. The last column is the previous absolute error divided

by the current absolute error, where the error is computed from the value sin 1√
2
≈

−0.6496369390800624. This column indicated that the error in the third column is O(h6).

where the K2j are constants. This is exactly the case for the centered
difference formula used to approximate the second derivative as soon as
we fix x.

Because Eq. (5.59) is supposed to hold for all h, it holds for h/2, for
which we have

U0(
h

2
) = U +

∞∑
j=1

K0
2j

h2j

22j
. (5.60)

The fundamental observation of Richardson extrapolation is simple: The
formulas U1(h) and U1(h/2) both approximate U with a O(h2) error. By
multiplying the second formula by 4, subtracting the first formula from the
second, and dividing through by 3, we obtain the formula

U1(h) :=
4U0(h2 )− U0(h)

3
= U +

∞∑
j=2

K1
2jh

2j , (5.61)

where the K1
2j are the new constants obtained from the algebraic manip-

ulations. The new formula U1(h) approximates U with a O(h4) error!
Moreover, the new approximation formula is again a formula to which
the same procedure can be applied. Doing so results in a new formula
with a O(h6) error, and so on. Proceeding inductively, the Richardson
extrapolation formula U `, for ` > 0, is given by

U `(h) =
22`U `−1(h2 )− U `−1(h)

22` − 1
; (5.62)

it approximates U with a O(h2(`+1)) error.

h U0 U1 U2 pe/ce
h = 1 -0.5972732058359690
h = 1/2 -0.6362151182684900 -0.649195755745997
h = 1/4 -0.6462604545058728 -0.649635179283789 -0.649636442863156
h = 1/8 -0.6487914980893103 -0.649636828977658 -0.649636931241486 63.30447
h = 1/16 -0.6494254962555712 -0.649636932196862 -0.649636938957249 63.8253
h = 1/32 -0.6495840732115392 -0.649636938649834 -0.649636939078142 63.96
h = 1/64 -0.6496237222902605 -0.649636939053173 -0.649636939080032 64
h = 1/128 -0.6496336348624447 -0.649636939078382 -0.649636939080062 64
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Discretization Approximation Error
h = 1/22 -0.646260455 0.00337648457
h = 1/24 -0.649425496 0.000211442825
h = 1/26 -0.649623722 1.321679E-05
h = 1/28 -0.649636113 8.26053417E-07
h = 1/210 -0.649636887 5.17169042E-08
h = 1/212 -0.649636935 3.63737629E-09
h = 1/214 -0.649636924 1.48132472E-08
h = 1/216 -0.649636745 1.93627182E-07
h = 1/218 -0.649635315 1.62413866E-06
h = 1/220 -0.649536133 0.000100806268

Table 5.3 The centered difference approximation of the second derivative of sinx at x =
1/
√

2 and the approximation error are listed.

Richardson extrapolation is used in several different ways. A direct appli-
cation yieds high-order approximation formulas from low-order formulas.
For instance, by an application of Eq. (5.62) with ` = 1 to the centered
difference [Eq. (5.58)], we produce the approximation

F ′′(x) = − 1

3h2
[F (x+ h)− 16F (x+

h

2
)

+ 30F (x)− 16F (x− h

2
) + F (x− h)] +O(h4). (5.63)

Note that the higher-order accuracy requires two additional function eval-
uations. Alternatively, a sequence of approximations using the original
centered difference formula for step sizes

h,
h

2
,

h

22
, . . . ,

h

2j
, . . .

can be calculated and Richardson extrapolation can be applied to this
sequence of numbers. An example of this procedure for the centered
difference formula is tabulated in Table. 5.2. Note that accuracy to over 12
digits is obtained using h = ∆x = 1/128 at the bottom of the third column
of the Richardson table.

The centered difference approximation of the second derivative (of a
sufficiently smooth) function certainly converges to the second derivative
of the function. This fact is consistent with the data in Table 5.2. On the
other hand, in a numerical computation with finite decimal approximations
of numbers, the roundoff error and the condition error (which arises here
from the error made in the function evaluations) will destroy the expected
convergence as the discretization size decreases. The typical situation for
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a numerical approximation is for the error of the computation to decrease
with the discretization size until it reaches some optimal value and then the
error begins to increase as the roundoff and condition errors dominate. This
phenomenon is illustrated by the data in Table 5.3. Using 10-digit arithmetic,
the optimal error for approximating the second derivative of sin at 1/

√
2 is

on the order of 109 (which is perhaps not too surprising) with a discretization
size of 1/212 ≈ 0.000244141 (which might be surprising).

Let us return to our original question on assessing the order of the error
of a numerical procedure with respect to a discretization parameter applied
to approximate a quantity that is not known. Good estimates are possible
using a reinterpretation of Richardson’s extrapolation.

Suppose the theoretical error for an order-two procedure U0(h) is known
to be as in Eq. (5.59), and we wish to verify that our implementation is
performing with the expected O(h2) error. We again compute U0(h/2) and
subtract the error formulas to obtain

U0(h)− U0(
h

2
) =

3

4
K2h

2 +O(h4).

Next, we substitute

K2h
2 = U0(h)− U +O(h4)

to obtain the formula

U0(h)− U0(
h

2
) =

3

4
(U0(h)− U) +O(h4),

or its rearrangement

U0(h)− U =
4

3
(U0(h)− U0(

h

2
)) +O(h4). (5.64)

The quantity

RE(h) :=
4

3
(U0(h)− U0(

h

2
)), (5.65)

which can be computed without knowing U , is a O(h4) approximation of
the error U0(h)− U . Under our assumption that the error is O(h2), we can
substitute U0(h)− U = O(h2) in Eq. (5.64) and conclude that

RE(h) = O(h2).
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h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 0.955307 0.955303 0.955301 0.955300
∆t = 1/8 0.977365 0.977362 0.977361 0.977361
∆t = 1/16 0.988587 0.988585 0.988585 0.988585
∆t = 1/32 0.994266 0.994266 0.994266 0.994265
∆t = 1/64 0.997126 0.997126 0.997126 0.997126
∆t = 1/128 0.998561 0.998561 0.998561 0.998561

Table 5.4 The order estimates in this table are for an implementation of the forward Euler
method using the data of Problem 5.2. The floating point numbers are computed for the
average of the concentrations (u+ v)/2 using Eq. (5.67).

h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 0.0068953 0.006898 0.00690026 0.00690022
∆t = 1/8 0.00353214 0.00353455 0.00353486 0.00353496
∆t = 1/16 0.00178909 0.00178955 0.00178951 0.00178949
∆t = 1/32 0.000900304 0.000900353 0.000900337 0.000900331
∆t = 1/64 0.000451592 0.00045157 0.000451573 0.00045157
∆t = 1/128 0.000226156 0.000226133 0.000226138 0.000226139

Table 5.5 The error estimates in this table are for an implementation of the forward Euler
method using the data of Problem 5.2. The floating point numbers are computed by averaging
the absolute error estimates [Eq. (5.69)] corresponding to the two concentrations.

The desired test of our procedure is obtained by computing RE(h). In fact,
we can be confident that our procedure is performing at the theoretical
second-order if

RE(h)

RE(h2 )
≈ 22.

The factor 4/3 cancels in the quotient; it does not play a role in this test.

Using the same idea in the general case, where the error is given by an
order estimate whose first nonzero term is Kjh

j , the corresponding ratio is

U0(2h)− U0(h)

U0(h)− U0(h2 )
= 2j , (5.66)

where j is the order of the method (see Exercise 5.37). In other words, the
order of the method is given (approximately) by

j = log2

U0(2h)− U0(h)

U0(h)− U0(h2 )
. (5.67)
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Exercise 5.36. Apply the test given in Eq. (5.66) to confirm that Euler’s method is
order one for the Gray–Scott system with no diffusion.

Exercise 5.37. Show that the Richardson extrapolation formula for an approximation
scheme U0(h), where

U0(h) = U +

∞∑
j=1

Kjh
j ,

is given inductively by

U j(h) =
2jU j−1(h2 )− U j−1(h)

2j − 1
(5.68)

and the error estimate (corresponding to Eq. (5.65)) is

RE1(h) := 2(U0(h)− U0(h/2)). (5.69)

In Problem 5.1, the PDE includes diffusion and nonlinear reaction. The
forward Euler method is a second-order scheme for approximating the
diffusion process provided that we choose the time step so that the CFL
number is fixed and less than 1

4 . On the other hand, the forward Euler
method applied to the reaction ODE is first-order by Exercise 5.36. Thus,
we can expect the forward Euler method to be first-order when applied to
the Gray–Scott PDE, which combines reaction and diffusion. To confirm
this estimate by a numerical experiment, we can compute (with the data
in Problem 5.2) using a fixed spatial grid and Eq. (5.67). The results of
an experiment are given in Table 5.4; they indicate that the forward Euler
approximations are indeed order-one. Richardson absolute error estimates,
computed using Eq. (5.69) and given in Table 5.8 suggest that the absolute
error for step sizes smaller than 1/64 and for grid sizes at least 64 × 64 is
less than 10−3. The Richardson tables strongly suggest that the average over
both concentrations is approximately 0.4530.

A conservative analysis suggests that we can be confident that the
computed values are correct with an error of less than 10−2 for a spatial-grid
size of 128 × 128 and a time step of about 1/16. A similar accuracy seems
to be achieved with larger time steps (perhaps 1/2, 1/4, and 1/8) together
with one Richardson extrapolation. To reach time T = 10, a time step of
1/128 requires 1280 steps. On the other hand, the proposed Richardson
extrapolation with time steps 1/2 and 1/4 requires 60 time steps. Clearly,
the Richardson extrapolation offers a more efficient procedure.
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h U0 U1 U2 U3 U4 U5

∆t = 1/4 0.453113
∆t = 1/8 0.453069 0.453036
∆t = 1/16 0.453046 0.453027 0.453084
∆t = 1/32 0.453035 0.453024 0.453054 0.453062
∆t = 1/64 0.453029 0.453024 0.453039 0.453043 0.453045
∆t = 1/128 0.453026 0.453023 0.453031 0.453033 0.453034 0.453034
∆t = 1/4 0.453112
∆t = 1/8 0.453067 0.453035
∆t = 1/16 0.453045 0.453025 0.453083
∆t = 1/32 0.453033 0.453023 0.453052 0.453061
∆t = 1/64 0.453028 0.453022 0.453037 0.453042 0.453043
∆t = 1/128 0.453025 0.453022 0.45303 0.453032 0.453033 0.453033
∆t = 1/4 0.453111
∆t = 1/8 0.453067 0.453034
∆t = 1/16 0.453044 0.453025 0.453082
∆t = 1/32 0.453033 0.453022 0.453052 0.45306
∆t = 1/64 0.453027 0.453022 0.453037 0.453041 0.453043
∆t = 1/128 0.453024 0.453022 0.453029 0.453031 0.453032 0.453033
∆t = 1/4 0.453111
∆t = 1/8 0.453067 0.453034
∆t = 1/16 0.453044 0.453025 0.453082
∆t = 1/32 0.453033 0.453022 0.453052 0.45306
∆t = 1/64 0.453027 0.453022 0.453037 0.453041 0.453043
∆t = 1/128 0.453024 0.453021 0.453029 0.453031 0.453032 0.453032

Table 5.6 Four Richardson extrapolation tables are listed for the average concentration (u+
v)/2 using Eq. (5.68) applied to an implementation of the forward Euler method for the data
of Problem 5.2. The spatial grid sizes for the tables (top to bottom) are 32 × 32, 64 × 64,
128× 128, and 256× 256.

h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 1.83847 1.07313 0.983787 1.01402
∆t = 1/8 1.49828 1.51129 0.982416 1.00673
∆t = 1/16 1.26883 1.50625 0.989738 1.00323
∆t = 1/32 1.14148 1.33578 0.994583 1.00157
∆t = 1/64 1.0734 0.997854 0.997225 1.00077
∆t = 1/128 0.904951 0.867657 0.998597 1.00038

Table 5.7 The order estimates in this table are for an implementation of the forward Euler
method using the data of Problem 5.1. The floating point numbers are computed for the
average of the concentrations (u+ v)/2 using Eq. (5.67).
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h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 2.96827× 10−8 0.0482585 0.0856009 0.180438
∆t = 1/8 1.08615× 10−8 0.0308683 0.0435401 0.0936266
∆t = 1/16 4.62043× 10−9 0.0168982 0.0221594 0.0459164
∆t = 1/32 2.12758× 10−9 0.00875027 0.0111671 0.0232914
∆t = 1/64 1.02037× 10−9 0.00444146 0.00560387 0.0117545
∆t = 1/128 4.99665× 10−10 0.00223628 0.0028068 0.00590156

Table 5.8 The error estimates in this table are for an implementation of the forward Euler
method using the data of Problem 5.1. The floating point numbers are computed by averaging
the absolute error estimates [Eq. (5.69)] corresponding to the two concentrations.

h U0 U1 U2 U3 U4 U5

∆t = 1/4 0.485018
∆t = 1/8 0.485018 0.485018
∆t = 1/16 0.485018 0.485018 0.485018
∆t = 1/32 0.485018 0.485018 0.485018 0.485018
∆t = 1/64 0.485018 0.485018 0.485018 0.485018 0.485018
∆t = 1/128 0.485018 0.485018 0.485018 0.485018 0.485018 0.485018
∆t = 1/4 0.463847
∆t = 1/8 0.463847 0.463850
∆t = 1/16 0.463844 0.463840 0.463847 0.463847
∆t = 1/32 0.463838 0.463841 0.463843 0.463843
∆t = 1/64 0.463836 0.463837 0.463839 0.463840 0.463840
∆t = 1/128 0.463836 0.463835 0.463837 0.463838 0.463838 0.463838
∆t = 1/4 0.352699
∆t = 1/8 0.352471 0.352276
∆t = 1/16 0.352357 0.352248 0.352549
∆t = 1/32 0.352300 0.352243 0.352395 0.352439
∆t = 1/64 0.352271 0.352242 0.352319 0.352340 0.352349
∆t = 1/128 0.352257 0.352242 0.352280 0.352291 0.352296 0.352298
∆t = 1/4 0.336485
∆t = 1/8 0.336403 0.336317
∆t = 1/16 0.336362 0.336320 0.336430
∆t = 1/32 0.336342 0.336321 0.336376 0.336392
∆t = 1/64 0.336332 0.336321 0.336349 0.336357 0.336360
∆t = 1/128 0.336327 0.336322 0.336335 0.336339 0.336341 0.336341

Table 5.9 Four Richardson extrapolation tables for the average concentration (u + v)/2
using Eq. (5.68) applied to an implementation of the forward Euler method for the data of
Problem 5.1 are listed. The spatial grid sizes for the tables (top to bottom) are 32 × 32,
64× 64, 128× 128, and 256× 256.
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For a less conservative and more efficient procedure, the computation can
be made with a 64×64 spatial grid and a time step of 1/4. Computed results,
with a high degree of confidence, should meet the 10−2 error tolerance.

Note that Richardson extrapolation is used only on the computed values
at the final time in the experiments reported in this section. Clearly,
the accuracy of the code can be improved by incorporating Richardson
extrapolation at each time step (see Exercise 5.39).

Although some appreciation of the meaning of the word “efficiency” for
a computational algorithm can be gained by reading books, its true meaning
is best understood by direct experience of the time required to perform
computations. The choice between codes that produce a result in a few
seconds or a few hours may not be of fundamental importance if the code
is only run once to solve a textbook problem. But, an improvement of just a
few percent might be essential for the success of a production code.

Because we are dealing with a system of equations in Problem 5.2, it
is natural to consider both concentrations u and v in our error analysis.
Thus, the corresponding averaged values are reported in this section. Taking
into account our analysis and the computed values of u and v not listed but
used to obtain the averaged concentrations, the result of our forward Euler
approximations strongly suggest that (at time T = 10 and with an error
of less than 10−2) the average u concentration is 0.8084 and the average v
concentration is 0.09768.

Computational results for Problem 5.1 are listed in Tables 5.7, 5.8,
and 5.9. They suggest that the forward Euler scheme is operating as an order-
one method for the grid sizes 128 × 128 and 256 × 256. The computed
error is on the order of 10−2, but this is not assured. In this case, the
average of the concentrations in Table 5.9 do not seem to converge beyond
the first decimal point. Taking the corresponding extrapolated values for
the averaged concentrations u and v, reasonable approximations for these
averages at T = 1024 are 0.5 for u and 0.1 for v. The accuracy of the
computation seems to degrade as the time interval of computation increases.
This is probably due to the accumulation of truncation error. An error of
10−3 per step might accumulate to an error of 1.0 after 1000 steps.

Problem 5.1 is not a typical textbook exercise; it is a genuine computa-
tional challenge.
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Our reaction-diffusion model has an important complicating feature that
has not yet been mentioned: The system evolves on two time scales. The
diffusion evolves on a slow time scale of order 10−5 due to the diffusion
coefficients; the reaction evolves on a fast time scale of order one. How can
we take this into account to obtain a more accurate numerical method?

At this point, we should have a high level of confidence in our computed
averages at T = 10 and a low level of confidence in our computation at
T = 1024. Certainly, more testing is warranted.

Exercise 5.38. Discuss which is better (taking into account efficiency and accuracy):
Richardson extrapolation applied to three runs of forward Euler (with the data of
Problem 5.1) for the step sizes 1/4, 1/8, and 1/16, and a 256 × 256 spatial grid or
one run with step size 1/128 and a 128× 128 spatial grid.

Exercise 5.39. Repeat the numerical work for Problems 5.1 and 5.2 with a forward
Euler integration that incorporates Richardson extrapolation after the second time step:
compute two time steps, extrapolate, use the extrapolated value to be the computed
value, compute another step, and so on. Compare the results with the results reported in
this section.

Exercise 5.40. Repeat the numerical work for Problems 5.1 and 5.2 with one change:
use Dirichlet boundary conditions such that the concentrations u and v on the boundary
are held constant at u = v = 0.5.

5.5 BEYOND EULER’S METHOD FOR
REACTION-DIFFUSION PDE: DIFFUSION OF GAS IN A
TUNNEL, GAS IN POROUS MEDIA, SECOND-ORDER IN
TIME METHODS, AND UNCONDITIONAL STABILITY

The forward Euler method is easy to program, it runs fast, and with
acceleration (extrapolation applied to increase accuracy) it can be used to
produce reasonably efficient and accurate results. On the other hand, it has
at least two weaknesses: (1) the ratio of the time-step size and the square
of the spatial discretization size must be small to avoid numerical instability
(see Exercise 5.34) and (2) the method is first-order in time. Both of these
deficiencies have been overcome with the development of discretization
methods that are unconditionally stable and second-order in time. One such
method that is often used is due to John Crank and Phyllis Nicolson [28];
its derivation, order estimates, numerical stability, and implementation are
discussed in the following sections.
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Second-order methods are introduced after development of two model
problems: gas diffusion in air and gas motion in porous media. These models
have independent interest, but their main function here is to demonstrate via
realistic applications that numerical simulations using Euler’s method are
not efficient due to the CFL restriction on step size. Of course, to appreciate
this fact, the reader is encouraged to perform the suggested exercises.
Further on, after second-order methods are introduced, the exercises can
be repeated to compare and contrast the efficacy of first- and second-order
numerical algorithms in practice.

5.5.1 Gas Diffusion in a Tunnel
A portion of a cylindrical tunnel with radius a = 4 m is ` = 25 m long.
A gas with molecular weight of 21.3 g /mol leaks near the entrance of the
tunnel at the rate of 2 L / s. A sensor, installed in the tunnel 22 m from the
entrance, records the concentration of this gas in mg /L once per minute.
The gas is absorbed in a filter at the far end of the tunnel; it absorbs 90% of
the concentration of the leaked gas from the 1.5 m3 / s of air passing through
the filter. The problem is to simulate the sensor output as a function of time
from the instant the gas is released until the sensor reads 2 mg /L. Assume
the following: The diffusivity of the gas in air is 0.5× 10−4 m2 / s, 1 mol of
gas occupies a volume of 22.4 L, and 1 L = 0.001 m3.

Let u denote the concentration of gas in mol /m3 and assume the gas
concentration is constant in each cross section of the tunnel so that u is a
function of the distance x measured in meters from the entrance and time t
measured in seconds. In this case, the diffusion in the tunnel is modeled by
the usual PDE

ut = κuxx (5.70)

for 0 < x < `, κ = 0.6× 10−4 m2 / s, and initial data is u(x, 0) = 0 on the
same spatial domain.

At the end of the tunnel, gas is filtered out. Thus, there is a net loss of gas
corresponding to outflux across the cross section at x = `. The outflux is

πa2κux,

a quantity measured in mol / s. This is due to the filter processing air at the
rate R = 1.5 m3 / s with an efficiency E = 0.9 times the gas concentration
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of u(`, t) mol / s. Thus, the boundary condition at the end of the tunnel is

πa2κux(`, t) = −ERu(`, t). (5.71)

The negative sign corresponds to gas leaving the tunnel. In fact, u(`−∆x, t)
must be larger than u(`, t) because gas is removed from the air at the
boundary. This means the approximate derivative

ux(`, t) ≈ u(`−∆x, t)− u(`, t)

−∆x

is negative as in the boundary condition.

At the entrance of the tunnel, there seems to be more than one choice for
a viable boundary condition. In case the gas is injected into the tunnel, it is
natural to consider its influx across the cross section at x = 0, which is the
rate of injection

r = 2
L

s
× 1

22.4

mol

L
=

1

11.2

mol

s
.

The corresponding boundary condition is

πa2κux(0, t) = −r(t). (5.72)

The minus sign indicates that the concentration of the gas is larger outside
the tunnel.

An alternative boundary condition, corresponding to pure diffusion
across the boundary, is obtained by setting the concentration at the entrance
to be the concentration of gas in an adjoining chamber or part of the tunnel.
A typical choice for the adjoining volume might be V = 1.0 m×πa2. In
this case, the concentration at x = 0 is set equal to the concentration C
(measured in mol /m3) in the chamber that is given by

C(t) =
t

11.2πa2
.

The boundary condition is

u(0, t) = C(t) (5.73)

(see Exercise 5.41).

Building a mathematical model for a real application is not a series of
precise mathematical deductions. Assumptions are made as in the models
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of the two boundary conditions at the entrance of the contaminated tunnel.
The best choice of boundary condition would be determined by experiments
in controlled conditions for a scaled physical model of the tunnel in a
laboratory or perhaps in some real tunnel. The model derived here has
several shortcomings: The filtering process will cause the air in the tunnel
to move. Convection is expected to transport gas (or heat) at a much faster
rate than diffusion. The gas from the leak might increase the gas pressure at
the entrance of the tunnel. This force would cause the mixture of gas and air
to move away from the entrance. Perhaps you will produce a more accurate
model after reading further in this book (see Exercise 19.10).

The contaminated tunnel model for the concentration u of the contami-
nant gas (in moles per cubic meter) discussed in subsequent sections is

ut = κuxx,

u(x, 0) = 0,

πa2κux(0, t) = −r(t),
πa2κux(`, t) = −ERu(`, t), (5.74)

where

κ = 0.5× 10−4, a = 4.0, ` = 25,

E = 0.9, R = 1.5, r = 1/11.2.

The desired output stt (the sensor time trace) is the concentration at x = 22
in mg /L with time τ measured in minutes given by the formula

stt(τ) = 21.3u(22, 60τ). (5.75)

Exercise 5.41. (a) Approximate the sensor output for the contaminated tunnel model
(5.74). In particular, determine the length of time in hours until the sensor output
is 2.0 mg /L. (b) Approximate the sensor output with the boundary condition (5.73)
and determine the length of time in hours until the sensor output is 2.0 mg /L. (c)
Compare and contrast the simulated sensor output for the two models, and discuss
the viability of the model and the suggested boundary conditions. (d) Suppose the
gas leak persists for 24 hours after which it ceases. Determine the time in hours when
the concentration at the sensor reaches its maximum value and specify this maximum.
(e) Consider Exercise 5.78 after reading the following sections on the trapezoidal and
Crank–Nicolson methods.
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5.5.2 Gas in a Porous Medium
For the motion of a gas in a porous medium, diffusion due to the concentra-
tion gradient of the gas is generally so slow (due to the obstruction of the
porous material) that it is ignored in the modeling process in favor of motion
due to gas pressure.

To make a model, reconsider the conservation laws (5.1) and (5.2) that
lead to the dynamical equation

ut + div(−K gradu+ µV ) = f,

where u is the amount of the substance under consideration (the gas), V
is the velocity of the medium moving the substance, and f is the function
representing a model of the sources or sinks of the substance. For simplicity,
assume that there are no sources or sinks, so that f = 0, and ignore the
diffusion by setting the diffusivity K to zero. These assumptions reduce the
conservation law to the equation

ut + div(µV ) = 0.

For gas flow in a porous medium, the usual state variable is the density
ρ measured in some average void in the porous material. In the derivation
of the conservation law, u is the density of some substance in the space
that it occupies, which in this case would include the porous media. More
precisely, the density of the substance in the conservation law is to be
determined by taking the limit of the total amount of the substance in an
open set divided by the volume of the open set as the size of the set shrinks
to a point. This viewpoint in the case of a gas in a porous medium would
produce a density that would be some fraction of the density ρ of the fluid
itself, a quantity given by ερ, where 0 < ε < 1 is the ratio of the volume of
the voids to the total volume of the material. The dimensionless number ε is
called the porosity of the material. Using this dimensionless parameter, the
conservation law for the density of a gas in a porous medium is

ερt + div(ρV ) = 0, (5.76)

where V is the velocity of the gas and the function µ in the conservation law
here equals ρ because all the gas is moving with velocity V .

Reusing the symbol µ for the viscosity of the gas and k for the
permeability of the medium, Darcy’s (constitutive) law relates the velocity
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of the fluid to the pressure p (that is, force per unit area) acting on the fluid:

µV = −k grad p. (5.77)

The minus sign is there because a positive pressure gradient drives the gas
toward a region of lower pressure.

Using Darcy’s law and the conservation of mass, the governing equation
takes the form

ερt = div(
k

µ
ρ grad p).

The model is closed by specifying the pressure or relating the pressure to
the gas density via an equation of state (a relation between state variables),
which in this case relates pressure to density. In symbols, equations of
state are functional relations F (ρ, p) = 0 determined by the modeling
process. For gases, the usual choice (which can be partially justified by using
generally accepted theories of thermodynamics) is a power law

p = p0

( ρ
ρ0

)γ
, (5.78)

where p0 is a reference pressure, ρ0 is some reference density, and the
exponent γ is in the range γ ≥ 1. Note that the presence of the reference
pressure and density in the formula ensure that p has the units of pressure
(force per area).

The (constitutive) equation of state combined with the governing equa-
tion is the dynamical equation for gas flow in a porous medium:

ερt = div(
k

µ
ρ grad(p0

( ρ
ρ0

)γ
)) = div(

p0kγ

µ
ρ
( ρ
ρ0

)γ−1
grad

ρ

ρ0
). (5.79)

By defining the dimensionless and positive state variable

u =
ρ

ρ0
,

the dimensionless time

s =
γp0

εµ
t,
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and dimensionless length

ξ =
x√
k
,

the dynamical equation [Eq. (5.79)] is recast into the dimensionless porous
medium equation

us = ∇ · (uγ∇u). (5.80)

It is a nonlinear PDE whose dimensionless form is suitable for theoretical
work.

As a specific test case, consider a rectangular block of sandstone (located
underground) with length 2.0 m, width and height 1.0 m. Its porosity is
0.1 and its permeability is 10−8 cm2. A gas (perhaps methane) exists in a
reservoir adjacent to one end of the block so that a face with area 1.0m2

is exposed to the gas reservoir. The other end of the block is open to the
atmosphere, and the lateral surface is bounded by impermeable rock. The
gas has viscosity 12.119 × 10−6 Pa s and pressure 6000 kPa. Assume the
given equation of state [Eq. (5.78)] has exponent γ = 2; the density of
methane is approximately 16.04 grams per mole; the universal gas constant
R is approximately 8.3 joules per mole per kelvin, and the ideal gas law is
PV = nRT , where P is pressure, V is volume, n is number of moles, and T
is absolute temperature (kelvins). The problem is to determine the transient
to a steady state and the gas flux through the downstream end of the block
at steady state (see Exercise 5.42).

The change of variables used to derive the porous medium equation is
not suitable for numerical approximations of solutions for the gas-sandstone
application. Why? Instead, let ` be the characteristic length of 1.0 m, ρ0 be
a reference density, and use the scaling

x = `ξ, t =
`2µ

kp0
s, ρ = ρ0U (5.81)

to obtain the dimensionless porous medium model

Us =
γ

ε
∇ · (Uγ∇U), (5.82)

where it is essential to note that ∇ now denotes differentiation with respect
to the dimensionless variable ξ. In fact, u is to be viewed as a function
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U = U(ξ, s), where the corresponding function in the original variables is

u(x, t) := U(
x

`
,
kp0

`2µ
t).

Boundary conditions are problematic as there is no obvious choice.
One approach is to relate the gas flux through a boundary to the pressure
difference inside and outside the medium.

Under the assumption of a homogeneous and isotropic medium, so that
the geometry of the physical domain is idealized to one spatial dimension,
the gas flux through a cross section is then (in dimensioned variables) area
times density times velocity

`2
p0ρ0kγ

µ
uγux

at the cross section. It has units of mass per time. This quantity is related to
the (dimensionless) pressure difference

c(
( ρ
ρ0

)γ
− pa
p0

)

using the ambient pressure pa (of the gas) and a new constant c that has units
of mass per time. The corresponding boundary condition is

`2
p0ρ0kγ

µ
uγux = ±c(uγ − pa

p0
); (5.83)

or, in dimensionless variables,

UγUξ = ±α(Uγ − pa
p0

), (5.84)

where

α :=
cµ

`p0ρ0kγ
.

Note that pressure refers to pressure of the substance with density ρ and, for
example, high pressure in one vicinity relative to another means the presence
of less of the substance in the latter vicinity. Using this fact and taking into
account the direction of the outer normal, the plus sign is taken at the left
end boundary (with respect to the direction of the spatial coordinate axis);
the minus sign is taken at the right end boundary.
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By choosing the reference pressure of p0 = 6000 kPa, computing an
approximate reference density ρ0 = 1.7 kg /m3 via the ideal gas law,
and (absent experimental data) taking c = 0.01 kg / s, the dimensionless
constant α is computed to be approximately α = 0.00594.

Although all the ingredients are in place to make a numerical compu-
tation using Euler’s method for time stepping and the second-order central
difference approximation for second derivatives, there are several issues that
need to be addressed in writing code.

The porous medium PDE written in dimensionless form [Eq. (5.82)] may
not reveal the many options for discretization of the spatial derivative ∇ ·
(Uγ∇U). One possibility is to expand the derivative to

∇ · (Uγ∇U) = γUγ−1∇U · ∇U + Uγ∆U

and discretize (in one space dimension) as follows

γUγ−1
i

(Ui+1 − Ui−1

2∆x

)2
+ Uγi

Ui+1 − 2Ui + Ui−1

∆x2
. (5.85)

The central difference approximation of the first derivative seems natural,
but it could be replaced by a forward or backward difference. An alternative
method is obtained by compressing the spatial derivative to

∇ · (Uγ∇U) =
1

γ + 1
∆(Uγ+1)

and using the discretization

1

γ + 1

Uγ+1
i+1 − 2Uγ+1

i + Uγ+1
i−1

∆x2
. (5.86)

The boundary conditions [Eqs. (5.84)] may also be discretized in several
ways. A natural choice at the left boundary, using the interior nodes from
i = 1 to i = n − 1 as the computational domain and i = 0 as the left
boundary, is

Uγ0
U1 − U0

∆x
= α(Uγ0 −

pa
p0

). (5.87)

At each time step, U1 is known; the required value of U0 can be obtained
by approximating the solution of the nonlinear equation. A similar approach
can be used at the right boundary.
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Exercise 5.42. (a) For the case of one spatial variable, use the porous medium
equation, the boundary conditions, zero density in the porous medium at the initial time,
and the other data given in this section to approximate the gas flux at the middle of the
porous block as a function of time until 30 seconds after the initial time taken to be
t = 0. Report the flux at the middle cross-section of the block in kg / s and the time in
seconds.
(b) For the case of one spatial variable, use pencil and paper to determine the general
solution of the porous medium equation at steady state. Impose the boundary conditions
and use a numerical computation to approximate the solution(s) of the steady state BVP.
Use your result to determine the gas flux at the downstream boundary when the flow is
in steady state.
(c) How long is the transient in minutes measured from the instant the flow starts until
the root mean square distance of the density profile in the porous block is within 1% of
the steady state density profile.
Hints: One good way to debug a numerical code is to use a stable steady state as initial
data. Stepping forward in time should leave the steady state unchanged. For part (a)
it might be wise to use a second-order accurate numerical method to approximate the
velocity at the cross section. This can be achieved by using a centered difference across
the section; that is, by approximating the first derivative of an appropriate function f
via (f(x + ∆x) − f(x − ∆x))/(2∆x). The discretizations mentioned in Eqs. (5.85)
and (5.86) are both viable. Which is better? Be careful with the former discretization
when starting with zero initial data. The computed solution will remain at zero if nothing
is done to coax it from this state. The CFL condition is not obvious for the nonlinear
PDE under consideration, but something like it must be respected to avoid numerical
instability. A small step size in time might be required. What is the CFL condition
(approximately) for the two proposed numerical methods? The right-hand boundary
condition does not require solution of a nonlinear equation: the ambient gas pressure
can be taken to be zero. For part (b), think before making simplifications of the ODE
for the steady state. The ODE is very easy to solve. The root mean square distance
between two functions is the square root of the integral over the spatial domain of the
square of the difference between the two functions divided by the length of the interval;

that is,
√

1/(b− a)
∫ b
a
|f(x)− g(x)|2 dx. Using a laptop computer programmed with

noncompiled and nonoptimized code at the time of writing of this book might require
hours of computer time to obtain good results. In case the computation time seems
excessive for your code, change problems (a) and (c) to make the computation time
shorter. For example, consider the flux through a cross section one centimeter from the
left boundary after 10 seconds of time and, instead of reaching within 1% of the steady
state profile, consider integration from zero density until reaching within 30% of the
steady state profile.
(d) Consider Exercise 5.79 after reading the following sections on the trapezoidal and
Crank–Nicolson methods.
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5.5.3 The Trapezoidal Method and Crank–Nicolson in One
Spatial Dimension
Reconsider a solution t 7→ u(t) of the ODE u̇ = f(u); it satisfies the
equation

u′(t) = f(u(t)).

By integrating both sides of this identity with respect to the independent
variable, we obtain the integral equation

u(t+ ∆t)− u(t) =

∫ t+∆t

t
f(u(s)) ds.

The left-hand rectangle rule approximation of the integral (that is, the
value ∆tf(u(t))) yields the forward Euler method; the trapezoidal rule
approximation

u(t+ ∆t) ≈ u(t) +
∆t

2
(f(u(t+ ∆t)) + f(u(t)))

yields the trapezoidal method also called the implicit improved Euler
method

Uk+1 = Uk +
∆t

2
(f(Uk+1) + f(Uk)) (5.88)

which, for the nonautonomous case, is

Uk+1 = Uk +
∆t

2
(f(Uk+1, t+ ∆t) + f(Uk,∆t)). (5.89)

As might be expected, the trapezoidal method is more accurate than
Euler’s method; in fact, it is a second-order method. To prove this fact,
we simply assume that the solution and its approximation agree at time t
and estimate the norm of the difference between the true and approximate
solutions at t+ ∆t. Using Taylor’s theorem, the solution at t+ ∆t is

u(t+ ∆t) = u(t) + u′(t)∆t+
1

2
u′′(t)∆t2 +O(∆t3)

= U0 + f(U0)∆t+
1

2
f(U0)f ′(U0)∆t2 +O(∆t3).

The trapezoidal approximation

T := U0 +
∆t

2
(f(U0) + f(U1)),
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can be expanded in the Taylor series

T = U0 +
∆t

2
(f(U0) + f(U0 +

∆t

2
(f(U0) + f(U1)))

= U0 +
∆t

2
(f(U0) + f(U0) +

∆t

2
f ′(U0)(f(U0) + f(U1))) +O(∆t3)

= U0 + f(U0)∆t+
∆t2

4
f ′(U0)(f(U0) + f(U0)) +O(∆t3)

= U0 + f(U0)∆t+ f ′(U0)f(U0)
∆t

2
+O(∆t3).

Thus, the local truncation error is

|u(t+ ∆t)− T | = O(∆t3).

Because the local truncation error isO(∆t3), the method is second-order
in time (see Exercise 5.47).

Numerical stability, when carefully considered, leads to some difficult
problems. At the minimum, a stable method should produce a good ap-
proximation when applied to a stable solution of an ODE. More precisely,
suppose the ODE u̇ = f(u) has a rest point at u0 so that f(u0) = 0 and this
rest point is asymptotically stable; that is, for every open ball Ω centered
at u0 there is a smaller concentric ball B such that for each initial state ν
in B, the initial value problem u̇ = f(u) and u(0) = ν has a solution
that stays in Ω and converges to u0 as time grows without bound. A stable
numerical method should at least produce good approximations for these
initial value problems. Recall a basic theorem: If u0 is a rest point of the
ODE u̇ = f(u) and all eigenvalues of the system matrix Df(u0) of the
linearized system have negative real parts, then u0 is asymptotically stable
(see Appendix A.17). In view of this result, the numerical method should
also be stable when applied to the linear system ẇ = Df(u0)w (which has
the rest point w = 0) for arbitrary initial condition w(0) = ω. The matrix
Df(u0) is generically diagonalizable. In this case, the linear system reduces
to a decoupled system of ODEs all of the form ẋ = λx, where λ has negative
real part. Thus, a reasonable (but not definitive) test of numerical stability of
a numerical algorithm is to apply it to the ODE

ẋ = −λx, (5.90)
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with x(0) = 1 and λ > 0 and determine the condition (if any) on the step
size that ensures stability for this special case. For example, Euler’s method
produces the iteration scheme

xj+1 = xj + ∆t(−λxj) = (1− λ∆t)xj = (1− λ∆t)jx0.

The iterates xj converge to zero if and only if |1−λ∆t| < 1. The method is
numerically stable provided the time step is restricted so that 0 < ∆t < 2/λ.
A time step that exceeds 2/λ will result in a sequence of iterates whose
absolute values grow without bound. (What about ∆t = 2/λ?)

The result for Euler’s method is closely related to the CFL condi-
tion (5.17) for numerical stability when Euler’s method [Eq. (5.15)] is
applied to approximate solutions of the heat equation. Recall the numerical
method used previously, when applied to ut = κuxx. is

U j+1
i = U ji + ∆t

κ

∆x2
(U ji−1 − 2U ji + U ji+1). (5.91)

It has exactly the form of Euler’s method applied to an ODE except that the
function f in the ODE ẋ = f(x) is replaced by an operator F (u) := κuxx,
which is discretized in the scheme (5.91).

Similarly, the trapezoidal method applied to the test ODE [Eq. (5.90)] is
the iteration scheme

xj+1 = xj − λ∆t

2
(xj+1 − xj).

By a simple rearrangement, the iterates are given by

xj+1 =
1− λ∆t

2

1 + λ∆t
2

xj . (5.92)

Thus, the trapezoidal method produces a scheme that is unconditionally
stable. Indeed, the coefficient of xj has absolute value less than 1 for every
positive ∆t. No restriction on the step size is required to maintain numerical
stability.

The Crank–Nicolson method, which will be discussed in detail in this
section, is the trapezoidal scheme applied to PDEs. It is unconditionally
stable for many PDEs; in fact, the method is numerically stable with no
restriction on the size chosen for the positive time steps. Warning: Stable
does not imply accurate. A small step size might still be required to achieve
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some desired global error. Of course, one can hope that step sizes can be
taken larger for a stable second-order method than for a first-order method.

For the heat equation ut = κuxx in one spatial dimension, the Crank–
Nicolson method withU ji := u(i∆x, j∆t) is given by the difference scheme

U j+1
i = U ji +

κ∆t

2∆x2
(U ji−1−2U ji +U ji+1 +U j+1

i−1 −2U j+1
i +U j+1

i+1 ), (5.93)

where, for example, i = 1, 2, 3, . . . n, and zero Dirichlet boundary condi-
tions are assumed: U0 = Un+1 = 0. Let

α :=
κ∆t

2∆x2

and define W j to be the n-dimensional vector with components U ji for i =
1, 2, 3, . . . n. Also, letA be the tridiagonal matrix with all components on the
main diagonal equal to −2, all elements on the first super and subdiagonals
equal to 1, and all other components equal to zero. Using these notations
and an algebraic rearrangement, the difference scheme (5.93) is given in the
vector form

(I − αA)W j+1 = (I + αA)W j , (5.94)

where α > 0.

Using the Gerschgorin theorem (see Appendix A.5) and the symmetry of
A, every eigenvalue of this matrix is a real number in the closed interval
[−4, 0]. An easy calculation shows that µ is an eigenvalue of I − αA
(that is, (I − αA)v = µv for some nonzero vector v) if and only if
µ = 1 − αλ for some eigenvalue λ of A. Because every eigenvalue of
A is nonpositive, every eigenvalue of I − αA is positive. In particular,
this matrix has no zero eigenvalue; it is invertible. More precise results are
available for the eigenvalues of A; in fact, they can be computed explicitly
(see Appendix A.19). This matrix or its negative is often called the discrete
Laplacian.

Because I − αA is invertible, the Crank–Nicolson scheme for the heat
equation reduces to the iteration process

W j+1 = (I − αA)−1(I + αA)W j (5.95)
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To prove that the Crank–Nicolson method for the heat equation is
unconditionally numerically stable it suffices to show that every eigenvalue
of the matrix (I − αA)−1(I + αA) is in the closed unit disk in the complex
plane. Again, this fact follows by relating the eigenvalues of this matrix to
the eigenvalues of A.

The number γ is an eigenvalue of (I − αA)−1(I + αA) if there is a
nonzero vector v such that

(I + αA)v = γ(I − αA)v.

By an easy calculation, this eigenvalue must be given by

γ =
1 + αλ

1− αλ,

where λ is an eigenvalue of A. Because α > 0 and −4 ≤ λ ≤ 0, the
eigenvalue γ is such that −1 < γ ≤ 1 (compare to Eq. (5.92)). In particular,
every eigenvalue of the matrix (I − αA)−1(I + αA) lies in the closed
unit disk. In fact, −1 < γ < 1 (see Exercise 5.43); therefore, the Crank–
Nicolson method for the heat equation is unconditionally numerically stable.

The numerical stability result does not take into account boundary con-
ditions that alter the matrix A. Dirichlet and Neumann boundary conditions
are considered in this context in Exercise 5.67.

Unconditional stability comes with a price: the trapezoidal method
[Eq. (5.89)] is implicit. At each time step or (equivalently) each iteration
of the method, applied to approximate a solution of the ODE ẋ = f(x), the
equation

Uk+1 − ∆t

2
f(Uk+1) = Uk +

∆t

2
f(Uk)

must be solved for the unknown Uk+1. This equation is nonlinear whenever
the ODE is nonlinear.

The premier method for approximating the solutions of nonlinear equa-
tions is Newton’s method; it is one of the most important algorithms in
analysis. To find a root a of a function g : Rn → Rn, suppose that x is close
to a, Using Taylor’s theorem,

g(a) = g(x) +Dg(x)(a− x) +O((x− a)2).
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Because g(a) = 0, the solution b of the equation g(x) +Dg(x)(b− x) = 0
should yield a good approximation of the desired root a. By some simple
matrix algebra,

b = x−Dg(x)−1g(x).

This observation is the motivation for Newton’s method: Choose an ap-
proximation x0 of the expected root a and compute the sequence {xk}∞k=0

according to the iteration process

xk+1 = xk −Dg(xk)−1g(xk). (5.96)

Under the three assumptions (1) the starting value x0 is sufficiently close
to a, (2) the function g is continuously differentiable, and (3) Dg(a) is
invertible, the sequence of iterates defined by Newton’s method converges
to the desired root a. Moreover, the rate of convergence is quadratic; that is,
for r = 2 and some positive number C,

|xk+1 − a| ≤ C|xk − a|r (5.97)

(see Appendix A.14 for more information).

To approximate a solution x = a of the equation g(x) = 0 for g : R→ R
by Newton’s method (the scalar case), choose some initial approximation x0

of a and iterate using the formula

xk+1 = xk − g(xk)

g′(xk)
. (5.98)

In the vector case, the inverse of the matrixDg(xk) is not computed. (Why?)
Instead, Newton’s method is implemented in an alternate form: Solve the
linear system

Dg(xk)y = −g(xk) (5.99)

for y and define xk+1 = y + xk (see page 174 for a discussion of
some numerical methods for approximating solutions of systems of linear
equations).

For an arbitrary convergent sequence {xk}∞k=1 with limit a, we say that
the order of convergence is r and the asymptotic error is C whenever
inequality (5.97) is satisfied. In other words, the error at index k+ 1 (which
we will denote by err(k + 1)) is approximately proportional (with a fixed
constant C of proportionality) to err(k)r; in particular, the error at index
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iterate Newton asymptotic error iteration asymptotic error
0 2.0 2
1 1.4 0.875
2 1.1 0.4 0.929932 0.125
3 1.0087 0.625 0.962554 0.560547
4 1.00007 0.869565 0.980582 0.534420
5 1.0 0.987124 0.990104 0.518548
6 1.0 0.999888 0.995003 0.509662

Table 5.10 The table lists iterates and asymptotic errors, using |xk+1 − a|/|xk − a|r with
r = 2 for Newton’s method and r = 1 for composition, to approximate the real root x = 1
of the polynomial x3 + x2 − x− 1.

k+ 1 is O(err(C)r). The quadratic convergence of Newton’s method makes
it a pillar of numerical (and theoretical) analysis (cf. [52]).

As a simple example of the convergence properties of Newton’s method,
consider the real root, x = 1, of the cubic polynomial g(x) = x3 + x2 −
x − 1. The results of an implementation of Newton’s method with initial
guess x = 2 are given in the left-half of Table 5.10. The asymptotic error
computed with r = 2 as in Eq. (5.97) seems to converge to C = 1. Thus,
the experiment confirms that Newton’s method is quadratically convergent
in this case (see Exercise 5.48 for a proof).

For comparison, note that the root x = 1 can also be found as a fixed
point of the function

G(x) = x− 1

8
(x3 + x2 − x− 1). (5.100)

Starting from an initial guess x = x0, the composition method (also called
fixed point iteration) is to compute the compositional iterates of the function
G; that is, to proceed inductively using the formula xk+1 = G(xk). In other
words, we view G as a dynamical system on the real line and seek the real
root of the polynomial as a stable fixed point of this dynamical system. The
factor 1/8 is used to ensure that G has a stable fixed point at x = 1 (see
Exercise 5.56). The data in Table 5.10 suggests that the iterates of G are
linearly convergent to the fixed point.

Newton’s method gives the correct root with an error of less than 10−2

after three iterates; the composition method requires five. To achieve an error
less than 10−3, Newton’s method requires four iterates; the composition
method requires nine. Let us also note that the computational cost of the two
methods is comparable. It should be clear that Newton’s method is superior.
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iterate Newton Aitken Steffensen
0 2.0
1 1.4
2 1.1 0.92737 0.92737
3 1.0087 1.01026 1.00308
4 1.00007 1.00285 1.00000
5 1.00000 1.00076 1.00000
6 1.00000 1.00020 1.00000

Table 5.11 The table lists iterates for Newton’s, Aitken’s, and Steffensen’s methods applied
to find the root (x = 1) of the polynomial x3 + x2 − x− 1.

Acceleration by Richardson extrapolation of certain low-order methods
with discretization errors has been discussed. It is also possible to accelerate
some linearly convergent sequences by a staple of numerical analysis called
Aitken’s ∆2 method. The idea is simple. A linearly convergent sequence
{xk}∞k=1 with limit x∞ should satisfy

|xk+1 − x∞| ≈ C|xk − x∞|,

for some constant C and all large k. In addition, assume that the errors all
have the same signs. By taking one more iterate, there are two approxima-
tions

xk+1 − x∞ ≈ C(xk − x∞), xk+2 − x∞ ≈ C(xk+1 − x∞).

Eliminating C, we have the relation

(xk+1 − x∞)2 ≈ (xk+2 − x∞)(xk − x∞),

and solving for x∞ yields

x∞ ≈ xkxk+2 − xk+1

xk+2 − 2xk+1 + xk
,

or equivalently,

x∞ ≈ xk − (xk − xk+1)2

xk+2 − 2xk+1 + xk
.

Of course, this last relation is turned into a numerical method by replacing
the unknown x∞ by the kth Aitken ∆2 approximation; that is,

Aitken(k) :=
xkxk+2 − xk+1

xk+2 − 2xk+1 + xk
. (5.101)
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Table 5.11 lists the Aitken approximations obtained by applying
Eq. (5.101) to the sequence of iterates of the function G defined in
Eq. (5.100). The convergence is faster than the linear convergence of the
simple iterates of G, but the new sequence does not converge quadratically
(see Exercise 5.57). This deficiency can be remedied: Instead of applying
Aitken’s method directly to the sequence of iterates, compute two iterations,
apply Eq. (5.101) to x0, x1 and x2 to obtain Aiken(0), use this value—which
should be a better approximation of the fixed point than x3—as the new x0,
and repeat this process. This algorithm is called Steffensen’s method. The
Steffensen sequence for our test example is listed in Table 5.11. For this
example, it performs as well as Newton’s method (see Exercise 5.57).

The assumption that the errors xk−x∞ in our sequence all have the same
signs might not be satisfied; for example, the sequence given by x0 = 1 and
xk+1 = g(xk) (where g(x) := −x/2) converges to zero but alternates in
sign. For a situation like this where the iterates alternate in sign, Steffensen’s
method can be applied to every second iterate, or in other words, it can be
applied to the sequence generated by g2(x) := g(g(x)).

Why are Aitken’s and Steffensen’s methods used when Newton’s method
is available? Answer: Aitken’s method applies to general linearly convergent
sequences; hence, it can be applied in situations where no quadratically
convergent method is known. Steffensen’s method is valuable in cases
where the derivative of the function being iterated is difficult to obtain or
expensive to evaluate (cf. Exercise 5.58). As might be expected, Richardson
extrapolation, Aitken’s ∆2, and Steffensen’s are only a few of the important
methods that have been developed to accelerate convergence of low-order
methods. Of course, extrapolation methods, like all numerical methods,
do not always work. The complete story is beyond the scope of this book
(cf. [10]).

Exercise 5.43. Prove that the Crank–Nicolson method is unconditionally stable. Hint:
See Appendix A.19.

Exercise 5.44. [Newton’s Method in Mountain Terrain] Via satellite (for example)
elevations are mapped over a region of the Earth’s surface and the function

z = F (x, y) := a3x3 − 3ab2xy2 − 0.1(a4x4 + b4y4) + 1500, a = 0.01, b = 0.01

is fit to this data to produce an approximation to the elevation of the terrain over an
imaginary plane with coordinates (x, y). (How do you suppose the fitting is done?)
An observer resides at the point with (x, y, z) coordinates (−550, 10, 1242.284) on



170 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

the mapped terrain, where all distances are measured in meters. The first coordinate
measures the east-west direction with the positive direction pointing east. Likewise, the
second coordinate measures north-south with the positive direction pointing north.
(1) Determine the curve of points that are 700 meters away via laser shots in three
dimensions from this observation point and lie farther north. Note: A more difficult
project is to determine the curve of points that is 700 meters away when distance is
measured along the terrain.
(2) Is there a point on the terrain equidistant via laser shots from the first observation
point, the second observation point (−900, 990, 1800.574), and third observation point
(−300, 250, 1517.244)? If so, give the coordinates of such a point.
(3) How many solutions of (2) exist within the mapped terrain?
(4) What happens for (2) in case the third observation point is (1000, 0, 1501)?
(5) More difficult projects: What is the distance from observation point 1 to observation
point 2 along the terrain? Solve part (2) with distances measured along the terrain.

Exercise 5.45. [Newton’s Method for an ODE Model] For the model equation ẍ+x =

x3 (where x might measure the deflection of a beam) suppose the beam is pulled down
a units and released from rest (that is, x(0) = a, ẋ(0) = 0). Is there a choice of a such
that x(8) = a and x(t) 6= a for 0 < t < 8? If so, determine a correct to three decimal
places.

5.5.4 The Crank–Nicolson Method in Two Spatial Dimensions
The Crank–Nicolson method is simply the trapezoidal method adapted to
the context of parabolic PDEs by viewing a parabolic PDE as an abstract
evolution equation u̇ = f(u) (which has the form of an ODE) where f is a
differential operator.

For our basic reaction-diffusion PDE [Eq. (5.32)], the Crank–Nicolson
method is given by the scheme

Uk+1
i,j = Uki,j +

∆t

2

[ λ

∆x2
(Uk+1

i+1,j − 2Uk+1
i,j + Uk+1

i−1,j + Uki+1,j − 2Uki,j + Uki−1,j)

+
λ

∆y2
(Uk+1

i,j+1 − 2Uk+1
i,j + Uk+1

i,j−1 + Uki,j+1 − 2Uki,j + Uki,j−1)

+ (f(Uk+1
i,j , V k+1

i,j ) + f(Uki,j , V
k
i,j))

]
,

V k+1
i,j = V k

i,j +
∆t

2

[ λ

∆y2
(V k+1
i+1,j − 2V k+1

i,j + V k+1
i−1,j + V k

i+1,j − 2V k
i,j + V k

i−1,j)

+
λ

∆y2
(V k+1
i,j+1 − 2V k+1

i,j + V k+1
i,j−1 + V k

i,j+1 − 2V k
i,j + V k

i,j−1)

+ (g(Uk+1
i,j , V k+1

i,j ) + g(Uki,j , V
k
i,j))

]
, (5.102)
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where the symbols f and g are now redefined to denote the reaction terms
in the PDE.

To implement the Crank–Nicolson scheme directly, we must solve a
nonlinear system of equations to compute each update. This can be done
using Newton’s method or Steffensen’s method (see Exercise 5.55).

Another possibility is to modify the trapezoidal method into an explicit
second-order scheme (which may no longer be unconditionally stable). One
idea for doing this is simple: Compute the implicit update using Euler’s
method. This results in the explicit second-order scheme

Uk+1 = Uk +
∆t

2
(f(Uk + ∆tf(Uk)) + f(Uk)), (5.103)

which is often called the improved Euler method (see Exercise 5.59).

A third possibility is to modify the method to make it explicit (using
the Euler approximation as in Eq. (5.103)) for the reaction terms and
leave the update equations implicit for the diffusion terms. To complete
each time step for this algorithm, a nonlinear solver is avoided as the
modified scheme requires only the solution of a system of linear equations.
This method is theoretically second-order with respect to both the space
and time discretization sizes; in other words, the method is O(∆t2) and
O(∆x2 + ∆y2).

Although Newton’s method is the premier choice for approximating
the solution of a set of nonlinear equations, there are superior methods
for approximating the solution of large systems of linear equations. The
subject of solving systems of linear equations is itself an important branch
of numerical analysis (and pure mathematics); a glimpse of a few topics in
this area is provided here.

The simplest PDEs that lead to systems of linear equations are of course
those with one spatial dimension. New concepts are required to treat the
reaction diffusion model [Eq. (5.32)]

ut = λ∆u+ f(u, v), vt = µ∆v + g(u, v) (5.104)

for a two-dimensional rectangular spatial domain with side lengths L1 and
L2. This example is used to illustrate some of the challenges that arise in
multidimensional problems.
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For a spatial discretization, we may choose the spatial increments ∆x =
L1/m and ∆y = L2/n and the nodes ((i − 2)∆x, (j − 2)∆y) with i =
2, 3 . . . ,m+2 and j = 2, 3 . . . , n+2. The corners of our spatial rectangle are
labeled by the indices (2, 2) (lower left), (2, n+2) (upper left), (m+2, n+2)
(upper right), and (m + 2, 2) (lower right). Each of the (m + 1) × (n + 1)
nodes in the closed rectangle will correspond to two linear equations, one
for Uk+1

ij and one for V k+1
ij . The resulting systems of linear equations can

and will be solved separately.

The equations for the approximate state variables at the nodes must be
ordered in some convenient manner; that is, we need a bijective function de-
fined on the set of nodes whose range is the set of integers {1, 2, 3, . . . , (m+
1)× (n+ 1)}. We will use the bijection that corresponds to the ordering of
the nodes on the spatial grid from top left to bottom right along rows from
left to right. The required function, here called nodes, is given by

nodes(i, j) = i− (m+ 1)j + (n+ 1) +m(n+ 2) (5.105)

(see Exercise 5.60).

Using our bijection, the system of linear equations (for the unknown
updates of the state variables at the nodes) can be written in matrix form

AUk+1 = b, (5.106)

where the (m+1)(n+1)×(m+1)(n+1) matrixA and the (m+1)(n+1)
vector b are defined using the Crank–Nicolson scheme. This procedure is
accomplished in three steps:
(1) Use the Neumann boundary condition to set the values of U and V at
the fictitious nodes that lie outside the spatial domain, which are needed
to compute the discretized spatial second derivatives; for example, Uk1,j :=

Uk3,j along the left-hand edge of the spatial domain.
(2) Define the matrix A using the form of the equations at each node; for
example, the generic nodes(i, j) row of the matrix A for the U variables is
given by the assignments

A(nodes(i, j),nodes(i, j)) := 1 + λ
( ∆t

∆x2
+

∆t

∆y2

)
,

A(nodes(i, j),nodes(i+ 1, j)) := −λ ∆t

2∆x2
,

A(nodes(i, j),nodes(i− 1, j)) := −λ ∆t

2∆x2
,
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A(nodes(i, j),nodes(i, j − 1)) := −λ ∆t

2∆y2
,

A(nodes(i, j),nodes(i, j + 1)) := −λ ∆t

2∆y2
, (5.107)

and all other components are set to zero in this row. Unfortunately, the
matrix contains many nongeneric rows. Perhaps an example will help to
illustrate the extra complications due to the Neumann boundary conditions.
For the case m = n = 2 with β := λ∆t/(2∆x2), the matrix A is the 9× 9
matrix such that all components on the main diagonal are 1 + 4β, the first
super diagonal is

(−2β,−β,−β,−β,−β,−β,−β,−β,−β),

the third super diagonal is

(−2β,−2β,−2β,−β,−β,−β),

the first subdiagonal is

(−β,−β,−β,−β,−β,−β,−β,−β,−2β),

the third subdiagonal is

(−β,−β,−β,−2β,−2β,−2β),

and all other components are zero.

The factor two appears due to the boundary conditions. Note that the
matrix structure is naturally separated into five strips from top to bottom:
The top strip is the first row, strip two is rows 2 through m + 1, strip three
(the generic strip) is rows m + 2 through (m + 1)(n + 1) − (m + 1), strip
four is rows (m+ 1)(n+ 1)−m to (m+ 1)(n+ 1)− 1, and strip five is the
last row. The upper nonzero diagonals are the first and the (m + 1) upper
diagonals; the lower nonzero diagonals are the first and the (m + 1) lower
diagonals.
(3) The vector b is defined accordingly:

b(nodes(i, j)) := (1− λ
( ∆t

∆x2
+

∆t

∆y2

)
)Uki,j

+ λ
∆t

2∆x2
(Uki+1,j + Uki−1,j)
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+ λ
∆t

2∆y2
(Uki,j+1 + Uki,j−1)

+
∆t

2
(f(FEUk

i,j ,FEVk
i,j) + f(Uki,j , V

k
i,j)),

where (FEUk
i,j ,FEVk

i,j) is the forward Euler approximation of the
full reaction-diffusion PDE with boundary conditions imposed of the
approximate states (Uk+1

i,j , V k+1
i,j ) computed from the known approximation

(Uki,j , V
k
i,j) and the same ∆t, ∆x and ∆y used for the Crank–Nicolson

scheme.

Our choice of ordering determines the structure of the matrix A and
vector b, but in a computer code to implement the Crank–Nicolson method,
the matrix A need not be stored—there is no need for reserve storage of
its zero elements. Because the matrices involved are large (for instance, a
129×129 grid requires solving a system of 16641 equations), it is natural to
take advantage of the structure of our (sparse and banded) matrices, which
have only five diagonals with nonzero components. We do not want the
computer to waste our time computing values that are known to be zero.

At this juncture, we could enter the world of numerical linear algebra.
This is a vast subject (see [12, 112]), which has certainly been influenced by
the necessity of dealing with the matrix systems that arise in solving PDEs.
This book is mainly about differential equations in applied mathematics, so
we will not develop the theory in detail here. On the other hand, we need a
viable method to approximate the solutions of the (large) linear systems that
arise in implementations of implicit schemes such as the Crank–Nicolson
algorithm. Hence, we must at least have a working knowledge of some
fundamental results of this subject.

There are two basic methods for the numerical solution of linear systems:
Gaussian elimination (which should be a familiar method from linear
algebra) and fixed point iteration.

A viable implementation of Gaussian elimination for our (large and
sparse) matrices demands adaptations that take into account the matrix
structures. In the special case of tridiagonal matrices (which arise for PDEs
with one spatial dimension), there is an adaptation of Gaussian elimination
that is simple to program, fast, and practical (see [12]). For banded matrices
there are similar but more complicated methods. Also, in applications to
PDEs (and many other places), numerical algorithms require solvingAW =
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b repeatedly for the same system matrixA but with different column vectors
b. Efficient numerical schemes compute and store a factorization of A, for
example a factorization PA = LU , where P is a permutation matrix, L is
a lower triangular matrix, and U is upper triangular. The basic idea, for the
case where P = I , is to multiplyA by a sequence of elementary matricesEi
that encode row reductions so that EnEn−1 · · ·E1A = U , where U is upper
triangular. This is simply Gauss elimination in case every pivot is nonzero.
The P matrix is used to make sure every pivot is nonzero and more generally
to permute rows so that the largest available pivot is used, a process called
partial pivoting. The reason to use the large pivots is to avoid multiplying
rows by large numbers—which might cause large numerical errors for some
matrices that have very small nonzero eigenvalues. For the simple case
where P = I , the inverse L of the product of elementary matrices is lower
triangular. Thus, A = LU . The advantage of this decomposition is that it
stores most of the work in solving the original systemAW = b. The factored
matrix system LUW = b is solved in two steps: LY = b and UW = y.
Each of the two linear systems are solved immediately by simple recursive
substitution. No elimination is necessary. In case PA = LU is used, simply
multiply b by P and then use the LU decomposition. There are refinements
of this method for special types of matrices; especially, symmetric matrices,
banded matrices, and sparse matrices.

Iterative methods used to solve linear systems are also called methods of
successive relaxation. In its simplest form, the basic method is a general-
ization of the idea used (recall Eq. (5.100)) to approximate solutions of the
nonlinear equation g(x) = 0 by iteration of the function G(x) = x−ωg(x)
for a choice of ω that makes the desired solution a stable fixed point of
the dynamical system defined by G. Indeed, the solution of a linear system
Az = b might be solved by iterating the linear transformation T given by

Tz = z − ω(Az − b), (5.108)

where ω is a nonzero real number. There are at least three important
questions related to this procedure: (1) What is a sufficient condition to
guarantee that the process converges? (2) What is the best value to choose
for the parameter ω? (3) What is a good choice for z to start the process?

Question (3) does not have a definite answer. Surely, the optimal choice
of the initial point is the solution vector for the equation Az = b. As this
is the value we wish to find, we will have to settle for a less than optimal
choice. One useful idea for our problem is to note that we plan to solve
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our system many times as we step along in time; hence, we can use current
values of the concentrations at the nodes as the starting value to obtain the
updated concentrations.

Questions (1) and (2) are answered by doing some numerical analysis.
Recall that a fixed point of a map is asymptotically stable whenever all
eigenvalues of the derivative of the map at the fixed point lie inside the
open unit disk in the complex plane (see Exercise 5.56). Fortunately, the
derivative of a linear transformation is itself and therefore does not depend
on the point at which it is evaluated. The derivative of our proposed function
[Eq. (5.108)], which defines our linear dynamical system, is

DT = I − ωA,

where I is the identity matrix. The eigenvalues of DT are in correspondence
with the eigenvalues of A; in fact, µ is an eigenvalue of DT if and only if
(1− µ)/ω is an eigenvalue of A.

For the matrix A given by the assignments in Eqs. (5.107) where no
boundary condition is taken into account, all the elements on the main
diagonal of A are equal. In case ∆x = ∆y and for computational
convenience α := 2β, these diagonal elements are all equal to 1 + 2α.
The sum of the absolute values of the off-diagonal elements in each row of
A is at most 2α. Moreover, A is a symmetric matrix; therefore, it has real
eigenvalues. By Gerschgorin’s theorem (see Appendix A.5), the eigenvalues
of A lie in the interval [1, 1 + 4α], which consists of only positive real
numbers.

Let σ(A) denote the set of eigenvalues (the spectrum) of A and note
that ξ ∈ σ(A) corresponds to the eigenvalue µ = 1 − ξω in σ(DT). The
maximum absolute value of the eigenvalues of DT (which is its spectral
radius ρ(DT )) is given by

ρ(DT ) = min
ω∈R

max
ξ∈σ(A)

|1− ξω|. (5.109)

Under the assumption that ρ(DT ) < 1, the optimal value of ω is the value
at which the minimum occurs. By Exercise 5.69,

ρ(DT ) =
2α

1 + 2α
, ω =

1

1 + 2α
.
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Thus, in this case, we have that ρ(DT ) < 1 as desired, and the optimal
choice is ω = 1/(1 + 2α). The sequence of iterates of the transformation
T will be linearly convergent to the solution of Az = b for every starting
vector.

The implementation of our iterative method z`+1 = Tz` should take
advantage of the structure of the matrix A. In particular, there is no reason
to store this matrix. The update from z` to z`+1 = Tz` is given, for γ =
1, 2, 3, . . . (m+ 1)(n+ 1), by

z`+1
γ = (1− ω(1 + λ

( ∆t

∆x2
+

∆t

∆y2

)
)z`γ

− ωλ ∆t

2∆x2
z`γ+1 − ωλ

∆t

2∆x2
z`γ−1

− ωλ ∆t

2∆y2
z`γ+m+1 − ωλ

∆t

2∆x2
z`γ−(m+1), (5.110)

where z`p is set to zero if the index

p ∈ {γ + 1, γ − 1, γ +m+ 1, γ − (m+ 1)}

is not in the range of γ. We will have to encode a stopping procedure for our
iteration process; for example, the procedure can be stopped as soon as an
iterative update does not change by more than some prespecified tolerance
from its previous value. After gaining some experience by monitoring the
performance of a code, we might fix the number of iterations to decrease its
execution time. The final iterate Zγ is used to update the matrix Uk+1 in the
code used to solve the PDE setting

Uk+1
i,j = Znodes(i,j).

The iteration process can be accelerated by an application of Steffensen’s
method. For applications of this method to systems, there are at least two
natural questions: (1) Can Steffensen’s method be applied componentwise?
(2) Can the signs of the errors be determined to check that the hypothesis
for the convergence of Steffensen’s method is satisfied?

The idea underlying the answers to our questions can be illustrated by
examining the iteration of linear transformation of the plane. Let us suppose
that T is a linear transformation of the plane whose spectrum is inside the
open unit disk. In this case, the sequence of vectors {xk}∞k=0 defined by
the iteration process xk+1 = Txk (for an arbitrary choice of x0) converges
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to zero. Under the assumption that T is symmetric and positive definite, the
eigenvalues of T are positive real numbers λ1 ≤ λ2 and there is a basis of R2

consisting of eigenvectors of T . In this basis, T has the matrix representation(
λ1 0
0 λ2

)
.

The eigenspaces (that is, the subspaces spanned by the eigenvectors) in this
basis correspond to the coordinate axes. Pick a vector in the plane, say the
vector with components x0 and y0, and iterate the process. The kth iterate
has components λk1x0 and λk2y0. Note that if λ1 < λ2, then the kth iterate
becomes nearly parallel to the vertical coordinate axis. In other words, the
dot product of the kth iterate and the usual basis vector e1 is small compared
with the dot product of the kth iterate and e2. The first two vectors are nearly
orthogonal. After a few iterations, the iterates align with the eigenspace
corresponding to the largest eigenvalue. Thus, up to a small error, the iterates
converge monotonically to zero along this one-dimensional subspace. Also,
all the components of the iterates converge linearly to zero and the errors
with respect to each component have the same signs.

Exactly the same behavior occurs in general as long as the matrix that
determines the iteration process is positive definite and symmetric. More
generally, it suffices to have a positive real eigenvalue in the open unit
disk that is larger than the absolute values of the real parts of all the other
eigenvalues.

In practice, several iterates are computed so that the expected alignment
takes place, Steffensen’s method is applied, several more iterations are
computed so that the expected alignment takes place, Steffensen’s method
is applied, and this process is continued until the iterations are no longer
changing up to some preassigned tolerance or a maximum preset number of
iterations is exceeded. It is possible to check internally that the alignment
has occurred; for example, the computed differences xk+1

i − xki for the
components can be tested to see if they are all of the same sign and
approximately the same magnitude (see Exercise 5.73).

Although the iterative method just described is viable (especially when it
is accelerated via Aitken extrapolation), this method is seldom used because
there are superior alternative methods due to Jacobi, Gauss, Seidel and
others. All of these methods are based on a simple idea. To solveAz = b for
z, write the system matrix A as a sum A = P +Q, separate the product Az
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accordingly into a sum Pz+Qz, move one summand to the right-hand side
of the equation Pz = b−Qz, and multiply both sides by the inverse of the
remaining matrix on the left-hand side z = P−1(b − Qz) to set up a fixed
point iteration scheme zk+1 = P−1(b−Qzk). With an appropriate choice of
P and Q, new iteration schemes can be constructed that (usually) converge
more rapidly than iterations of the function T defined by Eq. (5.108).

Suppose A is an n×n matrix and ω is a nonzero scalar. To solve for z in
the linear system Az = b, precondition the equation by multiplication with
a scalar variable ω (or, equivalently, the matrix ωI) to obtain the equivalent
system

0 = −ω(Az − b), (5.111)

and split A into the sum of three n×n matrices: D, whose main diagonal is
the main diagonal of A and all its other components are zero; L, the lower
triangular part of A (that is, L consists of the components of A below its
main diagonal and all of its other components are zero); and U , similarly,
the upper triangular part of A. Using this notation and with the intention
of defining a transformation whose fixed point is a solution of the linear
system, recast Eq. (5.111) into the form

0 = Dz −Dz − ω(Dz + Lz + Uz − b),

which may be rearranged to obtain the matrix equation

(D + ωL)z = ((1− ω)D − ωU)z + ωb.

If D + ωL is invertible, the unknown vector z is a fixed point of the linear
transformation

ζ 7→ (D + ωL)−1(((1− ω)D − ωU)ζ + ωb). (5.112)

Iteration of this transformation starting from an arbitrary initial guess z0

defines the numerical method. This iteration process is sometimes called
successive overrelaxation (SOR). More precisely, the process is called an
overrelaxation method if ω > 1, an underrelaxation method if ω < 1, and
the Gauss–Seidel method if ω = 1.

Eq. (5.112) requires the matrix

S := D + ωL
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to be invertible, which is the case if and only if every element on its
main diagonal is not zero. In general, the inversion of matrices should
be avoided in numerical computation because the number of operations
required to invert a matrix increases rapidly with its size. In fact, the number
of operations for inversion is on the order of n3 for an n × n matrix. In
contrast, the SOR method is practical because the required inversion of
a lower triangular matrix is accomplished simply and efficiently by back
substitution. Inspection of the matrix S reveals that the components of z in
the linear system

Sz = v,

where v is a given n-dimensional vector, are

z1 =
1

Sii
v1,

zi =
1

Sii
(vi −

i−1∑
j=1

Sijzj). (5.113)

In this scheme, z1 is used to solve for z2, z1 and z2 are used to solve for
z3, and so on; that is, the components of the solution are used to solve for
subsequent values as soon as they are obtained. For this reason, SOR is
expected to converge more rapidly than the naive iteration method defined
in Eq. (5.108). In the SOR iteration scheme [Eq. (5.113)],

Sii = aii, Sij = ωaij .

To implement SOR, choose an initial approximation z0 and compute
successive approximations zk in two steps:

vk : = [(1− ω)D − ωU ]zk + ωb,

(D + ωL)zk+1 = vk. (5.114)

The components vki , i = 1, 2, 3, . . . n, of vk are

vki = (1− ω)aiiz
k
i − ω

n∑
j=i+1

aijz
k
j + ωbi, (5.115)

and the second step is completed using the back substitution formulas of the
SOR iteration [Eq. (5.113)].
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h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 1.93461 1.93451 1.93497 1.92266
∆t = 1/8 1.96882 1.96848 1.96688 2.00855
∆t = 1/16 1.98589 1.98510 1.98407 1.83655
∆t = 1/32 1.99551 1.99388 1.99383 2.07241
∆t = 1/64 2.0028 1.99951 1.99816 2.01279
∆t = 1/128 2.01155 2.00488 2.00157 2.00958

Table 5.12 The order estimates in this table are for an implementation of the Crank–Nicolson
method using the data of Problem 5.2 and the Gauss–Seidel iteration with the stopping
criterion: successive iterations that differ in Euclidean norm by less than 10−6. The floating
point numbers are computed for the average of the concentrations (u+v)/2 using Eq. (5.67).

The SOR algorithm will converge if the eigenvalues of the matrix

(D + ωL)−1((1− ω)D − ωU)

all lie inside the unit circle in the complex plane (see Exercise 5.64). To
obtain faster convergence, the parameter ω may be adjusted to make these
eigenvalues as close to zero as possible. An analysis of the structure of the
decomposition A = D + U + L or numerical computation of the required
eigenvalues in special cases might lead to a theorem that would ensure
convergence. Unfortunately, SOR does not converge for every n× n matrix
A.

The SOR method for the five-diagonal matrix A arising in the Crank–
Nicolson scheme (5.106) can be programmed so that only the nonzero
elements of the matrix are used (compare to Eq. (5.110)).

If A is a positive-definite and symmetric matrix and 0 < ω < 2, then the
spectrum of the matrix

(D + ωL)−1((1− ω)D − ωU)

lies in the open unit disk in the complex plane; hence, SOR converges
whenever A is a positive-definite symmetric matrix and ω is in this range
(see [114] and Exercise 5.66). In general, it is a difficult problem to
determine the optimal value of ω.

Computational results for Problem 5.2 using the Crank–Nicolson al-
gorithm, where the solutions of the corresponding matrix systems are
approximated using the Gauss–Seidel iteration (SOR with ω = 1 and
with the stopping criterion: successive iterations that differ in Euclidean
norm by less than 10−6) are reported in Tables 5.12 and 5.13. The order
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h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 0.00022356 0.00022363 0.00022355 0.00022420
∆t = 1/8 0.00005730 0.00005731 0.000057347 0.00005776
∆t = 1/16 0.00001450 0.00001451 0.000014569 0.00001497
∆t = 1/32 3.65× 10−6 3.65× 10−6 3.664× 10−6 4.14× 10−6

∆t = 1/64 9.1× 10−7 9.1× 10−7 9.2× 10−7 9.8× 10−7

∆t = 1/128 2.3× 10−7 2.3× 10−7 2.3× 10−7 2.4× 10−7

Table 5.13 The error estimates in this table are for an implementation of the Crank–Nicolson
method using the data of Problem 5.2 and Gauss–Seidel iteration with the stopping criterion:
successive iterations that differ in Euclidean norm by less than 10−6. The floating point
numbers are computed by averaging the absolute error estimates [Eq. (5.69)] corresponding
to the two concentrations.

h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 1.20052 2.97511 1.97269 2.06121
∆t = 1/8 1.42807 4.57200 2.17178 -0.457879
∆t = 1/16 1.65060 0.41385 1.94150 0.03870
∆t = 1/32 0.99641 1.79209 1.96255 3.38090
∆t = 1/64 4.77933 1.94427 1.98211 3.95762
∆t = 1/128 -4.55519 1.97100 1.99247 1.69587

Table 5.14 The order estimates in this table are for an implementation of the Crank–Nicolson
method using the data of Problem 5.1 and Gauss–Seidel iteration with the stopping criterion:
successive iterations that differ in Euclidean norm by less than 10−6. The floating point
numbers are computed for the average of the concentrations (u+ v)/2 using Eq. (5.67).

estimates in Table 5.12 suggest that this implementation of the algorithm
is performing as expected at order two in time. The computed value of
the average over both concentrations is consistently computed (over the
viable grid and step sizes) to be 0.453021. The averaged u concentration
is consistently 0.808316 and the averaged v concentration is 0.0977254.
These values agree with the values obtained using the forward Euler method
reported on page 150. We can have a high level of confidence that these
values are within 1% of the exact corresponding values.

Computational results for Problem 5.1, using the Crank–Nicolson al-
gorithm and Gauss–Seidel iteration, are reported in Tables 5.14 and 5.15.
The order estimates in Table 5.14 suggest that this implementation of the
algorithm is performing at the expected order two in time. The computed
values of the averages over both concentrations converge, and these values
are in good agreement with the values obtained by the forward Euler
method. Perhaps the most trustworthy results are for the 128 × 128 grid
with ∆t = 1/4. The corresponding computed value for the averaged u
concentration is 0.531848 and the averaged v concentration is 0.139837.
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h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 3.42×10−9 1.91×10−3 2.42×10−3 2.08×10−3

∆t = 1/8 1.70×10−9 4.80×10−4 5.63×10−4 1.00×10−3

∆t = 1/16 8.49×10−10 1.20×10−4 1.43×10−4 8.21×10−4

∆t = 1/32 4.24×10−10 3.01×10−5 3.60×10−5 1.06×10−4

∆t = 1/64 2.11×10−10 7.54×10−6 9.05×10−6 3.00×10−5

∆t = 1/128 1.07×10−10 1.89×10−6 2.97×10−6 1.40×10−5

Table 5.15 The error estimates in this table are for an implementation of the Crank–Nicolson
method using the data of Problem 5.1 and Gauss–Seidel iteration with the stopping criterion:
successive iterations that differ in Euclidean norm by less than 10−6. The floating point
numbers are computed by averaging the absolute error estimates [Eq. (5.69)] corresponding
to the two concentrations.

h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 0.485018 0.463835 0.352109 0.335842
∆t = 1/8 0.485018 0.463835 0.352000 0.335848
∆t = 1/16 0.485018 0.463835 0.352098 0.335842
∆t = 1/32 0.485018 0.463835 0.352097 0.335842
∆t = 1/64 0.485018 0.463835 0.352097 0.335842
∆t = 1/128 0.485018 0.463835 0.352097 0.335842

Table 5.16 The average concentrations in this table are for an implementation of the Crank–
Nicolson method using the data of Problem 5.1 and Gauss–Seidel iteration with the stopping
criterion: successive iterations that differ in Euclidean norm by less than 10−6. The floating
point numbers are the computed averages of the concentrations (u+ v)/2.

These values also agree with the values obtained using the forward Euler
method reported on page 150. The confidence level for these results extends
to two or three decimal places at best.

How can more accurate results be obtained for Problem 5.1?

As already mentioned, a viable alternative is to use the trapezoidal
method together with Newton’s method to approximate the reaction terms.

A direct method (some adapted form of Gaussian elimination) could
be used to solve the large linear systems that arise in the Crank–Nicolson
algorithm to try to avoid errors due to iteration. The immediate difficultly
(which can be overcome) is to write code that incorporates the banded
matrix structure into the method. Recall that a banded n × n matrix has
all components aij equal to zero whenever |i − j| > m for some m < n.
In other words, the nonzero components are confined to a diagonal band
parallel to the main diagonal.
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More accurate approximations for the boundary conditions could be
employed; for example, an approximation based on the formula

F ′(a) =
1

12∆x
(F (a− 2∆x)− 8F (a−∆x) + 8F (a+ ∆x)− F (a+ 2∆x))

+O(∆x2). (5.116)

Another idea is to use a more accurate spatial discretization instead of
centered differences to approximate second derivatives. For instance, there
are higher-order approximations based on the formula

F ′′(a) = − 1

12∆x2
(F (a− 2∆x)− 16F (a−∆x) + 30F (x),

− 16F (a+ ∆x) + F (a+ 2∆x)) +O(∆x4), (5.117)

which is an alternate form of Eq. (5.63) (see Exercise 5.70).

Of course, there are many other methods to try. Can you devise a method
that produces more accurate results for Problem 5.1?

Exercise 5.46. Suppose that f : Rn → Rn is a smooth function. Prove that the initial
value problem u̇ = f(u), u(0) = u0 is equivalent to the integral equation

u(t) = u0 +

∫ t

0

f(u(s)) ds.

Exercise 5.47. Suppose that the local truncation error with discretization step size h
for some method is O(hn+1). Assume that the global error for the computation is the
number of steps times the error per step. In case the computation is carried out over an
interval of length L, show that the global error is proportional to Lhn; that is, the global
error is O(hn).

Exercise 5.48. Prove that Newton’s method is quadratically convergent. Hint: Write
the Newton iteration scheme as a function so that xk+1 = F (xk) and use the Taylor
series approximation for F at the fixed point of F .

Exercise 5.49. (a) Derive the vector form of Newton’s method and use it to write a
numerical code formulated to approximate the rest points of the system of ODEs given
by

U̇ij = ε(Ui+1,j − 2Ui,j + Ui−1,j + Ui,j+1 − 2Ui,j + Ui,j−1)

− Ui,jV 2
i,j + F (1− Uij),

V̇ij = µ(Vi+1,j − 2Vi,j + Vi−1,j + Vi,j+1 − 2Vi,j + Vi,j−1)

+ Ui,jV
2
i,j − (F + κ)Vij ,
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for i = 1, 2, 3, . . .m and j = 1, 2, 3, . . . n. Check that your implementation of Newton’s
method is quadratically convergent. (b) Find all the rest points in case λ = 2.0× 10−5,
µ = 10−5, κ = 0.05, F = 0.02725, m = 32, and n = 32. (c) Repeat part (b) for m =

n = 64, 128, and, 256. Check for convergence of the rest points to values independent
of the choice of the grid size.

Exercise 5.50. Recall Exercise 2.17 concerning the ODE

ẋ = 1, ẏ = axy,

where a is a parameter. The solution of the initial value problem with data x(0) = y(0) =

−1 has the exact value (x(2), y(2)) = (1,−1) at t = 2 independent of a. Apply forward
Euler, backward Euler, improved Euler, and the trapezoidal method to this ODE, and
determine the largest value of a for which each of your numerical codes returns the
correct answer.

Exercise 5.51. An alternative to Newton’s method for vector functions is “Newton’s
method one variable at a time (NOVAT).” Suppose we wish to apply Newton’s method
to find a zero of the function f : Rn → Rn and this function is given in coordinates by

y1 = f1(x1, x2, . . . , xn), y2 = f2(x1, x2, . . . , xn), . . . , yn = fn(x1, x2, . . . , xn).

The alternative iteration scheme is

xk+1
1 = xk1 −

f1(xk1, x
k
2, . . . , x

k
n)

∂f1

∂x1
(xk1, x

k
2, . . . , x

k
n)
,

xk+1
2 = xk2 −

f2(xk+1
1 , xk2, . . . , x

k
n)

∂f2

∂x2
(xk+1

1 , xk2, . . . , x
k
n)
,

...

xk+1
n = xkn −

f2(xk+1
1 , xk+1

2 , . . . , xk+1
n−1, x

k
n)

∂fn
∂xn

(xk+1
1 , xk+1

2 , . . . , xk+1
n−1, x

k
n)
.

(a) Write code to implement NOVAT and test its convergence rate on several examples
where the root is known in advance. Does it converge quadratically? Report your results.
(b) Code an ODE solver using the trapezoidal method and NOVAT to solve the implicit
equation for the updated state variable. Apply your code to several ODE systems and
report your result. (c) Show that this version of Newton’s method applied to a linear
system Ax = b produces Gauss–Seidel iteration. (d) Construct an example where
Newton’s method converges but NOVAT does not. (e) Is there an example where NOVAT
converges but Newton’s method does not? (f) Determine the criterion for convergence
of NOVAT.

Exercise 5.52. Test the code for Exercise 5.51 on the ODE of Exercise 2.17. Compare
the results obtained with the improved Euler method.
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Exercise 5.53. Consider a test example for root finding: Let n be an even integer and
consider the system of n equations given, for i = 1, 2, 3, . . . , n, by

(xi − 1)(x2
n−i+1 + xn−i+1 + 3) = 0. (5.118)

The system has real root xi = 1. (a) Write a numerical code to implement Newton’s
method for this system of equations. Make a graph showing the number of iterations
your code takes (starting at x = 0) to converge to the root (with absolute error less than
10−5) as a function of n. How large can you make n so that your algorithm running
on your computer finishes in less than one minute of CPU time? (b) Write a NOVAT
code, as in Exercise 5.51 and repeat the test in part (a). (c) Approximate the Jacobian
matrix using function evaluations (via the definition of the derivative as in Eq. (19.34))
and repeat the test in part (a). (d) Read Appendix A.14, write a code implementing
Broyden’s method, and repeat the test in part (a). This part requires more advanced
coding experience. As an alternative, use the open source codes LAPACK and BLAS.
These are state-of-the-art standards for linear algebra computations and solving systems
of linear equations. (e) Discuss your findings. (f) Modify the system of equations or the
other conditions in some interesting manner, which you must explain, and repeat parts
(a)–(e). For example, what happens if the leading factor in each equation is changed to
(xi − 1)2? (g) What happens if n is odd?

Exercise 5.54. (a) Working definition: An ODE with solutions that converge (or
diverge) exponentially fast to (or from) other solutions is called stiff. There is no
universally accepted definition of stiffness. An alternative definition might be the
following: An ODE is stiff if some numerical methods require small step sizes to make
accurate approximations of some of its solutions. The simplest example of a stiff ODE
is ẋ = λx, where λ 6= 0. If λ is negative, then all solutions approach the zero solution
exponentially fast. Write the formulas and prove this fact. We may gain some insight on
the performance of ODE solvers on stiff equations by applying them to this equation.
For the analysis, it suffices to consider the solution of the ODE with initial condition
x(0) = 1. Show that Euler’s method applied to the test ODE gives the iteration scheme
xk+1 = (1 + λ∆t)xk. In case λ < 0, we know the solution decays. Show that the Euler
approximation will decay if and only if |1 + λ∆t| < 1 and that this puts a restriction
on the step size ∆t: the step size must be smaller than 2/|λ|. Thus, if λ is large, the
step size must be small to have a chance of making an accurate approximation. Show
that the same restriction applies in case λ > 0. An alternative view is the restriction
|λ∆t| < 2. The set of points z in the complex plane (which must be considered for some
more complicated examples) with |z| < 2 is called the region of absolute stability. (b)
Determine the region of absolute stability for the improved Euler method. (c) Show that
the region of absolute stability for the trapezoidal method is the entire complex plane;
that is, there is no restriction on the step size. This result tells us that the trapezoidal
method is useful to approximate solutions of stiff ODEs. It should perform well with
larger step sizes than will be required for the one-step methods we have discussed. The
trapezoidal method is a viable method for many stiff ODEs if the accuracy requirements
are not too restrictive. Higher-order methods have been devised for stiff equations. To
learn more, consult any book on the numerical analysis of ODE solvers. (d) Is the ODE
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in Exercise 2.17 stiff? Discuss your answer. (e) Consider the ODE

ẋ = λx− y − λ(x2 + y2)x, ẏ = x+ λy − λ(x2 + y2)y

with initial data (x(0), y(0)) = (ξ, 0). Derive the exact solution

x(t) =
ξeλt√

1 + ξ2(e2λt − 1)
cos t, y(t) =

ξeλt√
1 + ξ2(e2λt − 1)

sin t.

Hint: Change to polar coordinates and recall Bernoulli’s differential equation. (f) Show
that the ODE of part (e) is stiff. (g) Test codes for improved Euler and trapezoidal
integration with λ small (perhaps λ = 1) and big (perhaps λ = 10) and integration
from t = 0 until t = 6. Do both codes return the correct answer? What is the maximum
allowable step size for your codes to return an answer with relative error less than 1%?

Exercise 5.55. Write code for solving the Gray–Scott model using the Crank–
Nicolson method. Use Newton’s method to solve the nonlinear equations for the updates.
Apply the code to Problems 5.1 and 5.2.

Exercise 5.56. [Discrete Dynamical Systems] Consider the function G : Rn → Rn
as a dynamical system; that is, the initial state x = x0 in Rn evolves according to the
rule xk+1 = G(xk). A fixed point of G is a state x0 such that G(x0) = x0. A fixed
point is called stable if for each ε > 0 there is a δ > 0 such that all (forward) iterates of
every initial state in the (open) ball of radius δ centered at the fixed point are in the ball
of radius ε. A fixed point is called asymptotically stable if it is stable and, in addition,
if the sequence of iterates of every state starting in some ball of radius δ centered at the
fixed point converges to the fixed point. (a) Prove that a fixed point x0 is asymptotically
stable if n = 1 and |G′(x0)| < 1. (b) The function G(x) = x− α(x3 + x2 − x− 1) has
a fixed point at x = 1 for every α ∈ R. For which α is this fixed point asymptotically
stable? (c) Prove that a fixed point x0 is asymptotically stable if all the eigenvalues of
the derivative DG(x0) : Rn → Rn are in the open unit disk in the complex plane. (d)
Consider the two-dimensional iteration scheme for the function G defined by

G(φ, θ) = (φ+ a sinφ, θ + φ+ a sinφ)

defined on the (φ, θ) plane modulo 2π. This means a point starting in the square
[0, 2π] × [0, 2π] maps back into this set by reducing each component of the image to
the remainder when it is divided by 2π. This iteration scheme has been widely studied.
It is called the standard map. It has the physical interpretation as a model of the motion
of a kicked rotor, where θ is the rotation angle of the rotor and φ is the momentum
variable. The origin is a fixed point. Is it asymptotically stable for some values of the
parameter a? Plot 1000 iterates of the map on the same figure starting at several different
points chosen at random in the square and taken as initial values where a is fixed at some
point in the range [0.5, 1]. (e) Consider the second-order differential equation model for
the displacement x of the free end of a clamped beam under sinusoidal excitation:

ẍ+ εẋ− x+ x3 = a sin(2πt),
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where ε is the (positive) damping parameter and a is the positive amplitude of the
sinusoidal forcing. Rewrite the differential equation as a first-order system and set up
a code to compute the stroboscopic Poincaré map (see Exercise 5.29 for the definition).
Start with ε = 0.1 and a = 0.0. Does iteration of the Poincaré map converge to a fixed
point for some starting value? Same question for ε = 0.1 and a = 0.5. Hint: Perhaps
some graphs of orbits of the Poincaré map would give insight into the behavior of the
iteration scheme. A few hundred iterations of each initial state should be sufficient. (The
dynamics of this map has a rich structure that is worth exploring. Try some other choices
of the parameters.)

Exercise 5.57. (a) Show that Aitken’s ∆2 method applied to the sequence of iterates
of the function G defined by Eq. (5.100) with starting value x0 = 2 is not quadratically
convergent. (b) Show that Steffensen’s method applied to this sequence is quadratically
convergent. (c) It is possible to prove that Aitken’s ∆2 method applied to a sequence of
iterates of a function is superlinearally convergent; that is,

lim
k→∞

|Aitken(k + 1)− x∞|
|Aitken(k)− x∞| = 0.

Give some (convincing) numerical evidence for this fact.

Exercise 5.58. [ODE Nonlinear BVPs] Consider the following BVP: Find a solution
t 7→ φ(t) of the differential equation ẍ+ x− x3 = 0 that satisfies the conditions φ(0) =

0, φ(2) = 0, and φ(t) > 0 for 0 < t < 2. (a) Approximate the solution (is there
only one?) by the shooting method; that is, let t 7→ x(t, ξ) denote the solution of the
ODE such that x(0, ξ) = 0 and ẋ(0, ξ) = ξ. Use a numerical method to find a root
of the equation x(2, ξ) = 0. Suggestion: Draw the phase portrait of the ODE and use
it to determine a reasonable starting value ξ0. Perform some numerical experiments to
determine a value for λ so that the iterates of G(ξ) = ξ − λx(2, ξ) converge. Accelerate
the convergence using Steffensen’s method. Your code might be tested using instead the
ODE ẍ+ ẋ/10 + x = 1 so that exact solutions are available. Why is the right-hand side
of this test equation not set to zero? (b) Shoot with Newton’s method. Hint: Find the
required derivative by solving (numerically) a variational equation. (c) The suggested
methods in parts (a) and (b) may not be the best. Don’t shoot! Approximate the solution
of the BVP by discretizing in time with say N equally spaced subintervals on [0, 2],
write φk for the value of the desired solution at the kth node, use the discretization to
write one equation in these N variables at each node, and approximate a solution of the
resulting nonlinear system of N equations in N variables. (d) Discuss the accuracy and
efficiency of various methods for solving BVPs for ODEs. Perhaps you can find a new
method that is better than any known method.

Exercise 5.59. Show that the improved Euler method [Eq. (5.103)] is second order.

Exercise 5.60. (a) Prove that the nodes function defined by Eq. (5.105) is bijective.
(b) Show how to determine the formula for the nodes function by supposing the function
is affine and solving a system of linear equations.

Exercise 5.61. Consider the (x, y) data

(0, 0.09), (1/4, 0.12), (1/2, 0.16), (3/4, 0.20), (1, 0.26), (5/4, 0.32),
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(3/2, 0.39), (7/4, 0.46), (2, 0.54), (9/4, 0.61), (5/2, 0.68), (11/4, 0.75),

(3, 0.80), (13/4, 0.85), (7/2, 0.88), (15/4, 0.91), (4, 0.93), (17/4, 0.95),

(9/2, 0.96), (19/4, 0.97), (5, 0.98).

The theory underlying the experiment that produced the data implies that the data should
be on the graph of a function of the form

f(x, a, b) =
ea+bx

10 + ea+bx
,

where a and b are parameters. Use nonlinear regression to find the best constants a and
b. To do this, denote the data points with (xi, yi), for i = 1, . . . , 21, and define a new
function by

Γ(a, b) =

21∑
i=1

(yi − f(xi, a, b))
2.

The desired (a, b) is the minimum of Γ. To find this point, use calculus. Take the
derivative and set it equal to zero. Use Newton’s method to solve the resulting nonlinear
equations.

Exercise 5.62. Consider the (x, y) data

(250, 0.0967), (500, 0.159), (750, 0.201), (1000, 0.233), (1250, 0.257),

(1500, 0.276), (1750, 0.291), (2000, 0.305), (2250, 0.315), (2500, 0.325),

(2750, 0.333), (3000, 0.340), (3250, 0.346), (3500, 0.351), (3750, 0.356),

(4000, 0.360).

The theory (Michaelis–Menten kinetics) underlying the experiment that produced the
data implies that the data should be on the graph of a function of the form

f(x, a, b) =
ax

b+ x
,

where a and b are parameters. Use nonlinear regression, as in Exercise 5.61, to find the
best constants a and b.

Exercise 5.63. Find a nonsingular matrix A and a nonzero vector b such that there is
no choice of ω such that iteration of T , defined to be Tz = z − ω(Az − b), converges to
the solution of the linear system Az = b.

Exercise 5.64. (a) The iteration schemes mentioned in this chapter for approximating
solutions of Ax = b all have the general form xk+1 = Mxk + a, where M is an (n×n)

matrix and a is a given n-dimensional vector. Show that if the sequence xk produced by
the method converges, then the limit of the sequence satisfies the equation x = Mx+ a;
in other words, the limit is a fixed point of the map x 7→Mx+ a.
(b) Show: If M is a diagonal matrix and every eigenvalue of M has absolute value less
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than unity, then the iteration scheme converges for every starting point x0.
(c) Show: If M is a diagonalizable matrix and every eigenvalue of M has absolute value
less than unity, then the iteration scheme converges for every starting point x0.
(d) Show: If M is in Jordan canonical form and every eigenvalue of M has absolute
value less than unity, then the iteration scheme converges for every starting point x0.
(e) Show: If every eigenvalue of M has absolute value less than unity, then the iteration
scheme converges for every starting point x0.
(f) Show: In all cases, the fixed point is unique; that is, the same fixed point is obtained
independent of the starting point.
Hint: Define the error ek := x − xk, where x is the fixed point. Show that the desired
convergence follows if the sequence produced by ek+1 = Mek, independent of the
starting point e0, converges to zero. Also, the same is true if the sequence of matrices
Mk converges to zero.

Exercise 5.65. Is Newton’s method, which is quadratically convergent, a useful
choice for solving linear systems of equations?

Exercise 5.66. Many special properties of symmetric matrices can be used in
numerical methods. Consider solving Ax = b for a general matrix A. (a) Show that
the matrix ATA, where AT denotes the transpose of A, is symmetric. (b) Show that if
A is invertible, then ATA is positive-definite. (c) There are good results concerning
convergence of SOR for symmetric positive-definite matrices. Discuss the possible
utility of replacing the linear system Ax = b with ATAx = AT b in theory and using
numerical experiments.

Exercise 5.67. (a) Consider the Crank–Nicolson scheme applied to the heat equation
ut = κuxx on a finite interval with zero Dirichlet boundary conditions at the end of
the interval. Prove that this numerical method is unconditionally numerically stable. (b)
Repeat part (a) for zero Neumann boundary conditions.

Exercise 5.68. (a) Derive the backward Euler method for ẋ = f(x):

xk+1 = xk + ∆tf(xk+1).

(b) Show this method is first order. (c)Write a numerical code to implement backward
Euler that incorporates Newton’s method to solve for the state variable update at each
time step. (d) Repeat the computations for Problems 5.1 and 5.2 using the backward
Euler method and compare results obtained with the forward Euler method. (e) Apply
the backward Euler scheme to obtain a finite difference method for approximating
solutions of the heat equation ut = κuxx. Is the method unconditionally numerically
stable?

Exercise 5.69. Show that

ρ(DT ) =
2α

1 + 2α
, ω =

1

1 + 2α

in the context of Eq. (5.109). Hint: The maximum occurs at an end point of the interval
[1−α, 1+3α]. Draw graphs of the functions ω 7→ |1−(1−α)ω| and ω 7→ |1−(1+3α)ω|.
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Exercise 5.70. (a) Derive Eq. (5.116) directly from Taylor series approximations of
F . (b) Derive Eq. (5.117) directly from Taylor series approximations of F .

Exercise 5.71. Write a code to approximate solutions of the Gray–Scott model using
the Crank–Nicolson method with periodic boundary conditions, and compare the results
with those obtained using the forward Euler method.

Exercise 5.72. [Method of Lines] The method of lines is a useful numerical method
for some PDEs. For the case of reaction-diffusion equations, the idea is very simple:
Discretize in space but not in time and treat the resulting equations (one for each spatial
node) as a (perhaps large) system of ODEs (with time as the independent variable). The
forward Euler method, discussed previously in this text, is an example of the method
of lines where Euler’s method is used to solve the system of ODEs. More sophisticated
methods can be used to solve the ODEs. (a) Solve the BVP given by Eq. (5.56) by
the method of lines using the improved Euler (explicit) method to solve the resulting
systems of ODEs. (b) Solve Problem 5.2 by the method of lines using the improved
Euler (explicit) method to solve the system of ODEs. The next part of this problem
requires standard numerical methods for approximating the solutions of ODEs that are
not explained in this book, but are found in standard textbooks (see, for example, [12]).
(c) Solve the BVP given by Eqs. (5.56) by the method of lines using fourth-order Runge–
Kutta. (d) Solve the BVP given by Eqs. (5.56) by the method of lines using Runge–
Kutta–Fehlberg, a method that includes adaptive step size control. (e) Solve the BVP
given by Eqs. (5.56) by the method of lines using a fourth-order (Adams) predictor-
corrector, a multistep method that uses several previously computed steps. (f) Solve the
BVP given by Eqs. (5.56) by the method of lines using your favorite ODE integration
method. In all cases, compare numerical results (accuracy, stability, and efficiency)
relative to previously coded methods.

Exercise 5.73. Implement Steffensen’s method (incorporating the ideas discussed on
page 177) to solve five-diagonal (m + 1)2 × (m + 1)2 matrix systems Ax = b whose
nonzero diagonals are the main diagonal of A, the lower (m+1)st diagonal, the lower
first diagonal, the upper first diagonal, and the upper (m+1)st diagonal. (a) Use your
code to solve the system Ax = b, where the components of the vector b are all equal to
1, all components on the main diagonal of A are equal to 5 and all elements on the lower
(m+1)st diagonal, the lower first diagonal, the upper first diagonal, and the upper (m+1)st
diagonal are equal to 1. (b) Incorporate Steffensen’s method into a Crank–Nicolson code
and use it to solve the BVP given by Eqs. (5.56).

Exercise 5.74. Jacobi’s method for approximating solutions of Ax = b is obtained
by splitting the system matrix as A = D + (L+ U), where D is the main diagonal and
L+U is the off diagonal part of the matrix (which for lack of a better notation, is written
here as the sum of the strict lower L and upper U triangular parts of A). The iterative
method is simply obtained by moving the off diagonal part to the right-hand side:

Dxk+1 = b− (L+ U)xk.
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(a) Show that this method is given in components by

xk+1
i =

1

aii
(b−

∑
j 6=i

aijx
k
j ).

(b) Write the Gauss–Seidel method in components.
(c) Discuss the statement: “The Jacobi method programed badly is Gauss–Seidel.” Hint:
Think about mathematical = and computer code =, which often means replacement.
(d) Set up and run tests to compare the number of iterations required to achieve some
prespecified accuracy for Jacobi and Gauss–Seidel iteration. Report on your results.

Exercise 5.75. Recall the two-dimensional Oregonator reaction model [Eqs. (4.39)].
Add diffusion and explore spatial pattern formation for this model using the methods
developed in this chapter.

Exercise 5.76. Suppose that the current dimensionless concentration of a substance u
in space is u(w, t) at the dimensionless spatial position w = (x, y, z) and dimensionless
time t. Suppose the measured current concentration is approximately

z(1− e−(1−x2−y2))

(1 + z2)2

for w in the half cylinder {(x, y, z) : x2 + y2 ≤ 1, z ≥ 0} and zero everywhere else. The
process that led to the current state is believed to be modeled by the three-dimensional
diffusion equation ut = 1

2∆u. Determine the dimensionless concentration at the point
w = (1, 0, 2) at time t = −1. Hint: Solutions of the diffusion equation do not make
sense for negative time. To treat the problem, consider the process beginning at time
t = −1 and moving forward to time zero. Alternatively, reverse the direction of time in
the dynamical equation; that is, work with the PDE ut = − 1

2∆u. Although it is possible
to use the numerical methods developed in this chapter to obtain an approximation of
the desired value, alternative methods are more efficient. The key result states that the
solution of ut = k∆u with bounded continuous initial data u(w, 0) = f(w) is

u(w, t) =

∫
R3

K(w − ω)f(ω) dω,

where K, called the heat kernel (or diffusion kernel), is given in n-dimensional space by

K(p) =
1

(4πkt)n/2
e−|p|

2/(4kt).

The desired concentration value may now be determined by approximating an integral
over three-dimensional space. A numerical method that is widely used due to its simplic-
ity is Monte Carlo integration. Suppose we desire the value of the integral

∫ b
a
g(x) dx.

We may use a random number generator to generate a finite sequence {xj}Nj=1 of
(uniformly distributed) random numbers in the interval [a, b]. An approximate value of
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the integral is given by ∫ b

a

g(x) dx ≈ b− a
N

N∑
j=1

g(xj).

Try this method on a few test cases to convince yourself that it gives reasonable
approximations and discuss why the method should work. The integral of the heat
kernel (for all k and t such that kt > 0) over all of space is exactly one. Check this
by Monte Carlo integration. (A better way to apply Monte Carlo integration in this case
is to notice the relation between the heat kernel and the normal distribution function
from probability theory.) Use Monte Carlo integration to solve the original problem.
Check the result by using an alternative method to approximate the solution of the heat
equation.

Exercise 5.77. [Modeling Project] According to folklore, starting a fire in a fireplace
warms the room in which the fireplace resides and cools the outlying rooms. The
mechanism for this process is the movement of air required by the fire. Air from the
outlying rooms used by the fire is replaced by cold outside air. Develop a mathematical
model to describe this physical situation and determine to what extent this bit of folklore
is true.

Exercise 5.78. (a) Revisit Exercise 5.41 using a second-order in time method.
Approximate the sensor output for the model given by Eqs. (5.74). In particular,
determine the length of time in hours until the sensor output is 2.0 mg /L. (b) Compare
and contrast simulated sensor output and the efficiency of your code relative to Euler’s
method for time stepping. In particular, discuss the time-step sizes that may be used in
these simulations.

Exercise 5.79. Revisit Exercise 5.42 using a second-order in time method. (a) How
long is the transient in hours measured from the instant the flow starts until the root mean
square distance of the density profile in the porous block is within 1% of the steady state
density profile. Compare and contrast simulated sensor output and efficiency of your
code relative to Euler’s method for time stepping. In particular, discuss the time-step
sizes that may be used in these simulations.



CHAPTER 66
Excitable Media: Transport of Electrical Signals
on Neurons

One of the most important discoveries of the 20th century in biophysics
is the understanding of how nerves transmit information: the transport
of ions of sodium and potassium (also sodium and calcium) across the
outer membrane of a nerve cell is responsible for electrical signals that
may propagate in traveling waves along the membrane after an appropriate
stimulation. Alan Hodgkin and Andrew Huxley (working in the early 1950s)
described the biological basis of the ion transport, created a mathematical
model, and explained experimental data on electrical signals excited in squid
giant axons; they were awarded the Nobel Prize in Physiology or Medicine
in 1963.

The original Hodgkin–Huxley model is a system of four ordinary
differential equations (ODEs). It was not meant as a predictive model as
it does not include the details of the ion transport. The utility of the model
lies in its aid to understanding the qualitative behavior of signals on neurons.
Simplifications of the basic model, modifications for other excitable media
(for example, muscle cells), and spatial dependence have been extensively
investigated. One of the most influential simplifications of the Hodgkin–
Huxley model was introduced by Richard FitzHugh, who also pioneered its
mathematical and numerical analysis. An electric circuit analog for a similar
model was constructed by Jin-Ichi Nagumo. Their two-state model—which
is still widely used in the study of neural networks—describes the qualitative
electrical behavior of stimulated nerve cells. We will investigate this model.

Excitable media in biology are far from being completely understood.
Much contemporary work is focused on ion transport. Living membranes
contain a variety of ion channels (across the membrane) that are selective to
specific ions. The transport mechanisms and the switches that open and close
ion channels are fundamental to the function of many biological processes.
Also, networks of nerve cells and other excitable media are ubiquitous in
biology. The study of such networks may lead to an understanding of how
the brain works. Mathematics is playing an increasingly important role in
this area of interdisciplinary research.
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Fig. 6.1 The FitzHugh–Nagumo circuit.

6.1 THE FITZHUGH–NAGUMO MODEL

The FitzHugh–Nagumo model treats the nerve membrane as the electric
circuit depicted in Fig. 6.1. The differential equations for the important
states, the voltage VD across the diode, and the current through the inductor
IL are obtained using standard circuit theory.

An electric circuit is a network of electrical components (capacitors,
resistors, inductors, diodes, transistors, batteries, and so on) connected by
wires. In this context, the basic physics of electromagnetism, which is
encoded in Maxwell’s laws and the Lorentz force law, may be simplified
to a few basic rules that are most often used to approximate the currents and
voltages in an electrical circuit.

Current I is defined to be the rate of change of charge Q with respect to
time:

dQ

dt
= I.

The magnitude of a current is measured in amperes; the sign of the current
determines the direction of the flow of electrons. For historical reasons—
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Benjamin Franklin being responsible—the direction of a current in a circuit
is usually taken to be opposite to the direction of the flow of electrons.

An electron carries one unit of negative electric charge. A proton carries
a unit of positive charge. Two charged particles attract or repel according
to Coulomb’s law: the magnitude of the force on a charged particle due
to a second charged particle is proportional to the product of the charges
and inversely proportional to the square of the distance between them. The
direction of the force is from the charged particle toward the second charge;
that is, the force on charge q1 at position r1 due to the charge q2 at position
r2 is

Coulomb force on q1 = k
q1q2

|r1 − r2|3
(r1 − r2),

where k is Coulomb’s constant. The force on q2 due to the presence of q1

is the negative of the force on q1 due to q2. Charged particles with the same
signs repel; charged particles with opposite signs attract.

A static charge (no motion relative to an inertial coordinate system)
produces an electric field

E = ∇φ

where

φ = k
q

r

is called the electric potential and r is the distance from the charge that
produces the field. The field of a collection of charges is the sum of the
(vector) fields produced by each charge in the collection. A test charge (a
particle with small charge) interacts with an electric field. In case the electric
field E is static, negative test charges (electrons) move from positions of
high potential to positions with lower potential. Positive charges move in
the opposite direction. The equation of motion (when the particle is moving
slowly relative to the speed of light) is given by the force law

m
dv

dt
= qE,

where m is the mass of the particle, v its velocity, and q its charge.

Voltage is a scalar (measured in volts) defined to be the potential
difference at two positions in an electric field. Note that, because we
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differentiate the potential to obtain the electric field, the electric potential
is defined up to the addition of a constant.

The electric field produced by moving charges is complicated. In this
case electricity and magnetism are entwined, and an electromagnetic field is
produced that consists of an electric field E and a magnetic field B. A test
particle moves according to the Lorentz force law

m
dv

dt
= q(E + v ×B).

Well almost. . . . When a charge moves in an electric field, the field that the
charge produces also acts on the particle. This leads to serious complica-
tions, which are not completely understood. These facts are mentioned to
give an impression of what might be involved in fundamental models of
electric circuits and circuit elements.

Fortunately, for most practical applications, a useful approximation of
the fundamental field theory of electromagnetism can be used to analyze
electric circuits. In fact, much of the electromagnetic theory for currents and
voltages in wires connected into circuits is reduced to a basic assumption
and two simple rules due to Gustav Kirchhoff:

Basic Assumption The current in a wire is the same at all points along
the wire and through each two-terminal circuit element connected in
series along the wire.

Kirchhoff’s Current Rule The sum of the currents at a node in an electric
circuit (where two or more wires are joined) is zero.

Kirchhoff’s Voltage Rule The sum of the potential differences (voltages)
across circuit elements around every loop in a circuit is zero.

The basic assumption is reasonable provided the circuit elements are small
compared with the wave length of the electromagnetic waves produced by
the motion of the electrons in the circuit. More precisely, the speed of light
divided by the frequency of operation (which is the wave length) must be
much larger than the size of the circuit. The rule of thumb is to assume the
basic assumption is true when the wave length is at least 10 times the size
of the circuit. The current rule is essentially a statement of conservation of
charge; the voltage rule is a statement of conservation of energy.
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V
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Fig. 6.2 The figure depicts a schematic I-V relation for the diode in the FitzHugh–Nagumo circuit. The axes are offset
to show zero current through the diode for voltages across the device less than the threshold voltage at the position of
the vertical axis.

We are now ready to consider the currents and voltages in the FitzHugh–
Nagumo circuit. Although there are systematic ways to solve circuits, the
process for simple circuits is an application of Kirchhoff’s laws for enough
nodes and loops to obtain a closed system of differential equations. We begin
by assigning positive directions to the currents. The assigned directions
are not important as long as we remember that currents can be negative
(which simply means that the flow in the circuit might be opposite to some
of our choices). Circuit elements affect the current flowing though them.
The effect of each element in the FitzHugh–Nagumo circuit, a capacitor, a
tunnel diode, a resistor, an inductor, and a battery, is given mathematically
by a function that relates the current I flowing through the element and the
voltage V across it. These I-V relations are the building blocks of circuits.
The relations for the most basic elements are as follows:

Resistor The I-V relation is Ohm’s law V = IR, where R is a factor of
proportionality called the resistance.

Capacitor A capacitor is a storage device, which at a basic level stores
charge. The total charge Q produces a field such that the voltage
across the capacitor is V = Q/C, where the factor C is called the
capacitance. Using the definition of current as the rate of change of
charge, the I-V relation for a capacitor is

dV

dt
=
I

C
.
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Inductor An inductor is a coil of wire. Its effect is a result of Faraday’s law
of induction, which states that a nonzero current produces a magnetic
field. A magnetic field is produced in the space bounded by the coil
that opposes changes in the current through the coil. The I-V relation
in an inductor is

V = L
dI

dt
,

where the factor L is called the inductance. (Note: Faraday’s law is
symmetric: the motion of a magnet in the space bounded by the coil
produces a current in the coil. This is the basic principle underlying
the electric motor.)

Battery A battery is a storage device that produces a constant voltage
across its terminals.

Diode Diodes are circuit elements that cause currents to flow in a specified
direction. In modern circuits, diodes are semiconductor devices that
come in several varieties. Generally their I-V relations are nonlinear.
The diode in the FitzHugh–Nagumo circuit has an I-V relation in the
form of a cubic, as depicted in Fig. 6.2. The current through the diode
is zero for voltages across the diode that are less than the threshold
voltage indicated by the position of the vertical axis in the figure.

The top node of the FitzHugh–Nagumo circuit, with the current direc-
tions as in Fig. 6.1, is a junction of four wires that carry the currents IC
of the capacitor, ID of the diode, the induced current Î , and the current
through the circuit branch containing the resistor, inductor, and battery. By
Kirchhoff’s current rule, the current through each of the latter elements is
the same. Thus, we may choose the current through one of these elements
(for example, the current IL through the inductor) to represent the current in
the branch. With these choices, an application of the current rule yields the
relation

Î + IC = ID + IL.

Using the I-V relation for a capacitor and the relation ID = F (VD) for the
diode (where F is the function whose graph is depicted in Fig. 6.2), we have
the equation

Î + C
dVC
dt

= F (VD) + IL.
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Kirchhoff’s voltage rule applied to the leftmost loop in the circuit implies
that VC = −VD; therefore,

Î − CdVD
dt

= F (VD) + IL. (6.1)

The cubic shape of the I-V curve for the diode may be approximated by
shifting and lifting the cubic function given by g(z) = Az3 −Bz; that is,

F (VD) = g(VD − λ) + µ,

where A, B, λ, and µ are positive constants and VD exceeds the threshold
voltage for the diode. In the analysis to follow, the operating conditions will
always be assumed to exceed the threshold value.

We may now replace F (VD) in Eq. (6.1) to obtain

Î − CdVD
dt

= g(VD − λ) + µ+ IL

or

C
dVD
dt

= −g(VD − λ)− (µ+ IL) + Î . (6.2)

The voltage rule applied to the rightmost loop in the circuit yields the
relation

VD = VR + VL + VB.

The voltage across the resistor is RIR and the voltage across the inductor
is L(dIL/dt). Moreover, the current through the resistor is the same as the
current through the inductor. Thus we have the differential equation

L
dIL
dt

= VD −RIL − VB

or

L
dIL
dt

= VD −R(µ+ IL) +Rµ− VB. (6.3)
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With the change of variables V̂ = VD−λ and Ŵ = IL +µ, we have the
basic form of the circuit equations:

C
dV̂

dt
= BV̂ −AV̂ 3 − Ŵ + Î ,

L
dŴ

dt
= V̂ −RŴ + (λ+Rµ− VB). (6.4)

By scaling V̂ , Ŵ , and t to V , W , and s, respectively, this system can be
converted to the dimensionless form

dV

ds
= V − 1

3
V 3 −W + I,

dW

ds
= aV − bW + c, (6.5)

where a, b, and c are nonnegative constants (see Exercise 6.1).

The FitzHugh–Nagumo circuit is a model of the electrical activity at
a point on a neuron. The process of opening and closing ion channels is
modeled by diffusion of the voltage (corresponding to the dimensionless
state V ) along the neuron. For the FitzHugh–Nagumo model, the spatial
dependence is considered to be one-dimensional with respect to a measure
of distance x̂ in the axial direction of the neuron. As in heat conduction, the
mathematical model of diffusion is δ∂2VD/∂x̂

2, where δ is the diffusivity.
By adding this term to the right-hand side of the circuit model and scaling
of the spatial variable, we obtain the dimensionless form of the FitzHugh–
Nagumo equations:

∂V

∂s
=
∂2V

∂x2
+ V − 1

3
V 3 −W + I,

∂W

∂s
= aV − bW + c (6.6)

(see Exercise 6.2). The state variable V is a representation of the voltage;
it is also called the action or membrane potential, W is called the recovery
variable, and I is the stimulus. In keeping with tradition, we may forget that
the model is a dimensionless version of the original model and revert to the
usual time variable; that is, we will consider this PDE model in the form

∂V

∂t
=
∂2V

∂x2
+ V − 1

3
V 3 −W + I,
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Fig. 6.3 The left panel depicts a computer-generated phase portrait of ODE system (6.9) for the parameter values (6.8)
and stimulus I = 0 with the spiral sink at (V,W ) ≈ (−1.199,−0.624) marked with a disk. The right panel is a
V profile for a trajectory starting half a unit below the rest point.

∂W

∂t
= aV − bW + c, (6.7)

where we may imagine that t is the temporal independent variable and x is
the spatial variable.

The FitzHugh–Nagumo model is not meant to be predictive; rather, its
purpose is to capture the main qualitative features of the electrical activity
along a neuron. The most important prediction of the model (which agrees
with experiments) is the existence of a threshold stimulus impulse that
produces traveling voltage (and recovery) waves, which propagate away
from the spatial position of the stimulus. The membrane potential traveling
wave is the mechanism responsible for carrying information along the
neuron.

For definiteness, let us consider the case first explored by FitzHugh [39],
which for our version of the model has parameter values

a = 0.08, b = (0.08)(0.8), c = (0.08)(0.7). (6.8)

In this case,

a > b > c > 0

and each of these parameters is much smaller than 1.
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Fig. 6.4 The left panel depicts a computer-generated phase portrait of the ODE system (6.9) for the parameter
values (6.8) and stimulus I = 1 with the source at (V,W ) ≈ (0.409, 1.386) marked with a disk. The right
panel is a V profile for the periodic trajectory surrounding the rest point.
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Fig. 6.5 The left panel depicts a computer-generated phase portrait of the ODE system (6.9) for the parameter
values (6.8) and stimulus I = 2 with the source at (V,W ) ≈ (1.334, 2.543) marked with a disk. The right
panel is a V profile for a trajectory starting half a unit above the rest point.

Some insight is gained by analyzing the model without diffusion

V̇ = V − 1

3
V 3 −W + I,

Ẇ = aV − bW + c, (6.9)

which may be viewed as a model for the action potential and recovery
variable restricted to a single point along a neuron.

Fig. 6.3 depicts the phase portrait of ODE model (6.9) with stimulus
I = 0. Note the presence of the vertical isocline W = V − V 3/3 (the curve
in the phase plane where V̇ = 0). Away from this curve, V̇ is at least an
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order of magnitude larger than Ẇ because the parameters a, b, and c are
at least an order of magnitude smaller than 1 (which may be viewed as the
coefficient of the V component of the vector field). Thus, the flow below
the vertical isocline moves rapidly toward the right and the flow above it
moves rapidly toward the left. Because this isocline can be crossed in only
one direction in each of the half planes bounded by the horizontal isocline
W = (aV + c)/b, there is a layer near the horizontal isocline where the
flow moves relatively slowly and stays near the isocline. For example, a
solution starting on the negativeW -axis moves right and rapidly approaches
the vertical isocline. Similarly, solutions starting to the right of this isocline,
from about the same distance below the V -axis, move rapidly toward the
isocline in the opposite direction (right to left). As the flow is attracted from
both directions toward the isocline in this region, once a trajectory in the
phase plane is near the isocline it must stay near the isocline (where it moves
slowly) until it reaches the vicinity of the local maximum of this cubic
curve. Above this point in the phase plane, the trajectory moves rapidly left
until it reaches the vicinity of the vertical isochrone in the left half-plane.
The trajectory follows the isochrone downward until it reaches the vicinity
of the local minimum and then moves rapidly to the right again above its
starting point on the negative vertical axis. In other words, such an orbit is
spiraling inward. Solutions that start near and below the rest point (which
is a sink for the given parameter values), traverse a nearly closed loop as
described and are eventually confined to a small neighborhood of the rest
point. Thus, the rest point is their forward limit as the temporal parameter
goes to infinity. The behavior of the action potential (V -component) along
such a typical trajectory is also shown in the figure. Note the fast and slow
motions are reflected in the figure. Clearly, this system has two timescales:
one for solutions while they are near the vertical isocline and one when they
are away from this curve.

Fig. 6.4 depicts the phase portrait with stimulus I = 1. As the stimulus
is increased through a critical value (I ≈ 0.3313) at which the rest point
changes stability from a sink to a source (as a pair of complex conjugate
eigenvalues passing through the imaginary axis in the complex plane), a
stable limit cycle is produced via a Hopf bifurcation. The action potential V
corresponding to the limit cycle has multiple spikes. A second critical value
is reached as I is increased further and the limit cycle disappears in a Hopf
bifurcation.
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Fig. 6.5 depicts the phase portrait with stimulus I = 2 (which is larger
than the second critical value [see Exercise 6.4]), and a typical action
potential profile. The pulses (spikes) in voltage observed in the figures may
be interpreted as voltage changes induced by a stimulus at a site along a
neuron.

The basic scenario just described for changes in the phase portrait of
the ODE system (6.9) with respect to the parameter I can be proved without
assigning values to a, b, and c. Using the hypothesis b > a, simple arguments
show that there is exactly one rest point and the first component of its
coordinates increases with I (see Exercise 6.5). Examination of the signs
of the trace and determinate of the system matrix of the linearization as
functions of I shows that the determinant is always positive and thus the
sign of the trace determines the signs of the real parts of its eigenvalues. For
sufficiently negative I , the rest point is a sink. As I increases past a critical
value (exactly at the first value of I that makes the trace vanish), a pair of
complex conjugate eigenvalues cross the imaginary axis and a stable limit
cycle is born in a (supercritical) Hopf bifurcation. These eigenvalues move
back to the negative half of the complex plane as I increases past a second,
larger critical value where the trace vanishes. At this second critical value
the stable limit cycle dies in a (subcritical ) Hopf bifurcation.

Although the existence of a limit cycle in the spatially independent model
is not related directly to the biological application of the electrical activity of
neurons, the bifurcation analysis predicts that the nerve fires—which might
be taken to mean that the system has oscillatory behavior—over a closed
and bounded range of stimuli. Too small or too large stimuli do not cause
the nerve to fire; it relaxes to a rest state. This result gives a correct indication
of the predictions implied by the FitzHugh–Nagumo model, which includes
diffusion.

The FitzHugh–Nagumo equations (with diffusion) model the spatial
coupling among ion channels along a neuron. A stimulus with magnitude
larger than a threshold value (whose magnitude is not too large) produces
an action potential that moves as time increases, as depicted in Fig. 6.6.
The voltage pulse caused by the stimulus splits into two parts that move
left and right away from the spatial position of the stimulus. This wave of
voltage (the action potential) represents a bit of information carried along
a neuron. The resting neuron transmits 0; the fired neuron transmits 1. At
a fundamental level the confirmation of this observation in experiments
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Fig. 6.6 The upper left panel depicts an approximation of the action potential (lower graph) and the recovery variable
(upper graph) at t = 0.84 for the FitzHugh–Nagumo model (6.7) with the parameter values (6.8). The stimulus I is
given by I(x, t) = 0.69 for |x| < 5 and 0 ≤ t ≤ 1 and by I(x, t) = 0 otherwise, the initial V and W are
set equal to their rest state values (approximately (−1.199,−0.624)), and Dirichlet boundary conditions are set at
±50 equal to these rest state values. The panels left to right and top to bottom depict the action potential and recovery
variable at t = 0.84, 10.5, 16.8, 24.5, 35, and 56.
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Fig. 6.7 The upper left panel depicts an approximation of the action potential (lower graph) and the recovery variable
(upper graph) at t = 0.07 for the FitzHugh–Nagumo model (6.7) with parameter values (6.8). The stimulus is I = 0;
the initial V is given by V = 1 for x < −40, (V0 − 1.0)(x + 30)/10 + V0 for −40 ≤ x ≤ −30 with
V0 ≈ −1.199 (the corresponding ODE steady state first component), and V = V0 for x > −30; the initial W
is set to its ODE (6.9) rest state value (approximately −0.624); and Dirichlet boundary conditions are set at ±50,
which are equal to the ODE rest state values. The panels left to right and top to bottom depict the action potential and
recovery variable at t = 0.84, 2.8, 11.2, 14, 56, and 70.

with living neurons explains how electrical activity carries information in
organisms with nerves.

As in the example depicted in Fig. 6.7, a sufficiently strong stimulus that
spreads to one end of the nerve axon produces an action potential front that
moves away from the stimulated region. The front in the figure seems to
converge to a fixed profile; that is, it seems to converge to a traveling wave
solution of the partial differential equation (PDE).

Recall that a solution (V,W ) of the PDE model (6.7) is called a traveling
wave if there are two functions f and g and a number γ 6= 0, called the
wave speed, such that V (x, t) = f(x − γt) and W (x, t) = g(x − γt).
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The pair (f, g) is called the wave profile. We will assume that γ > 0 so
that the solution is in the form of a wave traveling to the right along the
x-axis with speed γ. The expected physical wave is in the form of a pulse,
which is defined as a traveling wave solution such that V converges to the
same fixed value as |x − γt| grows to infinity, and W behaves the same
way except that the values at infinity may be different from the values of
V . For our biological application, these values at infinity are the rest state
values (V0,W0) given by the coordinates of the rest point of ODE (6.9);
they correspond to the rest state of the nerve, which is the corresponding
spatially constant solution of the PDE. The state of the nerve is resting
before stimulus, a traveling pulse after stimulation, and relaxation to rest
after firing.

The natural setting for the existence of a traveling wave solution
(which must be a solution of the PDE defined on the whole real line)
is the PDE model (6.7) with zero stimulus and the boundary conditions
(V (x, t),W (x, t))→ (V0,W0) as |t| → ∞.

To seek a traveling wave solution, substitute V (x, t) = f(x − γt) and
W (x, t) = g(x− γt) into the PDE, and seek solutions for f , g, and γ. This
substitution results in a family of ODEs parameterized by γ:

f ′′ + γf ′ + f − 1

3
f3 − g = 0,

γg′ + af − bg + c = 0 (6.10)

with independent variable s = x− ct. To satisfy the boundary conditions, a
solution is desired such that

lim
|s|→∞

(f(s), g(s)) = (V0,W0), (6.11)

where (V0,W0) is the rest point of the ODE model (6.9) with the same
parameter values. In this case, the wave profile is called a pulse; each
component f and g has the same values at s = ±∞. The new ODE (6.10)
is second-order; it is equivalent to the first-order system

u̇ = v,

v̇ = −γv − u+
1

3
u3 + w,

ẇ =
1

γ
(−au+ bw − c). (6.12)
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The point (V0,W0) corresponds to the steady state (u, v, w) = (V0, 0,W0)
for this system of ODEs. Thus, we seek a homoclinic orbit (a trajectory that
is asymptotic in forward and backward time to the same steady state) of this
three-dimensional system of ODEs.

Proof of the existence of traveling wave solutions for the three-
dimensional system (6.12) is much more complicated than for Fisher’s
equation: the new system of ODEs is three-dimensional instead of two-
dimensional and it is no longer true that there is a continuum of parameters
γ for which a traveling wave with the appropriate boundary conditions
exists. The reason is that homoclinic orbits are unstable to perturbations; in
contrast, heteroclinic orbits from a saddle to a sink are stable. Another way
to see the difficulty is simply by inspection of the differential equations.
There are three equations, but four unknowns: u, v, w, and γ. Thus, the
problem is underdetermined. When a new equation is added to make four
equations in four unknowns, solutions are expected to be isolated; that is,
there is likely to be a ball in four-dimensional space associated with each
solution such that no other solution is in the same ball. A viable solution
method is discussed in the next section.

Although traveling wave solutions for the FitzHugh–Nagumo model
illustrate the motion of action potentials on neurons, this model does not
explain the underlying mechanism of ion flow that creates the electrical
currents and voltage differences responsible for these waves. Modeling and
mathematics have important roles to play in understanding ion channel flows
at a fundamental level where electrodynamics, fluid flow, particle motions,
and the behavior of living tissue must be taken into account. At present,
theories of ion channel flow are not well developed.

Exercise 6.1. Determine a scaling of the state variables and time that converts
system (6.4) to the dimensionless form (6.5).

Exercise 6.2. Show that an appropriate rescaling after the addition of a diffusion term
to the first equation in system (6.4) yields the dimensionless equations (6.6).

Exercise 6.3. Reproduce Figs. (6.3)–(6.5).

Exercise 6.4. (a) Determine the values of the stimulus I, for system (6.9) with param-
eter values (6.8), for which Hopf bifurcations occur. (b) Using numerical experiments,
find the value of I for which the area bounded by the limit cycle is maximal.

Exercise 6.5. (a) Write a detailed proof of the Hopf bifurcation scenario described
on page 206. Assume that a Hopf bifurcation occurs if a pair of complex conjugate



Excitable Media 211

eigenvalues cross the imaginary axis. (b) Study a formulation (and proof) of the Hopf
bifurcation theorem (see, for example, [20]) and apply this theorem to prove that the
claimed Hopf bifurcations occur.

Exercise 6.6. Discuss via numerical experiments the dependence of the wave speed
on initial data for the FitzHugh–Nagumo model for waves determined as in Fig. 6.7 and
compare with Fisher’s model.

Exercise 6.7. Design and perform a numerical experiment to determine homoclinic
solutions of the system (6.12) that does not use the methodology of Section 6.2. Hint:
One possibility is to locate a saddle point and try to adjust γ so that, for some fixed value
of this parameter, a solution on the unstable manifold of the saddle rest point returns to
this rest point on its stable manifold.

6.2 NUMERICAL TRAVELING WAVE PROFILES

A beautiful approach to the existence problem for traveling waves, which
will be briefly discussed here, has resulted in a far-reaching theory for the
existence and stability of several types of nonlinear waves in many different
models (see [13] for a useful introduction).

The first idea is to seek the profile of a traveling wave solution as a stable
steady state of a PDE. We may hope that solutions of such a PDE converge
as time goes to infinity to the desired steady state. In principle, we may then
choose initial data as we please and let the corresponding solution of the
PDE lead us to the traveling wave profile. This is a powerful idea in many
different contexts.

For the dimensionless FitzHugh–Nagumo model (6.7), the idea may be
implemented by introducing the family (depending on the parameter γ) of
new variables

ξ := x− γt, τ = t.

With the new functions

V̂ (ξ, τ) := V (ξ + γτ, τ), Ŵ (ξ, τ) := W (ξ + γτ, τ),

which are simply V and W in the new variables, PDE (6.7) (without the
stimulus because we are interested in long-term behavior only) is recast in
the form

∂V̂

∂τ
=
∂2V̂

∂ξ2
+ V̂ − 1

3
V̂ 3 − Ŵ + γ

∂V̂

∂ξ
,
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∂Ŵ

∂τ
= aV̂ − bŴ + c+ γ

∂Ŵ

∂ξ
. (6.13)

Note that, for a traveling wave solution of the FitzHugh–Nagumo equation,
the state variables have the form

V (x, t) = f(x− γt), W (x, t) = g(x− γt),

where f and g are the wave profiles for V and W , respectively. In view of
the new variable V̂ , for example, a traveling wave solution is given by

f(x− γt) = V̂ (x− γt, t),

or equivalently,

f(ξ) = V̂ (ξ, τ)

with the function ξ 7→ V̂ (ξ, τ) independent of τ . In other words, a steady
state solution of system (6.13), which has appropriate limits as ξ approaches
±∞ as in Eq. (6.11), is the profile of a traveling wave solution of the
dimensionless FitzHugh–Nagumo model (6.7) with wave speed γ. Indeed,
the steady state equation is exactly the system (6.10). Thus, after the change
of variables, steady states of the new system (6.13) are traveling wave
solutions of the original system (6.7).

We have not yet accomplished a full implementation of the first idea
because system (6.13) contains the free parameter γ. A remaining problem
is to determine values of this parameter so that there is a steady state
corresponding to a profile for a traveling wave solution of the original
FitzHugh–Nagumo model.

The next idea is natural once we view the evolution of system (6.13) in an
infinite-dimensional space of functions and consider what we are trying to
achieve. The (wave speed) parameter γ has to be allowed to evolve with time
so that its value might approach the fixed value that would correspond to an
appropriate steady state. The idea is to assign γ(τ), for each τ , so that the
square of the length of the vector field (the right-hand side of PDE (6.13))
is minimized. By minimizing this length, the velocity vector of the solution
would be as close to zero as possible at each τ as this temporal variable
increases toward infinity. Thus, the imposition of this constraint should push
solutions toward a steady state; that is, to a point in the function space where
the vector field is zero.
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Fig. 6.8 The lower left panel depicts a numerical approximation of the graph of a steady state for V̂ for the differential
algebraic system (6.13) and (6.15) for the finite interval (0, 130), the parameters given in Eqs. (6.8), and zero Neumann
boundary conditions. It is an approximation of the desired traveling wave profile. The right panel depicts a numerical
approximation of γ versus τ for the same system and initial data. The top panel depicts the initial V̂ used for the
numerical experiment. The initial Ŵ is set to the constant steady state value -0.62426.
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A vector field is a special type of function. What is meant by the length
of a function? One possibility (among many) is to define the length (more
often called the norm) of a function φ to be

‖φ‖ :=
(∫ ∞
−∞

(φ(ξ))2 dξ
)1/2

.

The function φ is called square integrable if the integral exists so that this
norm is finite. Mathematicians call this length the L2 norm; and, they call
a function, which has finite L2 norm, a square integrable function or an L2

function.

Although there are many possible norms, a major advantage of the L2

norm is that it is defined by an inner product on the vector space of all
square integrable (real valued) functions. Indeed, the L2 inner product for
two such functions φ and ψ is defined by

〈φ, ψ〉 :=

∫ ∞
−∞

φ(ξ)ψ(ξ) dξ

and the norm of φ is

‖φ‖ = 〈φ, φ〉1/2.

We may extend the L2 norm to vectors of functions in several ways.
Here, we will define the norm for the two-dimensional vector (φ, ψ) of L2

functions by

(‖φ‖2 + ‖ψ‖2)1/2.

Returning to our traveling wave problem, the idea is to add the condition
that the L2 norm of the vector field given by the right-hand side of
PDE (6.13) (viewed as an infinite-dimensional ODE) is minimized at each
τ with respect to γ. Equivalently, it suffices to minimize the square of the
norm. By taking advantage of the L2 inner product, the square of the norm
is given by the scalar expression

〈∂
2V̂

∂ξ2
+ V̂ − 1

3
V̂ 3 − Ŵ + γ

∂V̂

∂ξ
,
∂2V̂

∂ξ2
+ V̂ − 1

3
V̂ 3 − Ŵ + γ

∂V̂

∂ξ
〉

+ 〈aV̂ − bŴ + c+ γ
∂Ŵ

∂ξ
, aV̂ − bŴ + c+ γ

∂Ŵ

∂ξ
〉.
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The appropriate condition for an extreme point is obtained in the usual
manner: differentiate with respect to γ and set the derivative equal to zero.
The resulting equation is

0 = 〈∂V̂
∂ξ

,
∂2V̂

∂ξ2
+ V̂ − 1

3
V̂ 3−Ŵ +γ

∂V̂

∂ξ
〉+ 〈∂Ŵ

∂ξ
, aV̂ − bŴ + c+γ

∂Ŵ

∂ξ
〉.

(6.14)

We must impose boundary conditions at ξ = ±∞ to obtain unique
solutions of PDE (6.13) for given initial V̂ and Ŵ and fixed γ. Because the
method relies on state variables being L2 functions as τ increases, improper
integrals must converge on the whole real line. Inspection of the critical
point Eq. (6.14) reveals that space derivatives of the state variables must
also be square integrable. At a minimum, this requirement suggests that the
state variables V̂ and Ŵ together with their first partials with respect to
ξ must vanish in both directions with respect to ξ at infinity. The second
partial derivative of V̂ with respect to ξ also appears. Unfortunately, the
requirement that the state variables vanish at infinity is incompatible with the
properties of the desired steady state, a pulse traveling wave two-component
profile that has limiting value (V0,W0) at ξ = ±∞.

By ignoring the desired zero Dirichlet boundary conditions and simply
imposing zero Neumann boundary conditions at infinity, the critical point
Eq. (6.14) can be simplified. In fact, one term obtained by expanding the
inner products vanishes:

〈∂V̂
∂ξ

,
∂2V̂

∂ξ2
〉 =

∫ ∞
−∞

∂V̂

∂ξ

∂2V̂

∂ξ2
dx

= lim
ξ→∞

1

2

(∂V̂
∂ξ

)2
− lim
ξ→−∞

1

2

(∂V̂
∂ξ

)2

= 0.

For theoretical work, careful definitions of new function spaces is
required to study the existence, uniqueness, and asymptotic behavior of
solutions τ 7→ (V̂ (τ), Ŵ (τ), γ(τ)) of the system of equations consisting
of the PDEs (6.13), the constraint (6.14), and the zero Neumann boundary
conditions. In particular, the problem of finite limits of V̂ (τ) and Ŵ (τ) at
infinity must be resolved.
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For numerical experiments, the dynamical system must be restricted to a
finite interval, for example (0, L) for some L > 0. This restriction removes
the requirement that solutions vanish at ±∞. With zero Neumann boundary
conditions imposed at the ends of this interval, the L2 inner products
〈∂V̂∂ξ , ∂

2V̂
∂ξ2 〉 defined now so that integration is over the interval (0, L), vanish

just as they do on the infinite interval. Thus, the minimization constraint
(with some rearrangement) reduces to

0 = γ

∫ L

0

(∂V̂
∂ξ

)2
+
(∂Ŵ
∂ξ

)2
dξ +

∫ L

0
(V̂ − 1

3
V̂ 3 − Ŵ )

∂V̂

∂ξ
dξ

+

∫ L

0
(aV̂ − bŴ + c)

∂Ŵ

∂ξ
dξ. (6.15)

Fig. 6.8 shows some of the results of a numerical experiment to approxi-
mate the solution of the differential algebraic equation (DAE) system (6.13)
and (6.15) for the finite interval (0, 130), the parameters in display (6.8),
and zero Neumann boundary conditions. The initial configuration depicted
in the top panel evolves to a steady state in variables V̂ , Ŵ , and γ. An
approximation of the graph of V̂ at this steady state is shown. It is an
approximation to a traveling wave profile for the dimensionless FitzHugh–
Nagumo system, where the wave speed for the corresponding traveling wave
solution is the steady state value of γ ≈ 0.8168481086 (compare [13,
p. 101]). The initial configuration for this experiment was obtained by
evolving forward (to t = 13) the dimensionless FitzHugh–Nagumo solution
depicted in Fig. 6.7. The result of the experiment suggests that this initial
configuration is indeed close to a traveling wave solution with the computed
wave speed. The profile at t = 13 is not the same as the traveling wave
profile, but the profile of the long-time evolution of this initial configuration
seems to approach the traveling wave profile.

An interesting aspect of the effectiveness of the numerical method is
that the desired profile for the pulse traveling wave, which has the correct
(Dirichlet) end values, is obtained using Neumann boundary conditions;
the desired limits at ξ = ±∞ are not used. Note that the zero Neumann
conditions specify that the profile approaches a point where its derivative
vanishes at each end point. The steady state profile is the solution of an
autonomous ODE. Derivatives of solutions have zero limits when they
approach rest points. Thus, a solution with zero Neumann conditions may be
interpreted as the solution of an ODE that approaches a rest point in forward
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and backward time. In case there is only one rest point and the solution is
not constant, this behavior specifies a homoclinic orbit. This is precisely the
desired solution.

Unfortunately, the DAE system (6.13) and (6.15) has multiple (stable)
steady states. For example, in addition to the desired steady state approxi-
mated as in Fig. 6.8, the system has the constant steady state given by the
solutions of the algebraic equations

V̂ − 1

3
V̂ 3 − Ŵ = 0, aV̂ − bŴ + c = 0,

and γ arbitrary. At the parameter values specified in display (6.8), the con-
stant state is V̂ ≈ −1.19941 and Ŵ ≈ −0.62426. For the modification of
the numerical experiment reported in Fig. 6.8, where the initial configuration
is obtained in the same manner for t < 10, the system evolves to this
constant steady state. The upshot is that to obtain the desired traveling wave
profile, the initial profile cannot be too far away, or in other words, the initial
data must be in the basin of attraction of the desired steady state and this
basin of attraction is not the entire state space.

The approach to traveling wave profiles and wave speeds discussed here
is a powerful tool for theoretical and numerical work. But, at present, no
method is known for choosing initial profiles that ensures the DAE system
converges to a steady state corresponding to a desired unknown traveling
wave profile. It is wise to realize that a method can be useful without being
universally applicable.

Some basic numerical methods for differential algebraic systems are
suggested in the exercises.

Exercise 6.8. Consider differential algebraic systems of the form

ẋ = f(x, y), 0 = g(x, y)

with initial conditions x(0) = ξ and y(0) = η restricted so that g(ξ, η) = 0. Euler’s
method is easily modified to be a numerical method for such a system. Indeed, we may
approximate the evolution of the system with the discrete time process

xn+1 = xn + ∆tf(xn, yn), 0 = g(xn, yn+1)
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where x0 = ξ and y0 = η. (a) Analyze the proposed numerical method and write code
to implement the method. (b) Solve the DAE

ẋ = y, 0 = x+ 2y

with the initial condition x(0) = −2 and y(0) = 1. (c) Test your code against the
exact solution of the system in part (b). Is your code accurate to first order in ∆t? Hint:
Accuracy to first order means in effect that halving the step size halves the error. (d)
Compare the accuracy of the alternative numerical algorithm (the implicit trapezoidal
method)

xn+1 = xn +
∆t

2
(f(xn, yn) + f(xn+1, yn+1)), 0 = g(xn+1, yn+1)

to the accuracy of Euler’s method. (e) There are many other possible numerical methods.
An obvious alternative is to replace 0 = g(xn, yn+1) by 0 = g(xn+1, yn+1) in part (a).
Implement this method and discuss its accuracy and efficiency.

Exercise 6.9. (a) Repeat the numerical experiment reported in Fig. 6.8. Hint: The
numerical method of Exercise 6.8 is adequate provided the discretization in space is
second order. The integrals that appear in the algebraic constraint may be approximated
with sufficient accuracy by the trapezoidal rule. (b) Modify the experiment, by choosing
the initial voltage profile so that the system evolves to a constant steady state. Determine
the asymptotic value of γ as τ → ∞. (c) Repeat the experiment as in part (a) with the
usual second-order discretization of the second-order derivatives with respect to ξ, but
only first-order accurate discretizations of the first-order spatial derivatives. Does the
numerical simulation reach a steady state?

Exercise 6.10. Consider the differential equation eẋ + ẋ + x = 0. (a) Assume the
initial condition x(0) = 1. Find (numerically) x(1) correct to four decimal places. Hint:
Recast the ODE as a DAE. (b) Using numerical experiments, describe the long-term
behavior of the solution starting at x(0) = 0. (c) Prove (using pencil and paper) that the
solution of the ODE behaves as you predict in part (b). (d) Does your answer to part (c)
depend on the zero initial condition?

Exercise 6.11. Consider the DAE

ẋ = −x+ y − xz, ẏ = x+ y − yz, z3 − (x2 + y2)z − 1 = 0.

(a) Given the initial data x(0) = 0.5, y(0) = 0, and z(0) = 1, approximate z at time 6π.
(b) What can you say about the general behavior of solutions of this system?

Exercise 6.12. [Nonlinear Eigenvalue Problem via DAEs] The eigenvalue problem
for an n×n matrix A is to solve the nonlinear equation (A− γI)v = 0 for γ and v 6= 0.
Eigenvector-eigenvalue pairs are steady states of the ODE v̇ = (A − γI)v. We must
solve for both γ and v. An appropriate constraint is obtained by minimizing the square
of the length of v̇ over γ. This leads to the constraint 〈v, (A − γI)v〉 = 0 and suggests
integrating the differential algebraic system

v̇ = (A− γI)v, 0 = 〈v, (A− γI)v〉
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with state variables v and γ. If the solution approaches a steady state whose v component
does not vanish, then this steady state corresponds to an eigenvector-eigenvalue pair
for A. Analyze this approach with mathematical analysis and numerical experiments.
Notes: Start with 2× 2 matrices. Eigenvalues of real matrices can be complex numbers.
Perhaps, for this case, an augmentation of the dynamical system to include complex
state variables would be helpful.

Exercise 6.13. [Stability of Numerical ODE Solvers] One of the methods for testing
the stability of an ODE numerical method is to test it on the differential equation ẏ =

−λy to determine how errors might grow. (a) Consider Euler’s method and show that an
error ε in computing one time step grows (or decays) according to the formula z0 = ε

and zn+1 = (1 − ∆tλ)zn, which is exactly the Euler method applied to the ODE. (b)
Show that the method is stable on the test equation in case λ > 0 and ∆t < 2/λ. (c)
In textbooks on numerical analysis, λ is taken to be a complex number and the stability
criterion is |1 + ∆tλ| < 1, where the left-hand side is the modulus of the complex
number 1 + ∆tλ. Why are complex numbers considered? Hint: Consider the origin of
the numerical test. In the simplest case, the numerical method is given by yn+1 = F (yn)

where F is some function. For Euler applied to the ODE ẏ = f(y), the function F is
defined by F (y) := y+∆tf(y). Imagine that f is a vector function of a vector variable—
which is the case for a system of first-order ODEs—and note that the stability criterion
is related to the eigenvalues of the Jacobian matrix DF evaluated at an appropriate
point. The eigenvalues of a matrix can be complex. The test equation will arise if DF
were diagonal. A good answer to the question would consider the hints in writing a few
paragraphs describing in detail why the test equation is used. (d) Consider the stability
of the Euler method and the trapezoidal method using the test equation for a complex λ.

Exercise 6.14. [Numerical Pulse Type Traveling Waves] (a) Reconsider the numerical
experiment reported in Fig. 6.8 and Exercise 6.9. Write and use a numerical code
to approximate solutions of the corresponding DAE with nonzero Dirichlet boundary
conditions given by the desired constant steady state values V0 and W0 at the end points
of the interval (0, L) instead of zero Neumann boundary conditions. Ignore the use
of the zero Neumann boundary conditions to simplify the critical point equation. (b)
Repeat part (a) but recompute the critical point equation using only Dirichlet boundary
conditions. (c) The goal of the project is to determine the effectiveness of the DAE with
Dirichlet boundary conditions in approximating the profile of the desired pulse type
traveling wave profile. Write a report on the details of your code and your numerical
experiments.



CHAPTER 77
Splitting Methods

This chapter introduces an interesting and not completely understood
algorithm for approximating solutions of evolution equations based on the
idea of separating differential equations into sums of simpler equations.

7.1 A PRODUCT FORMULA

Let A be a matrix and define the matrix exponential of A by

eA = I +

∞∑
j=1

Aj

j!
, (7.1)

where I is the identity matrix. Also, let L(E) denote the finite-dimensional
vector space of all N ×N matrices. The infinite sum in Eq. (7.1) converges
(absolutely with respect to every norm on L(E)) and the matrix exponential
satisfies the usual rules of exponents except that

eA+B = eAeB

if and only if AB = BA (that is, the matrices A and B commute). Also,

d

dt
etA = AetA = etAA,

or in other words, the function t 7→ etA is the matrix solution of the initial
value problem

ẋ = Ax, x(0) = I.

These results are proved in textbooks on ordinary differential equations
(ODEs) (see, for example, [20]).

The next theorem is a special case of the Lie–Trotter product formula for
the exponential of a sum of two N ×N matrices when the matrices do not
necessarily commute (see [20] for a detailed proof).

Theorem 7.1. If γ : R → L(E) is a continuously differentiable function
with γ(0) = I and γ̇(0) = A, then the sequence {γn(t/n)}∞n=1 converges
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to exp(tA). In particular, if A and B are k×k matrices and γ(t) := etAetB ,
then

et(A+B) = lim
n→∞

(
e
t

n
Ae

t

n
B
)n
.

The solution of the initial value problem

ẋ = Ax+Bx, x(0) = x0 (7.2)

is

x(t) = et(A+B)x0.

But, this compact notation hides the infinite sum that is used to define
the matrix exponential. To obtain numerical values, this sum must be
approximated. A natural and viable way to proceed is to approximate the
exponential with a partial sum of its Taylor series, but this is certainly not
the only way (see [74]).

Suppose good approximation schemes are known for computing exp tA
and exp tB. How can they be used to compute exp(t(A + B))? There are
many possible answers. Here, methods are discussed for computing the
latter quantity based on the product formula. The results lead to numerical
methods that will be used later in this book for solving some partial
differential equations (PDEs ) (see the next section and Section 22.8).

Take n = 1 in the product formula to obtain the approximation

et(A+B) ≈ etAetB.

How much error does this introduce? To answer this question, simply
expand in Taylor series (with respect to t at t = 0) and subtract:

‖et(A+B) − etAetB‖ = ‖I + t(A+B) +
t

2!
(A+B)2

− (I + t(A+B) +
t2

2!
(A2 + 2AB +B2))‖+O(t3).

In the generic case where A and B do not commute, the second-order terms
do not cancel and the estimate reduces to

‖et(A+B) − etAetB‖ = O(t2).



Splitting Methods 223

Viewing this as a numerical algorithm to solve the initial value problem
(IVP) (7.2), we have a first-order method given by

x0 = x0, xk+1 = e∆tAe∆tBxk.

To obtain a second-order method, the idea is to cancel the second-order
terms in the Taylor series that appears in the error estimates. Note that for

γ(t) = et/2AetBet/2A

we have that γ(0) = I and γ̇(0) = A + B. Thus, this choice satisfies the
hypothesis of Theorem 7.1; moreover,

γ̈(0) = A2 +AB +BA+B2 = (A+B)2.

Thus, with this choice for γ, we have the estimate

‖et(A+B) − et/2AetBet/2A‖ = O(t3)

and the second-order numerical method

x0 = x0, xk+1 = e∆t/2Ae∆tBe∆t/2Axk. (7.3)

A fourth-order method can be obtained uisng Richardson extrapolation.
To accomplish this, note that one step of our second-order procedure is given
by

U(h) = eh/2AehBeh/2Ax0; (7.4)

it is the approximation of the solution of our ODE at t = h. With half the
step size, the solution is

U(
h

2
) = eh/4Aeh/2Beh/4Aeh/4Aeh/2Beh/4Ax0.

Be careful here; the notation can be confusing. To use Richardson extrap-
olation, we must compare approximations of the same value (for instance,
the solution of our initial value problem at time t = h). Here, U(h) denotes
the value at t = h of our procedure, not a function with name U defined by
Eq. (7.4). An application of Richardson extrapolation yields the fourth-order
method

U1(h) =
1

3
(4U(

h

2
)− U(h)). (7.5)
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Exercise 7.1. (a) Implement the numerical method (7.3) for the matrices

A :=

(
0 −1
1 0

)
B :=

(
−1 1
0 −1

)

(b) Show by numerical experiments for this example that the method is second order.
(c) Show by numerical experiments that the Richarson Eq. (7.5) leads to a fourth-order
method for this example.

Exercise 7.2. (a) Consider taking several steps with the second-order method (7.3)
and note that the result looks like the first-order method except for the first and last
factors; for example, taking three steps yields

x3 = e∆t/2Ae∆tBe∆tAe∆tBe∆tAe∆tBe∆t/2Ax0.

As we have proved, this scheme has higher-order accuracy than the approximation

y3 = e∆tBe∆tAe∆tBe∆tAe∆tBe∆Ax0

produced by the first-order method of simply alternating the application of the two
operators. But, it would seem that because the two methods are so similar when
compared over many steps, the performance of the first-order method should be better
than might be expected. Do and report on numerical experiments to further this
discussion. (b) When do the two methods produce the same result? (c) What is the worst
case scenario (for some choice of A, B, and the initial data) where the second method
performs much worse than the first or the first performs much worse than the second?
This question does not seem to have a simple answer. What can you say?

7.2 PRODUCTS FOR NONLINEAR SYSTEMS

To generalize the numerical method (7.3) to nonlinear systems we will
take several leaps of faith, which is not an uncommon practice in applied
mathematics. The idea is simple: replace the matrix exponential solution
t 7→ exp(tA) of ẋ = Ax by the flow of the ODE ẋ = f(x).

Recall that the flow of an ODE is defined to be the function φ(t, ξ) such
that t 7→ φ(t, ξ) is the solution of the initial value problem

ẋ = f(x), x(0) = ξ.
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Solutions of differential equations may not be defined for all time, but it is
easy to prove that

φ(0, ξ) = ξ, φ(t, φ(t, ξ)) = φ(t+ s, ξ)

whenever both sides are defined (see [20]). Of course, the flow of the linear
system ẋ = Ax is given by

φ(t, ξ) = etAξ.

It is convenient to view flows as one-parameter groups of transformations of
the state space. To emphasize this interpretation, let us write φt(x) = φ(t, x)
so that

φ0 = I, φt ◦ φs = φt+s.

We can approximate the solutions of the system ẋ = f(x) + g(x), where
we know the flow φ of ẋ = f(x) and the flow ψ of ẋ = g(x) with the
numerical method

x0 = ξ, xk+1 = φ∆t/2 ◦ ψ∆t ◦ φ∆t/2(xk), (7.6)

where compositions of maps replaces the products in the iteration
scheme (7.3).

More generally, the solution of a well posed parabolic PDE is given
by a semiflow; that is, a semigroup of transformations of the underlying
infinite-dimensional state space. Although flows are defined for positive and
negative time (perhaps restricted to some interval of zero), semiflows are
defined only for some interval of the form [0, T ) on the real line for T > 0
or T =∞. Fortunately, the formula in Eq. (7.6) makes sense for semiflows.

Recall the Gray–Scott model:

u̇ = λ(uxx + uyy) + F (1− u)− uv2,

v̇ = µ(vxx + vyy)− (F + κ)v + uv2 (7.7)

with zero Neumann boundary conditions. The obvious splitting corresponds
to the reaction and diffusion systems

u̇ = F (1− u)− uv2,

v̇ = −(F + κ)v + uv2 (7.8)
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table ∆t = 1/4 4.03697 3.97303 3.88698 3.28067
∆t = 1/8 3.72054 3.44124 3.21635 2.98286
∆t = 1/16 2.86821 2.45000 2.17921 2.56180
∆t = 1/32 1.82492 1.51948 1.36262 2.00486
∆t = 1/64 1.25103 1.08322 1.08139 1.48712
∆t = 1/128 1.82523 1.04201 0.987641 1.09860

Table 7.1 The order estimates in this table are for an implementation of method defined by the
iteration Eq. (7.10) using the data of Problem 5.2. The floating point numbers are computed
for the average of the concentrations (u+ v)/2 using Eq. (5.67).

and

u̇ = λ(uxx + uyy),

v̇ = µ(vxx + vyy). (7.9)

The system of linear PDEs (7.9) with (almost any choice of) boundary
data has a semiflow Lt. It is the operator on initial data (concentrations
u and v defined on the spatial domain [0, L] × [0, L] and satisfying the
boundary conditions) that evolves the data forward from time zero to time
t by solving the system of PDEs (7.9) including boundary conditions. Also,
let φt denote the flow of the system of ODEs (7.8). A useful numerical
method (which incorporates Richardson extrapolation as in Section 7.1) is
given schematically by

w0 = w0

wk+1 =
1

3

[
4L∆t

4
◦ φ∆t

2
◦ L∆t

2
◦ φ∆t

2
◦ L∆t

4
(wk)

− L∆t

2
◦ φ∆t ◦ L∆t

2
(wk)

]
, (7.10)

where w = (u, v).

There is a hidden danger in the iteration scheme (7.10): Perhaps the
numerical method does not preserve the boundary data. Although, by
definition, the semiflowLt preserves the boundary conditions, this is not true
in general for the flow φt (see Exercise 7.3). Fortunately, for applications to
Problem 5.1, the flow does preserve the (no flux) zero Neumann boundary
conditions. Indeed, suppose that u(x, y) and v(x, y) are concentrations
that satisfy the Neumann boundary conditions. These concentrations are
changed by the flow φ to new concentrations given by the first and second
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components of the function

(x, y) 7→ φt(u(x, y), v(x, y)).

By the chain rule, we have that

Dφt(u(x, y), v(x, y))

(
ux(x, y) uy(x, y)
vx(x, y) vy(x, y)

)
.

The partial derivatives with respect to the first variable of the new concen-
trations vanish at x = 0 and x = L because the corresponding partial
derivatives of u and v both vanish on these lines. Similarly, the partial
derivatives with respect to the second variable of the new concentrations
vanish at y = 0 and y = L.

Implementation of the algorithm (7.10) leaves open many choices for
numerical approximations of the semiflow L and the flow φ.

A viable method is to use the Crank-Nicolson scheme to approximate
L and the trapezoidal method to approximate φ. These are, as mentioned
previously, essentially the same second-order methods. The order estimates,
for a code written for this algorithm and applied to Problem 5.2, are listed in
Table 7.1. Note that this implementation performs at nearly the theoretical
fourth-order estimate using the larger step sizes. Accuracy degrades for
smaller step sizes, where there is a more likely accumulation of roundoff
errors. The computed averages ((u+v)/2 are consistently 0.453021 over the
full range of step and grid sizes. The average u concentration is consistently
0.808316 and the average v concentration is consistently 0.097725 in
agreement with forward Euler and Crank–Nicolson. It is important to note
that this new code returns the correct values at much larger step sizes, even
for unit steps.

For Problem 5.1, the computed order estimates degrade for smaller step
sizes to approximately order one. The computed value for the average values
of u decrease with the grid size (from 0.9597 for the 32 × 32 grid to 0.532
for the 256×256 grid, and the computed average value for v increases from
0.0135 to 0.1398. These results are consistent with the values 0.5, for u, and
0.1, for v, using forward Euler and Crank–Nicolson. Tables 7.2 and 5.16
show almost exact agreement. Is there now enough data to state that the
required average is 0.3 correct to one decimal place?
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h 32× 32 64× 64 128× 128 256× 256

∆t = 1/4 0.485018 0.463834 0.352093 0.335836
∆t = 1/8 0.485018 0.463835 0.352096 0.335841
∆t = 1/16 0.485018 0.463835 0.352097 0.335842
∆t = 1/32 0.485018 0.463835 0.352097 0.335842
∆t = 1/64 0.485018 0.463835 0.352097 0.335842
∆t = 1/128 0.485018 0.463835 0.352097 0.335842

Table 7.2 The average concentrations in this table are for the product method using the
data of Problem 5.1. Gauss–Seidel iteration is used for the diffusion terms with the stopping
criterion: successive iterations that differ in Euclidean norm by less than 10−6. Newton’s
method is used in conjunction with the trapezoidal method for the reaction terms. The floating
point numbers are the computed averages of the concentrations (u+ v)/2.

Exercise 7.3. (a) Show that zero Dirichlet boundary conditions are usually not
preserved by the numerical scheme (7.10). (b) Show that periodic boundary conditions
are preserved.

Exercise 7.4. An alternative splitting that might be used to approximate solutions
of the Gray–Scott model is obtained by incorporating the linear part of the reaction
equations into the linear diffusion system. The remaining “reaction” system (that is,
the two equations u̇ = −uv2 and v̇ = uv2) might be solved analytically. Implement
algorithm (7.10) for the Gray-Scott model (5.1) using this new splitting. Compare your
results with the original splitting.

Exercise 7.5. Use extrapolation across rows in Table 7.2 to estimate (u + v)/2 at
T = 1024. Discuss the result.

Exercise 7.6. Apply splitting to produce a numerical scheme for approximating the
solution of the PDE ut = uxx + u(1 − u) with zero Neumann boundary conditions on
the interval 0 ≤ x ≤ 1 and some initial data localized near x = 1/2, perhaps of the form
suggested in Eq (5.21). Compare your results with those obtained with Euler’s method
and the usual second-order central difference approximation of the second derivative for
the spatial discretization.



CHAPTER 88
Feedback Control

8.1 A MATHEMATICAL MODEL FOR HEAT CONTROL OF A
CHAMBER

The problem of maintaining a desired temperature in a chamber equipped
with a controlled heater/cooler is discussed in this section (see Fig. 8.1).
Basic modeling with heat transfer and control are considered. This control
problem is encountered in industrial processes (for example, in furnaces and
tank reactors) and in laboratory work where it is desirable to control the
temperature of a sample. Similar control systems are ubiquitous in biology,
automobile cruise controls, steering of ships, and many other applications.

The heater/cooler (henceforth simply called the heater) and chamber are
modeled as open subsets Ω̂ and Ω of R3, respectively, and the wall separating
them is represented by Σ := ∂Ω̂∩∂Ω ⊆ R2. The temperature in the heater at
x ∈ Ω̂ and time t is denoted by û(x, t), and the temperature in the chamber
at x ∈ Ω and time t is denoted by u(x, t).

Heat transport through the interface wall Σ will be modeled under the
assumption that the wall is thin and the heat flux through the wall is
proportional to the difference in temperature on the two sides of the wall
(Newton’s law of cooling). The temperature of the heater is actuated by a
controller whose input is the continuous measurement of temperature by a
thermometer placed at a fixed point x0 in the interior of the chamber and
whose action is to change the temperature in some region (for example,
a heating element coil) in the heater box. For simplicity, assume that the
temperature may be raised or lowered by the heater instantaneously. Con-
vection is ignored and the heater and chamber are assumed to be insulated
at all exterior walls. Heat loss due to all causes (radiation, conduction or
leakage through walls, opening and closing access to the chamber, etc.) not
specifically modeled is included in a simplistic manner by modeling all such
causes as if the chamber as a whole was subject to Newton’s law of cooling.
The cases where the temperature can be changed in only one direction or
where there is a delay in the time required to obtain the heat change called
for by the controller are left to the reader in the form of exercises.
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Thermometer

Heater

Chamber

PID Controller
Power Supply

Fig. 8.1 Schematic of control system.

The physical parameters are the heat transfer coefficient λ across the
wall, the heat transfer rate α from all causes that are not specifically
modeled, the desired (set point) temperature Ts, the diffusion constants K̂
and K, the initial heater temperature û0 and chamber temperature u0, and
the ambient temperature Ta.

The model equations, under our assumptions and with the notation just
described, is given by a system of partial differential equations (PDEs),
boundary conditions, and initial conditions. The PDEs are

∂û

∂t
= K̂∆û+ h(x)PID(Ts − u(x0, t)), (x, t) ∈ Ω̂× (0,∞),

∂u

∂t
= K∆u+ α(Ta − u), (x, t) ∈ Ω× (0,∞), (8.1)

where the function h is nonzero at points in the heating element and
zero otherwise, and PID denotes the output of the controller. A model for
heat flow through the interface Σ between the heater and the chamber is
determined from Newton’s law of cooling: The heat flux through a surface
is proportional to the difference in the temperatures across the surface; and
Fourier’s law: The vector field that determines the heat flow is proportional
to the negative gradient of the temperature. (Note: At a slightly deeper level
Newton’s law is a special case of Fourier’s law.) There are related boundary
conditions for û and u on Σ. For the outer unit normal η̂ on Σ, which points
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into the chamber, the boundary condition is∫
Σ
−K̂ grad û · η̂ dS = λ(û− u),

where λ is the (positive) constant of proportionality in Newton’s law and
K̂ is the (positive) constant of proportionality in Fourier’s law (the thermal
diffusivity). For example, suppose that û > u. In this case, the gradient of û
points into the heater, −K grad û points into the chamber, the dot product
is positive, and the positive integral agrees in sign with the difference û−u.
The constant λ depends on the material properties of the interface. For the
boundary of the chamber,∫

Σ
−K gradu · η dS = λ(u− û)

with the same λ because Σ is the boundary for the heater and the chamber.

The zero flux assumption for the insulated exterior walls reduces to
several conditions, one for each wallW , of the form∫

W
grad v ·N dS = 0

where v is either û or u and N is the outer normal on a exterior boundary
wall of the heater (corresponding to the boundary conditions for û) or the
outer normal on a boundary of the chamber (corresponding to u). The initial
conditions are

û(x, 0) = û0 (x) , x ∈ Ω̂,

u(x, 0) = u0 (x) , x ∈ Ω, (8.2)

for û0 a given temperature distribution in the heater and u0 a temperature
distribution in the chamber.

The proportional–integral–derivative (PID) feedback control—which is
written in the PDEs with an abuse of notation—is given by

PID(f)(t) = Kpf(t) +Ki

∫ t

0
f(σ) dσ +Kdf

′(t), (8.3)

where Kp, Ki, and Kd are the respective parameters that determine the
proportional, integral, and derivative controller gains. The control input in
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the model equations may be rewritten in the explicit form

PID(Ts − u(x0, t)) = Kp(Ts − u(x0, t)) +Ki

∫ t

0
(Ts − u(x0, σ)) dσ

−Kd
∂u

∂t
(x0, t).

Note that the integral part of the PID control depends on the entire past
history of the control process. In practice, the controller should be influenced
by only part of the past history; that is, integration should be over some
interval [t− τ, t], where τ is some appropriately chosen positive number.

8.2 A ONE-DIMENSIONAL HEATED CHAMBER WITH PID
CONTROL

The geometry of the controlled heater-chamber model may be collapsed to
one spatial dimension under the assumption that the axial direction from the
heater to the thermometer carries the essential information. In other words,
we may assume that the temperature in each slice perpendicular to this axis
is constant. The heater reduces to a rod of length L̂ parameterized by the
interval Ω̂ := (0, L̂) (which represents the interior of the heater) and a rod
of length L parameterized on the interval Ω := (L̂, L̂+L) (which represents
the interior of the chamber). With this change of notation, Σ := {L̂}, ∂Ω1 \
Σ = {0}, and ∂Ω \Σ = {L̂+L}. The original model [Eqs. (8.1) and (8.2)]
reduces to the coupled system of boundary value problems

ût= K̂ûxx+h(x)(Kp(Ts−u(x0, t))+Ki

∫ t

0
(Ts−u(x0, σ)) dσ

−Kdut(x0, t)), (x, t) ∈ Ω1 × (0,∞),

ûx(0, t) = 0,

−AK̂ûx(L̂, t) =λ(û(L̂, t)− u(L̂, t)) (8.4)

and

ut = Kuxx + α(Ta − u), (x, t) ∈ Ω× (0,∞),

ux(L̂+ L, t) = 0,

AKux(L̂, t) = λ(u(L̂, t)− û(L̂, t)) (8.5)
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with the initial conditions

û(x, 0) = û0(x), x ∈ Ω̂,

u(x, 0) = u0(x), x ∈ Ω. (8.6)

The change in sign of the left-hand side of the last interface boundary
condition is due to the use of the partial derivative ∂u/∂x to replace the dot
product of the gradient and the normal. The outer normal on the boundary
of the chamber points in the negative direction of the spatial coordinate.

The parameters in our model are K̂, K, λ, Ts, L̂, L, and A (the area of
the interface Σ). More specifically, K̂ and K are thermal diffusivities with
units of area per time (with values in SI units of square meters/sec), λ is
diffusivity per length, Ts is temperature (measured in SI units in kelvins),
and the length and areas (which are measured in meters and square meters
respectively). There are many thermal quantities defined in the literature;
thus care is required to make sure named measured quantities have units
compatible with a given model. For example, standard thermal diffusivities
for various materials are available; they are sometimes given by using
thermal diffusivity equal to κ/(ρcs), where κ is the thermal conductivity,
ρ is the material density, and cs is the specific heat. Similarly, λ is thermal
diffusivity times length, where the appropriate length for our heat control
problem is the thickness of the interface wall.

The natural temperature scale for our model is Ts, a natural length scale
is L̂, and a natural time scale is AL̂/λ. There are many other possibilities.
Using these scales, define the dimensionless variables

ξ :=
x

L̂
, τ =

λt

AL̂
, TsÛ(ξ, τ) := û(x, t), TsU(ξ, τ) := u(x, t)

and dimensionless groups

` :=
L

L̂
, Tr :=

Ta
Ts
,

k̂ :=
K̂A

λL̂
, k :=

KA

λL̂
, µ̂ :=

λL̂

AK̂
, µ :=

λL̂

AK
, a :=

L̂Aα

λ
,

kp :=
L̂AKp

λ
, ki :=

L̂AKi

λ
, kd :=

L̂AKd

λ
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to obtain the dimensionless model

Ûτ = k̂Ûξξ +H(ξ)(kp(1− U(ξ0, τ)) + ki

∫ τ

0
(1− U(ξ0, σ)) dσ

− kdUτ (ξ0, τ)),

Uτ = kUξξ + a(Tr − U),

Ûξ(0, τ) = 0,

−Ûξ(1, τ) = µ̂(Û(1, τ)− U(1, τ)),

Uξ(`+ 1, τ) = 0,

Uξ(1, τ) = µ(U(1, τ)− Û(1, τ)),

Û(ξ, 0) = Û0(ξ),

U(ξ, 0) = U0(ξ), (8.7)

where H(ξ) = h(L̂ξ), Û0(ξ) = û0(L̂ξ)/Ts, and U0(ξ) = u0(L̂ξ)/Ts.

In an ideal world we would like to look in tables in the literature to find
values for the physical parameters K̂, K, and λ, substitute these into our
model with appropriate lengths and areas for the problem at hand, and use
the model to predict the behavior of the system in open loop (without the
control) and in closed loop (with the control). This might be possible if the
model were a close representation of reality. But, the assumptions used to
make the model are crude approximations. Thus, a model with table-book
values for physical parameters may not produce accurate results. Perhaps
the model is too simplistic or simply wrong. In case the model is physically
reasonable (like the model Eqs. (8.4)–(8.6)), a better approach is to try to
calibrate the model by modifying its coefficients to fit experimental data
gathered from the physical problem at hand (in this case, the open loop
heater-chamber system).

Problem 8.1. Suppose the physical control system discussed in this section
has a heating/cooling element located in the center of an air-filled cubic box
with axial length L̂ = 20 centimeters; the function h in the model has value
h = 1 on this set and zero otherwise; the interface is a steel plate with area
400 square centimeters and thickness 0.5 centimeters (which in our model
is a portion of a plane with zero thickness); the chamber is a rectangular
box with axial length 60 centimeters filled with air; and the thermometer
is placed in the center of the chamber. In reality, the order of magnitude of
the thermal diffusivity of air is 10−5 square meters per second and the same
for (some types of) steel. For definiteness, use SI units (meters, seconds,
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kilograms, and kelvins) and assume the physical model parameters are

K̂ = K = 10−5, λ = 5× 10−8, L̂ = 0.2, L = 0.6, A = 0.04.

The corresponding dimensionless groups are approximated by

k̂ = k = 40.0, µ̂ = µ = 0.025.

Also, assume that the rate of heat loss α due to causes not specifically
modeled is 6.86 × 10−6, which is about a drop of 5 degrees kelvin in
1 hour when the chamber temperature is 500 kelvins and the ambient
temperature is 295 kelvins. The corresponding dimensionless variable has
value a ≈ 1.097.

(a) Discuss tuning the control gains to achieve the shortest time startup
from system temperature 295 kelvins to the set-point temperature 500
kelvins without overshoot that would exceed 550 kelvins as the system
continues to run with the same control gains. To make the problem
somewhat realistic, limit the dimensionless control gains (which would
be related to the limits of the heater/cooler) to be in the range [0, 1000].

(b) Discuss tuning the controller gains to find those that keep the chamber
temperature within 5 kelvins of the set point when subjected to a
fluctuation of ambient temperature of at most 15 kelvins.

Simulation of the dimensionless heat control problem may be accom-
plished by seeking an analytic solution, approximation of our model, or the
use of a numerical method to approximate solutions of the model equations.

The method of lines (recall, Exercise 5.72) is well suited to numerical
simulation for our model equations. The idea is simple: discretize in space
(but not in time) to obtain a system of ordinary differential equations (ODEs)
that incorporates the boundary conditions. Then approximate solutions
using a numerical method for ODEs. In principle, Euler’s method applied
to PDEs is a special case of the method of lines. Thus, the new method is
simply a change in point of view. To be clear, consider the heat equation
in one space dimension with zero Neumann boundary conditions and initial
data given by the initial boundary value problem

ut = uxx, ux(0, t) = 0, ux(L, t) = 0, u(x, 0) = f(x). (8.8)

Discretize the spatial domain (0,L) into n parts of length ∆x = L/n and
define n − 1 variables {ui}n−1

i=1 . The spatial derivative may be discretized
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according to the desired accuracy. For simplicity and in keeping with usual
practice for a first approximation, the second-order centered difference
approximation (with ui := u(i∆x, t))

uxx(i∆x, t) ≈ ui−1 − 2ui + ui+1

∆x2

is a reasonable choice. The Neumann boundary conditions may be ap-
proximated by taking u0 := u1 and un := un−1. This choice is simple
to program, but not second-order accurate. Higher-order accuracy for the
boundary conditions can be achieved by using multipoint approximations
of the first derivative. The choices made here produce the system of n − 1
ODEs given by

u̇1 =
1

∆x2
(−u1 + u2),

u̇i =
1

∆x2
(ui−1 − 2ui + ui+1), i = 2, 3, 4, . . . , n− 2

u̇n−1 =
1

∆x2
(un−2 − un−1).

(8.9)

Initial data for the system is defined in the obvious manner from the initial
data for the PDE. Note the presence of the factor 1/∆x2, which will
be large whenever ∆x is small. This could cause numerical difficulties.
One possible remedy is the change of timescale t = ∆x2s. It removes
the undesirable factor, but forces the computation of a large number of
time steps. These considerations should remind you of the Courant–Lewy–
Friedrichs condition discussed in Section 5.4. There is no obvious resolution
of these difficulties, which are inherent in most numerical methods. They
may be partially resolved by further numerical analysis that is beyond the
scope of this book.

For a simple implementation of the method of lines to approximate
solutions of the dimensionless model (8.7), we may use second-order
accurate discretizations of the second-order spatial derivatives and first-
order accurate discretizations of the zero Neumann boundary conditions. To
describe a viable discretization of the boundary conditions at the interface
(ξ = 1), consider the discretization of the interval (0, ` + 1) given by
choosing positive integers m and n, defining ∆ξ̂ := 1/m and ∆ξ = `/n,
and using ûi := Û(i∆ξ̂, τ) and ui := U(i∆ξ, τ). The temperature at the
thermometer (placed in the middle of the chamber) may be approximated
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by (u[n/2]− + u[n/2]+)/2, where [j]+ is the smallest integer larger than or
equal to j (often called ceiling(j)) and [j]− is the largest integer less than
or equal to j (called floor(j)). This approximation may be used to code the
proportional control. The integral control may be implemented by adding
the differential equation and initial value

dz

dτ
= 1− U(ξ0, τ) ≈ 1−

u[n/2]− + u[n/2]+

2
, z(0) = 0

to the method-of-lines system of ODEs. The new variable z is the desired
integral. Finally, the derivative control may be added by simply using the
right-hand sides of the method-of-lines ODEs at [n/2]− and [n/2]+ as these
are equal to the appropriate time derivatives. The boundary conditions at the
interface couple the system. Using first-order approximations (which are
adequate, but not very accurate) and the proposed numbering scheme, the
boundary conditions are

ûm − ûm−1

∆ξ̂
= µ̂(u0 − ûm),

u1 − u0

∆ξ
= µ(u0 − ûm). (8.10)

The state variables for the method of lines are ûi for i = 1, 2, 3, . . . ,m− 1
and ui for i = 1, 2, 3, . . . , n − 1; the system of boundary conditions (8.10)
is two equations for the two unknowns ûm and u0; that is, the (scaled)
temperatures of the heater and the chamber at the interface. By solving this
system, we have that

ûm =
1

1 + µ̂∆ξ̂ + µ∆ξ
((1 + µ∆ξ)ûm−1 + µ̂∆ξ̂u1),

u0 =
1

1 + µ̂∆ξ̂ + µ∆ξ
(µ∆ξûm−1 + (1 + µ̂∆ξ̂)u1). (8.11)

These formulas are used whenever ûm or u0 are needed for computation of
the discretized second derivatives.

All the ingredients are now in place to simulate the system using the
method of lines. The system of m + n − 2 ODEs may be approximated
with a variety of methods. Euler’s method is a possibility. To maintain the
second-order accuracy for the spatial discretizations of second derivatives,
implicit or explicit trapezoidal time stepping is preferable.
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Exercise 8.1. Implement the method of lines to approximate the PDE initial
BVP (8.8) using ODEs (8.9). Discuss and compare the efficiency and accuracy of the
method for the ODEs in their given form and after scaling time with the change of
variables t = ∆x2s. Compare your numerical results with the exact solution for your
choice of initial data.

Exercise 8.2. Implement the method of lines to approximate the PDE initial
BVP (8.8) using ODEs (8.9). Discuss the accuracy of the numerics for the ODEs and
for their modification using a second-order accurate approximation for the boundary
conditions. State explicitly your second-order accurate discrete approximation of the
second derivative. Compare your numerical results with the exact solution for your
choice of initial data.

Exercise 8.3. Consider the following dimensionless model for heat diffusion with
proportional boundary control:

ut = uxx, ux(0, t) = u(0, t)− kp(1− u(
1

2
, t)), u(0, 1) = 3, u(x, 0) = 0.

(a) Show that it is not possible to choose the control gain kp so that the system will
maintain the set point u(1/2, t) = 1. (b) What is the behavior of the function t →
u(1/2, t) as t increases—that is, when the system is allowed to run—for a fixed control
gain? (c) Show that the set point can be maintained using a PI control.

Exercise 8.4. Problem 8.1 is the main problem for this section. (1) Implement
a numerical method to approximate the solution of part (a) of this problem. (2)
Approximate the solution of part (b).

Exercise 8.5. Modify Problem 8.1 for the case where no active cooling is available;
that is, a heater is available subject to PID control but there is no active cooling. The
heater may be turned off. Using the given parameters solve part (a).

Exercise 8.6. [Heat Fluctuations in a Bar] (a) Suppose one end of an insulated bar
is insulated and the temperature at the other end is changed (instantaneously) with a
preassigned function of time. How does the temperature at the insulated end respond
to the input heating protocol? For example, suppose the input is a periodic function of
time. Discuss the temperature recorded at the insulted end. Could this temperature ever
exceed the input temperature? Perform numerical experiments and interpret your results
with general statements. Can you prove your statements using Fourier series or other
methods? Discuss.
(b) Suppose that one end of an insulted bar is fixed to a material of unknown thermal
properties. Heat flows through this end according to Newton’s law of cooling, where the
unknown properties are encoded in the constant of proportionality. Can this constant be
measured by heating the bar at the opposite end and recording the heat flux through this
end?
(c) Suppose an insulated bar is subjected to unknown temperature fluctuations within
some specified range of temperatures at one of its ends and is insulated at the other end.
An actuator is installed that allows the temperature to be changed (instantaneously) at
the midpoint of the bar. Set up and simulate a control system designed to maintain a
constant temperature at the insulated end of the bar.



Feedback Control 239

Exercise 8.7. [Modeling and Control Project] Consider a cylindrical tank with base
radius a and height h. Suppose water flows into the tank intermittently. The tank has
a circular drain in the center of its base with radius r and a controllable valve that is
designed to change the radius of the drain from zero (fully closed) to r fully open. A
sensor measures the depth of the water in the tank and is connected to a PID controller
and a servo mechanism that can continuously activate the valve control. Suppose that
the inflow never exceeds the outflow capacity with the valve fully open and the flow
velocity in the drain is

√
2gz, where g is the acceleration due to gravity and z is the

depth of water in the tank (see Exercise 13.2).
(a) Make a mathematical model of the open loop system (no control); that is, set a fixed
drain radius.
For the following parts of this problem assume that the system parameters are

a = 3 m, h = 6 m, r = 0.12 m, g = 9.8 m / sec2;

the desired depth is hset = 5 m, and the density of water is ρ = 103 kg /m3.
(b) Discuss controller gain tuning for P control used to maintain the depth of the water
in the tank at the set point for a constant inflow of 300 kg / sec.
(c) Discuss controller gain tuning for PI control with the set point depth as in part (b)
for the system startup from an empty tank.
(d) Discuss controller gain tuning for PID control with the set point depth as in part (b)
for the system startup from an empty tank.
(e) Discuss controller gain tuning in case the inflow rate fluctuates between 80 and 120
kg / sec on a 1 minute cycle. Note: There is usually no reason to tune control gains to
meet all possible situations. For example, a good tuning for startup might not be suitable
to maintain a desired set point during later operation. Setting different gains for different
regimes is called gain scheduling.



CHAPTER 99
Random Walks and Diffusion

Processes that might be modeled by random motions are ubiquitous
in physics, engineering, finance, biochemistry, and biology. The classic
example is Browning motion: a particle of pollen immersed in water moves
due to molecular collisions. In biology and the life sciences, cell motion,
particles in cells, molecular motion, and many other such phenomena are
fruitfully modeled by random processes. This is a vast subject with many
deep results. Here, the simplest part of the theory will be introduced and its
relation to diffusion processes will be discussed. How do random processes
lead to differential equations? That is the question!

9.1 BASIC PROBABILITY THEORY

The language of probability theory is used to describe random processes.
No prior knowledge of the subject is required here.

Probability theory starts by agreeing on a procedure for assigning a set
of values to the outcomes of some type of experiment or trial. The set S of
all possible outcomes of an experiment (or trial) is called the sample space.
Perhaps the most important example is the most familiar: flipping a coin.
Each trial has two possible outcomes: H or T , heads or tails. The sample
space is S = {H,T}. Probabilities are assigned to the possible events
corresponding to the sample space. An event is a subsets of S: one of the sets
∅, {H,T}, {H}, and {T}; and, the collection of all subsets, denoted here
by 2S , is called the power set of S. Probabilities are assigned to events with
the intuitive idea that the probability of an event is the fraction of at least
one of its elements occurring (by a random choice) from all possibilities.
Exactly what is meant by a random choice is not defined. By definition
the probability of an event is a number in the interval [0, 1]. A coin flip
(one trial) produces exactly one outcome, heads H or tails T . A fair coin is
defined to produce equal probabilities 1/2 for each outcome, or in formal
language, the probability of the event {H} is 1/2 and the probability of the
event {T} is 1/2. This is supposed to agree with our intuition. To make a
precise definition, a probability distribution is a function P : 2S → [0, 1].
Its domain is a collection of sets and its range is contained in the interval
of real numbers [0, 1]. For the coin toss, the probability distribution is given
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by P (∅) = 0, P (S) = 1, P ({H}) = 1/2, and P ({T}) = 1/2. Sample
spaces and probability distributions are the fundamental building blocks of
the theory.

When two events E and F are disjoint (that is, E ∩ F = ∅), the
probability of their union is the sum of their probabilities

P (E ∪ F ) = P (E) + P (F ). (9.1)

This statement should be intuitively clear, but in any case, it is taken as an
axiom about probabilities. The two events are called independent if

P (E ∩ F ) = P (E)P (F ). (9.2)

This notion is more difficult to understand. The idea is that the occurrence
of event E does not affect the occurrence of the event F . For the coin toss
example, the events {H} and {T} are not independent. If heads comes up,
tails does not. The events {H,T} and {T} are independent. The occurrence
of heads or tails puts no restriction on which alternative comes up. It does
not effect the event that tails comes up.

In many different situations, an experiment with quantifiable outcomes
depends on some underlying random process. As an example, suppose a
clinical trial involves two groups where blood pressure is under study. A
coin is flipped. In case the outcome is H , the average blood pressure of the
individuals in group one is recorded; in case the outcome is T , the average
blood pressure of group 2 is recorded. This scenario defines a function f :
S → R by the rule f(H) is the average blood pressure of group 1 and
f(T ) is the average blood pressure of group 2. Formally, a function from the
sample space to the real numbers is called a random variable. The interplay
between random variables, sample spaces, and probability distributions lies
at the heart of probability theory.

A fundamental notion related to random variables is expected value. In
case S is a finite set, the expected value is a function E from the set of
random variables to the real numbers given by

E(f) =
∑
s∈S

f(s)P ({s}). (9.3)
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It is an average of the random variable over the sample space weighted by
the probability distribution. For the clinical trial example,

E(f) =
1

2
(f(H) + f(T )).

Random variables that take on a finite (or countably infinite) number of
values are called discrete random variables. Clearly, every random variable
on a finite sample space is discrete.

When the sample space S is an infinite set, random variables can take
on a continuum of values (for example, all values in some interval of
real numbers). They are called continuous random variables. The sum
defining the expected value of a discrete random variable is replaced by
an integral. To appreciate this in full generality requires some knowledge
of real analysis. But, informally, a function P that assigns a unique number
in the interval [0, 1] to each element of some collection Σ of subsets of a
sample space S in such a way that (1) ∅ and S are in Σ, P (∅) = 0, and
P (S) = 1; and (2) for every sequence of elements {Ei}∞i=1 in Σ such that
∪∞i=1Ei is in Σ and Ei ∩Ej = ∅ for every i 6= j, the function P is additive;
that is,

P (∪∞i=1Ei) =

∞∑
i=1

P (Ei)

is called a probability measure. The expected value of a random variable
with respect to a probability measure P is the integral of the random variable
with respect to this measure:

E(f) =

∫
S
f(s)dP. (9.4)

A probability space is a triple (S,Σ, P ) consisting of a sample space
S, a collection Σ of subsets of the sample space (events), and a probability
measure P : Σ→ [0, 1]. The simplest infinite sample spaces can be viewed
as subsets of the real line R where the measure P on S is given by some
function ρ : S → R, called its (probability) density, with two properties:∫

S
ρ dx = 1 (9.5)
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and, for every interval (a, b),

P ((a, b)) :=

∫ b

a
ρ dx. (9.6)

In this case, the expected value of a random variable f : S → R is defined
by

E(f) =

∫
S
f(x)ρ(x) dx, (9.7)

where the integral is defined and computed in the usual manner.

The mathematical notion of a measure works equally well for finite
sets where the definition of expected value reduces to Eq. (9.3). Here, for
simplicity, the finite and infinite cases are treated separately. In the general
case, the functions on S allowed to be random variables must at least be nice
enough so that the integral in Eq. (9.7) is defined. In most practical situations
this restriction is met automatically.

Using the language of measures, the probability of an event E is simply
the integral of the probability density over the event

P (E) =

∫
E
ρ dx.

An additional important idea is to make precise a notion of how much a
random variable (discrete or continuous) deviates from its expected value.
The most important quantification of this deviation is called the variance of
the random variable; it is a function var from the set of random variables to
the real numbers defined by

var(f) = E((f − E(f))2). (9.8)

In view of the definition of expected value [Eq. (9.7)] and the properties of
the probability density [Eq. (9.5)],

var(f) =

∫
S

(f − E(f))2ρ dx

=

∫
S

(f2 − 2E(f)f + E(f)2)ρ dx

= E(f2)− 2E(f)E(f) + E(f)2 (9.9)

= E(f2)− E(f)2. (9.10)
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The standard deviation of a random variable is the square root of its
variance: σ(f) :=

√
var(f).

In general, two random variables f and g on a sample space S are called
independent random variables if for every pair of subsets A and B of S the
events

F := {s ∈ S : f(s) ∈ A}, G := {s ∈ S : g(s) ∈ B}

are independent. This concept—whatever its intuitive meaning—is impor-
tant as evidenced by a useful theorem: If the random variables f and g are
independent, then E(fg) = E(f)E(g) and var(f + g) = var(f) + var(g).
The proofs of these statements are left to the reader.

9.2 RANDOM WALK

A classic problem is the motion of a person (perhaps a forgetful mathemati-
cian) who starts walking from a signpost along a street. After a short time
and a short walk, the person either continues walking in the same direction
again for the same short time and distance, or turns around and walks for
the same short time and distance in the opposite direction. After every equal
time interval a random decision is made to continue in the same direction or
to turn around and walk in the opposite direction always walking the same
distance in the same short time. Where is the walker after some fixed finite
number of steps? The answer to this question depends on the sequence of
random decisions on which direction to walk. Clearly, there is no definite
answer unless each choice is known. A prediction of where the walker will
be at some future time can only be given as the probability of the walker
being at some location at some specified time. This is the quintessential
random process. But, there is a surprising and powerful result (which will be
discussed later): The probability of being at some location at some specified
time in the limit as the time steps and the length of each walk become
infinitesimally small is given as the solution of a deterministic process, in
fact a partial differential equation (PDE).

To analyze the random walk problem mathematically, set the distance `
and the duration τ of each step of the random walk; that is, during a step the
walker goes a distance ` (in one of two possible directions) in time τ . After
each step in the process, a walker who starts at the origin ends up at a point
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on the real line in the lattice L := {k` : k ∈ Z}, where Z denotes the set of
all integers (positive, negative, and zero).

The decision on which direction to walk (in the positive or negative
direction along the real line) is made randomly, perhaps by tossing a coin.
A fair coin toss could be used, but to be a bit more general, consider instead
choosing at random (whatever that means) a point in the interval [0, 1] and
assigning the letter L (for left) if the chosen point is in the subinterval [0, p]
and the letter R (right) in case the chosen point is in the interval (p, 1]. Note
that the left subinterval has length p and the right subinterval has length
q := 1 − p. For each step, we may define the sample space Ŝ := {L,R}
and the probability distribution P̂ by P̂ (∅) = 0, P̂ (Ŝ) = 1, P̂ ({L}) = p,
and P̂ ({R}) = q. In this interpretation, the probability is the length of the
interval corresponding to the outcome of a random experiment: choosing
a point in the unit interval. Note that for each event, P is given as the
integral over the corresponding interval with probability density ρ(x) ≡ 1.
For example,

P̂ ({L}) =

∫ p

0
1 dx.

Define a random variable f̂ : Ŝ → R by the rule

f̂(L) = −`, f̂(R) = `, (9.11)

and the probability space (Ŝ,Σ, P̂ ), where Σ is the collection of sets
generated by taking unions and complements of open intervals in [0, 1]. The
random variable corresponds to the action of moving either left or right a
distance `.

To define the probability distribution for the random walk after n steps,
define the sample space Sn whose elements are all words of length n
composed of the letters L and R. Note this is simply an alternative way
of looking at the product set ×ni=1S whose elements are ordered n-tuples of
elements of S. At step n = 3, for example,

S3 = {LLL,LLR,LRR,LRL,RLL,RLR,RRL,RRR}.

The probability distribution Pn on Sn, which defines the random walk
probabilities, is given by assigning to each word the probability of obtaining
the corresponding sequence of events by n independent trials of choosing
a random point in the unit interval and assigning L or R according to
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the probability distribution P̂ . For example, P3({LRL}) = pqp = p2q,
P3({LRR}) = pqq = pq2, and P ({RRR}) = q3. The probabilities of
the events containing more than one word are determined by the general
rule (9.1): for disjoint events, the probability of their union is the sum of their
probabilities. For instance, P3({LRL,LRR}) = p2q+pq2. The probability
of the event Sn must be unity. Is it? This fact is proved by noticing that the
probability of each event corresponding to a single word has the form piqj

with i+ j = n. The sum of all terms of this form is∑
i+j=n

piqj = (p+ q)n = (p+ (1− p))n = 1

by the binomial formula.

A word s in Sn may be represented in the form

s = s1s2s3 · · · sn,

where si is either L or R. Recall the random variable f̂ defined in Eq. (9.11)
defined on the sample space on Ŝ, where the probability distribution is
defined to be P̂ . For each step i = 1, 2, 3, . . . n, define the random variable
f i on Sn with probability distribution Pn by the rule

f i(s1s2s3 · · · sn) = f̂(si); (9.12)

and, the random variable fn on the same probability space by

fn(s) = f1(s1s2s3 · · · sn) + f2(s1s2s3 · · · sn) + f3(s1s2s3 · · · sn)

+ · · ·+ fn(s1s2s3 · · · sn).

The value of fn(s) is exactly the position of the walker on the lattice L in
case the random choices at each step were s1, s2, s3, . . . , sn. For example,

f3(LRL) = −`+ `− ` = −`;

that is, with the choicesL,R,L, the walker is at the position−` in the lattice.

After three steps, there is only one way to reach 3` or −3`, no way to
reach ±2` or 0, and three ways to reach each of the points ` and −`. The
number of ways to end on a reachable lattice point is given by binomial
coefficients defined for nonnegative integers a ≥ b by(

a

b

)
=

a!

b!(a− b)!



248 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

where 0! := 1. For step three, the numbers are exactly
(

3
j

)
for j = 0, 1, 2, 3.

Careful inspection of the cases n = 3 and n = 4 should suggest (and you
should prove) that the exact formula for the probability of the event defined
by being at the lattice point m` at time nτ is

u(m`, nτ) := Pn({s ∈ Sn : fn(s) = m`})

=

{ (
n
n−j
)
pjqn−j , m = n− 2j & j ∈ {0, 1, 2, . . . n};
0, otherwise

=

{ (
n

n−m
2

)
p

(n−m)

2 q
(n+m)

2 , m = n− 2j & j ∈ {0, 1, 2, . . . n};
0, otherwise.

(9.13)

This is the solution of the one-dimensional random walk problem.

Similar scenarios are ubiquitous in probability theory where repeated
trials of some experiment are under investigation. A process consisting of
a series of experiments (such as hitting a target, choosing a point in [0, 1],
or asking a yes-no question), each with only two possible outcomes (which
might be interpreted as success or failure, moving left or right, or answering
yes or no), leads to (1) a sample space that is the Cartesian product of
a number of copies of the two-element sample space and (2) a random
variable that is the sum of random variables each defined so that it depends
on only one factor of the product. On this factor, the random variable is
the same as all the other random variables in the sum. This is exactly the
situation in the random walk example where each factor is the sample space
S={L,R} and the random variables are the f i. Each summand has the same
probability distribution function and each pair of distinct summands are
independent. In this case the summands are said to form an independent
set of identically distributed random variables. Such a set is often called
idd. Many elementary texts in probability theory are confusing, to say the
least, on this subject when they seem to imply that a idd sequence is a set of
random variables defined on S instead of on a product of several copies of
S. The problem is that the random variables defined in the former way fail
to be independent by the general definition of independence.

For the case just described, consider the sequence whose nth element is
the random variable

f1 + f2 + f3 + · · · fn
n

.
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What is the value of this random variable on the infinite sequence s =
s1s2s3 · · · ? The answer surely depends on the first n factors of this product.
But thinking probabilistically when n is large and s is chosen at random,
it seems reasonable to expect that the number of occurrences of L and R
would be dictated by the probabilities p and q. In fact, the fraction of the
number of occurrences of the letter L should be p and of R should be q; that
is,

f1 + f2 + f3 + · · · fn
n

≈ −p`+ q`.

This is not true for all s, but it is true most of the time. A fancy way to
express this observation is to say that

lim
n→∞

f1 + f2 + f3 + · · · fn
n

= g, (9.14)

where g is the random variable with constant value−p`+ q` (on the infinite
product of S with itself) except for a small exceptional set (called a set of
measure zero). This constant value is exactly the expected value of each f i.
This fact is a special case of an important theorem called the law of large
numbers: For every sequence {Xi}∞i=1 of identically distributed random
variables all with the same expected value µ,

lim
n→∞

X1 +X2 +X3 + · · ·Xn

n
= g,

where (except for a set of measure zero) g is the constant random variable
whose value is µ. This result is one of the pillars of probability theory. As
the number of trials of an experiment grows, the average outcome is the
expected value of the experiment.

Exercise 9.1. Show that the set of random variables f i, i = 1, 2, 3, . . . , n defined by
Eq. (9.12) are independent and identically distributed.

Exercise 9.2. Prove Eq. (9.14).

9.3 CONTINUUM LIMIT OF THE RANDOM WALK

Although the analysis of the last section is fundamental, it is just the
beginning of a wonderful story. An underlying theme is the physics of
matter at different scales. Roughly speaking, motion at the quantum level
is probabilistic, at the microscopic level motion is deterministic but very
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complicated when many particles are involved, and at the macroscopic level
motion is deterministic (following Newton’s laws). Classical modeling at
the microscopic level is usually probabilistic to simplify the dynamics of
a very large number of bodies interacting according to Newton’s laws. In
an appropriate limit, the probability distribution is defined on a collection
of subsets of a continuum (perhaps the real line) and its time-dependent
evolution is the solution of a deterministic evolution equation, which is
in fact a PDE. Another model of microscopic particle motions results
in an ordinary differential equation containing a term that has random
values. Molecular dynamics becomes more approachable with numerical
approximations as computer speed increases. This important subject—how
to write efficient codes to evolve many body systems—is beyond the scope
of this book (but see Exercise 10.10).

To proceed, consider the following alternate approach to solving the
random walk problem, where as before Pn(m`) is the probability of the
event defined by being at the lattice point m` at the nth step of the random
walk. What is the probability of being at the same point after taking another
step? Answer:

Pn+1(m`) = Pn(m`− `)q + Pn(m`+ `)p, (9.15)

or in words, the desired probability is given by the probability of being at
the lattice point m` − ` and on the next step moving to the right (which
has probability q) plus the probability of being at the lattice point m` +
` and on the next step moving to the left (which has probability p). The
statement requires that being at a point and moving left (respectively moving
right) on the next step are independent events. Thus, these probabilities are
multiplied. Also the event defined by being at a point and then moving left is
disjoint from the event defined by being at a different point and then moving
right in the next step. Thus, these probabilities are added.

The difference equation [Eq. (9.15)] is called the master equation for the
random process. As might be expected, the binomial probability distribution
given by Eq. (9.13) satisfies the master equation (see Exercise 9.3).

In most scientific applications, random walks are used to model pro-
cesses where a large number of short distance steps occur. For instance,
imagine a pollen grain in water. The water molecules (or many of them)
impact the pollen grain a large number of times over a very short time. The
exact number of collisions per unit time and the length scale of the motion



Random Walk 251

per collision are not usually known with precision. The underlying physical
motion is deterministic, but extremely complicated. To avoid modeling the
motion by taking into account Newton’s law and the forces due to the
collisions, the motion is modeled as a random process. The exact probability
for the position of the particle after some finite number of steps (which for
the pollen grain model would have to be computed for a random walk in
three-dimensional space) is usually impossible to determine. Instead, a good
approximation of this probability is sought that is valid in the limit as the
number of steps approaches infinity and the length scale approaches zero.
This idea has proven to be useful in understanding many different physical
motions. To implement it, the correct limit process must be employed
that takes into account the number of collisions per unit of time and the
length scale of the motion per collision. Different motions (for instance a
particle of dust moving in a room filled with air due to collisions with air
molecules) would be modeled by the same random walk, but with a different
probability distribution, a different number of collisions per unit time and a
different length scale. A useful model should take into account the physical
characteristics of these different motions: the velocity of the molecules, the
mass of the particles being tracked, and perhaps external forces acting on
the particles.

Our task is to set the probability p and the correct limit process to take
into account the physical characteristics of the motion being modeled.

A clue to determining the correct model is apparent by imagining what
might be observed in the random motion of a particle. The actual motion
of the particle might be observed over several units of time. The position of
the particle at each point in time is (as before) given by a random variable.
Although we might wish to model the exact motion, the idea is to assume it
is not deterministic and use a random process as the model. Thus, we seek to
determine the probability of the particle being at some place at a given time.
Perhaps the mean (also called the average) distance to some origin might
be recorded in an experiment. This quantity is modeled by the expected
value of the random variable measuring the position of the particle. Thus the
expected value of the motion under investigation provides one constraint on
the random process; its variance is an obvious additional parameter that is
sure to play a role. In fact, the expected value of the motion and its variance
turn out to be the natural parameters in random walk problems.
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The expected value for the discrete random variable fn (as in the previous
section) that measures the position of the random walker after n steps is
computable and given by

E(fn) =
∑
s∈Sn

fn(s)Pn({s}) =

n∑
j=0

(n− 2j)`pjqn−j = n`(q − p). (9.16)

The combinatorial sum can be evaluated directly (out of context) to obtain
the formula

E(fn) = n`(q − p)(p+ q)n−1, (9.17)

which reduces to sum (9.16) because p+ q = 1. An easier way to obtain the
desired result is to use the properties of the expected value. By its definition,
the expected value function E is linear (that is, E(f + g) = E(f) + E(g)).
Note that (from Eq. (9.11))

E(f̂) = −`p+ `q = `(q − p).

Using the linearity,

E(fn) =

n∑
i=1

E(f i).

The expected value of the ith summand is

E(f i) =
∑

s∈{s′∈Sn:s1=L}

f i(s)P ({s}) +
∑

s∈{s′∈Sn:s1=R}

f i(s)P ({s})

= −`p
∑

s∈Sn−1

P ({s}) + `q
∑

s∈Sn−1

P ({s})

= (q − p)`,

which is (as it should be) the expected value of f̂ on the probability space
(Ŝ, P̂ ). Also, the answer is independent of i. Therefore,

E(fn) = (q − p)n`. (9.18)

In case p = q, the mean is zero.

The simplest method for computing the variance uses the independence
of the random variables summed to obtain fn (see Exercise 9.4). But, it is
certainly instructive when first introduced to probability theory to compute
the variance from the definition using the formula var(fn) = E(f2

n) −
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E(fn)2. The expected value E(fn) is already computed. For the expected
value of the square of the random variable, we have that

E(f2
n) = E((f1 + f2 + f3 + · · ·+ fn)2).

The square on the right-hand side multiplied out yields n2 terms, each of
which is of the form f if j . There are n terms where i = j and n2−n where
i 6= j. In case i 6= j,

E(f if j) =
∑
s∈Sn

f i(s)f j(s)P ({s})

=
∑
s∈Sn

f̂(si)f̂(sj)P ({s})

=
∑

s∈{s′∈Sn:si=L,sj=L}

`2P ({s}) +
∑

s∈{s′∈Sn:si=L,sj=R}

`2P ({s})

+
∑

s∈{s′∈Sn:si=R,sj=L}

`2P ({s}) +
∑

s∈{s′∈Sn:si=R,sj=R}

`2P ({s})

=
∑

s∈Sn−2

p2`2P ({s})− 2
∑

s∈Sn−2

pq`2P ({s}) +
∑

s∈Sn−2

q2`2P ({s})

= `2(p− q)2.

The result is independent of i and j. For i = j,

E((f i)2) =
∑

s∈Sn−1

p`2P ({s}) +
∑

s∈Sn−1

q`2P ({s}) = `2.

Note that the last equality uses p+ q = 1 and that p and q appear as factors
for this case, not p2 and q2. (Why?) The result is again independent of i.
Putting the two cases together, we have (using (p+ q)2 = 1) that

E(f2
n) = n`2 + (n2 − n)`2(p− q)2 = n2`2(p− q)2 + 4n`2pq. (9.19)

The variance of the random variable fn is

var(fn) = E(f2
n)− E(fn)2 = 4n`2pq. (9.20)

One interpretation of the expected value E(f2
n) is interesting: it is the

expected value of the square of the distance traveled by the random walker
after n steps because positive and negative final distances from the origin
are taken to be the same for this quantity. For the case p = 1/2, the expected
value is `2n. What does this really mean? One way to interpret this fact is to
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rely on the law of large numbers. It says that if the experiment (of taking a
random walk of n steps) is repeated many times, then the average outcome is
this expected value. In (perhaps nonrigorous) discussions of an application
that uses a random walk with equal probabilities, one of the most used facts
is

the distance from the origin is expected to be proportional to
√
n. (9.21)

The constant of proportionality is known but not obvious (see Exercise 9.8).

A great idea is to approximate the random walk probability distribution
by a continuous probability density by passing to a continuum limit as the
length ` of each step and its duration τ approach zero. To carry out this
procedure rigorously requires some advanced mathematics that is beyond
the scope of this discussion. Fortunately, the main ideas that lie at the heart
of a rigorous derivation are simple; they are presented here.

To pass from the discrete probability distributions Pn defined at each
step of the random walk to a limiting probability density requires that
each point x on the real line be assigned a density, which is defined by
integrating the probability over intervals containing x, dividing by the length
of the corresponding interval, and taking the limit as the lengths of the
intervals approach zero. A probability density on the line must have units
of probability per length. At the nth step, the event {s ∈ Sn : fn(s) = m`}
corresponding to the walker being at the lattice point m` is assigned a
probability by Pn. The idea for passing to the continuum limit is to change
the sample space from Sn to the real line and extend accordingly the
discrete random variable fn to the piecewise constant function defined on
the real line such that fn is constant with value m` in the half-open interval
[(m− 1)`, (m+ 1)`) whenever Pn(fn = m`) is not zero. Each interval has
length 2`. Also, this piecewise constant random variable approximates the
continuous random variable Xnτ defined on the real line by Xnτ (x) = x;
and the piecewise constant probability density function Pn(fn = x) is used
to approximate the probability density function x 7→ u(x, nτ) at time nτ by
the formula

u(x, nτ) =
Pn(fn = x)

2`
. (9.22)

The factor 2 is appropriate given the extension to piecewise constant
functions, but this is not essential. An arbitrary nonzero factor will work
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just as well. The important feature is that the denominator be proportional
to some length scale associated with the lattice.

The next idea is to use the master equation to derive a difference equation
for the limiting probability density function x 7→ u(x, t). With x = m` and
t = n`, the master equation for the density u is

u(x, t+ τ) = u(x− `, kτ)q + u(x+ `, kτ)p. (9.23)

Proceeding with the intention of obtaining an equivalent difference equation
that might be associated with a differential equation in the continuum
limit, the left-hand side suggests a partial derivative with respect to t. To
approximate this partial, subtract u(x, t) and divide by τ . The right-hand
side suggests a partial derivative with respect to x. Because there are terms
with x+` and x−`, perhaps a second derivative with respect to x is involved.
Using these ideas and keeping in mind the identity p + q = 1, check the
following algebraic manipulations:

u(x, t+ τ)− u(x, τ)

τ
=

1

τ
(u(x− `, t)q + u(x+ `, t)p− u(x, t))

=
1

τ
(u(x− `, t)− 2u(x, t) + u(x+ `, t))q

+
1

τ
(u(x− `, t)− 2u(x, t) + u(x+ `, t))p

+
1

τ
[(2u(x, t)− u(x+ `, t)q

+ (2u(x, t)− u(x− `, t)p− u(x, t)]

=
1

τ
(u(x− `, t)− 2u(x, t) + u(x+ `, t))

+
1

τ
[(u(x, t)− u(x+ `, t)q + (u(x, t)−u(x− `, t)p]

=
1

τ
(u(x− `, t)− 2u(x, t) + u(x+ `, t))

+
1

τ
[(u(x, t)− u(x+ `, t)q + (u(x, t)−u(x− `, t)p]

=
`2

τ

u(x− `, t)− 2u(x, t) + u(x+ `, t)

`2

− `q

τ

u(x+ `, t)− u(x, t)

`
+
`p

τ

u(x− `, t)− u(x, t)

−`
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Passing to the limit as ` and τ go to zero and assuming that these limits
exist produces a partial derivative with respect to t, two partials with respect
to x, and one second partial with respect to x. There is only one problem:
What happens to the coefficients `2/τ , p`/τ , and q`/τ? Maybe one or more
of these expressions does not have a limit. Suppose for example that ` = 1/j
and τ = 1/j with j → ∞. In this case, the second two expressions have
finite limits; the first does not.

To obtain a PDE, we must have that `2/τ converges to a finite limit. Note
that, in the limit process, the expression

−`q
τ

u(x+ `, t)− u(x, t)

`
+
`p

τ

u(x− `, t)− u(x, t)

−`
approaches the form

−`(p− q)
τ

ux(x, t).

Thus, we must also have that `(p− q)/τ converges to a finite limit.

There are three possibilities: (1) `/τ → 0 and q − p → ∞, (2) `/τ and
q − p converge to finite limits, or (3) `/τ →∞ and q − p→ 0.

Possibility (1) cannot occur because p and q are probabilities confined to
the unit interval [0, 1].

As ` → 0, in case (2) the quantity `2/τ converges to zero. This is
theoretically possible, but highly unlikely in a truly random process because,
in view of the variance for the underlying random process (9.20) and the
equation t = nτ , it follows that the variance of the underlying process goes
to zero. In this case, the limit process produces the PDE model

ut(x, t) = −αux(x, t). (9.24)

Case (3) is expected for most applications of the theory. The limits of the
quantities `2/τ and `(p− q)/τ can both be specified.

As q − p → 0 and p + q = 1, either p = 1/2 and q = 1/2 for all the
processes considered, or these values are approached in the limit. Something
nice happens: The coefficient (q−p)`/τ is exactly the expected value of the
random variable fn for the underlying random walk. Thus, it is natural to
arrange the limit to approach a value α given by the observed variance of
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Fig. 9.1 The piecewise continuous approximation of the probability density function of the continuous random walk
random variable Xt at t = 1 is depicted for the case n = 20. The continuous curve is given by the exact continuous
probability density x→ u(x, 1) as defined in Eq. (9.29).

the process being modeled. Likewise, the limit process may be arranged so
that `2/τ converges to κ/2, which is the variance of the underlying process
divided by two (see Exercise 9.7). In this case, the limit process produces
the PDE, often called the Fokker–Planck (Adrian Fokker 1887–1972 and
Max Planck 1858–1947) equation

ut(x, t) = −αux(x, t) +
κ

2
uxx (9.25)

for the probability density x 7→ u(x, t) at time t, where α is the observed
expected value and κ is the variance of the corresponding random variable
Xt, which is used to determine the position of the continuous time random
walker at time t. Formally, this random variable on the real line is given by
Xt(x) = x and has probability density function x 7→ u(x, t).

For some finite number of particles N undergoing random walks, the
Fokker–Planck model gives (for each particle) the probability density for
finding it at x at time t. Thus, it is also true that C(x, t) := Nu(x, t) is the
proportion of the total number of particles at x at time t, or equivalently,
the concentration of particles at x at time t. Because N is constant
in this scenario, the concentration C also satisfies Eq. (9.25), a model
previously obtained simply from the conservation of mass. Thus the random
walk analysis is one way to pass from the microscopic (think molecules
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moving in a liquid) to the macroscopic (think concentrations of some
substance dissolved in the liquid). This basic idea was introduced by Albert
Einstein in 1905. His analysis helped to convince the scientific community
that molecules exist. Since his seminal work, randomness has played a
fundamental role in modeling of many different physical phenomena.

There is an alternate approach to the limit process that passes from the
sample spaces Sn to the real line. It should be clear that this involves an
infinite product of copies of {L,R}. This is correct, but the analysis required
to understand the class of sets Σ and the properly defined probability density
on this space is beyond the scope of this discussion. Instead, simply note that
elements in the infinite product of copies of {L,R} are infinite strings of the
letters L and R. This set may be considered to be infinite strings of zeros
and ones. Put a decimal point before such a string and consider it to be the
binary number written s = .s1s2s3 · · · , where si = 0 or si = 1. What does
this mean? The corresponding number (base ten) in the unit interval is

∞∑
i=1

si
2i

(see Exercise 9.11). In this way, the infinite product of copies of {L,R}
may be viewed as the unit interval on which all the random variables may
be defined.

To visualize the limit process, reconsider the probability density function
for the piecewise constant, extended, random variable fn defined on the
real line as in Eq. (9.22). Also note that this function is the corresponding
piecewise constant extension of the binomial distribution [Eq. (9.13)] with
each probability at step n divided by the length 2`. A graph of the piecewise
constant probability density function for the case n = 20 is depicted in
Fig. 9.1, where for the graphical representation τ = 1/n and ` =

√
κτ .

The smooth curve in the figure that is so well approximated by the density
function is called a normal distribution. It is defined later in this section
following a short discussion of general continuous random variables and
their probability density functions.

The function x → u(x, t) discussed above may be taken as the
probability density function of the random variable Xt given by Xt(x) = x;
which might be interpreted as the experiment of looking at the position x.



Random Walk 259

In this case, the probability of the event

{ξ ∈ R : a ≤ Xt(x) ≤ b}

is

P ({x ∈ R : a ≤ Xt(x) ≤ b}) =

∫ b

a
u(ξ, t) dξ,

which is interpreted to be the probability of the random walker being in
the interval (a, b) at time t. Cumbersome expressions, for example those
involving the definitions of sets, are often replaced with simpler notation in
the probability literature where one might read

P (a ≤ Xt ≤ b) =

∫ b

a
u(x, t) dx

for the same probability. Although the interpretation of such expressions in
view of the technical definitions of the subject can be confusing, familiarity
with the language eventually makes such expressions seem natural. In any
case, the probability of the event represented by the interval is essentially the
sum (integral) of the probabilities of the events represented by each point of
the interval. Here the random variable Xt is said to have the probability
density ξ → u(ξ, t).

When the sample space is the entire real line as in the limit of the random
walks, a general continuous random variable X (for example Xt) is, of
course, a function defined on the real line. The class of random variables
is restricted to contain those functions X such that there is another function
g, called its probability density function, associated with X such that (1) g
is nonnegative, (2) g is integrable with∫ ∞

−∞
g(x) dx = 1,

and, (3) for every (measurable) subset A of the real line

P ({x ∈ R : X(x) ∈ A}) =

∫
A
g(x) dx.

The last statement is usually written

P (X ∈ A) =

∫
A
g(x) dx. (9.26)
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It should be clear from this notation that X is thought of as a variable—
thus the name random variable—taking on real values. The interpretation
is simple: the probability that X takes values in A is given by integrating
(summing) the associated probability density over this set. Note that the
probability of the event {X = r} where X takes on one particular real
value r is zero; indeed,

P (X = r) = P ({x ∈ R : X(x) = r}) =

∫ r

r
g(x) dx = 0.

Changing the random variable on a set of zero measure has no effect;
for example, P (X < r) = P (X ≤ r). In the random walk example,
the coordinate function x is viewed as a random variable with probability
density ξ → u(ξ, t).

The function G defined by

G(t) = P (X ≤ t) =

∫ t

−∞
g(s) ds

is called the probability distribution function. Of course, G′ = g.

The probability density function relates the random variable to the under-
lying probability measure. Of course, the same random variable (function on
a sample space) can have different probability density functions according
to the probability density chosen on the class of subsets of the sample space
under consideration: for discrete measures this subset is usually all subsets
but for the continuous case the set of subsets is restricted to those subsets
on which the probability measure is defined. The precise statement requires
knowledge of measure theory. A typical example of such a restricted class
is the set of all Borel subsets of the real line: all open intervals together
with the sets obtained from these by countable intersections and by taking
complements.

Canonical examples (called uniform random variables) have sample
space S = R and probability density ρ supported on some interval [a, b]
given by

ρ(x) =

{
1
b−a , a ≤ x ≤ b;
0, x < a or x > b.

(9.27)
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When the random variable X is given by X(x) = x with corresponding
probability density function ρ, note that

P ({x ∈ S : X(s) ∈ A}) = P (X ∈ A) =

∫
A
ρ(x) dx,

the expected value of X is

E(X) =

∫
S
X(x)ρ(x) dx =

∫ ∞
−∞

xρ(x) dx =
1

b− a

∫ b

a
x dx =

1

2
(b− a),

and its variance is

var(X) = E(X2)− E(X)2 =
1

12
(b− a)2.

Uniform random variables are designed to convey a meaning: the probability
of an event in the interval [a, b] is the length of the interval, or all points in
the interval are equally likely to occur.

For a continuous random variable X with probability density function f ,
the expected value is defined, as it should be, as the average of the function
X over the sample space with measure P ; that is,

E(X) :=

∫
S
X(x) dP.

But, often the expectation is defined by

E(X) :=

∫ ∞
−∞

xg(x) dx, (9.28)

where g is the probability density function of X . This is exactly the formula
obtained for the expected value of a uniform random variable. As might
be expected, these definitions are equivalent—the same number E(X) is
produced by both definitions. The idea of the proof of this fact is instructive;
the proof requires some measure theory. To see why the statement should be
true, start with the probability density function property (3) and note that

P (X−1(A)) = P (X ∈ A) =

∫
A
g(x) dx.
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Assume the probability P is itself given by the probability density function
ρ so that

P (B) =

∫
B
ρ(x) dx.

On a set A where the random variable X is defined, has range B, is
continuously differentiable, and invertible, the change of variables formula
states that∫
B
g(x) dx = P (X−1(B)) =

∫
X−1(B)

ρ(x) dx =

∫
B
ρ(X−1(x))(X−1)′(x) dx.

Because this holds for all such sets B, we should have

g(x) = ρ(X−1(x))(X−1)′(x).

For X : R→ R, we have X−1(R) = R. So,

E(X) =

∫
R
X(x)ρ(x) dx

=

∫
X−1(R)

X(x)ρ(x) dx

=

∫
R
X(X−1(x))ρ(X−1(x))(X−1)′(x) dx

=

∫
R
xg(x) dx.

This last result points out that working with the sample space and its
probability distribution is essentially the same as working with the image
of the random variable (which is in the real line) and its probability density
on the line. For this reason, in practical probability theory where the sample
space is itself identified as a subset of the real line and x denotes position,
the usual practice is to view all random variables as the inclusion function
X(x) = x but with different probability densities on the real line. For
example, consider the experiment of determining the speed (measured in
feet per second) of a particle moving moving through a thin tube. The
outcome of the experiment is a positive real number (which defines the
sample space of all positive real numbers). The obvious random variable
is simply X(x) = x, where the image is considered on the real line. This
variable X has a certain probability density on the real line, which is likely
to be the unknown that the experiment is designed to determine. In this
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scenario, the usual practice is to ignore formality and simply view X as the
position variable along the real line with a (as yet undetermined) probability
density on the real line. In case the speed were measured in meters per
second, the random variable Y is still the position variable along the real
line (Y (x) = x), but its probability density function is different. After a
while, the formally correct notion of viewing the random variable as a map
from the sample space to the real numbers is replaced by simply working
with the probability density function of the random variable.

The initial data (for the random walk) is concentrated at the origin x = 0
at time t = 0 because the random walker starts at this position. In the limit,
the probability distribution at time t = 0 should be concentrated at x =
0. As the integral of the probability over the whole sample space must be
unity [Eq. (9.5)], the initial probability distribution would have to have the
property that it is zero everywhere on the real line except at zero and∫ ∞

−∞
u(x, 0) dx = 1.

No function has this property. But, viewed as the limit of functions defined
over decreasing short intervals centered at the origin all with integral equal
to unity over the line, the limit is represented by the Dirac delta function.
With this initial condition, the corresponding solution of PDE (9.25) exists
and is unique; it is the prediction of the model for the probability of finding
the walker at position x at time t.

The solution of the initial value problem for PDE (9.25) is given by

u(x, t) =
1√

2πκt
exp

(−(x− αt)2

2κt

)
. (9.29)

This formula is derived in Exercise 23.5. For each t > 0, the density ξ →
u(ξ, t) is called normal (or Gaussian). The expected value of Xt is αt with
variance κt. At t = 1, the unit used to define nτ = 1. Of course the expected
value of x is α and its variance is κ. This is the reason for the factor κ/2 in
the Fokker–Planck PDE: with this coefficient, the solution has variance κ as
a probability density. In this context, for a general random variable X with
probability density given by the right-hand side of Eq. (9.29) with t = 1,
we say it has a normal (or Gaussian) distribution and call it a normal (or
Gaussian) random variable. The graph of each normal distribution is the
famous bell-shaped curve, the icon of probability and statistics (depicted as
the continuous curve in Fig. 9.1).
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Fig. 9.2 Three random walks are depicted that approximate the Browning motion in the continuum limit. The depicted
random walks are for lattice spacing ` = 10−2 and length scale τ = 10−4 random steps. The vertical axis represents
the line on which the random walk takes place: the horizontal line is the time with 104 steps per one unit of time.

Inspection of the solution [Eq. (9.29)] reveals that the probability of
finding the random walker is largest for events containing the point x = αt
and goes to zero rapidly for events that are bounded away from zero as their
lower bounds increase to infinity or their upper bounds decrease to minus
infinity. This is exactly what is expected. The PDE ut = αux contributes
the drift of the maximum probability events away from x = 0 while the
PDE ut = κ

2uxx contributes diffusion around the maximum probability.

The position of a random walker remains uncertain (by definition)
because the process is assumed to be random, but the probability density
of the corresponding random variable (in the limit described in this section)
is given by a deterministic process, which is governed by the Fokker–Planck
PDE.

Random walkers can of course be simulated by taking small grid spacing
` and time step τ and using a random number generator instead of a coin flip.
Fig. 9.2 depicts three random walks all starting at the origin for the same
length and timescales. These approximate the limit behavior of the random
walk as ` and τ go to zero in the manner discussed in this section. This is the
mathematical model of Brownian motion. The paths are all continuous and
nowhere differentiable. They have many other fascinating properties that are
special cases of random processes called Wiener processes (Norbert Wiener
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1894–1964, who was born at a location that is now part of the campus of the
University of Missouri near the current location of the Tiger Fountain).

For completeness, one more result must be mentioned: If {Xi}∞i=1 is a
sequence of identically distributed independent random variables each with
expected value µ and variance σ2, then the probability density functions
of the random variables (X1 + X2 + X3 + · · · + Xn)/

√
n converge to

a Gaussian with expected value zero and variance σ2. This second pillar
of probability theory is called the central limit theorem. It ensures the
prevalence of the Gaussian distribution when dealing with a large number of
independent random variables. Note also that the averages in the law of large
numbers (the sum divided by n) are associated with the random variables in
the central limit theorem via

n√
n

X1 +X2 +X3 + · · ·+Xn

n
=
X1 +X2 +X3 + · · ·+Xn√

n
.

Thus, by the central limit theorem, these averages are well approximated by
a random variable whose density function is a Gaussian with expected value
zero and variance σ2/n. In particular, the associated density functions of the
averages approach a Gaussian no matter what the density function of all the
summands. This powerful result has many applications.

Exercise 9.3. Show by substitution that the formula for u given in Eq. (9.13) satisfies
difference equation (9.23).

Exercise 9.4. Show that the random variables f i defined in Eq. (9.12) are independent
and use the linearity of the variance for independent random variables to show the
variance of fn agrees with Eq. (9.20).

Exercise 9.5. Show that condition (3) on page 259 implies condition (2).

Exercise 9.6. (a) Suppose the probability measure on the real line is the uniform
probability measure on the set [0, 1] with density given by Eq. (9.27). Compute the
probability density function, with respect to the uniform density, for the random variable
X : R→ R given by X(x) = x2. (b) Repeat the exercise for an arbitrary interval [a, b].

Exercise 9.7. Suppose κ/2 and α are given positive numbers. Construct functions `, τ ,
p, and q all depending on the same variable so that in the limit as this variable approaches
infinity `→ 0, τ → 0, p→ 1/2, q → 1/2, `2/τ → κ/2, and (p− q)`/τ → α.

Exercise 9.8. (a) Make a simulation for the random walk with the distance of each
step fixed at 0.1 and equal probabilities of changing direction. Let the random walker
take 1000 steps. According to Eq. (9.19), the square of the distance from the origin of
the random walker (at the end of the walk) is expected to be 10. Gather experimental
evidence from your simulation that this average distance from the origin after many
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trials (random walks) approaches the stated value. Discuss the expected value and the
averages using the law of large numbers. (b) You might expect that the random walker’s
distance from the origin in part (a) is `

√
n. Gather and report on evidence that this

is not true. (c) Explain why the expected value for the distance is not necessarily the
square root of the expected value for the square of the distance. (d) Gather evidence (by
considering different numbers of steps for the random walk) that the expected value is
indeed proportional to

√
n and determine the constant of proportionality. Hint: You can

write the constant of proportionality (which is an irrational number) in the form 2απβ ,
where α and β are real numbers.

Exercise 9.9. In the context of Fig. 9.2, make a simulation to show that the end point
of the random walker at time t = 1 is distributed on the vertical axis according to a
normal distribution. Which normal distribution?

Exercise 9.10. (a) Suppose the probability measure on the real line is the uniform
probability measure on the set [0, 1] with density ρ defined in Eq. (9.27). The random
variable X(x) = x has probability density ρ. There are many continuous random
variables with the same probability density. For example, change the value of X at a
finite number of points. Construct a continuous random variable Y that is a continuous
function on R, has the same probability density, and is such that there is a point x in
every open interval (a, b) contained in [0, 1] with X(x) 6= Y (x). Note: Such random
variables are called identically distributed; that is, they have the same probability density
functions.

Exercise 9.11. (a) What real number corresponds to the binary .11111 · · · ? (b)
What real number corresponds to the binary .101010 · · · ? (c) Determine the binary
representation of the number 1/3. (d) An interesting function φ on the set of binary
decimals, called the shift map, is defined by

φ(.s1s2s3 · · · ) = .s2s3s4 · · · ;

that is, the map shifts the decimal one place to the right and drops the binary digit before
the decimal point. Show that this map has periodic orbits of all periods. For example
find a binary decimal s so that φ(s) = t and φ(t) = s, which would be a periodic
point of period 2. This function corresponds to a map of the interval into itself given by
h(x) = 2x if x ≤ 1/2 and h(x) = 2 − 2x if x > 1/2. Write a simple computer code to
iterate h. Start, for example, with the point 1/3, iterate some finite number of times (say
50 times), and plot the result. Does the plot have any interesting features? The map is
called the tent map and its properties are discussed in most books on dynamical systems
(for example, [106]).

Exercise 9.12. Consider the following experiment akin to a coin toss described in
three steps: (1) Pick a number in the interval [0, 1] by some deterministic process; for
example, use a clock (in a computer) to find the current time in hours, minutes, and
seconds since the previous midnight, record the number of seconds s, and use a = s/60.
(2) Define the function f : [0, 1] → [0, 1] by f(x) = 4x(1 − x) and iterate 100 times
starting with x = a (that is, compute f(a), f(f(a)), and so on). (3) Define the outcome
of the experiment to be 0 if the final iterate is in the interval [0, 1/2] and 1 otherwise.
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Compare this experiment with using a random number generator (or flipping a coin)
to generate 0 or 1 randomly. When simulating the iteration process using a computer
to make several trials of the experiment, the computer may be so fast that the seed
value a is not changed when it is passed to the function f . To avoid this problem iterate
100 + i times where i is the trial number. This is similar to flipping a fair coin. The
number of revolutions of the coin must change with each flip to avoid having the coin
always come up heads! A skilled human could bias the coin by controlling the number
of revolutions before catching the coin. As a test, consider a run of some number of
trials of the experiment, say 50. For each run, assign the value of the random variable
that counts the number of times the outcome is 1. Approximate the expected value and
the variance of this random variable by conducting many runs (say 100). Compare the
results of your simulations with similar tests using a random number generator (or a
coin) instead of the function iterations. Discuss your results.

Exercise 9.13. Suppose that X and Y are continuous random variables with
probability distribution functions G and H . Show that X and Y are independent if and
only if their joint probability distribution function K defined by

K(t) = P (t : X(t) ≤ t and Y (t) ≤ t) = P (X ≤ t, Y ≤ t) = G(t)H(t).

Thus, this property may be taken (as it often is) as the definition of independent random
variables.

9.4 RANDOM WALK GENERALIZATIONS AND
APPLICATIONS

The one-dimensional random walk is fundamental. It can be generalized to
several dimensions and more general random walks, and the generalizations
can be used to model many physical processes.

Key ingredients for modeling are appropriate generalizations of the
master equation [Eq. (9.15)] for the one-dimensional classical random walk
repeated here for the convenience of the reader:

Pn+1(m`) = Pn(m`− `)q + Pn(m`+ `)p.

This master equation will be recast into a form that can be easily generalized.

Recall that, for passage to a continuum limit, the probability Pn can
be viewed as the probability distribution on the one-dimensional lattice
(of possible positions of the random walker) for the random variable fn
given by fn(m`) = m` on the lattice. Or, in other words, Pn(m`) is the
probability that, at step n, the random walker is at the lattice point m`. For
the one-dimensional case considered so far, p and q are the probabilities of
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moving left or right one position on the lattice. Consider a new random
variable defined at each step, which in the spirit of modern probability
theory is named ∆fn to connote displacement or increment. It is given by
∆fn(m`) = m` on the lattice with probability distribution ∆Pn defined on
the lattice by

∆Pn(m`) =


p, m = 1;
q, m = −1;
0, otherwise.

(9.30)

The probability distribution ∆Pn does not depend on n; it depends only on
the ordering of the lattice points. This fact is important as it ensures that
the events corresponding to the increments at each step of the process are
independent. (A process where this distribution does depend on n might
be interesting, but is beyond this discussion.) Thus, for the rest of the
discussion, the subscript is eliminated with the understanding that ∆P does
not depend on n. Using this new probability distribution, the master equation
can be rewritten as a sum over all lattice points:

Pn+1(m`) =
∑
k`

Pn(k`) ∆P(m`− k`). (9.31)

Here, as usual, Pn(k`) is shorthand for Pn(fn = k`) or for the probability
of the event that the random variable is equal to the lattice point k`.
Likewise, m` − k` is a lattice point obtained by subtracting two numbers,
and ∆P(m` − k`) is the probability of the event that the random variable
∆fn has value equal to the lattice point m` − k`. This latter probability
vanishes except when m − k = ±1; therefore, Eq. (9.31) makes the same
statement as the original master equation.

The right-hand side of Eq. (9.31) is a discrete convolution. Using the
change of variables j` = m`− k`, the equation can be recast in the form

Pn+1(m`) =
∑
j`

Pn(m`− j`) ∆P(j`), (9.32)

which is more convenient for analysis.

To generalize, note that by simply redefining Pn and ∆P to be other
probability distributions for position and displacement random variables on
an arbitrary lattice, perhaps one in two- or three-dimensional space, the same
form of the master equation [Eq. (9.32)] with an appropriate change in the
indices to denote points on the new lattice remains valid: the probability of
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being at a point in the lattice at step n + 1 is the sum over all points in the
lattice of the products of the probabilities of being at a point in the lattice and
the probability of the displacement from the current point to the given lattice
point. The increment might allow a nonzero probability for points anywhere
on the lattice to move to a given point. Of course, the more general random
walks in one dimension can be treated; perhaps the walker is allowed to
move two places or one place according to some probability distribution.

Assume that the lattice under consideration lies in the d-dimensional
space Rd and a typical point z in the lattice L has Cartesian coordinates

z = (i1`1, i2`2, i3`3, . . . , in`d),

where the ij are integers and `j are positive real numbers. In this case, the
master equation is

Pn+1(z) =
∑
ζ∈L

Pn(z − ζ) ∆P(ζ). (9.33)

Define the density z → u(z, τ) on the lattice at step n by

u(z, nτ) =
Pn(z)

`1`2`3 · · · `d
. (9.34)

In one-dimensional space (the line), each pair of adjacent lattice points
bounds an interval, in two dimensions the lattice is associated with a grid
of rectangles, in three dimensions with a grid of boxes, and so on. For
simplicity, agree to call these intervals, rectangles, and boxes by the same
name: boxes. Choose a consistent way to assign a box to each grid point; for
example, given a grid point one possibility would be to move the origin of
the coordinate system to this grid point by a translation of Rd and assign the
box at this grid point that has all positive coordinates and corner at the origin.
Use this choice to extend z → u(z, nτ) to a piecewise constant function by
assigning to every point in the box associated with the grid point z the value
u(z, nτ). The extended function is piecewise constant over the entire space
containing the grid.

The master equation in this generality does not lend itself (without
further assumptions about the probability densities associated with the
underlying random walk) to the algebraic manipulations that produced a
difference equation including approximations of partial derivatives, which
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led to the Fokker–Planck PDE. In general it is not clear how to take the
same approach.

A new idea is to treat the increment probability density the same way as
the probability density z → u(z, τ) by defining

ρ(z) =
∆P(z)

`1`2`3 · · · `d
. (9.35)

The extended densities satisfy the equation

u(x, nτ + τ) =
∑
ζ∈L

u(x− ζ, nτ)ρ(ζ)`1`2`3 · · · `d (9.36)

for every x ∈ Rd. And, because the functions u and ρ are piecewise constant,
the sum can be replaced by an integral; in fact,

u(x, (n+ 1)τ) =

∫
Rd
u(x− ξ, nτ)ρ(ξ) dξ. (9.37)

For large n the piecewise constant functions u and ρ should be closely
approximated by smooth functions with as many continuous partial deriva-
tives as desired. Warning: This is not a rigorous statement. But, it is true
for most situations that are encountered in applications. To make a rigorous
statement, the probability distributions Pn and ∆P must be known. Assume
that u and ρ can be replaced by smooth functions so that (up to an acceptable
approximation)

u(x, nτ + τ) =

∫
Rd
u(x− ξ, nτ)ρ(ξ) dξ. (9.38)

To determine the Fokker–Planck PDE, the idea is to expand ξ 7→
u(x − ξ, nτ) in a Taylor series at ξ = 0 to obtain the partial derivatives
that will appear in the PDE. For this approach to succeed (without too much
analysis), only the first few terms of the series would be retained. In fact, the
plan is to expand to second order and ignore the contributions of terms with
order at least O(|ξ|3). The validity of such an approximation requires |ξ| to
be small. In general, this is certainly not the case; indeed, the integration
in the master equation [Eq. (9.38)] is over all of space where |ξ| takes on
values that are certainly not small. To go further, some assumption must be
made to justify the desired approximation. The simplest idea is to impose a
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restriction on the probability distribution of the increment ∆P; that is, some
bound is placed on how far a walker can move in the lattice. For the classical
one-dimensional random walk, this quantity [Eq. (9.30)] vanishes outside
the closed ball (closed interval in one dimension) of radius ` centered at the
origin of the lattice. For the more general case, it suffices to suppose there
is some positive integer ω such that ∆P(m`) vanishes whenever |m| > ω.
This restriction imposes the length scale ω` on the limit process.

The multivariable Taylor series is a direct generalization of the one-
dimensional case:

u(x− ξ, nτ) = u(x, nτ)−∇u(x, nτ)ξ +
1

2
ξT Hessu(x, nτ)ξ +O(|ξ|3),

where Hess (the Hessian) is the matrix of second partial derivatives obtained
by differentiating the vector valued function x→ ∇u(x, nτ) and T denotes
the transpose. All terms in the Taylor series are scalars. By substitution into
the master equation [Eq. (9.37)] and some simple reductions, we have that

u(x, (n+ 1)τ) =

∫
Rd

[(u(x, nτ)−∇u(x, nτ)ξ

+
1

2
ξT Hessu(x, nτ)ξ)ρ(ξ)] dξ +O(|ξ|3)

= u(x, nτ)

∫
Rd
ρ(ξ) dξ −∇u(x, nτ)

∫
Rd
ξρ(ξ) dξ

+

∫
Rd

1

2
ξT Hessu(x, nτ)ξρ(ξ) dξ +O(|ξ|3)

= u(x, nτ)−∇u(x, nτ)

∫
Rd
ξρ(ξ) dξ

+
1

2

d∑
i,j=1

∫
Rd
ξiξjρ(ξ) dξuxixj (x, nτ) +O(|ξ|3).

(9.39)

Here, because ρ is a probability density,∫
Rd
ρ(ξ) dξ = 1.

The integrals ∫
Rd
ξiρ(ξ) dξ,

∫
Rd
ξiξjρ(ξ) dξ,
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called first and second moments of the probability density ρ, come equipped
with the length scale imposed by the restriction on the increment density.
This arises because the integrals in the formula over all of Rd can be replaced
with integrals over the ball Bω` centered at the origin of radius ω`; for
example, ∫

Rd
ξiρ(ξ) dξ =

∫
Bω`

ξρ(ξ) dξ.

Rearrange Eq. (9.39) and divide by the time increment τ to obtain the
new equation

u(x, nτ+ τ)−u(x, nτ)

τ
=− 1

τ
∇u(x, nτ)

∫
Rd
ξρ(ξ) dξ

+
1

2τ

d∑
i,j=1

∫
Rd
ξiξjρ(ξ) dξuxixj (x, nτ)+O(|ξ|3).

Without going further into details, appropriate choices of timescale τ and
length scale ω`, allow passage to the limit as before to obtain the Fokker–
Planck PDE

ut = −α∇u+
1

2
Du (9.40)

where α is a vector of constants and D is the second-order differential
operator given by the sum of second moments and partial derivatives. Here,
the unknown probability density depends on the vector variable x and time
t, the ∇u term contributes drift, and the differential operator (which is
similar to the Laplace operator as they both belong to the well-studied
class of elliptic operators) contributes diffusion. In specific applications
where further assumptions are made, the second moment coefficients of
the operator D are known and the PDE can be solved in all of Rd with
appropriate initial data.

A word is in order about boundary data. This topic is not covered here to
keep the discussion short, but boundary data arises naturally from random
walk problems where the random walker is, for example, absorbed by a
wall or reflected from a wall. Of course, this is an excellent topic for further
exploration.

The classic application that introduced the random walk and probabilistic
modeling (especially in the life sciences) is the question Karl Pearson
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(1857–1936) asked during 1905 : “A man starts from a point O and walks l
yards in a straight line; he then turns through any angle whatever and walks
another l yards in a second straight line. He repeats this process n times. I
require the probability that after these n stretches he is at a distance between
r and r + dr from his starting point, O." An approximate answer given by
Lord Rayleigh (J. W. Strutt, 1842–1919) in the same year is “If n be very
great, the probability sought is

2

n
e−r

2/nrdr.”

Both brief communications are published in Nature July 1905 (p. 294 and
p. 318, respectively). Rayleigh’s answer will be obtained from the Fokker–
Planck model [Eq. (9.40)]. Pearson was thinking about the spread of insect
infestations in forests, but he wisely framed his question to avoid extraneous
context.

In Pearson’s problem, the random walk takes place in two dimensions.
Consider a two-dimensional rectangular lattice whose nodes have coor-
dinates (i`, j`) for integers i and j and box side length `. The random
walker moves l yards during each step. By taking ` much smaller than
l, a new random walker confined to horizontal and vertical moves on
the two-dimensional lattice will reach nodes that approximate every point
(corresponding to “any angle whatsoever") on the circle centered at the
origin with radius l. In other words, the new random walker approximates
Pearson’s walker when the new random walker takes enough steps to reach
points close to the circle (say less than or equal to a distance ` from the
circle). By moving the origin to one of these points, the process can be
continued. This approach is of course compatible with the derivation of the
Fokker–Planck PDE [Eq. (9.40)].

To obtain the Fokker–Planck PDE for a two-dimensional random walk
designed to model the Pearson problem (or any other applied problem of
this type), the main issue is choosing an appropriate probability density ρ
for one step. In Pearson’s problem, every direction is equally likely. Starting
at the origin, there are four available nodes on the lattice with spacing `,
each equally likely to be reached in one step by the new random walker.
The limiting probability density for the increment is approximated by the
piecewise constant function, again named ρ, that is constant on the closed
disk of radius ` with value 1/(π`2), and zero in the complement of the disk.
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In more compact form,

ρ(x, y) :=

{
1
π`2 , x2 + y2 ≤ `2;
0, x2 + y2 > `2.

(9.41)

The constant value of ρ makes all four directions equally likely and the
integral of ρ over all of R2 is equal to one, as it must be for a probability
density.

Using the definition of ρ, an easy computation using a change to polar
coordinates (see Exercise 9.14) can be used to show that∫

R2

xρ(x, y) dxdy =

∫
R2

yρ(x, y) dxdy =

∫
R2

xyρ(x, y) dxdy = 0

and ∫
R2

x2ρ(x, y) dxdy =

∫
R2

y2ρ(x, y) dxdy =
`2

4
.

All first moments vanish—the expected value for the position of the
random walker is the origin. The cross second moments vanish. The second
moments in the directions of the grid are equal. In particular, the expected
value of the square of the distance of the walker from the origin after one
step is ∫

R2

(x2 + y2)ρ(x, y) dxdy =
`2

2
.

Using these results, the Fokker–Planck equation reduces to

ut =
`2

8τ
(uxx + uyy). (9.42)

The theory tells us that in the limit process (as ` and τ approach zero)
` must be proportional to

√
τ , but the constant of proportionality is left

undetermined. It must be obtained from the physical process being modeled.
In Pearson’s walk, no timescale is given. Thus, it makes sense to choose
τ = 1/k, for some positive integer k that will increase without bound during
the limit process as finer and finer meshes are considered. Using this choice,
one Pearson step is modeled by k steps for the new walker on the lattice.
One unit of physical time, whichever units are chosen, should be 1 = kτ ,
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and n Pearson steps are completed at time t = n. Take

` =
√

4κτ

with κ to be determined. This choice ensures

`2

8τ
=
κ

2
,

so that κ corresponds to the variance of the one-dimensional normal
probability distribution expected to be related to the solution of the new
Fokker–Planck equation. But, this choice is not too important; the key result
is to determine κ. The Fokker–Planck PDE takes the form

ut =
κ

2
(uxx + uyy). (9.43)

The solution of this equation for the initial distribution modeled by the delta
function at the origin (where the walker is defined to start with probability
one) is

u(x, y, t) =
1

2πκt
e−(x2+y2)/(2κt). (9.44)

Note that the leading factor has denominator 2πκt, not
√

2πκt. For three-
dimensions, the corresponding PDE

ut =
κ

2
(uxx + uyy + uzz)

has a solution of the same form but with denominator (2πκt)3/2; in d-
dimensions the exponent is d/2. Also, there is special terminology for
multidimensional normal distributions that is not used here.

What value should be assigned to κ? One answer to this question is to
assign κ so that the expected value of the square of the position X2

t of the
random walker in the continuum limit at time t = 1 is l2, the distance from
the origin after one Pearson step. The expected value is

E(X2
1 ) =

∫
R2

(x2 + y2)u(x, y, 1) dxdy = 2κ (9.45)

and

κ =
l2

2
.
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By substituting this value for κ into Eq. (9.44) the desired probability density
(x, y) 7→ u(x, y, t) is determined at time t. After n Pearson steps, this
probability density is given by (x, y) 7→ u(x, y, n).

Pearson asked for the probability of being at “a distance between r and
r + dr from his starting point, O." To estimate the answer to his question,
we must compute the probability of the event that Xn is in the annulus A
with radii r and r + dr and center at the origin. This assumes the increment
dr is positive. We know the probability density. The probability of this event
is ∫

A
u(x, y, n) dxdy ≈ 1

κn
e−r

2/(2κn) =
2

l2n
e−r

2/(l2n). (9.46)

The approximation is due to treating dr as an infinitesimal—as Pearson
surely intended—by dropping terms of order dr2. Rayleigh’s result is
obtained for Pearson length taken to be l = 1. This estimate is expected
to be better “If n be very great." Why?

Exercise 9.14. A rotationally invariant function ρ : R2 → R has the form ρ(x, y) =

f(x2 + y2), for some function f : [0,∞)→ R. Suppose that ρ : R→ R is a continuous
function with finite first and second moments. Show that∫

R2

xf(x2 + y2) dxdy =

∫
R2

yf(x2 + y2) dxdy =

∫
R2

xyf(x2 + y2) dxdy = 0

and ∫
R2

x2f(x2 + y2) dxdy =

∫
R2

y2f(x2 + y2) dxdy = π

∫ ∞
0

r2f(r2) dr.

Exercise 9.15. Make detailed computations to verify approximation (9.46)

Exercise 9.16. Simulate Pearson’s random walk and make a comparison with the
approximation (9.46). Discuss your methodology.

Exercise 9.17. Repeat the derivation of the approximation (9.46) for the case of three-
dimensional space. The result would be relevant to modeling a dust particle moving in
a room filled with air or a molecule of some substance moving in a bath of water due to
collisions with water molecules.



CHAPTER 1010
Problems and Projects:
Concentration Gradients, Convection,
Chemotaxis, Cruise Control, Constrained
Control, Pearson’s Random Walk, Molecular
Dynamics, Pattern Formation

Exercise 10.1. [Concentration Gradients] (a) Make a mathematical model to describe
the diffusion of a solute (call it’s concentration u) in water through a permeable
membrane idealized as a cross section of a tube (perhaps an idealized blood vessel)
with one closed end. Suppose the tube radius is a, its length is L , and the membrane is
placed at a distance pL (for some 0 < p < 1) from the open end of the tube. The tube
is filled with pure water and its open end is connected to a reservoir with a large supply
of solution containing the mentioned solute with concentration c. This solute diffuses in
the tube. The solute moves across the membrane according to a form of Fick’s law: the
solute flux across the membrane is proportional to the concentration difference across
the membrane and in the direction from higher to lower concentration. Let k denote the
diffusion constant for the solute in water and λ the diffusivity constant (the constant of
proportionality across the membrane).
(b) Using the same geometry, make a model for the situation where the solute is secreted
through the closed end of the tube and leaves the open end of the tube that is immersed in
pure water. Assume that the flux across the closed end of the tube is known. (c) Choose
numerical values for all the parameters in this problem and determine the corresponding
steady state solute concentration in the tube as a function of position along the tube.

Exercise 10.2. [Chemotaxis] Let u denote the density of a population of bacteria,
cells, insects, or other organism whose motion is influenced by the presence of a
chemical in their environment with concentration c and recall the basic conservation
equation [Eq. (5.1)]

ut = − div(X) + f,

whereX is the diffusive flux of u and f is the amount of substance generated per volume
per time, which is here taken to be zero. Our organisms are assumed to diffuse from
higher concentration to lower concentration independent of the presence of the chemical.
Use the usual constitutive law X = −K gradu to model this process and note that X is
measured in mass per area per time. In the present case mass is essentially the number
of organisms at a point (the units u times volume). The orientation of organisms with
respect to the presence of the chemical (the chemotaxis) is modeled by modifying the
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flux term to read

X = −K gradu+ uχ(c) grad(c),

where χ is the chemotactic sensitivity measured in units of inverse chemical concentra-
tion times length per time. This assumption leads to the chemotaxis equation

ut = div(K gradu− uχ(c) grad(c)).

In case the chemical concentration is not affected by the presence of the organisms, it
may be specified. Or its concentration may be modeled by a reaction-diffusion equation

ct = k∆c+ g(c, u),

where g models the creation and consumption of the chemical in the environment.
(a) Suppose that the organisms do not diffuse (K = 0), the chemical concentration
in a two-dimensional environment is given by a function of the form e−x

2−y2

, and
the chemotactic sensitivity is constant (either +1 or −1). Discuss the change in
concentration of the organisms with respect to time under the assumption that the
organisms are initially uniformly distributed over the environment. (b) Repeat part
(a) with diffusion (K > 0). (c) Suppose the organisms secrete the chemical at a
rate inversely proportional to the presence of the chemical. Write the model under
this assumption and discuss the effect on the concentration of organisms. Use a two-
dimensional environment on a finite part of the plane and discuss your choice of
boundary conditions.

Exercise 10.3. [Chemotaxis for Individuals and Agent-Based Modeling] Imagine a
hypothetical insect that has three antennae: one on each side of its head and one pointing
forward along the insect’s axis of symmetry. The insect can sense the concentration of
a chemical with each of its antennae. Also, the insect has short-term memory: It can
remember the output of its sensors over some fixed period of time. The insect feeds on
substances that excrete the chemical it can sense. (a) Design a controller (that would
mimic the controller that would have been designed through evolution for the insect) so
that the insect will follow a gradient of increasing concentration of the chemical to its
source, where the food is likely to reside. Your model might be continuous or discrete
and the controller might not be proportional–integral–deriviative (PID). (b) Test your
control strategy by simulation using chemical trails of your own design. (c) Suppose
there are many insects. Augment your control rules so that two insects cannot occupy
the same space at the same time. Simulate the motion of several insects using your
control strategy. Your model is likely to be an example of an agent-based model: a set of
agents, an environment in which they reside, and a set of rules that determine how each
agent behaves.

Exercise 10.4. [Cruise Control] A basic model for an automobile cruise control starts
with a model of the motion of an automobile over a road. For simplicity, assume that
the controller will be tested on a straight road over hilly terrain. Choose an inertial
coordinate system—in this case, a coordinate system fixed to the Earth is a reasonable
approximation—such that the positive horizontal axis is in the direction of the road
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and the vertical axis points away from the surface of the Earth. The road may then be
idealized as the graph of a function f that gives the elevation y over each horizontal
position x via y = f(x). This reduces the problem to two dimensions. As usual, let the
position of the automobile as a function of time t be denoted by (x(t), y(t)). There are
several forces acting on the automobile: the forward force provided by the automobile’s
engine, gravity, aerodynamic drag, rolling resistance due to deformation of the tires,
and the force that keeps the automobile from dropping through the road. Assume that
the latter force FN is everywhere normal to the road and lump the sum of all other
forces except gravity into one force denoted by G. According to Newton’s second law
and assuming the mass m of the automobile does not change with time due to fuel
consumption or other reasons) the equation of motion is

m

(
ẍ
ÿ

)
= −mg

(
0
1

)
+ FN +G. (10.1)

The unit tangent to the road is the vector

T :=
1√

1 + (f ′(x))2

(
1

f ′(x)

)
.

By computing the inner product of both sides of differential equation (10.1) with T , the
model is reduced to

m√
1 + (f ′(x))2

(ẍ+ f ′(x)ÿ) = −mg f ′(x)√
1 + (f ′(x))2

+G · T.

The system is reduced to one dimension by using the relation y = f(x) to obtain

m
(
ẍ
√

1 + (f ′(x))2 +
f ′(x)f ′′(x)√
1 + (f ′(x))2

)
= −mg f ′(x)√

1 + (f ′(x))2
+G · T.

(10.2)

Although the equation of motion [Eq. (10.2)] with G specified is a model of the
automobile motion, it is not well suited to designing and simulating a cruise control in
case the sensor determines the vehicle speed along the road; that is, with respect to arc
length along the graph of f , which is given by

` :=

∫ x

0

√
1 + (f ′(ξ))2 dξ.

For this reason, it is advantageous to recast the model [Eq. (10.2)] with the dependent
variable being speed along the road; that is,

s :=
d`

dt
=
d`

dx

dx

dt
= ẋ
√

1 + (f ′(x))2.
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Note that

ṡ = ẍ
√

1 + (f ′(x))2 +
f ′(x)f ′′(x)√
1 + (f ′(x))2

.

Thus, we may consider the model equation as the system

mṡ = −mg f ′(x)√
1 + (f ′(x))2

+G · T,

ẋ =
s√

1 + (f ′(x))2
. (10.3)

The drag force acts in the direction opposite to the motion and its magnitude may be
approximated by

1

2
ρCdAs

2,

where ρ is the density of the air, Cd is the dimensionless drag coefficient for the
particular automobile under consideration, and A is the cross-sectional area presented
by the projection of the automobile onto a plane perpendicular to the direction of its
motion.

A good model for rolling resistance requires some knowledge of the physics of tires.
A crude approximation is made by simply regarding this force as a resistance to the
motion proportional to the speed of the vehicle; that is,

Frr := Crrs,

where Crr is a constant with units of mass per time.

The force due to the automobile engine may be modeled in several different ways. A
simple approach requires the tire radius r and the angle θ (measured in radians) that the
vector from axis of rotation to a point on the tread of a tire makes with the horizontal.
In the ideal situation where there are no forces acting, the speed s of forward motion is
given by s = 2πrθ̇. The automobile mass times its acceleration is

mṡ = 2πrθ̈ =
2πrm

I
|τ |,

where I is the moment of inertia of the wheel and τ is the torque on the wheel provided
by the engine.

By inserting the forces into model system (10.3), the automobile motion model is

mṡ = −mg f ′(x)√
1 + (f ′(x))2

− 1

2
ρCdAs

2 − Crrs+
2πrm

I
|τ |,
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ẋ =
s√

1 + (f ′(x))2
. (10.4)

The cruise control actuator may be taken to be a linkage to a variable valve that
changes the amount of fuel flowing to the engine. In turn, the fuel supply to the engine
determines the torque supplied to the wheel through the drive train of the automobile.
The valve, fuel pump, fuel line, injection system, transmission, differential, and so on
combine into a complicated mechanical system. Is it necessary to have a precise model
of this system to design a useful cruise control? This question can only be answered
by building and testing cruise control systems. The purpose of the model is preliminary
design. It seems that a detailed model of the fuel supply to the engine and the drive
train would lead to unnecessary complication. A reasonable way to proceed is to simply
assume the torque (|τ |) supplied to the wheel is proportional to the fuel supply. For
example, we may assume that

|τ | = λQ,

where Q is the volumetric flow rate (dV/dt) of fuel to the engine. In this case, the
constant of proportionality λ has units of mass per length per time. Perhaps the constant
of proportionality would be easier to measure by experiments with the automobile if this
coefficient were dimensionless. To achieve this we might redefine our relationship to be

|τ | = λ
m

r
Q,

where m is the mass of the automobile and r is the tire radius so that the new λ is
a dimensionless coefficient of proportionality between volumetric fuel consumption of
the engine and the torque supplied to the wheels. The volumetric flow rate Q may be
subjected to a PID control with desired (set point) speed sd. In this application, the
volumetric fuel consumption is limited by the design of the automobile engine. There
are two positive rates α and ω such that

α ≤ Q ≤ ω.

The lower limit is positive to keep the engine running even when the speed exceeds the
set point. Thus, the PID control must be composed with an appropriate function H to
impose the saturation limits; that is, the controlled volumetric flow rate is

Q = H(kP (sd − s) + kI

∫ t

t−a
(sd − s(σ)) dσ − kD ṡ),

where a ≥ 0 is the amount of time kept in the controller memory.

A closed loop control model is

mṡ = −mg f ′(x)√
1 + (f ′(x))2

− 1

2
ρCdAs

2 − Crrs
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+
2πm2

I
H(kP (sd − s) + kI

∫ t

t−a
(sd − s(σ)) dσ − kDṡ),

ẋ =
s√

1 + (f ′(x))2
. (10.5)

(a) Criticize the closed loop control model.
(b) Set all system parameters equal to unity. Suppose that the road elevation is given by
f(x) = 2 exp(−(x − 3)2) and the automobile starts at position x = 0 at time t = 0.
Optimize the control parameters kP , kI , kD , and a over the interval 0 ≤ x ≤ 5.
(c) Using the parameters for part (b), define a typical road terrain f that might be used
to test cruise control systems, defend your choice, and optimize the control parameters
over a finite distance on your terrain. Define two new terrains (one of which might have
some atypical feature) and test your optimized control system over the new terrains.
Write a report on your findings.
(d) Consult the literature on automotive engineering for approximations of the system
parameters for a particular automobile. Define a typical terrain f and optimize the
control parameters for a set-point speed of 70 miles per hour over a finite distance on
your terrain. Define two new terrains (which perhaps have some atypical but physically
reasonable features) and test your optimized control system over the new terrains. Write
a report on your findings.

Exercise 10.5. [Unicycle Control] A wheel (imagine a unicycle or a rolling disk)
with control mechanisms can roll on a flat horizontal surface and rotate about the axis
through its axle and the point where it contacts the surface. The wheel is not allowed to
skid; that is, it is not allowed to move normal to its present heading (which is defined to
be the unit vector in the direction of the projection of its velocity vector in the plane).
Let (x, y) denote the coordinates in the plane and θ the angle between the heading of the
wheel and the positive x axis. A model for the motion of the wheel is

ẋ = f(x, y, θ, u(t)) cos θ,

ẏ = f(x, y, θ, u(t)) sin θ,

θ̇ = g(x, y, θ, v(t)),

where u and v are control inputs; that is, functions of time to be specified. (a) Describe
in detail how the proposed model reflects the description of the controlled motion. (b)
Suppose that f(x, y, θ, u(t)) = u(t) and g(x, y, θ, v(t)) = v(t). Is it possible to specify
u and v so that the wheel will move on a circular path about the origin of the coordinate
system with radius r? What about an arbitrary smooth path?

Exercise 10.6. [Math Project: Iteration and Eigenvalues] Give a complete proof that
the iteration scheme zn+1 = Azn+ b for an n×n matrix A and an n vector b converges
whenever every eigenvalue of A has absolute value less than unity. Hint: You may need
to use the Jordan canonical form and at least one important result from the theory of
matrix norms: Given an n × n matrix A, there is a norm on n-dimensional space such
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that the associated matrix norm of A is as close as desired to the spectral radius of A
(that is, the absolute value of the largest eigenvalue of A).

Exercise 10.7. [Exact Solution of Pearson’s Random Walk] Recall the formula
[Eq. (9.46)] for an estimate of the probability of Pearson’s random walker, who takes
steps of length l, to be in the annulus centered at the origin with radii r and r + dr after
n steps in random directions:

2

l2n
e−r

2/(l2n).

In 1906, J. C. Kluyver and later Rayleigh (1919) discovered exact formulas for Pearson’s
random walk and extended this to random walks where the distances of the steps can
be taken to be different lengths and the walker can move in d dimensions (see [117,
p. 419] for an early account). The basic results for the two-dimensional case uses Bessel
functions of order zero and one to express the probability of the walker being at a
distance less than r > 0 from the origin after n steps of varying step lengths li, for
i = 1, 2, 3, . . . , n,

P = r

∫ ∞
0

J1(rs)

n∏
j=1

J0(sli) ds.

The probability of being between distances r and R is (R − r)dP/dr. Give a short
description of why Bessel functions are important. Compare Rayleigh’s estimate to the
exact two-dimensional solution of Pearson’s problem with equal step distances, and
include an exposition of the methodology used to obtain the exact result. Your discussion
should also include appropriate simulations, which involve a numerical challenge of
evaluating improper integrals of products of Bessel functions. A discussion including
mathematical estimates to compare the exact and approximate solutions would be best.
Why is the exact solution of this problem ignored in most of the probability literature in
favor of estimates involving the normal distribution? A more ambitious project would
be to include unequal probabilities of moving in different directions or some bias in the
choice of direction in Pearson’s original problem. Give good estimates of finding the
random walker between r and r + dr. Is there an exact solution?

Exercise 10.8. [Stability of Numerical ODE Solvers] Consider the (vector) initial
value problem

ẋ = f(x, t), x(t0) = x0

where all partial derivatives of f are continuously differentiable. The midpoint method
(also called the leapfrog method) for approximating solutions is defined by

xn+1 = xn−1 + 2∆tf(xn, tn), tn+1 = tn + ∆t,
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Fig. 10.1 Graph of numerical approximation to the solution of the initial value problem ẋ = −x and x(0) = 1.

where ∆t is the length of one time step.
(a) Derive the midpoint method. Hint: Write, as usual,

x(t+ ∆t) = x(t) +

∫ t+2∆t

t

f(x(s), s) ds

and approximate the integral by the value of the integrand at the midpoint of the time
interval t ≤ s ≤ t+ 2∆t.
(b) Show that the midpoint method is second order.
(c) Note that implementation of the method requires two values of the state variable x:
x0 and x1. Thus the midpoint method is a multistep method where previously computed
values are used to make the approximation at each new step. The standard way to start
the midpoint method is to use Euler’s method

x1 = x0 + ∆tf(x0, t0).

Recall that Euler’s method is a first-order method. Nonetheless, show that starting
the midpoint method with Euler’s method does not destroy its second-order accuracy.
Suppose instead a small step size is chosen and x1 is simply set equal to x0 to start. Is
second-order accuracy preserved? Hint: How is the order of a method defined?
(d) Write code that implements the midpoint method using Euler’s method to start
the multistep procedure and verify numerically that your code produces second-order
accuracy to the exact solution for the test equation ẋ = xwith initial condition x(0) = 1.
(e) Use the code written in part (d) to approximate the solution of the initial value
problem ẋ = −x with initial condition x(0) = 1.
For a step size ∆t = 0.05, your approximation should look like the graph in Fig. 10.1.
Show with a pencil and paper argument that the oscillatory behavior is to be expected.
Hint: Look for explicit solutions of the difference equation xn+1 = xn−1 − 2∆txn of
the form xn = λn for some (real or complex) number λ and write the general form of the
solution of this difference equation as a linear combination of a pair of such solutions.
(f) There are at least three possible cures for the oscillatory behavior (numerical
instability): (1) restart the midpoint method after every N steps, where N is an even
integer (perhaps N = 20); (2) compute on some interval [t0, t0 + T ] (perhaps with
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T some unit of time so that the desired approximation is at time t0 + KT for some
integer K) with step size ∆t, recompute with step size ∆t/2, and use Richardson
extrapolation to improve the approximation at time T before restarting the midpoint
method; and (3) smooth the approximation before restarting from xN by computing
one additional time step, averaging over xN−1, xN , and xN+1 using (for example)
(xN−1 + 2xN +xN+1)/4, and restating with the averaged value as the initial state. Test
these ideas on two or three differential equations with known solutions and discuss your
results. The original source for this methodology is [44] (see also [100]).
(g) Imagine a modification of the limited growth model ut = u(1 − u), where
u represents the concentration of some substance or life-form growing in a limited
environment. Suppose the substance is distributed in a one-dimensional environment
where growth depends on the total concentration in some neighborhood. A model of
this scenario is given by

ut = U(1− U/K), U(x, t) :=
λσ√
π

∫ ∞
−∞

u(ξ, t)e−σ
2(ξ−x)2

dξ,

where λ has dimensions of the reciprocal of length times time, K has the same
dimensions as U (that is, concentration per time), σ the dimension of reciprocal length,
and a the dimension of length. The exponential factor makes the concentration at the
field point x more significant than the surrounding concentrations. This model has
constant steady state solutions at u = 0 and u = K/λ. Prove this fact. Question:
Given an initial distribution of concentration on the line, say u(x, 0) = f(x) for some
specified function f with 0 ≤ f(x) ≤ K/λ, does the concentration evolve to a steady
state1? Explore this model seeking to gain insight into answering this question using
numerical experiments that employ the midpoint method. Hint: The differential equation
is an ordinary differential equation (ODE) in a function space: for each time t the state
is a function x 7→ u(x, t). Make it dimensionless. To discretize, choose some finite
interval (to approximate) the whole real line, split it into equal sized subintervals whose
endpoints are called nodes and approximate functions by the vector of function values
at these nodes in the same way that functions are approximated when discretizing a
partial differential equation (PDE) such as the heat equation. Also, approximate the
integral using, for example, the trapezoidal rule or Simpson’s rule with respect to the
nodes in the discretization. This leads to a system of coupled ODEs, one for each node,
whose solutions may be approximated by the midpoint method. You should see why
this method might be used: function evaluations are expensive and at least second-order
accuracy is desirable.

Exercise 10.9. [Numerical Integration of Newton’s Equation] The fundamental
equation of motion (Newton’s second law) reduces to the mathematical form ẍ = f(x, t)

called Newton’s equation. One method of integration is to turn the equation into a first-
order system, say ẋ = y and ẏ = f(x, t) and use one of the numerical methods already
described (Euler, improved Euler, trapezoidal, and so on). Another, more direct method,
is to simply approximate the second derivative directly and make a numerical method

1At this writing, the author does not know the answer.
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from this approximation. The basic example is to take the usual centered difference
approximation

x(t+ ∆t)− 2x(t) + x(t−∆t)

∆t
= f(x(t), t)

and rearrange it keeping the forward step x(t + ∆t) on the left-hand side and moving
the other terms to the right-hand side. (a) Show that this leads to the numerical method
(sometimes called the Störmer-Verlet method)

tn+1 = tn + ∆t, xn+1 = 2xn − xn−1 + ∆tf(xn, tn).

(b) To solve the initial value problem for Newton’s equation requires the initial data x(0)

and ẋ(0), two numbers. To start the suggested numerical scheme requires knowing x0

and x1. Clearly x0 = x(0). What is the correct choice for x1? Hint: Expand x at t = 0

in a Taylor series.
(c) Write code to implement the method and use it to approximate the solution of
ẍ + x = 0 with x(0) = 1 and ẋ(0) = 0. Check the accuracy of the method using
the exact solution after integration on the interval 0 ≤ t ≤ 2π. What is the order or the
method? Guess the order by numerical experiment and then prove your guess is correct.
(d) Compare the efficiency of the method against the improved Euler method or the
trapezoidal method.
(e) Suppose that in a physical problem, the velocity of some particle is more important
than its position. What is the best way to obtain the velocity from Störmer–Verlet
integration. How does your method compare with obtaining the velocity from improved
Euler or the trapezoidal method?
(f) Consider the interaction of three particles in space. Each of them produces a potential
that affects the other particles. The equation of motion, according to Newton’s second
law and after some rearrangement, is

ẍi = −
∑
j 6=i
∇Vj(xi), i = 1, 2, 3,

where Vj is the potential produced by the jth particle. The classic potential of Newtonian
gravitation or Coulomb electrostatics has the form Vj(x

i) = aij/|xi − xj | for i 6= j,
where the constant aij measures the strength and direction of the interaction between
the ith an jth particles. To focus on a specific problem, suppose that the initial state of
the particles has positions

x1 = (1, 0, 0), x2 = (−1, 0, 0), x3 = (0, 0, 1)

and the velocities

v1 = (0, 0.2, 0), v2 = (0,−0.2, 0), v3 = (0, 0, c),

where c is a parameter. Moreover, suppose that ai1 = ai2 = −0.15 (that is, the first
two particles attract each of the other particles with the same strength), ai3 = 0 (that
is, the third particle does not attract either of the first two particles), and c = 0 (that
is, the third particle starts from rest). In the gravitational interpretation, think of two
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massive bodies and a third body of small mass. With this data, plot the motion of the
particles over at least an interval 40 units of time. Describe the motions of the particles.
To compare results with other experimenters, specify (with three correct decimal places)
the positions and velocities of the particles after 10 units of time has elapsed. Is it
possible to solve the equations of motion exactly for the special case?
(g) Experiment with different interaction strengths and initial velocities for the third
particle. Report on your results. In particular, seek to determine what happens when the
third particle is initially not at rest.
(h) What would the aij be for the Earth-Moon-Sun system? How about the initial data?
Make a simulation and check against the known orbital periods and orbital geometries.
(i) Choose a different initial state for the three particles that might be physically relevant
for gravity or electromagnetism. Determine the motion of the particles and report your
results. Does the motion agree with your physical intuition?
(j) Experiment with different potentials. In particular, try the Lennard–Jones potential.
Report on at least one case that you find physically relevant and interesting.

Exercise 10.10. [Molecular Dynamics I] The subject of molecular dynamics in the
general sense refers to the internal motions of molecules and their motions as particles.
In full generality, bonds between atoms in a molecule are considered along with van der
Waal forces and other electromagnetic forces between molecules. This project concerns
an idealized model for a gas: the molecules are hard spheres with no internal structure
undergoing elastic collisions. Also, the model is reduced to motions in two-dimensional
space.
(a) Consider the two-dimensional box with corners (1, 1), (−1, 1), (−1,−1), and
(1,−1). Suppose that the box contains particles modeled by nonoverlapping disks all
with the same radius r (for r much smaller than one) and the same mass m. No external
forces act on the particles. They move according to Newton’s laws with the additional
assumption that collisions with the boundary of the box or between disks are perfectly
elastic. Start with just one particle. Simulate its motion taking into account bounces off
box walls according to the collision law: angle of incidence equals angle of reflection.
Consider two fixed metric disks in the box both with the same radius. Does the particle
spend the same amount of time in both of these sets?
(b) Upgrade your program to allow several disks undergoing elastic collisions among
themselves and the box walls. Suppose all the disks are initially confined in the left
half of the box. Gather evidence that the disks spread out so their density is the same
everywhere. Also consider how long it takes for this state to occur as a function of their
initial average velocity. Hint: As the number of particles increases so will the duration of
your simulation. A parallel code will run (much) faster than a serial code. Programming
based on determining the first collision time by considering collisions between particles
while ignoring the box boundaries and taking into account collisions with the walls of
the box separately can lead to a more efficient code than one that follows disks through
wall collisions. Perfectly elastic collisions are discussed in elementary books on classical
mechanics (for example, [62]). The basic principle is that kinetic energy and momentum
are conserved.
(c) One additional disk with the same radius, called the dust particle, has mass much
smaller than m. It is placed in the box at the position with coordinates (0, 0) and with
zero velocity. It also moves according to Newton’s laws and perfectly elastic collisions.
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Is the dust particle’s motion well approximated by a two-dimensional random walk as
the number of (nondust) particles is increased?
(d) Conduct the same basic experiment with different interactions. Possibilities for
research are endless; for example, introduce various repulsive potentials between the
particles or at the walls, remove the walls and consider the motion on the surface of a
torus—a particle that penetrates a wall shows up on the opposite wall with the same
velocity and relative position, or consider a three-dimensional box.

Exercise 10.11. [Molecular Dynamics II] The random walk is one way to view a
physical process like Brownian motion; the pollen grain’s erratic motions is modeled by
a random walk. Such a model might reproduce the motion of the pollen grain, but the
underlying modeling is not designed to explain the underlying physics of pollen grain
motion. Think about the situation from a molecular perspective: The pollen grain is a
ship in a sea of water molecules, which are much smaller and lighter than the grain and
moving (on average) perhaps much more rapidly due to thermal forces. Remember that
temperature is essentially a measure of the average speed of molecular motion. Newton’s
laws govern the motion of the pollen grain with mass m:

m
dv

dt
= F.

But what is the force? To do things correctly would require a system of such equations
for the pollen grain and all the molecules in the water. The pollen grain motion would
be determined after its initial position and velocity were specified along with the system
of equations, and this system were solved. Of course, to determine such a model and
analyze it is beyond current understanding. All the forces between the molecules and the
impact forces with the pollen grain would have to be specified. What would we do with
such an equation if we had it? One mole is about 1023 molecules, thus about this many
equations. To gain some insight, a good idea is to use Newtonian forces derived from
physical reasoning about the average behavior of the molecules. For example, we know
from common experience and a lot of macroscopic modeling that an object moving
through a fluid experiences viscous drag. More will be said about this force later in the
book. An often used model for viscous drag is simply −γv, where γ is some constant
that could be determined by experiment, or with a bit more theory, it can be determined
by the shape of the pollen grain. Using this force, the model equation for the motion of
the pollen grain becomes

m
dv

dt
+ γv = 0,

which is essentially the ubiquitous exponential growth law. You know how to solve this
equation; the solution is

v(t) = v(0)e−γt.

Also, the position of the pollen grain can be determined by substituting ẋ = v and
integrating one more time. Easy. But, this model cannot be viable: The velocity of the
grain goes exponentially fast to zero, which is not what is observed. Molecules in the
fluid are bombarding the pollen grain in all directions. What is this sum of these forces
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on the grain? In truth, we don’t know. But, we might expect some random fluctuations
due to the thermal properties of the fluid. To strengthen this weak statement requires
some serious thermodynamics and statistical mechanics. But, accepting this rather vague
statement, there should be some random force R (which is rapidly fluctuating relative
to the speed of the pollen grain) that acts on the pollen grain. The addition of this force
produces the simplest version of Langevin’s model (Paul Langevin in 1908)

dx

dt
= v,

m
dv

dt
+ γv = R(t). (10.6)

It is an important example of a stochastic differential equation. To be a bit more
complete, there could be a body force (due, for example, to the presence of some other
deterministic force such as the Lorentz force from an electric field). Under the further
assumption that this force is conservative (the gradient of a potential U ), Langevin’s
equation is damped Newtonian motion with a random force:

dx

dt
= v,

m
dv

dt
+ γv + Ux(x, t) = R(t). (10.7)

In the presence of many pollen grains there would be a (perhaps coupled) system of
Langevin equations, one for each grain. Exactly how to model the random variable R(t)

is not obvious. This force is to be chosen from physical intuition. Predictions of the
resulting model are tested against experiments. When the model fits the experimental
data, there is strong evidence for the correctness of the physical intuition that introduced
a choice of the random force. For such a model to be consistent with thermodynamics,
the expected value of R must be zero. This random variable must have some other
properties (for example, no correlation between the random effects at distinct times),
which might be the subject of further research for this project. In practice , the basic
problem is to determine the statistical properties of the random state x or velocity v (the
expected value, variance, and so on) from the known statistics of R. In general, these are
nontrivial problems, which are well worth exploring beyond this introductory project.
The subject of the properties of the solutions of Langevin equations and stochastic
differential equations has an illustrious history that is still under development today. The
theory and applications are important to current understanding of some basic physics,
some biological processes, and finance.
(a) A random walk on the line is a (discrete) model of Brownian motion with the units
of length per time. The stochastic term R should have the units of mass times length
per time squared. In short, R should not be the random walk; rather, it should be the
derivative of the random walk—whatever that means. One way to view the situation
is to recall that the one-dimensional random walk is given by iterating the process
xn+1 = xn + `gn+1, where g is the random variable akin to f̂ in Eq. (9.11) with
values ±1 and gn is the value of g on the nth trial. Or, if you like, gn is simply the result
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of the nth coin flip. Using the recursion, prove that

xn = `(g1 + g2 + g3 + · · ·+ gn).

The discrete derivative should be a difference. This suggests using the left-hand side
of the equality xn − xn−1 = `gn. Thus, the stochastic term should be proportional
to the random variable g that has values ±1. For definiteness, take R(t) = σg for
a constant σ that determines the strength of the random force. This random variable
has expected value zero. Gather evidence by numerical simulation that the probability
density function for the random variable v at some fixed time T > 0 in the Langevin
equation is a normal distribution with expected value zero. Hint: Don’t take T too small.
(b) Prove: If X is a random variable with mean (= expected value) zero, then the
expected value of v in the Langevin equation converges to a random variable with zero
mean as t → ∞. Hint: Compute the expected value of both sides of the equation and
derive a differential equation for E(v).
(c) What can you say about the variance of v?
(d) Does the random variable x in the Langevin equation have a normal distribution?
(e) In some sense, the Langevin equation can be solved exactly. (Though by now you
may be wondering if there is a theory that ensures it has a solution. After all it is
not an ODE in the usual sense. The usual existence and uniqueness theory does not
apply.) Working formally, treat the Langevin equation for velocity as an ODE and
apply variation of constants to write a formula for v. A very good idea is to forget the
original differential equation and consider the new integral equation (which you have
just obtained) as the model equation. In other words, simply take the expression for v
given by variation of constants as the solution of the Langevin equation. In cases where
there is a nonlinear force, this trick will not solve the differential equation, but it can be
used to replace the stochastic differential equation with an integral equation that is often
more amenable to analysis. In even more generality, the stochastic differential equation

ẋ = f(x) +R(t)

may be considered to have a solution if x is a random variable that solves the integral
equation

x(t) = x(0) +

∫ t

0

f(x(s)) ds+

∫ t

0

R(s) ds.

To solve this equation, seek a random variable x, which when substituted into the right-
hand side of the equation, produces an expression equal to itself. (You should be aware
that some authors write this equation more briefly as

dx = f(x)dt+R(t)dt,

which might be called the differential form of the equation.) As a too simple example,
consider the integral equation corresponding to ẋ = −γx; substitute a guess for the
solution with initial condition x(0) = 1 (for example, the function x(t) = 1); take the
result and substitute it again, and so on. Does this sequence of functions produced by
this process converge to a function that satisfies the integral equation? Hint: This is one
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idea used to prove the general existence and uniqueness theorem for ODEs.
(f) The Langevin equation and the Fokker–Planck equations are obviously related.
Discuss how they are related.
(g) The particular Langevin equation discussed here is closely related to the Ornstein–
Uhlenbeck stochastic process. Find out what this means and discuss it in the context of
this project.
(h) Find out what are reasonable values for m, γ, and σ for a pollen grain in still water.
Simulate the motion of a pollen particle using Langevin’s equation and report on your
findings relative to the motion of real pollen grains. Perhaps look through a microscope
yourself!
The subject of stochastic processes is vast. A mere glimpse is provided by the questions
posed here. Thus, this project is open ended to say the least. A wise educational choice
is to pursue this subject more deeply.

Exercise 10.12. [Pattern Formation] The method of lines (Exercise 5.72) is a
framework for conducting numerical experiments that can provide a glimpse into
pattern formation for the Gray–Scott model. Theoretically, the dynamics of a system
of ODEs produced by spatial discretization may be considered to be a model for pattern
formation. A basic question: What can be said about the dynamics of such a system
of ODEs? One idea is to consider the ODE system as a perturbation problem where
the unperturbed system is the reaction at each node and the discretized diffusion is the
couplings between the reactions. The persistence or bifurcation from structures in the
reaction equations might be used to account for some aspects of the pattern formation
that is approximated by the system of ODEs. (a) Show that spatial pattern formation
requires distinct diffusion coefficients. Hint: Use the system of PDEs and subtract the
two equations. (b) Show that the coupled systems given by the method of lines have
periodic solutions for sufficiently small diffusion coefficients. (c) What else can you
say? Hint: There are many unanswered questions in this context. An early paper in this
direction by Stephen Smale, “A mathematical model of two cells via Turing’s equation”
appears on pages 354–367 in [70].



CHAPTER 1111
Equations of Fluid Motion

The mathematical description of the motion of fluids plays a fundamental
role in applied mathematics. The basic model is a system of partial
differential equations of evolution type derived from conservation of mass
and Newton’s second law of motion.

Fluids consist of molecules; thus, on a microscopic level, a fluid is a
discrete material. To obtain a useful approximation, we will describe fluid
motion on the macroscopic level by taking into account forces that act on a
parcel of fluid, which we assume to be a collection of sufficiently many
molecules of the fluid so that the continuity assumption is valid. More
precisely, we will assume the fluid to be a continuous medium contained
in three-dimensional space R3 such that every parcel of the fluid, no matter
how small in comparison with the whole body of fluid, can be viewed as a
continuous material.

Mathematically, a parcel of fluid (at every moment of time) is a bounded
open subset A of the fluid that is assumed to be in an open set R whose
closure is the region containing the fluid. To ensure correctness of the
mathematical operations that follow, we assume that each parcel A has a C1

boundary. At every given moment of time, a particle of fluid is identified
with a point inR.

Let ρ = ρ(x, t) denote the density and u = u(x, t) the velocity of
the fluid at position x ∈ R and time t ∈ R. The motion of the fluid
is modeled by differential equations for ρ and u determined by the fluid’s
internal material properties, its container, and the external forces acting on
the fluid.

The components of the velocity uwith respect to the usual coordinates of
three-dimensional space are denoted by (u1, u2, u3). Moreover, the function
u is assumed to be twice continuously differentiable and to satisfy other
properties—which will be mentioned when needed—that are necessary
for the correctness of the mathematical operations used in the following
discussion.
An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation.
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The changing position of the particle of fluid with initial position x0 ∈ R
at time t = 0 is given by the curve t 7→ γ(x0, t) in R that is the solution of
the initial value problem (IVP)

ξ̇ = u(ξ, t), ξ(0) = x0 (11.1)

(see Appendix A.3 for a theorem on existence of solutions of ordinary
differential equations). When γ is viewed as a function of two variables
γ : R3×R→ R3 it is called the flow of u. For a subset A of R3 and a slight
abuse of notation, let γ(A, t) denote the set of all points in R3 obtained by
solving to time t the differential equation with initial condition ξ(0) = x0

for x0 in A.

Let x1, x2, and x3 denote the Cartesian coordinates in R3 and e1, e2, e3

the usual unit direction vectors. Using this notation, the velocity vector u is
u = u1e1 + u2e2 + u3e3.

The gradient operator in Cartesian coordinates (also called nabla or del)
is

∇ := e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
,

or equivalently,

∇ :=


∂
∂x1

∂
∂x2

∂
∂x3

 .

This operator applied to a function f : R3 → R gives its gradient in
Cartesian coordinates

∇f =


∂f
∂x1

∂f
∂x2

∂f
∂x3

 .

Applied to a vector field u (with the notation∇·u, where · denotes the usual
inner product in Euclidean space), the gradient operator gives the divergence
of u in Cartesian coordinates

∇ · u =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
.
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The expression (u · ∇)u, often written u · ∇u, is the vector u1
∂u1

∂x1
+ u2

∂u1

∂x2
+ u3

∂u1

∂x3

u1
∂u2

∂x1
+ u2

∂u2

∂x2
+ u3

∂u2

∂x3

u1
∂u3

∂x1
+ u2

∂u3

∂x2
+ u3

∂u3

∂x3

 .

Here, u · ∇ is to be viewed as if it were the dot product of two vectors.
The result is a scalar differential operator. The expression (u ·∇)u is used to
denote the vector field resulting from this operator acting on each component
of the vector field u.

A parcel A of fluid identified at time zero is moved to γ(A, t) at time
t. The time rate of change of the total mass of fluid in the parcel is, by
Reynolds’s transport theorem,

d

dt

∫
γ(A,t)

ρ(x, t) dx =

∫
γ(A,t)

ρt(x, t) + div(ρu)(x, t) dx (11.2)

(see A.11). By conservation of mass, the rate of change of the total mass in
A does not change as the parcel is transported by the flow; therefore, the left-
hand side of Eq. (11.2) vanishes. Because A may be taken arbitrarily small
(for example, a ball with arbitrarily small radius) and the velocity field and
density are assumed to be continuously differentiable, it follows that

ρt + div(ρu) = 0, (11.3)

or equivalently,

ρt +∇ · (ρu) = 0. (11.4)

Eq. (11.4) (or (11.3)) is called the equation of continuity; it states that
the mass of a fluid parcel is conserved by the fluid motion. Eq. (11.2) is a
general statement of the rate of change of total mass that holds as long as u
is an arbitrary (smooth) vector field with flow γ.

A differential equation for the velocity field u is obtained from Newton’s
second law of motion: the total momentum of a body is conserved unless
it is acted on by forces; when forces act, the time rate of change of the
momentum of the body is equal to the sum of these forces. There are two
types of forces acting on a body of fluid: body forces and internal forces.
A fluid has mass; it might also be charged. Thus, a fluid is subjected to
body forces, which by definition are forces that act per unit of mass or per
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unit of charge. The most important body force is the gravitational force,
which acts on every fluid simply because fluids have mass. Electromagnetic
interactions are also important, but not discussed in this chapter. Unlike the
motion of particles or rigid bodies, fluids (by definition) have internal stress
(force per area) that is caused by the action of the fluid on itself. Stress is
modeled by a function σ that assigns a vector in R3 to each pair consisting of
a point (x, t) in space-time and a unit-length vector η in R3 at this point. The
value of the stress function at this pair is called the stress vector at the point
x; it represents the force per area exerted by the fluid on each imaginary
surface passing through the point x and with outer normal η at time t. Using
conservation of momentum and angular momentum, it is possible to prove
that the stress function at each point in space-time is a symmetric linear
transformation of space (see [21] and the discussion following Eq. (18.7)).
This fact is simply incorporated here as an assumption. Thus, instead of
writing σ(x, t, η) for the stress vector at (x, t) on the plane with outer normal
η, this expression is written σ(x, t)η. The function (x, t) → σ(x, t) assigns
to each point in space-time a linear transformation of three-dimensional
space.

A linear and symmetric transformation on vectors may be represented by
a (diagonalizable) matrix in the usual Cartesian coordinates. Thus, for each
point (x, t) in space-time, σ(x, t) may be viewed as a symmetric matrix,
which is thus defined by six numbers (the elements on and above the main
diagonal of the matrix). This matrix may also be viewed as defining a
bilinear form S at each point of space-time that acts on tangent vectors at this
point: S(x, t)(v, w) := vTσ(x, t)w, where v and w are (tangent) vectors at
(x, t) and the superscript T denotes transpose. The assignment of a bilinear
form at each point in space-time defines a rank-two tensor, which in this
case is called the stress tensor.1 Although the precise definition of tensors
requires more mathematical structure, the intuitive definition has just been
presented: a tensor is the (smooth) assignment of a (multi) linear map, which
may not be symmetric, at each point in space or space-time.

Perhaps the most familiar example of a tensor is the inner product: It
assigns the same multilinear map to each point in space. Indeed, the map
(X,Y ) 7→ X · Y is multilinear; that is, the function Y 7→ X · Y is a linear
transformation for each fixed vector X and the function X 7→ X · Y is a
linear transformation for each fixed vector Y . This tensor is symmetric. It

1The word tensor seems to be derived from the latin tendere, which means “to stretch."
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may be viewed as the assignment of a symmetric matrix (in this case the
identity matrix) to each point of space.

Using the inner product, (X,Y ) 7→ 〈X,Y 〉, every rank-two tensor R on
space-time is given by

R(x, t)(X,Y ) = 〈X,A(x, t)Y 〉,

where (x, t) 7→ A(x, t) is a (smooth) matrix valued function. The tensor is
symmetric if the matrix A(x, t) is symmetric for every (x, t).

Total stress over the current position of parcel A at time t is given by

TS :=

∫
∂γ(A,t)

σ(x, t)η(x) dS,

where η is the outer unit normal on the boundary of γ(A, t) and dS is the
element of surface area. Using the body force b per unit of mass, the total
body force on γ(A, t) is

TB :=

∫
γ(A,t)

ρ(x, t)b(x, t) dV,

where dV is the element of volume.

The total momentum of γ(A, t) is∫
γ(A,t)

ρ(x, t)u(x, t) dV.

By Newton’s second law of motion (the time rate of change of momen-
tum on a body is equal to the sum of the forces acting on the body), the
mathematical expression for momentum-force balance is

d

dt

∫
γ(A,t)

ρ(x, t)u(x, t) dV=

∫
∂γ(A,t)

σ(x, t)η(x) dS+

∫
γ(A,t)

ρ(x, t)b(x, t) dV.
(11.5)

The region γ(A, t) in space is moving with time. Using the equation of
continuity (11.3), the transport theorem (A.11), and some algebra, it follows
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that the left-hand side of the momentum balance (11.5) is given by

d

dt

∫
γ(A,t)

ρ(x, t)u(x, t) dV =

∫
γ(A,t)

ρ(x, t)(ut + (u · ∇)u)(x, t) dV,
(11.6)

where ut denotes the partial derivative of u with respect to t.

The expression ut + (u · ∇)u that appears in the right-hand side of
Eq. (11.6) is the material derivative of the velocity field u, which is often

denoted by
Du

Dt
(x, t); its definition takes into account the motion of the fluid

particles with time:

d

dt
u(γ(t, x0), t) = ut(γ(t, x0), t) +Du(γ(t, x0), t)γ̇(t, x0)

= ut(γ(t, x0), t) +Du(γ(t, x0), t)u(γ(t, x0), t)

= (ut + (u · ∇)u)(γ(t, x0), t)

=
Du

Dt
(γ(t, x0), t).

Note that the material derivative operator is denoted by D/Dt. The symbol
D denotes differentiation with respect to spatial variables. For example, Du
denotes the derivative of the function (x, y, z) 7→ u(x, y, z, t). In Cartesian
coordinates Du is given by the Jacobian matrix of partial derivatives.

The total stress may be viewed in components. Note that σ · η (at each
point on the boundary of γ(A, t) is a vector whose first component is the dot
product of the first row σ1 of σ and the unit normal η. The second and third
components are dot products of each of these rows with the same η. Thus,
the ith component (with i ∈ {1, 2, 3}) is

∫
∂γ(A,t)

σi(x, t) · η(x) dA.

By the divergence theorem,

∫
∂γ(A,t)

σ(x, t)i · η(x) dS =

∫
γ(A,t)

div σi(x, t) dV.
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Using nabla notation, the vector whose ith component is div σi is ∇ · σ.
Written in full,

∇ · σ =

 ∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3
∂σ21

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3
∂σ31

∂x1
+ ∂σ32

∂x2
+ ∂σ33

∂x3

 . (11.7)

Using these facts, the total stress is

TS =

∫
∂γ(A,t)

σ(x, t)η(x) dS =

∫
γ(A,t)

∇ · σ(x, t) dV. (11.8)

By substitution of Eqs. (11.6) and (11.8) into the momentum balance
[Eq. (11.5)], we have the equivalent integral expression∫

γ(A,t)

(
ρ
Du

Dt
−∇ · σ − ρb

)
dV = 0. (11.9)

This equation holds for every parcel of fluid. Under the assumption that
the integrand is continuous (which might be a strong assumption in some
circumstances), the corresponding differential equation is

ρ
Du

Dt
= ∇ · σ + ρb, (11.10)

or equivalently, Cauchy’s equation (Augustin-Louis Cauchy 1789–1857)

ρ(ut + (u · ∇)u) = ∇ · σ + ρb. (11.11)

There is an additional conservation law: the conservation of energy. It is
required, for example, in case temperature changes are important (see, for
example, [60]). But, for simplicity, we will treat only situations where this
law can reasonably be ignored.

An alternate form of the momentum balance [Eq. (11.11)] is often
useful. Simply add the continuity equation ρt +∇(ρu) = 0 to the original
momentum balance, and rewrite the left-hand side of the result to obtain the
equation

∂

∂t
(ρu) + ρu · ∇u+∇ · (ρu)u = −∇ · σ + ρb. (11.12)
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To simplify the sum of the second and third terms on the left-hand side
of the equation, consider one more step into tensor calculus: we may view
u as a one-tensor. Recall that a tensor is a multilinear map of vectors to the
real numbers. The vector (field) u determines a tensor (field) T via the inner
product:

T (v) = 〈v, u〉, (11.13)

which is a tensor field as soon as u and v are considered as vector fields that
depend on space and time so that T is a function of space and time whose
range is in the vector space of multilinear maps. The tensor field assigns a
tensor to each point (p,t) in space-time and thus acts on a vector field v by

T (p, t)(v) = 〈v(p, t), u(p, t)〉.

Consider a second one-tensor S, perhaps S(v) = 〈v, w〉. A pair of tensors
(not necessarily of the same rank) can be multiplied to form a new tensor
T ⊗ S by the formula

T ⊗ S(v, y) = T (v)S(y), (11.14)

where the rank of the new tensor (called the tensor product) is the sum of the
ranks of the two tensors used to form the product. For the rank-one tensors
just defined, the tensor product is a rank-two tensor. The same construction
defines a new tensor field simply by including the functional dependence on
space and time. An important note is that T ⊗S is generally not the same as
S ⊗ T .

The reason for this digression is to introduce the tensor u ⊗ u, which
is defined via an abuse of proper notation to be the tensor T ⊗ T ; that is,
in this tensor product, u is to be viewed as the tensor T determined by u
as defined in Eq. (11.13). Being a rank-two tensor, u ⊗ u is given by a
matrix A in Cartesian coordinates in the same manner that the stress tensor
is determined by a matrix. Indeed, there is a 3× 3 matrix A such that

u⊗ u(v, y) = 〈Av, y〉,

where the (i, j) component of A is given by

Aij = 〈Aei, ej〉 = u⊕ u(ei, ej) = uiuj .
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In coordinate notation, the tensor would be called A and its components
are Aij = uiuj . A clear understanding of the construction for this example
should be helpful in understanding tensor notation and the tensor product.

The new tensor u⊗ u appears in the desired formula

∇ · (ρu⊗ u) = ρu · ∇u+∇ · (ρu)u, (11.15)

which is easy to prove by simply using the definitions to express the fields
in coordinates. Of course, a function multiple of a tensor is again a tensor
of the same rank defined on the argument of the tensor to be the value of
the tensor multiplied by the scalar function. Using the identity (11.15), the
desired alternate form of the momentum balance is

∂(ρu)

∂t
+∇ · (ρu⊗ u− σ) = ρb. (11.16)

An important special case is steady flow (no dependence on t) with no body
force where the momentum balance reduces to

∇ · (ρu⊗ u− σ) = 0. (11.17)

In the special case where σ is a scalar function p times the identity matrix
(which will play an important role in the discussion of fluid motion), the
corresponding result is

∇ · (ρu⊗ u+ pI) = 0, (11.18)

where of course pI is shorthand for the rank-two tensor given by the inner
product: (v, y) 7→ p〈v, y〉.

Eq. (11.11) holds for arbitrary elastic media, not just fluids. This model
would lead to fundamental models if internal stress could be described ex-
actly by a symmetric tensor that was derived without additional assumptions
from electromagnetism. Although a fundamental representation of internal
stress might be possible in principle, it would likely be so complex as to
be useless for making predictions. Instead, an approximation—based on
physical principles and physical intuition—called a constitutive law for
the type of fluid (or elastic material) being modeled is used to define
the stress tensor as a function of the other state variables. The choice of
constitutive stress law is the most important ingredient in a viable model.
Because constitutive laws are approximations, predictions derived from
corresponding models must be validated by physical experiments.
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Perhaps the simplest model for internal stress arises from the constitutive
assumption that the stress is the same in all directions (no shear stress). In
this case, there is a scalar function p on space-time, called the pressure, such
that the stress tensor is given by

σ(x, t) = −p(x, t)I, (11.19)

where I denotes the identity transformation on space. The minus sign is
taken because the stress on the boundary of a fluid parcel is ση, where η is
the outer unit normal on the boundary of the parcel and a positive pressure
(from outside the parcel) is assumed to act in the direction of the inner
normal. Indeed, pressure is correctly defined to be the normal component
of force per area. A fluid that satisfies constitutive law (11.19) is called an
ideal fluid. Using Eq. (11.7), the divergence of the stress for an ideal fluid is

∇ · σ = −∇p,

and the corresponding equations of motion are

ρ(ut + (u · ∇)u) = −∇p+ ρb,

ρt +∇ · (ρu) = 0. (11.20)

The momentum balance equation is called Euler’s equation.

The partial differential equations (PDEs) (11.20) constitute four scalar
PDEs, counting the three components of the vector equation for momentum
balance, for five unknowns: the three components of the velocity u, the
density ρ, and the pressure p. One more equation is needed to close the
system. The missing ingredient is conservation of energy. A physically
realistic approach to conservation of energy requires a digression into
thermodynamics. Although the kinetic energy 1

2ρ‖u‖2 is a quantity from
classical mechanics, models of internal energy require a deeper analysis
that is not completely understood. Thus, the most general form of the
equations of fluid dynamics remain somewhat controversial. Fortunately, for
some practical applications, internal energy considerations can be bypassed
or modeled with relatively simple constitutive laws. Another approach to
closing the system is to make a simplifying assumption on the nature of the
fluid. Two standard (closely related) possibilities are the assumptions that
the fluid is incompressible (that is, the flow preserves volume) or that the
density of the fluid is constant.
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Incompressibility (via Reynolds’s transport theorem) is equivalent to the
velocity field being divergence free: div u = 0. In this case, by using the
identity

∇ · (ρu) = ∇ρ · u+ ρ∇ · u,

the equations of motion

ρ(ut + (u · ∇)u) = −∇p+ ρb,

ρt +∇ρ · u = 0,

∇ · u = 0 (11.21)

are called Euler’s equations for an ideal fluid.

A more restrictive assumption is constant density; it leads to the closed
system of (four) equations

ρ(ut + (u · ∇)u) = −∇p+ ρb,

∇ · u = 0 (11.22)

for the three unknown components of u and the pressure.

Because our fluid is confined to a region R of space, boundary condi-
tions must be imposed. Physical experiments demonstrate that the correct
boundary condition is u ≡ 0 on the (stationary) solid boundaries ofR. This
is called the no-slip boundary condition. To perform a simple experiment,
consider cleaning a metal plate by using a hose to spray it with water;
for example, try cleaning a dirty automobile. As the pressure of the water
increases, the size of the particles of dirt that can be removed decreases.
But, it is very difficult to remove all the dirt by spraying alone. This can
be checked by polishing with a clean cloth. In fact, the speed of the spray
decreases rapidly in the boundary layer near the plate. Dirt particles with
sufficiently small diameter are not subjected to flow speeds that are high
enough to dislodge them.

For moving boundaries, the no-slip boundary condition requires the fluid
velocity at each point of a solid boundary to be the same as the velocity
of that point. When moving boundaries are modeled, the no-slip condition
reads u = f on the boundary of the region where f is the vector function
that assigns the velocity at each boundary point.
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Euler’s equations are not well posed with the no-slip boundary condition;
that is, under this boundary condition, the equations of motion do not
always have unique solutions depending continuously on the initial position
of the fluid. The mathematically correct boundary condition for Euler’s
equations is that the fluid does not penetrate the boundary, or equivalently,
the fluid velocity is everywhere tangent to the boundary. The no-slip
condition is allowed, but not required. Although this fact implies that Euler’s
equations cannot be the correct model for physical fluids, Euler’s model
gives experimentally verifiable predictions as long as measurements are
taken far from the fluid’s boundary. Indeed, this observation is fundamental
in many applications (for example, flow over an airplane wing) where there
is a thin layer of fluid near the boundary that must obey a more realistic stress
constitutive law to satisfy the no-slip boundary condition, but away from this
layer, the motion of the fluid is well-approximated by Euler’s equations.

To obtain more realistic models of fluid motion, the viscosity of the
fluid must be taken into account. The modeling process requires several
assumptions, which are different for different types of fluids. For fluids
similar to water and air, called Newtonian fluids, the main assumptions are
the isotropy of the fluid (that is, the fluid is the same in all directions) and
a linear relation between stress and velocity. For some fluids, for example
blood, accurate models require nonlinear stress-velocity relations.

The modeling process to obtain the stress-velocity relation for Newtonian
fluids—for which stress is proportional to strain rate—is fundamental in
fluid mechanics (see, for example, [21, 60]). A related discussion and
derivation of this stress-strain relation in the context of the equation of
motion for elastic media is presented in Chapter 18. The same underlying
ideas lead to models of stress for fluids. Some of the stresses are given
by pressure (due to molecular motion). This part of the stress is modeled
by the Eulerian fluid where the stress tensor is given by the pressure; that
is, σ = −pI . Stresses in moving Newtonian fluids are determined by
constitutive laws, formulated as linear relations between stress and strain
(via Hooke’s law).

Recall that stress is defined as a force per area on a surface. At a point
q in a fluid at time t0, a stress is defined for each pair of vectors v and
w at q via the stress tensor. In fact, σ(q, t0)(v, w) is the force on surfaces
normal to v in the direction given by the projection of w on this surface.
A constitutive model for the stresses is built from a basic assumption: the
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Fig. 11.1 The figure is a schematic diagram of a fluid cube face distorted by the flow. Angles and lengths are depicted.
The shear corresponding to the motion of e1 with respect to the direction e2 is d1/`1.

stresses are proportional to strains at q and these strains are related to the
spatial derivative of the velocity of the fluid at this point. Although there
are many ways to describe the relationship between these quantities, the
approach taken here is to define a tensor (which has a clear geometric
meaning) and show that its values give the strain rates.

Strains are relative changes in length. They are measured by the (in-
finitesimal) changes in positions of material points of the moving fluid.
Strain is dimensionless. Stresses in Newtonian fluids are proportional to
strain rates, which have units of inverse time. Strains come in several
varieties: shear strains, normal strains, and volumetric strains.

Imagine a unit cube of fluid surrounding a point q at time t0. Suppose
for simplicity that the cube is situated so that its faces are parallel to the
Cartesian coordinate planes. In this case, the cube can be viewed as the
unit cube in the first octant of three-dimensional space. Shear strains can be
defined from the shape distortions of the cube as it moves with the fluid.

Consider, for instance, the face of the cube corresponding to the first
two basis vectors e1 and e2 at q at time t0 and the unit square determined
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by these vectors. The shear strain on this face is determined from the
parallelogram formed as the square is distorted by the flow as depicted in
Fig. 11.1. The imagined cube will of course not remain a cube under the
flow except in some extraordinary cases. When the cube is subjected to the
fluid motion for a sufficiently short time and first-order approximations (that
is, linearizations) are used, a rigid motion of the distorted cube may be
performed so that the corner originally at the origin is moved back to the
origin, and the distorted face is moved back into the plane of the original
face spanned by e1 and e2. Physical shear strain is then measured by the
ratios d1/`1 and d2/`2 of the signed lengths as depicted in the figure. The
signs of the lengths d1 and d2 are determined by the directions of the fluid
motion: If the points along the vector e2 move in the direction of e1, as in the
figure, the sign is positive; if the motion is in the direction of −e1 the sign
is negative. The shear strain rate is defined to be the time rate of change of
the strain; for example, d

dt(d1/`1). Shear strain is the ratio of two lengths, a
dimensionless quantity; thus, the shear strain rate has units of inverse time.

Note that for the angle θ1 depicted in Fig. 11.1, tan θ1 = d1/`1, and

θ̇1 sec2 θ1 =
d

dt
tan θ1 =

d

dt

(d1

`1

)
.

For θ1 near zero (which will be the case after a sufficiently short flow time),
we have that sec2 θ1 ≈ 1. Thus, as a first-order approximation, θ̇1 is the
shear strain rate. Similarly for θ̇2. The total shear strain rate for the face
spanned by e1 and e2 is the sum of these two derivatives.

The angle θ between the distorted vectors (given as a function of time) is

θ =
π

2
− (θ1 + θ2);

thus, the shear strain rate is −θ̇ evaluated at the initial time t = t0. This
quantity will be determined as a function of the fluid velocity field.

Although vectors are not transported in an obvious way by the flow,
curves of fluid particles are transported by moving the particles on the curve
by the flow. Every vector is the velocity vector of some curve. Thus, the
correct way to transport a vector is to choose a (parameterized) curve such
that the vector under consideration is the velocity of this curve at one of
its points, move the curve (of fluid particles) by the fluid flow, and define
the transported vector to be the velocity vector of the transported curve at



Equations of Motion 307

the transported point. This definition of transport of a vector by a flow is
fundamental to understanding continuum mechanics.

To determine the motion of the curve by the flow, recall that the motion
of the point q, starting at time t = t0 in the moving fluid is given by t 7→
γ(q, t0, t), where

∂γ

∂t
(q, t0, t) = u(γ(q, t0, t), t) (11.23)

with initial condition γ(q, t0, t0) = q. Here, the temporal variable t
measures time relative to some prespecified origin and the fluid is observed
at time t = t0. For simplicity, suppress the second argument of the flow,
which records this observation time, and write γ(q, t) for the position of q
at time t. In this notation, γ(q, t0) = q.

Let α be a curve at q parameterized by s with tangent vector v; that is,
s 7→ α(s) is a curve such that α(0) = q and α′(0) = v. The infinitesimal
distortion of the curve at time t is the directional derivative

d

ds
γ(α(s), t)

∣∣
s=0

= Dγ(q, t)v,

where D denotes the derivative of the transformation q 7→ γ(q, t) for fixed
t. Thus, Dγ(q, t0) = I and the vector v is transported by the flow to the
vector Dγ(q, t)v at the point γ(q, t).

Writing the shear strain using the time derivative of the angle θ is useful
because the angle is given by a dot product: In fact, the cosine of the angle θ
between an arbitrary pair of (nonzero) vectors v and w at q at time t0 moved
by the flow γ to Dγ(q, t)v and Dγ(q, t)w is

cos θ(q, t) =
〈Dγ(q, t)v,Dγ(q, t)w〉
|Dγ(q, t)v||Dγ(q, t)w| . (11.24)

For simplicity, assume that v is orthogonal to w and both have unit
length. Applications of the quotient rule and Leibniz’s rule together with
the formula Dγ(q, t0) = I and the equality θ(q, t0) = π/2 can be used to
show that

−θ̇(q, t0) =
d

dt
〈Dγ(q, t)v,Dγ(q, t)w〉

∣∣
t=t0

= (〈v, d
dt
Dγ(q, t)w〉+ 〈 d

dt
Dγ(q, t)v, w〉)

∣∣
t=t0

. (11.25)
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Differentiate both sides of differential equation (11.23) with respect to
the spatial variable in the direction v and use the independence of partial
differentiation from the order of taking partial derivatives to show that

d

dt
Dγ(q, t)v = Du(γ(q, t), t)Dγ(q, t)v.

In effect, d/dt and D commute. At t = t0, this identity reduces to

d

dt
Dγ(q, t)v

∣∣
t=t0

= Du(q, t)v.

Thus,

−θ̇(q, t0) = 〈Du(q, t0)v, w〉+ 〈v,Du(q, t0)w〉
= 〈(Du(q, t0)T +Du(q, t0))v, w〉. (11.26)

In view of this result, define the shear strain rate tensor ε by

ε(q, t0)(v, w) = 〈(Du(q, t0)T +Du(q, t0))v, w〉. (11.27)

This function is linear in each of its second two arguments; that is,
v 7→ ε(q, t)(v, w) for fixed q, t0, and w and w 7→ ε(q, t)(v, w) for fixed
q, t0, and w are linear transformations from three-dimensional space to
the real numbers. Thus, ε defines a rank-two tensor, which is called the
strain rate tensor2, and its Cartesian coordinate representation is given by
the components of the matrix Du(q, t0)T +Du(q, t0); that is, in coordinate
notation,

εij := ε(q, t0)(ei, ej) =
∂ui
∂xj

(q, t0) +
∂uj
∂xi

(q, t0).

By Hooke’s law, the stress σ(q, t0)(e1, e2) is proportional to the shear
strain rate ε12, as this is the only strain rate produced by the internal
fluid force in the direction e2 on the imaginary surface normal to e1. The
proportionality factor µ is called the dynamic viscosity. It could, in principle,
depend on the state variables, temperature, or electromagnetic radiation.
Likewise all the stresses given by orthogonal unit basis vectors ei and ej

2The strain rate tensor is often defined to be ε/2 when the factor 1/2 is natural due to a
different approach to modeling stress as in Chapter 18.
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(with i 6= j) are related to the velocity of the fluid by the constitutive law

σij = σ(q, t0)(ei, ej) = µ(
∂ui
∂xj

(q, t0) +
∂uj
∂xi

(q, t0)) = µεij . (11.28)

To determine a constitutive law for the (diagonal) stresses σii, recall that
the fluid pressure at a point is the same in all directions and has already
been modeled by the tensor −pI . This pressure arises from thermodynamic
properties of the fluid and is present when the fluid is at rest or in motion.
For a moving fluid there are stresses in the normal directions to a parcel’s
surface due to the forces of the fluid on itself, which are not due to the fluid
pressure. These stresses do not cause shears.

From the definition of the strain rate tensor [Eq. (11.27)], each diagonal
element of the strain rate tensor gives the time rate of change of the square
of the length of a unit basis vector:

ε(q, t0)(ei, ei) = 2
∂ui
∂xi

(q, t0). (11.29)

These strains (called normal strains) should be present and caused by
stresses in the normal directions to the faces of the hypothetical cube of
fluid at q at time t0. They can of course be recognized as physical strains by
relating them to relative changes in lengths corresponding to the positions
of the cube faces as they move with the flow.

By Hooke’s (constitutive) law, stress is a linear function strain. For a
moving fluid, stresses are linear functions of strain rates. The simplest model
is obtained by taking the stress to be a scalar multiple of the strain rates.
Thus, a model that maintains the fluid pressure and takes into account the
shear and normal stresses is

σ = −pI + µε,

where µ is called the dynamic viscosity of the fluid.

In case a viscous fluid is not undergoing shear or normal stress, σ should
reduce to σ = −pI . In particular, the trace of σ in this case is −3p. The
trace of σ is

−3p+ 2µ div u.
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Thus, for the model to be consistent with the possibility that the moving fluid
is not undergoing shear or normal stress, either div u = 0 in such regimes
or µ = 0. By definition µ is not zero for a viscous flow, but taking div u = 0
would not allow for compressible flow. This model is not compatible with
the motion of compressible viscous flow.

To remedy the model for compressible flow, strain due to change of
volume of the moving fluid must be taken into account. The volumetric
strain rate is defined to be the limit, as a volume shrinks to the point q,
of the infinitesimal rate of change of the relative change in volume. Using
the transport theorem, this scalar quantity is

lim
Ω→{q}

d

dt

∫
γ(Ω,t) dV∫

Ω dV
∣∣∣
t=t0

= div u(q, t0). (11.30)

As for the fluid pressure, to have the volumetric stress part of the integrand
σ · η in the integral for total stress [Eq. (11.8)] be the same in all directions,
the corresponding volumetric strain rate tensor is taken to be div uI .

Again using Hooke’s law, a model that takes into account all the stresses
is

σ = −pI + µε+ λ div uI,

where µ is the dynamic viscosity and λ, another factor of proportionality, is
called the second viscosity of the fluid.

In case a viscous fluid is not undergoing normal, volumetric, or shear
stress, the stress tensor σ should reduce to σ = −pI . In particular, the trace
of σ in this case is −3p. The trace of σ is

−3p+ 2µ div u+ 3λ div u = −3p+ (2µ+ 3λ) div u.

Thus, to be consistent with the possibility that the fluid is not undergoing
normal, volumetric, or shear stress, either div u = 0 in such regimes or
2µ+ 3λ = 0. To allow for compressible flow, the two viscosities are related
by λ = −2/3µ, and the stress tensor is taken to be

σ = −pI + µε− 2

3
µ div uI. (11.31)

The derivation just presented is somewhat fanciful. Although it con-
tains the usual ingredients and correctly determines the strains, it lacks
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a compelling case on physical grounds for the exact form of the stress-
velocity constitutive law. A perhaps better approach would start with the
(discrete) dynamics of the individual molecules that constitute the fluid and
seek to determine the continuous equations of fluid motion via averaging
over the molecular motions. This approach has been partially successful in
reproducing expressions similar to the suggested stress-velocity constitutive
law, but these results are not definitive. From an applied point of view, the
constitutive law derived here has been enormously successful in predicting
fluid motion. It agrees with experiments in cases where the physical fluid
flow is not too complicated (turbulent). The universal validity of the model
is not known.

Using δij = 0 if i 6= j and δij = 1 if i = j, the components of σ are
given by

σij = −pδij + µ
(∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ(∇ · u)δij . (11.32)

The function p is the pressure, µ is the viscosity, and ∂ui/∂xj + ∂uj/∂xi is
the (i, j) component of the strain rate tensor. With this choice of the stress
tensor σ, the corresponding partial differential equations (PDEs)

ρ(ut + (u · ∇)u) = −∇p+ µ∆u+
µ

3
∇(∇ · u) + ρb,

ρt +∇ · (ρu) = 0 (11.33)

(which are derived with an easy computation from Cauchy’s equation
and the continuity equation) are called the Navier–Stokes equations for a
Newtonian fluid. Here ∆u denotes the Laplacian applied componentwise to
the vector u; that is,

∆u =


∂2u1

∂x2
1

+ ∂2u1

∂x2
2

+ ∂2u1

∂x2
3

∂2u2

∂x2
1

+ ∂2u2

∂x2
2

+ ∂2u2

∂x2
3

∂2u3

∂x2
1

+ ∂2u3

∂x2
2

+ ∂2u3

∂x2
3

 .

The no-slip boundary condition is enforced at solid boundaries.

In some realistic situations (for example, the flow of water at constant
temperature) it is reasonable to make two further assumptions: the viscosity
µ and density ρ are constant. Using the equation of continuity, the constant
density assumption implies that the vector field u is divergence free; that is,
the fluid is incompressible (see Appendix A.11). Under these assumptions,
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the Navier–Stokes equations (11.33) simplify to

ρ(ut + (u · ∇)u) = −∇p+ µ∆u+ ρb,

∇ · u = 0. (11.34)

Exercise 11.1. (a) Prove that if u is a sufficiently smooth vector field, then

∇ ·∆u = ∆(∇ · u).

Conclude that if u is divergence free, then ∇ · ∆u = 0. (b) Use part (a) to show that
for incompressible, constant density, flow with body force b satisfying∇ · b = 0 (such a
body force is called conservative), the pressure is given by

∆p = −ρ∇ · ((u · ∇)u).

Exercise 11.2. Prove Eq. (11.15). Hint: Change from the coordinate-free form of the
vector equation to the coordinate form.

Exercise 11.3. Consider incompressible flow with no body force. Let φ be a harmonic
function (∆φ = 0) on three-dimensional space and f an arbitrary real function of one
real variable. (a) Show that the velocity field u(x, t) = f(t)∇φ solves the Navier–Stokes
equations, ignoring the boundary condition. Find the exact expression for the pressure.
(b) Is it possible to find nontrivial solutions as in part (a) on a bounded domain such that
the velocity field vanishes at the boundary? Discuss.

Exercise 11.4. Consider the vector field (on R2) given by (2y, 0). (a) Determine the
flow of this vector field. (b) Consider the distortion of the parallelogram determined by
the usual Cartesian unit vectors e1 and e2 as it is moved by the flow. Determine the
time rate of change at time t = 0 (when the parallelogram is a square) of the negative
of the angle between the moving legs of the parallelogram corresponding to e1 and
e2. (c) Consider the vector field (y, (1 − x2)y − x). It has a flow γ = γ((x, y), t0, t).
Approximate the vector

Dγ((1, 0), 0, 2)e1.

Hint: Use a numerical computation for part (c).

Exercise 11.5. Show that it is not necessary to assume the density is constant
(everywhere) to obtain Eqs. (11.34) from Eqs. (11.33). More precisely, prove that it
suffices to have Dρ/Dt = 0 (that is, the density is constant along fluid particle paths).

Exercise 11.6. Define

φ(x) =


1, x ≤ 0;

1− 3x2 + 2x3, 0 < x < 1;
0, x ≥ 1.



Reynolds and Froude Numbers 313

(a) Show that φ is continuously differentiable and write out the formula for φ′. (b) Recall
the conservation of mass formula (the continuity equation) ρt + div(ρu) = 0. Suppose
that u is the constant vector field (2, 0, 0) and the density is distributed in space so
that the density is the same on each plane that is orthogonal to the x-axis. This means
ρ(x, y, z, t) does not depend on y or z; it can be viewed as a function of x and t only.
Using these simplifications, consider the initial value problem

ρt + div(ρu) = 0, ρ(x, 0) = φ(x).

Determine the value of ρ(3, 5/4). Hint: Look for a traveling wave solution.

Exercise 11.7. The total kinetic energy of a fluid with density ρ and velocity u over
the parcel A moving with the fluid via the flow γ is

KE :=

∫
γ(A,t)

1

2
ρ(x, t)u(x, t) · u(x, t) dV.

Use the transport theorem and a computation in coordinates to show that

dKE
dt

=

∫
γ(A,t)

ρu · (ut + (u · ∇)u) dV.

Exercise 11.8. [Stratified flow]. Consider a steady, incompressible, inviscid fluid
modeled by Euler’s equation in three-dimensional space. Assume no body force is acting
on the fluid but it has nonconstant density ρ and pressure P so that the equations of
motion for the fluid velocity u and pressure P are

ρ(u · ∇)u+∇P = 0,

(u · ∇)ρ = 0,

∇ · u = 0.

Show that w :=
√
ρ u is a solution of the inviscid incompressible Euler equations

(w · ∇)w +∇P = 0,

∇ · w = 0,

that model flow with constant unit density. (This observation is mentioned in [122].)
How do you interpret this fact?

11.1 SCALING: THE REYNOLDS NUMBER AND FROUDE
NUMBER

For simplicity, the Navier–Stokes equations (11.34) for a constant density
(thus incompressible) flow is considered in this section. By introducing
a characteristic length L and a characteristic velocity V—more correctly
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a characteristic speed—for the flow in question together with the corre-
sponding natural timescale τ = L/V , the state variables are rendered
dimensionless via the assignments X = x/L, s = t/τ , U(X, s) =
u(x, t)/V , and P (X, s) = p(x, t)/(V 2ρ). Using the kinematic viscosity
ν := µ/ρ, the Reynolds (dimensionless) number Re := LV/ν, and the
Froude number Fr := V/

√
L|b|, which depends on the magnitude of the

body force, the system of equations for the velocity and pressure can be
rescaled to a dimensionless form of the Navier–Stokes equations

Us + (U · ∇)U =
1

Re
∆U −∇P +

1

Fr2

b

|b| ,

∇ · U = 0, (11.35)

where the equations hold on the region R∗ defined to be the image of the
region R under the change of coordinates. The no-slip boundary condition
is to be enforced at solid boundaries ofR∗.

The existence of this scaling is important: If two flows have the same
Reynolds and Froude numbers, then the flows have the same dynamics.
For example, flow around a scaled model of an airplane in a wind tunnel
might be tested at the same Reynolds and Froude numbers expected for the
airplane under certain flight conditions. Perhaps the same Reynolds number
can be obtained for testing by increasing the velocity in the wind tunnel to
compensate for the smaller length scale of the scaled model. In principle, the
behavior of the flow around the scaled model is the same as for the full-sized
aircraft.

A standard question is how to choose the characteristic length and
velocity for a given application. There is no simple answer, but there are
conventions. For flow in a pipe, the inlet flow velocity is taken to be the
characteristic velocity and the characteristic length is the diameter of the
pipe. Another example is flow over a blunt body (for example, a truck
moving on a highway) where the front-view height of the truck is usually
taken to be the characteristic length and the truck speed is the characteristic
velocity. Conventions are often used in specialized fields of applied science
to compare experimental and theoretical results, but for precision, the
chosen characteristic length and velocity must be explicitly specified. As
long as this is done, the choice of characteristic length and velocity can
be made arbitrarily. To illustrate, suppose convention is not followed and
some phenomenon in pipe flow is observed at Reynolds number 8,888 by
someone who prefers to take the radius of their round pipe as characteristic
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length. The result is easily translated to the conventional value Re = 17, 776
because the conventional Reynolds number is simply twice the reported
Reynolds number.

11.2 THE ZERO VISCOSITY LIMIT

The scaled Euler equations defined in the region R∗ as in display (11.35)
are

Us + (U · ∇)U = −∇P +B,

∇ · U = 0 (11.36)

can be viewed as an idealization of the scaled Navier–Stokes equa-
tions (11.35) for a fluid with zero viscosity. The no-slip boundary condition
for the Navier–Stokes equations is replaced by the no-penetration condition:
There is no fluid passing through solid boundaries.

A naive expectation is that the limit of a family of solutions of the
Navier–Stokes equations, as the Reynolds number increases without bound,
is a solution of Euler’s equations. After all, the term ∆U/Re would seem
to approach zero as Re→∞. Note, however, the possibility that the second
derivatives of the velocity field are unbounded in the limit and the different
boundary conditions for the Navier–Stokes and Euler equations. For these
and other reasons, the limiting behavior of the Navier–Stokes equations for
large values of the Reynolds number is not yet completely understood.

The necessity of different boundary conditions in passing from the
Navier–Stokes to the Euler equations is the starting point for one of the most
important aspects of fluid dynamics, which was introduced by L. Prandtl in
1904 (see [88, 93]), called boundary layer theory. The fundamental idea is
that for flows of interest in aerodynamics, for instance, the viscous effects
are only important in a thin layer near the boundary where the no-slip
condition must hold; away from the boundary, the flow is well-approximated
by Euler’s equations. Boundary layer theory will be discussed more fully in
Section 17.3.

The possibility of large second derivatives of the velocity field is
important in another area of fluid dynamics: the study of turbulence, a
subject that is beyond the scope of this book.
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11.3 THE LOW REYNOLDS NUMBER LIMIT

In the zero viscosity limit, the pressure is scaled by P = p/(V 2ρ).
Physically, the pressure is comparable to the momentum per unit volume.
For flows with low Reynolds’s numbers, the pressure is comparable to the
forces due to viscosity. For this reason, the correct scaling in this regime is
X = x/L, s = t/τ , U(X, s) = u(x, t)/V , and P (X, s) = p(x, t)L/(µV ),
which leads to the equation

L

V
Us + U · ∇U = − 1

Re
∇P +

1

Re
∆U.

After multiplying by the Reynolds number and passing to the limit as Re→
0, we obtain the dimensionless Stokes equations

∇P = ∆U,

∇ · U = 0. (11.37)

This approximation of the Navier–Stokes equations is a useful model in
many different flow regimes where the velocity is small, the viscosity is
large, or the size of some body immersed in the fluid is small. There
are numerous applications in the field of developmental biology [16],
lubrication theory [92], and other areas of science and engineering (see
Section 19.6).

Note that the temporal variable does not appear in the low Reynolds
number limit; Stokes flow is always in a steady state.

In the low Reynolds number limit, the model retains the assumption that
the fluid has nonzero viscosity (due to the presence of the Laplacian of the
velocity). Thus, the no-slip boundary condition remains appropriate at solid
boundaries.

The Stokes equations are linear and much simpler than the Navier–Stokes
model. For example, although existence and uniqueness for the Navier–
Stokes equations is a highly nontrivial problem, these issues are much easier
to resolve for the Stokes model [Eqs. (11.37)]. Indeed, consider the question
of uniqueness. Suppose the velocity is specified everywhere on the boundary
ofR∗; that is, there is a given function F such that U = F on the boundary.
Then, the Stokes model for the fluid motion has at most one solution. More
precisely, a solution consists of a velocity field U and a pressure function
P . Solutions are never unique in the usual sense, because a constant may
be added to the pressure to obtain a new solution. In fluid mechanics, a
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solution pair (U,P ) is understood to mean that the pressure is defined up to
the addition of a constant.

One elementary proof of uniqueness requires an indirect approach
using the stress tensor components [Eq. (11.32)], which of course are the
fundamental quantities that underly the Navier–Stokes equations. Name the
strain rate tensor components

eij :=
∂Ui
∂Xj

+
∂Uj
∂Xi

and use the equation∇ · U = 0 to write the components of the stress tensor
(still named σ) as follows:

σij = −Pδij + eij . (11.38)

The important formula (akin to the one used in the derivation of the first
equation in display (11.33)) to be employed in the uniqueness proof is

∇ · σ = −∇P + ∆U. (11.39)

For Stokes flow, the divergence of the stress tensor vanishes in agreement
with the first equation in display (11.37). Also, Eq. (11.7) for the divergence
of the stress tensor in components will be used; in particular, each compo-
nent of this vector vanishes for Stokes flow.

Suppose there are two solutions (U1, P1) and (U2, P2) of the Stokes
equations both satisfying the same boundary condition: the (same) velocity
of the boundary is specified at each point of the boundary of some bounded
domainR∗ in the scaled coordinates. There are corresponding stress tensors
σ1 and σ2 and corresponding strain rate tensors e1 and e2. Set U = U1−U2,
P = P1 − P2, σ = σ1 − σ2 , and e = e1 − e2. Note that U = 0 everywhere
on the boundary of the domain. The strategy of the proof is to sum over the
squares of the components of e, integrate this quantity over the region R∗,
and prove that the value of this integral is zero. Once this is accomplished,
each squared quantity must be zero; that is, eij = 0 for each choice of i and
j. In particular, eii = 0. Using the definition of e, this implies

2
∂Ui
∂Xi

= 0.

Choose a point a = (a1, a2, a3) in the domain and, for example, let i = 1.
By the vanishing of the partial derivative with respect to X1, the function



318 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

s 7→ U1(a1 + s, a2, a3) is a constant. As s increases from zero, the path
s 7→ (a1 + s, a2, a3) must cross the boundary of the bounded domain R∗.
Thus, the function U1 has the same value at a and at the crossing point on
the boundary. Because U1 = 0 on the boundary, U1 is zero at a. By the
same argument for the other choices of i, the vector field U is proved to be
zero everywhere in the domain. Thus, U1 = U2. Using Stokes’ equation,
∇P1 = ∇P2. It follows that P1 − P2 is a constant. Thus, the two solutions
are the same, as claimed.

For notational convenience in showing that the integral of the sum of
the squares of the components of e over the domain R∗ vanishes, use the
Einstein convention: summation of repeated indices is implied over the
specified range(s). For example, under this convention and the specification
that all indices range over {1, 2, 3}, the quantity aii appearing in a formula
is an abbreviation for a11 + a22 + a33. The quantity eijeij in the remaining
part of the proof is the double sum over the same range.

The objective of the remaining part of the proof is to show that

J :=

∫
R∗
eijeij dV = 0.

From the Stokes equations, ∇ · U = 0. Using this assumption and the
symmetry of the stress tensor,

J :=

∫
R∗
σijeij dV +

∫
R∗
Peii dV

=

∫
R∗
σij(

∂Ui
∂Xj

+
∂Uj
∂Xi

) dV + 2

∫
R∗
P
∂Ui
∂Xi

dV

= 2

∫
R∗
σij

∂Ui
∂Xj

dV.

Using the integration by parts formula (A.1), which is an easy consequence
of Green’s theorem,

J = 2(−
∫
R∗

∂σij
∂Xj

Ui +

∫
∂R∗

σijUiηj dS),

where η is the outer unit normal on the boundary. The second integral
vanishes because U = 0 on the boundary; the first integral vanishes because
∇ · σ = 0. To show the latter fact, use Eq. (11.7). This completes the proof.



Reynolds and Froude Numbers 319

As an example where the uniqueness result has physical meaning,
suppose a fluid is enclosed in a solid container that is moving with zero
velocity. Stokes’ model has zero Dirichlet boundary condition U = 0.
Clearly the flow velocity U = 0 and P = 0 is a solution of this boundary
value problem. By the uniqueness result, it is the only solution. Thus, Stokes
flow in a bounded domain surrounded by a solid boundary is complete
stagnation unless some portion of the solid boundary has nonzero velocity.
See Section 19.7 for more on Stokes flows surrounded by solid boundaries.

Exercise 11.9. Prove that Poisson’s equation ∆u = f on a bounded domain with
Dirichlet boundary condition u = g on the boundary for given f and g has at most
one solution. Hint: Suppose there are two solutions, define their difference to be U ,
and consider the integral of ∇U · ∇U over the domain. What regularity (smoothness)
assumptions do you need to make your argument rigorous. Comment: The proof that
solutions exist requires some new concepts; but, it is part of the subject matter in the
basic study of PDEs (see, for example, [103]).

Exercise 11.10. (a) Show that the pressure in Stokes’ flow is a harmonic function;
that is, ∆P = 0. (b) Show that the Stokes velocity field satisfies the homogeneous
biharmonic equation; that is, ∆∆U = 0. In particular, each component of U satisfies the
biharmonic equation ∇4ζ := ∆∆ζ = 0. (c) Suppose that c is a constant vector, ζ is a
function, and set

Ui = (
∂ζ

∂Xi∂Xj
− δijζ)cj , P =

∂∆ζ

∂Xj
cj .

Show that (U,P ) is a solution of Stokes’ equations if and only if ζ satisfies the
biharmonic equation. As a consequence, this result shows how to construct solutions
of Stokes’ equations from the solution of the scalar biharmonic equation.



CHAPTER 1212
Flow in a Pipe

As an example of the solution of a fluid flow problem, let us consider
perhaps the most basic example of the subject: a special case of flow in a
round pipe.1

Consider cylindrical coordinates r, θ, and z where the z-axis is the axis
of symmetry of a round pipe with radius a. More precisely, we consider the
coordinate transformation

x1 = r cos θ, x2 = r sin θ, x3 = z.

The basis vector fields for cylindrical coordinates are defined in terms of the
usual basis of Euclidean space by

er := (cos θ, sin θ, 0), eθ := (− sin θ, cos θ, 0), ez := (0, 0, 1).

We denote the coordinates of a vector field F on the cylinder {(r, θ, z) : r ≤
a} with respect to the basis vector fields er, eθ, and ez by Fr, Fθ, and Fz ,
respectively. The use of subscripts to denote coordinates in this section must
not be confused with partial derivatives of F .

It is natural to expect that there are some flow regimes for which the
velocity field has its only nonzero component in the axial direction of the
pipe; that is, the velocity field has the form

u(r, θ, z, t) = (0, 0, uz(r, θ, z, t)), (12.1)

where the components of this vector field are taken with respect to the basis
vector fields er, eθ, ez , and uz denotes the z component of the field (not the
partial derivative with respect to z).

We will express the Euler and the Navier–Stokes equations in cylindrical
coordinates. For a function f and a vector field F = Frer +Fθeθ +Fzez on

1The general nature of flow in a round pipe is not completely understood (see, for example,
B. Eckhardt (2008), Turbulence transition in pipe flow: some open questions. Nonlinearity.
21, T1–T11.)
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Euclidean space, the basic operators are given in cylindrical coordinates by

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez,

∇ · F =
1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

+
∂Fz
∂z

, (12.2)

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2

(see Exercise 12.2). To obtain the incompressible Navier–Stokes equations
in cylindrical coordinates, consider the unknown velocity field u = urer +
uθeθ + uzez . Write this vector field in the usual Cartesian components by
using the definitions of the direction fields given above, insert the result
into the Navier–Stokes equations, and then compute the space derivatives
using the operators given in display (12.2). After multiplication of the vector
consisting of the first two of the resulting component equations (that is, the
equations in the directions ex and ey) by the matrix(

cos θ sin θ
− sin θ cos θ

)
,

we obtain the equivalent system

∂ur
∂t

+ (u · ∇)ur −
1

r
u2
θ =

1

Re

(
∆ur −

1

r2
(ur + 2

∂uθ
∂θ

)
)
− ∂p

∂r
,

∂uθ
∂t

+ (u · ∇)uθ +
1

r
uruθ =

1

Re

(
∆uθ −

1

r2
(uθ − 2

∂ur
∂θ

)
)
− 1

r

∂p

∂θ
,

∂uz
∂t

+ (u · ∇)uz =
1

Re
∆uz −

∂p

∂z
,

∇ · u = 0, (12.3)

where the operators ∇ and ∆ are represented in cylindrical coordinates.

The Euler equations in cylindrical coordinates for the fluid motion in
the pipe are obtained from system (12.3) by deleting the terms that are
divided by the Reynolds number. If the velocity field u has the form given in
Eq. (12.1), then u automatically satisfies the appropriate boundary condition
for the incompressible Euler equation; that is, the Neumann boundary
condition ∂u

∂n = 0, where n is a unit normal on the cylinder that models
the wall of the pipe. Thus, the Euler equations for the (scaled) velocity and
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pressure fields u and p reduce to the system

∂p

∂r
= 0,

∂p

∂θ
= 0,

∂uz
∂t

+ uz
∂uz
∂z

= −∂p
∂z
,

∂uz
∂z

= 0.

The first two equations imply that p is a function of z and t only; the
second two equations imply that

∂uz
∂t

= −∂p
∂z
. (12.4)

After differentiation of Eq. (12.4) with respect to z, it follows that
∂2p/∂z2 = 0. Therefore, p = α + βz for some functions α and β that
depend only on t. Using Eq. (12.4), uz = v(r, θ) −

∫ t
0 β(s) ds for an

arbitrary choice of initial velocity v that may depend on r and θ, but not
on z. The general solution for the class of velocities that have zero first and
second components is

u(x, y, z, t) = (0, 0, v(r, θ)−
∫ t

0
β(s) ds),

p(x, y, z, t) = α(t) + β(t)z.

The no-penetration boundary condition is always satisfied under the
assumption that the first two components of u vanish. The no-slip boundary
condition can also be satisfied by taking β = 0 and v(a, θ) = 0 for all θ,
where a is the radius of the pipe.

The general solution is for a pipe with infinite length. A more realistic
scenario requires a pressure differential to push the flow. Suppose, for
example, the pressure has the constant values p0 at z = 0 and p1 at z = 1,
and p0 > p1. The model should predict a nonzero flow velocity with positive
uz component. In this case, the pressure must be

p = p0 + (p1 − p0)z

and the third component of velocity is

uz = v(r, θ) + (p0 − p1)t.

The flow moves in the expected direction, but the velocity increases without
bound as t grows to infinity. Thus, the model predicts an unrealistic flow
independent of the choice of initial velocity v.
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Note that for arbitrary α, the pair of functions uz = 0 and p = α(t)
is a solution of the Euler model with appropriate boundary condition. At
first sight it might seem that this simple example shows that solutions of
Euler’s equations, with zero initial velocity and the no-penetration boundary
condition, do not have unique solutions, but this is not the case: the
nonuniqueness of pressure is allowed. The reason is simple: the gradient
of the pressure appears in the equations of motion. Thus, the pressure is
never unique in a fluid flow problem; it is required to be unique up to the
addition of a constant function of time.

There is one useful physically reasonable (but not physically realistic)
Euler pipe flow. For β = 0, the pressure does not depend on the position in
the pipe and the fluid velocity field is constant with respect to z (along the
flow direction in the pipe). This idealization is called plug flow. Because of
its mathematical simplicity, plug flow is often used as a model. For example,
plug flow is often used to model flow in tubular reactors studied in chemical
engineering. At least this flow stays bounded.

What about Navier–Stokes flow?

By considering the same pipe, the same coordinate system, and the
same hypothesis about the direction of the velocity field, the Navier–Stokes
equations reduce to

∂p

∂r
= 0,

∂p

∂θ
= 0,

∂uz
∂t

+ uz
∂uz
∂z

=
1

Re
∆uz −

∂p

∂z
,

∂uz
∂z

= 0,

with the no-slip boundary condition at the wall of the pipe given by

uz(a, θ, z, t) ≡ 0.

This apparently simple system of fluid equations is difficult to solve, but
we can obtain a solution under two additional assumptions: The velocity
field is in steady state and it is symmetric with respect to rotations about
the central axis of the pipe. In other words, the partial derivatives of u with
respect to t and θ vanish. With these assumptions and taking into account
that ∂uz/∂z = 0, it suffices to solve the single equation

1

Re

(1

r

∂

∂r

(
r
∂uz
∂r

))
=
∂p

∂z
.
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Because ∂p/∂r = 0 and ∂p/∂θ = 0, ∂p/∂z depends only on z and the
left-hand side of the last equation depends only on r. Thus, the functions on
both sides of the equation must have the same constant value, say β.

Under the assumptions just imposed, p = α+ βz and

d(ru′z(r))

dr
= (βRe)r

with the initial condition uz(a) = 0. The general solution of this ordinary
differential equation (ODE) has a free parameter because there is only
one initial condition given for a second-order differential equation. The
term with the free parameter contains the factor ln r, which blows up as
r approaches zero (that is, at the center of the pipe). Solutions with this
property are discarded because they do not agree with experience. With the
free parameter set to zero, the solution

u = (0, 0, uz(r)) = (0, 0,
1

4
βRe (r2 − a2))

is continuous in the pipe and physically realistic. This steady state velocity
field, called Poiseuille flow, predicted from the Navier–Stokes model is
parabolic with respect to the radial coordinate with the fastest flow at the
center of the pipe and flow velocity zero at the pipe wall.

Poiseuille flow is a close approximation to physical flow in a pipe for
small Reynolds numbers. As the Reynolds number is increased, a critical
value is reached at which the radial symmetry hypothesis used to obtain the
Poiseuille flow is violated. For a Reynolds number above this critical value,
the steady state physical flow measured in experiments and the velocity field
given as a solution of the Navier–Stokes model become more complex. The
flow regime changes from laminar flow to turbulent flow (the regime where,
among other properties, eddies are found at all length scales). The causes of
the onset of turbulent flow, the transition from laminar to turbulent flow, and
the nature of fully turbulent flow are not fully understood; they are important
unsolved problems in physics and applied mathematics.

Exercise 12.1. Consider Poiseuille flow in a section of length L of an infinite round
pipe with radius a. Suppose that the pressure is p in at the inlet of the section and the
flow speed at the center of the pipe is v in. Determine the pressure at the outlet. What
happens in the limit as the Reynolds number grows without bound? Compare with the
prediction of plug flow.
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Exercise 12.2. (a) Write a detailed derivation of the gradient, divergence, and
Laplacian in cylindrical coordinates (see display (12.2)). There are several methods that
can be employed. One method begins by defining fc(r, θ, z) = f(r cos θ, r sin θ, z) so
that f(x, y, z) = fc(

√
x2 + y2, arctan(y/x), z) and continues by differentiating the

latter equality with respect to x, y, and z. (b) Derive the expressions for the gradient,
divergence, and Laplacian in spherical coordinates.

Exercise 12.3. [Hagen–Poiseuille law] Return to unscaled variables and reconsider
steady state Poiseuille flow in a round pipe of radius a. With the z coordinate in the
direction of the pipe axis, the equations of motion are

px = 0, py = 0, pz = µ(vxx + vyy), vz = 0

and the boundary condition is no-slip at the pipe wall. (a) Write out the full physically
realistic general solution for the pressure and velocity. (b) Suppose the pressure at z = 0

is p0 and the pressure at some z = ` > 0 is p1 with p0 > p1. The pressure drop on
this section of pipe is p0− p1. Determine the relation between the pressure drop and the
volumetric flow rate in the pipe (volume per time of fluid passing a given cross section
of the pipe). This relation is called the Hagen–Poiseuille law. (c) Determine the average
velocity through a cross section.

Exercise 12.4. Determine the profile for Stokes flow in a round pipe of radius a under
the assumption that the flow is invariant with respect to rotations around the central axis
of the pipe.

Exercise 12.5. Polar coordinates were used in this section to show their use in fluid
problems, but they are not necessary to determine the Euler or Poiseuille flow. Write out
the derivation of these results using Cartesian coordinates.



CHAPTER 1313
Eulerian Flow

13.1 BERNOULLI’S FORM OF EULER’S EQUATIONS

A flow is called isentropic if there is some function q called the enthalpy,
such that1

grad q =
1

ρ
grad p. (13.1)

More precisely, q is the enthalpy per unit of mass; it has units of energy/mass
usually measured in Joules/kilogram or square meter/second/second. In case
the density is constant, the flow is isentropic with q := p/ρ.

Using the vector identity

1

2
grad(u · u) = u× curlu+ (u · ∇)u,

Euler’s equation of motion [Eq. (11.20)] may be recast in the form

ut − u× curlu = b+ grad(−1

2
(u · u)− q).

With

α := −1

2
|u|2 − q ,

Bernoulli’s form of Euler’s equations for incompressible flow is

ut = u× curlu+ gradα+ b,

div u = 0,

u · η = 0 in ∂R. (13.2)

The curl of the flow velocity field u appears in Bernoulli’s equations and
plays an important role in fluid motion. This quantity curlu (or ∇ × u in

1Nabla notation has been used in this book for the discussion of fluid motion. Here the
notation is switched to div, grad, and curl so the reader will gain experience in reading
literature that uses this alternate notation.
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nabla notation) is called the vorticity field of the flow; and, a flow is called
irrotational (sometimes curl free) if its vorticity vanishes everywhere.

In case the flow velocity is steady (does not depend on time), irrotational,
and the body force is conservative (b = gradβ), the first equation in
display (13.2) may be recast in the form

grad(
1

2
(u · u) + p/ρ+ β) = 0.

Thus, in this case, there must be a constant C such that

1

2
(u · u) + p/ρ+ β = C.

The most important example, when the body force is gravity and z is the
vertical spatial coordinate, is Benoulli’s equation

1

2
(u · u) + p/ρ+ gz = C.

Fluid particle motion for the velocity field u = (u1, u2, u3) is governed
by the ordinary differential equations (ODEs)

ẋ = u1(x, y, z, t), ẏ = u2(x, y, z, t), ż = u3(x, y, z, t).

More precisely, the path of a fluid particle starting at time t0 at
position (x0, y0, z0) (called its path line) is the parametric curve
t 7→ (x(t), y(t), z(t)) that satisfies these ODEs and the initial data
(x(0), y(0), z(0)) = (x0, y0, z0). For each fixed t, the curves in space
that are traced out by solutions s 7→ (x(s), y(s), z(s)) of the ODEs

dx

ds
= u1(x, y, z, t),

dy

ds
= u2(x, y, z, t),

dz

ds
= u3(x, y, z, t)

are called streamlines. Thus, the pattern of streamlines changes at each
instant of time. For steady flows (no dependence on t), streamlines and the
curves traced out by the path lines coincide.

For steady flow, a conservative body force, and with the Bernoulli
function

B :=
1

2
(u · u) + p/ρ+ β,



Eulerian Flow 329

Bernoulli’s form of Euler’s equations yields the vector equation

gradB = u× curlu.

Consider the time derivative of B along a streamline and note that (by the
properties of cross product)

d

dt
B(x(t), y(t), z(t)) = gradB · u = (u× curlu) · u = 0. (13.3)

This is an important fact: For steady flow with conservative body force, the
Bernoulli function is constant along streamlines.

13.2 POTENTIAL FLOW

An irrotational Eulerian (no viscosity) flow is called a potential flow.

From vector analysis, an irrotational field is locally the gradient of some
function. More precisely, at each point in a region throughout which the curl
of a vector field vanishes, there is an open disk containing the point and
a function defined on this disk whose gradient is the curl free vector field.
Recall that a set is called simply connected if every loop can be shrunk to a
point without leaving the set. Otherwise the set is called multiply connected.
For example, a disk in the plane is simply connected and an annulus is
multiply connected. Also, from vector calculus, an irrotational vector field
on a simply connected domain is the gradient of a function defined on the
entire domain; the vector field is globally a gradient. Such a function is
called a potential for the vector field and thus the name potential flow. In
a multiply connected domain an irrotational vector field may not be the
gradient of a function defined on the entire domain.

Bernoulli’s form of the incompressible Euler’s equations [Eqs. (13.2)]
for the velocity field u of a potential flow in a regionR are given by

ut = − grad(
1

2
|u|2 +

p

ρ
) + b,

div u = 0,

u · η = 0 in ∂R. (13.4)

Suppose that u = gradφ on all of R and the body force is the gradient of a
potential β so that b = gradβ. By substitution into these partial differential
equations (PDEs) and some rearrangement, the equations of motion can be
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recast into the form

grad(
∂φ

∂t
+

1

2
| gradφ|2 +

p

ρ
− β) = 0, ∆φ = 0. (13.5)

As a result, there is a number C, constant with respect to the space variable,
such that

∂φ

∂t
+

1

2
| gradφ|2 +

p

ρ
− β = C. (13.6)

When the body force is gravity and the flow is steady (the velocity field
is not changing with time), Bernoulli’s law states that (at a height h above a
reference surface)

p+
1

2
ρ|u|2 + gρh = C. (13.7)

Suppose the density ρ is constant and the body force b is given by a
potential β so that gradβ = b. In this case, every (sufficiently smooth) time
independent and irrotational vector field u (that is, a field with ut = 0 and
curlu = 0) satisfies the incompressible Euler equations

u · ∇u = −∇(p/ρ) +∇β, ∇ · u = 0

with the pressure p defined by

p = −1

2
ρ|u|2 + ρβ. (13.8)

An important consequence of Bernoulli’s law is Bernoulli’s principle: At
constant height, if the velocity of an incompressible fluid increases, then its
pressure decreases.

Bernoulli’s principle is often used as an explanation of lift caused by
flow over an airplane wing. The usual argument is that a wing produces lift
because the velocity of air relative to the wing is greater for flow over the top
of the wing compared to flow over its bottom; thus, the pressure is less on top
and the pressure difference between top and bottom produces lift. Exactly
why the flow is faster over the top of an airplane wing can be explained
to some extent, but not simply (see, for example, [60]). Also, the Bernoulli
principle’s argument is somewhat undercut by the observation that airplanes
can fly upside down—though not efficiently—when the pitch is adjusted
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appropriately. An alternate explanation of why airplanes fly includes the
observation that the wings and the hull are pitched (angle of attack) in flight
to direct more airflow downward than upward. This is supposed to produce
a (lift) force in the up direction by Newton’s third law of motion. It is not
clear, however, that this is a correct application of Newton’s law. Because a
simple correct physical argument for why airplanes can fly is not available,
there is no shortage of discussion and controversy on this topic.

From an applied mathematics point of view, the explanation of lift does
not require a simple physical explanation; the phenomenon is explained via
the modeling process. Basic physics is used to derive the Navier–Stokes
model for fluid motion. Application of this model for aerodynamic airflow
(that is, the identification of an appropriate domain around an airplane
wing or the entire airplane and the imposition of the no-slip boundary
condition) will produce a solution such that the pressure difference is a
close approximation to the measured lift. Experimental evidence to the
contrary (which does not exist at present) would require a new explanation.
Either the basic physics used to construct the Navier–Stokes model is
wrong, the approximations used to construct the model are too crude, or the
model does not incorporate all the relevant physics. Thus, a full explanation
lies in the physics of fluid motion, not the particular phenomenon of lift.
Unfortunately, the Navier–Stokes equations are not easy to solve. Thus,
there is no simple way to determine the predictions of the model. This fact
fuels the desire for a more direct intuitive explanation of lift, which (due to
the complexity of fluid flow) is probably impossible. Why not embrace the
modeling process instead? The correct approach to understanding (from this
point of view) is to explore the Navier–Stokes model until its predictions do
not agree with experiment or observation. Should this happen, abandon or
modify the model and test its predictions against the experiments. Perhaps
life is not this easy, but this is the correct point of view.

Exercise 13.1. Can a fluid particle undergo acceleration in a steady flow? Hint: The
motion of a particle is governed by the ODE ẋ = u(x, t). It’s velocity is ẋ.

Exercise 13.2. Consider an open tank containing water with a round hole in the
bottom of the tank. Show that the velocity of the fluid in the drain is (approximately)
proportional to the square root of the depth of the fluid in the tank. More precisely, this
velocity is approximately

√
2gh, where h is the depth of the water in the tank and g is the

acceleration due to gravity. What assumptions are required to make the velocity exactly√
2gh.
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Exercise 13.3. Consider flow with density ρ and viscosity µ in a river with a flat
bottom whose slope is − tan θ with respect to the horizontal where θ is a small angle.
Ignore the influence of the banks of the river on the flow, assume that the flow velocity
is all in the downstream direction, and the body force driving the flow is gravity. In
addition, assume—as an approximation—that the flow near the surface of the river
forgets that it is viscous and behaves as if it is Eulerian. (a) Show that the velocity at z
units above the river bottom is u = 1

2µρgz(2h−z) sin θ. (b) The Mississippi River drops
2.5 inches per mile. Suppose its average depth is 30 feet and width is 1 mile. Compute
the surface velocity of the river. Does the velocity computed using these assumptions
agree with observation? Which, if any, of the assumptions is not realistic? Discuss.

Exercise 13.4. Assume that the curl of the body force on a fluid vanishes. (a) Show
that the vorticity ω = curlu satisfies the ODE

ω̇ = curl(u× ω).

(b) Show that the solution of the initial value problem

ω̇ = curl(u× ω), ω(0) = 0

is ω = 0. Interpretation: Euler flow with constant body force (such as gravity) that is
initially irrotational does not develop vorticity in the future. (c) Show that (in two space
dimensions) the vorticity satisfies the differential equation

ωt + (u · ∇)ω = 0.

Is this equation the same as the one in part (a)? What about three dimensions?
(d) Suppose γ is a solution of the ODE system

ẋ = u1(x, y, t), ẏ = u2(x, y, t)

where u = (u1, u2) is the fluid velocity field. Show that the vorticity is constant along
γ. What is the interpretation of this result?

13.3 POTENTIAL FLOW IN TWO DIMENSIONS

Imagine, as an example of two-dimensional flow that occurs in applications,
an invariant two-dimensional plane of fluid in a three-dimensional fluid
flow (that is, fluid particles starting on this plane stay on the plane). The
flow equations restricted to a two-dimensional plane are more amenable to
analysis than the full three-dimensional model. Some of the properties of
two-dimensional potential flow are discussed in this section. A few results
from the theory of complex variables are used. Accept these results without
proof if you have not studied functions of complex variables.
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Consider a steady fluid flowing on a plane with Cartesian coordinates
(x, y) whose velocity field u is given by a potential φ; that is, u = ∇φ.
In view of the second equation of system (13.5) (that is, ∆φ = 0), the
potential is a harmonic function. By some basic theory of functions of
complex variables, φ is locally the real part of a holomorphic function, say
f = φ+ iψ, and the pair φ, ψ satisfies the Cauchy–Riemann equations

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
.

Thus, the assumption that u = gradφ implies that the fluid motions are
solutions of an ODE that can be viewed in two different ways: as the gradient
system

ẋ =
∂φ

∂x
, ẏ =

∂φ

∂y
; (13.9)

or the Hamiltonian system

ẋ =
∂ψ

∂y
, ẏ = −∂ψ

∂x
. (13.10)

The function ψ, a Hamiltonian function for system (13.10), is the
stream function; but, this is not the definition of the stream function (see
Exercise 13.6). The orbits of system (13.10), called streamlines, all lie on
level sets of ψ.

Because streamlines are also orbits of the gradient system (13.9),
there are no (nonconstant) periodic motions of fluid particles for steady
potential flow. In fact, an autonomous gradient system (such as the gradient
system (13.9)) cannot have (nonconstant) periodic solutions. (Why?)

It should be clear that function theory can be used to study planar
potential flow. For example, if ψ is a harmonic function defined in a simply
connected region of the complex plane such that the boundary of the region
is a level set of ψ, then ψ is the imaginary part of a holomorphic function
defined in the region, and therefore ψ is the stream function of a steady state
flow. This fact can be used to find steady state solutions of Euler’s equations.

Consider plug flow in a round pipe with radius a and notice that every
planar slice containing the axis of the pipe is invariant under the flow. Thus,
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it seems reasonable to consider two-dimensional flow on the strip

S := {(x, y) : 0 < y < 2a},

which is viewed as such a slice where x as the axial direction and the center
of the pipe lies on the line with equation y = a. The plug flow solution
of Euler’s equations in S is given by the velocity field u = (c, 0) and
pressure p = p0, where c and p0 are constants. It is a potential flow, with
potential φ(x, y) = cx, stream function ψ(x, y) = cy, and complex potential
f(x, y) = cz = cx+ icy.

Suppose that Q is an invertible holomorphic function defined on S and
that R is the image of S under Q, then w 7→ f(Q−1(w)) for w ∈ R is a
holomorphic function on R with real part w 7→ φ(Q−1(w)) and imaginary
part w 7→ ψ(Q−1(w)). Thus, the function given by w 7→ ψ(Q−1(w))
is a stream function for a steady state potential flow in R with potential
w 7→ φ(Q−1(w)). In particular, streamlines of ψ map to streamlines of
w 7→ ψ(Q−1(w)). And this flow is a solution of Euler’s equation in the
domainR.

For example, note that w := Q(z) =
√
z has a holomorphic branch

defined on the strip S such that this holomorphic function maps S into the
region R in the first quadrant of the complex plane bounded above by the
hyperbola {(σ, τ) : στ = a}. In fact, Q−1(w) = w2 so that

x = σ2 − τ2, y = 2στ.

The velocity field of the new (corner) flow is

(2cσ,−2cτ),

and the corresponding pressure is found from Bernoulli’s equation (13.7).
In fact, there is a constant p1 such that

p = p1 − 2c2(σ2 + τ2). (13.11)

Streamlines for the flow at a corner are all hyperbolas.

The flow near a wall is essentially plug flow. In fact, if we consider, for
example, the velocity field on a vertical line orthogonal to the σ-axis, say
the line with equation σ = σ0, then the velocity field near the wall, where
τ ≈ 0, is closely approximated by the constant vector field (2cσ0, 0). In
other words, the velocity profile is nearly linear.
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Exercise 13.5. Consider the plug flow vector field u = (c, 0) defined in a horizontal
strip in the upper half plane of width 2a. Find the push forward of u into the first quadrant
with respect to the map Q(z) =

√
z with inverse Q−1(w) = w2. Is this vector field

a steady state solution of Euler’s equations at the corner for an incompressible fluid?
Explain.

Exercise 13.6. (a) Suppose that (u, v) are components of a (smooth) vector field in
the plane whose divergence vanishes. Show that there is a function ψ, defined up to an
additive constant, such that

u = ψy, v = −ψx.

This function ψ is called the stream function. (b) Show that the Laplacian of the stream
function is the vorticity of the vector field. (c) Can a potential flow have nonzero
vorticity?

13.4 CIRCULATION, LIFT, AND DRAG

A fundamental problem in applied fluid dynamics is to describe the motion
of solid bodies moving in fluids as in aerodynamics, ballistics, and the
motion of ships and submarines. Although numerical computation with
the Navier–Stokes equations has superseded theoretical analysis for most
realistic applications, the problem is certainly illuminated by making pre-
dictions from basic theory. This subject matter uses foundational applied
mathematics, which is useful in many other contexts.

Imagine a three-dimensional body B immersed in a fluid. Although in
reality the fluid is confined to some container, for the subject at hand it is
natural to assume that the outer boundary of the fluid does not affect the
fluid motion of the body as long as the container is much larger than the
body. A notable exception is a scaled model in a wind tunnel where the fluid
motion near the wall of the wind tunnel may have to be taken into account.
As a consequence of Newton’s law, the motion of the body is determined
by the sum of the forces acting on it. Ignoring forces due to gravity or
electromagnetism, which may later be included as summands of force, the
forces acting on the body are due to the surrounding fluid. Two of the most
important of these forces are the fluid pressure and the shear stress due to the
no-slip boundary condition. Shear stress in the boundary layer is discussed
briefly in Section 17.3. The force on B due to pressure is discussed here. In
the aerodynamics literature, this force is called pressure drag. Drag due to
shear stress is called viscous (or frictional) drag. In case the drag is mainly
due to viscosity, the body is called streamlined; it is called blunt (or bluff)
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in case the drag is dominated by pressure. The purpose of streamlining by
design is to reduce pressure drag.

Recall that pressure is force per area; thus, to obtain the total force due to
pressure, the fluid pressure is integrated over the surface of the body. More
precisely, let η denote the outer unit normal on B and p the pressure. The
total pressure is

F := −
∫
∂B
pη dS. (13.12)

The minus sign is included to ensure that a positive pressure acts toward the
interior of the body. Of course, F is a vector.

Although the more physically realistic Navier–Stokes equations should
be used to determine the pressure force F , these equations are probably too
complicated to analyze by elementary analysis; thus, Euler’s equations are
used instead. More precisely, the assumptions for this section are

(a) The density of the fluid is constant; that is, ρ is constant.
(b) The fluid velocity is irrotational; that is ∇× u = 0.
(c) No body forces act on the fluid or the body.
(d) The fluid is in steady state.
(e) The viscosity of the fluid is zero.
(f) The body B immersed in the flow is a finite solid (not necessarily

round) cylinder whose axis is taken to be vertical in the usual Cartesian
coordinates (see Fig. 13.1 for a cross sectional view); that is, in the usual
Cartesian coordinates, when (x, y, 0) is in the body so is (x, y, z) for all
z in some closed interval [c, d].

(g) The fluid velocity u has zero component in the direction of the axis of
the cylinder; that is, u = (u1, u2, 0) in components, the velocity does
not depend on the axial coordinate, and it satisfies the no-penetration
condition on the boundary of B.

(h) Far away from B, the velocity of the fluid is nearly constant with zero
component in the direction of the axis of the cylinder; that is, u = U +
v, where U = (U1, U2, 0) is a constant vector field and the function
(x, y) 7→ (x2 + y2)1/2|v(x, y)|2 approaches zero uniformly as x2 + y2

grows without bound.

Consider a portion of the cylindrical body B of unit axial length, and
consider the solid right circular cylinder {(x, y, z) : x2 + y2 ≤ a2, 0 ≤
z ≤ 1} with closed ends such that the radius of its base a is so large that this
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circular cylinder contains B. The boundary of the circular cylinder consists
of its lateral boundary Σ := {(x, y, z) : x2 + y2 = a2, 0 < z < 1} and two
end disks D0 := {(x, y, z) : x2 + y2 = a2, z = 0} and D1 := {(x, y, z) :
x2 + y2 = a2, z = 1}. Let Ω denote the complement of the set B in the
solid circular cylinder. Also, let Γ denote the curve given by the intersection
of B and the plane with equation z = 0; it is a curve on the boundary of a
cross section of B.

Drag on the body B is defined to be the total pressure F in Eq. (13.12)
in the direction of the constant field U . The mathematical expression for the
drag is

drag =
F · U
|U |

U

|U | .

Lift on B is defined to be the component of F in the direction,
perpendicular to the constant field U in the cross sectional plane, given by
U⊥ := (−U2, U1, 0)/|U |. Thus, the lift is

lift = (F · U⊥)U⊥.

Because the orientation of the cylinder is taken for notational beauty so that
the coordinates in its two-dimensional cross sections are (x, y), a lift force
would move the cylinder side-to-side instead of up or down according to
drawings of the usual Cartesian coordinates. Although this picture is perhaps
not in concert with the usage of the word lift, the position of the cylinder in
space is obviously of no importance for mathematical analysis as long at the
coordinates are chosen with respect to this position.

One other quantity plays a fundamental role: the circulation of the flow
velocity on closed curves. For Υ a closed oriented curve and u a vector field,
the circulation of u on (or around) Υ is defined to be

circulation =

∫
Υ
u · ds,

where ds is the differential of arc length taken in the positive direction on
the curve. Of course, the integrand is the dot product of the unit tangent
vector to the curve in the positive direction and the vector field u. When
the curve resides in a plane, which has a standard orientation (for example,
counterclockwise in the usual Cartesian plane), positive orientation of the
curve is assumed. In case the curve is the boundary of a surface Ξ, we have
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Stokes’s theorem: ∫
Υ
u · ds =

∫
Ξ

(∇× u) · η dS.

If the surface Ξ lies entirely in the fluid and the fluid is irrotational,
then the circulation around Υ = ∂Ξ vanishes. Although there is a definite
relationship between circulation and rotation, they are not the same. Imagine
a body immersed in a fluid and note that the fluid vector field u is not defined
inside the body where there is no fluid. For this reason, Stokes’s theorem
does not apply. Thus, it is possible to have nonzero circulation around a
curve with respect to an irrotational vector field. Vorticity measures a local
property of a flow; circulation is a global property.

One of the most important results concerning circulation, drag, and
lift is the Kutta–Zhukovsky theorem (Martin Wilhelm Kutta and Nikolay
Yegorovich Zhukovsky): Under the assumptions (a)–(h), with B the cylin-
drical body defined above, and Γ the closed curve surrounding B, the drag
on B is zero and the lift is given by

lift = −ρ|U |
∫

Γ
u · dsU⊥. (13.13)

In particular, nonzero lift requires nonzero circulation.

The proof given here uses two previously established facts about the
pressure p and steady state fluid velocity u: the alternate form of the
momentum balance [Eq. (11.18)], which is

ρ∇ · (u⊗ u+
p

ρ
I) = 0,

and the existence of a constant p0 such that Bernoulli’s law [Eq. (13.7)]
holds in the form

p = −1

2
ρu · u+ p0.

By the momentum balance and the divergence theorem,

0 =

∫
Ω
ρ∇ · (u⊗ u+

p

ρ
I) dV =

∫
∂Ω
ρ(u⊗ u · η +

p

ρ
η) dS,

where η is the outer normal on the boundary of Ω, which is the union of
the lateral boundary, the end disks, and the lateral boundary of B. The
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integral of u ⊗ u · η over the lateral boundary of B vanishes because the
fluid velocity (which satisfies the no-penetration boundary condition on B)
is perpendicular to the normal on this boundary. The sum of the integrals
over the end disks vanish for one of two reasons: the fluid velocity is
perpendicular to the outer normals on these disks, and for the pressure and
constant terms, the integrals are equal and of opposite signs on these disks.
Thus, the vanishing of the boundary integral implies

−
∫
∂B
pη dS =

∫
Σ
ρ(u⊗ u · η +

p

ρ
η) dS, (13.14)

where η is the inner normal on B. In particular, the desired total pressure F
is given by

F = −
∫

Σ
ρ(u⊗ u · η +

p

ρ
η) dS.

Using Bernoulli’s law,

F = −
∫

Σ
ρ(u⊗ u · η − 1

2
u · uη − p0

ρ
η) dS.

Substitute u = U + v and expand terms using linearity to obtain

F = −ρ
∫

Σ
U ⊗ U · η + U ⊗ v · η + v ⊗ U · η + v ⊗ v · η − 1

2
U · Uη

− U · vη − 1

2
v · vη − p0

ρ
η dS. (13.15)

The right circular cylinder Σ is parameterized by γ(θ, s) = (a cosθ, a sinθ, s)
with 0 ≤ θ ≤ 2π and 0 < s < 1. Recall that, for a continuous function g,∫

Σ
g dS =

∫ 1

0

∫ 2π

0
g(a cos θ, a sin θ, s)Dγ(θ, s)e1 ×Dγ(θ, s)e2 · η dθds

= a

∫ 1

0

∫ 2π

0
g(a cos θ, a sin θ, s) dθds.

In the application of this formula to the terms in the integrand of the integral
in Eq. (13.15), the hypotheses on the flow imply there is no functional
dependence on s. Thus,
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F = −ρ
∫ 2π

0
U ⊗ U · η + U ⊗ v · η + v ⊗ U · η + v ⊗ v · η − 1

2
U · Uη

− U · vη − 1

2
v · vη − p0

ρ
η dθ. (13.16)

Constant terms all integrate to zero as each of them reduces to integration of
a sine or cosine over the interval [0, 2π]. The remaining integral, expressed
in coordinates, is

F = − aρ
∫ 2π

0
(v1(θ) cos θ + v2(θ) sin θ)

(
U1

U2

)
+ (U1 cos θ + U2 sin θ)

(
v1(θ)
v2(θ)

)
− (U1v1(θ) + U2v2(θ))

(
cos θ
sin θ

)
− 1

2
(v1(θ)2 + v2(θ)2)

(
cos θ
sin θ

)
dθ.

To determine the drag in the direction U/|U |, compute the dot product
of F with U , expand all products, and make the obvious cancellations. The
result, in vector form, is

drag = −aρ
(
|U |2

∫ 2π

0
v · η dθ +

1

2

∫ 2π

0
|v|2U · η dθ

) U

|U |2 .

Because U is constant, ∫ 2π

0
U · η dθ = 0;

therefore ∫ 2π

0
v · η dθ =

∫ 2π

0
u · η dθ,

where η is the outer normal on Σ. But by the divergence theorem and the
assumption ∇ · u = 0,

0 =

∫
Ω
∇ · u dV

=

∫
∂B
u · η dS +

∫
Σ
u · η dS
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=

∫
Σ
u · η dS

=

∫ 2π

0
u · η dθ

=

∫ 2π

0
v · η dθ.

It follows that

drag = −ρ
2

∫ 2π

0
(a|v|2)U · η dθ U

|U |2 .

In view of assumption (h) and passing to the limit as a increases without
bound, the drag vanishes.

To determine the lift in the direction U⊥, compute the dot product of F
with U⊥, expand, and cancel to obtain

lift =
(
−ρ|U |

∫ 2π

0
a(v2(θ) cos θ−v1(θ) sin θ) dθ+

ρ

2

∫ 2π

0
a|v|2U⊥·η dθ

)
U⊥.

As for the calculation for drag, the second integral vanishes in the limit; the
first integral (including the factor a in its integrand) is equal to the circulation∫

C
v · ds,

where C is the circle centered at the origin with radius a. As before, because
U is constant, ∫

C
v · ds =

∫
C
u · ds. (13.17)

Using Stokes’s theorem,∫
A
∇× u · η dS =

∫
C
u · ds+

∫
Γ
u · ds,

whereA is the annular surface bounded by the circleC centered at the origin
with radius a, and Γ is the previously defined cross sectional boundary ofB.
Because ∇ × u = 0 for the potential flow u, the circulation of u around B
is the same as its circulation around C, which is the same as the circulation
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of v around C by Eq. (13.17). Hence,

lift = −ρ|U |
∫

Γ
u · dsU⊥. (13.18)

This completes the proof of the Kutta–Zhukovsky theorem.

The proof given here is an excellent application of vector calculus. An
alternative approach is to recognize and consider the two-dimensional nature
of the result from the start and use complex function theory instead of vector
analysis (see, for example, [1]).

The Kutta–Zhukovsky theorem should be surprising: it states that the
fluid flow does not cause drag, and unless there is circulation, there is also
no lift. This is often called d’Alembert’s paradox; the result is contrary to
experience. As we now know, the paradox arises by ignoring viscosity and
compressibility, but this fact was not clear at the birth of aerodynamics. A
better understanding was obtained much later with the advent of boundary
layer theory. In this more realistic model, the viscosity is still not important
and can be ignored except in a thin layer near the skin of the body where the
fluid remembers it has viscosity and therefore sticks to the skin; that is, the
fluid velocity vanishes on this boundary instead of merely satisfying the no-
penetration condition. The no-slip boundary condition produces shear stress
(skin friction), which is one of the effects that must be taken into account to
model the drag force. For streamlined bodies, skin friction as explained by
boundary layer theory is the dominant contribution to drag, at least for flows
whose Reynolds’ numbers are not too high. Drag due to pressure differences
between the leading and trailing edges of the body (called pressure or form
drag) is dominant for nonstreamlined bodies (called bluff or blunt bodies).

The Kutta–Zhukovsky lift formula (13.18) is a good approximation even
for viscous flow; it can be used to predict the lift force for bodies of various
shapes. To state the obvious, maximization of lift and minimization of
drag—within other design constraints—are basic goals of aerodynamics.

Continuing with the classical theory, the simplest and natural example
of a body that might be subjected to a flow is a right circular cylinder B.
The cross section is a disk in the Cartesian plane of some radius a > 0.
In the unbounded region Ω exterior to this disk with outer normal η on its
finite circular boundary, the existence of a potential flow given by a velocity
potential φ defined in Ω such that this velocity field has nearly constant
velocity U far from the body (to model the body subjected to a constant
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freestream flow) is equivalent to the existence of a solution of the exterior
Neumann BVP

∆φ =0 in Ω,
∇φ · η =0 in ∂Ω,
∇φ→U as x2 + y2 →∞ (13.19)

for the unknown velocity potential φ.

The circular geometry of the exterior Neumann problem (13.19) leads to
a pencil and paper solution using polar coordinates.

The Laplacian ∆ is easily converted to polar coordinates. Simply
consider a scalar valued function f on the Cartesian plane so that the value
of f at the point with coordinates (x, y) is f(x, y). The same function
in polar coordinates, F , is given by F (r, θ) = f(r cos θ, r sin θ) and
f(x, y) = F (

√
x2 + y2), arctan(y/x)), ignoring for the moment division

by zero when x = 0. Away from this value of x, simply compute the
Laplacian of the right-hand side of the latter equation using the chain rule
and substitute r for

√
x2 + y2 and θ for arctan(y/x) in the result to obtain

∆F =
1

r

∂

∂r
(r
∂F

∂r
) +

1

r2

∂2F

∂θ2
. (13.20)

This formula is singular at r = 0 due to the singularity of polar coordinates
at the origin; the underlying problem, which is often ignored when using
polar coordinates, is that there is no global coordinate system on the circle.
This is the source of the problem using the arctangent function to define the
angular coordinate θ. Indeed, the formula θ = arctan(y/x) is only valid
for x > 0. Another formula, θ = π/2 − arctan(x/y), gives the angular
coordinate for y > 0. There are infinitely many such formulas. The proper
way to treat the circle and the related polar coordinates on the punctured
plane (the subset of the plane with the origin removed) requires some ideas
from the theory of differentiable manifolds, but this level of sophistication
is not necessary here. All that is required is careful attention to the use of
the polar coordinates. When in doubt, all results can be checked by simply
transforming back to Cartesian coordinates. A detailed discussion of polar
coordinates from the correct point of view is in [20, p. 65].

A good idea to try when seeking an explicit solution of a partial differen-
tial equation (PDE) is separation of variables. Fortunately, this method can
be used to find a solution of the BVP (13.19). Look for a solution of the
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Fig. 13.1 The figure depicts a numerical approximation of potential flow around a cylinder of radius one such that the
fluid velocity at infinity is (1, 0).

form Φ(r, θ) = R(r)Θ(θ), where of course Φ(r, θ) := φ(r cos θ, r sin θ).
Note that for such a solution to be defined on the punctured plane viewed as
the Cartesian product of the line and the unit circle, the function Θ must be
2π-periodic. After computing the Laplacian of Φ, setting the result to zero,
and using subscripts for partial derivatives, the variables are separated via
the formula

r
(rRr)r
R

= −Θθθ

Θ
.

Because the left-hand side of this equation does not depend on θ and the
right-hand side does not depend on r, both sides of the equation must be
equal to some constant λ. The problem is solved if there is a choice of λ such
that the product of the corresponding R and Θ also satisfies the boundary
conditions.

For an arbitrary choice of λ, the function Θ must satisfy the ODE

Θ′′ + λΘ = 0

and the solution Θ must be 2π-periodic. Thus, λ must be nonnegative. In
case λ = 0, the corresponding periodic solution is constant. For λ > 0, the
general solution is a linear combination of sinusoids:

Θ(θ) = K sin
√
λ θ + L cos

√
λ θ.

For Θ to be 2π-periodic, the constant λ must be the square of an integer, say
λ = n2 and n > 0.
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The corresponding equation for R, after expanding the indicated deriva-
tives, is

r2R′′ + rR′ − n2R = 0,

a second-order linear ODE with nonconstant coefficients. It is an Euler type
second-order equation. From the elementary theory of ODEs, the usual
solution method is to try a function R = rα for some real or complex
exponent α. Implementation of this procedure yields the indicial equation

α(α− 1) + α− n2 = 0

that has roots α = ±n. Thus, the general solution of the second-order
equation for n > 0 is

R(r) = Crn +Dr−n,

for constants C and D. For n = 0, the solution (for r > 0) is

R(r) = C ln r +D.

There are two types of separable solutions of ∆φ = 0.

For λ = 0 (in Cartesian coordinates) the candidate solution is

φ(x, y) =
C

2
ln(x2 + y2) +D.

It does not satisfy the boundary condition on the circle with radius a (the
boundary of Ω) unless C = 0. In this case the gradient of φ vanishes, and
the boundary condition at infinity is not satisfied unless U = 0, a case of no
physical interest.

With λ = n2 > 0,

Φ(r, θ) = (Crn +
D

rn
)(K sinnθ + L cosnθ).

To check the boundary conditions, the gradient of Φ is best computed in
polar coordinates. Using the same method as for computing the Laplacian
[Eq. (13.20)], the polar form of the gradient in Cartesian components is
found by computing the partial derivatives with respect to x and y of
f(x, y) = F (

√
x2 + y2), arctan(y/x)). The result is

grad Φ(r, θ) = (Fr cos θ − 1

r
Fθ sin θ)e1 + (Fr sin θ +

1

r
Fθ cos θ)e2.
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This vector field is expressed in the polar basis

er =

(
cos θ
sin θ

)
, eθ =

(
− sin θ
cos θ

)
by

grad Φ(r, θ) = Frer +
1

r
Fθeθ.

The fluid velocity field is

grad Φ(r, θ) =(nCrn−1 − n D

rn+1
)(K sinnθ + L cosnθ)er

+
1

r
(Crn +

D

rn
)(nK cosnθ − L sinnθ)eθ.

Its normal derivative vanishes on the circle centered at the origin with radius
a when D = Ca2n. At infinity, the gradient blows up unless n = 1. In case
n = 1, the potential in Cartesian coordinates is given by

φ(x, y) = (1 +
a2

r2
)(Kx+ Ly),

where the constant C has been subsumed into K and L, and the fluid
velocity field u = gradφ, given in Cartesian components by

u(x, y) =
(
− 2a2x(Kx+ Ly)

(x2 + y2)2
+K(1 +

a2

x2 + y2
),

− 2a2y(Kx+ Ly)

(x2 + y2)2
+ L(1 +

a2

x2 + y2
)
)
, (13.21)

has constant limit U = (K,L) as x2 + y2 → ∞, as required. A phase
portrait of the flow in case U = (1, 0) and a = 1 is depicted in Fig. 13.1.

The gradient flow velocity [Eq. (13.21)], which is a solution of
BVP (13.19), produces zero lift and drag on the cylinder. Thus, it might
seem that this is the end of the story for potential flow. Indeed it would be if
the BVP had a unique solution for a given U . With the extra condition that
only gradient flows are to be considered, the solution is unique. But, for our
exterior Neumann problem, there are other potential flows that have nonzero
circulation and hence produce lift. The key observation is directly related
to the aforementioned difficulties with division by zero in the arctangent
function, the nonexistence of a global coordinate system for the circle, and
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Fig. 13.2 The figure depicts a numerical approximation of the flow for the vector field w = u− v where u is defined
in Eq. (13.21) withK = 1 and L = 0 and v is defined in Eq. (13.22).

other manifestations of the annular geometry. The exterior problem is posed
on a multiply connected subset of the plane. Every loop in a disk can be
shrunk to a point without going outside of the disk, but some loops in the
exterior of the disk—those that go around the disk such as a circular loop
with radius larger than the disk radius—cannot be shrunk to a point within
the exterior region. This nontrivial topology allows for additional solutions
of the BVP that are potential flows but not gradient flows with respect to a
potential defined in the entire exterior domain.

The angle θ that might be assigned to each point (x, y) in the punc-
tured plane by its polar representation (r cos θ, r sin θ) is not a continuous
function on this domain. For example, starting with the value θ = 0 at the
point (1, 0) in the plane, a continuous assignment of θ around the unit circle
requires that θ = 2π also be assigned to (1, 0). But by ignoring this fact, the
function (x, y) 7→ arctan(y/x) defined for x 6= 0, which is often defined
by θ = arctan(y/x), has gradient

v = (
−y

x2 + y2
,

x

x2 + y2
), (13.22)

which is defined on the punctured plane. This vector field is locally gradient.
For example, it is the gradient of the function π/2−arctan(x/y) in the upper
half-plane that includes some of the points where x = 0. In fact, given an
arbitrary point (x, y) in the punctured plane, there is an open disk containing
this point and a function (which is an assignment of angle between rays
from the origin to points in the set and the positive polar axis) such that
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its gradient is v. Because these functions all assign angles, it is natural to
write v = grad θ, but this is an abuse of notation because there is no global
function θ on the punctured plane whose gradient is v. Nonetheless, v is
smooth on the punctured plane. It is irrotational and divergence free; that is,

∇× v = 0, ∇ · v = 0,

it satisfies the zero Neumann boundary condition on the exterior of the disk
centered at the origin with radius a (that is, v · η = 0 where η is the unit
normal on the complement of this disk in the plane), and v → (0, 0) as
x2 + y2 → ∞. This vector field is a solution of the Neumann boundary
value problem

∇× v = 0 in Ω,
∇ · v = 0 in Ω,
v · η = 0 in ∂Ω,
v → (0, 0) as x2 + y2 →∞. (13.23)

Thus, with the pressure as in Eq. (13.8) given by

p = −1

2
ρ|u|2 + ρB

and zero body force, v is a solution of the incompressible Euler’s equations;
indeed, it is the velocity field of a potential flow.

For u defined in Eq. (13.21), v defined in Eq. (13.22), and every real
numberL, the flow velocity fieldw = u+Lv is a potential flow that satisfies
the incompressible Euler’s equations with constant density for the pressure
as in Eq. (13.8) and no body force in the exterior region Ω with the Neumann
boundary condition and limit U = (K,L) at infinity. Moreover, w produces
lift in the direction U⊥

lift = −ρ|U |
∫

Γ
w · dsU⊥ = −2πaLρ|U |U⊥ (13.24)

on the cylinder with radius a. To obtain positive lift for the freestream
velocity U = (1, 0), the factor L must be negative. An example is depicted
in Fig. 13.2 and further analysis is suggested in Exercise 13.9.

The boundary value problem

∇× w = 0 in Ω,
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∇ · w = 0 in Ω,
w · η = 0 in ∂Ω,
w → U as x2 + y2 →∞ (13.25)

is ill-posed; solutions are not unique because the previously defined
w = u + Lv is a family of solutions parameterized by L. A similar
nonuniqueness result is expected for cylindrical bodies B whose cross
sections are not circles. For a general cross section, there will certainly be
no explicit solution. To determine the flow, we might resort to numerical
approximations. But, there is a serious problem: Which solution would be
produced by a numerical approximation? For that matter, which solution is
physically correct when a body is subjected to a constant freestream flow?
These questions do not arise when a model is well posed; in particular,
solutions exist and are unique. Martin Kutta (1902) argued that the flow
velocity must have a zero at the trailing edge of an airfoil. Using this
hypothesis, a unique solution can be determined. The rest of the story is
told in many textbooks on aerodynamics.

Another important result, called the Kelvin circulation theorem (William
Thomson, 1869), states that the circulation around a loop remains constant
as the loop is moved by an isentropic and Eulerian flow that is allowed to
include a body force given by a potential B.

To prove Kelvin’s theorem, consider a simple closed curve C, the flow
velocity field u, and its flow γ. Without loss of generality, let α be the arc-
length parameterization of C (that is, α : [0, `] → C, where ` is the length
of C and |α̇(s)| = 1 for every s ∈ [0, `)), and define

C(t) = {γ(α(s), t) : s ∈ [0, `)};

it is the loop obtained by moving C by the flow for t time units. There
is no loss of generality, because the circulation is independent of the
parameterization of C (see Exercise 13.10). We must show that

d

dt

∫
C(t)

u · ds = 0. (13.26)

By definition,

d

dt
γ(α(s), t) = u(γ(α(s), t), t). (13.27)
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We also have,

d

ds
γ(α(s), t) = Dγ(α(s), t))α̇(s),

where D denotes the derivative with respect to the space variable, and
differentiating both sides of the ODE (13.27) with respect to the space
variable,

d

dt
Dγ(α(s), t) = Du(γ(α(s), t), t)Dγ(α(s), t)).

Using the arc length parameterization, the differential equations in the
last paragraph, the enthalpy q (defined by Eq. (13.1)), and the body force
ρ∇B,

d

dt

∫
C(t)

u · ds=
d

dt

∫ `

0
u(γ(α(s), t), t)Dγ(α(s), t))α̇(s) ds

=

∫ `

0
(Du(γ(α(s), t), t)u(γ(α(s), t), t)+ut)Dγ(α(s), t))α̇(s)

+ u(γ(α(s), t), t)Du(γ(α(s), t), t)Dγ(α(s), t))α̇(s) ds

=

∫ `

0
(ut + u · ∇u)Dγα̇+ uDuDγα̇ ds

=

∫ `

0
(−∇q +∇B)Dγα̇+ uDuDγα̇ ds

=

∫ `

0

d

ds
(q +B) +

1

2

d

ds
|u|2 ds.

The last integral vanishes because the antiderivative of its integrand has the
same values at zero and `. This completes the proof of the Kelvin circulation
theorem.

The circulation theorem leads to another difficulty with the Eulerian
theory applied to bodies, for example airplanes, moving in a fluid. Imagine
an airplane waiting to take off at the end of a runway in still air. There
is zero circulation around its wings. The Kutta–Zhukovsky theorem says
that there must be circulation for the wings to be subjected to lift and the
airplane to fly. The circulation theorem tells us that the circulation would
remain zero as the airplane accelerates down the runway. Where does the
circulation necessary for flight come from? The answer is of course that the
Eulerian fluid flow is simply not the correct model: it does not account for
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the viscosity of air. In reality, the viscous flow creates a vortex, often called
the starting vortex, which introduces rotation into the flow. As this vortex
is shed off the wing, the flow around the wing has nonzero circulation;
hence it is subjected to lift. This subject was considered in great detail well
into the 20th century before the advent of electronic computers. It is an
important chapter in the history of applied mathematics as much progress
in understanding was achieved. As mentioned previously, boundary layer
theory completed the picture with a model that was sufficiently accurate to
make predictions and good approximations. The basic result of this theory is
that viscosity must be taken into account only in a thin layer (the boundary
layer) near the surface of the wings; the Eulerian model is viable outside
this layer. An approximation of the Navier–Stokes equations (called the
boundary layer equations and more fully described in Section 17.3) are
solved in the boundary layer and matched at the boundary of the boundary
layer to an Eulerian flow. Although far from easy to carry out in realistic
applications, this scenario produced good approximations that were used
effectively for understanding lift and drag in aerodynamics. Of course, the
mathematical theory of this model and the basic understanding it provides
of fluid flow around bodies remains valid, but for practical applications,
analysis based on the boundary layer theory has been replaced by numerical
computation using the full Navier–Stokes model.

Another approximation, which was widely used in aerodynamics
throughout the 20th century, takes into account the compressibility of air.
The main assumptions are no body force, zero viscosity ( inviscid flow), no
rotation (irrotational flow), an equation of state that produces an enthalpy
q (isentropic flow), and the existence of a potential whose gradient is the
fluid velocity (potential flow). For simplicity, the approximation is carried
out here for steady flow.

For steady, irrotational, and compressible flow with density ρ, velocity
u, and enthalpy q, the continuity equation is

0 = ∇ · ρu = ∇ρu+ ρ∇ · u (13.28)

and Bernoulli’s form of Euler’s equation is

∇(
1

2
|u|2 + q) = 0. (13.29)

An equation of state—a constitutive law relating pressure and density—is
used to determine q. The simplest choice is derived from the thermodynam-
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ics of gases and defined for pressure p, reference density ρ0, sound speed c0

at the reference density, and exponent γ by

p =
ρ0c

2
0

γ

(( ρ
ρ0

)γ − 1
)
. (13.30)

The exponent γ can be estimated using thermodynamics or fit to exper-
iments. For simplicity, and because thermodynamics is not discussed in
this text, a reasonable choice of the dimensionless constant γ in numerical
computations for air is a value that satisfies 1 < γ ≤ 2; for example,
γ = 1.5. Using the equation of state, the corresponding enthalpy q (defined
so that ∇p = ρ∇q) is

q =
c2

0

γ − 1

( ρ
ρ0

)γ−1
. (13.31)

Moreover, at the reference density dp/dρ = c2
0, as it should be for an ideal

gas.

Substitute the enthalpy [Eq. (13.31)] into the momentum balance
[Eq. (13.29)], compute gradient of the enthalpy, and solve for the gradient
of the density to obtain

∇ρ = − ρ0

2c2
0

(ρ0

ρ

)γ−2∇|u|2.

Again, substitute this value of ∇ρ into the conservation of mass
[Eq. (13.28)], divide by ρ, and rearrange the resulting equation into the
form

∇ · u =
1

2c2
0

(ρ0

ρ

)γ−1
u · ∇|u|2. (13.32)

This nonlinear scalar relation for velocity and density encodes the conserva-
tion laws and the equation of state for steady, irrotational, and compressible
flow, but it is clearly not closed. There are four unknown scalar quantities:
three components of velocity and the density.

A closed equation is obtained from the relation (13.32) by making one
further assumption and an approximation: the velocity field u is assumed
to be the gradient of a potential φ and the relation is approximated by its
linearization about the freestream velocity and reference pressure.
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What is linearization? The simple answer is the processes of approximat-
ing a nonlinear expression by the first-order term in its Taylor expansion.
More precisely, consider an equation G(u, ρ) = 0; for example, the
relation (13.32) viewed in this manner. Suppose that U and ρ0 satisfies the
equation; that is, G(U, ρ0) = 0, as do the constant freestream velocity and
density in the example. Consider the Taylor expansion of G at (U, ρ0) to
obtain

0 = G(u, ρ) = G(U, ρ0) +DG(U, ρ0)(u−U, ρ−ρ0) + higher order terms,

where D denotes the derivative of the function G. The linearization of the
original nonlinear equation is, by definition, the new equation

0 = DG(U, ρ0)(w, δ)

for the new unknowns w and δ. A solution (w, δ) of the linearized equation
is expected to be a good approximation of the deviations u−U and ρ−ρ0—
also called perturbations—from a desired solution (u, ρ) of original equation
provided that |u− U | and |ρ− ρ0| are small.

A useful way to carry out the linearization procedure is to set w = u−U
and δ = ρ− ρ0, substitute to obtain

0 = G(u, ρ) = G(w + U, δ + ρ0),

expand in Taylor series about (w, δ) = 0, and discard all nonlinear terms in
the variables w and δ.

Returning to relation (13.32), substitute w = u − U and δ = ρ − ρ0 to
obtain

∇ · (U + w) =
1

2c2
0

( ρ0

δ + ρ0

)γ−1
(U + w) · ∇((U + w) · (U + w)).

As U is constant,

∇ · w =
1

2c2
0

( ρ0

δ + ρ0

)γ−1
(U + w) · ∇(2U · w + w · w).

Using N for the current sum of nonlinear combinations of the variables w
and δ and their derivatives, the relation reduces to

∇ · w =
1

2c2
0

( ρ0

δ + ρ0

)γ−1
U · ∇(2U · w) +N .
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By Taylor expansion at δ = 0, note that( ρ0

δ + ρ0

)γ−1
= 1− γ − 1

ρ0
δ +N .

Use this expansion to simplify the previous relation to

∇ · w =
1

2c2
0

U · ∇(2U · w) +N .

Thus, we have the linearization

∇ · w =
1

c2
0

U · ∇(U · w). (13.33)

To close Eq. (13.33), use the assumption that w is a potential flow with
potential υ. In case u = gradφ and U = grad(U1x + U2y + U3z), the
potential υ approximates φ − (U1x + U2y + U3z). The desired linearized
system for the potential υ is, after a simple rearrangement of Eq. (13.33)
with ∇υ substituted for w, the scalar equation

∆υ =
1

c2
0

(U2
1υxx+U2

2υyy+U2
3υzz +2U1U2υxy+2U1U3υxz +2U2U3υyz).

(13.34)

By reassigning the original coordinate system so that U = (U1, 0, 0)
and U1 > 0, and using the Mach number M0 := |U1|/c0—named after
Ernst Mach (1880s) and defined to be the magnitude of the velocity of
interest divided by the speed of sound—the linearized equation reduces to
the Prandtl–Glauert equation (Ludwig Prandtl and Hermann Glauert, 1928)

(1−M2
0 )υxx + υyy + υzz = 0; (13.35)

it is the equation that was used extensively, before the possibility of
computing with the full Navier–Stokes equations, to determine the flow
around bodies (such as wings) in aerodynamics (see, for example, [34]).

An immediate and important observation signaled by the Prandtl–Glauert
equation is that something changes when the freestream velocity passes
through the speed of sound. In fact, for speeds less than the speed of sound
(M0 < 1), the equation is elliptic and has the same character as Laplace’s
equation; but, when M0 > 1, the equation is akin to the wave equation
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where x plays the role usually assigned to time:

υxx =
1

M2
0 − 1

(υyy + υzz) may be compared to υtt = C2(υyy + υzz).

Supersonic flow is associated with shock waves.

Exercise 13.7. The Laplacian and gradient have been determined in polar coor-
dinates. What are their corresponding expressions in three dimensions in cylindrical
coordinates?

Exercise 13.8. Suppose a solid sphere of radius a made of a material with density d
is immersed in water so that its center is at a depth h. Compute the magnitude of the
sum of the forces on the sphere due to gravity and fluid pressure. Is this force related to
lift? Explain.

Exercise 13.9. (a) Make a more detailed drawing of the flow depicted in Fig. 13.2 that
includes the flow on the circle of radius a = 1. (b) This flow has rest points. Determine
them and their stability types. (c) Determine the pressure at each point on the circle. (d)
Where is the maximum and the minimum of the pressure? (e) Discuss your results in
comparison to the Kutta–Zhukovsky theorem.

Exercise 13.10. Prove that the circulation of a vector field around a curve is
independent of the parameterization of the curve.

Exercise 13.11. Reconsider the nonlinear equation (13.32), linearize ρ but not u,
assume that u = ∇φ, and assume two-dimensional flow. (a) Show that these assumptions
lead to the full potential equation

(
1− φ2

x

c20

)
φxx +

(
1−

φ2
y

c20

)
φyy =

2φxφy

c20
φxy.

(b) Derive the full potential equation for three-dimensional flow. (c) State appropriate
further assumptions and use them to derive the Prandtl–Glauert equation from the result
of part (b).

Exercise 13.12. Determine a change of variables that transforms the Prandtl-Glauert
equation to the Laplace equation in case the Mach number is less than unity.



CHAPTER 1414
Equations of Motion in Moving Coordinate
Systems

Moving coordinate systems are discussed in this chapter in the context of
general mechanical systems. The theory is applied to the equations of fluid
dynamics and particle mechanics.

14.1 MOVING COORDINATE SYSTEMS

An inertial coordinate system is a coordinate system in which Newton’s laws
of motion are valid; in particular, a free particle moves along a (straight) line.

Imagine an inertial coordinate system in Euclidean space, with rect-
angular coordinates (ξ, η, ζ), and the motion of a particle whose position
vector in this coordinate system is R. Suppose there is a second (moving)
rectangular coordinate system (with coordinates (x, y, z)) such that, after
the translation in space that moves its origin to the origin of the inertial
coordinate system, its translated frame (ordered basis) of coordinate unit
direction vectors [ex, ey, ez] can be rigidly rotated in space to coincide with
the inertial frame [eξ, eη, eζ ]. In other words, assume that the moving frame
is given at each instant of time by a translation and rotation of the inertial
frame.

Fig. 14.1 A position vector R is depicted in a coordinate system that has been parallel transported from an inertial
coordinate system with coordinates (x, y, z). The vectorQ = R−V is this position vector in the inertial coordinates.
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Translation in space, which more properly should be called parallel
translation or parallel transport, is given by vector addition. For example,
let V denote the vector from the origin of the moving frame to the origin
of the inertial frame. The vector Q := R − V , where the addition is with
respect to the inertial vector space, represents the parallel translation of R
along the straight line joining the origins to the position of the origin of
the moving frame (see Fig. 14.1). Likewise, the inertial frame [eξ, eη, eζ ] is
parallel transported to a frame [êξ, êη, êζ ]. Note that the basis vectors in this
frame are not necessarily parallel to the moving frame in the case where this
motion includes rotation.

The vector connecting the origin of the moving frame to the point Q in
space is expressed in the coordinates of the moving frame [ex, ey, ez] by

Q =

 a
b
c

 .

In other words,

Q = aex + bey + cez.

The basis vectors for the moving frame have coordinate representations in
the parallel transported inertial coordinates:

ex =

 a11

a21

a31

 , ey =

 a12

a22

a32

 , ex =

 a13

a23

a33

 .

Thus, the coordinate representation of Q in the parallel transported inertial
coordinates is

a

 a11

a21

a31

+ b

 a12

a22

a32

+ c

 a13

a23

a33

 .

Or equivalently,  α
β
γ

 :=

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 a
b
c

 (14.1)



Moving Coordinates 359

are the coordinates of R in the parallel transported inertial frame. In a more
compact form,

R = V +AQ, (14.2)

where A is the matrix with components aij . This matrix changes the
coordinates relative to the moving frame [ex, ey, ez] to the coordinates
relative to the parallel transported inertial frame [êξ, êη, êζ ]. To see this
more explicitly, note that the representation of ex in the transported inertial
coordinates means

ex = a11êξ + a21êη + a31êζ ,

with similar expressions for ey and ez . Thus,

aex + bey + cez = a(a11êξ + a21êη + a31êζ) + b(a12êξ + a22êη + a32êζ)

+ c(a13êξ + a23êη + a33êζ).

When the right-hand side of the last equality is collected with respect to the
frame [êξ, êη, êζ ], the result is exactly

aex + bey + cez = αêξ + βêη + γêζ .

This change from the coordinates (a, b, c) with respect to the rotating frame
to the coordinates (α, β, γ) in the transported inertial frame is exactly what
is accomplished by the matrix multiplication in Eq. (14.1). When viewed as
a linear transformation, A takes the moving frame to the transported inertial
frame; that is,

Aex = êξ, Aey = êη, Aez = êζ .

The matrix A is an orthogonal transformation with respect to the usual
inner product, which will be denoted by angled brackets 〈 〉; that is,
〈Au,Av〉 = 〈u, v〉 for every pair of vectors u, v. Equivalently, A−1 = AT ;
that is,

AAT = ATA = I.

Using this fact,

Q = AT (V +R). (14.3)
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By Newton’s second law and assuming constant mass, the equation of
motion of the particle with position Q (with measurements made in the
inertial frame) is

mQ̈ = F, (14.4)

where m is the mass of the particle and F is the (vector) sum of the forces
acting on the particle.

The next goal is to express the equation of motion of the particle in the
moving coordinate system where its position vector is R. To do this, it is
notationally convenient to define

B = AT , U = ATV = BV

and use the three quantities

r := BR, v := BṘ, a := BR̈.

These latter three quantities are the position, velocity, and acceleration of
the particle in the moving frame. Also note that BT is the inverse of B.

In view of Eq. (14.2), the velocity of the particle can be expressed in the
form

Q̇ = U̇ + ḂR+BṘ,

= U̇ + ḂBT (BR) + v

= U̇ + ḂBT r + v. (14.5)

To make further progress, note that the transformation Ω := ḂBT has a
useful property: it is skew-symmetric; that is,

ΩT = −Ω.

This fact is easily proved by differentiation with respect to time in the
identity BBT = I . In fact,

ḂBT +BḂT = 0; (14.6)

therefore,

ΩT = (ḂBT )T = BḂT = −ḂBT = −Ω.
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By using the definition of skew-symmetry, the matrix representation of Ω
must have the form  0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (14.7)

with respect to every orthonormal basis. Moreover, the action of Ω on a
vector W (given by the multiplication ΩW ) can also be represented using
the vector cross product with respect to the orthonormal basis used to obtain
the matrix representation of Ω. Suppose the basis is [eξ, eη, eζ ]. For vectors
u = (u1, u2, u3) and v = (v1, v2, v3) expressed in components with respect
to this orthonormal basis, the cross product is given by

u× v = (u2v3 − u3v2)eξ − (u1v3 − u3v1)eη + (u1v2 − u2v1)eζ .

Using the vector ω := (ω1, ω2, ω3),

ΩW = ω ×W. (14.8)

Thus, the velocity of the particle may be expressed in two ways:

Ṙ = U̇ + Ωr + v,

Ṙ = U̇ + ω × r + v. (14.9)

Using the first equation in display (14.9), the acceleration of the particle
is

R̈ = Ü + v̇ + Ω̇r + Ωṙ. (14.10)

Because r = BR and v = BṘ, their time derivatives are

ṙ = ḂBT (BR) +BṘ

= Ωr + v, (14.11)

and

v̇ = ḂBT (BṘ) +BR̈

= Ωv + a. (14.12)
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These formulas for ṙ and v̇ are substituted into Eq. (14.10) to obtain the
particle’s acceleration in the form

R̈ = Ü + a+ 2Ωv + Ω̇r + Ω2r, (14.13)

or equivalently,

R̈ = Ü + a+ 2ω × v + ω̇ × r + ω × (ω × r). (14.14)

The equation of motion (14.4) may be recast in the forms

ma = −m(Ü + 2Ωv + Ω̇r + Ω2r) + F (14.15)

or

ma = −m(Ü + 2ω × v + ω̇ × r + ω × (ω × r)) + F, (14.16)

where the vectors a, v, and r give the acceleration, velocity and position
of the particle, moving under the influence of the force F , with respect
to an observer in the moving coordinate system but referred to the frame
[êξ, êη, êζ ]. These equations in the moving frame [ex, ey, ez] are obtained by
multiplication on the left by the orthogonal matrix BT . For example, using
Eq. (14.15), the equation of motion is given by

mBR̈ = −m(BV̈ + 2ΩBṘ+ Ω̇BR+ Ω2BR) + F, (14.17)

and in the moving coordinate frame [ex, ey, ez], it is

mR̈ = −m(V̈ + 2BTΩBṘ+BT Ω̇BR+BTΩ2BR) +BTF. (14.18)

The last equation can also be written in the form

mR̈ = −m(BT Ü + 2ΓṘ+ Γ̇R+ Γ2R) +BTF, (14.19)

where Γ := BTΩB; that is, Γ and Ω are names for the same linear
transformation expressed in different bases.

Because the equation of motion (14.19) is a valid form of Newton’s
equation of motion for the particle moving under the influence of the force
F , from the point of view of a noninertial observer sitting at the moving
origin and measuring with respect to coordinates in the moving frame,
this observer treats the terms on the right-hand side of the equation of
motion as additional forces. Put another way, the Newton in this observer’s
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world would discover the laws of motion with the additional forces always
included.

The vector V̈ is the acceleration of the origin of the noninertial frame,
Ω̇r = ω̇ × r is the acceleration due to the rotation of the moving frame,
2mΩv = 2mω × v is the Coriolis force, and mΩ2r = mω × (ω × r) is
the centrifugal force. Of course, from Newtonian mechanics, F is the only
force acting on the particle. The remaining fictitious forces are artifacts of
reference to a noninertial coordinate system.

Exercise 14.1. (a) Prove: The linear transformationA is an orthogonal transformation
with respect to the usual inner product; that is, 〈Au,Av〉 = 〈u, v〉 for every pair of
vectors u, v if and only if A−1 = AT . (b) Prove: The linear transformation A in
Eq. (14.2) is orthogonal. (c) Prove: The product of two orthogonal transformations
is orthogonal. (d) Note that I is orthogonal. (e) Let GL(n,R) denote the set of all
invertible n × n matrices with real components. Suppose (a, b) is an interval of real
numbers containing zero and that there is a smooth curve γ : (a, b) → GL(n,R) such
that γ(0) = I and γ(t), for a < t < b, is an orthogonal matrix. Prove that γ̇(0) is
a skew symmetric matrix. (f) Construct a smooth curve γ : (a, b) → GL(n,R) such
that γ(0) = I and γ(t), for a < t < b, is an orthogonal matrix. Hint: Consider the
exponential function on matrices eA := I + A + 1

2!A
2 + · · · . (g) In fancy language,

the tangent space at the identity of the orthogonal group is the set of all skew-symmetric
matrices. Explain all the concepts in the last statement. (h) (For readers who have studied
topology.) The orthogonal group of dimension n inherits a topology by virtue of the fact
that each orthogonal matrix may be considered to be a point in Euclidian n2 dimensional
space. Just string out the rows. Is the orthogonal group a connected set in this topology?
Hint: Consider n = 1, 2, 3 to gain insight. (i) Using the identification of an n×n matrix
with a point in n2 dimensional space, determine the dimension of the set of orthogonal
matrices as a subset of this space.

14.2 PURE ROTATION

To consider pure rotation, imagine a rotating disk whose motion is measured
with respect to a rectangular rotating coordinate system (with coordinates
(x, y, z)), whose third coordinate axis (say the axis with tangent vector
ez) coincides with the axis of rotation of the disk, whose origin is at the
intersection of the disk with this axis, and whose first two coordinate axes
are fixed in the disk. In addition, suppose without loss of generality, that an
inertial frame with coordinates (ξ, η, ζ) has the same origin.

The inertial coordinates would most likely be chosen so that the ζ
axis is the axis of rotation, but to illustrate an important feature of three-
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Fig. 14.2 A rotating frame (labeled x, y, and z) is depicted that has rotated through the positive angle θ around its
coordinate vector ez with respect to a fixed inertial frame labeled ξ and η, where the third positive coordinate axis of
the inertial frame coincides with the positive coordinate axis labeled z.

dimensional space, consider (for the moment) the general case where
inertial coordinates are chosen arbitrarily. Rotation in three dimensions is
determined by four numbers: the components of a three-dimensional vector
(specifying the axis of rotation) and the rotation angle about this direction
(compare Exercise 14.1).

Under our assumption of a fixed axis of rotation, there is (as in
Section 14.1) an orthogonal transformation A such that

Aeξ = ex, Aeη = ey, Aeζ = ez.

The determinant of A is ±1 (see Exercise 14.2). In case the determinant
is +1, the two frames are said to have the same orientation. They have
opposite orientation when the determinant is −1. For definiteness, suppose
A has determinant +1 so that the inertial and moving frames have the same
orientation (compare Exercise 14.1). Also, recall that R = AQ for the
position vectors of the same point measured with respect to the inertial frame
(where the vector is Q) and the moving frame (where it is R).
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Recall that two matrices G and H are similar if there is an invertible
matrix C such that G = C−1HC. In this case C is called the similarity
transformation. A basic fact is that every orthogonal matrix in three-
dimensional space with determinant +1 is similar to the orthogonal matrix

R :=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (14.20)

for some choice of θ and the similarity transformation is also orthogonal (see
Exercise 14.3 and compare Exercise 14.1). Geometrically, R corresponds
to negative rotation about the vector eζ . Its inverse RT corresponds to
positive rotation. Using this fact, there is an orthogonal matrix C such that
CTRC = A. Thus, there is a reasonable way to transform an arbitrary
inertial frame to the moving frame attached to the rotating disk. Doing so
requires consideration of a time-dependent similarity transformation.

Return to the standard choice of inertial coordinates in the present
scenario, where the frame [eξ, eη, eζ ] is positively oriented, eζ = ez , and
eξ and eη are in the plane of the rotating disk. In this case, A = R where θ
is changing as the disk rotates. For simplicity assume also that θ̇ > 0 with
the passage of time. So, the disk is rotating in the positive angular direction
with respect to eζ (see Fig. 14.2).

By a direct computation, it is easy to check that for B = AT ,

Ω = ḂBT =

 0 −θ̇ 0

θ̇ 0 0
0 0 0

 , (14.21)

which is exactly the angular speed in matrix form; that is, the action of this
matrix on a vector W is

β ×W,

where β is the vector with components (0, 0, θ̇).

For rotations in three-dimensional space of the form R as in dis-
play (14.20), note the useful identity

ḂBT = BT Ḃ, (14.22)

which is recorded here for later use (see Exercise 14.5).
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For pure rotation, where the inertial and rotating coordinates are chosen
so that A = R and R = AQ, the equation of motion [Eq. (14.17)] with
B := AT reduces to

mBR̈ = −m(2ΩBQ̇+ Ω̇BR+ Ω2BR) + F, (14.23)

and in case the angular frequency is constant,

mBR̈ = −m(2ΩBṘ+ Ω2BR) + F. (14.24)

In this case, only the centrifugal and Coriolis forces appear.

Exercise 14.2. (a) Prove: The determinant of an orthogonal matrix is ±1. Hint: As
always a proof depends on what is assumed. One way to proceed is to first show the
determinant of a matrix is the same as the determinant of its transpose. Try n = 2

and n = 3 before constructing a general proof. (b) Show that two frames in three-
dimensional space both satisfying the right-hand rule have the same orientation.

Exercise 14.3. (a) Show that every (three-dimensional) orthogonal matrix with
determinant +1 is similar to matrix (14.20) for some choice of θ by a similarity
transformation that is orthogonal. (b) What happens for orthogonal matrices with
determinant −1.

Exercise 14.4. Revisit Exercise 2.13 and derive the equation of motion referred to a
coordinate system rotating with the hoop using the abstract equation of motion (14.24).

Exercise 14.5. (a) Prove identity (14.22) for two- and three-dimensional rotations
transformations. (b) Is the same identity true for a time-dependent family of orthogonal
matrices? If it is not true in general, is there a subset of families of orthogonal matrices
strictly larger than the rotation matrices for which the result is true? (c) What about
dimensions larger than three?

Exercise 14.6. (a) Solve the initial value problem

ü = 2v̇ + u,

v̈ = −2u̇+ v,

ẅ = 2ẇ,

u(0) = 1, u′(0) = 2,

v(0) = 2, v′(0) = −1,

w(0) = 3, w′(0) = 0.

(b) Imagine an observer riding at the center of a rotating disk with unit angular speed
(θ̇ = 1) in an inertial reference frame. This scenario might be used for a simple model of
an observer on Earth who views distant objects. Suppose a star is fixed in the sky relative
to the inertial reference frame with inertial coordinates (1, 2, 3). Write the equation of
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motion of the star with respect to the coordinates of the rotating observer. (c) What does
the rotating observer observe?

Exercise 14.7. Suppose an observer riding on a rotating disk with angular speed
α sets up a mass-spring system with spring constant k and mass m by attaching the
massless spring to the axis of rotation so that the spring attachment may rotate freely
around the peg used to attach the spring. This observer stretches the spring so that the
mass is held fixed at unit distance along the positive x-axis of an orthonormal coordinate
system attached to the disk with ez in the direction of the axis of rotation. The observer
then releases the spring from rest in the observers coordinates. What motion of the mass
will the observer observe? What will someone in an inertial laboratory frame observe.
You may ignore friction and assume that the inertial frame is defined in the usual manner
relative to the rotating disk.

14.3 FLUID MOTION IN ROTATING COORDINATES

The equation of motion of a particle in a moving coordinate system
[Eq. (14.18)] is of course valid for a particle of fluid. The goal of this section
is to explain the transformation of the equations of fluid motion, which are
written with respect to an inertial frame, to a rotating coordinate system.

Recall the differential form

ρ(ut + u · ∇u) = −∇p+ µ∆u+ ρg,

ρt + u · ∇ρ = −ρ∇ · u (14.25)

of Newton’s second law and the conservation of mass for a fluid in a
gravitational field. Because these equations use Newton’s law, they can be
written in coordinates relative to an inertial coordinate system. This fact
was tacitly assumed in their derivation. Fix an inertial frame and consider a
rotating frame whose origin is fixed at the origin of the inertial frame. Recall
the transformation from the inertial to the moving coordinates given by

R = AQ, (14.26)

where as before A is the orthogonal matrix taking the inertial frame
coordinates to the inertial frame coordinates.

The position of a moving fluid particle is determined by solving the
ordinary differential equation (ODE)

Q̇ = u(Q, t). (14.27)
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Density is a scalar field; that is, at each point of space and time, this
field assigns a real number. It is clear that this number is invariant under a
arbitrary change of coordinates. How does a scalar field change coordinates?
This question is easy to answer, simply compose the scalar field with the
change of coordinates. The given ρ is a function of Q and t; thus, there is a
function % such that

%(R, t) = ρ(ATR, t).

Or, using previous notation where B := AT , this new function % is given by

%(R, t) = ρ(BR, t).

The velocity field u is a vector field; its change of coordinates is
more complicated. If u were simply a function from the product of three-
dimensional space and time to three-dimensional space, the change of
coordinates would be exactly the same as for a scalar field: there would
be a function U such that U(R, t) = u(BR, t). But this is not the case
here because particles move according to ODE (14.27); thus, an ODE for
the position R is expected in the rotating coordinates. In other words, u is a
(time-dependent) vector field defined to be the velocity vector of the fluid at
each point in the space-time region occupied by the fluid.

To perform the change of coordinates, start with ODE (14.27) and
definition (14.26) to obtain Ṙ = AQ̇+ ȦQ or

Ṙ = Au(ATR, t) + ȦATR.

Thus, the vector field u is transformed by the change of coordinates R =
AQ to the vector field U given by

U(R, t) = Au(ATR, t) + ȦATR. (14.28)

In the moving coordinates, the motion of a fluid particle satisfies the ODE

Ṙ = U(R, t), (14.29)

where U is defined in Eq. (14.28).

For a fluid particle with inertial positionQ at time t, conservation of mass
is expressed by the differential equation

d

dt
ρ(Q, t) = ρt(Q, t) +∇ρ(Q, t)u(Q, t) = −ρ(Q, t)∇ · u(Q, t). (14.30)
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Because

ρ(Q, t) = %(R, t),

where R = AQ,

d

dt
ρ(Q, t) =

d

dt
%(R, t)

= %t(R, t) +∇%(R, t)Ṙ

= %t(R, t) +∇%(R, t)U(R, t). (14.31)

In these equations,∇ is defined with respect to the moving coordinate frame.

Using Eqs. (14.30) and (14.31),

%t(R, t) +∇% · U(R, t) = −%(R, t)∇ · u(Q, t).

The desired result is obtained by transforming the divergence operator to the
moving coordinate frame.

Divergence of a vector field is equal to the trace of its spatial derivative;
that is,

∇ · u(Q, t) = trDu(Q, t),

where as always D denotes the derivative of the function Q 7→ u(Q, t) for
fixed t. In (orthonormal) coordinates Du is the Jacobian matrix of partial
derivatives of u with respect to the space variables ξ, η, and ζ. Using the
transformed vector field (14.28),

trDU(R, t) = trD(Au(ATR, t) + ȦATR) = tr(ADu(Q, t)AT + ȦAT ).

The matrix Γ := ȦAT is skew symmetric; that is, ΓT = −Γ. This fact
follows as in Section 14.1 for the matrix

Ω = ḂBT

after differentiating both sides of the identity AAT = I with respect to t.
Taking the trace of both sides of the equation for Γ and using the obvious
fact that the trace of a matrix is the same as the trace of its transpose,
conclude that tr(ȦAT ) = 0. Because of this fact and the properties of tr (in
particular, it is a linear transformation that is invariant under linear changes
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of coordinates as in Exercise 14.9),

trDU(R, t) = trDu(Q, t).

In other words, the divergence changes coordinates according to

∇ · U(R, t) = ∇ · u(ATR, t), (14.32)

where ∇ operates as usual in (orthonormal) coordinates on both sides
of the equation. On the left-hand side, ∇ is defined with respect to the
moving coordinate frame [ex, ey, ez]; on the right-hand side it operates in
coordinates measured with respect to the inertial frame [eξ, eη, eζ ]. The final
result is the invariance of the scalar differential equation for the conservation
of mass:

%t + U · ∇% =
d

dt
%(R, t) = −%(R, t)∇ · U(R, t), (14.33)

or

%t + U · ∇%+ %(R, t)∇ · U(R, t) = 0.

A more sophisticated proof relies on the derivation of this conservation law
by simply observing that the derivation does not depend on the choice of
orthonormal coordinates.

To change coordinates in the differential equation for the momentum
balance, acceleration due to the rotation will appear. To see this, use

B := AT

and rearrange Eq. (14.28) to the form

u(Q, t) = BU(R, t)−BḂTBR.

By the usual argument (differentiation with respect to t of the identity
BBT = I), replace −BḂT with Ω = ḂBT (the skew-symmetric matrix
that appeared in Secton 14.1) so that

u(Q, t) = BU(AQ, t) + ΩQ. (14.34)

The time derivative of the function u(Q, t) is

d

dt
u(Q, t) = B

d

dt
U(AQ, t) + ḂU(AQ, t) + Ω̇Q+ ΩQ̇
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= B
d

dt
U(AQ, t) + ḂBTBU(AQ, t) + Ω̇BR

+ Ω(BU(AQ, t) + ΩBR)

= B(Ut(R, t) + (U · ∇)U)

+ Ω̇BR+ 2ΩBU(R, t) + Ω2BR, (14.35)

where again ∇ in the last expression is with respect to the moving frame
coordinates. The right-hand side of the last equation replaces

ut(Q, t) + (u(Q, t) · ∇u)(Q, t) =
d

dt
u(Q, t)

in the partial differential equation (PDE) for conservation of momentum.

To complete the change of coordinates for the momentum balance, we
must determine the gradient of the pressure and the Laplacian of the velocity
field in the moving coordinate system.

As mentioned for the transformation of the conservation of mass to
rotating coordinates, a scalar field f (for example, the pressure field)
changes coordinates via the relation f(Q, t) = F (AQ, t), where as usual
the capitalized function is defined on the rotating coordinate space. By the
chain rule,

Df(Q, t) = DF (AQ, t)A.

And by the definitions of D and ∇,

DfT = ∇f.

Therefore, the gradient changes coordinates according to the formula

∇f(Q, t) = AT∇F (AQ, t) = B∇F (R, t). (14.36)

In particular,

∇p(Q, t) = B∇P (R, t). (14.37)

The Laplacian of a vector field v with respect to a frame is defined to
be a new vector field whose components in this frame are the Laplacians of
the components of v in the same frame. The next objective is to prove the
formula

∆u(Q, t) = B∆U(R, t). (14.38)
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Here the Laplacian on the left-hand side is the Laplacian with respect to
the inertial frame and the one on the right-hand side is with respect to the
moving frame.

A proof is constructed using four basic facts: The formula for the change
of coordinates of a vector field (14.34), the formula for the change of
coordinates of the divergence of a vector field [Eq. (14.32)], the change
of coordinates for the gradient [Eq. (14.36)], and a new result on change
of coordinates of the Laplacian. Suppose that G is the function given
by G(Q) = AQ, where (as always in this section) A is an orthogonal
transformation, and F is an arbitrary (sufficiently smooth) scalar function
on R3, then

∆(F ◦G)(Q) = (∆F ) ◦G(Q). (14.39)

The same result is true for functions on Rn, not just n = 3.

To begin the proof, note that∇(F ◦G) is a vector field. Call it v; that is,

v(Q) = ∇(F ◦G)(Q).

Using this new name,

∆(F ◦G)(Q) = (∇ · ∇(F ◦G))(Q) = ∇ · v(Q)

By a rearrangement of the change of variables formula for vector fields, the
vector field v is transformed to V via

V (R) = BT (v(BR)− ΩBR).

And by the change of coordinates for the divergence,

∇ · v(Q) = ∇ · V (R)

whenever R = AQ. Using this fact,

∆(F ◦G)(Q) = ∇ · (BT (v(BR)− ΩBR)),

where the right-hand side is an abuse of notation: ∇ is meant to act on the
function R 7→ BT (v(BR)− ΩBR) and is then evaluated at R.

The vector field R 7→ BTΩBR has zero divergence. Indeed, the
divergence is computed as the trace of the derivative of the field. Because
this function is linear, its derivative is the skew-symmetric operator BTΩB,
and the trace of a skew-symmetric operator is zero. (Why?)
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Using this result and ∇f = DfT ,

∆(F ◦G)(Q) = ∇ · (BT v(BR)) = ∇ · (BT (D(F ◦G)(BR))T ).

By the chain rule and the identities B = AT and BTB = I ,

∆(F ◦G)(Q) = ∇ · (BT (DF (R)A)T ) = ∇ · (DF (R)T ).

The right-hand side is exactly

(∇ · ∇F )(AQ) = (∆F ) ◦G(Q).

This completes the proof of Eq. (14.39).

To prove Eq. (14.38), make new notations for the inertial and moving
frames:

[e1, e2, e3] := [eξ, eη, eζ ], [ε1, ε2, ε3] := [ex, ey, ez].

Define, as before, the function G given by G(Q) = AQ and the scalar
function F by

F (R) = eTi (BU(R, t) + ΩBR),

where i is one of the integers 1, 2, or 3.

In components,

u = u1e1 + u2e2 + u3e3, U = U1ε1 + U2ε2 + U3ε3.

Because the frame is orthonormal,

ui = eTi u, Ui = εTi U.

Thus, using Eq. (14.39),

∆(eTi u)(Q) = ∆(F ◦G)(Q) = ∆F ◦G(Q).

Because R 7→ eTi ΩBR is a linear function, its Laplacian vanishes. (Why?)
Also, because the Laplace operator is linear (∆(f + g) = ∆f + ∆g),

∆(eTi u)(Q) = ∆(eTi BU) ◦G(Q).

Simple manipulation of the right-hand side using properties of transpose
produces

∆(eTi u)(Q) = ∆((UTBT ei)
T ) ◦G(Q)
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= ∆((UT εi)
T ) ◦G(Q)

= ∆(εTi U) ◦G(Q).

The last formula states that ∆ui(Q) = ∆Ui(AQ) for each i ∈ {1, 2, 3};
whence,

∆u(Q) = ∆u1(Q)e1 + ∆u2(Q)e2 + ∆u3(Q)e3

= ∆U1(AQ)e1 + ∆U2(AQ)e2 + ∆U3(AQ)e3

= ∆U1(AQ)Bε1 + ∆U2(AQ)Bε2 + ∆U3(AQ)Bε3

= B(∆U1(AQ)ε1 + ∆U2(AQ)ε2 + ∆U3(AQ)ε3)

= B∆U(AQ).

This completes the proof.

By putting together the results of this section, the momentum balance
[Eq. (14.25)] in the moving coordinates R = AQ (where A is an orthogonal
transformation, B := AT , Ω := ḂBT , and U is the transformation of u
under the change of coordinates) is

%
dU

dt
= −∇P + µ∆U

+ %BT g − %(BT Ω̇BR+ 2BTΩBU +BTΩ2BR). (14.40)

As in Eq. (14.8), there is a vector ψ such that BTΩBW = ψ×W for every
vector W on R3. Using this representation and the identity

ψ̇ := BT Ω̇B (14.41)

(see Exercise 14.10), an alternative form of the conservation of momentum
is

%
dU

dt
= −∇P + µ∆U

+ %BT g − %(ψ̇ ×R+ 2ψ × U + ψ × (ψ ×R)). (14.42)

Recall that ψ̇ × R is the acceleration due to the rotation of the moving
frame, %ψ × U is the Coriolis force per volume, and %ψ × (ψ × R) is the
centrifugal force per volume.

Exercise 14.8. A time-dependent vector field changes coordinates according to
Eq. (14.28) for the time-dependent linear change of coordinates R = AQ. How does
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a time-dependent vector field change coordinates under a general smooth coordinate
change R = F (Q, t)?

Exercise 14.9. Prove that tr is a linear transformation that is invariant under linear
changes of coordinates. Hint: The trace of a matrix is related to its eigenvalues.

Exercise 14.10. Prove identity (14.41). Hint: Write both sides as an expression in Ω.

14.4 WATER DRAINING IN SINKS VERSUS HURRICANES

Hurricanes always rotate counterclockwise. Large-scale low-pressure sys-
tems in the Southern Hemisphere always rotate clockwise. Water (usually)
drains counterclockwise in a bathtub or sink in the Northern Hemisphere
and clockwise in the Southern Hemisphere. The model equations for fluid
dynamics will be used to discuss these phenomena.

For fluid motion on the surface of the Earth, as viewed by an observer
rotating with the Earth, the apparent motion is governed by Eq. (14.42)
(or (14.40)) and the corresponding equation of continuity (14.33). By
custom, we take our (right-hand orthonormal) inertial coordinate system
(ξ, η, ζ) with the positive ζ-axis passing through the North Pole, the origin
at the center of the Earth, and the other two coordinates fixed relative to
distant stars. (There is certainly a serious question about how to choose an
inertial frame, but it is assumed in this section that such a frame exists.) The
rotation is counterclockwise (west to east) looking down from above the
North Pole. We will consider a (right-hand rectangular) rotating coordinate
system (x, y, z) fixed to the Earth whose origin is at the center of the Earth
and whose positive z-axis passes through the North Pole. The orthogonal
transformation B from the rotating to the inertial coordinates (BR = Q in
the notation of this chapter) is

B =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (14.43)

(compare Fig. 14.2). As in Eq. (14.40),

Ω := ḂBT =

 0 −θ̇ 0

θ̇ 0 0
0 0 0

 (14.44)
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and by simple calculation for this special case,

BTΩB = Ω, ψ =

 0
0

θ̇

 . (14.45)

Assume that the angular velocity of the Earth has constant value

θ̇ :=
2π

24
hr−1 ≈ 7.3× 10−5 sec−1 . (14.46)

The equation of motion (14.42) applied to the Earth in the rotating
coordinates takes the form

d

dt
U +

1

%
∇P =

µ

%
∆U + g − 2ψ × U − ψ × (ψ ×R). (14.47)

To determine the effect of the Coriolis acceleration −2ψ × U for air
moving with velocity U , which is measured by the rotating observer relative
to what is perceived as the stationary surface of the Earth, imagine a position
Q in the Northern Hemisphere on the surface of the Earth and note that the
vector ψ at Q can be decomposed into a vector tangent to the Earth at Q
and a vector normal to the Earth at this point. In reality, the velocity U is
a vector in space that may not be tangent to the Earth, but for a large-scale
weather system (like a hurricane), wind velocity at this scale is measured as
if it were tangent to the surface of the Earth.

The formation of a hurricane (in an idealized scenario) starts when there
is a large low-pressure air mass surrounded by relatively high-pressure air.
The pressure difference causes high-pressure air to move toward the low-
pressure region (see Exercise 14.16). Imagine a circle parallel to the Earth
whose center is at the center of the low-pressure region. In an ideal situation,
the velocity vectors of the airflow at each point on the circle point toward its
center.

Recall that the cross product α × β of two vectors α and β has length
|α||β| sinϕ, where ϕ is the angle between the vectors and it points in
the direction, say n, such that [α, β, n] is a right-hand system of vectors;
or equivalently, the matrix [α, β, n] partitioned by columns has positive
determinant. In other words, the basis {α, β, n} is positively oriented.
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The cross product of a vector that is tangent to the surface of the Earth
and the velocity field U is a vector that is normal to the Earth; it does
not affect rotation. On the other hand, the cross product of U and a vector
normal to the Earth is tangent to the Earth. In particular, consider the normal
component ψN of ψ taken in the direction of the outer normal on the surface
of the Earth and the velocity vector U , which points toward the center of
the circle with its center at the center of the low-pressure air. By the right-
hand rule, the cross product of these vectors is tangent to the circle and
points in the clockwise direction on the circle viewed from above. The
Coriolis acceleration is twice the negative of this cross product. Hence, the
Coriolis acceleration is counterclockwise in the Northern Hemisphere. In
the Southern Hemisphere, the analysis is the same except that the normal
component of ψ points toward the center of the Earth instead of away from
the center of the Earth. If follows that the Coriolis acceleration is clockwise.

Exactly the same analysis that shows the Coriolis acceleration is coun-
terclockwise in the Northern Hemisphere applies to water moving toward
a drain. By observation, hurricanes always rotate counterclockwise in the
Northern Hemisphere but water does not always drain in this direction. What
is the difference? It must be that the size of the Coriolis effect is different.
How can we determine the size of this effect?

The determination of relative size is not obvious in fluid mechanics. The
usual comparison is via scaling as in the determination of the Reynolds
number in the scaled fluid model equations (11.35) (see [21]). We will
consider a length scale L (a characteristic length) and a velocity scale
V (a characteristic velocity) together with the natural induced timescale
T := L/V . Notice that in Eq. (14.47) all the terms have units of acceleration
L/T 2. Using our scaling, the fluid acceleration dU/dt can be viewed as
having units L/T 2 = V 2/L. Its relative size is viewed as the square
of the characteristic velocity divided by the characteristic length. The
relative size of the normal component of Coriolis acceleration is twice
the characteristic velocity times the angular velocity times the sine of the
latitude (see Exercise 14.12). Where, of course, the latitude is the angle of
elevation above the equator measured from the center of Earth; it is 0 at the
equator and 90 degrees at the poles. By custom, the relative sizes of fluid
acceleration and Coriolis acceleration is measured by the (dimensionless)
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Rossby number (see [42, 60])

Rossby number := fluid acceleration/Coriolis acceleration =
V

2|ψ|L.
(14.48)

The Coriolis acceleration is important whenever this number is smaller than
1. Thus, Coriolis acceleration is significant when

V < 2|ψ|L

At a latitude of 23 degrees,

|ψ| = 2π

24
sin(23π/180) hour−1 .

For hurricane formation, consider the characteristic length to be
the diameter of the low-pressure region at the given latitude. Perhaps
L = 100 miles. In this case, a wind velocity less than or equal to about
20.5 miles / hour would lead to counterclockwise rotation in the Northern
Hemisphere. Of course, hurricane formation is a complex phenomenon. But,
the Coriolis effect does prevail. Hurricanes always rotate counterclockwise
in the Northern Hemisphere.

For water draining in a kitchen sink at the same latitude, the characteristic
length might be the diameter of the sink (say 1 meter). In this case, the
Coriolis force is important when

V < 5.7× 10−4 cm / sec .

Velocities of this magnitude might be present due to residual vorticity
from filling the sink. If so, the residual fluid motion might overwhelm the
rotational effect due to the Coriolis force that requires the fluid velocity to
be toward the drain. This is easily checked by moving a sink filled with
water to create strong clockwise rotation before opening its drain. On the
other hand, for initially still water the velocity induced by the drain should
be sufficiently small for the rotational effect to occur. Does it (see [96])?
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Our discussion so far leaves out consideration of the centrifugal acceler-
ation −ψ × (ψ ×R) given in components by

− ψ × (ψ ×R) = −θ̇2

 R1

R2

0

 . (14.49)

It has magnitude θ̇2
√
R2

1 +R2
2 and, for a point R on the surface of the

Earth, it points toward the axis of rotation and is parallel to the equatorial
plane. The magnitude of centrifugal acceleration is largest at the equator and
vanishes at the poles. Because of its direction, the centrifugal acceleration
is naturally added to the gravitational acceleration thus defining an effective
gravitational force acting on a fluid at the surface of the Earth. The effective
gravity does not point toward the center of mass of the Earth; it also has
a nonzero component that points toward the poles. In practice, this term is
neglected because it is small relative to the gravitational acceleration (see
Exercise 14.18).

Exercise 14.11. Suppose a particle moves radially outward with constant velocity
on a disk that is stationary with respect to an inertial coordinate system. Determine the
motion of the particle with respect to a rotating coordinate system that is rotating with
angular velocity ϑ. Assume that the first two coordinate axes of the rotating frame rotate
in the plane of the disk and its third axis is perpendicular to the disk at the center of the
disk. The inertial frame has the same configuration but is not rotating.

Exercise 14.12. Show that the normal component of the Coriolis acceleration is twice
the characteristic velocity times the angular velocity times the sine of the latitude.

Exercise 14.13. Do hurricanes form at the equator? Check the data and discuss this
issue using the Navier–Stokes model.

14.5 A COUNTERINTUITIVE RESULT: THE
PROUDMAN–TAYLOR THEOREM

Imagine a cylindrical tank partially filled with water that is being rotated
rapidly at a constant angular velocity about its axis of symmetry. The Rossby
number, for a given characteristic fluid velocity and characteristic length,
will approach zero as the rotation speed increases without bound. Thus, it
is (physically) reasonable to ignore the inertial acceleration given by the
material derivative of the velocity of the fluid. The resulting equations of
motion are called the geostrophic equations. Likewise, because the viscosity
of water is small, it seems reasonable to ignore the Laplacian term in the
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equations of motion. By doing so, we are tacitly expecting that solutions
with small nonzero viscosity will be near the corresponding solutions with
zero viscosity. Although this expectation may be true in special cases,
results in this setting—called singular perturbation—where the highest-
order derivatives are multiplied by a small parameter, are mathematically
challenging. Undaunted, we will also assume that the density of the fluid
remains constant and that the fluid is incompressible (that is, ∇ · U = 0).
With all these assumptions and in view of Eq. (14.47), the geostrophic
equations for inviscid incompressible flow are

1

%
∇P = g − 2ψ × U − ψ × (ψ ×R), (14.50)

∇ · U = 0. (14.51)

The Proudman–Taylor theorem states that every (smooth) solution of the
inviscid incompressible geostrophic equations is constant in the direction of
the rotation axis; that is,

∂Ui
∂R3

= 0 (14.52)

for i = 1, 2, 3.

To prove this theorem, apply the curl operator (∇×) to both sides of
the equation of motion. It is not difficult to simply write out all the terms in
components and compute, but it is perhaps more elegant (and certainly more
instructive) to use some results from vector analysis; in particular, for vector
fields X and Y ,

∇× (∇X) = curl gradX = 0,

∇× (X × Y ) = (∇ · Y )X − (∇ ·X)Y + (Y · ∇)X − (X · ∇)Y

= (div Y )X − (divX)Y

+ 〈Y, gradX〉 − 〈X, gradY 〉. (14.53)

Using the first identity in display (14.53) and the constant density, it follows
that the curl of the pressure term vanishes. The gravity term is constant;
hence, it is clearly curl free. The vector ψ is constant and U is divergence
free; therefore, by an application of the second identity, we have that

curl(2ψ × U) = −2(ψ · ∇)U. (14.54)
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By Exercise 14.19,

ψ × (ψ ×Q) = −∇(
1

2
|ψ ×Q|2). (14.55)

Thus, using again the first identity in display (14.53), this term is curl free. In
summary, after applying the curl operator, we have proved that the velocity
field must satisfy the equation

(ψ · ∇)U = 0. (14.56)

The vector ψ (as in Eq. (14.45)) is given by the transpose of the vector
(0, 0, θ̇); thus, in component form, Eq. (14.56) states exactly the desired
result [Eq. (14.52)]. This completes the proof.

Returning to our rotating cylindrical water tank, let us suppose that the
hypotheses of the Proudman–Taylor theorem are valid. At the surface of the
water, we expect that U3 = 0. By the theorem, U3 = 0 everywhere and
the fluid velocity U = (U1, U2, 0) does not depend on R3; in other words,
the flow is the same on every plane perpendicular to the axis of rotation.
This is a remarkable claim. The mathematics is rigorous, but the result is
based on several assumptions. Is the result true for real fluids? The answer
is yes. G. I. Taylor performed several experiments to verify this result. In
his first experiments (see [107]), small amounts of dye were injected into
a small volume of a rotating cylinder filled with water. The dye was drawn
out into two-dimensional sheets that were perpendicular to the bottom of
the cylinder. In other words, the flow marked by the dye was the same in the
vertical direction. In a second, more elaborate experiment, Taylor put a small
solid cylindrical object on the bottom of a rotating tank and demonstrated by
injecting dye into the flow that there is a stagnant cylindrical column that lay
directly above the submerged cylinder. The two-dimensional flow on every
horizontal plane knows that cylinder is there! A beautiful description of this
experiment is in Taylor’s original paper [108]:

. . . the only possible two dimensional motion satisfying the required
conditions is one in which a cylinder of fluid moves as if fixed to the
body. The boundary of such a cylinder would act as a solid body, and
the liquid outside would behave as though a solid cylindrical body
were being moved through it. No fluid would cross this boundary,
and the liquid inside it would, in general, be at rest relative [to] the
solid body. This idea appears fantastic, but the experiments now to be



382 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

described show that the true motion does, in fact, approximate to this
curious type.

Exercise 14.14. Prove identity (14.41).

Exercise 14.15. Prove identities (14.53).

Exercise 14.16. Prove that fluids move from high-pressure regions toward low-
pressure regions.

Exercise 14.17. Prove the vector identity A× (B × C) = (A · C)B − (A ·B)C and
use it to determine the magnitude and direction of the centripetal force.

Exercise 14.18. Show that the centripetal force near the equator due to the rotation
of the Earth is approximately 1/300th of the gravitational acceleration.

Exercise 14.19. State the hypotheses required for identity (14.55) to be true and prove
the identity.



CHAPTER 1515
Water Waves

The mathematical formulation of water wave theory and a classical
route to the Boussinesq approximate equations are discussed in this chapter
(see [55, 60, 118]).

15.1 THE IDEAL WATER WAVE EQUATIONS

Imagine a two-dimensional slice of an ideal fluid with velocity u. The
vorticity of the fluid is defined to be∇× u, and a fluid is called irrotational,
if its vorticity vanishes. A fluid is called incompressible if the divergence
of its velocity field vanishes. Equivalently, the material derivative of its
density vanishes. A fluid of constant density (by the continuity equation
or conservation of mass) is incompressible, but the converse is not true;
an incompressible fluid might not have constant density. A fluid—more
precisely, an idealization of a fluid—is called inviscid if its viscosity
vanishes.

Consider a two-dimensional region Ω := {(x, y, t) : −wd < y <
η(x, t)} and imagine it is filled with an irrotational, incompressible, and
inviscid fluid, where the solid bottom boundary is represented by the line
B := {(x, y) : y = −wd}. Here, the symbol wd abbreviates a positive
water depth, and the free surface of the fluid is assumed to be given by
S := {(x, y) : y = η(x, t)} for some smooth function η : R × (0,∞) →
(−wd,∞).

As in Section 13.2, the velocity field u of an irrotational flow is given by
a potential φ; that is, u = ∇φ for some function φ : Ω→ R. In this case, the
flow velocity u is determined by the scalar potential function that satisfies
the system of partial differential equations (PDEs)

grad(
∂φ

∂t
+

1

2
| gradφ|2 +

p

ρ
−B) = 0, ∆φ = 0,

first derived in display (13.5).

Four additional, physically realistic assumptions are made: the free
surface S is invariant under the fluid flow, the flow does not penetrate the
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bottom, the pressure of the atmosphere above the surface of the water is
constant (that is, the atmospheric pressure is not affected by the fluid flow),
and the pressure above and below the surface of the fluid are in balance.

Using Bernoulli’s law in the form of Eq. (13.6)

∂φ

∂t
+

1

2
| gradφ|2 +

p

ρ
−B = C,

these assumptions translate to the basic set of water wave equations

∆φ = 0 on Ω, (15.1)
ηt + φxηx − φy = 0 on S, (15.2)

φy = 0 on B, (15.3)

φt +
1

2
(φ2
x + φ2

y) + gη = 0 on S, (15.4)

where g is the acceleration due to gravity.

The existence theory for water waves is not trivial—it is a free boundary
value problem. But, this problem has been solved for two- and three-
dimensional waves in the case where the underlying space Ω has infinite
extent in the horizontal directions (see [120, 121]) and infinite depth. There
is a vast literature on this subject. Existence of water waves in many other
circumstances has been proved, but this subject remains an area of active
research.

To render the water wave equations dimensionless, introduce the scaling

φ = aφ̃, η = bη̃, x = `x̃, y = wd ỹ, t = τ t̃, (15.5)

where the dimensions of the scaling constants (with L the dimension length
and T the dimension time) are given by

[a] =
L2

T
, [b] = L, [`] = L, [τ ] = T (15.6)

and use the (traditional) dimensionless parameters

α :=
b

wd
, β :=

wd2

`2
. (15.7)

With these choices and the sets B̃ := {(x̃, ỹ) : ỹ = −1}, S̃ := {(x̃, ỹ) :
ỹ = αη̃(x̃, t̃)}, and Ω̃ := {(x̃, ỹ) := −1 < ỹ < αη̃(x̃, t̃)}, the water wave
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equations take the dimensionless form

βφ̃x̃x̃ + φ̃ỹỹ = 0 on Ω̃, (15.8)

η̃t̃ + αφ̃x̃η̃x̃ −
1

β
φ̃ỹ = 0 on S̃, (15.9)

φ̃ỹ = 0 on B̃, (15.10)

φ̃t̃ +
1

2
(αφ̃2

x̃ +
α

β
φ̃2
ỹ) + η̃ = 0 on S̃, (15.11)

as long as

τa

wd b
=

1

β
,

τa

wd2 =
α

β
,

gτb

a
= 1. (15.12)

Here, g is a fixed parameter and wd is fixed to be the average water
depth. The scaling parameter b (respectively, ` ) is chosen to represent an
expected characteristic wave amplitude (respectively, a characteristic wave
length). Although these choices would seem to presuppose measurements of
the phenomena we wish to determine, they need not be precise. In practice,
they are taken to be guesses of the expected amplitude and wavelength.
The dimensionless groups α and β are determined by the fixed parameters
together with the guessed amplitude and wavelength. This leaves the scaling
parameters a and τ to be determined from Eqs. (15.12), which imply that

a

τ
= bg, aτ =

bwd

β
.

The solution of this system of algebraic equations is

a = b`

√
g

wd
, τ =

`√
gwd

. (15.13)

The ultimate choice of scaling would be made to ensure that α and β
are small enough to justify the first-order approximation that will be made
state variables expanded in Taylor series with respect to these parameters.
Unfortunately, there is no known way to determine how small they should
be. The strategy in applications is to make reasonable choices and hope that
the simplified model thus obtained captures some of the observed behavior.
For the moment, simply choose b to be a characteristic length related to the
depth of the water and ` a characteristic length in the horizontal direction
such that α and β are smaller than unity.
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15.2 THE BOUSSINESQ EQUATIONS

Boussinesq’s approximation is obtained under the assumption that α � 1
and β � 1 (which is often interpreted as the regime of small amplitude
waves over shallow water). The basic idea is to expand the (scaled) potential
into a series of the form

φ̃(x̃, ỹ, t̃) =

∞∑
n=0

(ỹ + 1)kfn(x̃, t̃),

where the sequence of functions {fn}∞n=0 is to be determined. By imposing
the boundary condition on B̃ given by Eq. (15.10), it follows that f1

must vanish. Because the potential must also satisfy the scaled Laplace
equation (15.8), we have the recursion

f0 arbitrary,
f1 = 0,

β(fn)x̃x̃ + (n+ 2)(n+ 1)fn+2 = 0 for n ≥ 2.

By an easy induction argument and the notational replacement f := f0,
the velocity potential is seen to be formally (that is, without considering
convergence) represented by the infinite series

φ̃(x̃, ỹ, t̃) =

∞∑
n=0

(−1)k

(2n)!
(ỹ + 1)2n∂

2nf

∂x̃2n
(x̃, t̃)βk. (15.14)

Having a representation of the solution φ̃ of the (scaled) Laplace
equation, we seek the first-order (in α and β) approximation to the free
surface conditions (15.9) and (15.11).

Substitution and truncation in Eq. (15.9) results in the equation

η̃t̃ + αfx̃η̃x̃ + (ỹ + 1)fx̃x̃ −
β

6
(ỹ + 1)3fx̃x̃x̃x̃ = 0,

which must hold for ỹ = αη̃. Hence, we obtain the equation

η̃t̃ + αfx̃η̃x̃ + (1 + αη̃)fx̃x̃ −
β

6
fx̃x̃x̃x̃ = 0. (15.15)

In a similar manner, the approximation to Eq. (15.11) is

η̃ + ft̃ −
β

2
fx̃x̃t̃ +

α

2
f2
x̃ = 0. (15.16)
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Tradition and good sense dictate defining a new function

w = fx̃

(which is therefore the leading-order approximation of the fluid velocity)
and replacing Eq. (15.16) by the equation obtained from it by differentiation
with respect to x̃. This procedure results in the Boussinesq model

η̃t̃ + {(1 + αη̃)w}x̃ −
β

6
wx̃x̃x̃ = 0, (15.17)

wt̃ + η̃x̃ + αwwx̃ −
β

2
wx̃x̃t̃ = 0 (15.18)

for the approximate scaled free surface (graph of η) and fluid velocity w.

15.3 KDV

In this subsection we derive the Korteweg–de Vries (KdV) equation
(Diederik Korteweg and Gustav de Vries, 1895), a scalar PDE for an
approximation to the (scaled) free surface η̃ of a shallow small amplitude
water wave.

Set α = β = 0 in the Boussinesq model [Eqs. (15.17) and (15.18)] to
obtain the equations

η̃t̃ + wx̃ = 0, wt̃ + η̃x̃ = 0.

They are the zero-order approximations to the Boussinesq equations with
respect to the small parameters α and β. By differentiating the first equation
with respect to t̃ and the second with respect to x̃, it is easy to see that (at
this order of approximation) η̃ satisfies the wave equation

η̃t̃t̃ = η̃x̃x̃.

It has traveling wave solutions of the form η̃(x̃, t̃) = N(x̃ − t̃), where N
is an arbitrary scalar function, corresponding to waves moving to the right
along the real line.

Note that (for these traveling waves)

η̃t̃(x̃, t̃) = −N ′(x̃− t̃) = −η̃x̃(x̃, t̃) (15.19)
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and

η̃t̃(x̃, t̃) = −N ′(x̃− t̃) = −wx̃(x̃, t̃).

Using this last equation,

w(x̃, t̃) = N(x̃− t̃) = η̃(x̃, t̃)

up to a constant that is taken here to be zero.

In view of Eq. (15.19), derivatives of η̃ with respect to t̃ can be replaced
by derivatives with respect to x̃ plus terms of order one in α and β. Thus, the
higher-order approximation to w in the Boussinesq model can be expressed
in the form

w = η̃ + αA(η̃, η̃x̃, . . .) + βB(η̃, η̃x̃, . . .) +O(α2, β2),

where A and B are expressions in η̃ and its derivative with respect to x̃.
After substitution into Eqs. (15.17) and (15.18) and truncation at first-order
in α and β, the following equations are obtained:

η̃t̃ + η̃x̃ + α(Ax̃ + 2η̃η̃x̃) + β(Bx̃ −
1

6
η̃x̃x̃x̃) = 0,

η̃t̃ + η̃x̃ + α(At̃ + η̃η̃x̃) + β(Bt̃ −
1

2
η̃x̃x̃t̃) = 0.

Again, all derivatives with respect to t̃ in the first-order terms can be
replaced by derivatives with respect to x̃; in particular,At̃ = −Ax̃+O(α, β)
andBt̃ = −Bx̃+O(α, β). To be compatible (that is, for the first-order terms
to agree), we must have A = −η̃2/4 and B = η̃x̃x̃/3. Using these values for
A and B results in the KdV equation,

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = 0.

By seeking a traveling wave solution of the KdV equation of the form

η̃(x, t) = N(x− ct),

it is not difficult to show that there is a family of solutions given by

η̃(x, t) =
2(c− 1)

α
sech2

((
3(c− 1)

2β

)1/2

(x− ct)
)
. (15.20)
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Solutions of this type correspond to the solitary water waves first observed
by John Scott Russell:

I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped —
not so the mass of water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course along the
channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in
the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation.1

Exercise 15.1. Derive the family of traveling wave solutions of the KdV equation
given in Eq. (15.20).

Exercise 15.2. (This exercise was suggested by Samuel Walsh.) The KdV equation
may be viewed as a combination of two other famous equations: The linear part
corresponds to Airy’s equation

ηt + ηx +
β

6
ηxxx = 0

and the nonlinear part to Burgers’s equation

ηt +
3α

2
ηηx = 0.

(a) Show that there are solutions of Airy’s equation of the form cos(k(x − ct)) for
real numbers c and k provided that these parameters are related by a certain algebraic
relation. This relation, which you are asked to find, is called the dispersion relation..
(b) Reconsider the dimensionless form of the water wave equations (15.8)–(15.11). Set
α = 1 and β = 1 and show that there is a solution of the form

η(x, t) = cos(k(x− ct)), φ(x, y, t) = Φ(y) sin(k(x− ct))

1J. Scott Russell, Report on Waves, Fourteenth meeting of the British Association for the
Advancement of Science, 1844.
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for some function Φ if and only if

c =

√
tanh k

k
.

Compare this result with the great wave of translation for KdV and interpret the solution
of the water wave equations for k large and k small.
(c) Write a numerical code to approximate solutions of Burgers’s equation for the case
α = 2/3 on the spatial interval [0, 10] with zero Dirichlet boundary conditions. Choose
initial data (x 7→ η(x, 0)) that is zero near the end points of the interval and with
ηx(a, 0) < 0 a some interior point x = a. Discuss the results of your numerical
experiments. Note in particular the extent T of the time interval 0 ≤ t ≤ T for
which your computation suggests that solutions exist. Theoretically, ηx(a, t) → −∞
in finite time; in particular, solutions of Burgers’s equation can blow up in finite time. Is
there numerical evidence for this fact in your numerical computations? How does one
distinguish between blowup of a solution and blowup in a numerical experiment due to
an unstable numerical method? There is much more on Burgers’s equation in this book
starting on page 431).
(d) Discuss the view that KdV is a combination of the equations of Airy and Burgers.

15.4 BOUSSINESQ STEADY STATE WATER WAVES

In steady state, Eqs. (15.17) and (15.18) reduce to the system

{(1 + αη̃)w}x̃ =
β

6
wx̃x̃x̃, (15.21)

η̃x̃ = −αwwx̃. (15.22)

Replace Eq. (15.22) by its integrated form

η̃ = −α
2
w2 + k, (15.23)

where k is a constant. The free surface must correspond to the water depth in
case the flow velocity vanishes; that is, the free surface in this case is given
by η = 0. Thus, k = 0 and

η̃ = −α
2
w2. (15.24)

Eq. (15.21), after substitution of Eq. (15.24) and integration with respect
to x̃, is a form of Duffing’s equation given by

β

6
wx̃x̃ + c = w − α2

2
w3, (15.25)
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where c is a constant.

Imagine that the fluid surface has a local maximum or minimum at x = 0,
which may be viewed as a crest or trough of a surface wave. In this case,
the second component of the fluid velocity vector (φx(0, η(0)), φy(0, η(0)))
vanishes when evaluated at this point; thus, it may be considered to have
coordinates (v0, 0).

Let the magnitude of this velocity vector be the characteristic velocity
for the flow and define the (dimensionless) Froude number

Fr :=
v0√
gwd

. (15.26)

It is the important dimensionless quantity that appears in the study of surface
waves on flows of finite depth.

There are at least three interesting flow regimes:

I. 0 < Fr2 < 2
3 ;

II. 2
3 < Fr2 < 8

3 ;

III. 8
3 < Fr2 .

(15.27)

In the scaled variables (see Eqs. (15.5)–(15.13)), the amplitude of the
characteristic velocity is given by

`v0

a
=

v0

α
√
gwd

=
Fr

α
,

and by Eq. (15.14),

φ̃x̃(0, η̃(0)) = w(0)− 1

2
(η̃(0) + 1)2wx̃x̃(0)β +O(β2) =

Fr

α
, (15.28)

φ̃ỹ(0, η̃(0)) = −(η̃(0) + 1)wx̃(0) +O(β) = 0. (15.29)

To simplify the discussion, assume that the velocity (v0, 0) at (x, y) =
(0, η(0)) is independent of the water depth, or equivalently, this choice holds
for all β. Under this assumption, Eqs. (15.28) and (15.29) imply that

w(0) =
Fr

α
, wx̃(0) = 0, wx̃x̃(0) = 0. (15.30)

These values agree with the actual values up to O(β) corrections.
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The integration constant c in the differential equation (15.25) is given by

c = w(0)− α2

2
w3(0) =

γ

α
, (15.31)

where

γ =
1

2
Fr(2− Fr2).

Consider the first-order nonlinear system

w′ = z, z′ =
6

β
(w − α2

2
w3 − γ

α
), (15.32)

which is equivalent to differential equation (15.25).

The rest points of the system of differential equations (15.32) correspond
to the solutions of the cubic polynomial equation

α2

2
w3 − w +

γ

α
= 0. (15.33)

Because of the choice of c given in Eq. (15.31), w(0) is a root of the
polynomial; therefore, w − w(0) is a factor. In fact,

α2

2
w3 − w +

γ

α
= (w − w(0))(

α2

2
w2 +

α2

2
w(0)w +

α2

2
w2(0)− 1),

and its remaining roots

w± =
1

2

(
−w(0)±

( 8

α2
−3w2(0)

)1/2)
=

1

2α
(−Fr±

√
8− 3 Fr2 ) (15.34)

are obtained from the quadratic formula.

These roots [Eq. (15.34)] are real in Regimes I and II that are discussed
here; these roots are complex in Regime III (see Exercise 15.3).

Using the representation of w(0) in Eq. (15.30) and the representation
of w+ in Eq. (15.34) together with a simple calculation, it follows that the
three real roots in Regime I lie on the w-axis in the order of increasing size
[w−, w(0), w+] in Regime I and [w−, w+, w(0)] in Regime II (see Fig. 15.1).
At Fr2 = 2/3 the roots w(0) and w+ coincide.

In the (w, z) plane, system (15.32) has three rest points on the w-axis
corresponding to the rootsw± andw(0). In Regime I, the rest points (w±, 0)
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I

q

p

II

Fig. 15.1 A schematic phase portrait of system (15.32) is depicted. The saddle point is marked p, one center is marked
q. A typical orbit for Regime I is marked I and a typical orbit for Regime II is marked II . Orbits in Regime I pass close
to the saddle point. Orbits in Regime II pass close to the center.

are centers and (the middle rest point) (w(0), 0) is a hyperbolic saddle; in
Regime II, w− and w(0) are centers and w+ is a hyperbolic saddle point.
To prove these statements, note first that the linearization of the differential
equation (15.32) at (w, 0) is given by the Jacobian matrix(

0 1
6
β (1− 3

2α
2w2) 0

)
, (15.35)

whose eigenvalues are the square roots of the component

6

β
(1− 3

2
α2w2). (15.36)

At w(0), this quantity is given by

6

β
(1− 3

2
α2w2) =

6

β
(1− 3

2
Fr2). (15.37)

Hence, in Regime I, the eigenvalues are real with one eigenvalue positive
and the other negative. In Regime II the eigenvalues are pure imaginary.

By the Grobman–Hartman theorem (see Appendix A.7), (w(0), 0) is a
saddle point for the nonlinear system in Regime I. In Regime II, the rest
point (w(0), 0) is a center for the nonlinear system. The proof of this fact
can be easily constructed with two main ingredients: the existence of a first
integral (a function that is constant along solutions) for system (15.32) and
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the Morse lemma (see Appendix A.13). The total energy

E :=
β

12
z2 +

γ

α
w − 1

2
w2 +

α2

8
w4 (15.38)

of Hamiltonian system (15.32) is constant along solutions. In other words,
solutions lie on the one-dimensional level sets of E.

To determine the nature of the level sets of the energy [Eq. (15.38)] near
the rest point in Regime II for the Hamiltonian system, consider the slightly
more general context of the Hamiltonian system

w′ = z, z′ = −f(w) (15.39)

with Hamiltonian given by

H̃(w, z) =
1

2
z2 + F (w)

where F ′ = f . Suppose that f(w0) = 0 and define the new Hamiltonian

H(w, z) =
1

2
z2 + F (w)− F (w0),

which vanishes at the rest point (w0, 0) of the corresponding Hamiltonian
system (15.39). Of course, H is also constant along the solutions of this
system of differential equations.

The linearization of our Hamiltonian system at the rest point (w0, 0) is
given by the matrix (

0 1
−f ′(w0) 0

)
. (15.40)

Hence, under the assumption that there is no eigenvalue with zero real part,
we have that f ′(w0) 6= 0, with real eigenvalues in case f ′(w0) < 0 and pure
imaginary eigenvalues in case f ′(w0) > 0. By the Morse lemma applied to
the function F (w)− F (w0), which has the Taylor series expansion

F (w)− F (w0) = F ′(w0)(w − w0) +
1

2
F ′′(w0)(w − w0)2 +O((w − w0)3)

=
1

2
f ′(w0)(w − w0)2 +O((w − w0)3),
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there is a change of coordinates that transforms the Hamiltonian to the form

H(ω, z) =
1

2
z2 +

1

2
f ′(w0)ω2.

In the case of the linear center (pure imaginary eigenvalues), the level sets
in the new coordinates are ellipses surrounding the rest point that has been
transformed to the origin. In other words, all the solutions lie on closed orbits
of the original differential equation. This is almost the end of the proof. The
last detail is to prove that there are no rest points in some neighborhood of
the original rest point. But, this fact follows immediately because f(w0) = 0
and f ′(w0) 6= 0. Thus, all solutions in some neighborhood of the rest point
are closed orbits. A rest point of this type is called a center.

We have proved that (w(0), 0) is a saddle point in Regime I and a center
in Regime II.

In Regime I, the level set of the Hamiltonian [Eq. (15.38)] given by all
(w, z) such that

β

12
z2 +

γ

α
w − 1

2
w2 +

α2

8
w4 =

(γ
α
w(0)− 1

2
w2(0) +

α2

8
w4(0)

)
(15.41)

is a (horizontal) figure eight in the (w, z) plane with its double point at
(w(0), 0). The rest point (w−, 0) is surrounded by the left loop of the figure
eight and the rest point (w+, 0) is surrounded by the right loop. Note that
the right and left points where this figure eight crosses the w-axis can be
determined by writing Eq. (15.41) in the form

β

12
z2+

α2

8
(w−w(0))2((w−w(0))2+4w(0)(w−w(0))+(6w2(0)− 4

α2
)) = 0,

setting z = 0, dividing by (w − w(0))2, and finding the roots of the
remaining quadratic equation. In fact, these roots (corresponding to the right
and left crossing points) are

wL = −ω(0)− 2

α

√
1− α2w(0)2

2
,

wR = −ω(0) +
2

α

√
1− α2w(0)2

2
. (15.42)

With the mathematical analysis completed, note that the surface wave-
form is given by the function η or, in scaled variables, η̃. We are interested in
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the solution of differential equation (15.32) whose initial value is (w(0), 0)
(more precisely, (w(0) +O(β), 0)) on the interval 0 ≤ x̃ ≤ 1. This solution
determines the surface wave that corresponds to the graph of the function η
given by

η(x) = −wdα2

2
w2(x/`), 0 ≤ x ≤ `. (15.43)

In Regime I, the solution of system (15.32) starts near the saddle point
(w(0), 0). If β is sufficiently small, then the waveform would take a few
different shapes depending on where the initial point is in relation to the
saddle (either at the rest point or left, right, above, or below the rest point).
For small enough β, the solution will not wander too far from the rest point
on its finite domain of definition 0 ≤ x̃ ≤ 1. This statement is not precise.
All that can be said, without a much more serious analysis, is that for given
parameter values (contained in some compact set), given a neighborhood
of the rest point, there is a smaller neighborhood such that our solution
starting in the smaller neighborhood stays in the given neighborhood on the
domain 0 ≤ x̃ ≤ 1. This follows from the continuity of solutions of ordinary
differential equations with respect to initial conditions and parameters. Also,
for sufficiently small β, surface waveforms will not have several crests;
rather, the expected waveform will be a single dip, a single hump, a rise,
or a fall.

For some fixed values of the parameters α and β, with β not too small,
the waveform could arise from an excursion along a periodic orbit near the
homoclinic loops formed by the stable and unstable manifolds of the saddle
point (see Fig. 15.1). There is a slight surprise here: the left-hand loop
corresponds to a surface wave whose amplitude exceeds the water depth.
The right-hand loop corresponds to a wave whose amplitude is physical
provided that the Froude number exceeds 2 −

√
2 ≈ 3/5. To see this fact,

consider the lowest-order approximations

wL = −w(0)− 2

α
, wR = −w(0) +

2

α
. (15.44)

By Eq. (15.43), the water wave amplitude is less than the water depth
whenever

|w| <
√

2

α
.
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Note that w = wR satisfies this requirement whenever Fr > 2−
√

2. On the
other hand, with w = wL the requirement reduces to Fr +2 <

√
2, which is

never satisfied. Thus, under our assumptions, the physically realistic surface
waves correspond to solutions of system (15.32) that start near and to the
right of the saddle point (w(0), 0).

In Regime II, the solution starts on or near a center. We might expect
several waves provided that the period of the periodic solutions near the
center are sufficiently small so that the solution traverses the closed orbit
more than once on its domain. This period is obtained immediately from the
square root of an eigenvalue of the Jacobian matrix (15.35) at w(0) to be

2π
√
β√

6(3 Fr2 /2− 1)
, (15.45)

which is O(
√
β) and therefore small. Thus, in Regime II, waveforms with

multiple crests and troughs are predicted.

15.5 A FREE-SURFACE FLOW

Consider water flowing from a reservoir over a flat-bottomed horizontal
open trough. An excellent example, which is discussed here, is the Tiger
Fountain at the University of Missouri campus in Columbia, Missouri. The
main feature of the flow in this fountain, before it cascades over the lip of its
trough, is the existence of a steady state surface waveform. The waveform
stretches from bank to bank across the trough in a roughly parabolic shape,
with the parabola opening in the upstream direction. This shape seems
to be explained by the Poiseuille flow in a pipe. At least, the parabolic
shape of the velocity field of the Poiseuille flow is in agreement with the
parabolic shape of the surface waveform observed in the Tiger Fountain
flow. The most basic question about the observed waves is why are they
there? A much more difficult question is the stability of these waves. After
destruction of the wave pattern at the Tiger Fountain by disturbing the
flow with hand movements in the water, the wave is observed to always
return to its original steady state form after a very short time interval. This
experiment suggests that the waveform is stable to small perturbations. A
good applied mathematics problem is to prove that some realistic models of
the Tiger Fountain flow exhibit stable steady state waveforms with shapes
as observed in the physical flow. In this case, the purpose of the modeling
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and mathematical analysis is to help answer the question: Why does the
waveform exist and why is it stable?

To gain some insight, consider the two-dimensional flow in a thin vertical
slice parallel to the bulk Tiger Fountain flow velocity vector.

The basic measured quantities for the Tiger Fountain channel flow are

water depth (11/16 inch) 0.0174625 m
plate slice length (18.75 inch) 0.47625 m
plate width (132 inch) 3.3528 m
pump flow rate (200 gallon/minute) 0.012618 m3 / sec
wave amplitude (2/16 inch) 0.003175 m
wave length (3 inch) 0.0762 m
bulk speed (0.70707 foot/second) 0.215515 m / sec
surface speed (1 foot/second) 0.3048 m / sec

(15.46)

where the bulk speed is computed to be the flux through the outflow
rectangle whose area is given by the product of plate width and water
depth (that is, bulk speed equals pump flow rate divided by the area of this
rectangle) and the surface speed is computed by timing floating objects that
traverse the plate.

Using the plate slice length as the characteristic length, the bulk velocity
as the characteristic velocity, and the kinematic viscosity of water to be
approximately 1.005× 10−6 m2 / sec, the Reynolds number is

Re ≈ 1.02128× 105.

Thus, this flow is in the upper range of laminar flows. In this regime, the
flow remembers it is viscous near the flat plate over which it flows. Thus, a
boundary layer is expected.

A standard approximation to the boundary layer thickness for flow over
a flat plate is given by

5

√
νx

V
,

where x is the distance downstream from the leading edge of the plate, ν
is the kinematic viscosity, and V is the characteristic velocity. This result
is derived from an approximation of the Navier–Stokes equations called
the boundary layer equations (see [93] and Section 17.3). At half the slice
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Fig. 15.2 The top panel is a graph of the homoclinic loop for system (15.32) with Fr = 0.736798 and α = β =

0.001344. The bottom three panels are surface waveforms computed as graphs of η (with both axes calibrated in
meters) using the Eq. (15.43), where w is the solution of system (15.32) with initial condition (w, z) = (Fr /α +

nβ, 0), and from top to bottom n = 1, 100, 1000.

length, the approximate layer thickness is a third of the water depth. Thus,
the boundary layer is significant for this flow and is discussed more fully
later.

What about the Boussinesq equations?

The ideal water wave equations in two-dimensions and Boussinesq’s
equations cannot be expected to be predictive of the precise quantitative
features of a real flow. But, as usual in applied mathematics, let us assume
that the steady state Boussinesq equations [Eqs. (15.21) and (15.22)]
constitute the model equations for our flow. What does this model predict
for the Tiger Fountain flow? In particular, does the predicted waveform agree
with the observed waveform?
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As mentioned previously, the correct numerical values for the charac-
teristic lengths b and ` used to make the model dimensionless are not
known a priori. The only obvious restriction is that b must be less than the
characteristic water depth; that is, b < wd or α < 1, and ` must be larger.
It seems natural to take ` equal to the plate slice length. This is a natural
horizontal length scale for our problem and β is determined by this choice.
There does not seem to be a natural candidate for b. Simply to make α and
β approximately the same size, suppose that b is chosen so that α = β; that
is, b = wdβ.

In view of the data in display (15.46), the choices just mentioned, and
choosing the characteristic velocity to be the surface flow rate, we obtain
the Froude number and the small parameters

α = β, β = 0.001344, Fr2 = 0.542872. (15.47)

As the Froude number is smaller than the critical value (Fr2 = 2/3), the
flow is in Regime I (see display (15.27)).

The approximate wave amplitude, computed using Eqs. (15.42)
and (15.43) , is

−wdα2

2

(
− w(0) +

2

α

√
1− α2w(0)2

2

)2
≈ 0.00822067.

This value agrees (reasonably well) with the observed value 0.003175 in
display (15.46).

The prediction of wavelength is not obvious because the initial condi-
tion is unknown; rather, the initial value for scaled differential equation
system (15.32) should be an order β perturbation of the saddle point at
(w(0), z(0) = (Fr /α, 0). Fig. 15.2 shows the results of some numerical
experiments based on this observation. Although the size of the O(β)
perturbation is not known, mathematical consideration of this size only
makes sense in calculations that include limits as β goes to zero. In principle,
every multiple of β is an order β perturbation. Using our parameter values,
1000β ≈ 1.34. Perhaps this is not such a large perturbation given the size of
the homoclinic loop in scaled variables, which has a width of approximately
750 dimensionless units.

What have we learned? Boussinesq’s approximate equations appear to
be consistent with the observed flow phenomena. This fact provides some
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evidence that the equations of fluid dynamics (even the rather crude shallow
water wave model) reflect physical reality. Of course the predictive value
of the model is limited; it is at best a low-order approximation of the flow
observed at the Tiger Fountain.

Exercise 15.3. Discuss steady state surface waves in case the Froude number exceeds√
8/3.

Exercise 15.4. Discuss the sensitivity of the computed wavelength and wave
amplitude to changes in the measured surface and bulk flow velocities. Show that a
small change in the pump flow rate and hence the bulk velocity produces results much
closer to observed values for the wave length and amplitude. Note: The pump flow rate
was obtained from a manufacturers specification, not a measurement.



CHAPTER 1616
Numerical Methods for Computational Fluid
Dynamics

16.1 APPROXIMATIONS OF INCOMPRESSIBLE
NAVIER–STOKES FLOWS

A main objective of computational fluid dynamics (CFD) is to approximate
solutions of the Navier–Stokes equations [Eqs. (11.33)]

ρ(ut + (u · ∇)u) = −∇p+ µ∆u+
µ

3
∇(∇ · u) + ρb,

ρt +∇ · (ρu) = 0, (16.1)
u = 0 on ∂R,

which arise in many important applications including aerodynamics, hydro-
dynamics, meteorology, geology, biomedical science, acoustics, industrial
processes, and others.

The Navier–Stokes equations are supposed to model all the fluid motions
that might be imagined. Thus, determining a good approximation to a
particular motion is usually not easy. Indeed, there is no generally accepted
best numerical method. Rather, CFD has developed into a vast subject that
remains an active area of research. The best way to approach the subject is
to write a code and apply it to problems that interest you. Most likely, this
experience will lead to an appreciation of the challenges that must be met
and overcome to produce useful results. This section is an introduction to
some of the most basic ideas of the subject. The ingredients of some viable
numerical algorithms are discussed and applied to a few simple applications.
The purpose of the section is to teach you how to understand and write a
simple CFD code. Although there are many excellent readily available CFD
codes, the best practice is to write a code yourself. Some sage advice: Do not
rely on a code unless it is well-tested and you have a basic understanding of
how it works.

To focus on one important set of applications, the discussion here is
limited to incompressible flow that arises in case the fluid has constant
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density ρ. In this case, the dimensionless Navier–Stokes equations are

ut = −u · ∇u+
1

Re
∆u−∇p+ b,

0 = ∇ · u, (16.2)

where u is the scaled fluid velocity, p the scaled pressure, Re the Reynolds
number, and b is the scaled body force (see Section 11.1). The objective is to
approximate solutions of this system with appropriate boundary conditions
(u = 0 at solid stationary boundaries, u tangent to free surfaces, u specified
at inlets, and the normal derivative of u equal to zero at outlets) and
initial conditions: a specified divergence-free velocity field that satisfies the
boundary conditions.

Because the time derivative of pressure does not appear in system (16.2),
the incompressible Navier–Stokes equations do not form a system of
(infinite-dimensional) ordinary differential equations (ODEs) for the time
evolution of velocity and pressure. This fact plays a central role in the
development of numerical algorithms for approximating solutions. The main
difficulty is approximation of the gradient of pressure, sometimes called the
velocity-pressure coupling problem.

An equation of state is employed for compressible flow: pressure is a
function of density. For an incompressible flow, the density is not changing
in the direction of the flow and is usually assumed to be constant. Thus, the
pressure must be determined from the equations of motion [Eqs. (16.2)] and
the initial and boundary data. A compressible flow responds to changes in
pressure; an incompressible fluid flows in response to pressure gradients.

Perhaps the most natural idea for solving the velocity-pressure coupling
problem is to seek a set of governing equations for the fluid motion that are
equivalent to system (16.2) and include an explicit equation for pressure.
One way to do this is to compute the divergence of the momentum balance
to obtain

(∇ · u)t = ∇ · (−u · ∇u+
1

Re
∆u−∇p+ b). (16.3)

Using the continuity equation, the time derivative of the divergence van-
ishes. Solving for the pressure and assuming the velocity and pressure are
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sufficiently smooth, the pressure is given explicitly by

∆p = ∇ · (−u · ∇u+
1

Re
∆u+ b). (16.4)

Clearly, every (sufficiently smooth) solution of the Navier–Stokes equations
satisfies the new system of equations

ut = −u · ∇u+
1

Re
∆u−∇p+ b, (16.5)

∆p = ∇ · (−u · ∇u+
1

Re
∆u+ b), (16.6)

(∇ · u)(x, 0) = 0. (16.7)

Suppose that u and p satisfy the new system [Eqs. (16.5)–(16.7)]. The
first equation in the original system (16.2) is satisfied. What about the second
equation? The initial value of the divergence is specified to be zero by the
third equation in the new system. By substituting Eq. (16.4) into Eq. (16.3),
the time derivative (∇ · u)t, for a velocity u satisfying the new system,
vanishes as long as the solution exists. It follows that the divergence of u is
always zero. Thus, the second equation in system (16.2) is also satisfied. In
summary, system (16.5)–(16.7) is equivalent to the Navier–Stokes equations
[Eqs. (16.2)] whenever their solutions are sufficiently smooth.

A numerical method—sometimes called the pressure equation method—
for solving the Navier–Stokes equations arises from inspection of the
equivalent system (16.5)–(16.7):

• Start with a divergence-free velocity field u that satisfies the boundary
conditions.

• Substitute the velocity field into Eq. (16.6) and solve for the pressure
field.

• Employ a time discretization on Eq. (16.5) (perhaps Euler’s method),
update the velocity field by computing forward one step in time using the
computed pressure field and the boundary conditions, replace the starting
velocity with the updated velocity field, and go to the first step.

This method is attractive for its conceptual simplicity; it can be used to
obtain good approximate solutions to many fluid dynamics problems. The
second step lies at the heart of the method: solving for the pressure field
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using Eq. (16.6), which has the form

∆p = f,

where the right-hand side f is known. Equations of this type are called
Poisson (Siméon Denis Poisson, 1781–1840) equations, and for this reason
the equation at hand is called the pressure Poisson equation. This well-
studied partial differential equation (PDE) has unique solutions for Dirichlet
boundary conditions and solutions unique up to an additive constant for
compatible Neumann boundary conditions.

What are the correct boundary conditions?

The Navier–Stokes equations are well posed with the previously stated
boundary conditions (for example, the no-slip condition at solid boundaries)
imposed on the velocity field. But, no boundary conditions are imposed on
the pressure field. The relation of this fact to numerical methods has been
the subject of much discussion, most of which requires mathematics beyond
the scope of this book. The best resolution of the problem seems to be very
simple: as no boundary condition is imposed on the pressure in the Navier–
Stokes model, arbitrary boundary conditions that are consistent with the
model and imply the existence of a unique solution of the pressure Poisson
equation up to an additive constant are appropriate.

A convenient way to determine consistent boundary conditions is to
integrate the pressure Poisson equation over the domain Ω occupied by the
fluid. Every term in the equation is the divergence of some quantity. Using
the divergence theorem and the outer normal on the boundary of Ω, each
integral is converted to a surface integral over ∂Ω. The result is the equation∫

∂Ω
∇p · ηdS =

∫
∂Ω

(−u · ∇u+
1

Re
∆u+ b) · η dS.

Thus, a consistent boundary condition for pressure, which can be used in the
second step of the pressure equation method, is

∇p · η = (−u · ∇u+
1

Re
∆u+ b) · η on ∂Ω. (16.8)

To implement the algorithm, the differential equations must be appropri-
ately discretized on the computational domain corresponding to the region
filled with fluid and a numerical method must be chosen from among
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many viable possibilities to approximate solutions of the pressure Poisson
equation. Once these tasks are accomplished, the rest is writing code.

It seems that all problems have been solved. Why would anyone look for
an alternative method to approximate solutions of the Navier–Stokes equa-
tions? The answer is probably best appreciated after writing and applying a
pressure equation code. A major challenge is designing and implementing
an accurate and efficient Poisson solver. Although efficient Poisson solvers
exist, your code might still run for a very long time when it is used to
try to approximate solutions of an interesting fluid dynamics problem.
Another difficulty is ensuring sufficient accuracy to maintain a divergence-
free velocity field at each time step. Although the algorithm guarantees
this result for exact arithmetic and no discretization error, neither of these
requirements will be maintained in practical numerical computations. After
many time steps the computed velocity may no longer be divergence free.
The numerical approximation might drift away from the solution of the fluid
dynamics model: the Navier–Stokes equations with initial and boundary
conditions.

An obvious remedy for loss of the divergence-free condition is to seek a
correction after each time step of the pressure equation method that would
replace the approximate velocity by a nearby divergence-free velocity field.
Fortunately, there is a mathematical theorem that can be used to formulate a
viable procedure.

An important result in vector analysis, first formulated by Hermann von
Helmholtz and later generalized and proved by W. V. D. Hodge, is called
the Helmholtz–Hodge decomposition theorem: A smooth vector field X on
a region Ω of space with smooth boundary ∂Ω and outer normal N can be
decomposed uniquely as

X = ∇φ+ Y (16.9)

where φ is a scalar valued function and Y is a vector field such that∇·Y =
0 and Y · N = 0 on ∂Ω (that is, Y is divergence free and parallel to the
boundary of the region), Moreover,

∆φ = ∇ ·X in Ω, ∇φ ·N = X ·N in ∂Ω,

and Y = X − ∇φ. In other words, every vector field can be written as a
sum of two vector fields, one divergence free and the other curl free. The
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curl-free field is the gradient of a potential determined as the solution of a
Poisson equation.

Using the notation of Eq. (16.9), define the Helmholtz–Leray (Jean
Leray) projection P by PX = Y . It projects a vector field onto the
divergence-free vector fields. The operator is linear (P(X + Z) = PX +
PZ) and idempotent (PPX = PX). Linear transformations of this type
should be familiar from basic vector analysis. For example, every vector
in two-dimensional space can be written as a linear combination of the
usual basis vectors e1 and e2. More precisely, a vector v can be expressed
as v = v1e1 + v2e2. The vector projection of v onto the linear space of
vectors generated by e1 is the vector v1e1. This projection is also given by
v 7→ (v · e1)e1; it is linear and idempotent.

The pressure equation algorithm could be modified to include one
additional step:

• Start with a divergence-free velocity field u that satisfies the boundary
conditions.

• Substitute the velocity field into Eq. (16.6) and solve for the pressure
field.

• Employ a time discretization on Eq. (16.5) and update the velocity field
by computing forward one step in time using the computed pressure field
and the boundary conditions.

• Project the updated velocity field (via Helmholtz–Leray projection) to
a divergence-free field, replace the starting velocity with the updated
velocity field, and go to the first step.

The divergence-free conditions will be enforced, but the projection requires
the solution of a Poisson equation. Thus, two Poisson equations are solved
to complete one time step. The additional effort will likely double the time
required to complete the computation.

A better projection method, first introduced by Alexandre Chorin,
requires just one Poisson solution per step. In its most elegant from, the
method arises from a recasting of the Navier–Stokes equations. The idea is
to apply the Helmholtz–Leray projection to the momentum equation of the
Navier–Stokes system, where the velocity field is divergence free (by the
continuity equation) and parallel to the boundary of the domain (because
u = 0 on the boundary). By the Helmholtz–Hodge theorem, Pu = u, and
similarly Put = ut. (Why?) Again, by the same theorem, P(∇p) = 0.
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Using the linearity of the projection, it follows that

ut = P((−u · ∇)u+
1

Re
∆u+ b). (16.10)

Pressure does not appear explicitly, there is only one dynamical variable
u, and solutions of this differential equation can be approximated using
standard time discretization methods such as Euler’s method. Of course,
the pressure reappears in the computation of the projection, but writing the
incompressible Navier–Stokes equations in this compact form leads to a
beautiful algorithm for numerical approximations:

• Choose a time step ∆t and start with a divergence-free velocity field uk

at time step k.
• Using uk as initial data for the PDE

ut = −(u · ∇)u+
1

Re
∆u+ b (16.11)

with the Navier–Stokes boundary conditions imposed, compute one
forward time step, and call the computed velocity field ũ. (The PDE is
the fluid momentum equation with the pressure gradient removed.)

• Compute the Helmholtz-Hodge decomposition

ũ = ∇φ+ uk+1,

where uk+1 is the name of the divergence-free part, and let

pk+1 :=
φ

∆t
.

• Go to the first step with uk replaced by uk+1.

Note: In Chorin’s original algorithm the momentum equation is rewritten in
the form

ut +∇p = −(u · ∇)u+
1

Re
∆u+ b

and the right-hand side of this equation is decomposed via the Helmholtz-
Hodge decomposition to obtain u∗ +∇φ. The velocity update is computed
by time discretization of ut = u∗ and the pressure is taken to be φ.

To justify the computation of pressure in the last step of the algorithm,
consider using a forward Euler time step at the second step of the algorithm
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to obtain

ũ = uk + ∆t(−(uk · ∇)uk +
1

Re
∆uk + bk).

By substituting the decomposition of ũ and multiplying and dividing by ∆t,
a new update equation is obtained:

uk+1 + ∆t∇(
φ

∆t
) = uk + ∆t(−(uk · ∇)uk +

1

Re
∆uk + bk).

After the obvious rearrangement and using the definition of the approximate
updated pressure pk+1, the algorithm produces the updated velocity field

uk+1 = uk + ∆t(−(uk · ∇)uk −∇pk+1 +
1

Re
∆uk + bk),

which is taken as an approximate divergence-free solution of the momentum
equation.

The updated velocity uk+1 is divergence free, but it might not satisfy
the correct boundary conditions because it is obtained from a Helmholtz-
Hodge decomposition where a Neumann boundary condition is enforced.
At a solid boundary, for example, u may not vanish (no slip) but it will
have a zero normal component at this boundary (no penetration). As ũ
does satisfy the correct boundary condition, the tangential component is
expected to be small for small time steps. The updated pressure pk+1 is
associated with the field ũ, which is not expected to be divergence free. A
better approximation of the pressure can be obtained by solving the (full)
pressure Poisson equation

∆p = ∇ · (−ut − u · ∇u+
1

Re
∆u+ b) (16.12)

with u replaced by uk+1 without the assumption that u is divergence
free. This extra computation might be necessary at specific time steps
when accurate pressures are desired as output. But, of course, solving the
additional pressure Poisson equation at each time step defeats the advantage
of the algorithm. In practice, good approximations of the velocity field are
obtained; the pressure field is not as accurate, especially at solid boundaries.

The issues concerning accurate computation of the pressure field, higher-
order accurate velocity field computations, and more efficient algorithms
have been addressed with many proposed modifications and refinements that
will continue to appear into the future. To approach these developments in
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depth would require a more extensive discussion of CFD, which is beyond
the scope of this book. The goals here are more modest: explore some
simple implementations of the projection method and illustrate some of the
successes and challenges of CFD that might inspire the reader to explore
more fully this important and fascinating subject.

Fig. 16.1 The figure depicts a schematic diagram of pickup truck in constant wind field in the tailgate up configuration.

A basic implementation of the method using a finite difference approach
starts with a grid covering the computational domain (where the fluid re-
sides). The fluid velocity and the pressure are discretized by sampling these
functions at the vertices of the grid. By finite difference approximations of
derivatives, this finite set of unknowns (three velocity components and one
pressure at each vertex) is determined by solving a set of linear equations
with the same number of equations as the number of unknowns. Clearly,
the number of such equations will be large. For a 10 × 10 × 10 cell grid
there are over 1000 vertices and thus over 4000 unknowns. What problem in
CFD could be solved with such a small grid? Moreover, for time-dependent
flow problems, every time step requires solving a large set of equations.
The challenge of large-scale computation must be met for realistic flow
problems. Even with very fast computation, numerical approximation for
many flow problems in three-dimensional space are not feasible at a fine
enough resolution (large number of grid cells) to reach reliable predictions.

Imagine, as an illustrative example, a constant velocity fluid flow that
meets and passes over a body fixed with respect to the motion of the fluid.
For definiteness, consider the following problem.

Problem 16.1. [Tailgate Problem] A pickup truck is parked on a road where a 70
mile per hour wind is blowing over the truck from front to back with the truck facing
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directly into the wind. What is the velocity and pressure of the fluid flow near the truck?
Suppose further that the truck has a tailgate and consider the drag on the truck due to
the fluid motion. Which configuration has smaller drag: tailgate up or tailgate down?

Although the physical tailgate problem is certainly three-dimensional
and there might be fluid motions near the truck that are time dependent, there
is an apparent symmetry in the problem: the flows in the regions bounded by
an imaginary plane cutting the truck in half lengthwise should be identical,
and the flow over the truck should be in steady state. Thus, some insight
should be gained by considering the two-dimensional steady state flow in
this plane. This is a typical problem, where reduction to two-dimensional
steady state flow is natural.

The components of the dimensionless two-dimensional Navier–Stokes
equations for incompressible flow, with the scaled gravitational body force,
are

ut = −uux − vuy +
1

Re
(uxx + uyy)− px,

vt = −uvx − vvy +
1

Re
(vxx + vyy)− py − g,

0 = ux + vy, (16.13)

where u and v denote the components of the fluid velocity in the horizontal
and vertical directions, respectively. The current objective is to approximate
steady state solutions of this system for specified boundary conditions.

The geometry of the problem must be specified. The usual approach is
to consider first the simplest possible geometry that maintains the essential
feature(s) of the physical problem. For the truck with tailgate, the essential
feature is the configuration of the bed of the truck bounded by the cab and
the tailgate. A simple geometry is depicted in Fig. 16.1. Although the exact
boundaries are not specified in the problem statement, the computational
domain might be the complement of the schematic truck in the depicted
rectangular region where the upper and lower boundaries of the rectangle are
streamlines of the constant velocity wind that enters and leaves the rectangle
at the left and right boundaries. The wind velocity is assumed to be constant
at some distance away from the truck body. Thus boundary conditions on
the rectangle are set. For Navier–Stokes, no-slip boundary conditions are
required on the surface of the truck body.
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A strategy for numerical experiments that might provide insight into the
physics and be useful for making predictions about real trucks traveling on a
highway requires many steps, but in broad outline, we seek approximations
to the steady state two-dimensional incompressible Navier–Stokes equations
on the computational domain Ω where the fluid velocity is specified on its
outer boundary and vanishes on its inner boundary. A rectangular grid is to
be defined on Ω, the differential equations to be solved via the projection
method are to be discretized using this grid, and the projection method is
to be employed to determine an approximate solution of the Navier–Stokes
equations.

The projection method is designed to solve the time-dependent incom-
pressible Navier–Stokes equations. To find a steady state solution requires a
leap of faith: The steady state is asymptotically stable. Thus, the plan is to
reach the steady state by marching along an (approximate) solution until it
reaches steady state. In this scenario, the accuracy of the time integration is
not important as long as the procedure reaches a verifiable steady state.

To make the implementation simple, consider a rectangular computa-
tional region, with width W and height H , that will eventually include the
truck body and consider a grid constructed in the usual manner with incre-
ments ∆x = W/m and ∆y = H/n for positive integers m and n. There
are m cells in the horizontal direction and n cells in the vertical direction
with nodes in the horizontal direction numbered i = 1, 2, 3, . . . ,m+ 1 and
in the vertical direction j = 1, 2, 3, . . . , n + 1. Anticipating the necessity
to treat boundary data, this grid is augmented with a border that is one cell
thick. The two additional nodes in the horizontal direction are numbered
i = 0 and i = m + 2; likewise the new nodes in the vertical direction
are j = 0 and j = n + 2. With this numbering scheme, which is one of
many choices, there are mn cells in the computational domain (which by
definition does not include the ghost cells in the border). In the computer,
the storage requirement for each variable is an (m+ 2)× (n+ 2) array. No
variables are stored with address i = 0 or j = 0.

An influential paper of Francis Harlow and J. Eddie Welch in 1965 [48]
introduced the idea of a staggered grid where the pressure is discretized at
cell centers and the velocity components on the cell sides as in Fig. 16.3.
Although there are many other grid configurations, each with advantages
and disadvantages, the staggered grid is a useful choice for the first draft of
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Fig. 16.2 Selected staggered grid cells near corners are depicted.
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cell Hi,jL cell Hi+1,jL

pi,j pi+1,j
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vi,j
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Fig. 16.3 A generic part of a staggered grid is depicted. Pressure is computed at the centers of cells, the first component
of the velocity field at the midpoints of the left and right cell boundaries, and the second component of the velocity field
at the midpoints of the top and bottom boundaries.

a viable code. At least one good reason to use a staggered grid will become
apparent as the discretization process unfolds.

The first step in the projection method is to solve the PDE formed from
the Navier–Stokes equations (16.13) while ignoring the pressure. By using
the continuity equation ux + vy = 0 (which should be enforced whenever
possible in the approximation procedure), the system can immediately be
recast in the conservation form

ut = −(uu)x − (uv)y +
1

Re
(uxx + uyy),

vt = −(uv)x − (vv)y +
1

Re
(vxx + vyy)− g, (16.14)

that turns out to be convenient for discretization over staggered grids using
centered differences.

On the staggered grid, the discretized state variables are defined by

ukij = u(i∆x, (j − 0.5)∆y, k∆t),

vkij = v((i− 0.5)∆x, j∆y, k∆t),
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pkij = p((i− 0.5)∆x, j∆y, k∆t).

Be sure to understand the notation before proceeding with the discretization.

Time stepping toward the steady state solution, as previously mentioned,
need not be accurate to second order in the time step size. The natural
choice is Euler’s method, which is first order. As usual, superscripts k =
1, 2, 3, . . . , kmax denote time steps corresponding to the discrete times k∆t.
Thus, the time derivatives are discretized by

ut(i∆x, (j − 0.5)∆y, k∆t) ≈
uk+1
ij − ukij

∆t
,

vt((i− 0.5)∆x, j∆y, k∆t) ≈
vk+1
ij − vkij

∆t
.

At least second-order accurate spatial discretization is desired. Thus,
central differences are used for first- and second-order partial derivatives.
The Laplacian of u at (i∆x, (j − 0.5)∆y, k∆t) is approximated by

(uxx + uyy) ≈
uki+1,j − 2ukij + uki−1,j

∆x2
+
uki,j+1 − 2ukij + uki,j−1

∆y2
, (16.15)

and the Laplacian of v at ((i− 0.5)∆x, j∆y, k∆t) is approximated by

(vxx + vyy) ≈
vki+1,j − 2vkij + vki−1,j

∆x2
+
vki,j+1 − 2vkij + vki,j−1

∆y2
. (16.16)

Approximations of the first-order partial derivatives in system (16.14) is
more complicated. The partial derivative (uu)x at (i∆x, (j − 0.5)∆y, k∆t)
is to be centered at the position of uij on the staggered grid. One possibility
is to use the discretization

(uu)x ≈
(uki+1,j)

2 − (uki−1,j)
2

2∆x
. (16.17)

An alternative is to imagine evaluations of the quantity u2 at the cell centers,
where the pressure is discretized. The advantage would be in taking a central
difference over a discretization interval of length ∆x rather than an interval
of length 2∆x as in the former discretization. The velocity variables are not
stored at the cell centers, but a good approximation of these values could be
obtained by averaging the velocities on the two cell walls. In other words,
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an alternative to approximation (16.17) is

(uu)x ≈
1

∆x

((uki+1,j + ukij
2

)2
−
(uki−1,j + ukij

2

)2)
. (16.18)

A third possibility is to use the power rule to write

(uu)x = 2uux ≈ 2ukij

(uki+1,j − uki−1,j

2∆x

)
. (16.19)

The last choice is the most accurate of these discretizations (see Exer-
cise 16.2). It is recommended for use in writing a computer code. There
is an analogous approximation of (vv)y.

For (uv)x, there are also several possible approximations. This derivative
appears in the momentum equation for the v component of velocity where
discretization in time at the (i, j) grid cell is at vij , which resides at
the middle of the top of the cell. The most natural discretization for the
derivative would be a centered difference of uv values at the top right and
top left corners of this cell. The required u and v values at these points are
approximated by averages. For example, the u component at the top right
corner is approximated by (ui,j+1 + uij)/2, which is the average of the
discretized u values on cell faces just above and below the top right corner
of the (i, j) grid cell. Using this idea, the desired approximation is

(uv)x ≈
1

∆x

((uki,j+1 + ukij)(v
k
ij + vki+1,j)

4

−
(uki−1,j + uki−1.j+1)(vki−1,j + vkij)

4

)
. (16.20)

The approximation for (uv)y is similar:

(uv)y ≈
1

∆y

((uki,j+1 + ukij)(v
k
i+1,j + vkij)

4

−
(ukij + uki.j−1)(vki,j−1 + vki+1,j−1)

4

)
. (16.21)

Staggered grids are designed in part to solve for pressure. Indeed,
to obtain the Helmholtz–Hodge decomposition of the velocity vector ũ
computed in the second step of the projection algorithm requires solving the
Poisson equation ∆φ = ∇ · ũ in the computational domain for the potential
φ with Neumann boundary condition ∇φ · N = ũ · N . This potential φ is
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∆t times the desired pressure, which is discretized with values specified
at the cell centers. Thus, it is natural to approximate the divergence of
the velocity field ũ at the cell centers with centered differences that span
exactly the length of one cell; the discretized values of the components of
the velocity vector, ũ and ṽ, are conveniently located on the cell walls and
the finite difference from cell center to adjacent cell center is a second-order
approximation to the velocity component’s value at the node on the cell wall
when the ordinary difference is viewed as a centered difference with step
size set at half the width of a cells. In this sense, a staggered grid leads to
second-order approximations of the velocity field at no extra expense. These
considerations lead to the discretized Poisson equation

φi−1,j − 2φij + φi+1,j

∆x2
+
φi,j−1 − 2φij + φi,j+1

∆y2
=
ũij − ũi−1,j

∆x
+
ṽij − ṽi,j−1

∆y
.

(16.22)

All the ingredients are in place to write a code that can be used to
approximate two-dimensional flow problems.

A natural test problem is lid-driven cavity flow, which is the classic test
problem for CFD computer codes. Imagine a rectangular domain, usually
taken to be the unit square, filled with a fluid and the top boundary of the
rectangle is a solid wall that moves horizontally (to the right) at a constant
speed. What is the motion of the fluid in the rectangle? This is an idealized
example of the tailgate problem where the airflow over the truck bed is
assumed to remain at constant velocity; that is, the flow over the truck
bed is not affected by the motion of the air in the bed. The interaction is
unidirectional: the airflow drives the flow in the bed; the flow in the bed
does not change the airflow over the bed.

Coding the projection method is not trivial, even for the simple geometry
of the lid-driven cavity flow over a unit square cavity. A recommended
strategy is to break up the code into (at least) four parts: a main program
(main) and three subroutines (advdiff, project, linsolve).

The main program serves several purposes. It is used to set the param-
eters (gravity, Reynolds’s number, grid size, time step, and so on) and the
arrays that will contain the state variables (the velocity components u and
v and the pressure p); it is also used to initialize the arrays and to read and
write data to the screen or to files. The output data files will later be used to
visualize the flow. The program main calls advdiff and project.
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The subroutine advdiff computes a single time step of the advection-
diffusion evolution equation [Eq. (16.11)] with appropriate Navier–Stokes
boundary conditions and stores the computed velocity field components in
the arrays u and v. For the cavity flow problem, no-slip boundary conditions
are imposed on the three walls of the cavity and constant horizontal velocity
at the top boundary. This later boundary condition is also a no-slip condition:
the flow sticks to the moving lid.

The subroutine project takes as input the updated state variable arrays
and returns these same arrays updated further with the divergence-free part
of the velocity field and the pressure obtained from the Helmholtz-Hodge
decomposition of the input velocity field. Project is also used to determine
the matrix equation Ax = b obtained by discretization of the Poisson
equation ∆φ = ∇ · ũ, where b is used here to denote the discretized
divergence of ũ, the vector field output of advdiff.

For most applications (including the cavity flow problem), the matrix A
does not change with the time step; it can be computed from the geometry
of the problem and stored for use during time stepping. The vector b does
depend on the velocity at the current time step and the geometry of the
problem when the boundary contains velocities not tangent to the boundary;
for example, when fluid enters through the boundary. This vector must be
updated at each time step.

Project calls linsolve to approximate the solution x of the system of
linear equations. The values stored in the array x are the approximations
to the potential φ evaluated at cell centers. These are used to obtain the
divergence-free part of ũ and the corresponding pressure p. Project stores
the updates in the arrays u, v, and p and returns them to main.

This completes the approximation of the velocity field and the pressure
over one time step with the state variable arrays u, v, and p set to start the
computation over another time step or for output to a file.

The staggered grid with ghost cells surrounding the computational
domain and the experience gained by solving reaction-diffusion problems
in Chapter 5 should make the task of writing the advdiff subroutine easy.
The required methods are indeed exactly the same as for reaction-diffusion
problems.
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The subroutine project is perhaps slightly more challenging to write
due to the Neumann boundary condition for the Poisson equation. There
is one pitfall that must be avoided: the Poisson equation with Neumann
boundary condition does not have a unique solution. In abstract form, the
PDE is

∆φ = f in Ω, ∇φ · η = g in ∂Ω,

where η is the outer unit normal on ∂Ω. Suppose that φ is a solution. Because
the derivative of a constant is zero, φ + c for every real number c is also a
solution.

This nonuniqueness will be approximated in the discretization that
results in a linear system Ax = b. The system matrix A will be singular
or very close to a singular matrix. For this reason the linear solver encoded
in linsolve will likely fail to approximate a solution of the ill-conditioned
linear system.

One possible cure is to specify the value of φ at some (grid) point. A
good choice is to set φ = 0 at the center of some cell adjacent to the
upper boundary of the computational rectangle. This choice will affect the
construction of the matrix A: the second-order centered differences used to
approximate the partial derivatives of φ in cells adjacent to the chosen cell
with zero potential require the value of φ at the center of the chosen cell that
is set to zero. The computation of the rows of A, one for each cell, has to
take the special value of φ in the chosen cell into account. Of course, the
construction of A requires some ordering of the cells in the grid. The rows
of A might naturally correspond to the chosen grid cell ordering.

A simple way to order the cells is to determine and employ a function that
maps each pair of integers (corresponding to nodes in the grid) to the integer
corresponding to the placement of the corresponding cell in the ordering.
With the staggered grid as illustrated in Fig. 16.2, the first cell in the ordering
has address (2, 2) and the last cell in the ordering has address (m+1, n+1).
The function

(i, j) 7→ (i− 2)n+ j − 1

determines the place in the ordering of the cell with address (i, j). There
are many other possibilities. One possible choice for the special cell with
fixed potential value zero is the last cell in the ordering. The matrix A has
dimensions (mn− 1)× (mn− 1).
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With the suggested ordering, A is a banded matrix with bandwidth 2n+
1. A natural question arises: What is the smallest possible bandwidth that
can be achieved by reordering the cells? Although it is possible to achieve
a smaller bandwidth with perhaps a more complicated ordering function,
it is not possible to achieve bandwidth equal to 5. Why? Common sense
dictates that the banded matrix A not be stored in its entirety as there is
no good reason to store elements in A that are known to be zero. Although
only five diagonals have nonzero elements, a compromise that maintains
simplicity is to store the band in an (mn− 1)× (2n+ 1) array where each
diagonal in the banded part of A is stored in a column of the new matrix by
respecting the original row address of each component. The main diagonal
is stored in column (n+1). The first superdiagonal of A is stored in column
(n + 2), the first subdiagonal in column n, and the diagonals that bound
the band in A are stored in column 1 and (2n + 1), respectively, of the
storage matrix. Elements in the storage matrix that are not assigned nonzero
elements of A are assigned the value zero. This arrangement is simple to
program and understand. Clearly, there are more efficient storage schemes
that could be employed if a more efficient code is important or in case large
arrays overwhelm the available storage capacity of available computers.

The subroutine linsolve should take as input the (mn− 1)× (2n+ 1)
storage array for the banded matrix A and the (mm− 1) vector b and return
an approximate solution of the matrix system Ax = b. As linsolve need
not take into account the PDE or the computational grid, it may be written
as a subroutine using one of many algorithms available for solving general
matrix equations. Modern numerical methods, called multigrid methods,
do take into account the computational grid; in fact, they incorporate
several computational grids with different mesh sizes. But, for simplicity
and to reuse the iterative methods introduced in Chapter I, successive
overrelaxation (SOR) is recommended as a viable method for basic fluid
dynamics codes. As a bonus, this method plays a central role in multigrid
methods that might be considered for implementation to improve the speed
of convergence of a basic code.

The Courant–Friedrichs–Lewy (CFL) stability condition, viewed as a
restriction on the time step size to avoid numerical instability, may be
obtained approximately by imposing the condition that nothing important
should happen during a time step unless the happening is confined to a
computational cell. In the case of fluid motion, one interpretation of this
restriction is that no fluid particle should travel across more than one cell
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during one time step. Thus the maximum absolute value of the u-component
of the fluid velocity multiplied by the time step size should not exceed the
width of a cell and the product of the maximum absolute value of the v-
component and the time step size should not exceed a cell height. These
conditions do not guarantee numerical stability, but they offer a rough guide
to choosing a suitable step size.

It is time to write and test a code.

Using exactly the methodology explained so far, a code was written,
debugged, and used in an attempt to simulate behavior, especially steady
state behavior, of lid-driven cavity flow. For testing, the cavity was taken
to be the unit square discretized with a 128 × 128 square cell grid. The
SOR stopping procedure—the norm of the difference of two successive
iterates less than a preassigned tolerance—was implemented with tolerance
1.0 × 10−3 and a maximum number of 500 iterations. The overrelaxation
parameter for SOR was set to 1.5 and the time step to 1.0 × 10−3. The
characteristic velocity, in this case the velocity of the lid, was taken to be
one unit. Thus the CFL condition is a time step no larger than 1/128. The
time step 1.0 × 10−3 satisfies this inequality and respects the approximate
nature of the CFL estimate. Recall that in simpler cases (for example,
Euler’s method applied to the heat equation) the exact CFL condition can
be obtained by computing the eigenvalues of a matrix. For the nonlinear
Navier–Stokes model, the stability analysis is more complicated and not
presented here. The code was written so that the Reynolds number is
requested at run time.

Fig. 16.4 depicts a numerical experiment for the lid-driven cavity flow
problem at Reynolds number 1000. As might be expected from physical
intuition, at steady state the dominant flow is a clockwise rotating vortex.
Counter rotating vortices appear in the corners of the cavity. This figure
was make by postprocessing the output from the Chorin projection method
code,1 which in part produces an approximate flow velocity field (u, v)
defined at a discrete set of points on a staggered grid. The depicted
streamlines are solutions of the ODE system

ẋ = u(x, y), ẏ = v(x, y).

1The figure was made using the StreamFunction command in Mathematica 10.
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Fig. 16.4 Streamlines are depicted for steady state lid-driven cavity flow (after forward integration for approximately
20 dimensionless time units) with unit lid speed, grid size 128× 128, and Reynolds number 1000.

Its solutions may be approximated by a numerical method, Euler’s method
for example, using interpolation of the values of u and v at the grid
points. Spatial evaluation of the components u and v should take into
account the staggered grid. The values of the vector field (x, y) 7→
(x, y, u(x, y), v(x, y)) are approximated on the grid points as follows:

(
(i− 1)dx, (j − 1)dy,

u(i, j) + u(i, j + 1)

2.0
,
v(i, j) + v(i+ 1, j)

2.0

)
.

This discretized vector field is used for the interpolation required to
determine streamlines.

Postprocessing and visualization are important topics in computational
fluid dynamics and for analyzing data obtained from many other types of
experiments. Further treatment of this subject is beyond the scope of this
book.

The cavity might be considered as a very simple model for a truck bed
where the lid is not a solid but instead a model of the air flowing over the
bed. What is the Reynolds number for such a flow? For air flowing over a 7
foot long truck bed moving at 70 miles per hour and taking the air kinematic
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viscosity to be 1.5 × 105, the Reynolds number obtained (using the bed
length and air speed as the characteristic length and velocity) is on the order
of 106. This is a typical Reynolds number for realistic flows. But, it seemed
too large for an initial numerical test. The Reynolds number 1000 was used
instead. The lid speed was set at the dimensionless value 1.0 for no particular
reason except to keep values within what seemed to be a reasonable range.
With this choice, 1/Re may be viewed as a measure of the viscosity of the
fluid. After a careful debugging using coarse grids to test assignments of
boundary conditions, checking for coding errors in the discretizations, and
testing the linsolve subroutine on matrix systems with known solutions,
the code was compiled and executed; it ran successfully.

The next step was to test with more realistic Reynolds numbers produced
by larger lid speeds. Because the initial velocity is set to zero, the code
should be able to (successfully) deal with an abrupt change in velocity
from zero to the lid speed for at least the first few time steps. To avoid
this problem, a better choice is to write the code to allow a gradual
increase in lid speed up to the desired speed, which is more physically
realistic, or to gradually increase the Reynolds number with a fixed lid
speed. The latter scenario was followed with some success for Reynolds
numbers approaching 105. To reach Reynolds numbers of this magnitude,
the tolerance in the SOR solver was reduced to 10−2, the flow was integrated
forward for several dimensionless seconds until the velocity field did not
seem to be changing, and after a (somewhat) steady flow was reached,
the tolerance was slowly increased toward 10−3. The main issue was the
speed of convergence of the SOR solver. The number of iterations required
for convergence increased until it was impractical to try larger Reynolds
numbers. The cause of the slow convergence was traced to abrupt increases
in the magnitude of the computed velocity field, a type of numerical
instability.

Reaching a limitation can be frustrating, but this experience is typical
when applying a numerical code to a physically realistic model. What is
causing the numerical problems?

Before continuing, some remarks are in order. The numerical experi-
ments just described are rather limited for several reasons, in particular
the coarse mesh size of the grid. Although it is satisfying that the code
produces qualitatively appealing results, how do we know that a numerical
experiment produces a good approximation to the solution of the Navier–
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Fig. 16.5 The top panel depicts streamlines for steady state lid-driven cavity flow with unit lid speed, grid size 256 ×
256, and Reynolds number 1000. The four bottom panels depict blowups of the flow near the top left corner, the top
right corner, the bottom left corner, and the bottom right corner of the cavity.
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Stokes model? The simple answer is that we do not know. At present the
best we can do is to gather evidence that our numerical experiments produce
good approximations. One way to do this is to test the code against known
exact solutions; another is to refine the mesh with the intention of showing
the answer is essentially the same as the mesh size decreases. Of course,
the same model can be discretized in several different ways and different
numerical methods can be employed. Confidence in a result increases as
more numerical experiments suggest the same conclusion.

Fig. 16.5 depicts the approximate streamlines for the lid-driven cavity at
Re = 1000 with a grid of 256× 256, which is a refinement of the grid used
to produce Fig. 16.4. The result is essentially the same. Thus, there is some
reason to believe the numerical approximation is viable. Lid-driven cavity
flow is widely used as a test case for numerical fluid dynamics codes (see, for
example, [15]). Up to Reynolds numbers of a few thousand, numerical codes
all produce similar results. For high Reynolds numbers numerical results are
not all the same. One reason is that the flow seems to be in steady state after
runs of dimensionless time units of about 20, as in Figures 16.4 and 16.5.
For high Reynolds numbers the flow may not settle to a steady state. At
this time there does not seem to be theoretical results that would answer the
following question: For which Reynolds numbers does the lid-driven cavity
flow settle to a steady state? The simple code discussed here is competitive
up to a grid size of 256 × 256 (which was used to obtain the figure) and
with a SOR solver used in the algorithm for approximating the solution of
Poisson’s equation. For larger matrices that appear in this code SOR does not
converge or speed of convergence is too slow to be practical. Finer grids can
be considered when more sophisticated linear solvers (multigrid methods in
particular) are employed.

One obvious issue with the performance of numerical experiments with
large Reynolds numbers is starting with the lid speed not zero and initially
zero velocity in the cavity; a situation that is not physically realistic: the air
near the lid would not be moving with zero velocity at the initialization of
the experiment. Either the lid speed must be slowly built up to the desired
running velocity and this scenario modeled and coded, the tolerance for the
SOR stopping procedure can be relaxed until the air velocity near the lid
is nearly the lid velocity after which the tolerance can be incrementally
increased to the desired value, or the Reynolds number can be initialized
at a much lower value and slowly increased to a desired value. Also, it is
wise to store the velocity and pressure from a successful computation and
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read the velocity and pressure into the code as an initialization from which
the Reynolds number might be incrementally changed.

What is causing the numerical approximations to blow up (be unstable)
as the Reynolds number increases beyond some critical value?

Perhaps there is a bug in the code? Perhaps SOR would converge if more
iterations were allowed? Maybe the time step is too large relative the spatial
discretization size as measured by a CFL number? Maybe the spatial grid
is too coarse to capture the fluid motion? Perhaps the first-order accuracy
of Euler’s method used to march forward in time is too low? All of the
above might be partly responsible for the numerical instability, or some
other problem that is not yet addressed might be the true culprit.

The observed instability is manifested by the computation of large values
for velocity components. This phenomenon would seem to be unrelated to
the projection part of the algorithm. If so, it must be caused by applying
Euler’s method with central discretization of spatial derivatives to the
advection-diffusion equation. Is there a way to test this hypothesis?

Perhaps the best approach is to analyze simple examples where explicit
solutions can be computed.

A useful example is provided by the linear PDE

ut + αux = δuxx. (16.23)

The term αux is a simple model for advection and δuxx is a diffusion term.
Using Euler’s method and central differences for the spatial derivatives and
ignoring boundary conditions, the discretized equation is

uk+1
i = uki + ∆t(−αu

k
i+1 − uki−1

2∆x
+ δ

uki+1 − 2uki + uki−1

∆x2
).

In a more compact form and with the obvious notation, this equation is given
by

uk+1
i = (d− a)uki+1 + (1− 2d)uki + (a+ d)uki−1.

In matrix form, time marching is given by an iteration scheme

Uk+1 = TUk + b,
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where b is a vector that might be needed when boundary conditions are
imposed and T is the tridiagonal system matrix whose first subdiagonal has
every component equal to d+a, main diagonal components equal to 1−2d,
and first superdiagonal components d − a. For the case of pure diffusion
(a = 0), recall that the Gerschgorin theorem (see Appendix A.5) can be
applied to show that if d < 1/2, then every eigenvalue of T lies in the unit
disk in the complex plane and the iteration scheme converges to U = T−1b.
The inequality d < 1/2 is exactly the condition δ∆t/∆x2 < 1/2; that is, the
CFL stability condition for the relation between time step size and the spatial
step size. The addition of advection changes the radius of the Gerschgorin
circle centered at 1−2d to |a−d|+|a+d|, which for a > d—when advection
dominates—has value 2a. In this case, the circle includes the number 1 on
the real axis and there is the possibility that T has an eigenvalue outside the
unit disk. Indeed the radius of the Gerschgorin circle grows with a, which
increases the likelihood that T has an eigenvalue with absolute value larger
than 1 as a is increased. The exact stability condition can be determined by
using the results of Appendix A.19. In fact, the eigenvalues of T are given
by

1− 2d+ 2
√

(d+ a)(d− a) cos
kπ

N + 1
, k = 1, 2, 3, . . . , N

where N is the dimension of T . For a > d and for N larger than 2, there is
an eigenvalue such that the square of its absolute value is larger than

(1− 2d)2 + 2(a2 − d2).

Thus, as a grows, there is an eigenvalue outside the unit disk in the
complex plane. In this case, the iteration scheme is unstable. It will produce
arbitrarily large components of the vector Uk for sufficiently large n.
Numerical experiments can be used to verify this claim (see Exercise 16.3).
The lesson here is that centered differences are associated with numerical
instability in advection-diffusion problems. This is unfortunate because
centered differences give second-order accuracy.

Does second-order accuracy have to be abandoned to maintain stability?
Are there problems with forward or backward spatial differences?

To gain some insight, consider the simplest pure advection equation ut+
αux = 0, also called the one-way wave equation. As an illustrative example,
consider this PDE on the entire real line with initial condition u(x, 0) =
f(x) and seek a solution for t > 0. The geometry of the equation is simple:
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Fig. 16.6 The graph of x 7→ u(x, τ) for the exact solution [Eq. (16.24)] of the one-way wave equation ut+2ux = 0

with initial data f given in Eq. (16.25) is overlaid on the graph of a numerically approximated solution using the central
difference scheme [Eq. (16.26)] with ∆x = 0.2 and ∆t = 0.005. The computational domain is (−10, 10) with
Dirichlet boundary conditions u(−10, t) = f(−10) and u(10, t) = f(10) and τ = 2. The numerical scheme is
unstable.

viewed as a function of two variables the inner product of the gradient of
the function u (which has components ux and ut) with the vector (α, 1) is
always zero. Thus, the level sets of u are lines parallel to the latter vector.
All such lines are parameterized by curves of the form s 7→ (ξ + αs, s),
where (ξ, 0) is some point on the x-axis. Given an arbitrary point (x, t) in
space-time, the curve s 7→ (ξ + αs, s) with ξ = x− αt passes through this
point. Because u has the same value at every point of this curve,

u(x, t) = u(x− αt, 0) = f(x− αt), (16.24)

where f is the specified initial condition. The solution is a traveling wave
with profile f that moves right for α > 0 and left for α < 0.

For a specific example, consider initial data that is a smooth approxima-
tion to a step function:

u(x, 0) = f(x) :=
1

π
(
π

2
− arctan(σ(x− τ))), (16.25)

where σ > 0 determines the steepness of the continuous step from zero to
one and τ is the center of the step. Fig. 16.6 shows the results of a numerical
experiment where the computed solution is depicted together with the exact
solution [Eq. (16.24)]. The numerical method is an implementation of the
central difference scheme

uk+1
i = uki − α

∆t

2∆x
(uki+1 − uki−1). (16.26)
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Fig. 16.7 The graph of x 7→ u(x, τ) for the exact solution [Eq. (16.24)] of the one-way wave equation ut+2ux = 0

with initial data f given in Eq. (16.25) is overlaid on the graph of a numerically approximated solution using the
backward difference scheme [Eq. (16.28)] with ∆x = 0.2 and ∆t = 0.005. The computational domain is (−10, 10)

with Dirichlet boundary conditions u(−10, t) = f(−10) and u(10, t) = f(10) and τ = 2. The numerical
method produces a traveling wave that compares favorably with the known solution.

Boundary conditions are imposed at the ends of the computational domain
to allow the numerics to proceed; they are not part of the formulation of
the initial value problem for the PDE imposed on the whole real line. The
idea is that as long as experiments stop before the boundary conditions
play a significant role, the results should be reliable. Of course, this belief
should be tested by computing over several nested intervals with increasing
length to approximate the solution on the infinite line. The proved numerical
instability of the method is manifested in the figure.

Central differencing is preferred because it uses a second-order approxi-
mation of the (spatial) derivative. What about first-order approximations?

By checking eigenvalues for the (triangular) system matrix of the
iteration scheme, forward differencing,

uk+1
i = uki − α

∆t

∆x
(uki+1 − uki ), (16.27)

is also unstable when applied to the one-way wave equation with α > 0.

The correct choice, backward differencing,

uk+1
i = uki − α

∆t

∆x
(uki − uki−1), (16.28)

is stable when applied to the one-way wave equation with α > 0: all
eigenvalues of the system matrix of this iteration scheme lie in the open
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unit disk in the complex plane (see Exercise 16.4). Results of a numerical
experiment that agrees with this fact are depicted in Fig. 16.7.

The backward difference scheme, for the case where α > 0 and the
wave propagates to the right, is called an upwind scheme because it takes
into account nodes in the direction from which the wind would be blowing
a wind-driven wave. The forward difference is called downwind. In case
α < 0 and the wave propagates to the left, the roles are reversed: the
forward difference is a stable upwind scheme and the backward difference
is an unstable downwind scheme.

The numerical experiments and analysis of the one-way wave equation
suggest that upwind schemes perform better for advection problems. The
method is stable for the one-way wave equation. Perhaps an upwind scheme
for the advection part of the fluid code would make it more robust with
respect to increases in the Reynolds number. But it is not yet clear how to
write an upwind scheme for a nonlinear PDE. How would the code know
which way the wind is blowing?

An excellent one-dimensional test example is provided by the viscous
Burgers’s equation (Johannes M. Burgers, 1948)

ut + uux = δuxx. (16.29)

It has a nonlinear advection term (the one-dimensional u · ∇u that appears
in fluid models) and a linear diffusion term (akin to ∆u).

The nonviscous Burgers’s equation (δ = 0) is considered in detail later
in this chapter (see page 544); it is an example of a nonlinear conservation
law, which in one spatial dimension is a PDE of the form

ut + (f(u))x = 0 (16.30)

for some differentiable scalar valued function f , called the flux function. Of
course, the name for PDEs of this type comes from interpreting them as the
differential forms of conservation laws. More precisely, let u(x, t) denote
the amount of some substance at position x at time t. The total amount of
the substance in some interval Ω = [a, b] is

d

dt

∫
Ω
u dx = −

∫
∂Ω
X · η dp,
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where X is the vector field that determines the flow carrying the substance,
dp is the point measure on the boundary of the interval, and η is the outer
unit normal at the ends of the interval. In case X is f(u), the equation reads

d

dt

∫
Ω
u dx = −(f(u(b, t))− f(u(a, t)), (16.31)

or by the fundamental theorem of calculus,∫
Ω
ut dx+

∫
Ω

(f(u(x, t)))x dx = 0.

PDE (16.30) holds because Ω is arbitrary. For Burgers’s equation, the flux
function is f(u) = 1

2u
2; for the one-way wave equation, f(u) = αu.

A new idea that leads naturally to upwind schemes and other numerical
algorithms is called the finite volume method. In the context of conservation
laws, the basic idea is to approximate

uki := u(i∆x, k∆t)

by the average of u over some finite volume, usually a grid cell. For example,
define

ūi(t) =
1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x
u(x, t) dx

and

ūki = ūi(k∆t).

The spatial average of u over one cell width centered at the grid node
(i∆x, j∆t), namely ūki , may be taken as an approximation of uki —which
is the value of the function u at this grid node.

To make a numerical method for time stepping to approximate the
solution of a conservation law, approximations of the unknown u at different
discrete times must be related. For the usual case where time step k is related
to time step k + 1 so that known values at the current time k∆t can be
propagated to time (k + 1)∆t, a good idea is to integrate the conservation
law over a space-time cell one spatial increment ∆x wide and one time
increment ∆t tall with the spatial cell centered at i∆x. More precisely, the
space-time cell is

Cki = [(i− 1/2)∆x, (i+ 1/2)∆x]× [k∆t, (k + 1)∆t]
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and the mentioned integration gives equalities

0 =

∫ ∫
Cki

ut + f(u)x dxdt

=

∫ (i+1/2)∆x

(i−1/2)∆x
u(x, (k + 1)∆t)− u(x, k∆t) dx

+

∫ (k+1)∆t

k∆t
f(u((i+

1

2
)∆x, t))− f(u((i− 1

2
)∆x, t)) dt.

Using the ū notation, the result of the integrations is summarized in the
fundamental formula

∆x(ūk+1
i −ūki ) = −

∫ (k+1)∆t

k∆t
f(u((i+

1

2
)∆x, t))−f(u((i− 1

2
)∆x, t)) dt.

(16.32)

The left side of Eq. (16.32) is in discretized form and the right side is
given by integrations along the sides of the space-time cell, where one side is
the line connecting the nodes ((i− 1

2)∆x, k∆t) and ((i− 1
2)∆x, (k+1)∆t),

and the other side connects ((i+ 1
2)∆x, k∆t) and ((i+ 1

2)∆x, (k + 1)∆t).
The finite volume method leaves open the possibility of many different
approximations of these line integrals. Of course, desired approximations of
these integrals are functions, called numerical flux functions, of the space-
averaged approximations of u given by the ūki .

One possibility is to approximate the line integral along the left side by
a Riemann rectangle with base length ∆t and height f(ūki−1/2) and the line
integral of the right side using the height f(ūki+1/2). In turn, the unknown
averages ūki−1/2 and ūki+1/2 at the cell-side midpoints may be approximated
by ūki−1 and ūki+1. This leads back to the (unstable) central difference method

∆x(ūk+1
i − ūki ) = −∆t(f(ūki+1)− f(ūki−1)).

For the one-way wave equation, the direction of the wave can be taken
into account by approximating the line integral over the left-hand face of the
cell by

∆t(
α

2
(ūki + ūki−1)− |α|

2
(ūki − ūki−1)).
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The integral is approximated by ∆tūki−1 when α > 0 and the wave is coming
from the left and by ∆tūki when α < 0 and the wave is coming from the
right. Using the same idea to approximate the line integral over the right-
hand face by

∆t(
α

2
(ūki+1 + ūki )−

|α|
2

(ūki+1 − ūki )),

a general upwind scheme is produced that works for α < 0 and α > 0:

∆x(ūk+1
i − ūki ) = −∆t(

α

2
(ūki+1 − ūki−1)− |α|

2
(ūki+1 − 2ūki + ūki−1)).

Indeed, the right-hand side reduces to −∆tα(ūki − ūki−1) when α > 0
and −∆tα(ūki+1 − ūki ) when α < 0. This numerical scheme may be
interpreted as approximating the first-order spatial derivative by the average
of a centered difference for the spatial derivative and a centered difference
approximation for an artificial viscosity term |α|uxx/2. The additional
diffusion tends to stabilize the numerical method for the same reason that
central difference schemes that satisfy the CFL condition are stable for the
diffusion equation.

Although the one-way wave equation is a good example, it is too special
in the sense that the sign of the coefficient α in the flux function f(u) = αu
determines the upwind direction. For nonlinear conservation laws (and
the advection part of the Navier–Stokes equations) the situation is not as
explicit. But, taking into account the success of the upwind scheme for
the one-way wave equation suggests consideration of the general scalar
conservation law written in the form

ut + f ′(u)ux = 0,

which would be a one-way wave equation if f ′(u) were constant. For this
reason the sign of f ′(u) in the nonlinear case is naturally associated with
the sign of α, which is the sign of the first derivative of the one-way wave
equation’s flux function f(u) = αu. This observation suggests the upwind
scheme that uses a backward difference to approximate the spatial derivative
when f ′(u) > 0 and a forward difference when f ′(u) < 0.

In the finite volume framework, the flux along the left side of the space-
time cell would be approximated by ∆tf(ūki−1) in case f ′(ūki ) > 0 and by
∆tf(ūki ) in case f ′(ūki ) < 0. Likewise, the line integral along the right-
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Fig. 16.8 Graphs are depicted of the initial data (u(x, 0) = 1 for x < 0, u(x, 0) = 1 − x, for 0 ≤ x ≤ 1, and
u(x, 0) = 0 for x > 1) and the computed solution at time t = 2 of the inviscid Burgers’s equation using upwind
discretization.

hand boundary of the space-time cell is approximated by ∆tf(ūki ) in case
f ′(ūki ) > 0 and by ∆tf(ūki+1) in case f ′(ūki ) < 0.

To implement the proposed upwind scheme for Burgers’s equation, a
logical test is used at each time step to determine the sign of the derivative.
The same result is obtained (approximately) in finite volume language by
defining the numerical flux function

F ki−1/2 =

 f(uki−1),
f(uki )−f(uki−1)

uki−uki−1
≥ 0;

f(uki ),
f(uki )−f(uki−1)

uki−uki−1
< 0

(16.33)

and using the numerical scheme

∆x(uk+1
i − uki ) = −∆t(Fi+1/2 − Fi−1/2).

This approximation might be used in case the derivative of f is not available
or is computationally inefficient to evaluate.

Numerical flux functions depend on the indices—in this case under
discussion i and k—and the elements of the finite sequence of states (the
uki ). The definition of the numerical flux function [Eq. (16.33)] includes the
quotient of two differences that approximates (f(u))x/ux = f ′(u). In view
of this fact, it is easy to see that this numerical flux function can be used to
replace (up to a close approximation) the direct logical test for the sign of
this derivative.
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Fig. 16.9 Graphs are depicted of the initial data (u(x, 0) = 1 for x < 0, u(x, 0) = 1 − x, for 0 ≤ x ≤ 1,
and u(x, 0) = 0 for x > 1), the computed solution at time t = 10 of the viscous Burgers’s equation using upwind
discretization for the advection term and the usual second-order centered difference for the diffusion term, and the
solution computed from the exact solution [Eq. (16.34)]. The diffusion coefficient is δ = 0.01, ∆t = 0.01, and
∆x = 0.1 for the computation done over the spatial interval [−10, 10].

The choice of a good test problem for the inviscid Burgers’s equation
requires some mathematical analysis of conservation laws, which is done in
a different context later in this chapter and in Section 17.6. One example is
provided by the exact solution depicted in Fig. 17.5, where the initial data is
u(x, 0) = 1 for x < 0, u(x, 0) = 1 − x, for 0 ≤ x ≤ 1, and u(x, 0) = 0
for x > 1. The solution for t > 1 is a discontinuous step: u(x, t) = 1 for
x < (t+ 1)/2 and u(x, t) = 0 for x > (t+ 1)/2. Fig. 16.8 shows the result
of a numerical experiment where the integration is carried to t = 2. The
discontinuity of the exact solution is at x = 3/2; this jump is matched with
reasonable accuracy by the numerical approximation (see Exercise 16.5).

Upwinding gives good results for the test cases of conservation laws
already presented. The viscous Burgers’s equation (16.29) is an advection-
diffusion equation. Thus, it serves as a test case exhibiting both features.
By a gem of mathematical analysis, there is an explicit formula for the
solution of the initial value problem for the viscous Burgers’s equation valid
for t > 0:

u(x, t) =

∫∞
−∞

x−y
t exp(−(x−y)2

4δt − 1
2δ

∫ y
0 u(η, 0) dη) dy∫∞

−∞ exp(−(x−y)2

4δt − 1
2δ

∫ y
0 u(η, 0) dη) dy

. (16.34)

(see Exercise 16.6). The graphs in Fig. 16.9 computed from this formula
and from upwind discretization for the advection term (with the logical
test coded into the computer program) and the usual second-order centered
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Fig. 16.10 The left panel shows the graphs of the approximate solution of the viscous Burgers’s equation with initial data
(u(x, 0) = 1 for x < 0, u(x, 0) = 1−x, for 0 ≤ x ≤ 1, and u(x, 0) = 0 for x > 1) computed at time t = 10

using upwind discretization for the advection term and second-order centered difference for the diffusion term (solid
line), and the solution computed from the exact solution [Eq. (16.34)]. The right panel shows the solution computed
from the exact solution and the approximation computed using the average of the first-order upwind scheme and the
centered difference for the advection term, and the same approximation for the diffusion term. The diffusion coefficient
is δ = 0.01, ∆t = 0.001, and ∆x = 0.025 for the computation done over the spatial interval [−10, 10].

difference for the diffusion term in Burgers’s equation are almost indistin-
guishable. This test again evidences the utility of upwinding.

There is a downside to the upwind schemes employed here: they are
only first-order accurate with respect to the spatial derivative. A useful
idea that might improve accuracy is to use a weighted average of the first-
order upwind scheme and the second-order central difference approximation
for the advection term. The results of tests using the initial data for the
viscous Burgers’s equation as in Fig. 16.9 are depicted in Fig. 16.10.
Averaging (with equal weights) the upwind and second-order difference
approximations for the advection term produces a more accurate result.
Averaging the two methods is of course still first-order accurate, but at least
for the discretization used for the tests, averaging gives a better result than
pure upwind (see Exercise 16.9).

One way to incorporate upwinding in the numerical approximation of
solutions of the advection-diffusion part of the Navier–Stokes model is
to use the suggested averaging of centered difference approximations and
upwinding for the discretization of the partial derivatives (u2)x, (uv)y,
(uv)x, and (v2)y that appear in the advection terms of PDEs (16.14).

The term (uv)y appears in the partial differential equation for the time
derivative of the first velocity component u. Isolating these two terms, we
may consider the conservation law ut+(vu)y = 0. In view of the discussion
of the one-way wave equation and more general conservation laws, the flux
function in this case is f(u) = vu where v is considered to be a given
function of space and time. The sign of the derivative of f is determined
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by the sign of v. Thus, an upwind scheme for approximating solutions of
this conservation law will involve switching between forward and backward
difference approximation of the spatial derivative depending on the sign of
v. The time discretization of ut at the spatial location p where u has value
uij should be balanced by a spatial discretization of (vu)y at this same
point. But, due to the staggered grid, v and u are not specified at the same
spatial locations. Refer to Fig. 16.3 and consider the vertical axis through
uij . The adjacent u-values along this axis are ui,j−1 and ui,j+1 each values
of u at distance ∆x from p. The natural adjacent v-values along this axis are
approximated at the spatial locations with nodal addresses (i, j) and (i, j−1)
by

vabove
ij =

vij + vi+1,j

2
, vbelow

ij =
vi,j−1 + vi+1,j−1

2
,

which are ∆x/2 units from p. The value of v at p is not given. Although it
could be approximated by another average, the preferred upwind scheme is
to consider the signs of vabove

ij and vbelow
ij to determine the upwind direction.

This choice leads to the definitions

uabove
ij =

{
uij , vabove

ij ≥ 0;

ui,j+1, vabove
ij < 0,

ubelow
ij =

{
ui,j−1, vbelow

ij ≥ 0;

uij , vbelow
ij < 0,

and the upwind discretization

((uv)y)ij =
vabove
ij uabove

ij − vbelow
ij ubelow

ij

∆y
. (16.35)

By combining the upwind [Eq. (16.35)] and central difference
[Eq. (16.21)] approximations with a weighted sum, we obtain the family
of useful discretizations

((uv)y)ij = (1− γ)
1

∆y

((uki,j+1 + ukij)(v
k
i+1,j + vkij)

4

−
(ukij + uki.j−1)(vki,j−1 + vki+1,j−1)

4

)
+ γ

1

∆y

(
vabove
ij uabove

ij − vbelow
ij ubelow

ij

)
, (16.36)

for 0 ≤ γ ≤ 1. Of course, γ = 0 corresponds to central difference and
γ = 1 to upwind. This formula may be written in a more compact form by
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employing the absolute value instead of a sign test:

((uv)y)ij =
1

∆y

((uki,j+1 + ukij)(v
k
i+1,j + vkij)

4

−
(ukij + uki.j−1)(vki,j−1 + vki+1,j−1)

4

)
+

γ

∆y

( |vij + vi+1,j |(uij − ui,j+1)

4

− |vi,j−1 + vi+1,j−1|(ui,j−1 − uij)
4

)
(16.37)

(see [46] for an extended, excellent treatment of this scheme and much more;
and see Exercise 16.10).

Following the same prescription, (u2)x may be discretized by

((u2)x)ij =
1

∆x

((ukij + uki+1,j)
2

4
−

(uki−1,j + ukij)
2

4

)
+

γ

∆x

( |ukij + uki+1,j |(ukij − uki+1,j)

4

−
|uki−1,j + ukij |(uki−1,j − ukij)

4

)
. (16.38)

Similar considerations are used to discretize (v2)y and (uv)x. For
example, the upwind scheme for (uv)x is best approached by considering
the conservation law vt + (uv)x = 0. The formulas in compact form are

((v2)y)ij =
1

∆y

((vkij + vki,j+1)2

4
−

(vki,j−1 + vki.j)
2

4

)
+

γ

∆y

( |vkij + vki,j+1|(vkij − vki,j+1)

4

−
|vki,j−1 + vkij |(vki,j−1 − vkij)

4

)
(16.39)

and

((uv)x)ij =
1

∆x

((ukij + uki,j+1)(vkij + vki+1,j)

4

−
(uki−1,j + uki−1,j+1)(vki−1,j + vkij)

4

)
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Fig. 16.11 The top panel depicts streamlines for steady state lid-driven cavity flow with unit lid speed, grid size 128×
128, and Reynolds number 128000. The four bottom panels depict blowups of the flow near the top left corner, the top
right corner, the bottom left corner, and the bottom right corner of the cavity.
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+
γ

∆x

( |ukij + uki,j+1|(vkij − vki+1,j)

4

−
|uki−1,j + uki−1,j+1|(vki−1,j − vkij)

4

)
. (16.40)

Using these weighted averages of central difference and upwind dis-
cretizations to compute the advection-diffusion step in the projection al-
gorithm, for example with γ = 0.9 so that upwinding is dominant, lid-
driven cavity flow simulations at Reynolds numbers in the hundreds of
thousands are stable (as in Fig. 16.11). This improvement of our original
implementation of the Chorin projection method, which is unstable for
Reynolds numbers less than about 105, is dramatic.

To implement the suggested method, previous considerations should be
taken into account: start with a lower Reynolds number and ramp up to
a desired higher value incrementally by increasing the Reynolds number
slowly with (dimensionless) time integration with, perhaps, an increase of
5% over a dimensionless time interval of 0.5. In addition, the choice of SOR
parameter should be tuned to minimize the number of SOR iterations. One
way to do this is to implement a time step adjustment scheme that takes into
account the number of SOR iterations. For example, a starting time step of
1.0× 10−5 might be modified as follows: As the integration proceeds, if the
number of SOR iterations does not exceed four, then the time step size is
increased by 20%; if the number of SOR iterations is at least six, then the
step size is decreased by 70%. Set a SOR parameter and run your code over
some number of time steps, perhaps 10,000 or 100,000 while monitoring
the total elapsed dimensionless time. The SOR parameter that produces the
largest elapsed time performs the best. Such a test was performed for the
computations that produced Fig. 16.11. A SOR parameter of 1.6 produced a
dramatic improvement over other values in the usual range [0, 2]. Also, the
number of SOR iterations remained in the range of one to eight. Other values
of the SOR parameter performed well over some regions and required a large
number of SOR iterations over other regions to converge to a test tolerance
of 5× 10−3. Of course, this test is not definitive. Perhaps you can do better
(see Exercise 16.12).

As might be expected, implementation of a weighted first-order upwind
and central difference scheme is not nearly the end of the story for simu-
lating fluid flow. For higher Reynolds numbers and more realistic physical
problems, the code will not produce physically realistic results or it will
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Fig. 16.12 The two panels depict streamlines for flow over the boxy truck moving left at 70 miles per hour. The top
panel is for the tailgate up configuration and the bottom panel for tailgate down. The horizontal and vertical scales are
relative to the 250× 25 computational grid.

be unstable. Depending on the desired application, further improvements
will be necessary: second-order-in-time numerical schemes, more robust
methods for approximating solutions of large and space matrices, other
approaches to discretizing the Navier–Stokes equations, and so on. Thus,
a journey into the world of CFD begins.

As mentioned several times, in the world of CFD and scientific com-
puting in general, there is a fundamental question: How do we know the
simulated result (for example, the streamlines in Fig. 16.11) is correct?
This question does not have a simple answer. The ultimate verification
is the formulation and proof of a theorem. Short of that, evidence of
a correct prediction is gathered by seeking to obtain the same result
from computations using different methodologies, different discretizations,
different codes, and so on (see Exercise 16.11).

Returning to Problem 16.1, the projection method code for lid-driven
cavity flow can be easily modified to approximate flow around a truck mov-
ing on a highway. Streamlines for velocity fields computed from numerical
experiments are depicted in Fig. 16.12. A boxy truck model is chosen for
convenience in coding and to avoid the important, more advanced topic of
mesh generation in CFD for curved boundaries. The qualitative features of
the flow seem to be correct even for the coarse mesh used in the experiments.
In particular, a large vortex forms in the truck bed when the tailgate is
up. This is the key difference between the tailgate up and tailgate down
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configurations. Your first challenge is to repeat these numerical experiments
to obtain comparable velocity fields. Use the following data to compare
results.

The computational rectangular grid is 250× 25 and the tailgate-up boxy
truck is defined by connecting the grid points

(50, 4), (101, 4), (101, 12), (100, 12), (100, 6), (81, 6),

(81, 16), (66, 16), (66, 11), (50, 11), (50, 4)

in order with line segments. Corresponding grid points for the tailgate down
configuration are

(50, 4), (101, 4), (101, 5), (107, 5), (107, 6), (100, 6),

(81, 6), (81, 16), (66, 16), (66, 11), (50, 11), (50, 4).

The dimensionless discretization size dx = dy = 1/50 is used in the
compuation.

Ghost cells surround the computational domain in which the velocity
and pressure fields are changed. The free-stream velocity is left-to-right and
specified at the upstream entrance by fixing the velocity in left boundary
ghost cells. Similarly, free-stream velocity is set in the ghost cells above
and below the computational rectangle. Outflow is modeled by a do-nothing
boundary condition: the velocities in the ghost cells along the right-hand
boundary match the velocities in adjacent computational cells. No-slip
boundary conditions are imposed on the truck boundary by setting interior
ghost cell velocities equal to zero. As usual, the discretized Poisson equation
for pressure leads to a system of linear equations that do not have a unique
solution because pressure is defined up to an additive constant. To specify
a solution, pressure was set to zero in the upper-right computational cell
(which is the natural choice when cell ordering is bottom-to-top and left-to-
right).

The code was initialized with zero initial velocity and small free-stream
velocity. The free-stream velocity is slowly ramped up to the desired
free-stream velocity. Also the SOR parameter ω was tuned by numerical
experiment to optimize the speed of convergence. The (code-dependent)
value of ω = 1.9 was used in the final computations together with the time
step size 0.5× 10−4 and upwind parameter 0.8.
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Your second (grand) challenge is to compare pressure drag for the
tailgate-up and tailgate-down configurations to determine which has smaller
magnitude (see Exercise 19.5). Spatial resolution with a 250×25 grid is too
coarse to obtain reliable approximations of pressure on the truck body. In
fact, at the time of this writing, the computation of drag from CFD approxi-
mations of the Navier–Stokes equations is problematic. As computational
power increases and algorithms are improved, CFD approximations will
certainly produce more accurate results. Can you meet the grand challenge?
Perhaps working on the tailgate drag problem will be your first step on a path
to learning more advanced CFD where you will make a useful contribution.

Exercise 16.1. Show that the gradient of a function is curl free; that is, the curl of the
gradient of a function is zero.

Exercise 16.2. Use Taylor expansions about ∆x = 0 to show that the accuracy of
discretizations (16.17)–(16.19) increases in the order they are presented.

Exercise 16.3. (a) Perform numerical experiments to verify that Euler’s method
for the advection-diffusion equation (16.23) with central differencing for the spatial
derivatives is unstable when advection dominates the diffusion. (b) Prove that for
sufficiently large advection with fixed diffusion, the numerical method as in part (a)
is unstable.

Exercise 16.4. Show by determining eigenvalues of an appropriate matrix that
upwind differencing is indeed stable (for appropriate choices of the time step size) when
applied to the one-way wave equation with α > 0 (and also for α < 0). Discuss the
range of viable time step sizes for given spatial discretizations.

Exercise 16.5. (1) Recreate Fig. 16.8 using upwind differencing for the spatial
derivative and a logical test of the sign of the derivative of the flux function. Hint: Be
careful concerning the case f ′(uki ) = 0. It is sometimes desirable to write code tailored
to a specific problem. But, to write a general code, perhaps a different choice of direction
can be made at each time step. Discuss this issue. (2) Repeat part (1) using the numerical
flux function defined in Eq. (16.33).

Exercise 16.6. The exact solution (16.34) of the viscous Burgers’s equation is
obtained in two basic steps: a change of variables to the heat equation and use of the
known exact solution of the heat equation. (1) Step 1 is called the Hopf–Cole (Eberhard
Hopf and Julian Cole) transformation. Let u be a solution of Burgers’s equation. Show
that there is a function ψ of the same two variables such that

ψx = u, ψt = δψxx −
1

2
ψ2
x.

The new function

φ := e−ψ/(2δ)
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is a solution of the PDE

φt = δφxx.

Also, up to an additive constant,

φ(x, 0) = exp(− 1

2δ

∫ x

0

u(y, 0) dy).

(2) Step 2 is the exact solution of the initial value problem for φt = δφxx:

φ(x, t) =
1√

4πδt

∫ ∞
−∞

e
−(x−y)2

4δt φ(ξ, 0) dx.

This formula should be familiar to students who have studied PDE. It can be checked
by substitution into the heat equation and derived using invariance properties of the heat
equation. Show that it is correct by direct substitution.
(3) Complete the derivation of the exact solution using the results of (1) and (2).
(4) Recreate Fig. 16.9. Discuss the computational overhead incurred by using the exact
solution and the finite difference approximation.

Exercise 16.7. The initial value problem for the invicid Burgers’s equation ut+uux =

0 has an exact solution, which can be derived from the result of Exercise 16.6:

u(x, t) =
∂

∂x
(min

y
(

∫ y

0
u(η, 0) dη +

(x− y)2

2t
)). (16.41)

(a) Use this result to check the accuracy of the upwind method for some of the initial
data used to create Fig. 16.9. (b) Derive exact solution (16.41) from the exact solution
of the viscous Burgers’s equation. Warning: This exercise seems to be mathematically
challenging.

Exercise 16.8. Consider the one-way wave equation ut + αux = 0 with α > 0

and for x ≥ 0. (a) Find the exact solution with the boundary condition u(0, t) = f(t).
Hint: Reverse the roles of x and t in the derivation of the solution with initial data
u(x, 0) = f(x) given in this section. (b) Reformulate and redo part (a) in case α < 0.
(c) Verify with numerical experiments that upwinding produces a good approximation
of the exact solution derived in part (a).

Exercise 16.9. [Upwinding Project] (a) Reproduce Fig. 16.10. (b) A weighed average
of two quantities Q1 and Q2 is an expression of the form λQ1 + (1 − λ)Q2. When
λ = 1/2, the usual average is obtained. Write a numerical scheme where advection is
treated as a weighted average of upwinding and central differences. Apply your code
to Burgers’s equation as in Fig. 16.10. Which choice of weight λ produces the best
results? Hint: This question is open to some interpretation: the discretization sizes for
time and space play a role. Set up an experiment to test some range of these values and
for each choice of these parameters optimize over the weight. Report on the results of
this experiment. Can you draw a general conclusion? (c) Alternate second-order finite
difference approximations of the first derivative (which are not central differences) are
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obtained by incorporating two nodes to the left or right of the node where the derivative
is desired; for example, the three-point formula

f ′(x) =
f(x− 2∆x)− 4f(x−∆x) + 3f(x)

2∆x

is a second-order approximation to the derivative of f at x that uses two points to the left
of x. Prove this. Write an upwind scheme based on this approximation together with its
counterpart that uses values to the right of x and apply it to Burgers’s equation. Discuss
the efficacy of this approach compared with the weighed averages of parts (a) and (b).

Exercise 16.10. Show that the discretizations in Eqs. (16.36) and (16.37) for (uv)y
give exactly the same result.

Exercise 16.11. [CFD for Lid-Driven Cavity Flow I] This exercise requires nontrivial
coding. Repeat the numerical experiment reported in Fig. 16.4 and make a figure for
comparison. Does your result agree with the result reported in the figure? Provide
evidence that your result is correct.

Exercise 16.12. [CFD for Lid-Driven Cavity Flow II] This exercise requires non-
trivial coding. (a) Reproduce Fig. 16.11, which was made from output obtained after
forward integration of more than 200 dimensionless time steps. At least make a
comparable figure by using your code to produce the velocity flow for lid-driven cavity
flow at Reynolds number 128000 and integrating forward for at least 100 dimensionless
time units. Gather evidence that your result is correct. (b) Run tests to tune the SOR
parameter used in your code as suggested on page 441. Note: The test suggested in the
narrative suggests a place to start, but you should try to formulate and perform other
tests.

16.2 A NUMERICAL METHOD FOR WATER WAVES

The ideal water wave equations [Eqs. (15.1)–(15.4)]

∆φ = 0 on Ω,
ηt + φxηx − φy = 0 on S,

φy = 0 on B,

φt +
1

2
(φ2
x + φ2

y) + gη = 0 on S, (16.42)

may be approximated by a variety of numerical methods, some of which
are simpler to implement than general purpose algorithms such as the finite
difference methods described in Section 16.1. The main difficulty is dealing
with the free surface (see Exercise 19.8 for a more general alternative than
the simplistic approach presented here).
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(c1L, α)

(−c1L,−1)
(−(c1 − 2)L,−1)

(−c1L, ω)

Ω̃

(c1L,−c2L)(−(c1 − 2)L,−c2L)

Fig. 16.13 A schematic boundary of the domain Ω̃ is depicted for Problem 16.3. The arrows correspond to the direction
of the fluid velocity at the inflow at the reservoir bottom to the outflow at the left end of the plate. The coordinates of the
corners are relative to L as in Problem 16.2.

Numerical experiments will be described for the dimensionless water
wave equations obtained using the scaling in display (15.5) with b = wd
and ` = wd; that is,

φ = g1/2 wd3/2 φ̃, η = wd η̃, x = wd x̃, y = wd ỹ, t =
(wd

g

)1/2
t̃.

(16.43)
This choice gives α = 1 and β = 1 in the dimensionless equations (15.8)–
(15.11). Using the sets

B̃ :={(x̃, ỹ) : ỹ = −1},
S̃ :={(x̃, ỹ) : ỹ = η̃(x̃, t̃)},
Ω̃ :={(x̃, ỹ) : −1 < ỹ < η̃(x̃, t̃)},

these equations have the form

φ̃x̃x̃ + φ̃ỹỹ = 0 on Ω̃,

η̃t̃ + φ̃x̃η̃x̃ − φ̃ỹ = 0 on S̃,

φ̃ỹ = 0 on B̃,

φ̃t̃ +
1

2
(φ̃2
x̃ + φ̃2

ỹ) + η̃ = 0 on S̃. (16.44)
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To explore, for example, approximations of the Tiger Fountain flow,
consider the following problems.
Problem 16.2. [Flow Over A Plate] For a given dimensionless length L > 0 (for
example, physical length divided by the depth wd in the same units), approximate the
function η̃ whose graph is the steady state free surface for the solution of system (16.44)
over the (redefined, finite) domain Ω̃ with bottom B̃ and surface S̃ given by

B̃ := {(x̃, ỹ) : ỹ = −1, −L < x̃ < L},
S̃ := {(x̃, ỹ) : ỹ = η̃(x̃), −L < x̃ < L},
Ω̃ := {(x̃, ỹ) : −1 < ỹ < η̃(x̃), −L < x̃ < L},

with the gradient (∂φ̃/∂x̃, ∂φ̃/∂ỹ) prescribed on the left and right vertical boundaries of
Ω̃, which are the sets

L̃ := {(x̃, ỹ) : x̃ = −L,−1 ≤ ỹ ≤ ω},
R̃ := {(x̃, ỹ) : x̃ = L,−1 ≤ ỹ ≤ α},

where α and ω are given numbers in the interval (−1, 0), η̃ is such that η̃(L) = α and
η̃(−L) = ω, and the sum of the fluxes of the flow through the left and right vertical
boundaries is zero.

Problem 16.3. [Flow Over A Plate With Reservoir] For a given dimensionless length
L > 0 (as in Problem 16.2 where it is half the length of the plate), approximate the
function η̃ whose graph is the steady state free surface for the solution of system (16.44)
over the two-dimensional domain Ω̃ bounded by line segments connecting in order the
corners

(−c1L, ω), (−c1L,−1), (−(c1−2)L,−1), (−(c1−2)L,−c2L), (c1L,−c2L), (c1L,α)

(for c1 > 2 and c2 > 1) and the curve

S̃ := {(x̃, ỹ) : ỹ = η̃(x̃), −c1L < x̃ < c1L},
where α and ω are given numbers in the interval (−1, 0), η̃ is such that η̃(c1L) = α

and η̃(−c1L) = ω, and where the gradient (∂φ̃/∂x̃, ∂φ̃/∂ỹ) is specified on the left
vertical boundary (connecting the first two corners) of Ω̃ and the horizontal bottom of
the reservoir (connecting the fourth and fifth corners) such that the sum of its fluxes, into
the bottom of the reservoir and out of the left boundary, is zero.

For the Tiger Fountain, the physical length is half the plate slice length

0.238125 m,

the water depth at the upstream end of the plate is

wd = 0.0174625 m,
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and the water depth at the downstream end is

dswd = 0.0142874 m .

Using wd for scaling, the dimensionless length L is

L = 13.6364,

the coefficients for the reservoir case are

c1 = 4.84, c2 = 6.4

(corresponding to a width of 6 feet and a depth of 4 feet), and the velocity
conversion factor γ from dimensionless velocity to physical velocity (mea-
sured in meters/sec) is

γ =
√
gwd = 0.413682.

There are side conditions for the Tiger Fountain Problem 16.2 that arise
from physical considerations. The dimensionless quantity corresponding to
water depth is approximately unity along the flat plate. The dimensionless
quantity sR corresponding to surface speed at the right boundary—which
is the quantity ((φ̃x̃)2 + (φ̃ỹ)

2)1/2 evaluated at the intersection of R and
the (dimensionless) surface—is less than the corresponding quantity sL
at the left boundary. Also, sR (on average) is approximately 0.736798
(surface speed/γ). The dimensionless boundary condition corresponding
to the velocity profile on R is of the form (−aR, bR), where aR :
[−1, η̃(L)] → [0,∞) and bR : [−1, η̃(L)] → (−∞,∞) with aR(η̃(L))2 +
bR(η̃(L))2 = s2

R. Likewise, the velocity profile on L is of the form (aL, bL)
with aL : [−1, η̃(−L)] → R and bL : [−1, η̃(−L)] → (−∞,∞) with
aL(η̃(−L))2 + bL(η̃(−L))2 = s2

R. Also, the total flux through Ω̃ must
vanish; that is, ∫ η̃(−L)

−1
aL(ỹ) dỹ =

∫ η̃(L)

−1
aR(ỹ) dỹ.

Similar considerations apply in Problem 16.3.

The choice of the side conditions is important if we wish to reproduce
observations. The main reason to conduct numerical experiments with our
model is to determine how the side conditions affect the steady state surface.
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We should not expect Euler flow to be physical at the plate boundary
where the physical flow velocity must be zero. Euler flow might produce
a nonzero velocity parallel to the plate. In the Euler approximation, a
(supposedly thin) boundary layer that respects the viscosity is ignored and
velocity fields that have nonzero horizontal components at the bottom are
allowed. For Problem 16.2, we might imagine a profile that has a positive
vertical component near the boundary on the right boundary to mimic the
flow moving up over the plate and a negative vertical component near the
surface corresponding to water falling from the reservoir onto the plate due
to the gravitational force. The velocity profile at the upstream end of the
plate is determined automatically in Problem 16.3 .

16.3 THE BOUNDARY ELEMENT METHOD (BEM)

We will describe a numerical method that is well-suited to solving the
Laplace equation in a bounded domain. The idea is to take advantage of a
basic principle from analysis: A harmonic function on a bounded domain is
determined by its behavior on the boundary. Using this fact, we can reduce
the dimension of the computation on a three-dimensional domain to two
dimensions and on a two-dimensional domain to one dimension.

16.4 BOUNDARY INTEGRAL REPRESENTATION

Let Ω be a bounded open domain in two- or three-dimensional space whose
boundary ∂Ω is locally the graph of a class C1 function (that is, a function
all of whose first-order partial derivatives are defined and continuous), and
suppose that u is a harmonic function on Ω; that is, ∆u = 0, where ∆
is the Laplace operator. In three dimensions with rectangular coordinates
(x, y, z), the Laplacian ∆ of the function u is given by uxx +uyy +uzz . We
will also use the divergence and gradient operators. The divergence div acts
on vector fields. In rectangular coordinates it is given on the vector field X
with components (X1, X2, X3) by divX = X1

x +X2
y +X3

z . The gradient
grad acts on functions. In rectangular coordinates it is given on the function
u by gradu = (ux, uy, uz). Recall also the alternative notation ∇ · X for
the divergence and ∇u for the gradient.

We will need an important result about harmonic functions: A harmonic
function has continuous partial derivatives of all orders. The simplest proof
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uses a basic fact from complex analysis: A harmonic function is the real part
of a holomorphic function. This result was used previously to construct the
stream function.

Our goal is to construct a representation of harmonic functions on Ω by
their behavior on ∂Ω.

The first step of the construction is a basic identity in vector calculus
called Green’s second identity. Let us start with two functions v and w,
which are class C2 on Ω (all partial derivatives up to and including second-
order partials exist and are continuous), and note the following version of
Leibniz’s rule:

div(w grad v) = gradw · grad v + w∆v. (16.45)

Of course, we also have

div(v gradw) = grad v · gradw + v∆w

and

gradw · grad v = grad v · gradw.

Thus, it follows that

v∆w − w∆v = div(v gradw)− div(w grad v)

and by integration over Ω,∫
Ω
v∆w − w∆v dV =

∫
Ω

div(v gradw)− div(w grad v) dV.

By an application of the divergence theorem to the right-hand side of the
last equation (where N is the outer unit normal on ∂Ω), we obtain Green’s
second identity∫

Ω
v∆w − w∆v dV =

∫
∂Ω
v gradw ·N − w grad v ·N dS, (16.46)

which is valid in two- and three-dimensional spaces as long as the boundary
integral is computed using the positive orientation on ∂Ω. For this reason,
we will assume that all boundary integrals are computed using positive
orientation.
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The second step in our construction involves the fundamental solution
of Laplace’s equation on the space in which Ω resides. In two dimensions,
view q ∈ R2 as a parameter and define u∗ : R2 → R by

u∗(p, q) =

{
− 1

2π ln |p− q|, p 6= q,
0, p = q,

(16.47)

where |p − q| is the length of the vector p − q. A direct calculation shows
that, for each q, the gradient of the function p 7→ u∗(p, q) is

gradu∗(p, q) = − 1

2π|p− q|2 (p− q).

In three dimensions, with q ∈ R3 viewed as a parameter, define u∗ : R3 →
R by

u∗(p, q) =

{ 1
4π|p−q| , p 6= q,

0, p = q,
(16.48)

and note that

gradu∗(p, q) = − 1

4π|p− q|3 (p− q).

In two- and three-dimensions the function p 7→ u∗(p, q) is harmonic for
all p 6= q. This fact is proved by simply computing the divergence of gradu∗

(see Exercise 16.16).

Proposition 16.4. For two or three dimensions, suppose that Bε is the
ball of radius ε > 0 centered at a point q and N is the outer unit normal
on ∂Bε. If φ is a class C1 function defined on an open set containing the
closure of Bε, then

lim
ε→0

∫
∂Bε

u∗(p, q) gradφ(p)·N(p)−φ(p) gradu∗(p, q)·N(p) dS(p) = φ(q).

Proof. We will prove the result for two-dimensional space; the idea of the
proof is the same in three-dimensional space (see Exercise 16.15).

For p ∈ ∂Bε, we have

N(p) =
1

|p− q|(p− q) =
1

ε
(p− q).
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Using the definition of u∗, the formula for N , the Cauchy–Schwarz
inequality, and the length 2πε of ∂Bε, note that∣∣∫
∂Bε

u∗(p, q) gradφ(p) ·N(p) dS(p)
∣∣≤ 1

2π
sup
p∈Bε
|gradφ(p)|

∫
∂Bε

|ln ε| dS(p)

≤ sup
p∈Bε
|gradφ(p)|ε|ln ε|.

Thus,

lim
ε→0

∫
∂Bε

u∗(p, q) gradφ(p) ·N(p) dS(p) = 0.

Using the formula for the gradu∗(p), we have that∫
∂Bε

−φ(p) gradu∗(p, q) ·N(p) dS(p) =
1

2πε

∫
∂Bε

φ(p) dS(p)

and

1

2πε

∫
∂Bε

φ(p) dS(p) =
1

2πε

( ∫
∂Bε

φ(p)− φ(q) dS(p) +

∫
∂Bε

φ(q) dS(p)
)

=
1

2πε

( ∫
∂Bε

φ(p)− φ(q) dS(p) + φ(q)

∫
∂Bε

dS(p)
)

=
1

2πε

∫
∂Bε

φ(p)− φ(q) dS(p) + φ(q).

Also, ∣∣ 1

2πε

∫
∂Bε

φ(p)− φ(q) dS(p)
∣∣ ≤ sup

p∈Bε
|φ(p)− φ(q)|.

Using the continuity of φ and passing to the limit as ε goes to zero, it
follows that

lim
ε→0

∫
∂Bε

−φ(p) gradu∗(p, q) ·N(p) dS(p) = φ(q).

2

The following result is the desired representation theorem for harmonic
functions.
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Theorem 16.5. Suppose that Ω is a bounded open domain in two- or
three-dimensional space whose boundary ∂Ω is locally the graph of a C1

function. If φ is harmonic in Ω and C1 on some open set containing the
closure of Ω and q ∈ Ω, then

φ(q) =

∫
∂Ω
u∗(p, q) gradφ(p) ·N(p)− φ(p) gradu∗(p, q) ·N(p) dS(p),

(16.49)
where u∗ is given by Eq. (16.47) in two-dimensional space and by
Eq. (16.48) in three dimensions.

Proof. Let ε > 0 be sufficiently small so that the closure of the ball
Bε centered at q with radius ε is contained in Ω. With Bε excised from Ω
and N the outer unit-normal on the boundary of the resulting set, Green’s
second identity applied to the harmonic functions φ and p 7→ u∗(p, q)—
under the additional assumption that φ is harmonic on an open set containing
the closure of Ω—yields the identity

0 =

∫
∂Ω
u∗(p, q) gradφ(p) ·N(p)− φ(p) gradu∗(p, q) ·N(p) dS(p)

+ lim
ε→0

∫
∂Bε

u∗(p, q) gradφ(p) ·N(p)−φ(p) gradu∗(p, q) ·N(p) dS(p).

(16.50)

The limit in the last formula is −φ(q) by Proposition 16.4 because here the
outer normal on the set Ω \ Bε is the inner normal on Bε. By substituting
this value for the indicated limit and rearranging, we obtain the desired
representation. The assumption that φ is harmonic on an open set containing
the closure of Ω is eliminated by applying the result just proved to a family
of domains Ω̃ (with C1 boundaries) whose closures are contained in Ω and
such that the family converges to Ω in a suitable sense by passing to the limit
in the resulting representations as Ω̃ converges to Ω.

Remark 1. The function p 7→ u∗(p, q) is not a solution of Laplace’s
equation on R2 in the classical sense because p is discontinuous at p = q.
Our redefinition of u∗(q, q) = 0 is simply a notational convenience. A
more accurate statement, which requires the theory of distributions to make
precise, is

∆u∗(p, q) = −δ(p− q)
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where δ is the Dirac-delta function. This theory can also be used to obtain
our representation.

Exercise 16.13. Suppose that φ is harmonic in a domain containing the ball of radius
r centered at a. Show that the value of φ at a is the average of φ over the boundary of
the ball. This is called the mean value property of harmonic functions.

16.5 BOUNDARY INTEGRAL EQUATION

Representation formula (16.49) tells us how to compute the value of a
harmonic function at an interior point of a domain when its values and
normal derivative—that is, the dot product of the gradient of the function
and the normal—are known on the boundary of the domain. The BEM is
based on an additional limit process applied to our representation formula
that determines a new representation in the limit as interior points approach
a point on the boundary. This process works equally well in two and three
dimensions. We will carry out the procedure for the two-dimensional case.

To determine the behavior of the representation as interior points ap-
proach a boundary point p, we enlarge the domain Ω by adding an open disk
centered at p with radius ε. Our representation formula [Eq. (16.49)] is valid
on the new domain Ωε with its new boundary (whose generic point is again
called p) and the original boundary point (which is an interior point of Ωε)
relabeled q. The idea is to pass to the limit as ε goes to zero.

Let Γε denote the portion of the original boundary of Ω remaining with
the disk Bε removed and γε the closure of the portion of the boundary of Bε
not contained in the closure of Ω. The new boundary is Γε ∪ γε and

φ(q) =

∫
Γε∪γε

u∗(p, q) gradφ(p) ·N(p)− φ(p) gradu∗(p, q) ·N(p) dS(p)

=

∫
Γε

u∗(p, q) gradφ(p) ·N(p)− φ(p) gradu∗(p, q) ·N(p) dS(p)

+

∫
γε

u∗(p, q) gradφ(p) ·N(p)− φ(p) gradu∗(p, q) ·N(p) dS(p).

To finish the construction, we use exactly the same ideas as in the proof
of Proposition 16.4. Indeed, the computation of the second limit is nearly
identical except that the length of the perimeter of the disk is replaced by
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the length of γε. In case q is at a point where the original boundary is C1,
which we have been assuming so far, the length is asymptotically πε because
there is a well-defined tangent line that will be a diameter of the disk as ε
decreases to zero. In case q is a corner point of a piecewise C1 boundary,
which will work equally well for what we have proved so far with some
technical additions to our proofs, the length of γε is asymptotically aε, where
a is the outer angle at the corner. Using these observations and steps in the
proof of Proposition 16.4, it follows that

lim
ε→0

∫
γε

u∗(p, q) gradφ(p)·N(p)−φ(p) gradu∗(p, q)·N(p) dS(p) =
a

2π
φ(q).

Let us examine separately the limits

lim
ε→0

∫
Γε

u∗(p, q) gradφ(p) ·N(p) dS(p),

lim
ε→0

∫
Γε

−φ(p) gradu∗(p, q) ·N(p) dS(p). (16.51)

We must take into account the singularity of the integrands at p = q.
The first integral has a logarithmic singularity. After parameterizing the
boundary appropriately, we will be faced with computing two limits

lim
ε→0

∫ −ε
−a

ln|t|h(t) dt, lim
ε→0

∫ a

ε
ln|t|k(t) dt

where h and k are continuous functions with h(0) = k(0), and where we can
assume 0 < a < 1. Both limits exist. For the second integral, the continuous
function |k| is bounded by some number M > 0; therefore, we have∣∣ ∫ a

ε
ln|t|k(t) dt

∣∣ ≤M ∫ a

ε
(− ln|t|) dt

≤ −M(a ln a− a− ε ln ε+ ε).

Using the comparison test and a basic fact from analysis (absolute conver-
gence implies convergence), it follows that the integral converges. The same
is true for the first integral. Thus, we have that

lim
ε→0

∫
Γε

u∗(p, q) gradφ(p)·N(p) dS(p) =

∫
∂Ω
u∗(p, q) gradφ(p)·N(p) dS(p),

where the right-hand side is an improper convergent integral.
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For the second integral in display (16.51) we again face two limits

lim
ε→0

∫ −ε
−a

1

|t|h(t) dt, lim
ε→0

∫ a

ε

1

|t|k(t) dt

where h and k are again continuous with h(0) = k(0). In general, such
limits do not exist. For example, suppose h is a nonzero constant and note
that the integral ∫ 1

0

1

t
dt

is divergent. To proceed, we must obtain more properties of the functions h
and k.

Let q be a point on ∂Ω and choose coordinates so that ∂Ω near q is the
graph of a continuous function f : (−a, a) → R with f(0) = 0 that is
continuously differentiable except possibly at the origin and such that its
left-hand and right-hand derivatives exist at the origin.

The original integral (the second integral in display (16.51)) over the
curve Γε can be rewritten as a sum of three integrals: one integral over
the portion of the boundary not parametrized by f (which is not a singular
integral) and a sum of two integrals over the portion parametrized by f . This
latter sum (up to a change of sign depending on the direction of the outer
normal, which is either (f ′(t),−1) or (−f ′(t), 1) for both integrals) is

I1 +I2 :=

∫ −ε
−a

φ(t, f(t))
tf ′(t)− f(t)

t2 + (f(t))2
dt+

∫ a

ε
φ(t, f(t))

tf ′(t)− f(t)

t2 + (f(t))2
dt.

Because f is continuously differentiable and f(0) = 0, we have (for
t 6= 0) the formula

f(t) = f(0) + t

∫ 1

0
f ′(ts) ds = t

∫ 1

0
f ′(ts) ds.

By substitution of this formula into I2 and some simplification, this integral
is rewritten as

I2 =

∫ a

ε
φ(t, f(t))

∫ 1
0 (f ′(t)− f ′(ts)) ds
t(1 + (

∫ 1
0 f
′(ts) ds)2)

dt.
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For a continuously differentiable function f , we do not remove the singular-
ity 1/t and it is possible that limε→0 I2 does not exist. On the other hand, if
f is just slightly smoother, then the improper integral does converge.

What should we mean by the phrase “slightly smoother?" Answer: The
derivative of f is Hölder. A function g is called Hölder of order α if 0 <
α ≤ 1 and there is a positive constant M such that

|g(x)− g(y)| ≤M |x− y|α

for all x and y in the domain under consideration. In the special case α = 1,
the function g is called Lipschitz. We will say that a function (or the graph
of a function) is class C1,α if the function is continuously differentiable and
its derivative is Hölder of order α.

If f is class C1,α, then

( ∫ 1

0
(f ′(t)− f ′(ts)) ds

)
≤M |t|α

∫ 1

0
|1− s| ds

and our singularity in I2 is 1/t1−α. Because for 0 ≤ α ≤ 1 the
improper integral

∫ 1
0 t

1−α converges, it follows that the improper integral
I2 converges. The same will be true for I1.

By combining our results for the limit process we arrive at an important
result.

Theorem 16.6 (Boundary Integral Formula for Laplace Equation). If Ω is
a bounded open domain in R2 whose boundary ∂Ω is piecewise C1,α with
outer normal N and φ is a harmonic function on Ω that is continuous on ∂Ω
and has a continuous normal derivative on ∂Ω, then φ is given on ∂Ω by

(1− a

2π
)φ(q) =

1

2π

∫
∂Ω
φ(p)

1

|p− q|2 (p− q) ·N(p) dS(p)

− 1

2π

∫
∂Ω

ln|p− q| gradφ(p) ·N(p) dS(p), (16.52)

where a = π in case q is a noncorner point of the boundary and a is
the angular measure of the exterior angle at q in case q is a corner point.
The boundary integrals are singular (at q), but they are both convergent as
improper integrals.
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Remark 2. The boundary integral formula for Laplace’s equation in three
dimensions is

φ(q) =
1

2π

∫
∂Ω
φ(p)

1

|p− q|3 (p− q) ·N(p) dS(p)

− 1

2π

∫
∂Ω

1

|p− q| gradφ(p) ·N(p) dS(p). (16.53)

Eqs. (16.52) and (16.53) are the theoretical basis for the boundary
element numerical method. The idea is to approximate the boundary values
of φ and its normal derivatives at the boundary points of the domain. Once
these are determined, the interior values of the harmonic function φ are
recovered (in the two-dimensional case) using the result of Theorem 16.5;
that is, for q ∈ Ω, we have

φ(q) =
1

2π

∫
∂Ω
φ(p)

1

|p− q|2 (p−q)·N(p)−ln|p−q| gradφ(p)·N(p) dS(p),

(16.54)
which is of course essentially the same as Eq. (16.52) except that the
boundary integral is not singular.

16.6 DISCRETIZATION FOR BEM

For the practical implementation of a numerical method we must discretize
Eq. (16.52) (or in the three-dimensional case Eq. (16.53)). There are many
ways to accomplish this step for the two-dimensional case. We will consider
only one of the simplest: We will approximate the boundary of Ω using line
segments and approximate φ and gradφ ·N by constants on each segment.
This leads to a system of linear equations for the unknown values of φ on
the boundary, which can be solved by Gaussian elimination.

Water Wave BEM Reformulation

In anticipation of applying the BEM to the water wave Problem 16.2,
let us consider L > 0, a twice continuously differentiable function η :
[−L,L]→ (−1, 0), and the domain

Ω := {(x, y) : −1 < y < η(x), −L < x < L}.

Note that the left, right, and bottom boundaries of Ω are line segments; the
top boundary is the graph of η. We will also specify the normal derivatives
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of the unknown harmonic function φ everywhere on the boundary. In other
words, we will pose the Neumann problem for the Laplace equation on Ω.
We could consider the Dirichlet problem (where the values of φ are specified
on the boundary), or some combination of such boundary conditions. The
essential feature is that one or the other of the two conditions is specified on
the boundary. Also, in the special case of the Neumann problem, we must
have a compatibility condition; it is the content of the next proposition.

Proposition 16.7. If φ is a harmonic function in Ω with unit outer normal
N and normal derivative gradφ ·N defined everywhere on ∂Ω, then∫

∂Ω
gradφ(p) ·N(p) dS(p) = 0.

Proof. Apply the divergence theorem as follows

0=

∫
Ω

∆φ(p) dV (p)=

∫
Ω

div(gradφ)(p) dV (p)=

∫
∂Ω

gradφ(p)·N(p) dS(p).

As in Problem 16.2, the top and bottom boundary conditions are the zero
Neumann condition gradφ(p)·N(p) = 0. In fact, on the bottom, gradφ(p)·
N(p) = φy(p), and on the top,

(gradφ·N)(x, η(x)) = − 1√
1 + (η′(x))2

(η′(x)φx(x, η(x))−φy(x, η(x))).

Both of these normal derivatives are zero according to the steady state water
wave equations.

We have some freedom in specifying the inlet and outlet conditions;
the only restriction is the compatibility condition of Proposition 16.7 that
requires the influx and outflux to be equal. The normal derivative at the inlet
(the right-hand boundary R) is given by a scalar function ρ : [−1, η(L)]→
(−∞, 0) and at the outlet (left-hand boundary L) by λ : [−1, η(−L)] →
(0,∞). In other words, the dot product of the gradient of φ and N is ρ at
the right-hand boundary and λ at the left-hand boundary. The compatibility
condition is∫

L
gradφ(p) ·N(p) dS(p) +

∫
R

gradφ(p) ·N(p) dS(p) = 0,
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Fig. 16.14

where the orientations of L and R are compatible with the positive
orientation of ∂Ω. To compute the second line integral, we can parameterize
R by the function γ : [0, 1]→ R2 given by

γ(t) = (L, tη(L)− (1− t))

so that∫
R

gradφ(p) ·N(p) dS(p) =

∫ 1

0
ρ(tη(L)− (1− t))|1 + η(L)| dt.

With y = tη(L)− (1− t), the integral is∫ η(L)

−1
ρ(y) dy.

The integral over L (with γ(t) = (−L,−t+ (1− t)η(−L)) is∫ η(−L)

−1
λ(y) dy.

Thus, the compatibility condition is∫ η(L)

−1
ρ(y) dy +

∫ η(−L)

−1
λ(y) dy = 0. (16.55)

Boundary Elements and Nodes

The next step is to choose meshes on the four parts of the boundary,
where the integration is counterclockwise around the boundary starting and
ending at the top-left point. We will divide L into mL equal length line
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segments (called boundary elements), B into mB segments, andR into mR
segments. This makes perfect sense because each of these three parts of the
boundary are themselves line segments. The surface S might be curved, so
we must specify what we mean by equal length segments. Perhaps marking
points on S at equal arc-lengths along this curve is a good way to discretize,
but it is simpler to divide the parameterization interval into mS equal line
segments. The natural parameterization interval (for nonbreaking waves) is
[−L,L] corresponding to the parameterization x 7→ (x, η(x)) of S. Each of
the mS segments on [−L,L] corresponds to a segment of S. For simplicity,
we will replace this segment by a line interval connecting the end points of
the segment. Let us also choose the midpoint of each boundary element as
in Fig. 16.14 and call it the corresponding node. There are exactly

M := mL +mB +mR +mS

nodes.

The value of a in the boundary integral formula [Eq. (16.52)] is a = π
because each boundary node lies on a line segment. Also, from the Neumann
boundary condition, we know the value of the normal derivative gradφ·N at
each node. We wish to determine the unknown values of φ at each node. To
do this, we will make one final approximation: The value of φ and its normal
derivative gradφ · N are constant on each boundary element according to
their values at the corresponding node.

BEM Linear System

Suppose that {Ji}Mi=1 is the set of boundary elements with corresponding
nodes {qi}Mi=1. Also, for notational convenience, let φi := φ(qi) and dφi :=
(gradφi · N)(qi). Under our assumptions, the boundary integral formula
[Eq. (16.52)] yields

φi =
1

π

M∑
j=1

(φj

∫
Jj

(p− qi) ·N(p)

|p− qi|2
dS(p)− dφj

∫
Jj

ln|p− qi| dS(p)).

(16.56)

Note that there are exactly M equations for the M unknowns {φi}Mi=1.
We would expect that this system of linear equations has a unique solution,
which is our desired approximation to φ on ∂Ω. Unfortunately, there is a
complication: Our Neumann boundary value problem (BVP) does not have
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a unique solution; rather, it has an infinite number of solutions because
the addition of a nonzero constant to a given solution produces a different
solution. For this reason, the system of equations we have just defined—
whose solutions are supposed to approximate solutions of the Neumann
problem—will be singular or nearly singular; thus, our linear system will
either not have a solution or be highly ill-conditioned. A remedy—which
we will adopt—is to assign a value to φ at one of the nodes and replace the
known value of the normal derivative dφ at this node by a new unknown.

The linear system is made into a numerical linear system by evaluating
the integrals in Eq. (16.56):

P :=

∫
J

(p− q) ·N(p)

|p− q|2 dS(p),

Q :=

∫
J

ln|p− q| dS(p).

For this computation, suppose that (x1, y1) and (x2, y2) are the endpoints
of the element J with the orientation direction from the first to the second
point, and parameterize J with the function γ : [0, 1]→ R2 given by

γ(t) = (γ1(t), γ2(t)) = ((1− t)x1 + tx2, (1− t)y1 + ty2).

The outer normal along J is obtained by rotating the direction vector of
the line segment J clockwise by 90 ◦ to obtain the normal direction (y2 −
y1,−(x2 − x1)). The normal N along J is the unit vector in this direction.

With some simplification, and the notation

r1 := x1 − q1, r2 := y1 − q2, z1 := x2 − x1, z2 := y2 − y1,

we have

P = (r1z2 − r2z1)

∫ 1

0

1

(r1 + z1t)2 + (r2 + z2t)2
dt,

Q =

√
z2

1 + z2
2

2

∫ 1

0
ln((r1 + z1t)

2 + (r2 + z2t)
2) dt. (16.57)

The integrals in display (16.57) are regular if q does not belong to
the element and singular if q does belong to the element. In all cases,
there are efficient numerical methods for evaluating the integrals. As you
might expect, numerical integration is a vast and well-developed subject
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that deserves careful attention because it is a core issue encountered in
scientific computing. Indeed, the implementation of the BEM is a prime
example. We will avoid a discussion of numerical integration here due to a
pleasant surprise: for the special case we are considering, all integrals can
be evaluated exactly. We will list the results and leave the verifications as
exercises. Warning: Be careful not to integrate across a singularity without
taking the singularity into account.

If q belongs to the line containing the element, which includes the case
where the integral is singular, then

P = 0.

Indeed, if q is on the line containing the element, then γ(t) − q is a vector
parallel to the linear element; therefore, (γ(t) − q) · N(γ(t)) = 0. On the
other hand, if q is not on the line containing the element, then

P = arctan
(z2

1 + z2
2 + r1z1 + r2z2

r1z2 − r2z1

)
− arctan

(r1z1 + r2z2

r1z2 − r2z1

)
(16.58)

If q is not on the line containing the element, then

Q =

√
z2

1 + z2
2

2

(
(
r1z1 + r2z2

z2
1 + z2

2

+ 1) ln((r1 + z1)2 + (r2 + z2)2)

− 2− r1z1 + r2z2

z2
1 + z2

2

ln(r2
1 + r2

2)

+ 2P (z2
1 + z2

2)(r2
1 + r2

2)− (r1z1 + r2z2)2

(z2
1 + z2

2)(r1z2 − r2z1)

)
. (16.59)

If q is on the line containing the element but not on the element, then

Q =

√
z2

1 + z2
2

2

(
(
r1z1 + r2z2

z2
1 + z2

2

+ 1) ln((r1 + z1)2 + (r2 + z2)2)

− 2− r1z1 + r2z2

z2
1 + z2

2

ln(r2
1 + r2

2)

+ 2
(z2

1 + z2
2)(r2

1 + r2
2)− (r1z1 + r2z2)2

(z2
1 + z2

2 + r1z1 + r2z2)(r1z1 + r2z2)

)
. (16.60)

And if q is on the element, then

Q =

√
z2

1 + z2
2

2
(ln(r2

1 + r2
2)− 2). (16.61)
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We have all the ingredients necessary to implement the BEM for our
special case. Although there are many possible ways to write a computer
code to solve our problem, they will all share some common features in the
following list.

Specification of the mesh and nodes: The mesh consists of the end points
of elements and the nodes are the midpoints of the elements.
Function evaluations: Natural functions for the code have input consist-
ing of the two end points of an element and the corresponding node.
The output must incorporate logic to use the explicit values of P and Q
according to the relation between the node and the element. For example,
if the node is on the line containing the element, thenP is zero, otherwise
it is computed using the formula in Eq. (16.58). The logic forQ is slightly
more complicated: Q is computed using Eq. (16.59) in case the node is
not on the line containing the element; Q is computed using Eq. (16.60)
in case the node is on the line but not on the element; andQ is computed
using Eq, (16.61) in case the node is on the element.
Preliminary matrix assembly: The linear equations obtained from the
discretization using Eq. (16.56) must be assembled. They may be
expressed in the matrix form (I − 1

πB)Φ = 1
πK, where

bij =

∫
Jj

(p− qi) ·N(p)

|p− qi|2
dS(p),

cij =

∫
Jj

ln|p− qi| dS(p),

and K := CdΦ. For our Neumann boundary conditions, the matrix I −
1
πB will be nearly singular. This fact may be used as an internal check
while debugging code.
Neumann boundary data: The bottom and surface have zero Neumann
data; that is, dφj = 0 at all corresponding nodes. The vertical sides have
given Neumann data.
System matrix assembly: The system of linear equations in component
form is given by

φi −
1

π

m−1∑
j=1

bijφj +
1

π
cimdφm = − 1

π

(
− bimφm +

m−1∑
j=1

cijdφj
)
,

− 1

π

m−1∑
j=1

bmjφj +
1

π
cmmdφm = − 1

π

(
− (bmm − π)φm +

m−1∑
j=1

cmjdφj
)
,
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Fig. 16.15 The boundary of the domain for the test example corresponding to data (16.64) is depicted.

where the first equation holds for i = 1, 2, . . . ,m− 1 and the second for
i = m. In other words, the system matrix A is obtained from the matrix
I − 1

πB by replacing its last column by {cim/π}mi=1.
System right-hand side: The vector b in our systemAx = b is obtained by
first replacing the last column of the matrix C with the transpose of the
vector (−b1m,−b2m, . . . ,−bm−1,m,−(bmm − π)) and then muliplying
−1/π times the product of the resulting matrix and the vector dΦ with
its last element replaced by φm.
Solution of linear equations: The linear system Ax = b can be solved by
Gaussian elimination. The numerical approximation of solutions of linear
systems is a fundamental issue in numerical analysis (and in abstract
mathematics). The fundamental algorithm is Gaussian elimination. It is
the method of choice for BEM because the linear systems that arise are
full (that is most elements of the system matrix are nonzero) and the
matrices have no special structure (for example, they are not symmetric
or banded). Special methods of solution are advantageous for special
types of matrices.

Test Examples

A BEM code may be tested with many possible examples as exact
solutions of the Laplace equation abound.

A code should be debugged with an example where all calculations can
be easily checked by hand. For instance, a simple choice is the potential
φ(x, y) = −x in the rectangular domain with corners (−10,−1/2),
(−10,−1), (10,−1) and (10,−1/2). In this case the harmonic conjugate
(the stream function) is ψ(x, y) = −y. Thus, the top and bottom of the
domain are streamlines. In particular, the function η is given by η(x) =
−1/2. The functions λ and ρ are given by λ(y) = 1 and ρ(y) = −1.
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A more realistic and interesting example, which is important in fluid
dynamics, is potential flow with one source and one sink placed on a
horizontal line. The suggested complex potential is a modification of the
complex function z 7→ 1/2 log((z − 1)/(z + 1)), which has singularities—
the source and sink—at z = 1 and z = −1, respectively. To fit more
naturally into the context of our water wave problem, we may use instead
the function

z 7→ 1

2
log
(z + i− h
z + i+ h

)
,

which has singularities at z = −h− i and z = h− i. The analysis requires
some knowledge of complex variables, but the result used for testing code
does not.

The real part of the complex potential (the potential for our flow) is

φ(x, y) =
1

2
ln
((h− x)2 + (1 + y)2

(h+ x)2 + (1 + y)2

)
(16.62)

and the imaginary part (the stream function) is

φ(x, y) = arctan
( 2(1 + y)h

x2 − h2 + (1 + y)2

)
. (16.63)

The level sets of φ are the streamlines. Choose a positive value of h,
say h = 15, and construct a domain (see Fig. 16.15) with vertical sides
symmetric with respect to the y-axis that would meet the x-axis at points
with x-coordinates having absolute value less than h, say −10 and 10, a
horizontal bottom along the line y = −1, and a top consisting of part of a
streamline that lies below the x-axis, say the level set {(x, y) : φ(x, y) =
−1/8}. Let us also note that the bottom of our domain is part of the
streamline {(x, y) : φ(x, y) = 0}. The relevant data for these choices is

φ(x, y) =
1

2
ln
((15− x)2 + (1 + y)2

(15 + x)2 + (1 + y)2

)
,

η(x) = − cot(
1

8
)
(
15 + tan(

1

8
)− (225(1 + tan2(

1

8
))− tan2(

1

8
)x2)1/2

)
,

ρ(y) = − 30(125 + (1 + y)2)

50626 + (100 + (1 + y)2)2 + 225(2(1 + y)2 − 200)
,

λ(y) = −ρ(y). (16.64)
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Nodes Per Side Absolute Error Relative Error
n = 2 2.28167 0.664819
n = 4 2.40385 0.483266
n = 8 2.18281 0.305717
n = 16 1.60163 0.157182
n = 32 0.913901 0.0630917
n = 64 0.445372 0.0216804
n = 128 0.211173 0.00725832
n = 256 0.102029 0.00247789

Table 16.1 Errors are listed for test case (16.64) on the domain depicted in Fig. 16.15.
The absolute error is the Euclidean distance between the exact and computed values of the
potential φ on the boundary at all but the last node. The relative error is this distance divided
by the length of the vector of exact values at these nodes.

Errors are listed in Table 16.1 for a numerical experiment with
data (16.64) on the domain depicted in Fig. 16.15. The relative error is
less than 0.5% with 32 nodes per side. On the other hand, the method
seems to be approximately first order (that is, the error is proportional to
the mesh size). Indeed, doubling the number of nodes reduces the error by
approximately 1/2.

An Algorithm to Approximate Steady State Water Waves

The BEM is a tool that can be used to approximate solutions of the
Laplace equation with Neumann (Dirichlet or mixed) boundary conditions
on a bounded domain. For Problem 16.2, we can approximate solutions of
a version of BVP (16.44): Given η̃, we can approximate the function φ̃ that
satisfies the first three conditions and given Neumann data on R̃ and L̃.
But, how do we find η such that the last condition η̃ + 1/2|grad φ̃|2 = 0 is
satisfied? Although there are many possibilities, we will explore a natural
idea in this section: For a suitable space of functionsN and a corresponding
norm, minimize the functional F : N → R given by

F (η̃) = |η̃ +
1

2
|grad φ̃|2|2, (16.65)

where φ̃ is the solution of our Newmann BVP in the domain Ω̃ such that S̃
is given by the graph of η̃. The solution of our problem (if it exists) is a zero
of F .

To implement a minimization procedure, we will need a method to
compute |grad φ̃|2 along the surface S̃, given as the graph of the function
η̃, using the output of the BEM. Fortunately, we do not need to compute
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the partial derivatives of φ̃ separately. As usual let N denote the outer unit
normal on S̃ and T the unit tangent. Because N and T are a basis for R2 at
each point on S̃, we have that

grad φ̃ = (grad φ̃ ·N)N + (grad φ̃ · T )T.

The Neumann boundary condition on S̃ implies the simplification

grad φ̃ = (grad φ̃ · T )T ;

therefore,

|grad φ̃|2 = (grad φ̃ · T )2.

Using the chain rule, note that

d

dx
φ̃(x, η̃(x)) = grad φ̃ ·

(
1

η̃′(x)

)
= grad φ̃ · T

√
1 + (η̃′(x))2.

Thus,

grad φ̃ · T =
1√

1 + (η̃′(x))2

d

dx
φ̃(x, η̃(x))

and

|grad φ̃(x, η̃(x))|2 =
1

1 + (η̃′(x))2

( d
dx
φ̃(x, η̃(x))

)2
. (16.66)

Eq. (16.66) is useful to compute the value of our functional F because
both derivatives can be approximated by numerical differentiation of the
scalar functions η̃ and x 7→ φ̃(x, η̃(x)), which requires only the values of
these functions at the nodes on S̃.

We have described a method to evaluate the functional F for a choice of
η̃ given by its values at the nodes on S̃.

To turn the idea of minimizing over a function space (which should
contain the desired solution η̃) into a numerical method, we must discretize
the space of functions. Our candidate solutions are (smooth) functions on
the interval [−L,L] with values in (−1, 0) and with end point values α at
x = L and ω at x = −L, as in Problem 16.2.
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Using the BEM discretization, we may consider discretized candidate
functions as vectors in RmS̃ ; that is, one function value for each node on
S̃. In this case, the discretization of the functional F is a function from
the product neighborhood Π

mS̃
i=1(−1, 0) in RmS̃ to the real numbers. This

discretization is straightforward, but the minimization problem is over a
space of (perhaps large) dimension mS̃ .

Another natural way to represent functions on a bounded interval is
by Fourier series. Recall one of the basic facts of the subject: If f is a
twice continuously differentiable (real valued) function on [−L,L] such
that f(−L) = f(L) and two sequences of (real) numbers {an}∞n=0 and
{bn}∞n=1—called the Fourier coefficients—are defined by

an =
1

L

∫ L

−L
f(x) cos

(nπ
L
x
)
dx, bn =

1

L

∫ L

−L
f(x) sin

(nπ
L
x
)
dx,

then

f(x) =
1

2
a0 +

∞∑
n=1

an cos
(nπ
L
x
)

+

∞∑
n=1

bn sin
(nπ
L
x
)

(16.67)

and the series converges uniformly on [−L,L].

In our situation, we do not have the required condition f(−L) = f(L),
but it is easy to modify the problem so that this condition is satisfied. Simply
choose the candidate functions to be of the form

η̃(x) = ω +
α− ω

2L
(x+ L) + f(x)

where f(−L) = 0 and f(L) = 0. Each such f is represented by a uniformly
convergent Fourier series as in Eq. (16.67) with

∞∑
n=1

(−1)kan = 0

to ensure the end-point conditions.

An advantage of the Fourier series representation is the expectation (but
not the guarantee) that the first few terms (Fourier modes) of the series
representation will give a good approximation to the desired minimum. On
the other hand, the constraint that the image of η̃ be in (−1, 0) is more
difficult to impose.
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Fig. 16.16 The top panels show the results of pattern-search minimizations to approximate the steady state free surface
for the Tiger Fountain flow for Problem 16.2 using inflow given by ρ(ỹ) = −vR̃(ỹ + 1)/(1 + α) and outflow
λ(ỹ) = vL̃(ỹ + 1)/(1 + ω), where vR̃ = 2v(1 + ω)/(α+ ω + 2), vL̃ = 2v(1 + α)/(α+ ω + 2), and v
is the dimensionless quantity corresponding to surface velocity (≈ 0.7367984698). The panels from left to right and
top to bottom are for 1–9 Fourier modes (corresponding to 2–18 coefficients of cosines and sines). The middle panel is
an overlay to show the convergence, and the bottom panel is an enlargement of the surface profile for nine modes.
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One more important ingredient is needed: A numerical minimization
algorithm (which can be successfully applied to the functional (16.65)). The
premier numerical minimization algorithm is based on Newton’s method
(see A.14); but its application requires knowledge of the derivative of the
function that is to be minimized.

A viable alternative is to use a pattern search (see, for example, [82]).
The idea could not be simpler: Suppose we wish to minimize a function
G : Rk → R. Choose a finite set of vectors in Rk such that every vector
in Rk can be written as a linear combination of the elements in this set
with nonnegative coefficients. Such a set—which must have at least n + 1
elements—is called a positive spanning set. A useful example of a positive
spanning set (with 2n elements) is given by the union of a basis and the
set obtained by multiplying every vector in the basis by −1. To implement
the algorithm, choose a guess p ∈ Rk for the minimizer of G and a step
size λ > 0. Compute G(p + λv) for every element v in the spanning set.
Select the smallest new value obtained forG, replace p by the corresponding
vector, and repeat the process until G(p) is at least as small as all the new
values or a preassigned number of iterations is reached. The algorithm may
be refined in several ways, for example, by decreasing the step size after the
algorithm halts with the previous step size, taking steps only in directions
near the previously successful direction, or changing the positive spanning
set. Of course, it is possible for the algorithm to halt at a local minimum
of G that is not the global minimum. There is no general method known
that would always avoid this possibility. On the other hand, confidence in
solutions may be increased by applying the algorithm to several different
initial guesses. Problem 16.3 reflects a more physically realistic situation
than does Problem 16.2, but it is computationally more expensive. On the
other hand, no new numerical algorithms are needed. Only the geometry of
the boundary used in the BEM needs to be changed to modify a code used
to approximate the solution of Problem 16.2. The important change is the
treatment of inflow and outflow velocity profiles.

A reasonable choice for the inflow velocity profile for Problem 16.3
is a parabolic velocity field along the bottom of the reservoir whose flux
corresponds to the known pump flow rate. Using the geometry of the
boundary (depicted in Fig. 16.13), the bottom of the reservoir is a horizontal
line segment with end coordinates −(c1− 2)L and c1L. We may choose the
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Fig. 16.17 The panels show the results of a pattern-search minimization (using 10 Fourier modes) to approximate the
steady state free surface for the Tiger Fountain flow for Problem 16.3 with inflow and outflow velocity profiles as in
displays (16.68) and (16.69). The top panel depicts the free surface together with a portion of the plate and reservoir
boundaries. The bottom panel shows the same free-surface flow over the plate.

inflow velocity field to be given by

x 7→ −h
( (x− L)2

((c1 − 1)L)2
− 1
)
e2, (16.68)

so that the velocity field is normal to the boundary and vanishes at the two
vertical walls of the reservoir with h a positive constant to be determined by
the flow rate. By choosing the outflow field magnitude to be the bulk speed
bs along the entire outflow (that is, the outflow velocity field is −bs e1), we
may compute the value of h so that the total flux is zero. In this scenario,

h ≈ 0.00542675. (16.69)

The results of a corresponding numerical experiment using BEM and
a pattern search for the coefficients of 10 Fourier modes (20 parameters)
are presented in Fig. 16.17. A standing wave over the plate is clearly visible.
Thus, this experiment suggests that our model captures some of the observed
phenomena. The Tiger Fountain flow exhibits a wave train with three or four
maxima with diminishing amplitude in the downstream direction. These
additional peaks do not seem to be predicted by our numerical experiment.

The inclusion of the reservoir into the computational domain gives a
more accurate result than the flow over a plate when compared with the
physical flow. On the other hand, for the experiment reported in Fig. 16.16,
the inflow velocity profile is not derived from physical measurement. What
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would happen if the inflow profile from the (numerical) reservoir flow were
inserted into the plate flow (see Exercise 16.27).

Exercise 16.14. Approximate the steady state temperature at a focus of an elliptical
plate situated in an environment with constant temperature under the assumptions
that the heat in the plate obeys Fourier’s law, the heat flow at the boundary obeys
Newton’s law of cooling, and the temperature at the other focus is held fixed. For
a specific example, take the boundary of the plate to be given by x2/4 + y2 = 1,
the ambient temperature Ta to be zero, the heat transfer coefficient λ = 1, and the
temperature at the focus (−

√
3, 0) to be u = 1. Hint: The steady state temperature u

must statisfy the boundary value problem ∆u = 0 in the region bounded by the ellipse
and ∇u ·N = λ(u− Ta) on the ellipse, where N is the outer unit normal.

Exercise 16.15. Prove Proposition 16.4 for the three-dimensional case.

Exercise 16.16. For u∗ defined as in Eq. (16.47) or (16.48), prove that the function
p 7→ u∗(p, q) is harmonic for all p 6= q.

Exercise 16.17. Verify Eq. (16.58).

Exercise 16.18. Verify Eq. (16.59).

Exercise 16.19. Verify Eq. (16.60).

Exercise 16.20. Verify Eq. (16.61). Hint: In our case, q is the midpoint of the element;
therefore, the integral is singular at t = 1/2. Split the integral into two improper integrals
on the intervals [0, 1/2] and [1/2, 1]. The integral of the logarithm is best handled using
integration by parts; that is,

∫
u dv = uv −

∫
v du where u is the logarithm. Take v =

t− 1/2.

Exercise 16.21. Discuss the claim: The most efficient method of evaluating the
integrals in display (16.57) is numerical integration.

Exercise 16.22. Verify Eqs. (16.62) and (16.63).

Exercise 16.23. Verify the formulas in display (16.64).

Exercise 16.24. [BEM Coding I] Write a BEM code and reproduce Table 16.1.

Exercise 16.25. (a) Find the (exact) minimum of the function g : R2 → R given by

g(x, y) =
1

2
y2 − 1

2
x2 +

1

3
x3 +

1

4
x4.

Approximate the minimum using Newton’s method and a pattern search. Discuss the
relative efficiencies of these numerical methods.
(b) Approximate the function that minimizes the functional

F [γ](t) :=

∫ 2π

0

γ̇(t)2 − γ(t)2 dt
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over all piecewise C1 functions γ : [0, 2π] → R such that γ(0) = 1 and γ(2π) = 1

using a pattern search together with a discretization of the functions in the domain of
the functional. (Note: The function γ(t) = cos t is the minimizer.)

Exercise 16.26. Verify the approximate value of h given in display (16.69).

Exercise 16.27. [BEM Coding II] (a) Repeat a version of the numerical experiment
reported in Fig. 16.17. (b) Use the BEM integral representations to compute the velocity
profile along a vertical line at the upstream end of the plate. (c) Use the result of (b) to
solve Problem 16.2 and compare your result with your computation for part (a).

16.7 SMOOTHED PARTICLE HYDRODYNAMICS

The equations of fluid motion, in particular the water wave equations, seem
to be too complicated to admit exact general solutions. Although some
qualitative predictions can be determined from these systems, we must often
resort to numerical computations to obtain detailed predictions. The numer-
ical treatment of the equations of fluid motion is a vast subject, which often
goes by the name CFD (computational fluid dynamics). One approach is by
finite difference methods, which were introduced in Chapter I. A simpler,
but less developed approach, is called smoothed particle hydrodynamics
(SPH) (see [51, 66, 77]). This method is conceptually easy and it produces
good results; its main disadvantage is a lack of a corresponding rigorous
numerical analysis. We will discuss it here as a plausible approach to the
approximate simulation of free-surface problems and as an introduction to
Lagrangian methods in fluid mechanics.

16.7.1 Euler Versus Lagrange
Recall Euler’s equations of fluid motion

ρt +∇ · (ρu) = 0,

ρ(ut + (u · ∇)u) = −∇p. (16.70)

In this Eulerian formulation, the state variables (density) ρ, (pressure) p, and
(velocity) u are viewed as fields on space-time; they are functions of position
x and time t. Euler’s equations are a system of PDEs for these fields. The
motion of fluid particles is ignored. The Eulerian observer resides at a point
(x, t) in space-time and asks, for example, what is the velocity of the fluid
at my position x and current time t?



476 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

In the Lagrangian formulation, each fluid particle or perhaps a set of fluid
parcels is labeled—some authors say marked—at a reference time taken
here to be t = 0. Usually each particle is labeled by its starting position
in space, but a set of fluid parcels might be marked by some other attribute
(see, for example, Exercise 16.31).

Once a particle is marked by a Lagrangian coordinate ξ, its future
position is determined by solving the initial value problem

ẋ = u(x, t), x(0) = ξ,

where u is the Eulerian fluid velocity field. The hallmark of the Lagrangian
formulation is the Lagrange flow map defined to be the future position of ξ
at each time t. More precisely, the Lagrangian flow map X is the function
of ξ and t such that t 7→ X(ξ, t) is the solution of the ODE ẋ = u(x, t) with
initial condition X(ξ, 0) = ξ. Warning: Because the vector field u is time
dependent, X does not satisfy the semigroup property in time as does the
flow of an autonomous vector field (see Exercise 16.30). The Lagrangian
observer is moving with a marked fluid particle and asks what is my current
position and velocity?

In more prosaic language, an Eulerian observer sits on a riverbank to
view its flow; a Lagrangian observer drifts on the river in a boat.

To begin the transformation of the equations of motion from Eulerian
to Lagrangian coordinates, consider the density ρ, which is a scalar state
variable and let R(ξ, t) be its Lagrangian representation. In other words,

R(ξ, t) = ρ(X(ξ, t), t). (16.71)

Let D denote differentiation with respect to the spatial variable (either
x or ξ according to the context). The Lagrangian representation U of the
velocity u, a vector state variable, is given by

U(ξ, t) = DX−1(X(ξ, t), t)u(X(ξ, t), t). (16.72)

To understand this formula, consider a point (ξ, t), map it to the spatial
coordinates by X(ξ, t), evaluate the velocity field at this point u(X(ξ, t), t),
and transform this vector back to the Lagrangian markers via the derivative
of the inverse of x 7→ X(x, t). Of course, DX−1(X(ξ, t)) = [DX(ξ, t)]−1;
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thus, we also have that

U(ξ, t) = [DX(ξ, t)]−1u(X(ξ, t), t). (16.73)

This is the way a vector field changes coordinates.

A fundamental and useful formula relates time derivatives in the La-
grangian and Eulerian formulations. Recall, from the definition of the flow
map X , that

Xt(ξ, t) = u(X(ξ, t), t), X(ξ, 0) = ξ.

For an Eulerian scalar quantity f , the partial derivative of its Lagrangian
representation F (ξ, t) = f(X(ξ, t), t) with respect to time is

Ft(ξ, t) =Df(X(ξ, t), t)Xt(ξ, t) + ft(X(ξ, t), t)

=ft +∇f · u
=ft + (u · ∇)f. (16.74)

In other words, the partial time derivative of the Lagrangian scalar state is
the material derivative of the Eulerian state.

In the interpretation of the Lagrangian formulation used here for SPH, the
equations of motion may be viewed as ODEs for the states along the path of
a fluid particle in space-time. Although the Lagrangian equations of motion
can be derived directly from physical considerations, they are discussed here
as alternative formulations of the Eulerian field equations.

Each state variable for the fluid is treated as a Lagrangian variable.
For simplicity of notation the Lagrangian marker is suppressed and the
density, pressure, and velocity along a fluid particle trajectory are denoted
by R(t) = ρ(X(t), t), P (t) = p(X(t), t), and V (t) = u(X(t), t). The
quantities ∇p, ∇ · u, and ∆u are also named to suggest the functions
they define along the path: gradP(t) = (∇p)(X(t), t), divV(t) = (∇ ·
u)(X(t), t), and LapV(t) = ∆u(X(t), t). There is a possible confusion
concerning the definition of V , which gives the value of the fluid velocity
along the path of a fluid particle. This vector function is not the Lagrangian
velocity field V properly defined in Eq. (16.73); in fact, the two fields are
related by

V (ξ, t) = DX(ξ, t)U(ξ, t).
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To obtain the Lagrangian formulation of fluid mechanics, consider (for
instance) the Eulerian equation of continuity

ρt +∇ · (ρu) = 0,

expand the second term, and rewrite this equation in the form

ρt + (u · ∇)ρ = −ρ∇ · u,

or alternatively, as

ρt + (u · ∇)ρ = (u · ∇)ρ−∇ · (ρu).

Using Eq. (16.74), the left-hand sides of these equations are the time deriva-
tive dR/dt in Lagrangian notation. Thus, the corresponding Lagrangian
equations may be expressed as

dR

dt
= −R divV (16.75)

and

dR

dt
= V · gradR− divRV. (16.76)

Similarly, one of the Lagrangian forms of the full Eulerian equations of
fluid motion is the system of ODEs

dx

dt
= V, (16.77)

dR

dt
= −R divV, (16.78)

R
dV

dt
= −gradP +Rg, (16.79)

where we have also included the gravitational force.

The Lagrangian system [Eqs. (16.77)–(16.79)] is underdetermined: there
are 11 variables (three components of x, V , and gradP plus the scalars R
and divV), but only 7 equations. This should be expected. It is not possible
to transform the equations of fluid motion to a well posed system of ODEs.
If we could do so, existence and uniqueness of solutions in fluid dynamics
would follow from the existence theory for ODEs. But at a fundamental
level, because there are two equations (conservation of mass and momentum
balance) for three variables (density, velocity, and pressure), we need one
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more equation to close the system. The missing equation is the mathematical
statement of the conservation of energy. But because we will consider only
regimes where heat dissipation (for example) is not important, we will close
the system in a different manner. We will employ an equation of state;
that is, a constitutive relation between pressure and density together with a
method (called SPH) for expressing divV and gradP using the state variables
x, V , and ρ but not their spatial derivatives. Using these ideas, we will
approximate the Lagrangian equations of motion with a well posed system
of ODEs. In fact, our formulation is more general. We will carry out the
smoothed particle approximation theory for the Lagrangian formulation of
the Navier–Stokes model for three spatial dimensions. The corresponding
formulas reduce immediately to the case of two spatial dimensions, the case
we will consider in our numerical experiments.

In principle, the quantities, for example divV, can be more explicitly
determined in Lagrangian formulations. To see how this is accomplished,
recall the space-time coordinates are (x, t) and these are related to the
Lagrangian coordinates (ξ, t) as before by the Lagrangian flow map X .
Also, recall the fundamental identities

∂X

∂t
(ξ, t) = u(X(ξ, t), t), X(ξ, 0) = ξ.

By differentiation with respect to ξ and using D to denote differentiation
with respect to the spatial variable, the variational equation for the spatial
derivative of the Lagrangian flow map is

∂

∂t
DX(ξ, t) = Du(X(ξ, t), t)DX(ξ, t), DX(ξ, 0) = I. (16.80)

Consider the Eulerian continuity equation in the form

ρt + (u · ∇)ρ = −ρ∇ · u

and transform to Lagrangian coordinates to obtain

∂R

∂t
= −RdivV.

There is one remaining question: What is the explicit expression for
RdivV in Lagrangian coordinates?
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By reinterpreting the notation or recomputing,

∂R

∂t
= −R∇ · u.

The divergence is easily seen to be the trace of the spatial derivative. Here,

∇ · u = trDu(x, t) = trDu(X(ξ, t), t).

Applying Liouville’s Theorem A.10 to the variational equation [Eq. (16.80)],

∇ · u =
1

detDX(ξ, t)

∂

∂t
detDX(ξ, t),

and using j for the Jacobian determinant detDX(ξ, t), the Lagrangian form
of the continuity equation is

∂R

∂t
(ξ, t) = −R(ξ, t)

1

j(ξ, t)

∂

∂t
j(ξ, t),

or more compactly,

∂

∂t
(jR) = 0. (16.81)

This means

R =
ρ0

j
,

which is a concise and useful way to describe the evolution of the initial
density field ρ0.

Exercise 16.28. Show that J in PDE (16.81) is constant if and only if ∇ · u = 0.

Exercise 16.29. (a) Consider the partial differential equation

∇ · (ut + (u.∇)u) = h(ρ, u, t),

where h is a continuous function. For X the Lagrangian flow map corresponding to the
velocity u, define J(ξ, t) = DX(p, t) and j(ξ, t) = detDX(ξ, t). Convert the partial
differential equation to Lagrangian variables. Answer:

∂2

∂t2
ln j + tr((

∂J

∂t
J−1)2) = h(ρ(X(ξ, t), u(X(ξ, t), t), t).

(b) Part (a) is used in cosmology, where a simple model for the matter (as a cloud of
dust) in the universe is given by

ρt +∇ · (ρu) = 0,
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ut + (u · ∇)u = −∇Φ,

∆Φ = 4πGρ.

The function Φ is the Newtonian gravitational potential and G is the universal
gravitational constant. One way to eliminate Φ is to compute the divergence of both
sides of the second equation and substitute using the third equation. A useful first step
in the analysis of this model is to find a family of exact solutions. Show that

ρ =
ρ0

a3(t)
, u =

ȧ

a
ξ, Φ = −1

2

ä

a
|ξ|

solves the system exactly provided that the function a satisfies a certain second-order
ODE. What is this ODE? Here a is called the expansion constant of the universe and the
family of solutions is called the Hubble flow (Edwin Hubble, 1923). Yakov Zel’dovich
found a more interesting family of solutions whose Lagrangian flow maps are of the
form

X(ξ, t) = a(t)(ξ − f(ξ1, t)e1),

where f if an element of a certain class of scalar functions and e1 is the usual first basis
vector. Challenge: Find a nontrivial f that produces a Lagrangian flow map (see [94]
or [85] for more about cosmology).

Exercise 16.30. (a) Let t 7→ X(ξ, t) denote the flow of the vector field u given by
u(x) = x. Solve the initial value problem

ẋ = x, x(0) = ξ

and show that X(X(ξ, s), t) = X(ξ, s + t). This is called the flow property. (b) Let
t 7→ X(ξ, t) denote the flow of the vector field u given by u(x) = tx. Solve the initial
value problem

ẋ = tx, x(0) = ξ

and show that X does not satisfy the flow property. (c) Solve the initial value problem

ẋ = tx, x(s) = ξ,

where s is a parameter, and let t 7→ X(ξ, t, s) denote its solution. The initial condition
is given by X(ξ, s, s) = ξ. Show that

X(X(ξ, t, τ), τ, s) = X(ξ, t+ s).

(d) Show that the properties of X mentioned in (a) and (c) are true in general for
autonomous and time-dependent vector fields.

Exercise 16.31. Reconsider the Eulerian continuity equation

ρt + (ρu)x = 0
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for one spatial dimension with coordinate x, where ρ is the density and u is the fluid
velocity, and define the transformation φ from the Eulerian coordinates (x, t) to the
coordinate system with coordinates (ξ, t), where ξ is akin to a Lagrangian marker, by
the rule

ξ = φ(x) =

∫ x

0

ρ(z, 0) dz.

The new coordinate ξ is the total density of the parcel of fluid corresponding to the
interval [0, x].

Let ψ denote the inverse of φ and, as usual, let X(ψ(ξ), t) be the spatial position of
the particle with Lagrangian marker ξ at time t. Also, recall that the Lagrangian density
R and scalar velocity V along the path of a fluid particle are given by

R(ξ, t) = ρ(X(ψ(ξ), t), t), V (ξ, t) = u(X(ψ(ξ), t), t).

(1) Show that

Rt(ξ, t) = −R(ξ, t)ux(X(ψ(ξ), t), t).

(2) Show that

Vξ(ξ, t) = ux(X(ψ(ξ), t), t)Xx(ψ(ξ), t)ψξ(ξ).

(3) Show that

ψξ(ξ) =
1

R(ξ, 0)
.

(4) Show that the functions t 7→ Xx(ψ(ξ), t)ψξ(ξ) and t 7→ 1/ρ(X(ψ(ξ), t), t) are equal.
Hint: Show that both functions solve the ODE ẇ = ux(X(ψ(ξ), t), t)w with the same
initial condition w(0) = 1/R(ξ, 0).
(5) Use the previous parts of this exercise to show that

Rt(ξ, t) = −R2(ξ, t)Vξ(ξ, t).

(6) Define r = 1/R and show that

rt = Vξ.

This is a way to express the conservation of mass as a PDE using a variant of the usual
Lagrangian coordinates.
(7) Is there a more efficient way to obtain the same result?

16.7.2 Localization
Let a be a positive number. We call a sequence {Wn}∞n=1 of smooth
functions Wn : Rm → R (each at least class C1 with m a positive integer
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that may be taken to be two or three) localizing if for some positive number
a and each positive integer n, the function Wn has support in the closed ball
with center at the origin and radius a,∫

Rm
Wn(x) dx = 1, (16.82)

∇Wn(0) = 0, (16.83)

∇Wn is uniformly bounded, (16.84)

and (for every continuous function g : R3 → R)

lim
n→∞

∫
Rm

g(x)Wn(x− x0) dx = g(x0) (16.85)

(see Exercise 16.32). For the remainder of this chapter, we will assume that
we have determined a sequence of functions wn : R → R such that the
sequence given by Wn(x) = wn(|x|) is localizing.

To determine a field f on space-time, we must specify its value at
each point in space-time. Usually this is not possible when the desired
field is given as a solution of a differential equation. Instead, we may
seek a sequence of approximations {fn}∞n=1 that converges pointwise to
the unknown field f . The basic approximation in SPH produces such a
sequence:

fn(x, t) :=

∫
Rm

f(y, t)wn(|y − x|) dy. (16.86)

Exercise 16.32. Prove that there is a sequence of C∞ functions {Wn}∞n=1 with the
properties stated in Eqs. (16.82), (16.83), (16.84), and (16.85).

16.7.3 Discretization
Consider N parcels of fluid in space and, as an approximation to reality,
let us suppose that each has a fixed position, velocity, volume, and mass. In
particular, the (spatial) position of the jth particle is xj . The value of a field
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f defined on space-time is approximated at the point (x, t) by∫
R3

f(y, t)w(|y − x|) dy ≈
k∑
j=1

f(xj , t)w(|x− xj |)vol(xj), (16.87)

where w denotes some element of the sequence of localizing functions and
vol(xj) denotes the volume of the jth parcel.

In fluid mechanics it is inconvenient to carry the volume with each fluid
parcel; instead, we let mj denote the mass and ρj the density of the jth
parcel. Using this notation, an approximation of our field is given by

k∑
j=1

mj

ρj
f(xj , t)w(|x− xj |). (16.88)

This is the smoothed particle approximation (which perhaps should be
called the smoothed parcel approximation) of the field. The accuracy of
the approximation depends on the choice of the localizing function and the
number of parcels. Also, our approximation carries the same units as the
field f , as it should, because the localization function has units of inverse
volume by property (16.82).

For our applications to fluid dynamics, we must also approximate
derivatives of functions and fields. We cannot simply differentiate both
sides of Eq. (16.85), at least we cannot do so without checking that
the convergence is (locally) uniform. On the other hand, if we wish to
approximate a (continuous) derivative of a function, we may apply the limit
process of Eq. (16.85) with g replaced by the desired derivative.

Let us approximate∇g where g is a function or a vector field. Recall that
in case g is a vector field, we apply∇ to each component of g. According to
Eq. (16.85) and using the assumption that ∇g is continuous, we have that

∇g(x) = lim
n→∞

∫
Rm
∇g(y)Wn(y − x) dy.

Using the definition of Wn, there is a closed ball B(x) centered at each x
(which is the translation to x of a closed ball at the origin that contains the
support of Wn in its interior) such that∫

Rm
∇g(y)Wn(y − x) dy =

∫
B(x)
∇g(y)Wn(y − x) dy.
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For every smooth function ω : Rm → R, Leibniz’s rule implies

∇(ωg) = ω∇g + (∇ω)g. (16.89)

With x arbitrary but fixed and ω(y) := Wn(y − x), the last integral may be
recast as∫
B(x)
∇g(y)Wn(y − x) dy =

∫
B(x)
∇(ωg)(y) dy −

∫
B(x)
∇ω(y)g(y) dy.

(16.90)
Recall the divergence theorem: If f is a smooth vector field on a bounded
region B ⊂ Rm with a smooth boundary and η is the outer unit normal field
on the boundary of B , then∫

B
∇ · f dy =

∫
∂B
f · η dy. (16.91)

An easy corollary of this result states that if f is a smooth function onB and
η is the outer unit normal field on the boundary of B, then∫

B
∇f dy =

∫
∂B
fη dy (16.92)

(see Exercise 16.33). Because ω(y) = Wn(y−x) vanishes on the boundary
of B(x), the first integral on the right-hand side of Eq. (16.90) vanishes and
we have the approximation

∇g(x) ≈
∫
Rm
∇g(y)Wn(y − x) dy = −

∫
B(x)

g(y)∇yWn(y − x) dy,

(16.93)
where ∇y denotes differentiation with respect to y.

To use the approximation (16.93), we need the derivative of the function
h given by h(y) = Wn(y − x). To compute it, recall the assumption that
Wn is an element of a localizing sequence that consists of the function of
the form W (y − x) := w(|y − x|) for some scalar function w.

Claim: If h : Rm → R is given by h(y) = W (y − x), then

Dh(y) =
w′(|y − x|)
|y − x| (y − x)T , (16.94)

where the superscript T denotes the transpose. The claim follows from the
chain rule and the computation of the derivative of the function k : Rm → R



486 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

given by k(y) = |y − x|, which is obtained by using the formula

k2(y) = 〈y − x, y − x〉.

The directional derivative of k2 in the direction v is

2k(y)Dk(y)v = 2〈y − x, v〉.

Hence, the derivative of k may be represented as the vector

Dk(y) =
1

|y − x|(y − x)T .

The derivative of k is not defined at y = x. On the other hand, it is easy to
prove that

lim
x→y

w′(|y − x|)
|y − x| (y − x) = 0.

It follows that the derivative of h vanishes at y as it must because W is a
localizing function.

We have obtained the approximation

∇g(x) ≈ −
∫
Rm

g(y)
w′(|y − x|)
|y − x| (y−x) dy =

∫
Rm

g(y)
w′(|x− y|)
|x− y| (x−y) dy.

(16.95)
The smoothed particle approximation for ∇g is

∇g(x) ≈
k∑
j=1

mj

ρj
g(xj)

w′(|x− xj |)
|x− xj |

(x− xj). (16.96)

The approximation for the divergence of a field g is obtained in the same
way we approximated the gradient of a function:

∇ · g(x) = lim
n→∞

∫
Rk
∇ · g(y)wn(|x− y|) dy

= lim
n→∞

∫
B(x)
∇ · g(y)wn(|x− y|) dy,

where B(x) is the closed ball centered at x that is the translate of the ball B
in Rm that contains the supports of the localizing functions. Let us view x
as arbitrary but fixed, ignore the subscript n, and define h(y) := w(|x− y|).
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Using the identity

∇ · (hg) = ∇h · g + h∇ · g,

we have that∫
B(x)
∇ · g(y)h(y) dy =

∫
B(x)
∇ · (hg) dy −

∫
B(x)
∇h · g dy.

By an application of the divergence theorem,∫
B(x)
∇ · g(y)h(y) dy =

∫
∂B(x)

hg · η dy −
∫
B(x)
∇h · g dy,

where η is the outer unit normal vector on the boundary of B(x). Because
the localizing function vanishes on the boundary of B, the function h
vanishes on the boundary of B(x) and the integral over ∂B(x) vanishes.
Thus, for every x, we have

∇ · g(x) = − lim
n→∞

∫
Rm
∇h(y) · g(y) dy. (16.97)

As before, let us approximate∇·g(x) using the fluid parcels. It is important
to note that, as a consequence of Eq. (16.94),

Dh(y) =
w′(|x− y|)
|x− y| (y − x)T .

In particular, pay attention to the sign of the transposed vector to write

∇ · g(x) ≈
∫
Rm

g(y) · w
′(|x− y|)
|x− y| (x− y) dy.

The smoothed particle approximation is

∇ · g(x) ≈
k∑
j=1

mj

ρj

w′(|x− xj |)
|x− xj |

(x− xj) · g(xj). (16.98)

In the application to fluid dynamics, the fields are all time dependent, and
we will be interested only in the approximations evaluated at the locations of
the fluid parcels. As a convenient reference, the appropriate approximations
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are

g(xi, t) ≈
k∑
j=1

mj

ρj
g(xj , t)w(|xi − xj |), (16.99)

∇g(xi, t) ≈
k∑
j=1

j 6=i

mj

ρj
g(xj , t)

w′(|xi − xj |)
|xi − xj |

(xi − xj), (16.100)

∇ · g(xi, t) ≈
k∑
j=1

j 6=i

mj

ρj

w′(|xi − xj |)
|xi − xj |

(xi − xj) · g(xj , t). (16.101)

16.7.4 Conservation of Mass
A discretization of the Lagrangian conservation of mass (as expressed in
Eq. (16.78)) is obtained directly from Eq. (16.100):

ρ̇i = −ρi
k∑
j=1

j 6=i

mj

ρj

w′(|xi − xj |)
|xi − xj |

(xi − xj) · uj . (16.102)

Similarly, a (different) discretization is obtained from the alternative expres-
sion given in Eq. (16.76):

ρ̇i =

k∑
j=1

j 6=i

mj
w′(|xi − xj |)
|xi − xj |

(xi − xj) · (ui − uj). (16.103)

Density also has the direct smoothed particle approximation

ρi =

k∑
j=1

mjw(|xi − xj |), (16.104)

which does not require the solution of a differential equation.

The approximation (16.103) is often preferred. It is symmetrical in x and
u (which is advantageous for programming the evaluation of this formula),
the density does not appear on the right-hand side, and the density can be up-
dated in the momentum balance in a computational efficient manner. Also,
it is satisfying that the time derivative of the density approximation (16.104)
agrees with the approximation (16.103) (see Exercise 16.34). On the other
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hand, the optimal choice of approximation method for a given problem is
the subject of current research.

The reader should consider why we need to formulate a dynamical
equation for density if we intend to apply our discretization to a fluid
like water, which could be taken (in a reasonable approximation) to have
constant density. There are several reasons. Real fluids are compressible.
Perhaps this is reason enough, but this answer does not relate to our
discretization method. The main reason for the introduction of (artificial)
compressibility is to obtain an efficient method to compute pressure. For
example, recall that for an incompressible fluid, the Euler equations are

ρ
Du

Dt
= −∇p, ∇ · u = 0.

To solve these equations (and the more complicated equations of motion that
include viscosity and gravity) with a numerical method, we must compute
the pressure p during the numerical procedure. We cannot simply discretize
with finite differences and solve a system of ODEs because the time
derivative of pressure does not appear. Instead, we must use both equations
to solve for the unknown velocity and pressure. The determination of
pressure is a problem that must be solved whatever the choice of numerical
method. In the SPH approach used here, this problem will be overcome by
evolving the density and computing the pressure via an equation of state that
gives the pressure as a function of density.

Exercise 16.33. Let B be a bounded region with a smooth boundary in R3 and η the
outer unit normal field on its boundary. Assume the divergence theorem [Eq. 16.91].
(i) Prove: If f is a smooth vector field on B ⊂ R3, yi is one of the three coordinate
functions on R3 and ηi is the corresponding component of the normal field, then∫

B

∂f

∂yi
dy =

∫
∂B

fηi dy.

(ii) Prove the result stated in Eq. (16.92).

Exercise 16.34. Show that the time derivative of density approximation (16.104)
agrees with the approximation (16.103).

16.7.5 Momentum Balance
The general (Lagrangian) form of the momentum balance is given by

dV

dt
=

1

R
divS + g, (16.105)
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where divS is the divergence of the stress tensor σ along a fluid particle
path in space-time (see Eq. (11.11)). It is not important at this stage of the
analysis to know the form of the stress tensor; it suffices to work formally. As
in the alternate form of the continuity equation [Eq. (16.76)], a symmetrical
form of the smoothed particle approximation of the momentum balance is
obtained by using the identity

∇ · (1

ρ
σ) =

1

ρ
∇ · σ − 1

ρ2
σ · ∇ρ (16.106)

to recast the momentum balance in the form

du

dt
=

1

ρ
∇ · σ − 1

ρ2
σ · ∇ρ+ g. (16.107)

After some algebra, the corresponding smoothed particle approximation is

u̇i =

k∑
j=1

j 6=i

mj
w′(|xi − xj |)
|xi − xj |

( 1

ρ2
j

σj +
1

ρ2
i

σi

)
(xi − xj) + g. (16.108)

Stress Tensor

The stress tensor for a fluid is usually taken to have the form

σαβ = −p δαβ + ταβ, (16.109)

where p is the pressure, δαβ = 1 if α = β and δαβ = 0 otherwise, τ is the
viscous stress tensor, and the superscripts range over the indices {1, 2, 3}.
The exact form of the viscous stress depends on properties of the fluid. A
Newtonian fluid has

ταβ = 2µεαβ, (16.110)

where µ is the viscosity (which we will assume is a constant) and

εαβ =
1

2

(∂uβ
∂xα

+
∂uα

∂xβ
)
− 1

3
(∇ · u)δαβ (16.111)

is the strain tensor. The upper subscript denotes the corresponding compo-
nent of the vectors u and x.

Eq. (16.108) is a vector equation. Using the tensors defined for a
Newtonian fluid and the summation convention (for the multiplication of the
stress tensor matrix and the component representations of vectors in space),
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the smoothed particle momentum balance equation is

u̇αi = gα −
k∑
j=1

j 6=i

mj
w′(|xi − xj |)
|xi − xj |

( pi
ρ2
i

+
pj
ρ2
j

)
(xi − xj)α

+ µ

k∑
j=1

j 6=i

mj
w′(|xi − xj |)
|xi − xj |

(εαβi
ρ2
i

+
εαβj
ρ2
j

)
(xi − xj)β. (16.112)

For the ith parcel,

εαβi =
(∂uβi
∂xαi

)
+
(∂uαi
∂xβi

)
− 2

3
(∇ · ui)δαβ. (16.113)

Also, for an arbitrary function G,

( ∂G
∂xαi

)
=

k∑
j=1

j 6=i

mj

ρj
Gj
w′(|xi − xj |)
|xi − xj |

(xi − xj)α.

Thus, we have that

(16.114)

Eq. (16.114) can be symmetrized in u by making some further reasonable
approximations. To accomplish the symmetrization, note that

0 = ∇1 ≈
k∑
j=1

j 6=i

mj

ρj

w′(|xi − xj |)
|xi − xj |

(xi − xj).

For a field g, it follows immediately that

k∑
j=1

j 6=i

mj

ρj
gi
w′(|xi − xj |)
|xi − xj |

(xi − xj) ≈ 0.

εαβi =

k∑
j=1

j 6=i

mj

ρj

(
uβj (xi−xj)α+uαj (xi−xj)β−

2

3
δαβuj · (xi−xj)

)w′(|xi−xj |)
|xi−xj |

.
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Thus, for instance,

k∑
j=1

j 6=i

mj

ρj
uβi
w′(|xi − xj |)
|xi − xj |

(xi − xj)α ≈ 0.

By subtracting three similar expressions from Eq. (16.114), we obtain the
new symmetrized approximation

εαβi = −
k∑
j=1

j 6=i

mj

ρj

(
(ui − uj)β(xi − xj)α + (ui − uj)α(xi − xj)β

− 2

3
δαβ(ui − uj) · (xi − xj)

)w′(|xi − xj |)
|xi − xj |

. (16.115)

Smoothed Particle Equations of Motion

The complete set of discretized equations of motion for a Newtonian
fluid are Eqs. (16.103) and (16.112)–(16.115), the parcel motion equation

ẋαi = uαi −mc
k∑
j=1

j 6=i

2mj

ρi + ρj
(ui − uj)αw(|xi − xj |), (16.116)

and the equation of state

P = B
((R

ρb

)γ
− 1
)
. (16.117)

Here, the second term on the right-hand side of Eq. (16.116) is called the
Monaghan correction [75] with 0 ≤ mc < 1. It is put in to smooth out the
computation using an average velocity that takes into account neighboring
parcels. For the equation of state, P is the pressure andR is the density along
a fluid path, ρb is a bulk (or reference) density (which is usually taken to be
the density at the initial fluid surface so that the pressure vanishes on this
set), γ is a material dependent exponent (γ = 7 is traditional for water), and
B is a constant that has units of pressure (kg /(m sec2)). As we will show in
the next section, a viable choice for B is B = ρbc

2/γ (see Eq. (16.121)).

16.7.6 Artificial Viscosity
The equations of motion for SPH derived so far suffer from as least one
implementation problem: The momentum balance involves a sum within
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a sum due to the required computation of the tensor ε when the viscosity
µ is not zero. This adds a layer of complexity in computer code and an
additional computational expense. In addition, as should be clear, all the
physics concerning viscosity (what makes a fluid a fluid) is modeled in the
stress tensor. It is not clear how to obtain the best results. Should the SPH
approximation be as faithful as possible to the continuous Navier–Stokes
model, or should some new model for viscosity be implemented that takes
into account the discretization into parcels that lies at the heart of SPH? This
issue is not yet settled and remains an area of active research.

J. J. Monaghan [75] introduced an artificial viscosity into SPH—perhaps
influenced by J. von Neumann and R. D. Richmeyer who introduced2

in 1950 a form of artificial viscosity to study shock waves—which has
been modified subsequently in several directions. The commonly used
artificial viscosity Π replaces the stress tensor divided by the density in the
momentum balance [Eq. (16.112)], which may then be rearranged into the
form

u̇αi = gα −
k∑
j=1

j 6=i

mj
w′(|xi − xj |)
|xi − xj |

( pi
ρ2
i

+
pj
ρ2
j

+ Πij

)
(xi − xj)α. (16.118)

The definition of this artificial viscosity Π requires some consideration
of pressure and sound speed. We note without further explanation that
the pressure in the equations of motion for a fluid is the thermodynamic
pressure; it can be scaled so that it vanishes at the fluid surface (which is
supposed to be exposed to the atmosphere). In this case, the scaled pressure
is called the gauge pressure (simply pressure minus atmospheric pressure).
The static pressure of the fluid (that is, the pressure in case the fluid is not
moving) changes with depth

p = ρg × depth (16.119)

and the atmospheric pressure is taken to be zero.

We will determine the pressure using the equation of state [Eq. (16.117)].
The derivative of pressure with respect to density evaluated at the reference

2Journal of Applied Physics, 21, 232–247.
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density is given by

dp

dρ

∣∣∣
ρ=ρb

=
Bγ

ρb

( ρ
ρb

)γ−1∣∣∣
ρ=ρb

=
Bγ

ρb
. (16.120)

It has the units of the square of velocity. The square root of this quantity is
defined to be the sound speed c; that is,

c2 :=
Bγ

ρb
. (16.121)

By following this description for water, we have that B ≈ 2 × 108. This
large value of B reflects the near incompressibility of water. If water were
incompressible, the speed of sound would be infinite.

In keeping with the SPH methodology, we may also consider the sound
speed to vary over the parcels of fluid due to their separations in space. The
fluid parcels carry density; therefore, we may consider the sound speed at
the ith parcel to be

ci :=
(Bγ
ρb

)1/2(ρi
ρb

)(γ−1)/2
. (16.122)

We are now ready to define the (standard or Monaghan) artificial
viscosity as

Πij =


−acijµij + bµ2

ij

ρij
, (ui − uj) · (xi − xj) ≤ 0;

0, (ui − uj) · (xi − xj) > 0,

(16.123)

where a and b are artificial viscosity coefficients,

cij = (ci + cj)/2,

ρij = (ρi + ρj)/2,

µij =
2 sr(ui − uj) · (xi − xj)
|xi − xj |2 + (0.2 sr)2

,

and sr is the support radius of the localization function. The factor 0.2 is
somewhat arbitrary; it is there to prevent the tensor µ from blowing up
when the distance between two parcels is small. We note that in much of
the literature on SPH the support diameter is taken as fundamental; here we
have used the support radius. One motivation for this choice of viscosity
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tensor is that approaching particles are repelled by the artificial force. This
choice also approximates the Navier–Stokes viscosity (see [76]).

16.7.7 Localization of Navier–Stokes Viscosity
A last approach to viscosity is to localize the viscosity terms in the
momentum Navier–Stokes equation

ρ(ut + (u · ∇)u) = −∇p+ µ∆u+
µ

3
∇(∇ · u) + ρb,

(16.124)

which in keeping with Eq. (16.105), we will divide by density. The relevant
terms are

µ

ρ
∆u and

µ

3ρ
∇(∇ · u). (16.125)

Theoretically, the sum of these terms is a representation of the divergence of
the stress tensor (divided by the density), but starting with these terms leads
to a new SPH approximation.

The SPH approximation of ∆u is obtained as before using the divergence
theorem and its corollaries. The basic SPH approximation is

∆u(x, t) ≈
∫
Rm

∆u(y, t)Wn(y − x) dy =

∫
Rm
∇ ·∇u(y, t)Wn(y − x) dy.

Using the divergence theorem as before followed by an application of
Green’s first identity (see Exercise 16.35), it is not difficult to see that∫

Rm
∇ · ∇u(y, t)Wn(y − x) dy =

∫
Rm

u(y, t)∆yWn(y − x) dy,

where the subscript y means that the Laplacian applies to the function y 7→
Wn(y − x) with x fixed. With our usual localization Wn(x) = w(|x|) and
some calculation, we find that

∆yWn(y − x) =
w′(|x− y|)
|x− y| + w′′(|x− y|).

Therefore, we have the approximation

∆u(x, t) ≈
k∑
j=1

mj

ρj
(
w′(|x− xj |)
|x− xj |

+ w′′(|x− xj |))u(xj , t). (16.126)
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Of course, this approximation can be symmetrized using the same approx-
imation for ∆v(x) for each of the constant unit basis vectors v (in place of
u). It follows that

0 ≈
k∑
j=1

mj

ρj
(
w′(|x− xj |)
|x− xj |

+ w′′(|x− xj |))uα(x, t)vα;

therefore, we may subtract

k∑
j=1

mj

ρj
(
w′(|x− xj |)
|x− xj |

+ w′′(|x− xj |))u(x, t)

from the original approximation (16.126) to obtain the new symmetrized
approximation

∆u(x, t) ≈ −
k∑
j=1

mj

ρj
(
w′(|x− xj |)
|x− xj |

+ w′′(|x− xj |))(u(x, t)− u(xj , t)).

(16.127)

The SPH approximation of ∇(∇ · u) can be determined by a slight
modification of the same procedure. We will first simplify the notation,
as we did previously, by considering a field g and using h(y) in place of
Wn(y − x). We start with the approximation

∇(∇ · g)(x) ≈
∫
Rm
∇(∇ · g)(y)h(y) dy.

Using the product rule, we obtain the equality∫
Rm
∇(∇ · g)(y)h(y) dy = −

∫
Rm
∇ · g(y)∇h(y) dy.

Perhaps the simplest way to proceed is to compute in components; that is,
to write

−
∫
Rm
∇ · g(y)∇h(y) dy = −

∫
Rm

(g1
,1 + · · ·+ gm,m)

 h,1
...
h,m

 dy,

where the superscripts denote the components of g and the notation , j in
subscripts denotes partial differentiation with respect to the jth component
of the space variable y. Integration by parts—yet another version of the
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divergence theorem—in the component form∫
B
u,iv dx =

∫
∂B
uv dS −

∫
B
uv,i dx

may now be applied to each term in each component of the field being
integrated with the observation that all boundary terms vanish when B is
an appropriate ball containing the support of the localization function. After
some algebra the result is the equality

−
∫
Rm
∇ · g(y)∇h(y) dy =

∫
Rm

Hessh(y)g(y) dy,

where Hessh is the Hessian matrix h,ij of second partial derivatives. Thus
we have outlined a derivation of the approximation

∇(∇ · u)(x, t) ≈
∫
Rm

Hessy w(|x− y|)u(y, t) dy.

Here, the Hessian matrix of the localization function has components

After symmetrization, the SPH approximation is

∇(∇ · u)(x, t) ≈ −
k∑
j=1

mj

ρj
Hessαβy w(|x− xj |)(u(x, t)− u(xj , t)).

(16.128)

Exercise 16.35. Prove Green’s first identity∫
B

∇v · ∇u dx = −
∫
B

u∆v dx+

∫
∂B

u∇v · η dS,

where η is the outer unit normal on ∂B and both u and v are smooth functions (compare
Eq. (16.46)).

Localization Functions

There are an infinite number of choices for the localizing function w.
A natural and early choice is called the Lucy function (see [68]). After a

Hessαβy w(|x−y|)=w′(|x− y|)
|x−y| δαβ+

(w′′(|x−y|)
|x−y|2 −

w′(|x−y|)
|x−y|3

)
(x−y)α(x−y)β
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support radius sr > 0 is specified, the Lucy function w : R→ R is given by

w(s) =

{
lnc (1 + 3 |s|sr )(1− |s|sr )3, 0 ≤ |s| < sr;

0, |s| ≥ sr,
(16.129)

where the Lucy normalizing constant lnc (chosen so that condition (16.82)
holds) is 5/(4 sr) if the function is to be used for one-dimensional flow,
5/(π sr2) for two dimensions, and 105/(16π sr3) for three dimensions. The
corresponding family of functions Wsr(s) := w(|x|) is localizing as sr→ 0
(see Exercise 16.36).

The Gaussian localization

w(s) = gnc e−(λs/ sr)2

(16.130)

for a suitable λ > 0 with gnc equal to λ2(π sr2)−1 for two dimensions
is often used even though this function is not compactly supported (see
Exercise 16.38 for three dimensions). Of course, in numerical computations,
the Gaussian is compactly supported because the exponential converges
rapidly to zero as s→∞.

A function suggested by Wendland [115] is given by

w(s) =

{
wnc (1− |s|sr )4(4 |s|sr + 1), 0 ≤ |s| < sr;

0, |s| ≥ sr,
(16.131)

where wnc is equal to 7/(π sr2) in two dimensions (see Exercise 16.38 for
three dimensions).

The localizing function

w(s) =

{
cc (1− |s|sr )3(1 + 3 |s|sr + 6( |s|sr )2), 0 ≤ |s| < sr;

0, |s| ≥ sr,
(16.132)

where cc is equal to 7/(2π sr2) in two dimensions is useful for imple-
mentation with localization of the Navier–Stokes viscosity where second
derivatives of the localizing function appear. The second derivative of the
function vanishes at s = 0, which avoids blowup for particles that are close
together.

Because the integral over space is normalized to unity, the localizing
function carries units: inverse length, inverse area, or inverse volume
depending on the dimension.
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Exercise 16.36. Prove that Lucy’s family of functions is localizing.

Exercise 16.37. Verify the normalizing constants in the Lucy and Gaussian localizing
functions.

Exercise 16.38. Find the normalization constant for the Gaussian and Wendland
localization functions for the case of three dimensions.

16.7.8 SPH Numerical Implementation
We have in place all the ingredients for SPH discretization of fluid motion.
In essence, after a choice of smoothing radius h for the localization function,
the constants in the equation of state, and the other parameters in the system
(mass, viscosity, and gravity) we have a (large) system of ODEs for the
positions xi, velocities ui, and densities ρi of the fluid parcels, which we
can approximate by a numerical method. In this section, we will discuss
issues related to the practical implementation of SPH into a computer code.

Water

Let us agree to work in the standard units kg (kilograms), m (meters),
and sec (seconds). The physical properties of water at room temperature
together with other required physical constants are given approximately as
follows:

density 997 kg /m3,
viscosity 1.002× 10−3 kg /(m sec),
kinematic viscosity 1.005× 10−6 m2 / sec,
sound speed 1.5× 103 m / sec,
atmospheric pressure 105 kg /(m sec2),
gravity 9.8 m / sec2 .

(16.133)

The symbol g has been used so far in this chapter to denote the
gravitational field. In rectangular coordinates (x, y, z), where the positive
z-axis points in the direction of the outer normal of the surface of the Earth,
the gravitational field near the surface of the Earth is taken to be

g

 0
0
−1

 , (16.134)

where the symbol g is redefined to be the gravitational constant near the
surface of the Earth; that is, g ≈ 9.8 m / sec2.

Mach Number and Density Fluctuation
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Starting with the momentum balance (in its simplest Eulerian form)

ρ
Du

Dt
= −∇p,

we have (using Eqs. (16.120) and (16.121) together with the chain rule
differentiation dp

dx = dp
dρ

dρ
dx ) the approximation

Du

Dt

∣∣∣
ρ=ρb

≈ − 1

ρb
c2 ρ− ρb

∆x
(16.135)

(where ∆x denotes the change in x and ρb is the bulk density). The
material derivative in units is length/time2, which we may view as bulk (or
characteristic) velocity ub per time; that is,

Du

Dt

∣∣
ρ=ρb

≈ ub
∆t

.

Employing the (dimensionless) Mach number

M :=
ub
c
,

using the approximation ub = ∆x/∆t, and rearranging Eq. (16.135), we
have that

|ρ− ρb|
ρb

≈M2. (16.136)

Because the speed of sound in water is large, in many models the sound
speed is taken to be infinite. This corresponds to the relative fluctuation
in density being zero; that is, the fluid is assumed to be incompressible.
In SPH modeling, the fluid is assumed to be slightly compressible as it
should be because it is discretized into parcels that we imagine as discrete
particles in the computational domain. Thus, for example, as suggested by
Monaghan [75], if we take the relative density fluctuations to be about about
1%, then M is about 0.1.

In view of the underlying ideas for SPH, we will compute with parcels
of fluid instead of a continuous fluid. The finite number of parcels have
locations; therefore, they are separated. Thus, the density of the parcels is
smaller than the fluid density. Because the second derivative of the equation
of state with respect to density is positive, the sound speed decreases with a
decrease in density. For this reason we should expect that the sound speed
for our SPH approximation is slower than the sound speed of a real fluid.
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For the SPH simulation of water, we may take

M = 0.1, γ = 7, ρb = 103,

and consequently the pressure coefficient in the equation of state is approx-
imately

B =
c2ρb
γ

=
ρbv

2
b

M2γ
= 105 v

2
b

7
≈ 104v2

b .

The value of B is therefore determined by our choice for the bulk velocity.

In practice, the choice of bulk velocity for numerical simulation is
problem dependent and not obvious. Our construction relates the sound
speed and the bulk velocity vb = Mc. By fixing the Mach number,
we are also relating the bulk velocity to the compressibility of the fluid.
The more compressible the fluid, the lower the sound speed. Thus, for
example, the bulk velocity should not be taken too small for SPH simulation
of water, where the fluid is in reality only slightly compressible. Some
experimentation is required to find a suitable choice of bulk velocity for
SPH simulation.

Numerical Integration

Our discretized equation of motion is a system of ODEs; its solutions
may be approximated by using a numerical method, some of which are
described in Chapter I. In practice, the implementation of the smoothed
particle method requires using a large number of fluid parcels (at least
several hundred and perhaps several thousand parcels). The scale of such
a problem will soon overwhelm available computational power and storage
space, especially if several function evaluations are required per step. To
achieve at least second-order accuracy, the explicit improved Euler method
is viable, which requires two function evaluations per step. A second-order
multistep method, such as the Adams–Bashforth two-step method requires
only one function evaluation per step. Indeed, for the initial value problem

ẏ = f(y, t), y(t0) = y0

with time step ∆t, we may use another method, such as the explicit
improved Euler, to compute y1 with subsequent approximations given by

yn+1 = yn +
∆t

2
(3f(yn, tn)− f(yn−1, tn−1)).
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Here, of course, tn+1 = tn + ∆t.

Although good results can be obtained by employing a general ODE
solver, there are special methods available for the second-order differential
equations encountered in mechanics; that is, initial value problems of the
form

ÿ = f(y, t), y(t0) = y0, ẏ(t0) = z0.

One such algorithm is second order and requires only one function
evaluation per step of the position variable y. To describe the algorithm,
let us first write the differential equation as the equivalent first-order system

ẏ = z, ż = f(y, t).

As for the Adams–Bashforth method, preliminary computations are required
to start the algorithm. Euler approximations may be used for the initial
velocity advanced by half of a time step and the initial position a full time
step

z1/2 = z0 +
∆t

2
f(y0, t0), y1 = y0 +

∆t

2
z1/2

to start the process. The quantities

z1/2, fv := f(y0, t0), y1

are used in the next step. For n ≥ 1, the time stepping is

zn = zn−1/2 +
∆t

2
fv,

fv = f(yn, tn),

zn+1/2 = zn−1/2 + ∆t fv,

yn+1 = yn + ∆tzn+1/2. (16.137)

A variant of the numerical method for SPH, when the Monaghan
correction [Eq. (16.116)] is employed, is the following predictor-corrector
algorithm (see [75]). For the initial value problem

ẏ = f(y, t), y(t0) = y0,

choose a time step ∆t and use a second-order startup routine (for instance,
the explicit improved Euler method) to approximate and store two quan-
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tities: the initial state advanced by a full time step y1, and the function
evaluation f(y1/2, t1/2) where y1/2 is the state advanced by half of a time
step (that is, the approximate state at time t1/2 = t0 + ∆t/2). Subsequent
states are approximated using the predictor-corrector scheme (Adam’s–
Bashforth)

yn+1/2 = yn +
∆t

2
f(yn−1/2, tn−1/2),

yn+1 = yn + ∆tf(yn+1/2, tn+1/2), (16.138)

which requires storage of the new state yn+1 and the function evaluation
f(yn+1/2, tn+1/2) at each time step. Only one additional function evaluation
is required to compute each new time step. This numerical method is second
order (see Exercise 16.39), which is perhaps a surprise given that the natural
predictor step is yn+1/2 = yn + ∆t

2 f(yn, tn) because of the half time step.
Of course, the natural predictor with the same corrector step is also second
order, but this alternate scheme requires two function evaluations per step.

Because we are approximating the solution of a PDE that depends on
space and time, we should expect that the step size for stable numerical
integration must respect the CFL condition (as in inequality (5.57))

∆t ≤ 1

c
∆x.

In practice some experimentation is necessary to determine an appropriate
step size.

Exercise 16.39. (i) Prove that numerical method (16.137) is second order. (ii) Write
a code to implement the numerical integration and verify that it is second order for the
Duffing equation ÿ = y− y3. The following information might be useful for debugging:
For the initial data y(0) = 0.2 and ẏ(0) = 0.1, y(10) ≈ 1.4036365.

Exercise 16.40. (i) Prove that the predictor-corrector method [Eq. (16.138)] is second
order. (ii) Write a code to implement this method and verify that it is second order for
Duffing’s equation as in Exercise 16.39.

Exercise 16.41. (i) Prove that the Adams–Bashforth two-step method [Eq. (16.138)]
is second order. (ii) Write a code to implement this method and verify that it is second
order for Duffing’s equation as in Exercise 16.39.

Boundary Conditions

The treatment of boundary conditions is a major problem for SPH
because there seems to be no natural way to incorporate the fluid boundary
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conditions into the system of ODEs produced by the discretization. On the
other hand, the methods discussed in this section produce excellent results.

In fluid dynamics the appropriate boundary conditions depend on the
treatment of viscosity. Experiments with fluids reveal that the velocity field
vanishes at the boundary. Also, a mathematical argument can be used to
show that conservation of mass requires the velocity field to be tangent
to solid boundaries. This later boundary condition is sufficient for the
inviscid approximation (Euler’s equations) to have unique solutions. On the
other hand, for the viscous case, the extra physical condition is required:
the velocity field must vanish at the boundary. Much of the advanced
application of fluid dynamics is predicated on the notion that viscosity must
be considered in a thin layer adjacent to the boundary (the boundary layer),
but away from the boundary, the fluid may be treated as if it were invicid.
The interaction between these two regimes is the source of complicated
(but interesting) behavior; for example, boundary layers are the source of
vorticity (rotation in the fluid) and many other effects (see Section 17.3).

An essential problem with SPH is that fluid parcels might penetrate
boundaries as the integration proceeds.

A useful method to mitigate against (but not ensure) that a boundary
is not crossed is to incorporate stationary fictitious parcels of fluid on the
boundary and fictitious particles (placed outside the physical region near the
boundary) that move in the opposite direction from the fluid flow on the
other side of the boundary.

A second method (which is also often used in addition to fictitious
particles) is to incorporate into the equations of motion a (short range)
repulsive force at the boundary to mimic the repulsive force between
molecules. A standard way to do this is to use a Lennard–Jones type force
that is cut off so that it is purely repulsive. This force can be implemented
as follows: In case xi is a fluid parcel and xj is a fictitious parcel on the
boundary, dij is the distance between them, d0 is a characteristic parcel
spacing, and m and n are positive integers with m > n, the parcel xi is
subjected to the force

{
K
[(

d0

dij

)m − ( d0

dij

)k] 1
d2
ij

(xi − xj), d0

dij
≥ 1;

0, d0

dij
< 1,

(16.139)
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where K is a constant proportional to the mass times the square of a
characteristic velocity (for instance ρ sr3 v2

b with vb the bulk velocity).
Typical choices for the exponents are m = 12 and n = 6 and m = 4
and n = 2. Note: We have written the fluid acceleration on the left-hand
side of the SPH equation of motion [Eq. (16.118)]; therefore, boundary or
other forces that might act on fluid parcels must be divided by the mass of
the parcel before they are included on the right-hand side of this equation.

The cutoff Lennard–Jones force suffers from not being smooth at d0 =
dij . A simple remedy is to use instead{

K
[
m
(
d0

dij
− 1
)m−1 d0

dij
] 1
d2
ij

(xi − xj), d0

dij
≥ 1;

0, d0

dij
< 1,

(16.140)

where m ≥ 2.

Another viable boundary force is derived from the following considera-
tions: The initial placement of parcels should determine the future distance
of parcels from the boundary. An ideal initial parcel adjacent to the boundary
should remain at its initial distance. The boundary force should blow up
at the boundary, smoothly go to zero as the distance from the boundary
approaches some multiple δ > 0 of the initial parcel spacing, and remain
zero for all larger distances from the boundary. Such a force is given by{

K
[(dij

d0

)−1/2(
δ − dij

d0

)2 1
d0dij

(xi − xj), dij
d0
≤ 1;

0, dij
d0
> 1.

(16.141)

The boundary treatments suggested so far are in keeping with SPH
methodology: the boundary is discretized by replacing it with boundary
parcels. This treatment is the correct approach if there are interactions
between the fluid and the boundary in both directions; that is, the fluid moves
the boundary. In case the boundary motion is not influenced by the fluid, the
boundary force on a fluid parcel may be considered to be some function
of the state variables of a fluid parcel and its distance to the boundary. The
boundary forces mentioned above may be employed from this point of view,
In effect, dij would be replaced by the distance of the ith parcel to the
boundary. The coefficient K might also be a function of the state of this
fluid parcel. Of course, a hybrid method might be appropriate if parts of the
boundary are moved by the fluid and the rest of the boundary is fixed.
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An ODE model should be defined so that the physical region of interest is
an invariant set as the system evolves in forward time. The SPH approximate
fluid model generally does not automatically preserve the region that
contains the fluid. Perhaps there is a way to redefine the discretization so
that the physical region is invariant?

Exercise 16.42. (i) Suppose that f is a scalar function of a scalar variable and define
the potential U by the rule

U(p) = f
( σ

|p− q|
)
,

where q is some fixed point and σ is a fixed scalar. Determine the force determined by
this potential (that is, the negative gradient of the potential).
(ii) Find the potential whose gradient is the force given in display (16.140).

Programming

The appearance of the localization function in the discretized equations
of motion makes it unnecessary to sum over all parcels, only those that are
within the support radius of the parcel under consideration. On the other
hand, the parcels are moving, so some check must be made to determine
which parcels are nearby.

An effective method for tracking neighboring parcels is to construct a
stationary grid of boxes (with edge length the support radius) over the
physical region and its boundaries. After each time step, the parcels are
assigned to boxes according to their spatial positions. In the summations
only the parcels in boxes with at least one corner in common with the box
containing the parcel under consideration are summed. In two dimensions,
each summation is over nine boxes.

The SPH method can be easily parallelized: different processors can
simultaneously compute time step updates of different parcels.

16.8 SIMULATION OF A FREE-SURFACE FLOW

By tradition, the first application to consider is the dam break problem:
Imagine still water behind a vertical dam on a river with a horizontal bottom
extending downstream from the dam. Determine the profile of the escaping
water and the position of its leading edge after the dam instantaneously
disappears.
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The dam break problem is an excellent test bed to debug code. For
the experiments reported here, an SPH code was written that employs
the Monaghan correction [Eq. (16.116)] to the velocity with mc = 0.5,
Wendland localization [Eq. (16.131)], artificial viscosity with a = 0.01 and
b = 0.0, the repulsive boundary force (16.141) with K = 1000.0 that acts
normal to the boundary, and the predictor-corrector numerical integration
scheme [Eq. (16.138)].

An initial 25 meter by 25 meter reservoir is modeled using a 54 by 54
evenly distributed rectangular grid of fluid parcels. Boundary parcels with
the same vertical spacing as the fluid parcels are placed along the left-hand
reservoir vertical wall (taken to be 40 meters high), the river bottom (taken
to be 100 meters long), and a 40 meters high vertical wall at the 100 meter
mark downstream, which might model an obstruction. The initial velocities
of the fluid parcels are set to zero while their densities are computed using
equation of state (16.117) (with γ = 7). In fact, the density ρ is computed
from the equation substituted for the pressure given as a function of depth
via Bernoulli’s law:

B
(( ρ
ρ0

)γ − 1
)

= ρ0g(wd−y).

The mass of the fluid parcels is equally distributed: mass is reference
density (103 kg /m3) times the area of the initial region divided by the
number of parcels, and the mass does not change with time. With this choice,
units are not consistent. If desired, the inconsistent units can be repaired by
replacing the area of the region by the volume of a slab whose face area is
the area of the two-dimensional region and whose thickness is one meter.

The smoothing length (radius of support of the smoothing function) was
taken to be 0.4 and the Mach number is 0.1.

The system was integrated 4.5 seconds forward in time using 9000 steps
(equivalently the time step size is 0.0005 seconds). Some results of the
numerical experiment are shown in Fig. 16.18. The leading edge of the flow
travels at the average velocity of approximately 18.75 m / sec (or about 42
miles per hour). If the reservoir behind the dam were infinitely long, it is
possible to show that the leading edge of the flow moves at approximately
2
√
gH , whereH is the water depth in the reservoir; that is, about 32 m / sec

(see [101]). Our reservoir is finite and thus the speed is expected to be lower.
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Fig. 16.18 The top left panel shows the initial configuration of water parcels and the boundary parcels for the dam
break problem whose description begins on page 506, the top right panel shows the flow after 2 seconds, the bottom left
panel shows the flow after 3 seconds, and the bottom right panel shows the flow after 4.5 seconds.

Exercise 16.43. [Dam Break Problem] Write an SPH code and use it to approximate
the dam break problem described in the text. Currently there are good open source
codes available for SPH simulations, but there is no substitute—if you wish to learn
the subject—for writing your own code. To make life simple, you may start by writing
a code that runs through all pairs of parcels (including boundary parcels) to compute
interactions between parcels whose separation is less than the support radius of the
smoothing function.

Exercise 16.44. [Still Water] Apply your SPH code to the 25 meter by 25 meter
reservoir with no dam break. The initial placement of fluid parcels is an approximation of
zero velocity water. There is no reason to believe that your configuration is a steady state
of the SPH equations. Describe the flow that is obtained in the reservoir by numerical
simulation with your SPH code. Does the flow approach a steady state? Discuss your
results.

Let us return to the Tiger Fountain free-surface flow discussed in
Section 15.5.

Simulation of the full three-dimensional flow problem requires high-
performance computing, that may be unavailable to students. Thus, we
will discuss a two-dimensional flow problem that still seems to capture the
essential features of the real flow. We will simulate a thin slice of the flow
parallel to the bulk flow velocity vector as in Section 15.5.

For the implementation of SPH, it is convenient to choose rectangular
Cartesian coordinates (x, y) with the x-axis parallel to the flow and the y-
axis the vertical direction of the slice. As in Table 15.46 but with names for
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some of the variables, recall that

water depth wd = 0.01746 m
plate slice length ` = 0.47625 m
bulk speed vb = 0.296333 m / sec
bulk density ρb = 997 kg /m3

viscosity µ = 1.002× 10−3 kg /(m sec)
kinematic viscosity ν = 1.005× 10−6 m2 / sec
sound speed c = 1.5× 103 m / sec
gravity g = 9.8 m / sec2

(16.142)

The flat bottom of the rectangular region containing fluid is {(x, y) : y =
0, 0 ≤ x ≤ `} and the fluid moves from right to left.

Initial Data

We must prescribe initial data for the state variables: position, velocity,
density, and pressure. Because the pressure and the density are related via
the equation of state [Eq. (16.117)], it suffices to determine only one of these
variables.

Of the many possible choices for the initial data, let us imagine an initial
steady flow that is parallel to the bottom. In Eulerian variables, the equations
of motion are(

u1u1x

0

)
= −1

ρ

(
px
py

)
+

(
0
−g

)
+ ν

(
u1xx + u1yy

0

)
,

(ρu1)x = 0. (16.143)

The equation of continuity implies that the product ρu1 is a function of
y alone. Let us assume that the velocity and the density are functions of y
alone. Using this assumption and the equation of state, it follows that p is
a function of y alone; and, the first component of the momentum balance
reduces to

u1yy = 0.

Thus u1(y) = Ay + B for some constants A and B. The no-slip boundary
condition at the bottom implies that B = 0. Under the assumption that the
surface is moving with bulk velocity, we have that

u1(y) =
vb
wd

y. (16.144)
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The second component of the momentum balance together with the
equation of state can be recast as a differential equation for the density:

Bγ

ρbρ

( ρ
ρb

)γ−1
ρy + g = 0, (16.145)

which has the general solution( ρ
ρb

)γ−1
=
ρb(γ − 1)

Bγ
(A− gy), (16.146)

where A is a constant. A useful rearrangement of this equation is given by

B
(( ρ
ρb

)γ
− 1
)

= B
((γ − 1)ρ

Bγ
(c− gy)− 1

)
. (16.147)

Both sides of Eq. (16.147) must give the internal pressure, which is
defined up to a constant. Let us take advantage of this fact by specifying
the pressure to be zero at the surface of the fluid. In this case (with y = wd
in the right-hand side of the equation), it follows that

A =
Bγ

ρ(γ − 1)
+ gwd;

therefore, for the equation of state to be compatible with our choice of steady
flow, we must have

B
(( ρ
ρb

)γ
− 1
)

=
(γ − 1)

γ
ρg(wd−y). (16.148)

In particular, density is given implicitly as a function of depth. The value of
the density for a given depth can be efficiently approximated by Newton’s
method.
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Channel Flow

Imagine a three-dimensional flow whose most important features are
observed in a fixed direction. The prototypical case is channel flow. But,
flow in a pipe, in an artery (perhaps with flexible walls), or in a river all
share this feature. The main purpose of this chapter is to show how to obtain
partial differential equation (PDE) models for such flows where the model
equations depend on time and exactly one spatial dimension. Because such
models are obtained by making approximations, many different models may
be derived.

The main motivation for reducing the fluid equations to simpler models,
such as those to be obtained for channel flows, is to gain a foothold on
understanding the underlying physical principles that produce observed
phenomena; for example, hydraulic jumps (to be discussed), roll waves,
solitary waves, or tidal bores. Historically, simplifications were made
to derive approximate formulas useful for engineering calculations. For
instance, in the case of channel flows, formulas (by Chézy and Manning
mentioned below) were obtained to compute the velocity of the flow
from channel configurations. Given the advances in numerical methods
for computational fluid mechanics, modern numerical approximations for
engineering applications should be made using the Navier–Stokes equations
when possible; that is, when the Reynolds number is not too large. But, there
is certainly a need for numerical computations using simplified equations
for the flows observed in nature: most of them have large Reynolds numbers
(see [40] and Exercise 17.2). One such simplified model for channel flow is
discussed in this section: open channel flow. Although

A basic assumption restricts the geometry of the channel:

Assumption 17.1. The flow is confined to a channel with a straight axis.
Each cross section of the fluid filling the channel is bounded by the channel
wall that is convex and oriented to hold water. The upper boundary of the
flow is the fluid surface, which is exposed to the atmosphere.

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation.
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Fig. 17.1 Schematic diagram of channel cross section with channel coordinate system, channel bottom (thick curve),
fluid surface (dashed), and wet part of the section labeled S.

Cartesian coordinates x, y, and z with direction vectors e1, e2, and e3

forming a right-hand coordinate system (depicted in Fig. 17.1) are fixed
so that e1 points in the downstream direction, e2 points in a horizontal
direction, and e3 has a positive inner product with the upward vertical
direction defined by the direction of the gravitational field. Time is denoted
by the variable t. The channel axis may be inclined with respect to the
horizontal defined by the gravitational field. Cross sections of the channel
(which play a prominent role in the analysis) are taken perpendicular to the
channel axis, which has direction e1.

The wet part of the channel cross section at (x, t) is denoted S(x, t) and
its area by A(x, t). The unit normal to S(x, t) in the downstream (positive
x) direction is the Cartesian unit vector e1, which is in the direction of the
channel axis.

A control volume is defined to be a portion of fluid in the channel
bounded by two (channel) cross sections.

Assumption 17.2. The fluid density ρ is constant.

Assumption 17.3. The flow velocity

u = (u1, u2, u3)

(with components taken with respect to the channel coordinate system)
is constant with respect to the second (horizontal) coordinate y on each
cross section. The surface of the fluid, which is the top boundary of the
wet cross section, is assumed to be a line segment with constant x and z
coordinates. The channel bottom need not be flat, but its profile is assumed
to be concave up. At the lowest point of the bottom, the tangent line is of
course perpendicular to the channel axis. The heights of the fluid surface and
the tangent line at the lowest point are given by z = ζ(x, t) and z = B(x, t),
respectively.
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Although, under this assumption, the no-slip boundary condition is not
satisfied at the horizontal boundaries of the flow unless the flow velocity
is zero, it can be enforced at the bottom of the channel. For most of the
modeling in this section the height of the bottom of the channel may change
with time. But, for the main applications to follow, the bottom of the channel
depends only on the position of the cross section as measured by the axial
coordinate.

To complete notation for the dimensions of the section, let W (x, z, t)
denote the width of the section at (x, t) at height z. For prismatic channels
(those with fixed solid boundaries that have the same cross-sectional profile
at all points along the channel axis), the width is independent of x, and for
prismatic rectangular channels, which will later be the simplest application,
the width is constant.

Assumption 17.4. The inner product of the channel flow velocity field u
and the unit vector e1 (in the direction of the channel axis) is everywhere
positive; that is, the flow velocity has no upstream component.

Under Assumption 17.3, the flow velocity field is taken to be constant
with respect to the y coordinate; that is, u = u(x, z, t).

The flux (measured in units of volume/time) of the fluid velocity field
through a cross section with respect to the downstream unit normal is called
the discharge of the channel at the cross section; it is a function of position
and time given by

Q(x, t) :=

∫
S(x,t)

u · e1 dS =

∫
S(x,t)

u1 dS. (17.1)

The discharge Q and wet cross-sectional area A are the state variables
for the channel flow model that will be constructed.

17.1 CONSERVATION OF MASS

Suppose that Ω is a control volume. To set notation, let the horizontal
coordinate of the upstream (respectively, downstream) cross-sectional part
of the boundary of Ω (denoted as usual by ∂Ω) be x = xU (respectively, x =
xD); that is, S(xU , t) (respectively, S(xD, t)) is the upstream (respectively,



514 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

downstream) cross-sectional boundary of Ω. The cross sections are at fixed
locations and do not vary with time; the wet parts of these cross sections
might vary with time. In particular, Ω might vary with time; for example,
the position of the fluid surface might change with time while the positions
in space of the upstream and downstream boundaries of Ω remain fixed. The
lateral boundary of Ω is

Σ := ∂Ω \ (S(xU , t) ∪ S(xD, t)).

By conservation of mass, the time rate of change of the total mass of the
fluid in Ω is the negative fluid flux through ∂Ω with respect to the outer unit
normal N on this boundary. No mass is created or destroyed in a control
volume. More precisely, conservation of mass is encoded in the equation

d

dt

∫
Ω
ρ dV = −

∫
∂Ω
ρu ·N dS. (17.2)

For sufficiently smooth flows, there is an equivalent statement of this
conservation law that is expressed as a PDE relating the state variables Q
and A. Its derivation is the subject of the remainder of this section.

The time derivative of the total mass can be expressed as an iterated
integral:

d

dt

∫
Ω
ρ dV = ρ

d

dt

∫ xD

xU

∫
S(x,t)

dS dx

= ρ

∫ xD

xU

At(x, t) dx,

where, as previously defined, A is the wet section area.

The flux term is separated into integrals over the upstream and down-
stream wet cross sections and the lateral boundary. Using the definition of
discharge,∫

∂Ω
ρu ·N dS = ρ

( ∫
S(xD,t)

u1 dS −
∫
S(xU ,t)

u1 dS
)

+ ρ

∫
Σ
u ·N dS

= ρ(Q(xD, t)−Q(xU , t)) + ρ

∫ xD

xU

∫
∂S(x,t)

u ·N dL dx

= ρ

∫ xD

xU

Qx(x, t) dx+ ρ

∫ xD

xU

∫
∂S(x,t)

u ·N dL dx.
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For notational convenience define the negative (volumetric) flux through
the boundary of a wet cross section to be

q(x, t) = −
∫
∂S(x,t)

u ·N dL. (17.3)

It has units of area per time with its sign is chosen so that fluid enters
the channel when q > 0 and exits when q < 0. Auxiliary flow due to
rain, evaporation, seepage through the channel walls, flooding, oil spills,
influx via pipes with openings in the channel, or other causes, can be
modeled by specifying q. An alternative possibility is to model (for example,
evaporation) by some constitutive relation so that q is a function of A and
Q.

Because the conservation of mass holds for all choices of xU and xD, its
differential form is

At +Qx = q, (17.4)

where each term has units of area per time.

17.2 MOMENTUM BALANCE

Newton’s second law for a fluid parcel Ω (as given by Eq. (11.5) but with
new notation where the parcel of fluid A is now Ω, the flow is γ, Cauchy
stress tensor σ, and body force per mass b) is the equation

d

dt

∫
γ(Ω,t)

ρu dV =

∫
∂γ(Ω,t)

σN dS +

∫
γ(Ω,t)

ρb dV, (17.5)

which (by applying the transport theorem (A.2) to each vector component
of the integral on the left-hand side of Eq. (17.5)) can be put into the more
convenient equivalent form∫
γ(Ω,t)

(ρu)t dV +

∫
∂γ(Ω,t)

ρu ·NudS =

∫
∂γ(Ω,t)

σN dS +

∫
γ(Ω,t)

ρb dV.

Because this equation holds for every fluid parcel, so does the equation∫
Ω

(ρu)t dV +

∫
∂Ω
ρu ·NudS =

∫
∂Ω
σN dS +

∫
Ω
ρb dV. (17.6)
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Thus, we have derived an integral form for momentum balance where
integration is over fluid parcels (which in this context are called control
volumes) fixed in time and space.

The goal of channel flow theory is to replace the vector equation for
momentum balance [Eq. (17.6)] in three spatial dimensions with a scalar
equation in one spatial dimension that preserves, as much as possible, the
main features of observed channel flows. As might be expected, there is no
natural way to achieve this goal; there are several possible scalar PDEs that
can be derived using different approximations. An instructive approach is
discussed in this section.

Define the average velocity over a cross section to be

U(x, t) :=
1

A(x, t)

∫
S(x,t)

u1 dS. (17.7)

In other words, this definition states that

Q = UA.

To obtain the desired one-dimensional channel flow approximation of
momentum balance, the fluid parcel in this conservation law is taken to be
a control volume and the momentum balance is replaced by its dot product
with the downstream unit normal. Using the notation of the previous section
and the constant density assumption, the replacement for the first integral on
the left-hand side of Eq. (17.6) is∫

Ω
(ρu)t · e1 dV = ρ

∫ xD

xU

∫
S(x)

ut · e1 dS dx (17.8)

= ρ

∫ xD

xU

d

dt

∫
S(x)

u1 dS dx

=

∫ xD

xU

ρQt dx.

Because the channel flow is assumed not to penetrate the walls or the
top fluid surface of the control volume, u ·N vanishes on these portions of
its boundary. On the upstream cross-sectional boundary S(xU , t), the dot
product of the fluid velocity with the normal is u · N = −u · e1 and on
S(xD, t) the dot product is u · N = u · e1. Therefore, the replacement for
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the second integral on the left-hand side of Eq. (17.6) is∫
∂Ω
ρu1u ·N dS =

∫
S(xD,t)

ρu2
1 dS −

∫
S(xU ,t)

ρu2
1 dS

=

∫ xD

xU

ρ
d

dx

(∫
S(x,t)

u2
1 dS

)
dx. (17.9)

Assumption 17.5. When integrating a function of the dot product of the
velocity and the downstream normal over a wet cross section, this quantity
may be replaced by its (constant) average value over the section. More
precisely, the approximation is

u(x, y, z, t) · e1 = u1(x, y, z, t) ≈ U(x, t) =
1

A(x, t)

∫
S(x,t)

u1 dS.

Using Eq. (17.9) and Assumption 17.5, we have the approximation∫
∂Ω
ρu1u ·N dS ≈

∫ xD

xU

ρ
d

dx

(∫
S(x,t)

U(x, t)2 dS
)
dx

=

∫ xD

xU

ρ
(Q2

A

)
x
dx. (17.10)

Thus, for channel flow,∫
Ω

(ρu)t dV +

∫
∂Ω
ρu ·NudS ≈

∫ xD

xU

ρ(Qt +
(Q2

A

)
x
) dx. (17.11)

This result is the standard approximation of the left-hand side of the momen-
tum balance [Eq. (17.6)]. Obtaining physically meaningful approximations
of the right-hand side of this equation is a more challenging task where much
variation is possible.

Gravity acts vertically downward; it drives the flow in an inclined
channel. Let θ denote the angle between the tangent line to the channel
bottom in the axial direction and channel axis. For a horizontal bottom
θ = 0. For a bottom that tilts toward the center of Earth in the downstream
direction, this angle is positive. Treating the bottom as an inclined plane, and
resolving the gravitational force into components with respect to the unit
vector in the downstream axial direction (which is tangent to the bottom)
and the normal vector to the channel bottom pointing into the fluid, the
magnitude of the gravitational force per mass in the direction of the channel
bottom is b · e1 = g sin θ. Using this model of the gravitational (body) force
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on the channel flow, approximation∫
Ω
ρb · e1 dV =

∫
Ω
ρg sin θ dV

=

∫ xD

xU

∫
S(x,t)

ρg sin θ dSdx

=

∫ xD

xU

ρgA sin θ dx. (17.12)

The next derivation of a one-dimensional model for the normal stress
integrated over the boundary of the control volume Ω requires new approx-
imations.

Using the Navier–Stokes stress (for example, Eq. (11.31)), the total stress
induced by the divergence-free velocity field u is∫

∂Ω
σN dS =

∫
∂Ω
−pN + µ(∇u+ (∇u)T )N dS,

where p is the pressure, µ is the viscosity, and the deformation tensor

1

2
(∇u+ (∇u)T )

(with the superscript T denoting the transpose) is the symmetric part of∇u.

Assumption 17.6. The pressure p for the moving fluid is the steady state
Eulerian pressure (given by Bernoulli’s law [Eq. (13.7)])

p := C − gρ(z − ζ)− ρ

2
u · u,

where ζ = ζ(x, t) is the surface height of the flow and C is a constant.

The pressure assumption [Eq. (17.6)] should be realistic for steady state
channel flows. For nonsteady state flows it is problematic. Some successful
models simply assume that the pressure is hydrostatic; that is, p := C −
gρ(z − ζ). At least, disregarding the translation, pressure would be zero
at the surface, negative above the surface, and positive below the surface;
moreover, the pressure is maximum at the bottom.

Desired approximations are most easily carried out by treating the
integral of the velocity term in the pressure function as a surface integral
and transforming the viscosity term in the stress to a volume integral. Using
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the divergence theorem, the divergence-free assumption, and treating, for
example, the components of pN in the form pei ·N , the total stress is given
by∫

∂Ω
σN dS =

∫
Ω
∇(gρ(z − ζ)) dV +

∫
∂Ω

ρ

2
u · uN dS +

∫
Ω
µ∆u dV,

(17.13)
where as usual ∆u is shorthand notation for the Laplace operator applied to
each component of u. There are two pressure terms and one viscosity term.

After taking the dot product of the right-hand side of Eq. (17.13) with
the downstream normal e1, each integral on the right-hand side will be
approximated.

Proceeding in order, note that∫
Ω
∇(gρ(z − ζ)) · e1 dV = −gρ

∫ xD

xU

∫
S(x)

ζx dS dx

= −gρ
∫ xD

xU

Aζx dx. (17.14)

The integrand of the dot product of the second pressure term in
Eq. (17.13) with e1 vanishes except on the inflow and outflow cross-section
boundaries of Ω. Thus,∫

∂Ω
ρ
u · u

2
N · e1 dS = ρ

( ∫
S(xD,t)

u · u
2

dS −
∫
S(xU ,t)

u · u
2

dS
)

= ρ

∫ xD

xU

d

dx

(∫
S(x,t)

u · u
2

dS
)
dx. (17.15)

By the channel flow assumptions u · u ≈ (u1)2; therefore,∫
∂Ω
ρ
u · u

2
N · e1 dS ≈ ρ

∫ xD

xU

1

2

(Q2

A

)
x
dx. (17.16)

Channel flow approximation of the dot product of the viscosity part of
the stress with the downstream normal starts by applying the divergence
theorem: ∫

Ω
∆u · e1 dV =

∫
Ω

∆u1 dV
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=

∫
∂Ω
∇u1 ·N dS,

where N is the outer unit normal on the boundary of the control volume Ω.
The latter integration may be written as a sum of integrals over the lateral
boundary LB and the union of the upstream and downstream cross-sectional
boundaries; that is,∫

∂Ω
∇u1 ·N dS =

∫
LB
∇u1 ·N dS +

∫
S(xU ,t)∪S(xD,t)

∇u1 ·N dS.

(17.17)

At this point, the shape of the channel seems to be important. The main
example is a rectangular channel with vertical sides. But, to include the
possibility of different channel profiles, consider the lateral boundary of the
control volume to be split into two parts: the union TB of the top boundary
at the free surface and the (flat part) of the channel bottom (which could
consist of a single point) and the sides SS of the channel. Also, for future
reference, let RB denote the part of the boundary of a wet cross section that
is on the channel boundary; that is, the portion of the boundary that does not
include the fluid surface.

The orientation of the control volume Ω is taken to be positive with
respect to the usual positive orientation with respect to previously chosen
Cartesian coordinates.

Integration over the lateral boundary of Ω with respect to the orientations
induced by the outer unit normal N is the sum of the integrals of ∇u1 · N
over TB and SS. The function ∇ · N = (u1)z is integrated over the top
boundary and∇·N = −(u1)z over the bottom boundary with respect to the
usual orientation in xy coordinates; that is, the functions ±(u1)z(x, y, z, t)
are integrated over a region in the xy plane with its usual orientation. The
integration over SS is simply indicated because it will vanish for prismatic
rectangular channels. Thus,∫

LB
µ∆u · e1 dV =

∫ xD

xU

µ

∫
∂S(x,t)

∇u1 ·N dL dx

=

∫ xD

xU

µ
(∫

TB
µ∇u1 ·N dL+

∫
SS
∇u1 ·N dL

)
dx

=

∫ xD

xU

−µ(u1)z(x,B(x, t), t)W (x,B(x, t), t) dx
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+

∫ xD

xU

µ(u1)z(x, ζ(x, t), t)W (x, ζ(x, t), t) dx

+

∫ xD

xU

µ

∫
SS(x,t)

∇u1 ·N dL dx. (17.18)

Integration over the wet cross sections that form the upstream and
downstream boundaries of Ω is unified by an application of the fundamental
theorem of calculus:∫
S(xU ,t)∪S(xD,t)

∇u1 ·N dS =

∫
S(xD,t)

∇u1 · e1 dS −
∫
S(xU ,t)

∇u1 · e1 dS

=

∫
S(xD,t)

(u1)x dS −
∫
S(xU ,t)

(u1)x dS

=

∫ xD

xU

∂

∂x

∫
S(x,t)

(u1)x dS dx. (17.19)

Proposition 17.7. Suppose the boundary of each wet cross section S
consists of two parts: the portion at the fluid surface and the curve RB
along the solid channel. Let Γ denote the function whose graph (given
by z = Γ(x, y, t)) is the channel boundary and assume that this graph
is everywhere below the free surface. The first partial derivatives of the
discharge Q are given by

Qt(x, t) =

∫
S(x,t)

(u1)t dS + ζt(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t),

Qx(x, t) =

∫
S(x,t)

(u1)x dS + ζx(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t)

+

∫
RB(x,t)

u1(ξ, ζ(ξ, t), t)Γx(ξ, η, t) dL.

Proof. To determine Qt(x, t), we may fix x and compute

d

ds

∫
S(x,t+s)

u1 dS
∣∣∣
s=0

.

According to the transport theorem A.2,

d

ds

∫
S(x,t+s)

u1 dS
∣∣∣
s=0

=

∫
S(x,t)

(u1)t dS +

∫
∂S(x,t)

u1(Y ·N) dL,
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where N is the normal to the boundary of S(x, t) and Y is the vector field
tangent at s = 0 to the one-parameter family of diffeomorphisms induced
by the flow from S(x, t) to S(x, t+ s). The lateral (solid) channel boundary
is mapped to itself by each such diffeomorphism. Thus, the vector field Y
is tangent to the lateral boundary and therefore orthogonal to N . In view
of this fact, the only possible nonzero contribution to the second integral
on the right-hand side is along the fluid surface in the cross section. By
Assumption 17.3, the fluid velocity field is constant along this boundary,
which is a line segment of length W (x, ζ(x, t), t). The top boundary is
simply moved vertically by the one-parameter family of diffeomorphisms,
which by assumption acts on sections where the velocity field is constant
across the channel. The quantity Y ·N is the normal derivative in the vertical
direction at x. In other words

Y ·N = ζt(x, t).

Thus, we have that

d

ds

∫
S(x,t+s)

u1 dS
∣∣∣
s=0

=

∫
S(x,t)

(u1)t dS

+ ζt(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t).

Because

Qt(x, t) =
d

ds

∫
S(x,t+s)

u1 dS
∣∣∣
s=0

,

the first equality of the proposition follows after a rearrangement.

The proof of the second equation in the statement of the theorem is
similar but technically more difficult because the fluid flow at some fixed
time may not carry an entire wet section to a wet section.

Note that, because the first coordinate x is fixed on a wet cross section,

Q(x+ s, t) =

∫
S(x+s,t)

u1(x+ s, y, z, t) dS.

Thus, we have that

Qx(x, t) =
d

ds

∫
S(x+s,t)

u1(x+ s, y, z, t) dS
∣∣∣
s=0
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The transport theorem can be applied to represent the indicated derivative
whenever a flow φs is chosen such that φs(S(x, t)) = S(x+ s, t). A time t
is fixed for the remainder of the proof.

Using the assumption that the channel bottom is everywhere below the
free surface (Γ(x, y, t) < ζ(x, t)) and fixing t, the autonomous system of
differential equations

dx

ds
= 1,

dy

ds
= 0,

dz

ds
=

z − Γ(x, y, t)

ζ(x, t)− Γ(x, y, t)
ζx(x, t) +

z − ζ(x, t)

ζ(x, t)− Γ(x, y, t)
Γx(x, y, t),

has the boundary of the fluid as an invariant set because the vector field
Y defining the differential equation is everywhere tangent to the boundary
including the free surface. For example, a tangent vector in the x direction
on the free surface given by z = ζ(x, t) is the transpose of the vector
(1, 0, ζx(x, t)). This is exactly the value of Y on the free surface at x, which
is the set

{(x, y, z) : z = ζ(x, t) and |y| ≤ 1
2W (x, ζ(x, t), t)}

where W is the width of the wet section. By this property and be-
cause dx/ds = 1, the flow φs of this differential equation is such that
φs(S(x, t)) = S(x+ s, t), as desired.

By an application of the transport theorem using the flow φs,

Qx(x, t) =
d

ds

∫
S(x+s,t)

u1(x+ s, y, z, t) dS
∣∣∣
s=0

=

∫
S(x,t)

(u1)x dS +

∫
∂S(x,t)

u1Y ·N dL.

On the free surface the scalar Y · N is ζx(x, t) and on the remainder of
the boundary of the wet cross section RB it is Γx(x, y, t). Thus,

Qx(x, t) =

∫
S(x,t)

(u1)x dS + u1(x, ζ(x, t), t)W (x, ζ(x, t), t)ζx(x, t)
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+

∫
RB(x,t)

u1(ξ, ζ(ξ, t), t)Γx(ξ, η, t) dL.

By the proposition and Eq. (17.19) together with the abbreviation S :=
S(xU , t) ∪ S(xD, t),∫

S
∇u1 ·N dS =

∫ xD

xU

∂

∂x

[
Qx(x, t)

− ζx(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t)

+

∫
RB(x,t)

u1(ξ, ζ(ξ, t), t)Γx(ξ, η, t) dL
]
dx

=

∫ xD

xU

[
Qxx − (ζx(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t))x

+
∂

∂x

∫
RB(x,t)

u1(ξ, ζ(ξ, t), t)Γx(ξ, η, t) dL
]
dx. (17.20)

Adding the integrations over LB and the union of the wet cross sections,
integration of the viscosity term over the entire control volume may be
represented by the formula∫

Ω
µ∆u1 dV=

∫ xD

xU

−µ(u1)z(x,B(x, t), t)W (x,B(x, t), t) dx

+

∫ xD

xU

µ(u1)z(x, ζ(x, t), t)W (x, ζ(x, t), t) dx

+

∫ xD

xU

µ

∫
SS(x,t)

∇u1 ·N dL dx

+

∫ xD

xU

µ
(
Qxx−(ζx(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t))x

)
dx

+

∫ xD

xU

µ
∂

∂x

∫
RB(x,t)

u1(ξ, ζ(ξ, t), t)Γx(ξ, η, t) dL dx.

(17.21)

Taking into account Eqs. (17.6), (17.11), (17.12), (17.14), (17.16),
and (17.21) to obtain the differential form of the momentum balance, and
the differential equation for conservation of mass; the equations of motion
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in the channel flow approximation with pressure as in Bernoulli’s law are

At +Qx = q,

ρ(Qt +
(Q2

A

)
x
) = − gρAζx +

ρ

2

(Q2

A

)
x

− µ(u1)z(x,B(x, t), t)W (x,B(x, t), t)

+ µ(u1)z(x, ζ(x, t), t)W (x, ζ(x, t), t)

+ µ

∫
SS(x,t)

∇u1 ·N dL

+ µ(Qxx − (ζx(x, t)W (x, ζ(x, t), t)u1(x, ζ(x, t), t))x)

+ µ
∂

∂x

∫
RB(x,t)

u1(ξ, ζ(ξ, t), t)Γx(ξ, η, t) dL

+ ρgA sin(θ(x, t)). (17.22)

These model equations are variants of systems that appear in several
different forms in the literature on channel flow (see, for example, [19]).

The right-hand side of the second equation of system (17.22) is too
complicated to yield a tractable simplification of the Navier–Stokes model.
Also, as might be expected, the system is not closed. Because the flow
velocity and the free-surface height are not eliminated from the system
and the channel shape is not specified, there are too many state variables.
Fortunately, the new model can and will be simplified for some special cases
of channel flow.

The important viscosity term µ(u1)z(x,B(x, t), t)W (x,B(x, t), t) is
related to the shear stress at the channel bottom caused by the no-slip
boundary condition. A useful approximation

µ(u1)z(x,B(x, t), t)W (x,B(x, t), t) ≈ cρω
(Q
A

)2
, (17.23)

where c is a dimensionless parameter and ω = ω(x, t) := W (x,B(x, t), t),
is a by-product of the discussion of boundary layers presented in Sec-
tion 17.3. The shear stress coefficient c can be adjusted to model (to some
extent) the shear stress at the sides of the channel when the integral over
the wet side boundary SS is not taken into account or when the sides of
the channel are vertical and this integral vanishes. The approximation is
best for prismatic channels with flat bottoms. The latter case is discussed in
Section 17.4.
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Table 17.1 Table of Variable Names For Channel Flow.

Using hydrostatic pressure (no u · u term), ignoring the viscosity except
at the channel walls, using the shear stress approximation, and with no
additional fluid sources or sinks, the model reduces to the simpler form

At +Qx = 0,

Qt +
(Q2

A

)
x

= −gAζx + gA sin θ − cω
(Q
A

)2
. (17.24)

This system of equations (where cω may be replaced by an appropriately
dimensioned parameter) is called the Saint-Venant model (introduced by
Adhémar Jean Claude Barré de Saint-Venant, circa 1845).

Channel flow model (17.24) is not closed because there are three state
variables A, Q, and ζ and only two equations. But, this issue is easily
resolved when the shape of the channel is known. For example, if the width
W of the channel and the bottom B are known and every wet cross section
is assumed to be rectangular, then

W (ζ −B) = A

and

ζ =
A

W
+B.

Name Variable Description Name Variable Description
A Wet Section Area Q Discharge Flux Through Wet Section
U Q/A ρ Density
µ Viscosity W Wet Section Width
B Wet Section Bottom Height ζ Wet Section Top Height
ω Wet Section Bottom Width q Negative Boundary Flux
Fr Froude Number SS Wet Channel Side Boundary
RB Wet Channel Boundary \ SS θ Channel Inclination Angle
c Roughness Constant (17.23) Re Reynolds’s Number
u1 Axial Fluid Velocity h Dimensionless Fluid Depth
Γ Wet Channel Boundary N Outer Unit Normal on Section Boundary
λ Dimensionless Constant (17.41) ι Dimensionless Constant
d A Characteristic Velocity δ Dimensionless Constant (17.42) ≥ 1
g Gravitational Acceleration b Body Force
β Scaled Bottom Height H Fluid Depth
κ Dimensionless Parameter γ Dimensionless Parameter
σ Dimensionless Parameter
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By substitution in the second Saint-Venant equation, the model in case of
rectangular cross sections is closed and given by

At +Qx = 0,

Qt +
(Q2

A

)
x

= −gA
( A
W

)
x
− gABx + gA sin θ − cω

(Q
A

)2
. (17.25)

The scalar ω is the width at the bottom of the wet section.

Several alternatives to the shear stress approximation (last term in the
second equation in display (17.25)) for channel friction have been proposed.
For example, the denominator A2 (which is also called Chézy friction) is
sometimes replaced byA7/3 (Manning friction) together with an appropriate
change of the coefficient c.

For the case of a rectangular channel (W = ω) tilted with angle θ where
the bottom profile is a line with slope − tan θ, the Saint-Venant model
simplifies to

At +Qx = 0,

Qt +
(Q2

A

)
x

= − g
ω
AAx + gA(sin θ + tan θ)− c ω√

Re

(Q
A

)2
. (17.26)

This is the natural model simplification for hydraulics.

Exercise 17.1. Assume the channel is prismatic (all channel cross sections are the
same). Is

Qxx(x, t) =

∫
S(x,t)

(u1)xx dS + ζx(x, t)ω(x, t)(u1)x(x, ζ(x, t), t)

+ (ζx(x, t)ω(x, t)u1(x, ζ(x, t), t))x?

Exercise 17.2. (a) Determine the Reynolds number for a river with mean depth 1.5
meters flowing on average at one meter per second. Discuss using depth as the length
scale for river flow. Is this always the best choice? (b) Discuss the Reynolds numbers
for some examples (of rivers) from nature including examples whose Reynolds numbers
are less than and greater than 2500.

17.3 BOUNDARY LAYER THEORY

A physical flow moving rapidly along a fixed solid boundary has zero
velocity at the boundary. Thus, there must be an abrupt transition between
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the main flow and the flow near the boundary. Modeling this transition is the
subject of boundary layer theory.

Recall that the term µW (u1)z in the channel flow model [Eq. (17.22)]
provides a measure of the interaction of the flow with the channel wall. A
full explanation of the meaning of this term and a method to approximate
it are results of one of the most important developments in fluid mechanics:
the Prandtl boundary layer theory. It is the subject of this section.

The original context for the boundary layer theory discussed here is
aerodynamics. In the late 19th century basic fluid mechanics was well
understood. Using the two-dimensional Euler equations to model airflow
over a wing profile, pressure near the wing’s surface was computed to
sufficiently high accuracy to be useful in design. But, as can be proved, Euler
flow predicts zero drag on a body (for example a cross section of an airplane
wing) in a moving fluid. This fact is called d’Alembert’s paradox and in
more modern form the Kutta–Zhukovski theorem (see Section 13.4, [21],
or [60]). Prandtl recognized that although the Euler equations give a good
approximation of the flow away from the wing’s surface, the no-penetration
boundary condition (fluid velocity parallel to the boundary) in the Euler
model is not correct near the surface. Indeed, the no-slip boundary condition
(zero fluid velocity) is valid at the surface of the wing. Thus, there is a thin
layer near the wing’s surface—the boundary layer—that must be taken into
account in the computation of the drag force. When this is done, the drag
force can be predicted in principle with a high degree of precision from
the mathematical model. Although Prandtl’s fundamental observation seems
simple from a modern perspective, its impact was revolutionary. Prandtl did
more: he determined a simplification of the Navier–Stokes equations that
give a good approximation of the flow in the boundary layer. His students
(H. Blasius, in particular) extended the theory and found exact solutions of
the boundary layer equations in some special cases that can be used to obtain
practical estimates of the drag force. Some of these results are discussed in
this section.

Prandtl’s theory—in its original form—is for incompressible two-
dimensional Navier–Stokes flow. Assigning, as in the case of channel flow,
a Cartesian coordinate system where the first coordinate x is in the direction
of the main flow, imagine that the flow boundary is the xy coordinate plane
and the third coordinate z is perpendicular to this plane. In addition, assume
that the part of the xz coordinate plane corresponding to z > 0 is an
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invariant slice of fluid: a particle of fluid in this plane stays in the plane as
the fluid moves. In the invariant plane, the Navier–Stokes equations for the
fluid velocity field (u,w) are

ut + uux + wuz = −px +
1

Re
(uxx + uzz),

wt + uwx + wwz = −pz +
1

Re
(wxx + wzz),

ux + wz = 0. (17.27)

The basic problem of boundary layer approximation theory is to approxi-
mate the Navier–Stokes equations for flow near its boundary (in this case the
points with coordinate z = 0) where the effects of viscosity are manifested
by the transition from zero velocity at the boundary to the nonzero velocity
of the main flow.

At the boundary z = 0 both velocity components u and w vanish. Away
from the boundary in the main flow, u is big and w is small. The boundary
layer where the transition takes place has thickness proportional to some
small parameter ε > 0. To magnify (or stretch) the flow profile near the
boundary so its properties are easier to detect, define a new coordinate
ζ = z/ε so that ζ is big relative to z if ε is small. Likewise, magnify the
vertical component w of the flow by scaling W = w/ε. (The symbol W
is reused here and should not be confused with the width of the channel in
the channel flow model.) The remaining variables are left unaltered: ξ = x,
U = u, P = p, and t = t. System 17.27 in the new variables (after a simple
rearrangement) is

Re ε2(Ut + UUξ +WUζ + Pξ) = ε2Uξξ + Uζζ ,

Re ε2(Wt + UWξ +WWζ) = −RePζ + ε2Wξξ +Wζζ ,

Uξ +Wζ = 0. (17.28)

The idea is to only retain the dominate terms in case Re is large and ε
is small. A relation between these two quantities is assumed. Suppose, to
illustrate the process of finding the correct relationship, that Re = 1/ε3. In
this case, Re is large relative to 1/ε2. When the corresponding small terms
are discarded from the system, the model reduces to

Ut + UUξ +WUζ + Pξ = 0,

0 = Pζ ,
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Uξ +Wζ = 0,

which has no viscosity terms. This simplification certainly does not capture
the motion of viscous flow near the boundary! On the other hand, if Re =
1/ε so that Re is small compared with 1/ε2, the model reduces to

0 = Uζζ ,

0 = Pζ ,

Uξ +Wζ = 0,

a system where there is no interaction between the viscosity terms and
the advection terms. Thus, the natural choice is to take Re and 1/ε2 to
have the same order. The simplest way to accomplish this is to simply set
Re = 1/ε2. By keeping the dominant terms and then returning to the original
dimensionless variables, we obtain the Prandtl boundary layer equations

ut + uux + wuz = −px +
1

Re
uzz,

0 = −pz,
ux + wz = 0, (17.29)

where u and w also vanish when z = 0. Away from the boundary,
where viscous effects are less important, the flow may be modeled by the
Euler equations. For this reason, the desired solution of the boundary layer
equations is required to match (at least approximately) the Euler flow at the
interface between the boundary layer and the main flow.

Note that the pressure changes linearly with z through the boundary
layer. Thus, for a thin boundary layer, the pressure may be determined by
the Euler flow that is supposed to model the fluid away from the boundary
surface, a fact that was known before Prandtl’s work. The scaling Re ≈
1/ε2, or perhaps more properly ε ≈ 1/

√
Re, implies that the boundary layer

thickness is proportional to 1/
√

Re. In particular, as the Reynolds number
increases, the boundary layer thickness decreases.

The boundary layer equations are a simplified version of the Navier–
Stokes equations, but no general solution is known. An important special
case was analyzed by Blasius [9]. He considered flow over a flat plate
(modeled by the plane z = 0), where the ambient Euler flow is constant
and parallel to the plate.
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Following Blasius, suppose that the ambient fluid-velocity field (in the
same dimensionless variables used to define the Reynolds number) is given
in components by (u∞, 0). The pressure difference across the boundary
layer, as previously mentioned, is small. Thus, the dependence of pressure
on z may be ignored. Using Euler’s equation, this velocity field is related to
pressure via the dimensionless equation

u∞t + u∞u∞x = −px.

Thus, the boundary layer equations are reduced to

ut + uux + wuz = u∞t + u∞u∞x +
1

Re
uzz,

ux + wz = 0. (17.30)

For a constant u∞, the steady state boundary layer equations and boundary
conditions are

uux + wuz =
1

Re
uzz,

ux + wz = 0,

u(x, 0) = w(x, 0) = 0,

u(x,∞) = u∞. (17.31)

The Blasius problem is to find a solution of this boundary value problem
(BVP). Of course, the last equation is the idealization of the Euler match; it
is a shorthand for limz→∞ u(x, z) = u∞.

Blasius’s solution of system (17.31) is a famous example of a similarity
solution of a nonlinear PDE. His first observation is standard: The two-
dimensional flow is incompressible; therefore, the flow is given by a
potential φ that has an associated stream function ψ such that

u = ψz(x, z), w = −ψx(x, z).

Of course, if a solution of this form is found, it automatically satisfies the
second PDE of the system; that is, the flow is divergence free.

Blasius looks for a solution of the first PDE that is invariant under scaling
of the independent variables and the potential. A variant of this method,
which is worth trying when seeking special solutions of a PDE, is to look
for a solution invariant under what is called a dilatation scaling. This is the
approach suggested here.
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Suppose that there is a solution given by the stream function ψ and note
that in this case

ψzψxz − ψxψzz =
1

Re
ψzzz. (17.32)

Let λ, a, and b be real parameters, and seek the most general solution ψ̃ of
this partial differential equation that can be expressed in the form

ψ̃(x, z) := ψ̃(x, z, λ, a, b) := λaψ(λx, λbz).

Substituting ψ̃(x, z) for ψ in PDE (17.32) to obtain (up to a scalar
multiple) the new equation for ψ given by

λ1+a(ψzψxz − ψxψzz) = λb
1

Re
ψzzz.

Clearly, ψ̃ is a solution whenever 1 + a = b and ψ solves PDE (17.32).

The second step is to consider the possibility that there is a solution
invariant under the most general admissible dilatation; that is, a solution
ψ such that

ψ(x, z) = λaψ(λx, λ1+az)

for all λ and a. One way to find such a function ψ is to set λ = 1/x. This
produces the equation

ψ(x, z) =
1

xa
ψ(1,

z

x1+a
).

Apparently, the invariant choices for ψ are

ψ(x, z) =
1

xa
g(

z

x1+a
) (17.33)

for some unknown function g and parameter a. It is easy to check that ψ
given in this form is indeed invariant under the dilation.

The third step is to substitute this form for the unknown ψ into the PDE
to determine the differential equation that g must satisfy so that ψ will be a
solution of the PDE. After some algebra, this substitution yields the ordinary
differential equation (ODE)

1

Rex3+4a
(−Re(1 + 2a)(g′)2 + aRe gg′′ − g′′′) = 0. (17.34)
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This ODE must be supplemented with the boundary conditions for the
Blasius problem. The Euler match requires that

ψz(x,∞) = lim
z→∞

1

x2a+1
g′(

z

x1+a
) = u∞.

Our choice, which places the plate parallel to a constant ambient flow,
requires the limit to be independent of the horizontal position denoted by
x. There is a natural way to achieve this boundary condition: set a = −1/2
and require g′(∞) = u∞. In this case, Eq. (17.34) reduces to the ordinary
differential equation

2g′′′ + Re gg′′ = 0. (17.35)

To make the BVP for ODE (17.35) mathematically elegant, the condition
g′(∞) = 1 is preferable. This normalization and the removal of the
Reynolds number from the ODE can be achieved by a simple modification
of the stream function. For example, insert new parameters p and q into the
proposed stream function to obtain

ψ(x, z) = p
√
xf(q

z√
x

)

and note that the choices p =
√
u∞/
√

Re and q =
√
u∞Re yield the stream

function

ψ(x, z) =

√
u∞x

Re
f(
√
u∞Re

z√
x

). (17.36)

It solves the Blasius problem provided that f solves the BVP

2f ′′′ + ff ′′ = 0,

f(0) = f ′(0) = 0,

f ′(∞) = 1. (17.37)

Blasius chose to remove the factor 2 by yet another change of variables; his
ODE (called the Blasius equation) is f ′′′ + ff ′′ = 0 (see Exercise 17.3).

For use in the channel flow model, we will need the derivative of the
velocity field with respect to the variable for the vertical direction. The
analysis in this section is performed using dimensionless variables. To match
previous work, the derivative must be expressed in dimensioned variables.
Recall from Section 11.1 that the dimensioned velocity is obtained from the
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dimensionless velocity u used in this section by the expression

V u(
x̃

L
,
z̃

L
),

where V is the choice of characteristic velocity, L is a characteristic length,
and x̃ and z̃ now denote the original dimensioned variables. The partial
derivative of the dimensioned stream function Ψ with respect to z̃ is given
by

Ψz̃(x̃, z̃) = V u(
x̃

L
,
z̃

L
) = V u∞f ′(

√
Reu∞

L

ζ√
x̃

).

Thus, for the dimensioned velocity component ũ, dimensioned x̃, and
dimensioned Euler velocity U∞, the product of the viscosity µ and the
partial derivative of ũ with respect to z̃ evaluated at the solid boundary for
the Blasius solution (the shear stress at the boundary surface) is

µũz̃(x̃, 0) = µ

√
Re

LV x̃
f ′′(0)U∞

√
U∞

= ρ

√
LV

Re x̃
f ′′(0)U∞

√
U∞. (17.38)

The usual choice for the characteristic velocity is V = U∞; it results in a
shear stress that depends on the square of this characteristic velocity.

A good estimate for f ′′(0) is

f ′′(0) ≈ 0.332

(see Exercise 17.4).

The boundary layer theory is successful in predicting skin friction drag.
This is indeed one of the triumphs of theoretical fluid dynamics. Another
phenomenon called boundary layer separation, whose analysis is beyond the
scope of this book, is the next natural subject in boundary layer theory (see,
for example, [60] or [72]). As fluid passes over a body at high Reynolds
number, a boundary layer develops. One boundary of the boundary layer
would seem to be the solid boundary that contains the fluid. This is the case
near the leading edge of a body immersed in a flow. Further downstream,
the boundary layer (viewed as the portion of the flow where there is a
rapid transition from zero velocity to the free-stream velocity of the ambient
flow) may separate from the body and a slower flow, perhaps one that



Channel Flow 535

has some velocity vectors pointing upstream, might exist downstream of
the separation. When this occurs, there is usually a sharp increase in drag
and a loss of lift force on the body. Because of the obvious application to
airplane flight, separation phenomena have been widely studied. Although
much progress has been made, the subject is still not completely understood.
For example, the determination of the position of the first separation point
remains an open problem.

The Blasius solution was generalized by Victor Falkner and Sylvia Skan
(1930) to the case where the ambient flow is in the horizontal direction but
not constant with respect to the horizontal coordinate; that is, the velocity
component u∞ defined in the above analysis is allowed to be a function of
x (see Exercise 17.6).

Exercise 17.3. Show that by a modification of stream function (17.36), the corre-
sponding ODE for BVP (17.37) is f ′′′ + ff ′′ = 0.

Exercise 17.4. (a) Use a numerical method to verify the estimate f ′′(0) ≈ 0.332

for BVP (17.37). Hint: Solve the ODE with initial data f(0) = f ′(0) = 0 and
f ′(0) = λ where λ is some real number. Adjust the parameter λ until the desired
additional boundary condition f ′(∞) = 1 is closely approximated. This is called the
shooting method. Can you devise a different numerical method that obtains the result
more efficiently? (b) Determine the value of f ′′(0) correct to five decimal places and
defend your result.

Exercise 17.5. (a) Use numerical approximations to draw a portrait of the streamlines
for the Blasius solution. Also, plot a portrait of its velocity field. Describe in words the
behavior of the fluid in the boundary layer. (b) How thick is the boundary layer in this
solution?

Exercise 17.6. (a) Suppose that the ambient flow horizontal component u∞ is given
by u∞(x) = γxα for constants γ and α. Repeat the derivation of the Blasius solution but
with this more general replacement of u∞. The case α = 0 corresponds to the Blasius
solution. Show that there is a solution of the boundary layer equations of the form in
Eq. (17.33) provided that there is a solution of the Falkner–Skan BVP

f ′′′ + ff ′′ + β(1− (f ′)2) = 0,

f(0) = f ′(0) = 0,

f ′(∞) = 1,

for an appropriate choice of β. Hint: Start with Eqs. (17.30) and note that now u∞u∞x
does not vanish. (b) For which choices of β does the Falkner–Skan BVP have a solution?
Is the solution unique when at least one solution exists? Hint: This is not an easy
problem. Begin with a numerical exploration. To pursue the analysis further, consider
the paper [24].
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17.4 FLOW IN PRISMATIC CHANNELS WITH
RECTANGULAR CROSS SECTIONS OF CONSTANT
WIDTH

To consider applications of the channel flow model [Eq. (17.22)] where
closed systems of equations can be obtained, suppose the flow with viscosity
µ is confined by a prismatic channel with rectangular cross sections, bottom
height z = B(x, t), surface height z = ζ(x, t), and constant width ω. The
area A of a (wet) channel cross section S is A = (ζ − B)ω. The model
system reduces to

At +Qx = q,

ρ(Qt +
(Q2

A

)
x
) = − gρ

ω
AAx − gρABx +

ρ

2

(Q2

A

)
x

− µω(u1)z(x,B(x, t), t)

+ µω(u1)z(x, ζ(x, t), t)

+ µ(Qxx − (ζx(x, t)ωu1(x, ζ(x, t), t))x)

+ ρgA sin(θ(x, t)), (17.39)

where the first two terms on the right-hand side of the second model equation
are derived from the Bernoulli pressure, the third term models the wall
friction at the sides and bottom of the channel, the terms on the next line
model viscosity effects in the moving fluid, and the next to last term models
the effect due to gravity when the incline θ is not zero.

Using the shear stress at the channel wall [Eq. (17.38)] derived from the
Blasius solution, the most natural characteristic velocity V appearing there
is the average velocity

U(x, t) :=
1

A(x, t)

∫
S(x,t)

u1 dS =
Q(x, t)

A(x, t)
.

The appropriate choice of length scale is more problematic. For the Blasius
solution, the length scale L is usually taken to be the downstream width of
the plate considered in the Blasius problem. An adaptation to channel flow
is to simply take L = x, where x is the distance in the Blasius solution
to the leading edge of the plate. The basic idea here is that the boundary
layer thickness should not grow indefinitely with x in the channel flow
approximation. Of course, there is no reason why L should be exactly x;
thus, to allow for this error and in view of the boundedness of f ′′(0), we
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may take the shear stress approximation

µω(u1)z(x,B(x, t), t) ≈ c ωρU2 = c ωρ
(Q
A

)2
, (17.40)

where c is a positive dimensionless coefficient that decreases with an
increase in Reynolds number. This dimensionless constant would have to
be measured by experiment in a channel flow application.

The viscosity term µω(u1)z(x, ζ(x, t), t) would seem to be related to
shear stress at the fluid surface, which is usually taken to be negligible. But,
literally this term would vanish only if the fluid velocity were not changing
with elevation. Physical experiments with channel flows indicate two facts:
For low Reynolds number flows (laminar flows) the maximum speed is at
the free surface, but for high Reynolds number flows (turbulent flows), the
maximum speed is below the surface. Thus, the change in u1 in the vertical z
direction at the surface should be positive for low-speed flows and negative
for high-speed flows. This observation suggests including this term using
the phenomenological model

µω(u1)z(x, ζ(x, t), t) ≈ λµ

d
(dU − U2) =

λµ

d
(d
Q

A
−
(Q
A

)2
), (17.41)

where d has the dimensions of length per time and λ is a dimensionless
parameter. At U = d the sign changes from positive to negative in
accordance with the experimental evidence for the sign of (u1)z . The
parameter λ measures the strength of this viscosity term.

Likewise, the viscosity term µ(ζx(x, t)ωu1(x, ζ(x, t), t))x does not seem
to have a natural channel flow approximation. Perhaps the most obvious
treatment is to replace u1 at the surface by some multiple of the average
velocity U (see Exercise 17.7). Using this approximation,

µ(ζx(x, t)ωu1(x, ζ(x, t), t))x ≈ µδ(Ax
Q

A
)x, (17.42)

where δ is a dimensionless constant. For most applications, the speed of
the flow at the surface is greater than the average speed; thus, for such
applications, δ ≥ 1.

Taking into account the approximations discussed in this section, the
model system reduces to

At +Qx = q,
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ρ
(
Qt +

(Q2

A

)
x

)
= − gρ

ω
AAx − ρgABx +

λµ

d
(d
Q

A
−
(Q
A

)2
)

− cρω
(Q
A

)2
+
ρ

2

(Q2

A

)
x

+ µ(Qxx − δ(Ax
Q

A
)x)

+ ρgA sin(θ(x, t)). (17.43)

The fifth term on the right-hand side of the second equation in sys-
tem (17.43) should perhaps be moved to the left-hand side to simplify the
equation. Its presence is meant to aid the reader in tracking the derivations
of the various terms.

Recall that channel flow theory is the study of one-space dimensional
models of three-dimensional flows confined to a channel. Clearly it is
impossible to do this without making approximations. Hence, channel flow
models are not exact derivations from fundamental physical laws. They are
useful in gaining some insight into the mechanisms underlying observed
channel flows.

What phenomena are predicted by model system (17.43)?

Exercise 17.7. Suppose the derivative of a function f is to be approximated in case
an approximation g of f is known. (a) Show that the approximation f ′ by g′ can be
arbitrarily bad no matter how close g is to f . (b) Express part (a) in precise mathematical
language and discuss the precise mathematical conditions on the approximation of f by
g that ensures g′ is close to f ′. Hint: The statement of the problem is intentionally
vague as an aid to understanding one reason for defining different norms to measure the
difference between functions. Review and consider the uniform (or C0) norm and the
C1 norm.

Exercise 17.8. [Falling Fluid Films] Derivation of the channel flow equations is
excellent background for similar modeling of thin films of fluid moving down an
incline or a vertical wall. There are many industrial applications of these flows; for
example, in the design of evaporators and some chemical plants. At a more fundamental
level, the existence of a wide variety of observed surface waves has produced a lot of
experimental, numerical, and theoretical work. The project is to read and understand
some of the literature on this subject, repeat the derivation of a model and at least one
numerical experiment found in the literature, and discuss the state of current knowledge
(see, for example, the review [17], the papers [97] and [98], and the book [18]). One
important theme that motivates inclusion of this project here is the desire to produce
reductions of the Navier–Stokes equations to simpler models that might be amenable
to analysis. Simple models are less reliable for making predictions but they might be
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analyzed completely; fundamental models are reliable but might be too complicated
for analysis and perhaps too expensive for numerical computation. There is no easy
choice on how to proceed as long as making predictions from the fundamental model
remains out of reach. By now, viable computer experiments on falling films using the full
Navier–Stokes equations are possible. But, at this time, no one knows how to prove the
existence of such waves or reliably determine their behavior directly from the Navier–
Stokes equations. Thus, there are certainly many good research problems related to this
topic.

17.5 HYDRAULIC JUMP

A fundamental phenomenon in channel flow, observable in many natural
and man-made channels, is a change in flow depth not obviously accounted
for by a change in the bottom profile of the channel. For example, the
outflow from a dam, weir, or sluice gate often causes a marked increase
in depth in the outflow channel; rainwater drains on a sidewalk and standing
waves appear; or water flows from a tap into a kitchen sink, spreads in all
directions, and creates a circular standing wave. A generic term for such
behavior is “hydraulic jump." There are many variations on this theme. The
standing wave at the Tiger Fountain (see page 397) is also an example of
this phenomenon.

The most basic result for hydraulic jumps is an approximate formula
for the downstream fluid depth for steady state flow in a horizontal and
rectangular channel as a function of the upstream Froude number and
upstream depth. Recall that the Froude number is given by the characteristic
flow velocity V divided by the square root of the product of a characteristic
length scale L and the gravitational constant g; that is, Fr := V/

√
Lg.

Choose characteristic dimensions at the upstream end of the channel flow.
For this, let the subscripts U and D reference upstream and downstream
positions. If the characteristic velocity and length are respectively V =
QU/AU and L = wdU (the depth), then the classic formula often used to
relate upstream and downstream fluid depths is

wdD =
wdU

2
(

√
1 + 8 Fr2

U − 1). (17.44)

To derive Eq. (17.44), consider a steady state flow with hydrostatic
pressure and ignore all viscous effects. In steady state, the discharge is
constant (from conservation of mass) and the equation that expresses
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conservation of momentum [Eq. (17.43)] reduces to the single ODE(Q2

A

)
x

= − g
ω
AAx, (17.45)

which has the general family of solutions

Q2

A
+

g

2ω
A2 = C (17.46)

parameterized by the constant of integration C. Because the expression on
the left-side of the equation is constant, its upstream and downstream values
are equal; that is,

Q2

AU
+

g

2ω
A2
U =

Q2

AD
+

g

2ω
A2
D. (17.47)

Rearrange this equality to obtain

Q2AD −AU
AUAD

=
g

2ω
(A2

D −A2
U ).

One solution for the unknown wet areas is AD = AU . In this case and for a
channel of fixed width, ζD = ζU ; that is, the up and downstream depths are
equal and no jump occurs. In case AD 6= AU , there is another possibility:

Q2

AUAD
=

g

2ω
(AD +AU ).

The solution of this latter equation for AD as a function of AU is obtained
using the quadratic formula and choosing the physically realistic positive
root. The desired result [Eq. (17.44)] is derived from this function after sub-
stituting AD = ζDω, AU = ζUω, dividing by ω, and some rearrangement to
make the square of the Froude number appear in the formula.

Under the assumptions mentioned in its derivation, the simplified flow
model [Eq. (17.45)] seems to predict at least two possible configurations of
steady state flow: (1) constant depth, and (2) a depth change from upstream
to downstream given by Eq. (17.44). In the latter case, which is taken as
bedrock hydraulics, FrU = 1 is a critical value. For FrU < 1 (called
subcritical flow), the depth decreases downstream; for FrU > 1 (called
supercritical flow), the depth increases and there is a hydraulic jump. The
derivation does not specify which alternative occurs.
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Although observations in nature and experiment confirm that hydraulic
jumps occur and Eq. (17.44) gives a reasonable approximation to reality, the
usual derivation of the formula just presented contains a serious flaw. The
discharge Q is assumed to be constant (as it should be by conservation of
mass) and the left-hand side of Eq. (17.46) is also assumed to be constant so
that it has the same upstream and downstream values. Under these assump-
tions for the approximate momentum conservation model [Eq. (17.45)], the
wet area A must also be constant (see Exercise 17.9). Thus, the correct
prediction from the simplified model is that AD = AU . No hydraulic jump
occurs. This result is perfectly reasonable simply because in the model
nothing happens between the upstream and downstream observations to
cause a change in the flow.

An alternative viewpoint is that something happens to the flow conditions
between the upstream and downstream observation points that is not mod-
eled (perhaps the bottom profile changes), but at the observation points the
momenta happen to be the same so that Eq. (17.47) is satisfied. By design,
the model allows A to change with the downstream coordinate. In this
scenario, hydraulic jumps are possible and the approximate formula (17.44)
is obtained when they occur. This suggests that hydraulic jumps are not
determined by upstream flow conditions; rather, they are the result of some
change in flow conditions between the observation points.

The channel flow equations allow for modeling the channel bed and other
features between the upstream and downstream observation points. More
accurate results can be obtained by applying the full model equations, but to
do so requires a more complicated analysis, speculative assumptions, or the
use of numerical approximations (compare Exercise 17.10).

Although a large variation in depth through a hydraulic jump is predicted
by much used formula (17.44), it does not suggest the flow profile during
this change in depth. The remarkable fact is that the change in depth
can occur over a short distance along the channel between the upstream
and downstream stations—thus the name hydraulic jump. More complete
channel flow models are required to approach the true flow profile of a
hydraulic jump.

Exercise 17.9. Prove that if Q is constant in ODE (17.45), then A is constant.
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Exercise 17.10. Consider the steady state channel flow momentum balance model
obtained by including the bottom profile of the channel:

(Q2

A

)
x

= − g
ω
AAx − gABx, (17.48)

(a) Under the assumption of constant discharge (steady state conservation of mass),
find the general solution of the differential equation. Determine physically realistic
conditions such that the predicted hydraulic jump agrees with model equation (17.47)
(and therefore formula (17.44)). (b) The general solution states that a certain function
of A is constant. Thus, the function of A is conserved. By its derivation the expectation
is that momentum is conserved. But, for the simplified model a more direct link is to
Bernoulli’s law, which may be viewed as energy conservation. Show that under the
assumption that the pressure is hydrostatic, the momentum balance model [Eq. (17.48)]
is a restatement of Bernoulli’s law. Hint: Consider the general solution and rewrite
it using the channel flow velocity U := Q/A. (c) Show that to obtain the general
formula for AD as a function of AU , according to model (17.48), requires solution
of a cubic polynomial. Choose reasonable (sets of) values for the system parameters,
the discharge, the channel width, and the upstream wet area. Use your numbers to
compare the predictions for the downstream wet area using the present model and
formula (17.44). Verify that the more precise model sometimes gives the same result
as the simpler model. Make a statement based on your calculations and argue that your
observation would be useful to a hydraulic engineer.

17.6 SAINT-VENANT MODEL AND SYSTEMS OF
CONSERVATION LAWS

By simplifying to the Saint-Venant equations (17.25), some of the mathe-
matics of conservation laws is developed in a context where it can be used
to make useful predictions. Under the restriction to horizontal channel flow,
the simplification discussed here is given by system (17.43) with µ = 0 (no
internal viscosity), the term (ρ/2)(Q2/A)x removed (hydrostatic pressure
only), a bottom profile not changing along the channel, and (for the moment)
no source term. After the common factor ρ is removed from the second
equation of this system and the resulting equation is rearranged, the model
reduces to

At +Qx = 0,

Qt +
(Q2

A
+

g

2ω
A2
)
x

= −cω
(Q
A

)2
, (17.49)

where viscosity at the boundary is taken into account by the presence of the
last term of the second equation.
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Recall that the channel flow models (and the more general fluid flow
models) are derived from conservation of mass and Newton’s second law.
A review of the derivation of these models reveals that they all have the
same general form. There is some quantity w (perhaps the vector quantity
w = (A,Q)) measured in a volume Ω, and the rate of change of the amount
of w in Ω is determined by the flux of the vector field X that determines the
motion of w through ∂Ω with outer normal η; that is,

d

dt

∫
Ω
w dV = −

∫
∂Ω
X(w) · η dS = −

∫
Ω

divX(w) dV.

Often the dependence of X on w (for example, when w is a density and X
generates the flow carrying the underlying substance) involves the negative
gradient of w and the divergence term becomes the Laplacian. When the
dependence is given directly as a function of w and there is exactly one
space dimension x (so that the divergence is simply the partial derivative
with respect to the space variable), the conservation law becomes∫

Ω
wt dV = −

∫
Ω

(X(w))x dV,

or in differential form,

wt + (X(w))x = 0.

Note that the left-hand side of system (17.49) has this form. In case there is
a source term given by a vector function Y , the system of conservation laws
takes the form

wt + (X(w))x = Y (w, x, t),

which is precisely the form of system (17.49) where Y is a function that
does not depend explicitly on x or t.

Conservation laws are fundamental, but the analysis of general model
systems of conservation laws is not completely understood. Fortunately,
much is known for systems of one or two conservation laws in case the
conserved quantities depend on exactly one spatial dimension. The channel
flow model [Eq. (17.49)] is an important example where these assumptions
are satisfied.

There is a surprise at the most basic level of the theory of conservation
laws that motivates further mathematical investigation: bounded and contin-
uous initial data may evolve in finite time to a bounded state that cannot be
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Fig. 17.2 Schematic diagram of a surface consisting of a union of characteristic trajectories starting on the image of a
noncharacteristic curve γ.

continuously extended in time. A classic example is provided by Burgers’s
equation

wt + wwx = 0, (17.50)

where w = w(x, t) is a scalar function of position x in (one-dimensional)
space and time t. Note that this equation may be alternately expressed as the
conservation law

wt + (
1

2
w2)x = 0. (17.51)

A natural setting for study of this first-order nonlinear PDE is to seek
solutions defined for the spatial variable x on the whole real line and
the temporal variable t > 0. More precisely, the physically relevant
mathematical formulation is Cauchy’s problem: Determine the evolution of
an initial function w0 : R → R (that is, w(x, 0) = w0(x)) as it evolves
forward in time under the conservation law [Eq. (17.51)]. The surprising
result is that there is a solution of Cauchy’s problem for the initial function

w0(x) =


1 whenever x < 0,
1− x whenever 0 ≤ x ≤ 1,
0 whenever x > 1.

(17.52)

that cannot be evolved continuously for t > 1.
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Fig. 17.3 The figure depicts a portion of the (x, t) plane, a sample of projected characteristic curves for Burgers’s
equation, and the coordinates of three points. In the triangle with vertices at these points, the solution of Burgers’s
equation with initial data given by the function f defined in Eq. (17.52) is constant along the projected characteristics,
the solution has distinct values along these curves, and all of them pass through the point with coordinates (1, 1).

Smooth solutions of first-order PDEs of the form

a(x, t, w)wt + b(x, t, w)wx = c(x, t, w), (17.53)

which includes Burgers’s equation, are directly related to invariant mani-
folds of the associated first-order system of three scalar ODEs

dx

ds
= b(x, t,W ),

dt

ds
= a(x, t,W ),

dW

ds
= c(x, t,W ) (17.54)

whose trajectories are called characteristic curves (or simply characteristics)
of the PDE. In fact, if there is a function W = w(x, t) defined on an
open subset of space-time whose graph (in the three-dimensional space
with coordinates (x, t,W )) is contained in an invariant manifold (a union
of solutions) for system (17.54), then w is a solution of the PDE. To prove
this statement, note that a normal to the surface given by the graph of w is

(x, t) 7→ (x, t, w(x, t), wx(x, t), wt(x, t),−1),

where this vector field is given by the vector (wx(x, t), wt(x, t),−1) at
the point (x, t, w(x, t)) on the surface. As the invariant surface is a union
of solutions, the velocity vector along a solution (namely, the vector
whose components are the right-hand sides of the ODEs (17.54)) must be
orthogonal to the surface normal; that is,

wx(x, t)b(x, t, w(x, t)) + wt(x, t)a(x, t, w(x, t))− c(x, t, w(x, t)) = 0,

as required.
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To construct an invariant surface for system (17.54), the idea is to start
with a curve in the three-dimensional space, consider this curve as a set of
initial conditions for the ODEs whose solutions are characteristics, and trace
out a surface by moving the curve of initial data via the flow determined by
the ODEs (see Fig. 17.2). More precisely, given a curve

τ 7→ γ(τ) = (γ1(τ), γ2(τ), γ3(τ)),

the desired surface consists of the union of the trajectories of system (17.54)
that correspond to the solutions of the ODEs with initial data

x(0) = γ1(τ), t(0) = γ2(τ), W (0) = γ3(τ)

for each choice of τ in the domain of γ. To ensure that the surface
obtained in this way is a graph over the space-time plane, at least in some
(perhaps small) neighborhood of the image of γ, the initial data must be
a noncharacteristic curve; that is, at each point in the image of γ, the
projections of the tangent vector to γ and the velocity vector of the system
of ODEs at this point into the space-time plane must not be parallel. In
symbols, the curve γ is noncharacteristic if

γ̇1(τ)a(γ1(τ), γ2(τ), γ3(τ))− γ̇2(τ)b(γ1(τ), γ2(τ), γ3(τ)) 6= 0. (17.55)

Using the implicit function theorem and the smoothness of solutions of
ODEs with respect to initial data, it is possible to prove the existence of a
solution of PDE (17.53) defined on an open subset of the space-time plane
containing the projection of a noncharacteristic curve (see, for example,
[20]) by constructing a function w whose graph is contained in an invariant
surface. The values of the solution w of the PDE along the characteristic
s→ (x(s), t(s),W (s)) are given byW (s) = w(x(s), t(s)). Thus, solutions
of the PDE are determined by the characteristics.

Surfaces constructed from characteristics starting on a noncharacteristic
curve of initial data may develop folds in the three-dimensional space (as
the initial noncharacteristic curve is evolved in time by the system of ODEs)
so that several points on the folded surface project to the same point in
the space-time plane. When this happens, additional conditions must be
imposed to choose the correct characteristic to define the solution w of the
PDE.

For Cauchy’s problem, a noncharacteristic curve is chosen so that the
solution of the PDE given by the graph constructed from characteristics
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satisfies the initial conditions. Under the assumption that the initial data is
bounded and given by a noncharacteristic curve, Cauchy’s problem has a
continuous bounded solution that exists at least for some finite time interval.
The possible development of folds in the characteristic surface, which is the
usual case, may obstruct the extension of the solution beyond this finite time
interval.

Some methods used to construct solutions for IVPs for first-order PDEs
will be illustrated by several examples.

For Burgers’s equation (17.50), the characteristics are solutions of the
ODE system

dx

ds
= W,

dt

ds
= 1,

dW

ds
= 0.

The correct choice for the initial curve is

γ(ξ) = (ξ, 0, w0(ξ));

it corresponds to the initial data (17.52) along the spatial axis. Note that γ is
noncharacteristic; in fact, in this case, a(x, t,W ) = 1, b(x, t,W ) = W , and

γ̇1(ξ)a(γ1(ξ), γ2(ξ), γ3(ξ))− γ̇2(ξ)b(γ1(ξ), γ2(ξ), γ3(ξ)) = 1 6= 0.

The solutions of the ODEs starting on γ are

x(s) = w0(ξ)s+ ξ, t(s) = s, W (s) = w0(ξ). (17.56)

The solution w of the IVP is determined along characteristics via
W (s) = w(x(s), t(s)). Using Eqs. (17.56), the desired solution w (defined
in the region where the characteristic surface is a graph over space-time) is
constant along each projected characteristic in the space-time plane; in other
words,

w0(ξ) = w(w0(ξ)s+ ξ, s).

The projected characteristic is the line x = w0(ξ)t + ξ that crosses the
horizontal axis at (ξ, 0); therefore, the value w(x, t) is obtained at every
point (x, t) that can be connected back in time to the horizontal axis by
a unique projected characteristic. This is how the initial data profile is
propagated forward by the PDE.
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Fig. 17.4 A rectangle in space-time is separated by a curve t 7→ (γ(t), t).

According to initial data (17.52), w0(ξ) = 1 whenever ξ < 0. The
corresponding characteristic is s 7→ (s+ ξ, s, 1). The curves s 7→ (s+ ξ, s)
are straight lines in (x, t) space with unit slope (see Fig. 17.3 ). A point (x, t)
(with t ≥ 0) is on one of these curves (that is, (s + ξ, s) = (x, t)) when
ξ = x − t is negative. In this case, w(x, t) = 1. In other words, the value
of w at (x, t) is determined by following the projection of a characteristic
backward (with respect to the positive direction of the coordinate s) until it
meets the x-axis and assigning the value of w0 at the x coordinate of this
point. Simple enough.

The initial data at (ξ, 0) with ξ > 1 is w0(ξ) = 0, the corresponding
characteristic is s 7→ (ξ, s, 0) (which is a vertical line in the (x, t) plane);
hence, w(x, t) = 0 along the projected characteristic.

What happens for initial data with 0 ≤ ξ ≤ 1? The corresponding
projections of characteristics have the form s 7→ ((1 − ξ)s + ξ, s). If (x, t)
is on this curve, then x = (1 − ξ)t + ξ and w(x, t) should be assigned
the value (1 − ξ); that is, w(x, t) = (1 − x)/(1 − t) in the interior
of the triangle in space-time with vertices (0, 0), (1, 0), and (1, 1) (see,
Fig. 17.3 ). But, this result leads to a problem: The value of w at the point
(x, t) = (1, 1) is not well-defined. Indeed, for each ξ in the unit interval,
the curve s 7→ ((1 − ξ)s + ξ, s) passes through the point (1, 1). There is
no consistent way to define w(1, 1). Thus, the evolution of the initial profile
t 7→ w(·, t) cannot be extended continuously beyond t = 1.
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Burgers’s equation illustrates a ubiquitous phenomenon: the evolution of
a continuous initial profile by a conservation law remains bounded but is not
continuously extendible for all positive time. Thus there is a basic problem:
Although conservation laws are natural models of physical phenomena
derived from fundamental physics (conservation of mass, momentum bal-
ance, and conservation of energy), continuous solutions of these models
usually do not exist on sufficiently long timescales to be physically relevant.
Fortunately, there is a way around this problem: Give up the requirement
that solutions must be continuous.

There are many discontinuous processes in nature. Consider, for instance,
a piece of chalk used to write on a blackboard. Hold the chalk by its ends
and apply a force intended to bend the piece of chalk. The likely outcome
of this experiment is clear: the chalk breaks into two pieces. The amount of
chalk is conserved during this process, but the evolution of the initial profile
of the chalk is not continuous through the break. A model of chalk breaking
must allow discontinuous solutions.

Perhaps a physical process does not have discontinuities, but it exhibits
abrupt changes that are adequately modeled by discontinuous functions up
to the accuracy of available measuring devices. The quintessential example
is a shock wave or shock front emanating from the tip of a supersonic
projectile or the leading edge of an airplane wing. Conservation law models
are idealizations that do not account for all aspects of these complex physical
phenomena; thus, discontinuous solutions of such models may be viewed as
approximations of the true physical processes.

Acceptance of discontinuous solutions of continuous PDE models is a
fruitful approach in many applications of mathematics.

Consider the possibility of discontinuous solutions of Burgers’s equation.
How should we extend the solution we have already constructed beyond
t = 1? The answer requires a few more observations and the introduction of
some new ideas.

Our discussion mentions discontinuous solutions of a PDE. This is an
oxymoron: A solution of a PDE must have partial derivatives to satisfy the
PDE. Thus, the usage “discontinuous solutions of a PDE" does not have its
literal meaning. A precise definition requires reconsideration of the integral
equations used to derive conservation laws.
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Conservation laws, defined as PDEs, are derived from mathematical
formulations of physical conservation laws by integration over volumes.
Discontinuous functions can be integrated. Indeed, a bounded piecewise
continuous function defined on a finite interval has a finite integral. To
employ this observation to solve PDEs, consider a function φ defined on
space-time that has continuous partial derivatives of all orders and whose
support (the set {(x, t) : φ(x, t) 6= 0}) is contained in a compact (that
is, closed and bounded) subset of the plane. Such functions exist (in
abundance); they are called test functions. In other words, test functions
are infinitely smooth functions with compact support.

A far-reaching idea is to multiply both sides of a PDE by a test function
φ, integrate over all of space, and use integration by parts to move the partial
derivatives from the desired solution of the PDE to φ.

Consider the PDE

wt + g(w)wx = 0 (17.57)

with initial condition w(x, 0) = h(x), where g and h are (piecewise)
continuous functions and let G denote an antiderivative of g. The same PDE
in conservation form is given by

wt + (G(w))x = 0. (17.58)

Suppose that w is a classical solution of the IVP (that is, a solution that is
continuously differentiable). Multiply Eq. (17.57) by a test function φ and
integrate to obtain the equality∫ ∞

0

∫ ∞
−∞

wt(x, t)φ(x, t) + g(w(x, t))wx(x, t)φ(x, t) dxdt = 0.

Using integration by parts, we have that

0 = −
∫ ∞

0

∫ ∞
−∞

wφt dxdt+

∫ ∞
−∞

wφ
∣∣t=∞
t=0

dx−
∫ ∞

0

∫ ∞
−∞

G(w)φx dxdt

= −
∫ ∞

0

∫ ∞
−∞

wφt dxdt−
∫ ∞
−∞

hφ(x, 0) dx−
∫ ∞

0

∫ ∞
−∞

G(w)φx dxdt,

or equivalently,∫ ∞
0

∫ ∞
−∞

wφt +G(w)φx dxdt+

∫ ∞
−∞

hφ(x, 0) dx = 0. (17.59)
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Thus, a classical solution satisfies the integral equation (17.59) for every test
function φ.

The important new observation is that integral equation (17.59) makes
sense for bounded (measurable) functions w(x, t) that may be discontinu-
ous. This leads to an important definition: a bounded (measurable) function
w that satisfies the integral equation for every test function is called a weak
solution of the conservation law. Clearly, every classical solution is a weak
solution. Thus, by relaxing the smoothness requirement, the door is opened
to seek discontinuous functions that are weak solutions of the PDE.

What is an example of a weak solution that is not a classical solution? Do
weak solutions always exist? Are they unique? If they exist, how are they
constructed? Are weak solutions physically realistic? Can weak solutions be
approximated by numerical methods? These important questions can all be
answered with further mathematical analysis.

The construction of weak solutions that are piecewise smooth—the most
important class of weak solutions for applications—begins with a crucial
observation about the nature of such a solution near a curve of jump
discontinuities. There is a surprise: the definition of weak solutions restricts
the nature of their discontinuities.

Consider a curve in space-time of the from (x, t) = (γ(t), t), where γ is
a smooth function and t ≥ 0. Note that the curve is a graph with respect to
the time axis, which is taken as usual in this subject to be the vertical axis.
The curve separates the space-time plane into two components called the
left-hand and right-hand sides of the curve. For the analysis to follow, it is
not important that the curve separates the entire space; rather, it suffices for
there to be an open set Ω (which can be taken to be the interior of a rectangle
with sides parallel to the axes) situated such that the curve separates Ω into
left (ΩL) and right (ΩR) open components as in Fig. 17.4.

Let w be a weak solution of conservation law (17.58) (that is, a bounded
solution of integral equation (17.59)); and assume in addition that w is
continuously differentiable in each of the sets ΩL and ΩR and w has
definite left- and right-hand limits (wL and wR) at each point of the curve
s 7→ (γ(t), t). In other words, w has (at worst) jump discontinuities on this
curve. The left- and right-hand limits must satisfy the relation

G(wL(t))−G(wR(t)) = (wL(t)− wR(t))γ′(t), (17.60)
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Fig. 17.5 The figure depicts a weak solution of Burgers’s equation (17.51) with initial data (17.52). After time t = 0

the solution is unity on the left of the shock emanating upward from the space-time point (x, t) = (1, 1) and zero on
the right.

which is called the Rankine–Hugoniot (jump) condition after William John
Macquorn Rankine and Pierre Henri Hugoniot first developed this relation
in the period 1870–1890.

To see why the Rankine–Hugoniot condition must hold for a weak
solution w, let φ be a test function with support in ΩL. By definition, φ
is smooth and vanishes outside of ΩL. Using integral equation (17.59), the
choice of φ, and the observation that ΩL does not contain a point in space-
time with time coordinate t = 0, we have that∫

ΩL

wφt +G(w)φx dA = 0,

where, of course, dA is the usual Euclidean area element. In ΩL, integration
by parts is valid because all functions involved are smooth. Moreover, the
boundary terms vanish because φ vanishes on the boundary. Thus, it follows
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that ∫
ΩL

(wt + (G(w))x)φdA = 0

for every test function with support in ΩL; hence,

wt + (G(w))x = 0

when the left-hand side of the equation is evaluated in ΩL. A similar
argument proves that the equation holds for every space-time point in ΩR.

Next, consider a test function φ with support in Ω. Maybe its support
includes a portion of the curve t 7→ (γ(t), t). Because w satisfies integral
equation (17.59) and the support of φ is in Ω,∫

Ω
wφt +G(w)φx dA = 0.

The integral can be written as a sum over the two components of Ω and
integration by parts (as in Appendix A.4) is valid on each component
provided we redefine the values ofw on the separating curve to be the left- or
right-hand limit corresponding to the components. Note that the outer unit
normal (in components) on the portion C of ∂ΩL given by the separating
curve is

ηL = (η1
L, η

2
L) :=

1√
1 + (γ′(t))2

(1,−γ′(t))

and the outer unit normal on the corresponding part of ∂ΩR is

ηR = (η1
R, η

2
R) :=

1√
1 + (γ′(t))2

(−1, γ′(t)).

In symbols, these facts are expressed by the equalities

0 =

∫
ΩL

wφt +G(w)φx dA+

∫
ΩR

wφt +G(w)φx dA

= −
∫

ΩL

wtφ+ (G(w))xφdA+

∫
C
wLφη

2
L +G(wL)φη1

L d`

−
∫

ΩR

wtφ+ (G(w))xφdA+

∫
C
wRφη

2
R +G(wR)φη1

R d`.

By the first part of the argument, the integrals over ΩL and ΩR both vanish.
Moreover, because the last equation holds for every test function with
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support in Ω,

0 = wLη
2
L +G(wL)η1

L + wRη
2
R +G(wR)η1

R

= −wLγ′(t) + wRγ
′(t) +G(wL)−G(wR). (17.61)

The Rankine–Hugoniot condition [Eq. (17.60)] is obtained by rearranging
Eq. (17.61).

Return to Burgers’s equation (17.51) with initial data (17.52) and its
solution defined on 0 ≤ t < 1 as depicted in Fig. 17.3, and imagine a
separating curve s 7→ (γ(t), t) emanating at t = 1 from the point (1, 1)
where the projected characteristic curves intersect. Left-hand limits for a
solution w should all be unity, and right-hand limits should all be zero as
these are the values along the corresponding projected characteristics in this
case. According to the Rankine–Hugoniot condition, the function γ must
then be determined from the differential equation

γ′(t) =
(wL(t))2 − (wR(t))2

2(wL(t)− wR(t))
=

1

2

with initial condition γ(1) = 1. Hence, γ(t) = t/2 + 1/2 and the separating
curve t 7→ (γ(t), t), for t ≥ 1 is a ray on the straight line in the space-time
plane with equation t = 2(x− 1/2). We may define w arbitrarily along this
line, let it be unity on the left side of the line and zero on the right side to
extend the classical solution (which exists for 0 ≤ t < 1) as a weak solution
for all t > 0, as depicted in Fig. 17.5.

A weak solution of a conservation law with jump discontinuities must
satisfy the Rankine–Hugoniot condition. As the last example illustrates, this
condition can also be used to help construct weak solutions.

Unfortunately, weak solutions with only jump discontinuities may not be
unique (see Exercise 17.12). Much of the further development of the theory
of conservation laws is concerned with restricting the class of weak solutions
so that there is a unique weak solution of the conservation law within the
restricted class for each choice of initial data. The correct restriction is
determined by physical considerations based on the second law of ther-
modynamics, which asserts that entropy must increase in thermodynamic
processes. The historical development of the appropriate way to define the
entropy condition for weak solutions of conservation laws is inextricably
related to gas dynamics and is best described after a thorough treatment
of classical thermodynamics. Alas, the usual explanation of the connection
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of the mathematical notion to physical entropy is tenuous because the
physical theory is based on equilibrium thermodynamics. Perhaps a better
understanding of the role of entropy will be obtained after a theory of
nonequilibrium thermodynamics is accepted. By a fair assessment, the
mathematical notion of entropy used in the theory of conservation laws
is related to entropy in gas dynamics, but its purpose is to make rigorous
definitions of properties that can be used to restrict the class of weak
solutions so that IVPs have unique solutions in the restricted class. These
restrictions are believed to determine the physically relevant weak solutions.
A further discussion of the physical basis for the entropy conditions
discussed here is beyond the scope of this book.

In the class of piecewise smooth weak solutions with only jump disconti-
nuities, the entropy condition requires the values of weak solutions on each
side of a curve of discontinuities to be obtained by a connection to the initial
data without passing through additional discontinuities. In cases where the
solution is constant on one side of the curve of discontinuities, this constant
value must be the value of the solution on a part of its domain bounded by the
horizontal axis. In case the solution is not constant, its limiting values on the
curve must be the value obtained along a unique projected characteristic that
can be traced backward in time to the initial data without passing through a
discontinuity. A curve of discontinuities of a weak solution that separates the
space-time plane in such a way that this entropy condition is satisfied on both
sides is called a shock, a shock curve, or a shock wave. Of course, because
a shock is a curve of jump discontinuities of a weak solution, the Rankine–
Hugoniot condition is satisfied at each point of a shock. The derivative
γ′(t) in Eq. (17.60) is called the shock speed at time t. For instance, the
separating curve of discontinuities t 7→ (t/2 + 1/2, t) found for Burgers’s
equation (17.51) with initial data (17.52) is a shock with constant shock
speed 1/2.

Shocks are ubiquitous in weak solutions of conservation laws. Weak
solutions can be constructed in simple examples (for instance, Burgers’s
equation with an appropriate choice of initial data) that do not satisfy the
entropy condition, but as previously mentioned, solutions that satisfy the
entropy condition are deemed to be more physically realistic. The proof
of uniqueness of entropy solutions, which is essential for applications,
requires a careful mathematical formulation of the entropy condition and
some sophisticated mathematics (see, for example, [64]).
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There are several ways to express the restrictions on weak solutions that
are imposed by enforcing the entropy condition. One of the simplest is
obtained for the conservation law

wt + g(w)wx = 0 (17.62)

with initial data w(x, 0) = h(x). Recall that its characteristics are solutions
of the ODEs

dx

ds
= g(W ),

dt

ds
= 1,

dW

ds
= 0.

For x(0) = ξ and W (0) = h(ξ), the characteristic curve (starting at t = 0)
is given by

x(s) = g(h(ξ))s+ ξ, t(s) = s, W (s) = h(ξ).

Suppose that two such projected characteristics, one starting at (ξL, 0) and
the other at (ξR, 0), meet at a point (xm, tm) in space-time (which must
then be on a curve of discontinuities that satisfies the entropy condition at
this point). Also, denote the left- and right-hand limits of the solution w at
the curve of discontinuities by wL and wR, which are functions of position
along this curve. For s = tm two equations hold:

xm = g(h(ξL))tm + ξL, xm = g(h(ξR))tm + ξR.

By simple algebra and the observation that ξL < ξR, it follows that

(g(h(ξL))− g(h(ξR)))tm = ξR − ξL > 0;

therefore,

g(h(ξL)) > g(h(ξR)).

Equivalently,

g(wR) < g(wL) or G′(wR) < G′(wL). (17.63)

In the special case where G is convex (G′′(w) > 0), the only possibility is
that wR < wL at a shock. Also, by the Rankine–Hugoniot condition written
in the form

G(wL)−G(wR)

wL − wR
= γ′(t)
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and the mean value theorem, γ′(t) is a value of G′ at some w such that
wR < w < wL. By the convexity of G,

G′(wR) < γ′(s) < G′(wL).

This condition (called the Lax entropy condition after Peter Lax) is equiva-
lent to the entropy condition for convex G.

For not necessarily convex G, the Oleinik entropy condition (after Olga
Oleinik) is

G(w)−G(wL)

w − wL
> γ′(t) >

G(w)−G(wR)

w − wR
(17.64)

for all w between wL and wR.

Although the entropy condition does not easily generalize to systems of
conservation laws, it is sufficient to ensure unique weak solutions of IVPs
in the case of one conservation law in one spatial dimension.

The Rankine–Hugoniot condition and the uniqueness of weak solutions
that satisfy the entropy condition remain unchanged for scalar conservation
laws with a source, which are PDEs of the form

wt + (G(w))x = f(w, x, t)

(see Exercise 17.14). This fact is used to analyze some simplified channel
flow models.

Our channel flow model is a system of conservation laws for the wet
areaA of channel cross sections and the dischargeQ through these sections.
Suppose we believed that Q is determined (or closely approximated) by
a function of A, x, and t, say Q = F (A, x, t). In view of the model for
conservation of mass with a source given in differential form by the equation
At+Qx+q = 0, there would be a single scalar conservation law forA given
by

At + (F (A, x, t))x + q = 0;

or, with f := FA,

At + f(A, x, t)Ax = −q − Fx(A, x, t). (17.65)

Indeed, several choices for F have been proposed in the long history of
channel flow modeling. A classic example is essentially Chézy’s formula
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(1775), which states that the channel flow velocity U is a constant times
the square root of the hydraulic radius (ratio of wet area and wet perimeter)
times the slope of the bottom of the channel. In simpler language, U =
K
√
A, for some constant K. Using U = Q/A, it follows that Q = A3/2.

Chézy’s formula is an approximation based on observations. An alternative
derived from a formula due to Manning states that, for a rectangular channel,
Q = A5/3.

To apply the theory of hyperbolic conservation laws developed so far to
a simple channel flow model that respects the contributions of Chézy and
Manning, let p > 0 be given and consider the discharge function

F (A) =
c

p+ 1
Ap+1

and the corresponding conservation law

At + cApAx = −q. (17.66)

Suppose that the flow in a rectangular channel is augmented by a lateral
constant inflow along a finite portion of the channel, the flow has constant
initial depth downstream from the inflow region, and a constant depth in
and upstream of the inflow area. What depth is predicted in and downstream
from the lateral inflow region at later times?

A mathematical model corresponding to the problem description is
differential equation (17.66), together with the inflow flux function q given
by q(x) = −b for 0 ≤ x ≤ xin, where b > 0 is the constant inflow flux
and xin > 0 is the length of the inflow region [0, xin], and q(x) = 0 for
x not in the inflow region. The initial wet cross-sectional area function is
assumed to be piecewise constant: A(x, 0) = Aup > 0 for x ≤ xin and
A(x, 0) = Adown > 0 for x > xin. As the fluid pours into the channel,
the initial water depths upstream and downstream of the influx region could
be taken arbitrarily. But because the process may not start exactly at the
beginning of the influx, let us take Adown < Aup. As we will see, the model
has a physically meaningful solution for this case.

By scaling the wet area A, the time t, and the spatial coordinate x, the
model can be made dimensionless. A convenient scaling is

A =
(bxin

c

)1/(p+1)
w, x = xinξ, t =

1

b

(bxin

c

)1/(p+1)
τ.
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Fig. 17.6 The figure depicts characteristics of model (17.67) projected into the space-time plane for the case whereα =

2, β = 1, and p = 1. The regions whereA(x, t) = α and whereA(x, t) = β are marked. The thick curve passing
through the points (1, 0) and (ξ, τ) ≈ (3.079, 1.298) is a shock. The symbol C marks the projected characteristic
emanating from the origin in space-time. Region I is filled with the extensions of projected characteristics ending along
the vertical axis {x = 0}, and in this region, the wet cross-sectional area is in the steady state A(x, t) = ((p +

1)x+αp+1)1/(p+1). In Region II the wet area is in the constant steady stateA(x, t) = (p+1+βp+1)1/(p+1).

Using it produces the model

wτ + wpwξ = r(ξ),

w(ξ, 0) = w0(ξ),

where r(x) = 1 on the interval 0 ≤ ξ ≤ 1 and r(x) = 0 otherwise, and

w0(x) :=

{
α := Aup

(
c
bxin

)1/(p+1)
, ξ ≤ 1;

β := Adown
(

c
bxin

)1/(p+1)
, ξ > 1.

Following usual practice, let us revert to the original variable names A, x,
and t and analyze the model

At +ApAx = r(x),

A(x, 0) = A0(x), (17.67)

where r is now unit inflow on the unit interval 0 ≤ x ≤ 1 and A0 is the wet
area (essentially the water depth for our rectangular channel) at time t = 0.

The characteristic system of ODEs for model (17.67) are

x′(s) = ap(s), t′(s) = 1, a′(s) = r(x).

Recall that on the region of space-time where the characteristic surface is a
graph, we have the relation a(s) = A(x(s), t(s)).
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For x = ξ (where ξ is now a generic name for the x coordinate of a point
on the x-axis) and 0 ≤ ξ ≤ 1 as in region I of Fig. 17.6, the inflow is r = 1,
and the corresponding characteristic starting at t = 0 is given by

x(s) =
1

p+ 1

(
(s+α)p+1−αp+1

)
+ξ, t(s) = s, a(s) = s+α (17.68)

as long as x(s) ≤ 1. This latter condition is satisfied for s in the interval

0 ≤ s ≤ s∗(ξ) :=
(
(p+ 1)(1− ξ) + αp+1

)1/(p+1) − α.

The projected characteristic bends toward the right in the space-time plane
until it reaches x = 1. Thereafter (that is, for s > s∗(ξ)), the characteristic
starting at (x, t, a) = (1, s∗(ξ), s∗(ξ) + α) is in the region where x > 1 and
r = 0; it is given by

x(s) = (s∗(ξ) + α)p(s− s∗(ξ)) + 1, t(s) = s, a(s) = s∗(ξ) + α.
(17.69)

The projected characteristic curve C corresponding to ξ = 0 is depicted in
Fig. 17.6.

For x = ξ and ξ < 0, the characteristic starting at x = ξ, t = 0, a = α is

x(s) = αps+ ξ, t(s) = s, a(s) = α

as long as x(s) ≤ 0; that is, for 0 ≤ s ≤ s∗ := −ξ/αp. In particular,
A has the constant value α on the projected characteristic, which is a line
with slope 1/αp in the space-time plane as in Fig. 17.6. This characteristic
extends into the region x > 0—marked I in Fig. 17.6—where r(x) = 1. In
fact, the extension

x(s) =
1

p+ 1

(
(s−s∗+α)p+1−αp+1

)
, t(s) = s, a(s) = (s−s∗)+α,

is defined until x(s) = 1; that is, on the interval

s∗ ≤ s ≤ s∗ := (p+ 1 + αp+1)1/(p+1) + s∗ − α.

By inspection of the formulas for the projected characteristic in this region,
it is easy to see that x(s) may be viewed as a function of a(s). After solving
for a(s), note that the wet area is in the steady state

A(x, t) =
(
(p+ 1)x+ αp+1

)1/(p+1)
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at points above the curveC in this region. The extension of the characteristic
into region II in Fig. 17.6 where x > 1 and r(x) = 0 is

x(s) = (p+ 1 + αp+1)p/(p+1)(s− s∗) + 1,

t(s) = s,

a(s) = (p+ 1 + αp+1)1/(p+1).

In the portion of this region filled by such projected characteristics, the
solution A is in the (constant) steady state

A(x, t) =
(
(p+ 1) + αp+1

)1/(p+1)
.

For x = ξ > 1, the characteristics starting at time t = 0 are given by

x(s) = βps+ ξ, t(s) = s, a(s) = β.

The projected characteristics are all lines with the same slope 1/βp and
A(x, t) ≡ β in the region filled with the corresponding projected charac-
teristics, which is the lower portion of region II in Fig. 17.6.

The projected characteristics starting with 0 ≤ ξ ≤ 1 and ξ > 1 cross
in the region of space-time where x > 1. To determine a well-defined state
A requires the identification of a shock; that is, a curve of discontinuities
t 7→ (γ(t), t) where the Rankine–Hugoniot conditions and the entropy
condition are satisfied. Near the line x = 1 we have the projected extensions
of characteristics starting at (x, t, a) = (ξ, 0, α) with ξ in the unit interval
and those starting at (x, t, a) = (ξ, 0, β) with ξ > 1. A shock should exist in
the space-time plane starting at (x, t) = (1, 0) and extending into the region
where x > 1. Using the Rankine–Hugoniot condition, γ must be a solution
of the IVP

γ′(t) =
Ap+1
L −Ap+1

R

(p+ 1)(AL −AR)
, γ(0) = 1,

where the subscripts L and R refer to the left-hand and right-hand limits
of A at the jump discontinuity at the shock. The right-hand limit must be
β as this is the value of A on the entire region covered by the projected
characteristics starting with ξ > 1. Although it is not possible to find an
explicit elementary formula for AL except in special cases (for example,
p = 1), the projected characteristic [Eq. (17.69)] is a line that must meet the
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shock. That is, we must have the equality

γ(t) = (s∗(ξ) + α)p(t− s∗(ξ)) + 1

and by rearranging its right-hand side,

γ(t) = (s∗(ξ) + α)p(t+ α− (s∗(ξ) + α)) + 1.

Along this curve, a(t) = s∗(ξ) + α; therefore, AL is given implicitly by the
equation

γ(t) = ApL(t+ α−AL) + 1.

At t = 0, the implicit root is either AL = 0 or AL = α. The desired
choice is AL = α, as this agrees with the value for the family of projected
characteristics on the left of the desired shock.

To determine γ seems to require solving the differential algebraic
equation (DAE)

γ′(t) =
Ap+1
L (t)− βp+1

(p+ 1)(AL(t)− β)
,

γ(t) = ApL(t)(t+ α−AL(t)) + 1,

γ(0) = 1,

AL(0) = α. (17.70)

Under the assumption that α > β, it is possible to show that the DAE
IVP has a solution that produces the desired shock (see Exercise 6.8 for
a numerical method that can be used to approximate solutions of this DAE).
The solution γ is valid on an interval 0 ≤ t ≤ τ up to the time t = τ > 0
when the curve C meets the shock. The meeting point (ξ, τ) for the case
p = 1 is shown in Fig. 17.6. This shock can be extended for t > τ by
taking into account the values of A already obtained. In fact, by taking
into account the jump condition and the new values of AL and AR, the
differential equation for γ becomes

γ′(t) =
Ap+1
L −Ap+1

R

(p+ 1)(AL −AR)
=

(p+ 1 + αp+1)− βp+1

(p+ 1)((p+ 1 + αp+1)1/(p+1) − β)
,

γ(τ) = ξ.
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The solution is

γ(t) =
(p+ 1 + αp+1)− βp+1

(p+ 1)((p+ 1 + αp+1)1/(p+1) − β)
(t− τ) + ξ

and the shock is a line as depicted for p = 1 in Fig. 17.6.

The water depth, at a point in the section of the rectangular channel
downstream from the inflow region, maintains its constant initial value for
a finite time until the shock front reaches this point. After this time, the
depth in the upper part of the channel (upstream from the position with
x = ξ determined by the meeting point of the shock and curve C) jumps
to a greater depth and then continuously increases in depth until the steady
state depth is reached. In the lower part of the channel, the depth jumps to
the steady state value as the shock passes. In the inflow region, the depth
increases continuously until the steady state (which depends on the spatial
position along the channel) is reached. The height H of the shock wave in
the lower part of the channel is

H = p+ 1 + αp+1 − β.

Its time of arrival can also be approximately computed.

Exercise 17.11. Consider Burgers’s equation with initial data h such that h(x) = 0

for x < 0 and h(x) = 1 for x > 0, which is a version of Riemann’s problem. Show
that there are at least two possible weak solutions of this IVP and check which of your
solutions satisfy the Lax entropy condition.

Exercise 17.12. Consider Burgers’s equation with the initial data w(x, 0) = w0(x)

given by w0(x) = 0 for x < 0 and w0(x) = 1 for x > 0. (a) Show that the value of w in
the wedge bounded by the vertical axis and the line t = x is not uniquely determined by
integrating along a characteristic. (b) Show that w can be defined in the wedge in at least
two different ways so that w is piecewise smooth and w is a weak solution. In particular,
Burgers’s equation with the given initial data does not have a unique weak solution.

Exercise 17.13. Suppose that G is convex (G′′(w) > 0). Show that the Rankine–
Hugoniot equation implies that γ′(s) lies between G′(wL) and G′(wR); that is, the Lax
entropy condition holds automatically. Hint: There is a wedge in space-time that is not
covered by projected characteristics. Fill in the wedge with line segments where w is
constant in such a manner that the Rankine–Hugoniot conditions are satisfied on the
boundaries of the wedge and on any curves of discontinuity that you introduce.

Exercise 17.14. Show that the Rankine–Hugoniot jump condition holds for scalar
conservation laws with a source.
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Exercise 17.15. (a) Show that DAE (17.70) has a solution in case α > β. (b) Give
a mathematical reason for the inequality α > β. (c) Is there a physical reason require
α > β?

Exercise 17.16. Assume the validity of model (17.67). Suppose a river, whose bed
is well approximated by a rectangular channel, is 30 m wide, 4 m deep, and currently
has a flow depth of 1 m. Storm water flows into the river in the region between 8, 000–
10, 000m upstream of a bridge whose road bed is 4.5 m above the river bottom. Assume
rain covers a 2, 000 m by 2, 000 m area at the rate of r cm per cm2 per hour and the
entire area drains immediately into the river (that is, as soon as a raindrop falls it is
assumed to have drained into the river). (a) What is the (approximate) maximum rate r
such that the roadbed remains dry? At this maximum rate, what is the height of the flood
wave at the bridge?

Exercise 17.17. Make a figure similar to Fig. 17.6 for the case α = 2, β = 1, and
p = 1/2. Discuss the numerical methods you use.

Exercise 17.18. [Mississippi River Flow Rate] Reread Exercise 13.3 on the velocity
of river flow. Write a detailed derivation of the formula

u =

√
4gRsinθ

f
,

where u is the river velocity, g is the acceleration of gravity near the surface of Earth,
R is the hydraulic radius of the river cross section, θ is the tilt angle of the river bottom
as in Exercise 13.3, and f is an empirical constant (which for large rivers is taken to be
f = 0.35) that appears in the shear stress of the river flow τ = 1

8fρu
2, where ρ is the

density of the river water. Follow the outline suggested by Sean Sweany: Start with the
1− d Navier–Stokes equation:

ρ(ut + uux) = −px + µuxx + b,

where x is the coordinate in the direction of river flow. Assume steady state flow,
hydrostatic pressure, negligible viscosity, and constant river depth. Show that the
Navier–Stokes equation reduces to

ρuux = b.

Show that the body force due to gravity is ρg sin θ and a reasonable choice of frictional
stress is−PLτ , where P is the wetted perimeter and L is some suitable choice of length
along the river. To obtain a body force with the correct units, divide by the hydraulic
radius. Show that these considerations lead to the equation

ρuux = ρg sin θ − f

4R
ρu2.

Solve this equation for u and obtain the desired formula for the river velocity by
approximating the solution under the assumption that the x coordinate is large (to take
into account the length of the river). Using this result as well as data given here and in
Exercise 13.3, estimate the speed of the flow in the Mississippi River. Check your result
against observed flow rates.
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17.7 SURFACE WAVES

Imagine the wave profiles that might appear on the surface of a flow in a
prismatic channel with rectangular cross section. There are many examples
in nature; for example, traveling waves have been discussed. Another type
of wave called a roll wave occurs over shallow water moving on an inclined
surface; for example, rainwater draining over a sidewalk down a shallow
incline. Similar waves appear over horizontal channels with a steady water
supply, perhaps fed by a pump. Some aspects of roll waves are discussed
in this section (see [81] and [54] and the references therein for a more
sophisticated treatment of this subject and especially for existence and
stability theory).

The channel flow model [Eq. (17.43)] for the wet area A, discharge Q,
bottom profileB, and external flow through the boundary q (area per time)—
repeated here for convenience—is

At +Qx = q,

ρ
(
Qt +

(Q2

A

)
x

)
= − gρ

ω
AAx − ρgABx

− cρω
(Q
A

)2
+
ιρ

2

(Q2

A

)
x

+
λµ

d

(
d
Q

A
+
(Q
A

)2)
+ µ(Qxx − δ(Ax

Q

A
)x)

+ ρgA sin(θ(x, t)) (17.71)

with one modification: a new parameter ι is inserted so that ι = 0
corresponds to using only hydrostatic pressure in the derivation and ι = 1
corresponds to using the fluid velocity term in Bernoulli’s law. Table 17.1
contains descriptions of the remaining system parameters.

A dimensionless version of model system (17.71) is desired for sim-
plification and numerical computation. Although there are many possible
scalings that render the channel flow equations dimensionless, the traditional
choice for scaling in fluids is to choose length (`) and velocity (V ) scales,
define the timescale τ = `/V , and rewrite dimensionless groups using the
Reynolds and Froude numbers (Re = V `/(µ/ρ) and Fr = V/

√
g` ). With
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the change of variables

A(x, t) = `2A(
x

`
,
t

τ
), Q(x, t) = `2VQ(

x

`
,
t

τ
), q(x, t) = `V p(

x

`
,
t

τ
),

B(x, t) =
V 2

g
B(
x

`
,
t

τ
), θ(x, t) = ϑ(

x

`
,
t

τ
), (17.72)

and the assignments

d =
`

τ
d̄, ω = `ω̄, (17.73)

the channel flow model is transformed to the dimensionless form

As = −Qξ + p,

Qs = − (1− ι

2
)
(Q2

A
)
ξ
− 1

ω̄ Fr2

(A2

2

)
ξ
−ABξ − c ω̄

Q2

A2

+
λ

d̄Re

(
d̄
Q
A −

Q2

A2

)
+

1

Re
(Qξξ − δ

(QAξ
A
)
ξ
) +A sinϑ. (17.74)

Analysis and applications of the channel flow model is a rich subject
that is not completely understood, but many important features of the model
have been explored. Some simple analysis is discussed in the remainder
of this section, but before this presentation is made, a desire to apply the
model serves to motivate a few comments about realistic models that arise
in applied mathematics.

Multiparameter models require some method of fixing values of pa-
rameters that correspond to the intended application. In an ideal world
this is a straightforward task. Measure all the parameters and fix them
in the model at these values. But, in the real world of applications there
are always parameters whose values are not known, or parameters whose
values are known only within a crude approximation. A good example,
in the channel flow model, is the value of c that determines the strength
of the bottom shear force. The model could be used to try to measure
this quantity by fitting parameters to experimental data. Indeed, this is a
subject of great interest. At a basic level, the model equations have solutions
that depend (continuously) on all the parameters in the system. By solving
the equations (numerically) and minimizing the squares of the differences
between measured and modeled state variables, the parameters should in
principle be determined. Noise in measurements is a serious problem. Also,



Channel Flow 567

there is no guarantee that the parameters are uniquely determined by a given
data set.

In most nonlinear systems, such as the channel flow model, there are
multiple timescales that are not simply determined. For this discussion, the
existence of multiple timescales means that in some regimes one of the state
variables (in this case A or Q) is changing rapidly with respect to the other.
This ubiquitous phenomena in nonlinear dynamics causes inaccuracies in
numerical computations (stiff differential equations) and difficulty in fitting
the model to observed phenomena.

Closely related to problems with multiple timescales is sensitivity with
respect to the choice of parameters: a small change in a parameter can
produce a large change in the solution of the equations. This is in addition to
bifurcations due to changes in parameters that produce changes in the qual-
itative nature of solutions. This subject—sensitivity analysis—is essential
in making quantitative predictions from models. Although basic sensitivity
can be ascertained from the linear system obtained by differentiation with
respect to a parameter, the resulting linearized system might be as difficult
to study as the original system. For this reason (and others), a unified
and useful treatment of sensitivity remains a difficult unsolved problem for
multiparameter nonlinear systems.

All of the difficulties mentioned here occur in the analysis of the channel
flow model.

To illustrate some of the challenges that must be met in dealing with
realistic nonlinear systems, consider again the popular and reasonable Saint-
Venant simplification of the channel flow model with no lateral inflow, zero
surface shear stress, and with viscous dissipation:

As = −Qξ,

Qs = −
(Q2

A
)
ξ
− 1

ω̄ Fr2

(A2

2

)
ξ
−ABξ +A sinϑ− c ω̄Q

2

A2

+
1

Re
(Qξξ − δ

(QAξ
A
)
ξ
). (17.75)

For the case of a rectangular trough tilted downward in the downstream
direction so that

ABξ +A sinϑ = A(tanϑ+ sinϑ)



568 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

and with δ = 1, the system becomes

As = −Qξ,

Qs = −
(Q2

A
)
ξ
− 1

ω̄ Fr2

(A2

2

)
ξ
− c ω̄Q

2

A2

+
1

Re

(
A
(Q
A
)
ξ

)
ξ

+A(tanϑ+ sinϑ). (17.76)

The flow is driven by gravity because the channel is inclined to the
horizontal.

Observed roll waves, for example in the channel flow caused by rain
runoff on a hard sidewalk, generally travel downstream with a periodic
profile. A challenging problem is to show that the model equations (17.76)
have such a solution. Choosing model parameters to match roll wave
behavior for a measured real flow is a grand challenge.

To look for traveling waves, replace the state variables by wave forms
traveling at speed C with profiles F and G:

A(ξ, s) = F (ξ − Cs), Q(ξ, s) = G(ξ − Cs),

and note that the first equation in system (17.76) becomes

−CF ′ = G′.

Thus,

G = −CF − b, (17.77)

where b is the constant of integration and the minus sign is simply taken
for convenience. Inserting this latter equation into the second differential
equation produces a second-order ODE for the unknown profile F . If G
is desired, it may be recovered from Eq. (17.77). The challenge is to find a
periodic solution of this second-order differential equation; it would produce
the desired periodic traveling wave profile.

One way to meet the challenge is to use phase plane analysis. The first
step, as always, is to treat the second-order profile equation as a first-order
system of ODEs. With x := F , y := x′ , and

α1 := ω̄ Fr2 Re, α2 := ω̄ Fr2, α3 := α1(tanϑ+ sinϑ),
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the first-order system for the unknown profile function x and its derivative
is

ẋ = y,

ẏ =
−b2cα1 + 2bCcα1x− C2cα1x

2 + α3x
3 + b2α1y − Rex3y − bα2y

2

α2x(−b− x+ Cx)
.

(17.78)

What is an effective method for finding a periodic solution of a nonlinear
system of ODEs? The short answer: look for a Hopf bifurcation. Recall that
Hopf bifurcations occur when a rest point changes stability type due to a
continuous change in a single system parameter. More precisely, consider
a rest point of the nonlinear system and the eigenvalues of the system
matrix of the linearization of the system at this rest point. As some system
parameter changes, the position of the rest point and the eigenvalues of
the corresponding system matrix of its linearization change. Tracking these
eigenvalues in the complex plane, a Hopf bifurcation occurs when a pair of
complex conjugate eigenvalues crosses the imaginary axis. The real parts of
the eigenvalues determine the stability of the rest point. So, at the crossing,
the rest point changes its stability type from a spiral sink to a spiral source or
from a spiral source to a spiral sink. Under generic conditions, a limit cycle
is born from the rest point or dies at the rest point as the parameter changes.
Exactly which scenario occurs can be determined by local computations at
the rest point (see, for example, [20]). The case of interest here is an unstable
limit cycle surrounding a spiral sink that disappears into the rest point at
the parameter value for which the rest point changes stability from a sink
to a source. In fancy language this is called a subcritical Hopf bifurcation.
Knowing that this scenario exists is a key to finding a limit cycle and thus a
traveling wave with a periodic profile. A solution of the differential equation
corresponding to the unstable limit cycle gives the desired wave profile.

Nonlinear system (17.78) has some standard features that should be taken
into consideration: from the first equation (ẋ = y) we know that solutions
drift to the right in the upper half-plane and to the left in the lower half-plane;
the vertical lines given by the equations x = 0 and x = b/(C−1) correspond
to singularities of the system where solutions do not exist, and rest points (if
any) are on the horizontal coordinate axis (y = 0). The variable x represents
the scaled area of a wet cross section of the flow; therefore, it must be
positive. Physically relevant solutions all lie in the right half-plane (x > 0).
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Fig. 17.7 Amplitude (meters) versus time (seconds) for the area component A of a traveling wave that at first has a
nearly constant profile, undergoes a rapid increase in amplitude, and then remains oscillatory for all future time as it
passes an observation point.

The horizontal coordinates of rest points are solutions of the cubic
polynomial obtained by substituting y = 0 in the right-hand side of the
second equation in system (17.78). Because−b2cα1 > 0 (except in the case
b = 0 that can be handled separately) and α3 > 0 for a moderate channel
incline, there is always at least one positive real root. At least the system has
rest points to analyze and the possibility of Hopf bifurcation is not excluded.

From an applied perspective, the desired periodic profile must occur
in a physically realistic regime that corresponds to some measurements.
Imagine, for example, water flowing down an inclined hard surface after a
rainfall. The flow velocity is measured to be 0.2 m / sec and the water depth
is 0.015 m. A natural choice for the characteristic velocity is of course the
measured flow velocity, but there is no natural choice for the characteristic
length. Water depth is a reasonable choice, but so is some expected wave
length for waves, an arbitrary unit of measurement (for example one meter),
or some other length. A conventional characteristic length is called the
hydraulic diameter, which is defined to be four times the area divided by the
wet perimeter of a cross section. For the present case, assume the channel
is one meter wide. This gives the hydraulic diameter 0.0295567 m taken
here to be the characteristic length. With this choice the Reynolds number is
5911.33 and the Froude number is 1.17514.

Absent a measurement, the bottom friction parameter c remains un-
known.
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With the system parameters (except for c) set, the wave speed C and
integration constant b remain free. These parameters may be adjusted to
find a Hopf bifurcation by first seeking a rest point whose linearization has
a pair of pure imaginary eigenvalues. Once such a rest point is identified,
one of the free parameters may be adjusted to see if a pair of complex
conjugate eigenvalues crosses the imaginary axis at the parameter values
corresponding to the rest point. Under generic conditions this scenario will
occur.

A viable strategy is to solve a system of equations to determine the
unknown values of c,C, b, and x. The first equation to solve is the right-hand
side of the second equation in system (17.78) set to zero after substituting
y = 0; it is a cubic equation for the unknown position of the rest point. Next,
linearize at the unknown rest point by computing the Jacobian matrix T of
the right-hand side of system (17.78). Then set y = 0, and recall that the
eigenvalues of A are roots of the quadratic polynomial

z2 − trTz + detT.

Thus, these eigenvalues are pure imaginary when trT = 0 and detT > 0.
Also, the square root of the determinant determines the (circular) frequency
of the linearized oscillations. This number may be set to yet another
parameter k > 0 so that the third equation is detT = k.

After solving the three equations for C, b, and x, each of these is given
as a function of k and c. The value of x (which determines the position
of the rest point) should be near the value of the scaled wet area, which is
the quantity that x represents. Making x be exactly this value produces an
equation whose solution specifies k as a function of c. Because a quadratic
equation must be solved to achieve this goal, there are two solutions. The
strategy is to choose parameters that correspond to a Hopf bifurcation.
Although both solutions have this property, only one of the choices produces
low frequency (k small) oscillations. For the parameters chosen here, the
value c = 1.75 produces k ≈ 3. Using this value of c seems reasonable.
But, there is freedom to choose c so that k is as small as desired. In fact,
k = 0 for c ≈ 1.75265. With these values of k and c, the free parameters
are fixed at

b ≈ 14.7723, C ≈ 2.576, x ≈ 17.1704.
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A few numerical computations show that the corresponding rest point
changes stability from a spiral sink to a spiral source as the parameter C
passes through the given value in the positive direction. The phase portrait
of system (17.78) undergoes other nearby bifurcations. In particular, the
number of rest points changes (in a saddle-node bifurcation) from one to
three near the given parameter values.

For

C = 2.576 + 10−8,

there are three rest points on the horizontal coordinate axis at

x ≈ 4.3, x ≈ 17.1703, x ≈ 17.2374.

The first value corresponds to a source, the second to a spiral sink, and the
third to a saddle.

Recall that the traveling wave solution, for the scaled wet area, is given
by A(ξ, s) = F (ξ − Cs). Thus, as the temporal variable in system (17.78)
increases in the positive direction, the temporal parameter s for the PDE
decreases; that is, ξ − Cs increases (for C > 0, of course) as s decreases.

Numerical computations indicate that there is a subcritical Hopf bi-
furcation resulting in an unstable limit cycle surrounding the sink. This
periodic orbit corresponds to a periodic traveling wave solution, as desired.
By similar analysis there are infinitely many other choices for periodic
solutions. The periodic profile traveling wave solution corresponding to the
numerical values given in this discussion would be obtained by choosing
an initial value for a solution of the system of ODEs that lies on the limit
cycle. In practice, finding a point on a limit cycle is usually not possible
using numerical experiments: an error (no matter how small) will cause the
solution to leave the vicinity of the limit cycle in either forward or backward
time. Instead, choosing an initial condition near the spiral sink ensures a
traveling wave profile that in positive time acquires the periodic profile of the
limit cycle and in negative time the constant profile of the sink. A numerical
approximation showing this behavior for A(x, t) versus t for fixed x = 1 is
depicted in Fig. 17.7. An observer at x = 1 would see a flat surface at their
location that eventually changes quickly to an oscillating surface wave that
continues to oscillate for all future time.
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Fig. 17.8 The figure shows a plot of x versus the (unnamed) temporal variable for system (17.78) with parameter
values wd = 0.01 m, characteristic velocity 1.0 m, channel width 0.5 m, tanϑ + sinϑ = 0.3, c =

1.7187664596060788, b = 9.79938796267978, and C = 2.2601418989288105. Note the fast-slow
(relaxation) oscillation.

The periodic traveling wave profile just described is mathematically
interesting, but from a physical point of view it is not satisfying because
the amplitude of the wave is probably too small to be observed. In the
regime discussed here, which was determined by the choice of Reynolds
and Froude numbers and the bottom shear stress, the model predicts at best
the existence of a tiny surface ripple but not the roll waves that are easily
observed on flows over inclined channels where the amplitude of the waves
is a few millimeters (see, for example, [6] where a laboratory experiment is
discussed). Are there realistic choices of the system parameters that produce
close approximations of waves observed in nature?

Part of Exercise/Project 17.19 explores pulse-type traveling wave profiles
corresponding to saddle (homoclinic) loops that occur at some saddle points
for some choices of the system parameters for the first-order system (17.78).
Solutions of this system corresponding to periodic traveling wave profiles

were identified near Hopf bifurcations. As the wave speed parameter
changes in the correct direction, these limit cycles disappear in a subcritical
Hopf bifurcation. Changing the parameter in the opposite direction causes
the limit cycles to grow in amplitude until they disappear in a saddle-loop
(homoclinic-loop) bifurcation. Limit cycles near a saddle-loop bifurcation
have the correct profile for roll waves: during each period there is an abrupt
change in amplitude as the limit cycle moves away and then back to the
vicinity of the saddle point followed by a slow change as the periodic orbit
passes the vicinity of the saddle point. A second fast-slow mechanism is
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due to the compression and expansion near the saddle point. For the tested
example, the expansion rate was much larger than the compression. This
configuration has the effect that in backward time and near the saddle,
solutions rapidly approach the stable manifold of the saddle. Such periodic
solutions also have larger amplitudes than the limit cycles near Hopf
bifurcations. Fig. 17.8 shows an example of this type of unstable limit cycle,
which seems to require some delicate numerics to produce. The fast-slow
dynamics is mostly due to the compression and expansion rates near the
saddle. The existence of such traveling wave profiles evidences the validity
of the channel flow model. But, as the discussion here is meant to show,
simply using system parameters and initial data at some measured values in
the channel flow model is unlikely to produce a solution that agrees with the
observed flow. At best, the observed flow would be modeled by some nearby
set of parameters and some nearby initial data. And, solutions obtained from
the model will likely be sensitive to changes in the data. On the positive
side, the model does predict wave forms that agree with observation. Thus,
there is strong evidence that the mechanism producing the waves (shear
stress at the channel bottom, viscosity, and the gravitational driving force)
is correctly understood.

Exercise 17.19. [Channel Flow Modeling] (a) Repeat the search for a subcritical
Hopf bifurcation and the existence of an unstable limit cycle wave profile (as in
Fig. 17.7) but with the basic scales wd = 0.015 m, characteristic velocity 1 m / sec,
channel width 0.5 m, and bottom shear-stress parameter c = 1.15. Give evidence, based
on numerical computations, that there is an unstable limit cycle surrounding a spiral
sink for the model equations in the regime close to these parameter values. Choosing a
traveling wave profile by starting with initial data on this limit cycle produces a periodic
traveling wave profile. Starting with initial data inside the region bounded by the limit
cycle produces a traveling wave profile that is eventually constant in negative time and
periodic in forward time. Explain.
(b) Choosing initial data outside (but near) the region bounded by the limit cycle usually
does not produce a traveling wave profile. Why not? But the special case, where initial
data is chosen on the stable manifold of the saddle rest point (which exists in the
traveling wave profile ODEs), does produce a traveling wave profile that is eventually
constant in negative time and periodic in forward time. Explain. Make some hand drawn
figures to illustrate the phase portrait.
(c) The expected behavior of the limit cycle under discussion as a single parameter (in
this case the wave speed C) changes is governed by the Hopf bifurcation for C near the
parameter value corresponding to pure imaginary eigenvalues of the system matrix. As
C changes in one direction from this value, no limit cycle exists, but as this parameter
changes in the opposite direction, the limit cycle grows in size. Of course, this growth is
usually not unlimited. The expected behavior, given the presence of the saddle point, is
growth until the limit cycle disappears in a saddle-loop bifurcation. Give evidence that a
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saddle-loop bifurcation occurs. To do this, use numerical computations to approximate
the positions of the portions of the stable and unstable manifolds of the saddle point
that lie to the left of the saddle point. For parameter values of C corresponding to
existence of the unstable limit cycle, the unstable manifold of the saddle crosses the
horizontal coordinate axis to the left of the (infinitely many) crossings of the stable
manifold, which in backward time is asymptotic to the limit cycle. After the limit cycle
disappears, the positions of the crossings are interchanged. Evidence for this interchange
of crossing positions implies the existence of a choice for the wave speed parameter such
that the stable and unstable manifolds cross the coordinate axis with the same horizontal
coordinate so that these manifolds form a saddle-loop. Choosing the traveling wave
profile by taking initial data on this saddle-loop produces a traveling wave of pulse type;
it has the same constant values as time goes to plus or minus infinity.
(d) Discuss the role of ι in the channel flow model equations. This parameter was defined
to turn on or off a term in the channel flow model by taking the values zero or one, but
it could reasonably take on values between these two numbers. Do periodic traveling
wave profiles exist for ι = 1? Give evidence for your answer.
(e) Discuss the design of a physical experiment that could be performed to decide
between ι = 0 and ι = 1 in the channel flow model equations. Simulate the experiment
and report some data that an experimenter could compare with physical measurements.
(f) Reconsider the term in display (17.41) meant to model the change in downstream
velocity near the fluid surface. Should this term be ignored as in the text? Discuss this
in view of possible physical scenarios. Can you imagine a physical problem where this
term would be important? If so, make simulations of steady configurations and discuss
the predicted effects of the suggested approximation. Is there a better approximation for
use in channel flow models?
(g) Discuss the role of λ (surface shear strain) in the channel flow model equations. Do
periodic traveling wave profiles exist for λ > 0? Give evidence for your answer.
(h) Discuss the design of a physical experiment that could be performed to decide
between λ = 0 and λ > 0 in the channel flow model equations. Simulate the experiment
and report some data that an experimenter could compare with physical measurements.
(i) A research problem: Suppose the channel flow model is used to make a prediction; for
example, the existences of a periodic traveling wave solution in a certain flow regime.
Would the Navier–Stokes equations imply the same prediction?



CHAPTER 1818
Elasticity: Basic Theory and Equations of
Motion

Imagine a closed and bounded region Ω in three-dimensional space filled
with matter—which is called a body—such that Ω has a smooth boundary
surface ∂Ω. A deformation of the body is a function F : Ω×J → R3, where
J is a time interval of real numbers. This function is assumed to be infinitely
differentiable. And, for each fixed time, the corresponding function x →
F (x, t) is assumed to be invertible and orientation preserving. The direct
problem of elasticity theory is to determine the deformation F from the
stresses, body forces (gravity or electromagnetism), and forces that act only
on the surface of Ω.

Deformations of the body are functions of position and time. For
simplicity and in keeping with the classical theory, we will assume that
a Cartesian coordinate system is given in R3. Be warned that this is an
important assumption; the equations of the theory take different forms in
different coordinate systems.

Physical deformation is measured by relative changes in lengths called
strains. For this reason, the theory is usually formulated for the displace-
ment, given by u(p, t) := F (p, t) − p, rather than the deformation. (Note
the change in notation—meant to comply with some of the literature on
elasticity—from the chapter on fluid motion: here u denotes displacement,
not velocity.) The relation between stress and strain lies at the heart of
elasticity theory. Their functional relationship is too complicated to be
reduced to the fundamental laws of nature; constitutive laws are used
instead. The most important of these is Hooke’s law. It states that (for small
displacements) stress is proportional to strain. This relation leads to the
classical (linear) theory of elasticity.

Consider a point p in Ω and a curve γ in this body with parameter s
passing through p at s = 0. The deformation F , with its time dependence
suppressed, deforms γ into a new curve F ◦ γ. To measure the distortion,
denote the tangent vector to γ at p by v and note that the vector tangent to
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the distorted curve at F (p) is

d

ds
F (γ(s))

∣∣
s=0

= DF (p)v,

the length along γ starting at p is

`(s) :=

∫ s

0
|γ̇(t)| dt,

and the length along the distorted curve is

L(s) :=

∫ s

0
|DF (γ(t))γ̇(t)| dt.

The difference of the squares of these lengths is easily computed using the
Taylor approximation to be

L2(s)− `2(s) = (|DF (p)v|2 − |v|2)s2 +O(s3)

= (〈DF (p)v,DF (p)v〉 − 〈v, v〉)s2 +O(s3)

= 〈(DF (p)TDF (p)− I)v, v〉s2 +O(s3),

where the superscript T denotes the matrix transpose.

To take into account the size of the displacement at the lowest order of
approximation, the linear transformationDF (p)TDF (p)−I is recast in the
form

DF (p)TDF (p)− I = (Du(p) + I)T (Du(p) + I)− I
= Du(p)TDu(p) +Du(p)T +Du(p).

The Lagrange–Green (strain) tensor E is defined by

E(p, t)(v, w) =
1

2
〈(DF (p, t)TDF (p, t)− I)v, w〉

=
1

2
〈(Du(p)TDu(p) +Du(p)T +Du(p))v, w〉,

where the factor 1
2 is inserted to agree with the usual definition of this tensor.

Informally or in a physical application, a displacement (or deformation)
is called small if the product Du(p)TDu(p) (which involves quadratic
nonlinearities) may be safely neglected. From a mathematical perspective,
the same result is achieved by simply declaring the strain tensor ε of linear
elasticity theory to be the linear approximation of the Lagrange–Green



Elasticity 579

tensor; that is, the linear strain tensor is given by

ε(p, t)(v, w) =
1

2
〈(Du(p)T +Du(p))v, w〉.

In the continuum mechanics literature, the expression (Du(p)T +
Du(p))/2 is often called the strain tensor. This tradition might lead the
reader to believe that the word “tensor" is simply a way of referring
to a family of linear transformations (parameterized by the base point
p) of matrices in some special circumstances. This is not the case.
Although the strain tensor is determined by the linear transformation
(Du(p)T + Du(p))/2, this transformation and the strain tensor are not the
same mathematical objects. To see this distinction more clearly, consider
a constant family of linear transformations A on Rk and the tensor S
defined by S(v, w) = 〈Av,w〉. Suppose that A is represented by a matrix
with respect to the basis B1 := {e1, e2, . . . , en}, and let B denote the
linear transformation taking the new basis B2 := {f1, f2, . . . , fn} to the
original basis B1. A vector v represented by the coordinates v1, v2, . . . vn
with respect to the basis B2 is given by v =

∑
vifi. This same vector is

represented in the basis B1 by the coordinates ν1, ν2, . . . , νn where ν = Bv.
To transform A to a matrix with respect to the basis B2 (that is, to express
the same linear transformation on vectors expressed in coordinates with
respect to the basis B2) we may consider an arbitrary vector v expressed
in coordinates with respect to the basis B2, multiply by B to express
the vector in coordinates with respect to B1, multiply by A to apply the
linear transformation, and multiply by B−1 to express the transformed
vector in coordinates with respect to the basis B2. In symbols, the linear
transformation expressed in the basis B2 is B−1AB. In classical language,
we have explained how a matrix changes coordinates and how a vector
changes coordinates: by transformations of the formB−1AB andB−1ABv.
How does a tensor change coordinates? For A expressed in the basis B1, the
tensor T acts on two vectors v and w expressed in coordinates with respect
to this basis according to the formula S(v, w) = 〈Av,w〉. Suppose α and β
are vectors expressed in coordinates with respect to the basis B2. To obtain
the same tensor in the new basis simply express the vectors in coordinates
with respect to the basis B1 via v = Bα and w = Bβ. The value of the
tensor S on the pair of vectors α and β is 〈ABα,Bβ〉. Using the properties
of the usual inner product, we have that

〈ABα,Bβ〉 = 〈BTABα, β〉.
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Thus, the matrix representing the tensor S expressed in coordinates with
respect to the basis B2 is BTAB, not B−1AB. Our tensor changes
coordinates via its corresponding matrix A being transformed by BTAB.
This is an example of the classical approach most physicists or engineers
take in defining and using tensors. It is perfectly legitimate. The modern
view is to define tensors as multilinear maps (linear in each argument) from a
cross product of vector spaces to the real numbers. The tensor S is a bilinear
map from Rk × Rk to R called a rank-two tensor. To reiterate the point
of this discussion: A rank-two tensor is determined by an associated linear
transformation A, and the matrix representing a rank-two tensor changes
coordinates according to the rule BTAB. In particular, a rank-two tensor
and its associated linear transformation are not the same mathematical
objects. This distinction is often suppressed in applied elasticity theory, until
the moment after it becomes important. The reader should also note that
the tensors considered in continuum mechanics are actually tensor fields;
that is, they are families of tensors parameterized by space and time. For
instance, at each point p and time t the strain tensor field is the multilinear
map that takes vectors v and w defined at p at time t to the real number
1
2〈(Du(p, t)T +Du(p, t))v, w〉.

For a second approach to the strain tensor, let p and q be points in the
body Ω and note that these points move under the deformation to P :=
F (p, t) and Q := F (q, t). The position of q relative to p is the vector q − p
and after the deformation it is Q− P . Using the definitions of F and u, the
change in these vectors is

(Q− P )− (q − p) = u(q, t)− u(p, t).

For q close to p, the expansion via Taylor series of the function q 7→ u(q, t)
at p may be used to recast the last equation into the form

(Q− P )− (q − p) = ∇u(p, t)(q − p) +O(|q − p|2).

Linear elasticity theory is developed by ignoring the second-order term.
Thus, the difference of the deformed and undeformed position vectors is
approximated via the derivative of the function q 7→ ∇u(q, t) at p. In this
context, ∇u is called the displacement gradient.

The displacement gradient (or an arbitrary matrix) may be decomposed
into the sum of a symmetric and a skew-symmetric matrix. Indeed,

∇u(p, t) = ε(p, t) + ω(p, t)
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where

ε :=
1

2
(∇u+ (∇u)T ), ω :=

1

2
(∇u− (∇u)T ), (18.1)

where, as always, the superscript T denotes the transpose, ε is symmetric,
and ω is skew-symmetric. The matrix ε corresponds to the linear approxi-
mation of local distortion and, as we have seen, determines the strain tensor;
the matrix ω corresponds to the local infinitesimal rigid rotation imparted
by the deformation.

What is meant by infinitesimal rotation? The word “infinitesimal" in this
context refers to the linear approximation given by the first derivative. Thus,
“infinitesimal rotation" means differentiation of rotation. More precisely,
recall that a rotation is given by an orthogonal matrix that may be defined as
a matrix whose transpose is its inverse, or more generally, by the geometric
property that the matrix preserves length; that is, O is an orthogonal matrix
if |Ow| = |w| for every vector w.

The polarization identity states that the inner product is related to the
norm by

〈w, z〉 =
1

4
(|w + z|2 − |w − z|2) (18.2)

for every pair of vectors w and z, and by an easy exercise [Exercise 18.4],

〈Ow,Oz〉 = 〈w, z〉 (18.3)

for every w and z. Let t 7→ O(t) be a curve of orthogonal matrices passing
through the identity matrix at t = 0, compute using the product rule

0 =
d

dt
〈O(t)w,O(t)z〉 = 〈Ȯ(0)w, z〉+ 〈w, Ȯ(0)z〉,

and rearrange the identity to obtain the equation

〈Ȯ(0)w, z〉 = −〈w, Ȯ(0)z〉. (18.4)

By definition, a matrix (in this case Ȯ(0)) that satisfies the last identity is
skew symmetric. In other words, skew-symmetric matrices (such as ω in
display (18.1)) are infinitesimal rotations (see Exercise 18.5).

Points in the deformed body, called material points, move as the body is
deformed. Let p be a material point. The partial derivative ∂

∂tu(p, t) is the
velocity of the point labeled p as it moves with the body; it is called the
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material velocity of p. This corresponds to a time-dependent vector field V
defined by V(p, t) = ∂

∂tu(p, t). A different point of view is to consider the
corresponding spatial point P corresponding to p at some time t0. The curve
of points u(p, s+ t) passes through P at time s = 0. Its velocity, given by

d

ds
u(p, s+ t)

∣∣
s=0

,

is called the spatial velocity at P at time t and is denoted v(P, t). Clearly,
V(p, t) = v(u(p, t), t). These velocities reflect two views of the motion: The
Eulerian point of view, where the velocity field is v and the Lagrangian point
of view, where it is V . In the Eulerian view, we consider the motion through
P ; in the Lagrangian view, we assign some reference configuration, label
its (material) points, and follow them as they move in space. The essential
difference in the Eulerian and Lagrangian viewpoints is apparent from the
expressions for the acceleration of a point particle:

∂V
∂t

(p, t) =
∂v

∂t
(u(p, t), t)+(v(u(p, t), t)·∇)v(u(p, t), t) = vt+v·∇v =

Dv

Dt
.

where Dv/Dt is called the material derivative.

The Eulerian point of view was used in the derivation of the equations of
fluid motion and the Lagrangian point of view was applied in the discussion
of smoothed particle hydrodynamics. For elasticity, the Eulerian description
will be employed to take advantage of Cauchy’s partial differential equation
(PDE) [Eq. (11.11)]

ρ
Dv

Dt
= ∇ · σ + ρb (18.5)

for the velocity v of a body, with density ρ, subjected to stress modeled
by the stress tensor σ and the body force per mass b. This equation was
previously derived in the context of a moving fluid from the momentum
balance; the same equation holds for the motion of a (deformable) body.
As in fluid motion, a theory of elasticity for solid bodies is determined by
specifying the stress tensor and its relation to the surface forces in and on
the body.

To approach the subject of elasticity, we begin by defining traction τ
to be the force per area at points on two-dimensional surfaces within the
deformed body. Recall that pressure is a scalar field defined to be the normal
component of force per area at a point on the surface. Thus, pressure is the
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normal component of the traction. Clearly, traction is a function of position
in space P ∈ R3, time, and the normal η to the surface under consideration
at P . Using momentum balance, it is possible to prove that traction is a linear
function of the normal η (see [69]) along the surface. We will assume this
fact. Thus, at a point p in Ω, the traction τ corresponding to a surface with
normal η at P is the vector obtained by multiplying the normal vector η by
the matrix defining the Cauchy stress tensor σ, whose components depend
only on the point p and time; that is,

τ(p, t, η) = σ(p, t)η(p, t). (18.6)

Of course, as explained previously, the Cauchy stress tensor is a multilinear
map; in fact, it is the bilinear map taking vectors v and w at p at time t
to 〈σ(P, t)v, w〉. We may call σ the stress tensor, but we must remember
that more precisely σ is the linear transformation that determines the stress
tensor, which is a family of bilinear maps parameterized by points in the
body and time.

The conservation of angular momentum states that the rate of change of
the angular momentum of a body is equal to the sum of the moments on
the body. The moments are simply cross products with the position vector
from the origin of the coordinate system to the spatial points in the body,
which we identify with the Cartesian point P . The balance for conservation
of angular momentum is

d

dt

∫
Ω(t)

P × ρv dV =

∫
∂Ω(t)

P × τ dS +

∫
Ω(t)

P × ρb dV, (18.7)

where the vector quantities are functions of position P = u(p, t) and time.

We will show that the Cauchy stress tensor is symmetric as a con-
sequence of the balance of angular momentum. The simplest proof is a
computation in coordinates. The (index) notation usually employed to make
the computation is worth learning because it is used extensively in the
literature on elasticity.

A point in space is given in the Cartesian coordinates by P =
(x1, x2, x3). We will denote the point by xi, with the index understood
to range over the integers 1, 2, and 3. Likewise, a vector v is specified
by its components vi. A matrix A is denoted by its array of components
aij , where both indices range over 1, 2, and 3. Matrix multiplication Av is
denoted aijvj . Here the index i is free over the usual range, but the Einstein
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summation convention is used for the repeated index j; that is, the sum∑3
j=1 aijvj in this single term is assumed. In other words, aijvj may be

viewed as the ith component of the vector Av. Differentiation with respect
to xi is denoted by the subscript ,i. For example, ui,j denotes the Jacobian
matrix of deformation u. The Kronecker delta δij in this notation is the 3×3
identity matrix and the permutation symbol εijk is defined to be zero if two
indices are equal, plus one if ijk is an even permutation of 1, 2, 3, and
minus one if it is an odd permutation; for example, ε123 = ε231 = ε321 = 1.
The basic vector operations in this notation are

w · z = wizi, w × z = εijkwkzj , ∇f = f,i,

∇ · v = vi,i, ∇× v = εijkvk,j , ∇ · ∇f = f,ii.

The time derivative in index notation must be handled with some care.
We will write v̇ to denote the material derivative of the vector v; that is,

v̇ =
Dv

dt
=

d

dt
v(u(p, t), t) = vt + (v · ∇)v

Usually the arguments of functions are suppressed.

The momentum balance in index notation if given by

ρv̇i = σij,j + ρbi. (18.8)

Here, the stress term perhaps should be written σji,j because the divergence
is taken with respect to the columns of the matrix. As the matrix is
symmetric, the two forms of the stress term are equal.

Conservation of angular momentum [Eq. (18.9)] may be expressed in the
form

d

dt

∫
Ω(t)

ρεijkvkxj dV =

∫
∂Ω(t)

εijkτkxj dS +

∫
Ω(t)

ρεijkbkxj dV. (18.9)

By an argument similar to the derivation of the momentum balance, which
uses the transport theorem, the time derivative can be moved inside the first
integral to obtain the equivalent formula∫

Ω(t)
ρεijkv̇kxj dV =

∫
∂Ω(t)

εijkτkxj dS +

∫
Ω(t)

ρεijkbkxj dV. (18.10)
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The divergence theorem applied to the boundary term implies that∫
∂Ω(t)

εijkτkxj dS =

∫
∂Ω(t)

εijkxjσk`η` dS =

∫
Ω(t)

(εijkxjσk`),` dV.

(18.11)
The derivative in the last integrand may be expanded by the product rule to
derive the desired identity∫

∂Ω(t)
εijkτkxj dS =

∫
Ω(t)

εijkσkj + εijkxjσk`,` dV. (18.12)

By substituting Eq. (18.12) into Eq. (18.10) and replacing ρv̇k with σk`,` +
ρbk from the momentum balance [Eq. (18.8)], it follows that∫

Ω(t)
εijkσkj dV = 0.

Because this equation is true for all choices of Ω(t),

εijkσkj = 0.

Using the definition of the permutation symbol, we have the desired result:
if k 6= j, then σkj = σjk; that is, σ is symmetric.

Cauchy’s equation of motion [Eq. (18.5)] is the mathematical formula-
tion of momentum balance for continuum mechanics. It is of course the
same for fluid and elastic motions. For a fluid, the stress tensor σ is related
to the strain rates defined from the velocity of the fluid (see Eq. (11.31)).
Also, take note of the change in notation: here u is a displacement; for
fluids, u denotes the fluid velocity. For elasticity, the stress is related to
the infinitesimal strain ε derived from the deformation gradient u (see
Eq. (18.1)). Exactly how this is done is the subject of elasticity theory, which
is extensive, deep, and rich. In the simplest case of a homogeneous and
isotropic material—the same at each point with the same physical properties
in every direction—the basic form of the stress-strain relation is given by

σ = λ tr(ε)I + 2µε (18.13)

or

σij = λεkkδij + 2µεij , (18.14)

where λ and µ are real numbers called the Lamé constants. This linear
relation is a version of Hooke’s law, which states that stress is linearly related
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to strain. In this notation, the strain tensor defined in display (18.1) is

εij =
1

2
(ui,j + uj,i). (18.15)

The final step is to substitute the stress-strain relation into the equation
of motion (18.5) to obtain the fundamental equation of motion for homoge-
neous and isotropic materials:

ρv̇i = (λεkkδij + 2µεij),j + ρbi. (18.16)

By carrying out the differentiation (see Exercise 18.1), the equations of
motion for the displacement and its velocity can be recast in component
form

u̇i = vi,

ρv̇i = (λ+ µ)uj,ji + µui,jj + ρbi (18.17)

or in vector form,

∂u

∂t
= v,

ρ
Dv

Dt
= (λ+ µ)∇(∇ · u) + µ∆u+ ρb. (18.18)

Small deformations are assumed in the choice of the strain tensor, which
is the linear approximation to the deformation. The material derivative
contains nonlinear terms in the velocities and hence in the deformation.
Thus, in keeping with the assumption of small deformations, there is some
reason to retain only linear terms in the material derivative. With this
approximation, the dynamic equation of linear elasticity for a homogeneous
and isotropic body is

ρüi = (λ+ µ)uj,ji + µui,jj + ρbi, (18.19)

or in vector form,

ρ
∂2u

∂2t
= (λ+ µ)∇(∇ · u) + µ∆u+ ρb. (18.20)

The displacement is to be determined from the material properties (which
determine λ and µ), given body forces (gravity or electromagnetism),
forces applied to the surface of the body (which are modeled by boundary
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conditions), and a specification of the initial displacement and (displace-
ment) velocity of the body. Thus, a basic problem is to determine the
displacements, stresses, and strains when body forces, surface forces, or
surface displacements are given, and the initial displacement and velocity
are specified.

The Euler and Navier–Stokes equations of fluid mechanics are first-order
in time and depend only on the fluid velocity; the equation of motion of
linear elasticity is second-order in time and depends on the deformation.
This is an important difference that reflects the contrast between solids and
liquids. As we have seen, the equation of heat transfer ut = c2∆u is akin
to the fluid equations. The wave equation utt = c2∆u, which is the basic
equation for small amplitude wave propagation, is a special case of the
dynamic equation of elasticity.

In the development of the theory so far, the density ρ need not be
constant. To continue modeling for solid materials (that is, not liquids or
gases), let us assume that the density is constant, a reasonable assumption
for many physical models.

Recall the Helmholtz–Hodge decomposition theorem: A smooth vector
field X on a region Ω of space with smooth boundary ∂Ω and outer normal
N can be decomposed uniquely as

X = ∇Φ + Y,

where φ is a scalar valued function and Y is a vector field such that∇·Y =
0 and Y · N = 0 on ∂Ω (that is, Y is divergence free and parallel to the
boundary of the region).

Suppose that the Helmholtz decompositions of the displacement u and
force b that appear in the linear elastodynamic equation (18.20) have the
form

u = ∇φ+ w, b = ∇β + a.

Substitution into Eq. (18.20), taking into account that ∇ · w = 0, yields the
formula

ρ∇φ̈+ ρẅ = (λ+ µ)∇(∆φ) + µ∆∇φ+ ρ∇β + µ∆w + ρa. (18.21)
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Under the assumption that all fields are sufficiently smooth and by an easy
calculation, it follows that

∆∇φ = ∇∆φ.

Using this fact and some simple algebra, Eq. (18.21) can be rearranged to
read

∇(ρφ̈− (λ+ 2µ)∆φ− ρβ) + (ρẅ − µ∆w − ρa) = 0.

The first set of parentheses of the last equation enclose a scalar field. By
Exercise 18.3, the second set of parentheses enclose a divergence-free vector
field. Thus, by the uniqueness of the Helmholtz decomposition, and the
observation that the zero vector field may be decomposed as∇0+0 with the
second summand divergence free, the decomposition produces an equivalent
form of the linear equations of elasticity for the case of constant density:

ρφ̈ = (λ+ 2µ)∆φ+ ρβ,

ρẅ = µ∆w + ρa (18.22)

where the displacement is u = ∇φ + w and the sum of the forces b acting
on the body is decomposed as b = ∇β + a.

As a preview of the analysis to follow, pay attention to the forms of the
PDEs (18.22). The important and basic PDE

Utt = k2∆U,

where k is a nonzero scalar parameter, plays a fundamental role. It is called
the (linear) wave equation because its nontrivial solutions are all waves
that travel with fixed profiles at speed k. Note that the decomposition of
the displacement [Eqs. (18.22)] implies that there are at least two types of
elastic waves that travel at different speeds ((λ + 2µ)/ρ)1/2 and (µ/ρ)1/2,
respectively, depending on the material properties measured by the Lamé
constants λ and µ. This is a beautiful example of applying mathematics to
derive a prediction (which has been verified by physical experiments). The
constant µ (also called the shear modulus) must be positive. In principle,
λ could be negative, but for most materials it is positive. Thus, waves
corresponding to the divergence-free field w travel slower than waves that
involve volumetric changes.

Exercise 18.1. Show that Eqs. (18.17) and (18.18) follow from Eq. (18.16).
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Exercise 18.2. The most general form of Hooke’s law is expressed by σij = Ck`ijεkl
where C, called the elasticity tensor, is symmetric; that is, the components remain
unchanged for every permutation of the indices. Suppose, for example, that the strain
tensor were modified in the presence of a symmetric matrix B as follows: the strain
resulting from two vectors u and v is given by

〈σBu,Bv〉.

What are the components of C in this case?

Exercise 18.3. Show that for a divergence-free vector field, the divergence of the
Laplacian of the vector field vanishes.

18.1 THE TAUT WIRE: SEPARATION OF VARIABLES AND
FOURIER SERIES FOR THE WAVE EQUATION

Consider a taut wire in space. It is a deformable body. In reality, a wire is
a three-dimensional object, perhaps nearly a round cylinder, which we may
assume is homogenous and isotropic. As a first approximation, idealize the
wire and imagine a one-dimensional body at rest along the first coordinate
axis, which is assumed to be horizontal. Suppose that a small load is applied.
The wire undergoes a small deformation that should be correctly modeled by
linear elasticity theory. For simplicity, suppose the displacement is confined
to just one direction, say in the direction of the second coordinate axis,
which is also assumed to be horizontal. Thus, the displacement function u
is given by u(x1, t) = (0, u2(x1, t), 0), and the equation of motion (18.19)
reduces to

ρü2 = (λ+ 2µ)u2,11. (18.23)

Taut wire dynamics—a subject that is certainly intrinsically interesting—
has many practical applications (see, for example, Exercise 18.20 on
vibrating wire sensors).

Our simplifying assumptions—the wire is one-dimensional, taut, and
restricted to move in the horizontal plane in a direction normal to the wire—
eliminate for the moment consideration of the gravitational force that acts in
the downward vertical direction. The equation of motion, recast in its more
usual abstract form, is the one-dimensional wave equation

∂2u

∂t2
= c2∂

2u

∂x2
, (18.24)
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where u2 is replaced by u (which is reinterpreted to measure displacement
in the direction of the second coordinate), x2 replaced by x, and c2 := (λ+
2µ)/ρ. Here, the density ρ in this idealized model is the mass of the wire
per length, which is assumed to be a positive constant. Although Lamé’s
constant λ could be negative, it and the second constant µ (called the shear
modulus) are assumed to combine so that c2 is a positive constant.

We should always consider the dimensions in a new model. For
Eq. (18.24), u has the dimension of length; hence, c has the dimension
of length per time. It is a speed. Thus, something should be moving at this
speed. In fact, as its name suggests, the wave equation has solutions that are
waves traveling at speed c.

Consider a (profile) function f : R → R that is twice continuously
differentiable, and use it to construct a new function u : R2 → R given
by

u(x, t) = f(x− ct).

This function u is a (traveling wave) solution of the wave equation; in fact,

∂2u

∂t2
(x, t) = c2f(x− ct) and

∂2u

∂x2
(x, t) = f(x− ct).

Likewise, u(x, t) = f(x + ct) is a solution. Because the wave equation is
linear, it is easy to check that the superposition (sum) of two solutions is a
solution. Hence, if f and g are twice continuously differentiable functions,
then

u(x, t) = f(x− ct) + g(x+ ct)

is a solution of the wave equation.

To specify the particular solution of the (second-order in time) wave
equation that corresponds to some specific physical problem, the initial
position and velocity of the wire must be specified for the same reason this
data is required to uniquely solve Newton’s equation F = ma; that is, for
the wave equation x 7→ u(x, 0) and x 7→ ut(x, 0) must be given functions,
say α and β, of the position x along the wire. To satisfy the initial data, the
wave profile functions f and g must be such that

α(x) = f(x) + g(x), β(x) = −cf ′(x) + cg′(x).
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These requirements uniquely determine the solution u. Indeed, by differen-
tiating both sides of the first relation and subsequently solving for f ′ and
g′,

f = −1

2
(
β

c
− α′), g =

1

2
(
β

c
+ α′)

and by an integration,

f(x) = f(0)− 1

2c

∫ x

0
β(s) ds+

1

2
(α(x)− α(0)),

g(x) = g(0) +
1

2c

∫ x

0
β(s) ds+

1

2
(α(x)− α(0)).

Using the relation α(0) = f(0) + g(0) and some simplification, we obtain
d’Alembert’s solution

u(x, t) = f(x−ct)+g(x+ct) =
1

2c

∫ x+ct

x−ct
β(s) ds+

1

2
(α(x−ct)+α(x+ct)).

(18.25)
The physical interpretation is that u is the superposition of two traveling
waves, f(x − ct) traveling to the right and g(x + ct) traveling to the left
with the wave profiles f and g determined via d’Alembert from the initial
data.

The wire model and its solution are more interesting and physically
relevant when the finite length of the wire is taken into account. For
definiteness, suppose that one end of the wire is at x = 0, the other at
x = L > 0, and these ends are clamped so that they cannot be displaced. To
take these conditions into account, the mathematical model is augmented
by requiring that the solutions of the wave equation satisfy the Dirichlet
boundary conditions

u(0, t) = 0, u(L, t) = 0. (18.26)

Although it is possible (but not easy) to determine a solution of this
boundary value problem (BVP) using d’Alembert’s solution of the wave
equation, we will discuss another important solution method.

A powerful idea for solving linear PDEs on rectangular domains is to
seek a solution by separation of variables. To this end, suppose u has the
form

u(x, t) = X(x)T (t),
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where X and T are functions to be determined. If there is such a solution,
these functions must satisfy the relation

X(x)T ′′(t) = c2X ′′(x)T (t)

for all x ∈ (0, L) and all t > 0. Without regard to division by zero for the
moment, the functions may be separated as follows:

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
.

Clearly, if this identity holds, then both sides of the equation must be equal
to the same constant value denoted here by −Λ, where Λ is some arbitrary
real number and the minus sign is chosen for mathematical convenience. For
the case Λ > 0, define ` =

√
Λ and note that if X and T are solutions of the

respective ordinary differential equations (ODEs)

X ′′(x) + `2X(x) = 0, T ′′(t) + c2`2T (t) = 0,

then u(x, t) = X(x)T (t) is a solution of the wave equation. Thus, we have
separated the variables x and t.

The ODEs for X and T are harmonic oscillators. Their general solutions
are

X(x) = a cos `x+ b sin `x, T (t) = d cos c`t+ e sin c`t

for arbitrary real numbers a, b, d, and e. The function

u(x, t) = (a cos `x+ b sin `x)(d cos c`t+ e sin c`t)

is a solution of the wave equation for every choice of these coefficients.

Imposition of the boundary conditions (18.26) requires

a(d cos c`t+e sin c`t) = 0, (a cos `L+b sin `L)(d cos c`t+e sin c`t) = 0

for all t > 0. Using the result of Exercise 18.6,

ad = 0, ae = 0, d(a cos `L+b sin `L) = 0, e(a cos `L+b sin `L) = 0.

If a 6= 0, then d = 0 and e = 0. This corresponds to the zero solution of the
wave equation. Thus, to obtain a nonzero solution, we must have a = 0. In
this case, if b = 0, we again obtain the zero solution of the wave equation.



Elasticity 593

For b 6= 0, we must have sin `L = 0, or equivalently,

` =
nπ

L

for some integer n > 0. In summary, a family of nonzero solutions is given
by

u(x, t) = (d cos c`t+ e sin c`t) sin `x

for arbitrary real numbers c and d, and ` = nπ/L for an arbitrary integer
n > 0. By a slight change in notation, this infinite set of solutions (which
all satisfy the boundary conditions) may be written in the form

un(x, t) =
(
an cos

nπc

L
t+ bn sin

nπc

L
t
)

sin
nπ

L
x

for n > 0.

The sum of solutions of the (linear) wave equation is again a solution. In
general, the sum of two solutions that satisfy some boundary condition may
not be a solution of the wave equation. But, in the case of the zero Dirichlet
boundary conditions, the superposition of two solutions is a solution that
satisfies the same boundary conditions (see Exercise 18.7). Using this result,
every function u given by a finite sum of the form

u(x, t) =

k∑
n=1

(
an cos

nπc

L
t+ bn sin

nπc

L
t
)

sin
nπ

L
x

is a solution of the wave equation that satisfies the Dirichlet boundary
conditions.

What about the initial conditions: u(x, 0) = α(x) and ut(x, 0) = β(x)?
In case the initial conditions happen to be of the form

α(x) =

k∑
n=1

an sin
nπ

L
x, β(x) =

k∑
n=1

bn
nπc

L
sin

nπ

L
x

for some N and constants {an}kn=1 and {bn}kn=1, the given u is the desired
explicit solution of the initial value problem (IVP).

The last result suggests the question: Which functions can be expressed
as finite sums of sines? Or more precisely, how large is the class of functions
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defined on the interval (0, L) that are given by

f(x) =

k∑
n=1

an sin
nπ

L
x (18.27)

for some integer N > 0 and numbers {an}kn=1. All these functions are
periodic with period 2L. So, for example, the function f(x) = x is certainly
not of the given form. Although an infinite class of solutions of the wave
equation has been constructed whose linear combinations all satisfy the
zero Dirichlet boundary conditions, perhaps only a special set of initial
data can be modeled. One way to try to obtain additional solutions would
be to investigate negative or zero values of the parameter Λ as part of the
separation of variables technique. In fact, these values of Λ do not lead to
new solutions. The corresponding solutions of the wave equation do not
satisfy the boundary conditions (see Exercise 18.8 ). In fact, no additional
solutions are needed.

Joseph Fourier (sometime before 1807) realized that almost all functions
can be represented by infinite sums of sines (or cosines). His revolutionary
discovery implies that almost all initial data for the wave equation can be
represented in this way. Thus, solutions of the wave equation that satisfy the
boundary and initial data can be represented by infinite series of sines and
cosines. The remainder of this section is a discussion of the approximation
of functions by Fourier series.

An infinite sum of the form
∞∑
n=1

an sin
nπ

L
x

is called a Fourier sine series. There are also Fourier cosine series
∞∑
n=1

an cos
nπ

L
x

and (full) Fourier series

a0 +

∞∑
n=1

(an cos
nπ

L
x+ bn sin

nπ

L
x).

These series are important in many areas of applied mathematics and
mathematics. The branch of mathematics devoted to their study is called
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Fourier analysis or harmonic analysis. The basic idea is that most functions
have a Fourier series representation; that is, for a function f defined on
(0, L) there are (for example) corresponding Fourier coefficients {an}∞n=1

such that

f(x) =

∞∑
n=1

an sin
nπ

L
x.

Consider, for example, the initial data for the wave equation given by
positively displacing the material point at x = L/4 to a distance L/100 and
releasing the wire from rest at this displacement. What is the subsequent
motion of the wire?

The obvious approximation of the initial displacement function

α(x) :=

{
x
25 , 0 ≤ x ≤ L

4 ,
L−x
75 , L

4 < x ≤ L (18.28)

is not a finite sum of sines. But, it may be approximated as closely as desired
with a finite Fourier sum. How should the closeness of the approximation be
measured?

We already know how to measure the closeness of two points P andQ in
Rk: we simply compute the (Euclidean) distance between them |Q−P |. The
appropriate measurement of distance between two functions, for instance the
distance between the function f defined by the sum of sines in Eq. (18.27)
and α defined by Eq. (18.28), is not obvious. Many different measurements
are possible; the correct choice depends on the context. A natural possibility
is to measure the distance between the real numbers f(x) and α(x) for each
x and define the distance between the functions to be the maximum such
distance. In symbols, we write

‖α− f‖0 = sup
x∈(0,L)

|α(x)− f(x)|. (18.29)

There is a delicate matter that requires writing sup instead of max:
perhaps the supremum exists when the maximum is not attained (see
Exercise 18.10). Another, perhaps less obvious, choice of distance is defined
using integration:

‖α− f‖2 =
(∫ L

0
|α(x)− f(x)|2 dx

)1/2
. (18.30)
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In both cases the distance between functions is defined using a new concept
called a norm. More precisely, the supremum norm of an arbitrary function
f defined on (0, L) is defined to be

‖f‖0 = sup
x∈(0,L)

|f(x)| (18.31)

and the L2 norm (pronounced “L-two norm") is

‖f‖2 =
(∫ L

0
|f(x)|2 dx

)1/2
. (18.32)

Clearly the notion of a norm is a generalization of the Euclidean length of
vectors in Rk.

To determine how well finite sums of sines approximate the function α
defined in Eq. (18.28), consider first the problem for the supremum norm:
Determine the coefficients {an}kn=1 such that

sup
0<x<L

{
| x25 −

∑k
n=1 an sin nπ

L x|, 0 ≤ x ≤ L
4 ,

|L−x75 −
∑k

n=1 an sin nπ
L x|, L

4 < x ≤ L

is minimized. The complexity of this optimization problem is apparent for
N = 1 and the performance of many numerical algorithms that might be
used to solve this problem degrades asN increases (see Exercise 18.11). The
supremum norm is not the natural choice for the approximation problem.

Fourier recognized that the trigonometric functions sine and cosine
have special properties that can be exploited to solve the problem of
approximating arbitrary functions with sums of sines (or cosines or both).
Their most important property should be familiar from calculus: If m 6= n
are integers, then

∫ L

0
sin

nπx

L
sin

mπx

L
dx = 0,

∫ L

0
cos

nπx

L
cos

mπx

L
dx = 0, (18.33)

∫ L

0
cos

nπx

L
sin

mπx

L
dx = 0.
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Fig. 18.1 The figure depicts a plot of the function α defined in Eq. (18.28) and the corresponding third-order Fourier
sum (18.35) for the case L = 1.

Suppose that a function f : (0, L)→ R is given by a sum of sines

f(x) =

k∑
n=1

an sin
nπx

L
.

The trigonometric integral formulas can be used to determine the coeffi-
cients {an}kn=1 that determine f . To find the jth coefficient, simply integrate
the product of f and sin jπx

L as follows

∫ L

0
f(x) sin

jπx

L
dx =

∫ L

0
(

k∑
n=1

an sin
nπx

L
) sin

jπx

L
dx

=

k∑
n=1

an

∫ L

0
sin

nπx

L
sin

jπx

L
dx

= aj

∫ L

0
sin2 jπx

L
dx

=
L

2
aj

to obtain the formula

aj =
2

L

∫ L

0
f(x) sin

jπx

L
dx. (18.34)

This number, for obvious reasons, is called the jth Fourier (sine) coefficient
of the function f . A similar formula exists for sums of cosines.
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For an arbitrary (integrable) function, its Fourier coefficients may be
computed up to some orderN to form the corresponding trigonometric sum.
For example, the first three Fourier sine coefficients of the function α defined
in Eq. (18.28) are

2

75Lπ2
(4 sin

Lπ

4
− sinLπ),

1

150Lπ2
(4 sin

Lπ

2
− sin 2Lπ),

2

675Lπ2
(4 sin

3Lπ

4
− sin 3Lπ)

and the corresponding Fourier sum is

f(x) =
2

75Lπ2
(4 sin

Lπ

4
− sinLπ) sin

πx

L

+
1

150Lπ2
(4 sin

Lπ

2
− sin 2Lπ) sin

2πx

L

+
2

675Lπ2
(4 sin

3Lπ

4
− sin 3Lπ) sin

3πx

L
. (18.35)

The graphs of α and f for the case L = 1 are depicted in Fig. 18.1 where
the close approximation is apparent. Higher-order Fourier sums are better
approximations. Why should Fourier sums be such good approximations?

Although a complete answer to the last question is beyond the scope
of this book, the most important fact is easy to understand: The best
approximation of an integrable function by a sum of sines, measured by
the L2 norm, is the Fourier sum.

The underlying idea that leads to the desired result should be familiar
from the geometry of m-dimensional Euclidean space. Suppose thatM is a
plane that happens to contain the pointQ. The shortest distance from a point
P in space toM is the magnitude of the orthogonal projection of the vector
P − Q onto one of the unit normals ofM at Q (see Exercise 18.12). This
fact can be used to write a formula for the minimum distance.

Note that among all points Q ∈ M, the distance from P to Q is least
when the vector P −Q is orthogonal to all vectors tangent toM. There are
several methods that might be used to determine this minimizer Q.

For simplicity and relevance to the minimization problem with sine
series, assume thatM passes through the origin. There are k < m vectors
e1, e2, e3, . . . , ek in the Euclidean space that are pairwise orthogonal and
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such that every point in M is given by
∑k

n=1 ane
n for some choice of

coefficients {an}kn=1. In other words, these vectors form an orthogonal basis
forM, which is a k-dimensional subspace of the m-dimensional Euclidian
space. Vectors tangent to the plane all have the same form

∑k
n=1 ane

n.
Thus, the orthogonality condition is (P − Q) · ∑k

n=1 ane
n = 0 for all

{an}kn=1. Clearly, for the orthogonality condition to hold, it suffices to have
(P −Q) · ej = 0 for each j = 1, 2, 3, . . . , k.

Suppose that Q =
∑k

n=1 qne
n. Then, the sufficient condition is (P −∑k

n=1 qne
n) · ej = 0 for each j = 1, 2, 3, . . . , k. It implies that

qj = P · ej

ej · ej .

Thus, the desired point in the plane that minimizes the distance to P is

Q =

k∑
n=1

P · en
en · en e

n.

In case the basis elements {en}kn=1 are orthonormal (that is, mutually
orthogonal and all elements of unit length), the last sum simplifies to
Q =

∑k
n=1(P ·en)en. In both cases, |P−Q|2 = |P |2−|Q|2 by Pythagorus’s

theorem.

Perhaps it is also instructive to derive the same result and express the
final formula more directly using a computation with inner products:

|P −Q|2 = (P −Q) · (P −Q)

= |P |2 − 2P ·Q+ |Q|2

= |P |2 − 2P ·
k∑

n=1

P · en
|en|2 e

n +

k∑
n=1

P · en
|en|2 e

n ·
k∑

n=1

P · en
|en|2 e

n

= |P |2 − 2

k∑
n=1

(P · en)2

|en|2 +

k∑
n=1

(P · en)2

|en|2

= |P |2 − |Q|2,

or

|P −Q|2 = |P |2 −
k∑

n=1

(P · en)2

|en|2 .



600 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

Instead of Euclidean space, consider the set L of all square integrable
functions on the interval [0, L]; that is, all functions g : [0, L]→ R such that

‖g‖22 :=

∫ L

0
|g(x)|2 dx

has a finite value. For this discussion, there is no essential difference
between functions defined on the open interval (0, L) and the closed interval
[0, L]; indeed, changing the value of a function at two points does not change
its integral. The closed interval is used here simply to make this point.

The set L has much (perhaps unexpected) structure. We will assume two
important inequalities concerning pairs of functions g and h in L: Schwarz’s
inequality,∫ L

0
g(x)h(x) dx ≤

(∫ L

0
(g(x))2 dx

)1/2(∫ L

0
(h(x))2 dx

)1/2
(18.36)

and Minkowski’s inequality,(∫ L

0
g(x)+h(x))2 dx

)1/2
≤
(∫ L

0
(g(x))2 dx

)1/2
+
(∫ L

0
(h(x))2 dx

)1/2
.

(18.37)

Minkowski’s inequality implies that the sum of two functions in L is a
function in L. Thus, L is similar to Rk in some respects. Consider functions
in L to be abstract vectors. Note first that all linear combinations of these
functions (that is, expressions of the form ag + bh for real numbers a and
b and functions g and h in L) remain in the set L. In addition, the distance
between functions inL is derived from an inner product just as the Euclidean
distance between vectors P and Q in Rk can be defined using the usual
dot product. The norm of a vector P is defined using the dot product to be
|P | =

√
P · P . The distance between two vectors P and Q is defined to

be the norm of their difference |Q− P |. Likewise, the inner product of two
functions g and h in L is defined to be

g · h =

∫ L

0
g(x)h(x) dx.

The norm—called the L2 norm or the root mean square (RMS)—of g is
‖g‖2 :=

√
g · g, and the distance between functions g and h is ‖h− g‖2. By

tradition, the inner product is rarely written g ·h. Most often it is denoted by
〈g, h〉 or (g, h). We will use the latter notation here. Schwartz’s inequality
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implies that the inner product is indeed a number whenever g and h are in
L. The inner product defined this way satisfies all the other properties of the
inner product in Rk:

(g, g) ≥ 0 for every g ∈ L;
(g, g) = 0 if and only if g = 0 except

perhaps on a set of zero measure;
(g, h) = (h, g) for all g and h in L;
(g + k, h) = (g, h) + (k, h) for all g, h, and k inL;
(ag, h) = a(g, h) for all g and h in L and a in R

(18.38)
(see Exercise 18.13).

In analogy with Euclidean space, the inner product on L is used to define
the notion of orthogonality: Two functions in L are orthogonal if their inner
product is zero. The main point of the discussion so far is that x 7→ sin nπx

L
(and x 7→ cos nπxL ) are functions in L, and every pair of such functions
is orthogonal whenever they have different frequencies (m 6= n) as in
display (18.33).

Consider the subsetM of L consisting of all the functions in L that can
be obtained by taking finite sums of multiples of the functions

e1 := sin
πx

L
, e2 := sin

2πx

L
, e3 := sin

3πx

L
, . . . , ek := sin

kπx

L
.

Of course,M is exactly the set of all functions of the form

k∑
n=1

ane
n,

where as before {an}kn=1 is a set of real numbers.

Problem 18.1. Suppose g is a function in L. Determine the minimum of ‖g − h‖2
over all h ∈M and the Fourier coefficients {an}kn=1 of the minimizer.

Problem 18.1 is akin to the problem of finding the minimum distance
from a point to a plane. In fact, the answer is exactly the same. The
minimizer is

h =

k∑
n=1

2

L
(g, en)en
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and the minimum distance is

inf
h∈M

‖g − h‖22 = ‖g‖2 −
k∑

n=1

2

L
(g, en)2, (18.39)

where

en := sin
nπx

L
.

A proof of the stated solution of Problem 18.1 is similar to, but not the
same as, the proof used for determining the distance from a point to a plane
in Euclidean space. The difficulty is that the new finite-dimensional set of
functions M is contained in the infinite-dimensional space L. Thus, the
normal directions form an infinite-dimensional set. What does this mean?
Recall that a vector space has dimension m if there is a set of elements
{vi}mi=1 such that every element of the space is a linear combination of these
elements (that is, every g in the space is given by g = aiv

i, for real numbers
{ai}mi=1) and there is no smaller set of elements with this same property. A
set of such elements is called a basis of the space. A space is called infinite-
dimensional if no finite basis exists. The existence of the orthogonal set
{en}∞n=1, where en is defined to be the function x 7→ sinnπx/L can be
used to show that L is infinite-dimensional (see Exercise 18.15).

In fact, for Problem 18.1, a unique minimizer h ∈ M exists and g − h
is orthogonal to every function inM. But this result requires completeness
of L; that is, every Cauchy sequence of functions in the space (using the
L2 norm to measure distance) converges to a function in the space. Recall
that completeness is also a fundamental property of the real numbers with
respect to the norm given by absolute value. Thus, it should not be a surprise
that this property is needed to endow L with properties that are analogous
to Euclidean space.

Strictly speaking, the set L is not complete, but the space L2 (obtained
from L by equating functions that agree on [0, L] except for a set of measure
zero) is complete. The desired existence, uniqueness, and orthogonality
result for the minimization problem is true in L2 (see, for example, [91]).
For simplicity, assume this result. The formula for the minimizer is then
found exactly as in the problem for Euclidean space.
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Suppose that h =
∑k

n=1 hne
n. Due to the orthogonality, (g−h, en) = 0

for each n = 1, 2, 3, . . . , k because each function en is inM. Thus,

(g, en) = (

k∑
j=1

hje
j , en) =

L

2
hn

and the desired formula for the minimizer is

h =

k∑
n=1

2

L
(g, en)en,

where

en := sin
nπx

L
.

Moreover, the minimum distance is

(g − k, g − k) = (g − k, g) = ‖g‖2 −
k∑

n=1

2

L
(g, en)2.

The solution of Problem 18.1 tells us that the best approximation with
respect to the L2 norm of a function g by the finite set of functions {en :=
sin nπx

L }kn=1 is given by its Fourier sum

k∑
n=1

2

L
(g, en)en.

Also, the exact error measured by the L2 norm is available using Eq. (18.39)
(see, Exercise 18.16).

As mentioned perviously, more is true: If g is square integrable on a finite
open interval and ε > 0 is given, then there is some positive integer K such
that

‖g −
k∑

n=1

2

L
(g, en)en‖2 < ε

for every k ≥ K. Or, in other words, the Fourier sine series of g converges
to g in the L2 norm.
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Much more is known about convergence of Fourier series. Two classical
results are the following.

If g is twice continuously differentiable, g(0) = 0, and g(1) = 0, then
its Fourier sine partial sums converge to g in the supremum norm (which is
called uniform convergence).

If g is piecewise twice continuously differentiable and x0 is a point
where g is continuous, then the Fourier partial sums evaluated at x = x0

converge to g(x0) (which is called pointwise convergence). If x0 is at a jump
discontinuity of g, then the partial sums evaluated at x0 converge to

1

2
( lim
x→x+

0

g(x) + lim
x→x−0

g(x)).

Similar statements are true for the cosine and full Fourier series.

Fourier sine series are the natural choice when zero Dirichlet boundary
conditions are required at the end points of the interval (0, L), cosine series
are the natural choice for zero Neumann boundary conditions, and full
Fourier series are used to approximate 2L-periodic functions on the interval
(−L,L) (see [5, 11, 103]).

Exercise 18.4. Prove the polarization identity [Eq. (18.2)] and Eq. (18.3).

Exercise 18.5. Prove that every skew-symmetric matrix is an infinitesimal rotation.

Exercise 18.6. Show that if A sinx + B cosx = 0 for all x in some open interval of
real numbers, then A = and B = 0.

Exercise 18.7. (a) Show that the sum of two (arbitrary) solutions of the wave equation
that each satisfy zero Dirichlet boundary conditions is again a solution that satisfies the
same boundary conditions. (b) Show, for example, that the superposition of solutions
that satisfy the boundary conditions u(0, t) = 0 and u(L, t) = 1 do not satisfy the same
boundary conditions.

Exercise 18.8. Continue the separation of variables method for the wave equation
with zero Dirichlet boundary conditions using zero and negative values for the separa-
tion constant λ. Show that nonzero solutions produced by the method do not satisfy the
boundary conditions.

Exercise 18.9. The temperature u of a heated bar of length L positioned along the
x-axis with insulated ends and initial temperature α is approximated by the solution of
the boundary, IVP

∂u

∂t
= c2∂

2u

∂x2
, t ≥ 0, 0 < x < L,
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∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, t ≥ 0,

u(x, 0) = α(x), 0 < x < L.

Use Fourier series to determine a formula for the temperature u.

Exercise 18.10. Construct a function on the interval (0, 1) such that its supremum
exists but not its maximum.

Exercise 18.11. (a) Determine the minimum number a and the minimum value of
‖α− f‖, where α is defined by Eq. (18.28) and f(x) = a sinπx. (b) Write a numerical
code to approximate the minimizer {an}kn=1 for the corresponding k-dimensional case
where f(x) =

∑k
n=1 an sinnπx. Use your code to find the minimizers with an accuracy

less than 10−5 for k = 1, 2, 3, . . . , 20.

Exercise 18.12. Use the Pythagorean theorem to prove that the shortest distance from
a point P to a plane containing the pointQ is the magnitude of the orthogonal projection
of the vector P −Q onto one of the unit normals, say η, of the plane. Also show that for
the hyperplane {xi ∈ Rk : aixi = B} (where the summation convention is used),

(P −Q) · η =
piai −B√

aiai
.

In particular, the distance does not depend on the choice of Q.

Exercise 18.13. (a) Show that the inner product on L satisfies the properties in
display (18.38). (b) Give an alternate proof that the inner product of two functions in
L is finite based on the observation that (a − b)2 ≥ 0 for every pair of real numbers a
and b.

Exercise 18.14. (a) Find an orthonormal basis that generates the hyperplane in R3

given by the equation 2x + y + z = 0. (b) Show that the points in R4 that satisfy the
equations 2x+ y + z +w = 0 and x+ 2y + z + 2w = 0 form a two-dimensional plane.
Determine an orthonormal basis that generates this plane. (c) Show that the points in R4

that satisfy the equation x+2y+z+2w = 0 form a three-dimensional plane. Determine
an orthonormal basis that generates this plane.

Exercise 18.15. Show that the set L of all square integrable functions on the interval
[0, L] is infinite-dimensional.

Exercise 18.16. (a) Let g be the function on the interval (0, 1) that has value zero
on the subinterval (0, 1/2) and value one on the interval [1/2, 0). Determine its Fourier
sine series. (b) Make (computer-generated) graphs showing the function g and its best
approximations by Fourier sums up to the sum of at least 40 sines. According to the
theory, these sums must converge to g in the L2 norm. Also, the series converges
pointwise to g except at x = 1/2, where it converges to 1/2. Describe what you see near
the points x = 1/2 and x = 1. The behavior has a name: the Gibbs phenomenon. This
behavior is expected near points of discontinuity. (c) Show by numerical experiments
that the Fourier series converges to zero at x = 2/16, one-half at x = 1/2, and to unity
at the point x = 9/16. (d) Conclude that the rate of convergence of the Fourier series to
a point near x = 1/2 is slow.
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Exercise 18.17. (a) Least squares linear regression in its simplest form is the problem
of determining the line y = mx+b that best fits a finite set of data points {(xn, yn)}kn=1

by minimizing the function F (m, b) :=
∑k
n=1(mxn + b− yn)2. Solve this problem by

finding explicit formulas for m and b that depend on the given data. Hint: Use calculus.
Appendix A.12 has a general discussion of this problem. (b) Find the best fitting line to
the data points {(xn, yn)}kn=1 where xn = n/50 and yn = e−0.15n/50 sin(100πxn) for
n = 1, 2, 3, . . . , 50.

Exercise 18.18. LetM denote the two-dimensional plane generated by the vectors
P = (1, 1, 1, 1, 1) andQ = (−1, 1,−1, 1,−1) in five-dimensional Euclidean space. Find
the point on this plane closest to the point R = (8, 0, 8, 0, 8).

Exercise 18.19. [Approximation and Orthogonal Polynomials] Suppose that f is a
continuous function defined on the interval [−1, 1]. Which polynomial of degree k is
closest to f? This question is not well posed because closeness is not defined. To make
the problem precise, suppose that distance is measured in the sense of least squares (the
L2 norm). (a) The question then is to minimize the quantity∫ 1

−1

|f(x)−
k∑

n=0

anx
n|2 dx

over sets of real coefficients {an}kn=0. Use calculus to write out the system of
linear equations (normal equations) that must be solved to obtain the minimum. Also,
determine (numerically) the polynomials of degrees k = 1, 2, 3, . . . , 10 that best fit the
function x 7→ cosπx. Draw graphs that illustrate the fit. Use an algebraic processor
to determine the exact minimizing polynomials (at least for the first few values of k)
and check the accuracy of your numerical approximations against the exact solutions.
Discuss your algebraic and numerical experiments. Hint: Numerical approximations
are notoriously difficult (ill-conditioned) for this problem because the system matrices
become nearly singular as the degree of the polynomial increases.
(b) Could there be more than one polynomial minimizer? Explain.
(c) Consider the polynomials

L0 = 1, L1 = x, L2 =
1

2
(−1 + 3x2), L3 =

1

2
(−3x+ 5x3),

L4 =
1

8
(3− 30x2 + 35x4).

Show that every polynomial of degree four is a linear combination of these polynomials.
Can you make a more general statement? What if the polynomials were instead your
favorite polynomials of degree zero, degree one, degree two, and so on up to degree four?
Is there anything special about the number four? What is the most general statement you
can make?
(d) There is something special about the polynomials in part (c): they are orthogonal
with respect to the inner product

(f, g) =

∫ 1

−1

f(x)g(x) dx.
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In other words (Li, Lj) = 0 whenever i 6= j.
(e) A great idea: Instead of looking for the polynomial minimizer as in part (a) directly,
find the minimizer of ∫ 1

−1

|f(x)−
k∑

n=0

anLn(x)|2 dx

over all sets of real coefficients {an}kn=0 for k = 0, 1, 2, 3, 4. Show that the correspond-
ing minimizing polynomial and the one sought in part (a) are the same. Moreover, show
that the minimizer is given exactly by

an =

∫ 1
−1

Ln(x)f(x) dx∫ 1
−1

Ln(x)Ln(x) dx
.

(f) Use the result of part (e) to solve the problem in part (a) concerning the polynomial
approximation of the cosine with a polynomial of degree four. Does the new theory
produce a more efficient and accurate answer?
(g) Of course, this entire exercise is meant to introduce you to something much more
general: the world of orthogonal polynomials. As you might guess, the L polynomials
are simply the first five polynomials in an infinite sequence of polynomials. These are
called Legendre polynomials. There are many other classes of orthogonal polynomials.
Although all such classes can be used to find polynomial approximations of functions,
orthogonal polynomials have many other uses in applied mathematics and numerical
analysis. Note also that the Legendre polynomials, for example, are solutions of a one-
parameter family of second-order ODEs: (1 − x2)y′′ − 2xy′ + n(n + 1)y = 0. The
parameter n corresponds to the degree of the respective Legendre polynomial. Check
this fact and use the ODE to determine L5 up to a constant multiple.

Exercise 18.20. [Wave Modeling and Numerics] Tie a rope to a tree, hold the rope
taut with one hand, and move your hand quickly up and down once. A wave will
propagate down the rope toward the tree. How does the wave behave before and after it
reaches the tree? Rope and flexible cord are complex materials. Also, the described
experiment will likely produce a wave whose displacement is far from equilibrium.
Thus, a realistic model would likely require taking into account nonlinear effects. But
perhaps as a crude model, you might consider the linear wave equation to model the
displacement u of the rope. Let x denote distance (say 0 ≤ x ≤ L) along the taut
rope from its position in hand to the tree, and let t denote time. Most likely, the Lamé
constants for the rope are not known, so the usual modeling procedure would be to
assume the equation of motion is the one-dimensional wave equation utt = c2uxx,
where c is the unknown wave speed to be determined by experiment. At time t = 0,
the beginning of the experiment, the taut rope may be modeled by u(x, 0) = 0 (no
displacement) and ut(x, 0) = 0 (zero initial velocity). There is no displacement at the
tree, so u(L, t) = 0. At the hand holding the rope, u(0, t) = f(t), where the function f
of time models the displacement imparted by the hand motion to the rope.
(a) Show that for u(x, t) = LU(x/L, ct/L), the model takes the dimensionless form

Uττ = Uξξ, U(ξ, 0) = 0, Uτ (ξ, 0) = 0,
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U(0, τ) = g(τ), U(1, 0) = 0,

where g(τ) := f(Lτ/c)/L.
(b) Solve the dimensionless form of the model equations. Hint: Separation of variables
does not work, at least not directly. Perhaps the best (and most beautiful) solution
method, called the expansion method in [103], uses Fourier series to expand all functions
with respect to the spatial variable. Pay attention to one important fact: unlike convergent
Taylor series, convergent Fourier series cannot (in general) be differentiated term-by-
term.
(c) Make a model of the hand motion used to produce a wave; that is, specify a function
f (or better yet a family of functions) that might model this displacement. Also, specify
the corresponding function g.
(d) Use a finite-difference numerical approximation scheme to produce graphs of the
wave profile produced by your hand-motion model for part (c) at several carefully
chosen times so that your graphs show the wave profile before and after the time at
which the wave reaches the position of the tree. Hint: An excellent finite-difference
method for the wave equation is described and analyzed in [61].
(e) Use truncations of the exact solution (which is likely an infinite series) for your
choice of f to compare and verify the numerical results obtained in part (d). Hint:
Perhaps in your work on this part of the problem, you will realize at least two important
facts: (1) Making the required graphs will include numerical approximations of a
truncation of the exact solution. (2) Perhaps from a different point of view, the exact
solution method can be turned into a numerical method. This is evident when the
suggested expansion method is employed. You will be led to solve a number of second-
order ODEs (one for each Fourier mode in the truncated expansion), which are harmonic
oscillators with forcing given by certain multiples of g. The solutions of these ODEs
can be approximated numerically with your favorite ODE solver, for example Euler’s
method, the trapezoidal method, or the Störmer–Verlet method (as in Exercise 10.9).
Approximating the solution of the PDE in this manner is an example of a spectral
method: the desired approximate solution is sought as a truncated Fourier series with
unknown coefficients and these coefficients are approximated by solving a system of
linear equations or, in this time-dependent case, by solving a system of ODEs. By
simply changing the point of view, some beautiful classical mathematics developed
before the advent of high-speed computers, can be turned into a numerical method.
(f) What would happen if the end of the rope at the tree were free to move in the direction
of the displacement? Perhaps the rope is tied to a ring that is free to slide on a vertical
wire.
(g) Suppose that a wave is initiated by hand motion as part (c), the hand is held still to
allow the wave to reach the vicinity of the midpoint of the taut rope, and then another
wave is initiated by a second up-and-down hand motion. Would there be an interaction
between the two waves at some later time? What does the model predict? Use graphs
generated from numerical experiments or the exact solution to illustrate a discussion of
this interaction.
(h) Repeat the project for the case of a plucked string; that is, change the model so that
the left-hand boundary condition is u(0, t) = 0. Use the function f (or in dimensionless
form g) to set an initial profile for the string and suppose that the string is let go from this
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profile at time t = 0. Describe the wave profile as time increases. Compare the period of
the oscillation of the wave profile for the plucked string and the rope tied to a tree under
the assumption that the wave speeds are the same. Be sure to illustrate your answers
with graphs made using the exact solution or numerical approximations.

Exercise 18.21. [Vibrating Wire Sensors] Suppose you want to build a sensor. The
fundamental starting point is to use a mechanism that interacts with the phenomenon
that is to be measured. Recall the model PDE (18.23) for the deformation u of a taut
wire with mass per length ρ (a change of notation) and tension (or traction) τ :

ρutt = τuxx.

In this context, τ has units of force. With more physics incorporated, it becomes

ρutt + aut = τuxx + ρf(u, x, t), (18.40)

where a is a coefficient of damping and f is a body force per mass. Suppose the wire is
rigidly attached at both ends and has length L. From the analysis of the undamped and
unforced equation, the lowest frequency deformation is given by

u(x, t) = sin(
π
√
τ

L
t+ α) sin

π

L
x,

where α is a phase angle. This fundamental mode is sinusoidal with spatial profile x 7→
sin π

Lx. It has (natural) frequency

ω0 =
1

2L

√
τ

ρ
.

Plucking the wire will usually produce this fundamental vibration as the dominant
(highest amplitude) mode. There are likely to be higher frequency terms in the
theoretical solution; but, these will have small amplitude. (a) Write the theoretical
solution of a model for the plucked wire. You choose the initial data. Also, use your
solution to predict the dominant mode.
(b) One type of vibrating wire sensor (for which there is a thriving commercial industry)
is configured as a strain gauge: the length of the wire is changed by the phenomenon
that is to be measured. The wire might be strung over a crack in some material that is
changing in size over time, or perhaps one end of the wire is attached to a diaphragm
that moves when there is a change in gas pressure. In these configurations, the length
of the wire changes when the crack space or gas pressure changes. How sensitive is the
natural frequency to a change in wire length? One way to approach this problem is to
recall the basic stress-strain relation of linear elasticity: stress is proportional to strain. In
the context of this problem, the relation is σ = Eε, where E is the modulus of elasticity
(Young’s modulus). Note that E has units of pressure. Tension has units of force. Let A
denote the cross-sectional area of the wire. Tension per area is the same as stress. Using
this notation and defining τ0 to be the base operating wire tension, the changed wire
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tension should be (up to linear approximation)

τ = τ0 +AE
∆L

L
,

where of course ∆L/L is the relative change in length (which in other words is the
strain).

Using this notation, the wire frequency as a function of the change in length is

ω(∆L) = ω0 +
1

2(L0 + ∆L)

√
τ0 +AE∆L/L0

ρ
.

The relative change in frequency (which is measured in the sensor to determine the stain)
is

ω − ω0

ω0
≈ L0

ω0
ω′(0)

∆L

L0
.

Thus the amplification factor (gauge factor) is the quantity

gf :=
L0

ω0
ω′(0).

Some typical values of the system parameters for a metal wire with diameter d might be

E = 150 GPa, τ = 980 gm m / sec2, d = 0.1 mm, L0 = 0.1 m .

Compute the amplification factor for the given values. Is this value favorable for
vibrating wire sensors? Explain. Is there a simpler formula for gf?
(c) Vibrating wire sensors usually have electronic mechanisms to keep the wire vibrating
and to record changes in frequency. To fully understand how they work requires some
understanding of electromagnetism, which might be acquired by reading further in this
book. In essence, the device design sets up an oscillating electromagnetic field that
affects the motion of a metal wire (perhaps one that supports an electric current) and
in turn changes in the vibrations of the wire affect the electromagnetic field. These
later changes can be used to produce an electric current that can be analyzed by a
postprocessor to determine the frequency of the vibrating wire. Advanced engineering
is required to make a precision working device, but the operating principles could be
easily demonstrated in a physics or engineering lab. Although electromagnetic effects
are used in vibrating wire strain gauge applications, vibrating wire sensors can also
be configured to detect electromagnetic fields. These are used in the nuclear industry.
An early example of such a sensor configuration and its operation, with an accessible
and mostly self-contained mathematical analysis, is described in paper [110]. Read this
article, fill in the details, and discuss its contents. The model described therein is in the
form of Eq. (18.40) with an electromagnetic force and the force due to gravity taken
into account. Demonstrate the resonance response described in the paper via numerical
experiments.

(d) The frequency of a vibrating wire sensor should be sensitive to changes in
temperature. How might a VWS thermometer be configured? Make a model, discuss
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the mathematical aspects of its intended operation, and demonstrate your findings with
numerical experiments.

18.2 LONGITUDINAL WAVES IN A ROD WITH VARYING
CROSS SECTION

In addition to wires, elasticity theory has been specialized to rods, plates,
and shells. The underlying idea is to reduce the spatial dimension of the
equation of motion by taking advantage of symmetry or the relative (small)
size of one or more spatial dimensions. Perhaps the simplest model of this
type is for the longitudinal motion of a rod with varying cross-sectional area
in case the only forces on the surface of the rod are at its ends and these
forces act parallel to the axis of the rod.

Consider a three-dimensional rod whose central axis is on a line and
whose bounded cross sections are taken perpendicular to the central axis.
Choose coordinates so that the central axis is the x-axis of a rectangular
coordinate system such that each cross section lies in a plane parallel to the
plane defined by x = 0 and the left end of the rod is at x = 0. The cross
section of the rod at x is denoted S(x) and its area by A(x).

Recall the basic equation of motion

ρüi = σij,j + ρbi (18.41)

for linear elasticity, where σ is the stress tensor, ρ is the constant density
of the rod, u the displacement vector, bi the body force per mass, and
summation on repeated indices is enforced (see page 318). The objective
of this section is to reduce this basic model to a more tractable form, which
might still capture the essential features of longitudinal waves, by making
several simplifying assumptions.

Let x be the first coordinate of a point in the rod and h a positive real
number such that x+ h is also the first coordinate of such a point. Consider
the result of integrating the first component of the equation of motion—the
component in the axial direction—over the portion of the rod Ω bounded by
the cross sections S(x) and S(x+ h):

ρ

∫
Ω
ü1 dV =

∫
Ω
σ1j,j dV + ρ

∫
Ω
b1 dV.
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The first integral on the right-hand side of this equation is the integral of the
divergence of a vector field over the solid Ω. By the divergence theorem, it
is the integral over the boundary of Ω of the inner product of this vector field
with the outer unit normal η; therefore,

ρ

∫
Ω
ü1 dV =

∫
∂Ω
σ1jηj dV + ρ

∫
Ω
b1 dV.

Notice that the integral over the boundary of Ω can be split into a sum
of three parts: The integral over S(x), the integral over S(x + h), and the
integral over the lateral boundary cut off by these cross sections. Physical
intuition dictates that the dominant displacement is in the axial direction, or
in other words, the component of the stress field in the normal direction over
the lateral boundary should be small.

Assumption: The integral of the stress field over the lateral boundary is
negligible.

As soon as the assumption is implemented, the equation of motion is
no longer equivalent to the derived theory of linear elasticity; rather, it is a
new simplified model. Because the (outer) normal η on the cross sections is
parallel to the x-axis and points right on S(x+h) and left on S(x), this new
model takes the preliminary form

ρ

∫
Ω
ü1 dV =

∫
S(x+h)

σ11 dS −
∫
S(x)

σ11 dS + ρ

∫
Ω
b1 dV.

Each volume integral can be written as an iterated integral by integrating
over each cross section and then along the axis. Also, the mean value
theorem applies to the function

x 7→
∫
S(x)

σ11 dS

on the interval [x, x + h]. Thus, there is a point x(h) in the open interval
(x, x+ h) such that the preliminary form of the new model can be recast as

ρ

∫ x+h

x

∫
S(ξ)

ü1 dS dξ = h
∂

∂x

∫
S(x)

σ11 dS
∣∣∣
x=x(h)

+ρ

∫ x+h

x

∫
S(ξ)

b1 dS dξ.
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Using the mean value theorem for integrals applied to the iterated integrals,
division by h, and passage to the limit as h approaches zero from the right,
the new equation of motion is

ρ

∫
S(x)

ü1 dS =
∂

∂x

∫
S(x)

σ11 dS + ρ

∫
S(x)

b1 dS,

or with

U1(x, t) :=

∫
S(x)

ü1 dS,

ρÜ1 =
d

dx

∫
S(x)

σ11 dS + ρ

∫
S(x)

b1 dS. (18.42)

For a rod made of a homogeneous and isotropic material,

σ11 = λ(u1,1 + u2,2 + u3,3) + 2µu1,1

= (λ+ 2µ)u1,1 + λ(u2,2 + u3,3).

With this model of the stress field, the equation of motion is

ρÜ1 = (λ+2µ)
∂

∂x

∫
S(x)

u1,1 dS+λ
∂

∂x

∫
S(x)

u2,2+u3,3 dS+ρ

∫
S(x)

b1 dS.
(18.43)

The sum u2,2 + u3,3 is the divergence with respect to the second and third
variables of the vector field with components (u2, u3). By the divergence
theorem, the corresponding integral is the flux of this field over the boundary
of S(x).

Assumption: The flux of the field (u2, u3) over the boundary of each of the
rod’s cross sections is negligible.

Assumption: There is a planar vector field X defined on the plane
{(x, y, z) : x = 0} such that its flow φ parametrized by x takes the left-end
cross section of the rod (which is S(0)) to the projection in this plane of
each S(x) via φx(S(0)) = S(x).
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By taking these assumptions into account and by the Reynolds transport
theorem applied to the first integral on the right-hand side of Eq. (18.43), a
new equation of motion is

ρÜ1 = (λ+2µ)
∂

∂x

( d
dx

∫
S(x)

u1 dS −
∫
S(x)

div(u1X) dS
)

+ρ

∫
S(x)

b1 dS,

where the divergence operator is with respect to the spatial coordinates y
and z. Leibniz’s product rule (with the gradient operator taken with respect
to the spatial coordinates y and z) implies that

ρÜ1 = (λ+ 2µ)
∂

∂x

( d
dx

∫
S(x)

u1 dS −
∫
S(x)

grad(u1) ·X + u1 divX dS
)

+ ρ

∫
S(x)

b1 dS, (18.44)

Assumption: The gradient of the first component of the displacement field
u1 with respect to the spatial coordinates y and z is negligible.

Using this assumption and the mean value theorem for integrals applied
to the second integral on the right-hand side of Eq. (18.44), there is a point
q1 = q1(x) in the section S(x) such that

ρÜ1 = (λ+ 2µ)
∂

∂x

( d
dx

∫
S(x)

u1 dS − divX(q1(x))

∫
S(x)

u1 dS
)

+ ρ

∫
S(x)

b1 dS

= (λ+ 2µ)
∂

∂x

(
U ′1 −

d

dx
(divX(q1(x))U1)

)
+ ρ

∫
S(x)

b1 dS.

(18.45)

Note that

A(x) :=

∫
S(x)

dS,

and by the transport theorem, there is some q2 = q2(x) so that

A′(x) :=

∫
S(x)

divX dS = divX(q2(x))

∫
S(x)

dS = divX(q2(x))A(x).
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Assumption: The divergence of the vector field X with respect to the
variables y and z is nearly constant.

Under this last assumption the model equation takes the form

ρÜ1 =
∂

∂x

(
U ′1 −

A′(x)

A(x)
U1)
)

+ ρ

∫
S(x)

b1 dS

= (λ+ 2µ)
∂

∂x

(
A(x)

∂

∂x

U1

A(x)

)
+ ρ

∫
S(x)

b1 dS. (18.46)

By defining the average displacement and average body force per mass

U(x, t) :=
1

A(x)

∫
S(x)

u1 dS, B(x, t) :=
1

A(x)

∫
S(x)

b1 dS

and using the product rule, the final form of the new model equation for
longitudinal motion is

ρÜ = (λ+ 2µ)
(∂2U

∂x2
+
A′(x)

A(x)

∂U

∂x

)
+ ρB(x, t). (18.47)

Although there are many other ways to derive this model and some
of them are more efficient than the method described here (compare
Exercise 18.22), the reader might agree that the simplifying assumptions
made to reduce the general linear theory to the new model are clearly
specified. This one-dimensional model is not equivalent to the more basic
three-dimensional model of linear elasticity [Eq. (18.41)], but it is much
simpler to analyze. An application is made in the next section. Of course,
the model must be supplemented with initial and boundary data.

Exercise 18.22. [Calculus of Variations: Hamilton’s Principle] (a) The kinetic energy
of a small slice of a tapered rod (the solid part of the rod between two cross sections that
are close together) is approximately ρA(x)u̇2/2, where A is the cross-sectional area at
a point in the slice and u is the displacement in the horizontal direction. Explain. (b)
The potential energy of a small slice is approximately EA(x)u2

x/2, where E (Young’s
modulus) is a constant that gives the elastic properties of the rod. Explain. (c) The
Lagrangian for the motion of the rod (which is assumed to have its central axis the
x-axis between the origin and L) is

1

2

∫ L

0

ρA(x)u̇2 − EA(x)u2
x dx.
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The action is the integral of the Lagrangian with respect to time:∫ T

0

1

2

( ∫ L

0

ρA(x)u̇2 − EA(x)u2
x dx

)
dt.

According to the principle of least action (Hamilton’s principle), the action correspond-
ing to the physical path is stationary with respect to variations of the path. That is,
if u(x, t) is the physical path, the derivative with respect to δ at δ = 0 of the action
along the path u(x, t) + δw(x, t) vanishes, for every choice of w with w(x, 0) = 0 and
(w(x, T ) = 0 for all x and w(0, t) = w(L, t) = 0 for all t. Put the variation into the
action integral and differentiate with respect to δ as described. Show that the action
principle says ∫ T

0

( ∫ L

0

ρA(x)u̇ẇ − EA(x)uxwx
)
dt = 0

for all such w. (d) Continuing with part (c), show by changing the order of integration
as necessary and integration by parts, that∫ T

0

( ∫ L

0

−ρA(x)üw + (EA(x)ux)xw
)
dt = 0

for all w. Conclude that

−ρA(x)ü+ (EA(x)ux)x = 0

and compare with model (18.47).

18.3 ULTRASONICS

Imagine a solid horn (a rod that is tapered continuously with decreasing
cross-sectional area) attached at its left end to a transducer that imparts a
sinusoidal oscillation in the axial direction. To achieve ultrasonic vibration,
the method of choice is via piezoelectric transduction (which is actuated by
a material that expands and contracts in the presence of an appropriately
generated electromagnetic field). High-frequency oscillations are easily
achieved with this technology, but they have small amplitude. A hypothetical
rigid horn, which might be exposed to a chemical bath, a sample of
material to be tested for fractures, or a test tube containing bacteria, would
vibrate with the same amplitude as the transducer and not do much work.
Amplification is desirable and achieved with an elastic horn (also called a
sonotrode). Note that the mass of the horn is greatest near its large end,
which is vibrating at the amplitude of the transducer. The small end has less
mass but the same force is applied. It should move farther. This physical
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insight is predicted by model (18.47). The actual amplification of amplitude
by elastic horns is a fundamental component of ultrasonic technology.

Amplitude amplification is illustrated by a horn designed with exponen-
tially decreasing cross-sectional area; that is, the cross-sectional area A is
given by

A(x) = A0e
−γx

for some positive constants A0 and γ. This profile is very special:

A′(x)/A(x) = −γ,

a constant; it reduces the mathematical model to a linear differential
equation with constant coefficients. Let us suppose in addition that the
transducer imparts a sinusoidal oscillation α sin(ωt) at the left end of the
horn, and the right end of the horn is traction free.

The change of variables

U =
α

γ(λ+ 2µ)
W, t =

( ρ

γ2(λ+ 2µ)

)1/2
s, x =

ξ

γ
,

Ω := ω
( ρ

γ2(λ+ 2µ)

)1/2
renders the elasticity model [Eq. (18.47)], with exponentially decreasing
cross-sectional area, dimensionless:

Wss = Wξξ −Wξ,

−Wξ(0, s) = sin Ωs,

Wξ(L, s) = 0, (18.48)

where L is the scaled length of the horn. The Neumann boundary conditions
arise from tractions at the ends of the rod. Recall Eq. (18.6) (which reads
σijηi = τj in components) that was used to construct the fundamental
equations of elasticity by considering the tractions on the surface of a
small cube. The stress in the normal direction to a face is the traction on
that face. Simply stated, the Neumann boundary condition arises from the
same equation applied to a surface that happens to be on the boundary
of the material. Linear stress tensor (18.14) applied to the normals at the
boundaries for the case at hand (which is one-dimensional in space) reduces
to ±(λ + 2µ)Ux, where the sign is positive at the right end of the rod and
negative at the left end. No traction is applied at the right end of the rod,
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and a periodic traction (assumed to be a sinusoid) is acting on its left end.
If instead, the displacement of the left end of the bar were specified, the left
end boundary condition would be W (0, s) = sin Ωs (see Exercise 18.24).

To make model (18.48) well posed, the initial (scaled) displacement
W (ξ, 0) and velocityWs(ξ, 0) must be specified. In fact, these quantities are
not known for the physical application. When the transducer is constructed
and the system is turned on, this initial data is not easily defined or measured.
In this case, physical intuition suggests that the solution, after transients have
died away, should be the real or imaginary part of a complex function of the
form

W (ξ, s) = w(ξ)eiΩs;

that is, the displacement of the rod at each coordinate ξ is oscillating about
some fixed displacement w(ξ) at the frequency of the sinusoidal driving
force. The boundary conditions are reduced to

w′(0) = −1, w′(L) = 0. (18.49)

A measure of the efficiency of the horn is the amplification factor AF :=
|w(L)/w(0)|; it measures the ratio of the maximum (positive) displacements
at the right and left ends of the rod.

To compute the amplification factor, insert the complex solution into the
model equation to determine the linear equation with constant coefficients
for w:

w′′ − w′ + Ω2w = 0. (18.50)

The solution of this equation with the given boundary conditions
[Eqs. (18.49)] is easily computed using the usual methods for solving
linear second-order ODEs. Under the assumption that Ω > 1/2, with some
algebraic simplification, and with

ω :=
√

4Ω2 − 1,

the amplification factor is

AF =
eL/2ω∣∣ω cos(Lω2 ) + sin(Lω2 )

∣∣ . (18.51)
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The amplification factor can be infinite. Thus, there is no bound to the
amplification predicted by our model using linear elasticity. Of course, this
prediction is not realizable. The situation is analogous to the usual model
of a mass on a spring driven by a sinusoidal force. In scaled variables, the
equation of motion for the mass displacement is

ü+ u = sin Ωt.

For Ω = 1, all solutions oscillate with increasing amplitudes that grow
without bound. We say the driving frequency is resonant with the natural
frequency of the spring, which is given by its material properties. For
this reason, the frequencies Ω (which include in their definition the elastic
properties of the rod) and lengths L (which include in their definition the
taper of the rod) such that AF is infinite are in resonance; in essence, the
material properties of the rod are in resonance with the driving frequency.
These models do not take into account dissipation of energy (damping),
which is always present (see Exercises 18.27 and 19.8). A reasonable
physical prediction is that the actual maximum amplification occurs near a
resonance. This prediction may be used in the design process. For example,
the (shortest) resonant horn length can be calculated using the formula

L =
2√

4Ω2 − 1
(π − arctan

√
4Ω2 − 1) (18.52)

if the operating frequency of the piezoelectric activator is known.

Exercise 18.23. (a) Verify Eq. (18.52). (b) Find the length of a stainless steel resonant
rod (tapered exponentially with area A0e

−x/2 and A0 = 25 cm2 at x = 0) for an
ultrasonics application where the actuator frequency is 50 kHz. Use the Lamé constants
λ = 1.2 × 1011 kg /(m sec2), µ = 7.7 × 1010 kg /(m sec2) and density ρ = 7.6 ×
103 kg /m3. Answer: ≈ 2.98 cm. (c) Find the area of the tip of the rod. Answer: ≈
5.64 cm2.

Exercise 18.24. Analyze the amplification factor for a bar with exponentially
decreasing cross section where the tapered end is free and the large end is displaced
sinusoidally.

Exercise 18.25. Show that the BVP (18.48) can be converted to a BVP for the Klein–
Gordon equation

vss = vξξ + kv,

where k is a constant, via a change of variables of the form w = e`ξv(ξ, s) for some
choice of `. Specify k and `.
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Exercise 18.26. Analyze the amplification factor for a bar with constant cross-
sectional area.

Exercise 18.27. [Resonance Horn Amplification] The amplification factor for an
exponentially tapered horn is given by the Eq. (18.51). As noted, this number can be
infinite at resonance. A more realistic model would include damping, perhaps via the
dissipation of heat due to internal friction. Taking inspiration from the usual model for
viscous damping of a harmonic oscillator, consider the phenomenological model

ρÜ + kU̇ = (λ+ 2µ)
(∂2U

∂x2
+
A′(x)

A(x)

∂U

∂x

)
, (18.53)

where k is a positive constant, which might be called the damping factor. Assume the
traction at the right end of the rod is zero and a sinusoid at the left end. Moreover,
assume the rod is at rest before the forcing is applied. (a) Show that the model can be
made dimensionless and put in the form

Wss +Ws = Wξξ +
A′(ξ)
A(ξ)

Wξ

with boundary conditions Wξ(0, t) = sin t and Wξ(1, 0) = 0 and initial data W (ξ, 0) =

Ws(ξ, 0) = 0. (b) Find the steady state solution for the case whereA has the exponential
profile considered in this section. (c) Suppose the (scaled) profile function is a cubic
with A(0) = 1, A′(0) = 0, A(1) = 1/100, and A′(1) = 0. What is the approximate
value of the amplification factor? (d) Fix the boundary and initial data and consider
the steady state amplification factor as a function of the cross-sectional area profile A.
Which (continuously differentiable) profile defined on [0, 1] corresponds to the largest
amplification factor? This question may not have a simple answer. What can you say?
At least compare the exponential profile with the members of a family of cubic profiles
where a range of heights at the end points is considered. (e) Suppose the damping is
caused by a traction at the right end of the rod that opposes the motion. Perhaps the right
end is oscillating in a viscous fluid or in some other elastic material. Make a model for
this situation, solve it for the case of an exponential horn profile, check that the motion
is damped, and repeat the problems concerning the amplification factor.

18.4 A THREE-DIMENSIONAL ELASTOSTATICS
PROBLEM: A COPPER BLOCK BOLTED TO A STEEL
PLATE

Imagine a large steel plate with a round hole. A rectangular copper block
is welded to a round steel bolt (which fits the hole in the steel plate) so
that the bolt is centered at and perpendicular to a face of the copper block.
The bolt is threaded through the hole in the plate and pulled (perhaps by
tightening a nut) so that the copper block is forced against the steel plate.
Problem: Determine the equilibrium deformation field of the copper block
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as a function of the force on the bolt and the dimensions of the block
relative to the diameter of the bolt. Specifically, determine the distortion
field in the copper block in the plane through the central axis of the bolt and
perpendicular to the longest edges of the block.

The deformation of the steel plate is expected to be small compared with
the deformation of the copper block. Thus, a reasonable assumption is zero
deformation of the steel plate. In other words, the steel plate may be modeled
as a rigid body in a fixed position. To simplify the mathematical model for
the deformation, Cartesian coordinates are chosen so that the face of the
plate adjacent to the copper block is in the plane {(x, y, z) : z = 0}, the
hole in the plate is centered at the origin of the coordinate system, and the
copper block resides in the half-space {(x, y, z) : z ≥ 0}.

The steady state deformation field in the interior of the copper block must
satisfy the differential equation

(λεkkδij + 2µεij),j + ρbi = 0, (18.54)

which is the steady state field equation obtained from the fundamental model
[Eq. (18.16)], and the boundary conditions imposed by the geometry and the
force induced by tightening the bolt.

Boundary data must be specified at each (noncorner or edge) point on the
surface of the copper block. Each point on the surface of the block lies in
a three-dimensional space, which is generated by two independent surface
directions (tangents to the surface) and one (outer) normal direction. The
external surface forces tangent to the surface are called surface tractions;
the force in the other direction is called the normal force or normal traction.

The boundary forces are most easily modeled using the stresses, simply
because stress is force per area. Recall that the basic relation between stress
σ, traction τ , and the surface outer normal η is

τi = σijηj . (18.55)

(see Eq. (18.6)). The corresponding boundary conditions are obtained
from this relation using the material relations between stress, strain, and
displacement given in our model by the relations in Eqs. (18.14) and (18.15):

σij = λεkkδij + 2µεij , εij =
1

2
(ui,j + uj,i).
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Thus, external traction on the body surface is related to boundary displace-
ments via

τi = λuk,kηi + µ(ui,j + uj,i)ηj . (18.56)

The force on a surface due to its contact with an external surface (such as
the surface of our steel plate) is theoretically some force equal and opposite
to the force exerted by the deformable body on the external surface. There
is such a force, but rather than attempting to model this force for the case
where the external surface is assumed to be rigid and not moving, the correct
model is to assume that the displacement is zero in the normal direction of
surface contact. In case the external surface is moving, the corresponding
displacement may be imposed at the boundary of the elastic surface. Contact
with an elastic media might also be modeled with a traction τ that depends
on the displacement. Perhaps deformation of the body causes an external
pressure field to change.

A boundary condition, which is a component of a traction force or the
displacement, must be specified in each of the three coordinate directions
at each point on the boundary. Careful treatment is required to ensure that
predictions made from PDE models reflect physical reality, mathematical
rigor is maintained, and algorithms used to produce approximate solutions
are viable.

The undeformed rectangular copper block can be situated and dimen-
sioned by specifying the block corners proximal to the (horizontal) steel
plate
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(18.57)
The bolt is attached to the block at a disk of radius a centered at the origin
of the three-dimensional coordinate system and contained in the proximal
block face.

The material properties of copper are given by Young’s modulus

E ≈ 120× 109 kg /m sec2
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(at approximately 120 GPa =GigaPascal) and Poisson’s ratio

ν ≈ 0.34.

These translate to Lamé constants via the identities

λ =
Eν

(1− 2ν)(1 + ν)
, µ =

E

2(1 + ν)

to

λ ≈ 95× 109 kg /m sec2, µ ≈ 45× 109 kg /m sec2 . (18.58)

The density of copper is approximately

ρ ≈ 8.94 g / cm3 . (18.59)

Of course, the material properties are obtained by physical experiments.

A simple steady state model for our copper block tightened with a
bolt against the steel plate is given by assuming the displacement vector
u satisfies the linear elasticity equation (18.54); the traction vanishes
everywhere on the block’s surface except on its proximal face; and, on
the proximal face, the tractions tangent to the surface vanish everywhere,
the normal displacement vanishes outside the bolt attachment disk, and the
normal traction is constant in the downward vertical direction (toward the
steel plate) everywhere in the attachment disk. Some of the simplifying
assumptions are the zero frictional force between the copper and steel
surfaces the shaft of the bolt and torque on the bolt are ignored, and the
deformation is assumed to remain elastic; that is, the distortion in the copper
block due to tightening the bolt is small and reversible.

The copper block will distort against the steel plate and the deformation
field will reach a steady state. Is this state uniquely determined by the force
applied on the bolt? It should be, but this is not obvious. It is also not obvious
(but true) that the mathematical model is well posed. In fact, there is a
unique solution of the mathematical model that depends continuously on
the boundary conditions. Thus, the model predicts a unique solution. The
problem set here is to find a useful approximation of this solution.

There are many possible approximation methods for elasticity models. In
the following sections we will introduce the finite element method (FEM)
and apply it to our model problem. Boundary element methods, finite
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difference methods, as well as mesh-free methods (akin to smoothed particle
hydrodynamics) are also viable.

18.5 A ONE-DIMENSIONAL ELASTICITY MODEL

A basic understanding of the FEM is foundational in applied continuum
mechanics; it is widely used and well studied. The best approach to the
subject is by applying it to simple model problems. We will return to the
three-dimensional model for the distortion of a copper block bolted to a steel
plate from Section 18.4 after introduction of concepts and some experience
with model problems in one space-dimension.

The BVP

uxx + f(x) = 0, u(0) = 0, ux(1) = a, (18.60)

where a is some real parameter, will be used to illustrate most of the central
ideas of the FEM. It may be considered the dimensionless form of a one-
dimensional linear elasticity model. For example,

(λ+ 2µ)ũx̃x̃ + ρb(x̃) = 0, ũ(0) = 0, (λ+ 2µ)ũx̃(L) = ã,

where λ and µ are the Lamé constants, ρ is the density, the spatial coordinate
is x̃, the length of the elastic material is L, the body force per mass is b, and
the (normal) traction (at x = L) is ã. With the rescaling u = ũ/κ and
x = x̃/L, where κ has dimensions of length, we have the dimensionless
BVP (18.60) with

f(x) := αb(x)

and

α :=
ρL2

κ(λ+ 2µ)
, a :=

Lã

κ(λ+ 2µ)
.

BVP (18.60) is explicitly solvable by integrating twice with respect to
the space variable. For example, in case the elastic material is hanging
vertically with zero traction force and the body force per mass is gravity
(b(x) = g), the scaling constant κ may be chosen to make f(x) ≡ 1 and the
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displacement field is

u(x) = x− 1

2
x2, (18.61)

where x is taken to be positive in the downward vertical direction. The
model predicts quadratic displacement of the material points, which is given
by u as a function of distance from the place where the material is clamped.

The largest displacement occurs at x = 1, where the displacement is
1/2. Does this agree with your physical intuition? It would seem that just
the opposite is true: the effect of the mass distribution of the hanging elastic
body—all mass below the point where it is clamped—should stretch the
body most near the point where it is attached. This is indeed the case.
But what is the definition of displacement? Remember that displacement
means distorted position minus original position. Imagine the elastic body
hanging but not influenced by the gravitational field. This is the undeformed
state. Positions of the material points are measured on the interval [0, 1]
with respect to a fixed coordinate system. When the gravitational field is
turned on, the body deforms. The bottom material point is displaced the most
relative to its initial position as measured by the fixed coordinate system
because its distorted position is an accumulation of all the stretching along
the body. Distortion relative to nearby points in the body is measured by
the strain. Or, via Hooke’s law, it is proportional to stress. For the one-
dimensional body, the stress tensor has exactly one component:

σ11 =
κ

L
(λ+ 2µ)ux.

Thus, the stress field of the deformed body is

σ11(x) =
κ

L
(λ+ 2µ)(1− x)

The maximum stress occurs (as it should) where the elastic body is clamped
at x = 0.

Imagine the elastic material clamped as before but stretched horizontally
due to a normal traction at the unclamped end. In this case, gravity does
not play a role; the body force may be taken to vanish in the model. The
traction force enters the model as a Neumann boundary condition at x = 1.
For example, a scaled model might be

uxx = 0, u(0) = 0, ux(1) = 1.
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In this case the displacement is predicted to be

u(x) = x

and the stress field is constant along the elastic body, in agreement with
physical intuition.

As mentioned previously, boundary conditions cannot be specified arbi-
trarily. For example, the BVP

uxx = −1, ux(0) = 0, ux(1) = 2

has no solution. A physical realization of this model would be a vertical
piece of elastic material influenced by gravity with a nonzero traction force
at its downward end. But, the body is not in equilibrium when the forces are
applied; indeed, the total (scaled) force on the body does not vanish:∫ 1

0
(−1) dx− ux

∣∣1
0

= −1 + ux(1)− ux(0) = 1.

Note that for BVP (18.60), the forces on the body are in balance when∫ 1

0
−f(x) dx+ ux(1)− ux(0) = 0.

Given ux(1) = a, the unspecified boundary traction ux(0) is determined
from the solution of the BVP, but it is not required in the statement of the
BVP because of the Dirichlet condition.

Compatibility conditions are necessary for the BVPs of linear elasticity
to be well posed. They are, however, not sufficient. The BVP

uxx = 0, ux(0) = 0, ux(1) = 0

meets the force balance compatibility condition, but every constant function
u is a solution. Thus, the problem is ill posed; it has more than one solution.
The physical interpretation is a one-dimensional piece of elastic material
situated horizontally with zero traction at its boundary. The formulation of
the model allows every rigid displacement of the position of the body to be
a deformation. This result happens to give an acceptable physical prediction
from an ill-posed model, a circumstance that should always be viewed with
caution.
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18.6 WEAK FORMULATION OF ONE-DIMENSIONAL
BOUNDARY VALUE PROBLEMS

The FEM for approximating solutions of (well posed) boundary value
problems consists of two essential ingredients: a reformulation of the PDE
to a system of integral equations and a method for discretization of these
integral equations. This section introduces the reformulation.

Although BVP (18.60) has an explicit solution, it will be used to illustrate
several new ideas. The goal is to introduce new concepts in a simple context
where they are easily understood. Later, they can be generalized to aid in
approximating solutions of BVPs that do not have explicit solutions. The
ultimate goal here is the methodology for approximating solutions of BVPs
for a PDE of the form

uxx + uyy + uzz + f = 0,

where f is a given function defined on some domain Ω in three-dimensional
space, together with Dirichlet or Neumann boundary conditions imposed on
the boundary of Ω. For example, the unknown function u might be required
to vanish on the boundary of Ω. As an intermediate step toward this goal,
the reader should be able to use the methods discussed here in the context of
BVP (18.60) to approximate solutions of BVPs formulated for second-order
linear ODEs of the form

uxx + g(x)u+ h(x) = 0

where g and h are given function and explicit solutions might not exist (see
Exercise 18.32).

A classical solution of a differential equation such as in BVP (18.60)
is a twice continuously differentiable function. Although the ultimate goal
is to approximate classical solutions for BVPs, perhaps some BVPs are
simpler to analyze by first setting aside this requirement. Also, recall that
the fundamental conservation laws that lead to such problems are statements
about equality of certain integrals; their differential forms are derived under
the assumption that solutions are sufficiently smooth. But, the integral forms
of these equations might be satisfied by functions that are not differentiable.
Integration does not require smoothness of the integrand. Thus, as a general
mathematical idea, perhaps the solution of a BVP would be easier to find
or approximate using some reformulation to an integral form. This is a
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far-reaching idea whose implementation requires some new mathematical
concepts.

Suppose β is a vector in Rk, A is an k × k matrix, and we wish to solve
the matrix equation Av = β for an unknown vector v ∈ Rk. Recall the
notation 〈v, w〉 for the usual inner product of the vectors v, w ∈ Rk, and
note that if v is a solution of the matrix equation, then

〈Av,w〉 = 〈β,w〉

for every w in Rk. The converse statement is also true: If there is some v
such that

〈Av,w〉 = 〈β,w〉

for every w in Rk, then Av = β. As a corollary, if for some basis B of Rk
(for example, the usual unit basis vectors) there is a vector v such that

〈Av, e〉 = 〈β, e〉

for every e in B, then Av = β. There is no reason in most cases to seek
solutions of linear systems of equations as an application of this corollary
because there are more efficient methods of solving linear equations, but
the theoretical basis of the corollary is sound. Thus, the same idea can be
applied in other similar situations where better solution methods may not be
known.

The differential equation uxx = −f shares some of the features of the
matrix equation Av = β at a formal level. To see this, simply write it as

∆u = −f,

where ∆ is the one-dimensional Laplacian, and treat this differential
operator as if it were a matrix operating on the vector u. The main difference
from the matrix case is that the desired vector solution u is a function of a
real variable instead of a vector in Rk.

To continue the analogy with the finite-dimensional vector equation, the
idea is to create a vector space of functions and an inner product on this
vector space. Exactly which vector space of functions and inner product to
choose is part of the mathematical analysis that will be discussed.

Let us start with perhaps a familiar example: the set of all continuous
functions on the interval [0, 1]. It is a vector space because linear combi-
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nations of continuous functions with real coefficients are again continuous
functions. There is also an inner product obtained by generalizing the usual
inner product to a continuous variable: for two continuous functions φ and
ψ, simply multiply their values at each point of the unit interval and sum
over all these products; that is, define the inner product of these functions to
be

〈φ, ψ〉 =

∫ 1

0
φ(x)ψ(x) dx. (18.62)

At least this definition produces a pairing of elements of the vector space
of continuous functions that has all the usual properties of an inner product:
the paring is bilinear and produces a scalar, the pairing of a function with
itself is nonnegative with value zero if and only if the zero function is paired
with itself.

A natural question now arises from the analogy with matrix equations:
Suppose that there is a u such that∫ 1

0
uxx(x)φ(x) dx = −

∫ 1

0
f(x)φ(x) dx (18.63)

for every continuous function φ. Is u a solution of the differential equation?
The answer, ignoring the boundary conditions, is yes. But, it turns out that
this preliminary reformulation of the problem is too crude to help with the
goal of finding such a function u. One problem is immediate: a continuous
function is not twice continuously differentiable, so the second derivative
would not make sense if u is to be sought as an element of the vector space
of continuous functions. A second difficulty is that the boundary conditions
must somehow be incorporated.

As mentioned, the space of continuous functions is not the best place
to seek a solution because its elements are not differentiable. To incorporate
more smoothness, the obvious next choice is the set of all twice continuously
differentiable functions on the unit interval. This is again a vector space
with inner product (18.62). At a formal level, this choice has the advantage
of at least containing viable candidates for u that might satisfy integral
equation (18.63) for every twice continuously differentiable φ. Unfortu-
nately, this vector space is also not the correct choice. The problem is
not obvious and will require more mathematics to explain. A hint of the
difficulty is the observation that inner product (18.62) does not take into
account differentiation.
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To begin the required analysis that leads to the correct function space,
suppose that u and φ are smooth enough so that the integral on the left-hand
side of Eq. (18.63) can be integrated by parts. This leads to the identity

ux(x)φ(x)
∣∣1
0
−
∫ 1

0
ux(x)φx(x) dx = −

∫ 1

0
f(x)φ(x) dx. (18.64)

There would be an advantage if this equation was to be satisfied instead of
Eq. (18.63): only first derivatives appear and, at least, the desired function
space need not consist of twice continuously differentiable functions. A
good idea is to abandon the original smoothness requirement in favor
of seeking a function u that satisfies Eq. (18.64) for every continuously
differentiable function φ. In fact, the correct equation has been obtained;
but, the smoothness requirement is still too strong.

Setting smoothness aside for the moment, consider the boundary term
ux(x)φ(x)|10 in Eq. (18.64). The spatial derivative of u with respect to x
(the boundary traction) appears, but not the pure displacement u. Thus,
boundary values for spatial derivatives (Neumann boundary conditions)
appear naturally in the integration-by-parts formula for this type of BVP. For
this reason, they are called natural boundary conditions. Boundary values
for the displacement u (Dirichlet boundary conditions) must be built into
the space of functions where the solution is to be found. They are called
essential boundary conditions.

Zero Dirichlet boundary conditions (like u(0) = 0) are easily incorpo-
rated into a function space without destroying its vector space structure.
Indeed, taking linear combinations of functions that satisfy these conditions
results in a new function that satisfies the same boundary condition. More
precisely, if φ1 and φ2 are functions that both vanish at the same point and
c1 and c2 are scalars, then c1φ1 + c2φ2 vanishes at the same point. This fact
is obviously false for nonzero Dirichlet conditions. For the case of nonzero
Dirichlet boundary conditions, which will not be considered in detail here,
the original BVP may be reformulated by looking for a solution u = v + g,
where the function g is chosen to satisfy the boundary conditions so that v
satisfies zero Dirichlet conditions. The function v is found in the manner
that will be described and the true displacement is then recovered by adding
g.
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To incorporate the Dirichlet boundary condition u(0) = 0, every function
in the desired function space must vanish at x = 0. The desired solution u
has this property.

With the zero Dirichlet boundary condition at x = 0 in force so that
the element φ of the yet to be defined function space vanishes at x = 0,
Eq. (18.64) reduces to

−
∫ 1

0
f(x)φ(x) dx = ux(1)φ(1)−

∫ 1

0
ux(x)φx(x) dx

= aφ(1)−
∫ 1

0
ux(x)φx(x) dx. (18.65)

In the special case where the (scaled) traction vanishes (a = 0), the
boundary term vanishes and the equation reduces to∫ 1

0
f(x)φ(x) dx =

∫ 1

0
ux(x)φx(x) dx. (18.66)

Integral equation (18.66) suggests the correct choice for the desired
function space, which is denoted here by H1

D(0, 1). Each function in the
space must satisfy the (zero) Dirichlet boundary conditions where they are
imposed; and, in addition, it must be square integrable on [0, 1] and have a
square integrable derivative. The reason is that for two such functions, u and
φ, both sides of Eq. (18.66) are finite. The relevant result, called the Schwarz
inequality (Hermann A. Schwarz, circa 1888), states that∫ 1

0
φψ dx ≤

( ∫ 1

0
φ2 dx

)1/2( ∫ 1

0
ψ2 dx

)1/2
;

thus, if each integral on the right is finite (that is, both functions are square
integrable), then the inner product on the left is also finite.

In view of the square integrability requirement, the natural norm (called
the H1 norm) for measuring the sizes of functions is

‖φ‖1 =
(∫ 1

0
φ2(x) dx+

∫ 1

0
φ2
x(x) dx

)1/2
. (18.67)

Remember that the distance between two functions φ and ψ, measured with
respect to this norm, is simply ‖φ − ψ‖1. By definition, φ approximates ψ
with absolute error δ with respect to the H1 norm if ‖φ− ψ‖1 < δ. Among
the many possible ways to measurement distance between functions, theH1
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norm is perfectly suited to BVPs of the type discussed here. In mathematical
analysis of BVPs, the correct choice of a norm produces a corresponding
function space—consisting of functions that have finite norms—where a
solution can be proved to exist.

Continuously differentiable functions on [0, 1] are square integrable and
have square integrable derivatives. Why not, as previously suggested, define
the desired function space H1

D(0, 1) to be all such functions that satisfy the
zero Dirichlet boundary conditions? The problem (which has been in the
background until now) is that this set of functions is not complete. What
does this mean?

Recall that the set of real numbers is complete. The definition of this
property uses the notion of a Cauchy sequence: A sequence of real numbers
{xi}∞i=1 is called a Cauchy sequence if for every ε > 0 there is some integer
J such that |xi − xj | < ε for every pair of integers i and j each of which is
larger than J . The real numbers are complete in the sense that every Cauchy
sequence converges to a real number. This property is essential to prove the
basic theorems of calculus (for example, the intermediate value theorem).
The definition of a Cauchy sequence of functions in some function space is
the same as for real numbers except that the absolute value, which measures
distance between real numbers, is replaced by the norm associated with
the function space. The function space is called complete if every Cauchy
sequence of its elements converges to some function in the same function
space. Completeness is the key property needed to prove theorems using
limit processes (which is the mathematically precise way to make arbitrarily
close approximations), and limit processes are needed to prove existence
theorems.

Cauchy sequences of continuously differentiable functions do not always
converge to a continuously differentiable function when distances between
functions are measured with H1 norm (18.67). In other words, if the
function space H1

D(0, 1) consisted entirely of continuously differentiable
functions it would not be complete.

A remedy for the lack of completeness is to define a notion of differenti-
ation for square integrable functions (which agrees with the usual definition
when functions happen to be differentiable in the usual sense) in such a way
that the inclusion of all such functions that have square integrable derivatives
makes H1

D(0, 1) complete. This new notion, called the weak derivative,
will be introduced in the next section where some nondifferentiable (in the
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usual sense) square integrable functions are defined that must be included in
H1
D(0, 1) to construct the discretization that gives the FEM.

To make the precise definition of the complete function space H1
D(0, 1),

another subtle issue must be resolved: the correct notion of integration
must be specified. Riemann integration from calculus is inadequate for this
purpose; it must be replaced by a more general concept called Lebesgue
integration. Also, instead of functions, the elements of H1

D(0, 1) must be
equivalence classes of Lebesgue integrable functions that differ at most on
a set of Lebesgue measure zero. Although some sophisticated mathematical
analysis with new concepts is unavoidable in the rigorous construction of the
weak formulation of BVPs, the full mathematical analysis is not required to
understand the rules that must be followed to correctly apply the resulting
methodology when seeking to specify or approximate weak solutions. In
analogy, the true understanding of calculus as a mathematical theory of
limit processes does not have to be understood to use this tool to solve
applied problems. In fact, the name of this subject, the calculus, is meant
to convey the meaning that it is a method useful for calculation. In both
cases, the required mathematical facts can simply be stated and accepted
without proof while the rules for applying the theory are learned. As the
mathematical sophistication of the practitioner increases, these rules can be
appreciated at a deeper level as their proofs are studied and understood. In
applications, the elements of H1

D(0, 1) may be considered to be functions
and Riemann integration may be used to evaluate integrals.

Once the proper definitions of differentiation and integration are made
and equivalence classes are properly defined, the function spaceH1

D(0, 1) is
defined to be the set of all (equivalence classes of) integrable functions with
finiteH1 norm that satisfy the Dirichlet boundary conditions. The important
mathematical theorem states that H1

D(0, 1) is complete with respect to the
H1 norm. Actually, the space H1

D(0, 1) is too simple compared with the
analogous spaces defined when the unit interval is replaced by a region
Ω in a higher-dimensional Euclidean space (usually R3): the elements of
H1
D(0, 1) are (represented by) continuous functions on the unit interval, but

this result is not true for H1
D(Ω). Because the purpose of the discussion is

to introduce the concepts used for the general definition of such spaces, the
special properties of H1

D(0, 1) were ignored.
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An important fact is that the H1 norm can be derived from the H1 inner
product

〈φ, ψ〉1 =

∫ 1

0
φ(x)ψ(x) dx+

∫ 1

0
φx(x)ψx(x) dx;

indeed,

‖φ‖1 = (〈φ, ψ〉1)1/2.

This fact, plays a fundamental role in the FEM where three different
products are required: 〈φ, ψ〉1, the L2 inner product

〈φ, ψ〉 :=

∫ 1

0
φ(x)ψ(x) dx,

and the pairing

(φ, ψ) :=

∫ 1

0
φx(x)ψx(x) dx.

The most important result of the discussion so far is the weak reformula-
tion of the model BVP problem

uxx + f = 0, u(0) = 0, ux(1) = 0.

Find a function u ∈ H1
D(0, 1) such that

(u, φ) = 〈f, φ〉+ aφ(1) (18.68)

for every φ ∈ H1
D(0, 1). Such a function u is called a weak solution. BVPs

for PDEs with several space variables have similar weak formulations.

A classical solution is obviously a weak solution. Also, if a weak solution
is found that happens to be twice continuously differentiable, it is a classical
solution of the original BVP. A deeper and amazing theorem states that
a weak solution (when appropriately redefined on a set of measure zero)
is automatically the unique classical solution of the original BVP. This
mathematical result is essential; it justifies seeking a weak solution of the
BVP. To fully appreciate it requires some graduate-level analysis (called
elliptic regularity theory) explained in courses on PDEs (see [20] for more
detail in the style of the present discussion, [102] for in context discussion
of the FEM, or [35] for a general treatment).
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The weak formulation of a BVP (such as in Eq. (18.68)) may be
discretized in several different ways for the purpose of making finite-
dimensional approximations of the unknown function u. This is an impor-
tant remark. In particular, the weak formulation of a BVP is not the FEM;
rather, the FEM is one among many possibilities of taking advantage of the
weak formulation to make approximations (see Exercise 18.36).

18.7 ONE-DIMENSIONAL FINITE ELEMENT METHOD
DISCRETIZATION

The discretization that produces the FEM is obtained by seeking a solution
that belongs to a finite-dimensional subspace of the (infinite-dimensional)
function space in which the problem is posed; for instance, BVP (18.68) is
posed in the function space is H1

D(0, 1).

For BVPs posed in H1
D(0, 1), a possible choice for an appropriate sub-

space might be the d-dimensional subspace of all polynomials of maximum
degree d that have no constant term (to ensure the Dirichlet boundary
condition at x = 0). This set is obviously a subspace of H1

D(0, 1). Why?
Using the weak formulation of the BVP, the idea would be to find a degree-
d polynomial u such that Eq. (18.68) is satisfied for every polynomial φ
of degree d. This requirement reduces to solving a linear system of d + 1
equations. This can be a viable approximation method (see Exercise 18.36).
Another choice is to split the spatial domain [0, 1] into a finite set of closed
subintervals so that this set has a finite number of elements and consider
the continuous functions that are piecewise polynomials (all of some fixed
degree) with respect to the chosen intervals. Each of these functions (once
the meaning of differentiation for such functions is properly defined) has
a finite H1 norm, and by restricting to those that vanish at x = 0, the
resulting set of functions forms a finite-dimensional subspace of H1

D(0, 1).
By the same procedure (using Eq. (18.68)), an element of this class u can
be found by solving a finite-dimensional linear system of equations. This is
the FEM for approximating solutions of the BVPs. The approximation can
be improved by using larger and larger numbers of subintervals.

For one spatial dimension, the usual way to form finite elements is via a
partition of the spatial domain (in this case [0, 1])

0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1. (18.69)
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The corresponding finite elements are the closed subintervals [xi−1, xi] for
i = 1, 2, . . . , n. The simplest viable set of piecewise polynomial functions
is the finite-dimensional vector space Pn consisting of all continuous
piecewise linear polynomials with respect to this partition that vanish at
x = 0; more precisely, each member of the set Pn is a continuous function
that vanishes at x = 0 and is also a polynomial of degree one on each finite
element. When the correct notion of differentiation is defined, each element
ofPn has finiteH1 norm and satisfies the zero Dirichlet boundary condition.
Thus, this finite-dimensional vector space, Pn, is a subspace of H1

D(0, 1).

A function φ ∈ Pn is by definition continuous on the closed unit interval;
thus, (by the completeness property of the real numbers) such a function
must be bounded. (This is a theorem from advanced calculus). These two
properties (continuous and bounded on [0, 1]) imply that such a function is
square integrable. Actually, the advanced calculus theorem on boundedness
is not needed in the simple case of a piecewise linear function on [0, 1]
with respect to a finite collection of closed subintervals. Such a function
is obviously bounded. Why? In any case, if φ ∈ Pn, then

∫ 1

0
φ2 dx <∞;

that is, the function is square integrable.

The derivative of a function φ ∈ Pn exists in the usual sense at each point
in the interior of each finite element; in fact, the derivative is constant over
the interior of each such interval. But at an end point of an element (called a
node) the slope of φ may not be defined. A new notion of differentiation is
required to make sense of the integral involving derivatives in the definition
of the H1 norm. The new notion, which has far-reaching utility, is not
designed specifically for piecewise linear functions. They merely serve as
an example to set a context where the new definition is useful.

The motivation for the new definition is integration by parts, which
has already played a central role in the analysis leading to the definition
of H1

D(0, 1). Let φ be a continuously differentiable function on [0, 1] and
suppose that ψ is a function that can be differentiated as many times as
desired and has the additional property that it vanishes at the end points of
the interval. Functions with these latter properties are called test functions.
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Using integration by parts,∫ 1

0
φ′ψ dx = φψ|10 −

∫ 1

0
φψ′ dx = −

∫ 1

0
φψ′ dx.

The left-hand side involves a derivative of φ; the right-hand side does not.
Moreover, when paired with a test function, an integrable function φ always
produces a finite value. Thus, the paring defines a function from the set of
test functions to the real numbers:

ψ 7→
∫ 1

0
φψ dx. (18.70)

A function whose domain is a set of functions and whose range is a
set of scalars is often called a functional; for instance, function (18.70)
is a functional on the space of test functions. Using this prescription, an
integrable function φ produces a functional on the space of test functions.
The same function φ can also be used to define another functional,

ψ 7→ −
∫ 1

0
φψ′ dx,

called its the distributional derivative. Using this definition, every functional
defined by an integrable function via rule (18.70) has a distributional
derivative. In case φ is differentiable (in the usual sense), integration by
parts implies that the distributional derivative of the functional it produces
is also given by

ψ 7→
∫ 1

0
φ′ψ dx.

Thus, the distributional derivative of φ in this case is what it should be: the
functional on test functions produced by its derivative. The concept of a
distributional derivative turns out to be far-reaching.

Suppose that φ is square integrable. Repeating what has already been
said, φ produces a functional on test functions that has a distributional
derivative. It might happen that there is a square integrable function γ
defined on [0,1] such that∫ 1

0
γψ dx = −

∫ 1

0
φψ′ dx. (18.71)
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In other words, the functionals

ψ 7→
∫ 1

0
γψ dx, ψ 7→ −

∫ 1

0
φψ′ dx

are the same. In this case, we say that γ is a square integrable weak derivative
of φ or that φ has a square integrable derivative in the sense of distribution.
As always, if φ is differentiable in the usual sense, then its derivative will
be a square integrable weak derivative. In fact, a square integrable weak
derivative is unique (up to changes on a set of measure zero). So, the usual
derivative (if it exists) and the weak derivative coincide.

The space of functions H1
D(0, 1) is the set (of equivalence classes) of all

square integrable functions with domain [0, 1] (which differ at most on a set
of measure zero) that have a square integrable weak derivative and vanish
at x = 0. Replacing φx in the definition of the H1 norm [Eq. (18.67)] by
its weak square integrable derivative removes the ambiguity in case φ is not
differentiable in the usual sense and allows a wider class of functions to
have finite H1 norms. This wider class is exactly the space H1

D(0, 1), which
is complete with respect to the H1 norm.

Every continuous piecewise polynomial function on the unit interval has
a square integrable weak derivative (see Exercise 18.28). (Warning: This fact
is not true without the continuity assumption.) Thus, every continuous piece-
wise polynomial function that vanishes where a zero Dirichlet boundary
condition is imposed belongs to the function space H1

D(0, 1). In particular,
Pn may be considered as a candidate for the finite-dimensional subspace
used to make the desired finite element discretization. For u to be a weak
solution of the BVP, Eq. (18.68) must hold for every ψ ∈ H1

D(0, 1). To
obtain an approximate of u, simply require the equation to hold for every
ψ ∈ Pn. By increasing n toward infinity, the approximation should (and
will) approach the desired weak solution. By the elliptic regularity theory,
this solution is actually the desired classical solution of the BVP. In its
simplest form, this is the underlying theory for the FEM.

The most basic implementation of the FEM is an efficient way to obtain
the approximation to u over the subspace Pn. It is not necessary to check
Eq. (18.68) on every element of the finite-dimensional subspace. As pointed
out previously, it suffices to check the equation on a basis of this finite-
dimensional vector space. A careful choice of basis, a key element in the
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implementation of the FEM, lessens the computational overhead required to
produce a FEM approximation.

Recall partition (18.69), assume that n > 2, and consider the interval
[x0, x2] (which includes three nodes). The first basis function in Pn is

φ1(x) =


x−x0

x1−x0
, x ∈ [x0, x1];

x−x2

x1−x2
, x ∈ (x1, x2];

0, x ∈ (x2, xn].

(18.72)

Note that φ1(0) = 0, φ(x1) = 1 and φ(x2) = 0. The graph looks like a
tent supported by a tent pole of unit height at the node x = x1. For i =
2, . . . n− 1, take similar tent functions defined by

φi(x) =


0, x ∈ [x0, xi−1);
x−xi−1

xi−xi−1
, x ∈ [xi−1, xi];

x−xi+1

xi−xi+1
, x ∈ (xi, xi+1];

0, x ∈ (xi+1, xn].

And, for i = n, use the half-tent

φi(x) =

{
0, x ∈ [x0, xn−1);
x−xn−1

xn−xn−1
, x ∈ [xn−1, xn].

The set Bn := {φ1, φ2, . . . , φn} is a basis for the vector space Pn (see
Exercise 18.31). As a consequence, this vector space is n-dimensional.

The primary reason for choosing the basis Bn is localization: the basis
functions are zero except on sets that are three nodes wide. As a result, many
of the pairings in the weak formulation [Eq. (18.68)] of the BVP vanish.
Indeed, if |i− j| ≥ 2, then (φi, φj) = 0 and 〈φi, φj〉 = 0.

The final step in setting up the FEM is to seek a weak solution u as a
linear combination of the basis functions; that is,

u =

k∑
i=1

uiφi,

or equivalently, u = uiφi using the sum rule, where ui are the unknown
components of an n-dimensional vector of real numbers. There are n
equations in n unknowns:

(uiφi, φj) = 〈f, φj〉+ aφj(1),
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or equivalently,

(φi, φj)ui = 〈f, φj〉+ aφj(1).

In matrix form, the problem is to determine the vector U :=
(u1, u2, . . . , un) such that

AU = β (18.73)

where aij := (φj , φi) and βj := 〈f, φj〉 + aφj(1). Note that the correct
definition of A is given. It is the transpose of the matrix with components
cij := (φi, φj). But because the pairing (φi, φj) is symmetric (that is,
(φi, φj) = (φj , φi)), the ordering does not matter.

The final matrix equation AU = β need not be solved by taking inner
products with basis functions; instead, it may be solved using the most
efficient available method. More accuracy is obtained by refining the mesh.
In fact, if the original BVP is well posed and the sequence of approximation
vectors Uk corresponding to (n + 1) node partitions is computed, the
corresponding functions uk(x) := uki (x)φi(x) will converge to a (classical)
solution of the original BVP.

Exercise 18.28. (a) Show that the function φ defined by φ(x) = 2x for 0 ≤ x < 1/2

and φ(x) = 2−2x for 1/2 ≤ x ≤ 0 is square integrable and has a weak square integrable
derivative. Also, determine the weak derivative explicitly and compute the H1 norm of
φ. (b) Generalize part (a) to arbitrary continuous piecewise linear functions on [0, 1]. (c)
Is the function φ given by φ(x) = 0 for 0 ≤ x < 1/2 and φ(x) = 1 for 1/2 ≤ x ≤ 0

square integrable? Does it have a weak square integrable derivative?

Exercise 18.29. Instead of using tent functions at each node, many other choices
are possible for the FEM. One important choice is localized cubic splines. Note that
the general cubic polynomial has four coefficients. Thus for instance, there are exactly
enough coefficients to specify the height and slope of a cubic polynomial at two points
on the line. (a) Suppose some data is given over a finite set of nodes on some interval.
Construct a twice continuously differentiable piecewise cubic interpolating function for
the data. Hint: Construct a cubic through each pair of nodes such that the left- and
right-hand first and second derivatives match at each interior node. This exercise is
an invitation to learn more about spline interpolation, an important subject in applied
mathematics and numerical analysis. (b) Construct a finite-element basis consisting of
cubic splines of three types: (1) smooth functions that vanish outside of the union of two
adjacent linear elements (intervals) and have unit value at the interior common node, (2)
smooth functions that vanish outside two adjacent linear elements and have unit slope
at the interior common node and (3) smooth functions that vanish outside one of the
end linear elements and also satisfy the specified essential boundary condition at the
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Fig. 18.2 The figure depicts the graph of the exact displacement function u(x) = x−x2/2 predicted by model (18.60)
for a one-dimensional elastic material (clamped at one end and free at the other) subjected to a constant body force and
the graph of its finite element approximation using the four-dimensional tent function basis with four (closed interval)
elements.

end point of that element. Can these basis function be made to have continuous second
derivatives? (c) Compare the accuracy and efficiency of using cubic splines versus
tent functions for FEM approximations of one-dimensional steady state BVPs with
known solutions. Hint: There is a vast literature on this subject and many textbooks are
available. Read more about it before completing your project. (d) Write a computer code
using the ideas in the next section to illustrate your findings. Note: Spline interpolation
can be generalized to higher dimensional settings.

18.8 CODING FOR THE ONE-DIMENSIONAL FINITE
ELEMENT METHOD

Coding the FEM for elasticity problem (18.60) via its weak formulation
[Eq. (18.68)] reduces to computing the matrix A and the vector β in the
finite-dimensional approximation as in Eq. (18.73) and then solving the
matrix equation AU = β for U .

Recall that for the choice of basis (tent) functionsBn := {φ1, φ2, . . . , φn},
the condition |i − j| ≥ 2 ensures that (φi, φj) = 0 and 〈φi, φj〉 = 0. Thus,
the matrix A is tridiagonal; that is, all nonzero entries lie on the main
diagonal, the first superdiagonal, and the first subdiagonal. This fact is one
of the main reasons for the efficiency of the FEM.

Basic results in the one-dimensional case may be obtained with rudimen-
tary codes. The reader is invited to consider model (18.60) for f(x) ≡ 1 and
a = 0 (which may be interpreted as a constant body force [for example
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gravity] and zero traction) and compute the approximate solution using the
tent function basis with five nodes 0, 1/4, 2/4, 3/4, 1 and the corresponding
four tent basis functions. In this case, the 4×4 matrixA, the 4-vector β, and
the 4-dimensional vector solution U of the matrix equation AU = β are

A=


8 −4 0 0
−4 8 −4 0
0 −4 8 −4
0 0 −4 4

 , β =


1/4
1/4
1/4
1/8

 , U =


7/32
3/8

15/32
1/2

 .

The graphs of the exact and approximate displacement functions are
depicted in Fig. 18.2.

A systematic approach to coding for the FEM begins with the choice of
elements, their nodes, and the basis functions. The objective of the code is
to construct the matrix A and the vector β. Once this task is completed, the
linear systemAU = β is ported to a linear equation solver, which returns an
approximation of the vector U . The desired approximate displacement is the
sum uiφi, where ui is the ith component ofU and φi is the ith basis function.
The process (called meshing) of determining the elements and nodes may be
done partly by hand or it may be fully automated. Perhaps a course mesh is
designed by hand and a computer program is used to refine the mesh. Once
the mesh is constructed, the key part of the code (called assembly) produces
approximations of the integrals required to form the matrixA and the vector
β. The solution of the assembled matrix system is approximated using an
appropriate linear solver to make the FEM approximation of the solution of
the BVP. In most applications, this approximate displacement is sent to a
postprocessor that might produce a graph or otherwise utilize the result.

Assembling A requires the integration of products of basis functions or
products of derivatives of these functions. This task is usually accomplished
by integrating over each element separately followed by addition of the
computed values.

Suppose that there are n basis functions φj , for j = 1, 2, 3, . . . , n
and m elements Ij , for j = 1, 2, 3, . . . ,m. In the one-dimensional case
m = n, but generally there are more basis functions than elements. A
typical computation of a component of the matrix A requires a paring of
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basis functions; for example,

〈φi, φj〉 =

∫ 1

0
φψ dx =

m∑
k=1

∫
Ik

φiφj dx. (18.74)

Most of the summands vanish due to the local nature of the basis functions.
The remaining integrals are often organized and evaluated using one new
concept: shape functions.

Recall that the basis (tent functions) are defined with respect to the nodes.
Indeed, there is one basis function defined for each node where no zero
Dirichlet boundary condition is imposed. Each basis function has value one
at its corresponding node, is continuous and piecewise linear, and has value
zero on every element not containing this node as a vertex. The restriction
of one of these tent functions to an element I is called a shape function
associated with I . For the case of one-dimensional elements, each of them
has two possible shape functions corresponding to its two vertices p and q at
the end points of the element. Shape functions are linear. Moreover, for the
one-dimensional case, the shape function on I associated with vertex p has
value one at p and value zero at q; the other shape function has value one at
q and value zero at p.

A typical integral ∫
Ik

φiφj dx

that appears as a summand in Eq. (18.74) is computed after checking the
nodes associated with the element Ik. The ith and jth nodes correspond
to basis functions. If Ik does not contain both nodes as vertices, then the
integral vanishes. If both nodes are vertices, then∫

Ik

Ski S
k
j dx, (18.75)

where Ski is the shape function associated with the ith node and kth element
and Skj is the shape function associated with the jth node and kth element.
Thus, the method used to evaluate the integrals required to compute the
elements of A may be described using shape functions instead of basis
elements. The advantage of this point of view is that shape functions are
associated directly with elements and their nodes. Of course, the reason for
using shape functions is to more efficiently organize required computations
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to avoid the wasted expense of computing an integral that is known to be
zero.

The usual procedure starts by defining a standard reference element. For
the one-dimensional case, this might be the interval [0, 1] with vertices 0 and
1. The usual orientation is assumed; that is, from 0 to 1. The shape function
corresponding to 0 is s0(x) = 1 − x and the shape function corresponding
to 1 is s1(x) = x. An element Ik in the discretization of the body Ω is
an interval (xk−1, xk); the orientation is built into the notation: the node
xk−1 corresponds to the first node on the element and is referenced to 0;
the second node xk is referenced to 1. The orientation preserving linear
transformation T given by

T (x) =
x− a
b− a

maps the element Ik to the standard element, where a and b are the nodes (in
the correct order) on the element. The shape function Skk−1 (node number
k − 1 and element number k) is defined by

Skk−1(x) = s0(T (x)) = s0((x− xk−1)/(xk − xk−1)) = 1− x− xk−1

xk − xk−1

and

Skk (x) =
x− xk−1

xk − xk−1
.

Exactly the same procedure is used in the higher-dimensional cases where
this added structure is more advantageous.

To summarize: The collection of nodes and elements are stored in the
computer along with the orientations of the elements and the correspondence
between the nodes and elements. A standard element is defined along with
shape functions for each of its nodes. The values of a basis function on
an element are determined via transformation to the standard element,
the node associated with the basis function, and its corresponding shape
function on the standard element. Efficient implementation of this method of
calculating appropriate integrals of products of basis functions is in general
an interesting and challenging problem in computer programming, but in
one space-dimension a simple implementation is straightforward.
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Exercise 18.30. (a) Show that the space Pn of continuous piecewise linear polyno-
mials with respect to the partition

0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1

of the interval [0, 1] that vanish at the origin is an n-dimensional subspace of H1
D(0, 1).

(b) Does it matter that the polynomials are continuous?

Exercise 18.31. Show that the set Bn := {φ1, φ2, . . . , φn}, defined in this section, is
a basis for the vector space Pn defined in Exercise 18.30.

Exercise 18.32. [One Dimensional Finite Element Coding] (a) Write a finite element
code to approximate solutions of one-dimensional BVPs for PDEs of the form

uxx + g(x)u+ h(x) = 0

defined on an interval [a, b] where Dirichlet or Neumann boundary conditions are
imposed at the end points of the interval.
(b) Debug your code by repeating the numerical experiment reported in Fig. 18.2.
(c) Solve the BVP uxx = 1 with zero Dirichlet boundary conditions u(0) = 0 and
u(1) = 0 and use your code to approximate the solution with an accuracy of less than
10−5 in the supremum norm (that is, the absolute difference between the approximate
and exact solutions should be less than 10−5 at every point). What is the least number
of equal length elements required to achieve this accuracy?
(d) Could better accuracy be achieved with fewer elements if the elements are not
restricted to be all the same length? (e) Repeat parts (c) and (d) for the boundary
conditions u(0) = 0 and u(1) = 2. Be careful: What are you going to do about the
nonzero Dirichlet boundary condition at x = 1?
(e) Debug your code a second time by creating a BVP with a known solution by
choosing a function u defined on the interval [0, 1] that satisfies (for example) zero
Dirichlet boundary conditions at the end points of the interval, choosing a nonzero
function g defined on the same interval, and defining h = −(uxx + gu). Use your
code to approximate the known function u as a solution of the BVP with PDE
uxx + g(x)u + h(x) = 0 together with the boundary conditions satisfied by the choice
of u. Discuss the results of your numerical experiments.
(f) Compare your approximations for part (e) with an approximation made using a finite-
difference method.
(g) Compare your approximations for part (e) with an approximation made using the
shooting method. That is, set up a method to approximate the solution of the ODE as an
IVP with u(0) = 0 and ux(0) = λ, and adjust λ with the goal of making u(1, λ) = 0.
(h) Approximate the solution of the BVP uxx + sin(x)u = 1 with zero Dirichlet
boundary conditions at x = 0 and x = 2π using your finite element code.
(i) Approximate the solution of the BVP uxx+sin(x)u = 1 with zero Dirichlet boundary
condition at x = 0 and zero Neumann boundary condition at x = 2π.

Exercise 18.33. (a) Create a mathematical model (using linear elasticity) for the
distortion in a one-dimensional elastic material that is hung vertically by attaching one
of its ends to a rigid support and its other end to a mass. (b) Determine the distortion in
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equilibrium. (c) Determine the dynamic motion if the mass is pulled downward and then
released from rest. Hint: Perhaps your model has an exact solution. If not, solutions of
the dynamic BVP can be approximated by spatial discretization using the FEM and
stepping forward in time using, for example, Euler’s method or the Störmer–Verlet
method (as in Exercise 10.9).

Exercise 18.34. Imagine a one-dimensional elastic material clamped at one end
and immersed in some other elastic material at the other end. Determine a boundary
condition at the latter end that might be used as a model. Solve the model equation and
determine the displacement and stain field. Hint: The traction force at the end depends
on the displacement.

Exercise 18.35. A two kilogram mass is attached to a hanging copper wire that is
one meter long (and 10 milimeters in diameter). Determine the displacement field and
the stress field along the wire in the vertical direction.

Exercise 18.36. [Alternative Galëkin Method]. The weak formulation of BVPs
is itself often called Galërkin’s method. As mentioned in the text, the FEM is just
one possibility for making approximations of the weak solution. A key ingredient is
choosing a finite-dimensional subspace of the test functions, represent the approximate
solution as the components of a linear combination of basis functions, and turn the weak
equations into a linear system (AU = β) for the unknown vector U of components. Of
course, the finite-dimensional subspace should be chosen as a member of a sequence
of increasing larger subspaces (the closure of) whose union is the entire space. For
example, instead of taking a space consisting of linear combinations of tent functions
associated with finite elements, we might consider all polynomial test functions of some
fixed degree that also satisfy the Dirichlet boundary conditions. (a) Consider the hanging
elastic material pinned at a point and with no traction. We already know that the exact
solution is a quadratic polynomial. Choose the set of all quadratic polynomials that
vanish at x = 0, and look for a solution u of the form u(x) = U1x+ U2x

2. Put this into
the weak formulation and test it against the basis functions φ1(x) = x and φ2(x) = x2

to obtain a system of two equations in the two unknowns U1 and U2. Solve the system
and recover the known solution.
(b) Note that the coefficients of the system matrix for your system of two equations is
full; that is, all the coefficients are not zero. If you were to ignore the known solution
and look for u as a 10th-degree polynomial that vanishes at the origin, you will end
up with a 10 × 10 system of linear equations. The system matrix will be full. Thus,
the solution method for solving such a matrix system cannot take advantage of the
sparse (tridiagonal) matrix that appears in the FEM. This is one reason why the FEM is
used: it is computationally efficient. Now for the problem: Is it possible to choose the
basis functions for spaces of polynomial test functions (all polynomials of some fixed
degree that vanish corresponding to the Dirichlet boundary conditions) in a manner that
would make the system matrix be sparse? Hint: There is a mathematical subject called
“orthogonal polynomials."
(c) The additional computation required to solve a matrix system with a full system
matrix may be manageable in some applications; for example, extra computation time
may be acceptable in case a system needs to be solved only once. Full or not, solving
matrix systems in applied problems may present additional difficulties. Note that the
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system matrix for polynomial trial functions in the usual polynomial basis {xi}ki=1 (for
polynomials that vanish at x = 0) has components

aij =

∫ 1

0

xixj dx =
1

1 + i+ j
.

For the n-dimensional vector b with components bi = 1, i = 1, 2, 3, . . . , n, use an
algebraic processor to solve the system Ax = b for n = 2, 3, 4, . . . , 20. Use a numerical
solver (that is floating point arithmetic up to a fixed finite number of decimal places)
to solve the same system. Compare, for example, the exact and numerical sequence of
values of xn, the nth component of the solution. Report on your findings. You should
see a rapid deterioration in accuracy as n increases. The coefficient matrix (called the
Hilbert matrix) is highly ill-conditioned. A small roundoff error, for example, will be
magnified in the solution by the structure of the matrix. What is the underlying reason
for the ill-conditioning? How can ill-conditioned system matrices be detected? Hint:
Consult a book on numerical linear algebra.

18.9 WEAK FORMULATION AND FINITE ELEMENT
METHOD FOR LINEAR ELASTICITY

Background for this section includes an understanding of the general equa-
tions of linear elasticity, the one-dimensional weak reformulation of one-
dimensional BVPs, and the one-dimensional FEM. By way of motivation,
the reader should know that the FEM was invented to approximate solutions
of linear elasticity models.

The fundamental problem of steady state elasticity is to determine the
displacement u of a three-dimensional elastic body Ω with a (piecewise)
smooth boundary ∂Ω taking into account body forces per mass b, constrains
on the motion of the boundary of the body, and normal and surface tractions
on the boundary of the body. In case the deformations are not too large, this
physical problem is usually modeled using linear elasticity theory; that is,
the mathematical model is formulated as a BVP for the PDE

σij,j + ρbi = (λεkkδij + 2µεij),j + ρbi = 0, (18.76)

where

εij =
1

2
(ui,j + uj,i),

the Lamé constants λ and µ reflect the elastic properties of the body,
summation on repeated indices is assumed, and this PDE is required to hold
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everywhere in the interior of Ω. The displacement field u is a vector function
of a vector variable with respect to a fixed three-dimensional rectangular
coordinate system. Appropriate boundary conditions must also be imposed.

Each smooth point on the piecewise smooth boundary ∂Ω has an outer
unit normal η and a choice of two orthogonal unit vectors s1 and s2 tangent
to the surface at this point.

Two types of boundary conditions may be imposed at each boundary
point. (1) Dirichlet conditions are given by

u · s1 = d1, u · s2 = d2, u · η = d3, (18.77)

where d1, d2, and d3 are constants and the dot denotes the usual inner prod-
uct in three-dimensional space. Each formula states that the displacement is
specified in one direction. Nonzero choices of d1, d2, or d3 are allowed, but
only zero Dirichlet boundary conditions (that is, d = 0) will be discussed
here. (2) Neumann boundary conditions are given by

a1 = τ · s1 = σijηj(s1)i = [λ(∇ · u)η + µ((∇u)T +∇u)η] · s1,

a2 = τ · s2 = σijηj(s2)i = [λ(∇ · u)η + µ((∇u)T +∇u)η] · s2,

a3 = τ · η = σijηjηi = [λ(∇ · u)η + µ((∇u)T +∇u)η] · η, (18.78)

where a1, a2, and a3 are specified tractions in the corresponding directions.
Six possible boundary conditions are available at each boundary point, and
each boundary condition is associated with a direction.

The fundamental BVP is to find a displacement u that solves PDE (18.76)
when exactly one of the six available boundary conditions [Eqs. (18.77)
and (18.78)] is specified for each of the three associated directions at each
point on the smooth part of the piecewise smooth boundary. In particular,
there are three (scalar) boundary conditions at each such point.

Careful consideration of boundary conditions is essential to the modeling
process and the application of the mathematics used to solve BVPs. An
appropriate choice of rectangular coordinate system might simplify some as-
signments of boundary conditions and the mathematical analysis. Of course,
circular, cylindrical, or spherical symmetry is often best approached by us-
ing polar, cylindrical, or spherical coordinates together with corresponding
transformations of the differential equations and boundary conditions.
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A weak formulation of the fundamental BVP is obtained (as in the one-
dimensional case) via integration by parts. As we will see, the natural (Neu-
mann) boundary conditions appear automatically in the resulting formulas.
As in the one-dimensional case, the correct function space is H1

D(Ω). Here,
its elements are triples φ = (φ1, φ2, φ3) of functions where each component
function is square integrable with square integrable first partial derivatives
(over Ω with respect to the space variables) and satisfies the zero essential
(Dirichlet) boundary conditions that are specified in the particular BVP
under consideration.

The weak BVP is derived by taking products with test functions and
integrating by parts. For an arbitrary test function φ (which will later be
replaced by an element in H1

D(Ω)), take the usual inner product of its value
at each point with the value at the same point of the left- and right-hand
sides of the PDE and integrate over the body Ω to obtain in components∫

Ω
σij,jφi + ρbiφi dV = 0, (18.79)

where of course summation on repeated indices is implied. Using the
product rule, we have the identity∫

Ω
(σijφi),j dV =

∫
Ω
σij,jφi dV +

∫
Ω
σijφi,j dV. (18.80)

The first integrand is the divergence of the vector field σijφi, given in
components. By the divergence theorem∫

Ω
(σijφi),j dV =

∫
∂Ω
σijφiηj dS, (18.81)

where η is the outer unit normal. Using these results, Eq. (18.79) is
equivalent to∫

Ω
σijφi,j dV =

∫
∂Ω
σijηjφi dS +

∫
Ω
ρbiφi dV (18.82)

provided that all of the functions involved are smooth enough to reverse the
integration by parts. This equation is correct, but the left-hand side is not
expressed symmetrically. To symmetrize, note that∫

Ω
σij

1

2
(φi,j + φj,i) dV =

1

2

∫
Ω
σijφi,j dV +

1

2

∫
Ω
σijφj,i dV
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=
1

2

∫
Ω
σijφi,j dV +

1

2

∫
Ω
σjiφi,j dV

and the stress tensor σ is symmetric (σij = σji); thus,∫
Ω
σij

1

2
(φi,j + φj,i) dV =

∫
Ω
σijφi,j dV.

Thus, the symmetric form of Eq. (18.82) is∫
Ω
σij

1

2
(φi,j + φj,i) dV =

∫
∂Ω
σijηjφi dS +

∫
Ω
ρbiφi dV, (18.83)

or with the definitions,

(u, φ) :=

∫
Ω
λuk,kφ`,` +

µ

2
(ui,j + uj,i)(φi,j + φj,i) dV,

[u, φ] :=

∫
∂Ω

(λuk,kδij + µ(ui,j + uj,i))ηjφi dS,

〈φ, ψ〉 :=

∫
Ω
φiψi dV, (18.84)

it is the equivalent equation

(u, φ) = 〈ρb, φ〉+ [u, φ] (18.85)

that plays a fundamental role in the analysis to follow.

The vector form of Eq. (18.83) requires a new definition: The Frobenius
inner product of two matrices A and B with components aij and bij ,
respectively, is the scalar

A : B := aijbij .

Using this definition, the vector forms of the round and square bracket
parings are

(u, φ) =

∫
Ω
λ∇ · u∇ · φ+

µ

2
(∇u+ (∇u)T ) : (∇φ+ (∇φ)T ) dV,

[u, φ] =

∫
∂Ω

(λ(∇ · u)η + µ((∇u)T +∇u)η) · φdS. (18.86)

The weak BVP is to find a (vector) function u in the space H1
D(Ω)

of (vector) square integrable functions on Ω that satisfies Eq. (18.85)
for all (vector) functions φ in H1

D(Ω), where zero Dirichlet boundary
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conditions are incorporated into the definition of H1
D(Ω) and surface

tractions (Neumann boundary conditions) are specified so that [u, φ] can
be computed from this data (before solving for u) for every φ at every node
in every direction where no Dirichlet boundary condition is imposed.

Dimensionless variables are usually best for numerical computation.
Following the usual procedure, let T denote a characteristic time, L
a characteristic length, δ a characteristic displacement, and define new
dimensionless variables by

w :=
u

δ
, (ξ, η, ζ) :=

1

L
(x, y, z), s =

t

T
. (18.87)

With

κ :=
µ

λ
, T := L

√
ρ

λ
, ι :=

ρL2

λδ
g, (18.88)

and the assumption that the only body force is gravity, the dynamic equation
of linear elasticity is recast in the form

d2wi
ds2

= (wk,k + κ(wi,j + wj,i)),j + |ι|δ3i. (18.89)

In these dimensionless variables, the brackets can be redefined as

(w, φ) :=

∫
Ω
wk,kφ`,` +

κ

2
(wi,j + wj,i)(φi,j + φj,i) dV,

[w, φ] :=

∫
∂Ω

(wk,kδij + κ(wi,j + wj,i))ηjφi dS,

〈φ, ψ〉 :=

∫
Ω
φiψi dV, (18.90)

and the fundamental equation for the steady states is essentially unchanged:

(w, φ) = 〈ι, φ〉+ [w, φ]. (18.91)

In this formulation, the body Ω and its boundary are measured using the
scaled variables.

By inspection of the boundary term (the square brackets in dis-
play (18.90)), the three components of the traction vector

σijηj
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must be specified at each point on ∂Ω except in the presence of a Dirichlet
boundary condition. More precisely, a component may be left unspecified
provided that the corresponding component of the test function φ vanishes;
that is, the zero Dirichlet boundary condition is imposed on that component.
The mathematics of the weak formulation dictates the correct boundary
conditions, which might also have been determined from physical consider-
ations in the original derivation of the BVP for linear elasticity.

A procedure to approximate solutions of the weak BVP requires an
appropriate discretization and a method to reduce the displacement with
respect to this discretization to the solution of a system of linear algebraic
equations. For finite element analysis, an appropriate set of elements must be
defined along with corresponding basis functions for H1

D(Ω). The unknown
function u is approximated by a linear combination of these basis functions
with undetermined coefficients. This expression for u is substituted into
Eq. (18.91) and a system of linear equations for the unknown coefficients
is obtained by replacing φ in turn by each basis function. An industry has
been built on this basic idea. Every aspect of what has just been mentioned,
from designing elements to solving large systems of linear equations, has
been refined to produce excellent results with general codes.

The reader should be aware that the approach to finite elements taken
here is from the point of view of continuum mechanics. The equations
of linear elasticity, derived from continuum mechanics, come first; the
finite element analysis is merely a method to obtain approximations of
the distortion field. The history and practice of the FEM in engineering
is closely tied to the analysis of hinged structures; for example, some
bridges, the interior constructions of tall buildings, and the structures of
some machines. Perhaps each structural element of the physical structure is
a beam, and these elements are held together by hinges. In this application,
the continuum model for elasticity is ignored in favor of a model constructed
directly from idealizations of the structural elements (perhaps intervals,
rectangles, or rectangular solids). This approach to the physical problem is
sometimes called the direct stiffness method (DSM). Continuum mechanics
engineers soon realized that a similar method works well for modeling the
elastic properties of materials: they could and did bypass the equations
of continuum mechanics by making finite element models directly with
elastic materials materials considered as conglomerations of large numbers
of structural elements allowed to flex at their boundaries. Of course, the two
approaches to making the models can be made equivalent for continuum
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problems, and where both approaches apply, similar results are obtained.
Although the continuum mechanics approach taken here is satisfying
because it leads to equations of motion derived from basic physical laws
(the incorporation of constitutive laws like Hooke’s law not withstanding),
the utility of direct modeling with elements should be appreciated when
discussing elasticity problems with engineers.

Exercise 18.37. (a) Show thatA : B = tr(ABT ) = tr(ATB) and this pairing defines
an inner product on the vector space of n×n matrices. (b) Show that ‖A‖ :=

√
A : A is

a norm on the vector space of n× n matrices.

Exercise 18.38. Why is it correct to write the integrals in display (18.90) without
mentioning the Jacobian of the change to scaled variables? Hint: Which equation was
used to determine the effect of the scaling on the model?

18.10 A THREE-DIMENSIONAL FINITE ELEMENT
APPLICATION

A simple finite element approach to approximating solutions of the model
problem posed in Section 18.4—a copper block bolted to a steel plate—is
explored in this section.

The construction of elements and the associated basis functions for finite-
dimensional subspaces of H1

D(Ω) is a vast topic that remains an area of
continued research. It should be clear that the choice of elements for a
particular problem is open to experimentation and judgment. In principle,
elements should be chosen so that an infinite sequence of refinements
(more elements of the same type but with decreasing sizes) would lead
to an exact solution of the BVP. In general, an infinite sequence of
approximations of the solutions of a model equation with boundary and
initial data in an applied problem should be known to converge to the true
solution. Otherwise, the value of the predictions made from this model are
problematic. In physical applications, predictions based on approximations
may be tested by experiments to produce evidence for the utility of the
model. Experience and judgment in element design complement theoretical
considerations.

Recall the construction of one-dimensional elements and tent function
bases (see the discussion concerning Eq. (18.72)). The same underlying
ideas can be generalized to construct two- or three-dimensional finite
elements.
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In one-dimension, the body Ω is modeled by an interval that is partitioned
by nodes into (closed) subintervals, which play the role of the finite
elements. The corresponding basis functions, one associated with each node,
are constructed using tent functions that span two such elements. The reader
will check (see Exercise 18.42) that every linear combination of these tent
functions is a continuous function. In other words, each function in the
subspace of H1

D(Ω) generated by linear combinations of tent functions is
continuous on Ω and linear when its domain is restricted to one of the
finite elements. In addition, each such function vanishes at the end points
of the interval where essential (Dirichlet) boundary conditions are imposed.
Continuity is required by the mathematical setting: Although the function
space H1

D(Ω) (in case Ω is an interval on the real line) is defined with
reference to square integrability, the requirement that the first derivative
of each function in this space is square integrable implies that every such
function (perhaps after redefinition on a set of zero measure) is continuous.
Integrations of products of basis functions, which are required to form the
linear system of equations whose solution is the approximate displacement,
can be carried out using a standard element (perhaps the unit interval) and its
associated shape functions, which are simply the restrictions to this element
of the two tent functions that would be defined if this standard element were
situated between two adjacent standard elements. This construction of shape
functions will be explained with more detail for two- and three-dimensional
elements.

As mentioned previously, trial functions that are piecewise linear with
respect to a choice of finite elements may be replaced by other subspaces
of H1

D(Ω): piecewise quadratic and piecewise cubic polynomials are often
used.

For a two-dimensional body Ω, a useful generalization of the one-
dimensional case is achieved using triangular elements that form a mesh
covering Ω with the condition that a vertex of an element in the mesh
intersects another element only at a vertex. The triangle with vertices (0, 0),
(1, 0), and (0, 1) is taken to be the standard element with counterclockwise
orientation. Three shape functions are defined with respect to this element
and these vertices according to the formulas

s(0,0)(x, y) = 1− x− y,
s(1,0)(x, y) = x,

s(0,1)(x, y) = y. (18.92)
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These functions have unit value at the specified vertex and vanish on the
edge containing the other two vertices similar to the restriction of a tent
function to a one-dimensional element, which has unit value at one end point
and vanishes at the other.

The linear transformation T from points in an arbitrary triangular
element, with vertices (a1, a2), (b1, b2), and (c1, c2) listed in the order of
the counterclockwise orientation, to the standard element is given by

T
(
x
y

)
= L

(
x
y

)
+

(
a1

a2

)
, (18.93)

where

L :=

(
b1 − a1 c1 − a1

b2 − a2 c2 − a2

)
.

Each element in the mesh is uniquely determined by its vertices, and three
shape functions are defined on each element by composing the standard
shape functions with the inverse of the associated transformation T .

Trial functions (that is, elements of the space H1
D(Ω)) are vector func-

tions of a vector variable. In the two-dimensional case, each trial function
is a map from Ω into R2; thus, each of these functions has two components
(which each map Ω into R). They may be constructed as direct analogues of
the tent functions used in the one-dimensional case. The component function
associated with a node is the continuous, piecewise linear function that has
value one at this node and is zero on all elements not having this node as a
vertex. Its values in an element that contains the node as a vertex are given
by the associated shape function associated with this vertex and this element.
The set of vector trial functions is constructed from these two-dimensional
tent functions after taking into account the boundary conditions. In case no
zero Dirichlet boundary condition is to be enforced at a boundary node, it
is assigned two basis functions (φ, 0) and (0, φ), where φ is the component
tent function associated with this node. When one zero Dirichlet boundary
condition is enforced at the node, say φ · v = 0 with v = (v1, v2), the basis
function with first component v2φ and second component −v1φ is added
to the basis. No basis function is added in case there are two (independent)
zero Dirichlet boundary conditions at the node.
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A three-dimensional tent function basis for H1
D(Ω) is constructed using

the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) as the
standard element (see Exercise 18.43).

Rectangular elements are an alternative choice for meshing. These
will be used to approximate the displacement field for the copper block
model problem. In two dimensions, the standard rectangular element is the
rectangle with vertices (0, 0), (1, 0), (1, 1), and (0, 1) and counterclockwise
orientation. Linear shape functions of the form

s(x, y) = a+ bx+ cy.

are not viable. There are three coefficients but four nodes. For this reason, it
is not possible to define the coefficients a, b, and c so that s has unit value at
one node and vanishes at all other nodes. A remedy is to add one quadratic
term and use shape functions of the form

s(x, y) = a+ bx+ cy + dxy.

In fact, this choice leads to the four shape functions

s(0,0)(x, y) = (x− 1)(y − 1),

s(1,0)(x, y) = x(1− y),

s(1,1)(x, y) = xy,

s(0,1)(x, y) = y(1− x).

The transformation from the standard rectangular element to an arbi-
trary rectangle (or parallelogram) with vertices (in counterclockwise order)
(a1, a2), (b1, b2), (c1, c2), and (d1, d2) is given by

T
(
x
y

)
= L

(
x
y

)
+

(
a1

a2

)
, (18.94)

where

L =

(
b1 − a1 d1 − a1

b2 − a2 d2 − a2

)
.
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For the three-dimensional case, the standard element is the unit cube with
vertices

(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)
(18.95)

taken in this order to correspond to the positive (right-hand rule) orientation
of space. By appropriately determining the coefficients of the functional
form

s(x, y, z) = a+ bx+ cy + dxy + exz + fyz + gxyz,

the corresponding shape functions are

s(0,0,0)(x, y, z) = −(x− 1)(y − 1)(z − 1),

s(1,0,0)(x, y, z) = x(y − 1)(z − 1),

s(1,1,0)(x, y, z) = −xy(z − 1),

s(0,1,0)(x, y, z) = (x− 1)y(z − 1),

s(0,0,1)(x, y, z) = (x− 1)(y − 1)z,

s(1,0,1)(x, y, z) = −x(y − 1)z,

s(1,1,1)(x, y, z) = xyz,

s(0,1,1)(x, y, z) = −(x− 1)yz.

The transformation from the standard element to an arbitrary rectan-
gle (or parallelopiped) with vertices (a1, a2, a3), (b1, b2, b3), (c1, c2, c3),
(d1, d2, d3), (e1, e2, e3), (f1, f2, f3), (g1, g2, g3), and (h1, h2, h3), where
b − a, d − a, and e − a is the ordered basis at the vertex a with positive
orientation (right-hand rule), is given by

T

 x
y
z

 = L

 x
y
z

+

 a1

a2

a3

 , (18.96)

where

L =

 b1 − a1 d1 − a1 e1 − a1

b2 − a2 d2 − a2 e2 − a2

b3 − a3 d3 − a3 e3 − a3

 .
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Corresponding shape functions on an element in the mesh are defined by
composing the standard shape functions with the inverse of the transforma-
tion T .

As prescribed by the FEM, the weak solution of the BVP is approximated
by a function w in the finite-dimensional subspace H1

D(Ω) spanned by
the set of basis functions denoted by {φ1, φ2, φ3, . . . , φn}, where n is
determined by the spatial dimension and the type of standard element. In
mathematical form,

w = wiφi, (18.97)

where the summation rule is in effect and the scalar coefficients wi are to
be determined. (There is a possible confusion arising from the notation for
basis functions: φi is the name of the ith basis function in this context; in
other contexts it is the ith component of the basis function called φ. The
appropriate meaning should always be clear.)

An unavoidable and essential task required to implement the FEM—to
approximate steady state solutions of the weak formulation of the basic
BVP—is the assembly of the linear system whose solution is the set of
coefficients wi in the representation of w [Eq. (18.97)]. This linear system
(in scaled variables) is the set of n equations

wi(φi, φj) = 〈ι, φj〉+ [w, φj ], (18.98)

where the scaled surface tractions [w, φi] are all specified. In matrix form,
this system is Aw = β where

Aij = (φj , φi), βj = 〈ι, φj〉+ [w, φj ].

The n × n matrix A and n vector β must be assembled from the choice of
elements and the basis for the chosen subspace of H1(Ω).

One viable approach to the assembly problem is to reduce it to local
calculations on each element in the mesh. The underlying idea is to take
advantage of the linearity of the operation of integration. Indeed, the
integrals corresponding to the three brackets used in Eq. (18.98) may be
written as sums over the elements, or boundaries of elements, whose union
is the domain Ω. The quantities being summed are the integrations, in the
definitions of the various brackets, of functions defined on a single element.
The problem is to determine the appropriate components Aij and βj to
which to add the result of each local calculation. One way to do this, requires
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the design of a bookkeeping protocol (a data structure) that takes as input
three quantities: the node number, the dimension number (which, for this
section, is defined to be the number one for the x dimension, two for the y
dimension, and three for the z dimension), and the element number; and, as
output, assigns the corresponding basis number (that is, the position in the
list of basis elements {φ1, φ1, φ3, . . . , φn}. Using this protocol, it is possible
to assign each bracket summand (an integral over the standard element) to
the appropriate component Aij or βj .

The first task is to assign numbers to each node. This step is accom-
plished simultaneously with the construction of the mesh.

For the rectangular copper block situated as described on page 622,
choose the point (−L2 ,−W2 , 0) as the lower left corner of the block and
call the rectangle with corners

(−L
2
,−W

2
, 0), (

L
2
,−W

2
, 0), (

L
2
,−W

2
,H), (−L

2
,−W

2
,H)

the front face. The top face, bottom face, right face, left face, and back face
are defined relative to the right-hand orientation of the coordinate axes. A
choice of orientation is essential for the bookkeeping. Clearly, the FEM
does not require a uniform mesh; in fact, this is a major strength of the
method. But, for simplicity, a uniform mesh of rectangular solid elements is
considered here.

Choose the number of subdivisions xn, yn, and zn in each direction and
compute the corresponding increments δx, δy, and δz so that xn × δx is
the length of the block, yn × δy is its width, and zn × δz its height. The
coordinates of the nodes can then be determined as

(−L
2

+ iδx,−W
2

+ jδy, kδz)

in a triple loop nested over the indices k, j, and i with k = 0, 1, 2, . . . , zn,
j = 0, 1, 2, . . . , yn, and i = 0, 1, 2, . . . , xn. The nodes are numbered by the
natural order of the list of points produced by the triple loop and stored in a
list or an array called Nodes.

Each interior node corresponds to three dimensions (which may also be
interpreted as directions); thus, each interior node corresponds to three basis
functions. The boundary nodes must be treated separately. Each of these also
corresponds to three dimensions. Each of these dimensions that corresponds
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to a natural boundary condition, which will be called a natural direction,
corresponds to a basis function. The remaining dimensions corresponding to
essential boundary conditions, called essential directions, are assigned basis
number zero (which is a placeholder that does not correspond to an actual
basis function). To implement a numbering of the basis functions, simply
loop through Nodes and incorporate logic to assign basis function numbers
in the numerical order given by the list of nodes and each associated
direction in order, except that 0 is assigned to the essential directions
at boundary nodes. The information is stored in a list or array called
Direction. For example, Direction might be a list whose ith member
is a list of the three numbers corresponding to the basis functions assigned
to the three directions at the ith node.

For the copper block model, all nodes except those on its bottom face
(which lies on the steel plate) spawn three basis functions. The nodes on
the bottom face, which are not in the disk where the bolt is attached, spawn
two basis functions corresponding to the tangential directions where (as a
first approximation) no frictional force is imposed. Those nodes inside this
disk spawn one basis function corresponding to the normal direction of the
traction force due to tightening the bolt. Essential boundary conditions—
zero deformation due to the rigid weld that is supposed to be used to attach
the steel bolt—are enforced in the tangential directions. The total number of
nodes is

NumNodes = (xn + 1)(yn + 1)(zn + 1).

The number of basis elements depends on the size of the mesh and the radius
of the disk; this number is computed after a mesh is specified. For example,
in case there is no bolt, the number of basis elements is

NumEqs = 3 NumNodes− (xn + 1)(yn + 1).

The next part of the data structure is a list or array ElementNodes that
gives the eight node numbers (called the global node numbers) assigned to
the corners of each element in correspondence to the orientation of the eight
nodes on the standard element, called the local node numbers 1, 2, 3, . . . , 8.
This part of the structure may be viewed as a function from the pair (local
node number, element number) to the global node number.

For our rectangular domain and rectangular elements, the number of
elements is nx×ny×nz. Each node not on the top face, the right face, or the
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back face corresponds to an element that is the rectangular solid that has the
given node as its bottom left corner; that is, the other nodes on the element
are obtained by adding positive increments in the three positive coordinate
directions.

To compute ElementNodes, loop through Nodes in order. A logical test
excludes the current node if it lies on the right, top, or back face. The first
node that is not excluded defines the first element whose remaining nodes
are specified by adding appropriate positive increments in the appropriate
order, an operation that can be incorporated in a subroutine. The points
thus obtained are nodes in the list or array Nodes. Their global numbers
are recorded in order according to the standard order of the eight nodes on
the standard element. Perhaps ElementNodes is stored as a list of rows with
the row numbers in the list corresponding to the element numbers. A typical
row is a list of eight numbers, which are the global node numbers of the
eight corners of the element stored in the order specified by the standard
element, for instance the order given in display (18.95).

The final data structure Location (which can be constructed from
Nodes, Direction, and ElementNodes) is an array or list whose order
corresponds to the element numbers. For each element number, Location
specifies the basis function number assigned to each of the eight nodes
and their corresponding three directions. A typical row (for example the
tenth row, which corresponds to element number 10) might contain the
information, written here in the form of a list,

{{1, 2, 0}, {33, 34, 0}, {41, 42, 0}, {9, 10, 0},
{3, 4, 5}, {35, 36, 37}, {43, 44, 45}, {11, 12, 13}},

where its sublist {41, 42, 0} specifies that the basis function number of the
second direction at the third node of element 10 is 42. The third direction
at the fourth node of element 10 corresponds to an essential boundary
condition and is assigned the fictitious basis function number zero.

The structure Location sets up the bookkeeping protocol that is the
main tool used to assemble the matrix A and vector β. Indeed, for each
element, the basis number associated with its nodes and their directions
are specified. The component Aij of the matrix A corresponds to the basis
function numbers i and j. Because A is symmetric, the ordering of the
indices i and j does not matter; indeed, Aij = Aji.
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The idea for the rest of the assembly is to consider each interaction
between nodes on a given element; for example, for constructing the round
bracket, the interaction of the shape function corresponding to node 6 and
direction 3 with the shape function corresponding to node 37 and direction
1. The data structure Location is used to find perhaps that node 6 and
direction 3 has basis function number 121 while node 37 and direction 1 has
basis function number 73. The result of the interaction (an integration over
the element corresponding to the round brackets) is added to the component
A73,121. Only the main diagonal and superdiagonals of the symmetric matrix
A need to be computed. The final sumA73,121 can be assigned to the element
A121,73.

With the location data structure in hand, the next step is to consider the
integrations—interactions between nodes—that contribute to the brackets
in the weak formulation restricted to a particular element. Recall that there
is an affine mapping T (translation plus linear transformation) from the
standard element—the unit cube denoted by U—to the given element for our
rectangular example. Elements in the mesh may have curved boundaries.
In this case, the user would define a smooth, invertible, and orientation-
preserving transformation T with smooth inverse (an orientation-preserving
diffeomorphism) from the standard element to the given element in the
mesh.

Integration over the mesh element T (U) can be written symbolically in
the form ∫

T (U)
f dV,

where f denotes a function (perhaps a product of shape functions) defined
on the element. The change of variables formula states that this integral is
equal to an integral over the standard element U; in fact,

∫
T (U)

f dV =

∫
U
f ◦ T det(DT ) dV,

where DT is the derivative of the transformation T . The determinant of
this derivative, which is positive when T is orientation preserving, is the
Jacobian of the transformation. All integrations are thus referred to the
standard element.
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For a nonuniform mesh, the Jacobian will change with the choice of
element. For a uniform rectangular mesh and an affine T , the Jacobian is a
constant. In fact, with reference to the transformation defined in Eq. (18.96)
and the uniform rectangular mesh over the (idealization of the) copper
block, the columns of the Jacobian matrix of T are the usual basis vectors
multiplied by δx, δy, and δz, respectively. Thus, the Jacobian is simply
the product δxδyδz for every volume integral independent of the choice
of element. Moreover, the shape functions are defined on the elements in
the mesh by composing the standard shape functions with the inverse of T .
Thus, the required integrations can be carried out for the shape functions
defined on the standard cube. For the case of constant Jacobian, the result
of each integration can be simply multiplied by the constant value of the
Jacobian and summed at the address given by Location. In general, these
integrations may still be carried out over the standard element after the
appropriate transformation to the given element and its Jacobian are taken
into account. This key observation allows all calculations to be made locally
(that is, on the reference cube) using the standard shape functions and the
transformation to the given element.

For the eight-node standard cube with three directions at each node,
300 integrations are sufficient to determine the round brackets. Indeed,
the interactions between nodes are represented by the pairs (i, j) with the
indices ranging over eight choices. This corresponds to an 8 × 8 matrix.
By symmetry, it suffices to compute 36 parings: (i, j) with i ≥ j. There
are three directions at each node; thus, nine pairings of directions for each
of the node parings. The parings corresponding to diagonal elements (i, i)
are symmetric; thus, six integrations suffice for these pairings. In total,
28× 9 + 8× 6 = 300.

Suppose that υ and ν are the shape functions corresponding to two
nodes of the standard element U. These functions have unit value at their
corresponding nodes and vanish on the opposite faces of the element.
Together they also correspond to six basis functions, three for each node
in the three directions at that node. The basis functions are υ

0
0

 ,

 0
υ
0

 ,

 0
0
υ

 ,

 ν
0
0

 ,

 0
ν
0

 ,

 0
0
ν

 .

(18.99)
To maintain consistent notation (where for example vi denotes the ith
component of the vector v), note that the ith component of the first three
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basis vectors is υδαi for the index α taking values 1, 2, or 3 corresponding
to the first, second, and third basis functions. Likewise, the second three
vectors are given by νδγi for γ is 1, 2, or 3.

For a choice of two basis functions

φ = υδαi, ψ = νδγi,

the round brackets of the corresponding pair of basis functions restricted to
the standard element reduces to

(φ, ψ) =

∫
U
∇ · φ∇ · ψ +

κ

2
(∇φ+ (∇φ)T ) : (∇ψ + (∇ψ)T ) dV

=

∫
U
υ,αν,γ+

κ

2
(υ,jν,jδαγ+υ,jν,iδαiδγj+υ,iν,jδαjδγi+υ,iν,iδαγ) dV

=

∫
U
υ,αν,γ+κ(υ,iν,iδαγ + υ,γν,α) dV, (18.100)

where of course summation on repeated indices is implied and the sub-
scripted comma denotes partial differentiation.

Recall that the scaled body force ι is a three-dimensional vector. For
the angle brackets restricted to the standard element and the special case
considered here where the body force is gravity and the block is situated so
that gravity acts in the negative direction of the third coordinate, the reduced
integral is

〈ι, ψ〉 = −|ι|
∫
U
νδ3γ dV.

The boundary conditions on the surface of the block are all zero Neu-
mann (natural) boundary conditions except on the bottom face. Recall that
in the disk where the bolt emanates from this face, the Neumann boundary
condition is specified in the (negative) z direction corresponding by the force
on the block induced by tightening the bolt, and zero Dirichlet conditions
are enforced in the tangential directions due to the rigid weld of the bolt to
the block. On the complement of this disk in the bottom face, the essential
(zero Dirichlet) boundary condition is enforced in the normal direction
corresponding to the presence of the rigid steel plate, and zero Neumann
conditions (no frictional force) are specified in the tangential directions. Of
course, these boundary conditions are imposed here for specificity; they may
be adjusted as part of the modeling process.
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The local square brackets paring of the unknown local scaled displace-
ment w ◦T and a local basis function ψ is computed from the product of the
given scaled surface traction (composed with T ) and ψ by integration over
U. There is one difference from the computation of volume integrals that
must be taken into account: The boundary integrals are area integrals over
faces of the standard element; hence, the transformation T acts by restriction
to a face. The Jacobian of the transformation must be computed accordingly.
In the model problem, the scaled traction ω has constant magnitude and acts
in the downward vertical direction on the block, which is the direction of
the outer unit normal on the bottom face of the block. Also, the traction is
nonzero only on the disk corresponding to the attachment of the bolt. On
an element, whose bottom face is part of the bottom face of the block, the
traction acts only on the part T (D) of the element face that lies inside this
disk. The corresponding local square brackets paring [w,ψ] on the standard
element vanishes except when ψ is a basis function of the form ψ = νδ3,i

corresponding to a node on the bottom face, and in this case, the paring has
local value

[w,ψ] = −ω
∫
D
ν dS.

The corresponding Jacobian for the model problem is constant and equal to
δxδy. Each local square bracket paring must be multiplied by this constant
and added into the appropriate address given by Location.

For definiteness, let us consider the block dimensions to be

d = 12 mm, L = 10d, W = 5d, H = 3d, (18.101)

where d is the bolt diameter and a := d/2 is the bolt radius.

The calculation of clamping force of a treaded bolt as a function of torque
due to tightening is a difficult modeling problem that is not considered here.
The theory predicts that clamping forces in the range 2–6 kN are physically
realistic for the given bolt radius. Using the metric units centimeter-gram-
second for measurements, the Lamé constants (18.58), the density of
copper (18.59), and the characteristic length L = 10 cm (chosen arbitrarily),
the timescale is dictated by the definition of T in Eq. (18.88) to be

T ≈ 3.068× 10−5 sec
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and the dimensionless constant

κ =
µ

λ
≈ 9

19
≈ 0.473684.

For the characteristic displacement

δ = 10−2 cm,

the scaled gravitational (body) force (from Eq. (18.88)) is

|ι| ≈ 9.222× 10−5.

The traction on the disk that represents the region where the bolt is attached
to the block is in units of force per area. The area is πa2 ≈ 1.13097 cm2.
Thus, the maximum traction is in the approximate range 1.76839 × 108–
5.30516 × 108 in units of g /(cm sec2). This quantity must be made
dimensionless using the formula

λδ

L
(wk,kδij + κ(wi,j + wj,i)ηj) = τ.

Thus, the maximum scaled traction magnitude is

ω :=
L

λδ
τ.

It lies in the range 0.186–0.558, which for the purpose of illustration is
replaced by a maximum scaled traction of 0.5.

The assembly process for the system matrixA, using the approach in this
section, is outlined by the pseudocode

For i from 1 to the number of elements
For j from 1 to 8

For k from 1 to 3
If the global basis number gbn1 corresponding to (i, j, k)
in Location exceeds zero

For ` from 1 to 8
For m from 1 to 3

If the global basis number gbn2 corresponding to
(i, `,m) in Location satisfies gbn2 ≥ gbn1

Compute local round bracket taking into account
the transformation T corresponding to
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nodes on the standard cube with addresses (j, k)
and (`,m)
Add the result to the system matrix component
Agbn1gbn2

End If
End If

The logical test gbn2 ≥ gbn1 is used to take advantage of the symmetry
of the A. The output of the procedure is the upper triangular part of this
symmetric matrix.

Assembly of β, the vector on the right-hand side of the linear system
Aw = β consists of two summands: the pointed brackets, which take into
account the body force, and the square brackets, which take into account the
surface tractions given by the boundary conditions.

The pointed brackets are assigned to components of β in the obvious
manner: 〈ι, φj〉 is the first summand of βj . The local pointed brackets are
assembled in a manner similar to the assembly of A. The only difference is
that instead of using the integral of the product of two local shape functions,
the integral of the product of a local shape function with ι is used.

In general, the square brackets contributions to the assembly of β can
be computed by considering each finite element in turn and reducing to
local integrations using the standard block as usual, but for the square
brackets, surface integrals are required instead of the volume integrals
used to compute the round and pointed brackets. Note first that the square
brackets [w, φ] vanish for every basis function φ associated with an interior
node. Thus, in the loop over the finite elements, the surface integrals are
computed only for those finite elements with at least one face on the
boundary of Ω.

For our example, the copper block with a steel bolt, the surface tractions
are all zero except for those acting on the portion of the boundary of the
block in the bolt attachment disk. Thus, for the computation of square
brackets, we may ignore all finite elements except those admissible elements
with two properties: their bottom face, called the admissible face, is on the
bottom boundary of the block and at least one node on this face, called
an admissible node, is in the bolt attachment disk. The normal direction at
each admissible node corresponds to a basis function. The corresponding
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Fig. 18.3 The two-dimensional cross section described in this section with the integrated displacement field for a copper
block bolted to steel plate is depicted. The horizontal axis corresponds to the y direction and the vertical axis to z. The
block has dimensions 10 × 5 × 3 in scaled bolt diameters. The block elements laid 20 wide, by 10 deep, by 6 high
are used for a total of 1200 elements. The force of gravity is included and the dimensionless traction force on the bolt
attachment disk is ω = 0.2. The solid vertical lines correspond to the cylinder above the bolt, which is attached at the
bottom center.

square brackets (of w and this basis function) is the (surface) integral
of this basis function times the given constant normal traction over the
bolt attachment disk. The contribution to this integral from the admissible
element is computed by integrating the shape function times the constant
traction times the Jacobian of the restriction of the transformation T to the
admissible face over the set on this admissible face that is mapped by T
inside the bolt attachment disk. One way to implement the calculation, for
admissible faces that intersect the attachment disk but are not contained in
this disk, is to simply multiply the shape function on the standard element
by the characteristic function of the portion of the standard block bottom
face that maps inside the attachment disk. In symbols, the local contribution
is ∫

U
sωχdet(DT ) dS,

where s is the shape function, ω is the given (scaled) traction, and χ is
defined by χ(x, y) = 1 if T (x, y) is in the attachment disk and χ(x, y) = 0
otherwise. It is summed into the component of β corresponding to the global
basis function number corresponding to the admissible node.

This completes the assembly of the matrix system Aw = β. It can be
solved by iteration, or for the purposes of this section by an available solver
built into a commercial software package. The system matrixA is symmetric



Elasticity 669

and sparse (that is, most of its elements are zero). It is possible to take
advantage of this property by avoiding multiplication by zero. This subject
is covered in every treatment of numerical linear algebra.

The coefficientswi of the approximate displacementw = wiφi due to the
traction force and the presence of the steel plate are given by the solution w
of the linear system Aw = β. Note that at the ith node the approximate
distortion is w = wi. Indeed, φi has unit value at this node where all other
basis functions vanish. Thus, the discretized distortion field is given by the
wi.

For computations that result in large data sets (in this case, the approxi-
mation of the displacement field at each node in the finite element mesh), the
computed data should be rendered in a form that is useful for the intended
application. As an example, consider Fig. 18.3 where some results of a finite
element approximation of the displacement field for our copper block bolted
to a steel plate are depicted. The approximate, dimensionless displacement
field is shown for the plane that is perpendicular to the longest edges of the
block and contains the bolt axis.

Inspection of Fig. 18.3 suggests that the displacement vanishes on a one-
dimensional ring (surrounding the imaginary cylinder above the bolt) and
nowhere else in the interior of the block. Perhaps the existence of this ring
is important in some applications. If so, there is a natural question: Does the
model predict that the zero set of the distortion field in the interior of the
block is a simple closed curve that surrounds the imaginary cylinder above
the position of the bolt? The genesis of this question illustrates a wise point
of view: Computation is not only about producing numbers; it is a useful
tool for gaining insight into physical phenomena. Answering the question
requires making a deduction from the mathematical model. Gathering
additional evidence for an answer can be accomplished by performing more
numerical experiments (see Exercise 18.39). These are tasks for the applied
mathematician. But, of course, the reality of a prediction remains unknown
until it is confirmed by physical experiments.

All the ingredients are in place for the reader to write a basic finite
element code. Although certainly not a simple task, writing and using one’s
own code is an invaluable learning experience.

Further study of elasticity theory and the FEM is certainly justified. Both
are of great value in many practical applications.



670 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

Exercise 18.39. [FEM Three-Dimensional Coding] (a) Repeat the finite element
computation that is used to make Fig. 18.3. (b) Where in the block is the strain maximal?
(c) Compute the displacement field for several values of the traction due to tightening
the bolt and consider the displacement at the centroid of the block. Is the magnitude of
this displacement a linear function of the traction? Approximate this function. How does
this function change with a change in dimensions of the block? Specifically, suppose the
length and width of the block are constant and the thickness (z direction) is increased.
How does the function depend on this change? What about a change in length? (d) Does
the model predict that the zero set of the distortion field in the interior of the block is
a simple closed curve that surrounds the imaginary cylinder above the position of the
bolt? Hint: This might be a difficult question to answer. Discuss the numerical evidence
for the existence of the curve provided by Fig. 18.3. To answer the question, at least
provide new evidence in favor or against the existence of such a curve.

Exercise 18.40. A full three-dimensional finite element computation was used to pro-
duce the two-dimensional Fig. 18.3. Use a two-dimensional finite element computation
to make a similar picture. Do the computations give the same answer?

Exercise 18.41. [Elastic Plate with Elliptical Hole] Describe the stress field for a thin
square elastic plate with an elliptical hole centered at the center of the plate ignoring
body forces but loading the plate on two of its opposite sides with equal and opposite
constant normal tractions. In particular, determine the point(s) of maximum normal
and tangential stress on the boundary of the hole. Note: This exercise has historical
significance (see [23]).

Exercise 18.42. Show that every element in the span of the usual one-dimensional
tent functions for a partition of an interval is a continuous function.

Exercise 18.43. Determine the shape functions for the standard three-dimensional
tetrahedral element and determine the linear transformation from an arbitrary tetrahe-
dron to this element.

Exercise 18.44. Consider the copper block model but with the top face of the block
welded to a second steel plate. Determine the displacement field and compare it to the
displacement field for the original model.

Exercise 18.45. Consider the copper block model but with the back face of the block
welded to a second steel plate. Determine the displacement field and compare it to the
displacement field for the original model.



CHAPTER 1919
Problems and Projects: Rods, Plates, Panel
Flutter, Beams, Convection-Diffusion in
Tunnels, Gravitational Potential of a Galaxy,
Taylor Dispersion, Cavity Flow, Drag, Low and
High Reynolds Number Flows, Free-Surface
Flow, Channel Flow

19.1 PROBLEMS: FOUNTAINS, TAPERED RODS,
ELASTICITY,THERMOELASTICITY,
CONVECTION-DIFFUSION, AND NUMERICAL STABILITY
Exercise 19.1. [Intermittent Fountain] Fig. 19.1 is a schematic representation of
a water fountain. An appropriate constant inflow will cause the fountain to run
intermittently. (a) Make a mathematical model of the fountain (based on flow rates and
volumes) and show by simulation that the fountain runs intermittently. (b) The inflow
rate and the elevations of the bends in the outflow are control parameters. How do
changes in these parameters affect the fountain? (c) How would the fountain run in
the presence of a periodic inflow?

Exercise 19.2. [Linearly Tapered Rod] Repeat Exercise 18.23 on the design of
resonant tapered rods for the case where the rod is linearly tapered; that is, the cross-
sectional area function is given byA(x) = A0−A1x. Hint: A review of Bessel functions
might be helpful.

Exercise 19.3. [Elasticity versus Rod Equation] Compare a two- or three-dimensional
linear elasticity analysis (perhaps using finite elements) for the longitudinal waves in a
tapered bar with an analysis based on the one-dimensional model equation (18.47).

Exercise 19.4. [Barbell-Shaped Rod] Model and analyze the resonance lengths of
barbell-shaped tapered bars (the area function decreases and then increases). What if
there are several local maxima and minima of the area function? It would seem that a
bar with sufficiently thin necks between regions where its cross-sectional area function
has local maxima would behave elastically like masses connected by springs. Does this
interpretation lead to a viable model for longitudinal waves for rods with moderate neck
diameters?

Exercise 19.5. [Body versus Traction Force] A tapered rod is subjected to a sinusoidal
body force acting in the axial direction of the rod. Discuss the motion of the rod tip.
Compare your results with the motion of the same tapered bar driven by a sinusoidal
traction force.
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Inflow

Tank Fountain

Fig. 19.1 Schematic diagram of intermittent water fountain.

Exercise 19.6. [Clamped Plate] Imagine a thin rectangular sheet of metal clamped
on its two (short right and left) edges to an immovable frame. Determine the shape of
the rectangular plate when a constant traction force is applied to a portion of its upper
surface. (a) Determine the profile of the sheet after a load is applied in a small disk at
the center of the upper face of the plate. (b) Determine the profile of the sheet after a
load is applied in a strip from front to back on the upper face of the plate. (d) Determine
the profile of the sheet after a periodic traction (of the form A sin(Ωx)) is applied across
the upper face of the plate.

Exercise 19.7. [Dynamic Behavior of Elastic Solids-Panel Flutter] All the tools are
in place to consider the dynamics of elastic materials. Start with the dimensionless
Eq. (18.89). Use the same basis functions as for steady states, but consider the unknown
dimensionless deformation to be w = wi(s)φi, where the coefficients depend on the
dimensionless temporal parameter. Follow the weak formulation by taking inner product
with respect to the basis functions and use the defined bracket parings to arrive at the
fundamental weak form of the dynamic equations of linear elasticity:

ẅi(t)〈φi, φj〉 = wi(t)(φi, φj)− 〈ι, φj〉 − wi(t)[φi, φj ]. (19.1)

For the dynamic model, the assembly process creates a system of second-order ordinary
differential equations (ODEs) instead of a system of linear equations that is created
for the steady state. In case the boundary conditions are independent of time, they
are imposed exactly as for steady state computations. This second-order system of
ODEs can be solved by a variety of methods. But, the reader is warned that numerical
integration of large-scale systems of ODEs requires some thought before writing code.
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(a) Consider the copper block with a bolt through a steel plate but now suppose the
traction force on the attachment disk is sinusoidal A sin(Ωt). Determine (numerically)
the displacement response in the block. Is the response sinusoidal? What is the frequency
of the response? (b) Consider the setup for Exercise 19.6. Determine the response for
a sinusoidal traction on the upper surface A sin(kx − Ωt). Part (b) approaches perhaps
the most important problem in elasticity: panel flutter. Air is moving over the top of
a plate—think airplane wing. Air pressure fluctuations interact with the elastic plate.
Perhaps for low flow velocities the steady state configuration of the plate is stable.
In some cases, the steady state configuration of the plate becomes unstable as the
airflow velocity increases, and the plate may begin to oscillate. Such oscillations may
be catastrophic: an airplane wing might oscillate with growing amplitude due to energy
pumped into the oscillation from the airflow until the wing structure fails. Less dramatic
examples are Venetian blinds oscillating in an open window and rattling ducts in an air
conditioning system. (c) Eq. (19.1) appears, with appropriate interpretation, as Eq. (1)
in the article [73] summarizing work on disc brake squeal suppression. Read the article
and explain the relation between these equations. (d) Imagine a structure in the form
of a triangle where the legs of the triangle are rigid bars and the vertices are springs
constructed and situated so that their restoring forces tend to make the interior angles
smaller. One leg is clamped to a device that imparts a sinusoidal motion to this leg
and hence to the structure. Determine the motion of the vertex opposite this leg. Treat
the legs of the triangle as finite elements and include viscous damping. Generalize to a
regular polygonal structure, which at rest is inscribed in a circle, with the ultimate goal
of determining the motion of an elastic hoop driven by a sinusoidal motion imparted
to one point on the hoop. For simplicity, consider the case where the direction of the
driving motion is tangent to the idealized hoop modeled by a one-dimensional curve.

Exercise 19.8. [Thermoelastic Damping] (a) Consider a tapered rod with exponen-
tially decreasing cross-sectional area subjected to a sinusoidal traction force at its large
end. As the rod is excited, its compression and expansion increases its temperature.
Thus, energy is extracted from the motion of the rod and dissipated in the form of
heat. The subject concerned with coupling thermodynamics and elasticity is called
thermoelasticity. In the case of the rod, heat loss is a form of thermoelastic damping.
This damping effect is incorporated in the one-dimensional model for displacement

ρÜ = (λ+ 2µ)
(∂2U

∂x2
+
A′(x)

A(x)

∂U

∂x

)− kρu̇xx + ρB(x, t), (19.2)

where k is the mechanical to heat rate constant. Discuss the motion of the rod tip and
the amplification factor. In what sense does the heat dissipation term cause damping?
(b) Research the physics of thermoelasticity and discuss the validity of the model used
in part (a). (c) Are there additional sources of damping? How should they be modeled?
Which source is dominant if, for example, the tapered end of the rod is inserted into a
beaker full of water? Hint: This is a research problem. The complete answer is probably
not simple.

Exercise 19.9. [Beam Theory] (a) The equations of linear elasticity are second-
order with respect to spatial derivatives. Discussion with engineers on applied elastic
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problems might turn to equations of motion that are fourth-order with respect to spatial
derivatives. Why the discrepancy? Most likely the engineers are using beam theory.
Imagine a beam, which is a body where two of its dimensions (width and depth) are
approximately the same and both are much smaller than the third dimension (length).
As in channel flow (discussed in this book), the idea is to reduce the equations of linear
elasticity from three space-dimensions to one, the dimension of length along the beam.
To do this, approximations must be made. One way to approach the theory is to integrate
the equations of linear elasticity over cross sections transverse to the beam axis. Read
paper [27], fill in details, and explain how equations of motion arise that are fourth-
order in the deformations along the length of the beam. Also, after some research in the
literature, compare Timoshenko beam theory with Euler–Bernoulli beam theory. Will
beam theory remain relevant as computational speed makes predictions from full three-
dimensional models feasible? Gather evidence and discuss your findings. (b) Suppose
one end of a beam is clamped to a rigid wall and its other end is free. A downward
force is applied at the free end and held until the beam is in equilibrium. What is the
equilibrium shape of the beam? Hint: The ultimate answer would compare predictions
of three-dimensional elasticity theory and beam theory. (c) Suppose the applied force of
part (b) is released from rest. What is the subsequent motion of the beam? Hint: Same
as for part (b).

Exercise 19.10. [Convection-Diffusion in Tunnel] Recall the tunnel gas-diffusion
model (5.74). As mentioned in the text, convection usually operates at a much faster
timescale than diffusion. Construct a model for the motion of the air caused by the filter
at the end of the tunnel, the increase in pressure at the tunnel entrance, or the motion that
might be caused by the leak itself, and use your model to compare the sensor readings
with and without air motion taken into account. What are the most important effects?

Exercise 19.11. [Stability of Numerical ODE Solvers] Review numerical algo-
rithm (16.138) and consider the related method

yn+1/2 = yn +
∆t

2
f(yn, tn),

yn+1 = yn + ∆tf(yn+1/2, tn+1/2). (19.3)

Read the paper [95] by Lawrence F. Shampine, which is a study of the stability properties
of the midpoint method

yn+1 = yn−1 + 2∆tf(yn, tn),

and discuss the relation between his analysis and method (19.3). Modify Shampine’s
analysis so it applies to the predictor-corrector algorithm [Eq. (16.138)]. Discuss
the strengths and weaknesses of these numerical methods. Create and run numerical
experiments to test and verify your findings.
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19.2 GRAVITATIONAL POTENTIAL OF A GALAXY

Let ρ be the density function for matter in a region of space and G
the universal gravitational constant. The gravitational potential φ is the
physically relevant solution of Poisson equation ∆φ = 4πGρ:

φ(x) = −
∫
R3

G

|x− y|ρ(y) dy.

The gravitational field produced by the mass with density ρ is g = −∇φ
(where g is not necessarily the g used for the gravitational acceleration near
the surface of Earth), and the motion of a test particle with mass m in this
field is given by Newton’s law md2x/dt2 = F , where the force is F = mg.
A basic problem in physics is to determine the gravitational field of a body
and the motion of test particles in the field. Here, a test particle might be an
extended body that is assumed to move in the gravitational field according to
how its center of mass moves under Newton’s law. The project is to explore
the motion of a star viewed as a test particle in the gravitational field of
a galaxy. The problems stated here are merely starting points for further
research.
(a) Consider an approximate (spiral) galactic shape in the form of a cylinder
of height h and radius a where a > h. Suppose the density of the mass in
the cylinder is a function of the distance from the axis of the cylinder. For
definiteness, consider a Cartesian coordinate system such that the cylinder
is the Cartesian product of the disk of radius a centered at the origin of the
horizontal plane and the interval [−h/2, h/2] on the vertical axis through
the origin. Suppose the density function is a Gaussian

ρ(x, y, z) = be−c(x
2+y2)

for some positive constants b and c such that ρ on the lateral boundary of
the cylinder x2 + y2 = a2 is small to model the physical reality that almost
all the mass of a galaxy is in the galactic bulge at its center. This density
function may be taken to be zero outside the galaxy. For definiteness and
simplicity, start with the values h = 0.1, a = 6.0, b = 0.1, and c = 0.25
and assume the density drops to zero outside the cylinder. Determine the
approximate gravitational potential and gravitational field near the galaxy.

Notes: Which is better for a numerical treatment of the problem, solving
the Poisson equation or performing the integration to obtain the gravitational
potential? For the Poisson equation, consider the symmetry in the problem:
the potential should be the same on every plane passing through the vertical
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axis. On one of these planes, a rectangular grid should suffice and it should
be chosen so that the sides of the rectangular cross section corresponding
to the galaxy lie on grid lines. The computational domain can be taken to
be bounded by a large rectangle that contains the galactic cross section.
Boundary conditions on the sides of the rectangle are not obvious. By
physical considerations the gravitational potential must drop to zero at
infinity. So, zero Dirichlet boundary conditions are reasonable. This choice
might be tested by computing on a sequence of rectangles of increasing size
until the computed potential does not change with increasing size up to some
specified amount.

Discretization in the usual manner at the grid points leads to the solution
of a linear system Ax = b, where A is a large, sparse (banded) symmetric
matrix. The solution can be approximated by successive overrelaxation
(SOR), a method already discussed in this book. Because A is symmetric,
there are other (perhaps more efficient) methods of approximation. One of
the best is the conjugate gradient method outlined in Section A.20. Which
method is most efficient in the present application?
(b) Determine the gravitational field for the cylinder galaxy in part (a).
Also, consider a star with some mass (small compared to the total galactic
mass) and determine the motion of the star in case its initial velocity is
perpendicular to the previously considered galactic cross sections. Do you
expect periodic stellar orbits? If so, how do their periods depend on their
initial positions from the galactic center?
(c) A cylindrical shape is a crude model for a spiral galaxy. Specify a more
realistic galactic shape inside the large rectangular computational domain(s)
or parts (a) and (b), and determine the gravitational field and star motion for
the new shape.

Notes: A curved shape may be best. But, to avoid dealing with curved
boundaries, consider a stair-stepped shape where the boundary of the
shape is confined to grid lines. In principle, curved boundaries can be
approximated as closely as desired by refining the grid and using stair-
stepped shapes. Is this a viable approach to the problem? How should the
finite-difference approximations be modified to take into account curved
boundaries?

(d) Research Project: Spiral galaxies are usually surrounded by globular
clusters. Find out what this means and conduct numerical experiments to
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determine the motions of the globular clusters and test particles in the
gravitational field of the entire system.

19.3 TAYLOR DISPERSION

In 1953 Geoffrey Ingram Taylor (1886–1975) published an important
paper [109] where he provided strong evidence that shear flows increase
diffusion. In addition, he gave an estimate for the effective diffusion
coefficient. His ideas, refined by other authors and very well studied, are
applied in the design and function of devices used to measure diffusivity
of liquids, in understanding biological processes including movement of
tracers in blood flow, and in Earth science including the movement of
environmental pollutants in rivers and in porous media. Although the true
range of applicability and more rigorous treatment of his approximations
are not completely understood, exploration of this topic is a tour into the
mind of an exemplary applied mathematician.

Imagine the concentration c of some substance being carried by a moving
fluid with velocity u where k2 is the diffusivity of the substance in the flow.
Using conservation of mass and constant diffusivity, the basic model for the
concentration is the convection-diffusion equation

ct + u · ∇c = k2∆c (19.4)

with appropriate boundary and initial data. The usual (reasonable) assump-
tion is that the substance under study does not affect the fluid flow. When it
does (for example when the substance is particulate matter or another fluid),
the convection-diffusion equation must be coupled to a fluid model (Navier–
Stokes). This case is much more complicated and not discussed further here.
In Taylor’s theory the flow is taken to be specified and unidirectional. For
definiteness, consider the flow to be all in the direction of the first coordinate
of a Cartesian coordinate system. In this case u = (v, 0, 0), where v is
a function of space and time given by the coordinates (x, y, z, t). Also,
suppose that measurements are made in bounded regions in plane sections
perpendicular to the flow. The classic example (the one studied by Taylor)
is Poiseuille flow in a round pipe whose axis is in the direction of u where
the sections are disks perpendicular to the central axis of the pipe. Taylor
considered the changes in average concentration over such cross sections.
The section at the point (x, 0, 0) is called Σx and its area |Σx|. By definition,
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the average concentration over this section is

c̄(x, t) =
1

|Σx|

∫
Σx

c(x, y, z, t) dydz (19.5)

and the similarly defined average velocity is denoted ū.

The fluctuating part of c is defined to be c̃ = c− c̄. Note that the average
of c̃ vanishes and, of course, the average of an average is the average.

Using the substitution c = c̄+ c̃, the model equation is transformed to

c̄t + c̃t + v(c̄x + c̃x) = k2(c̄xx + c̃xx + c̃yy + c̃zz). (19.6)

By averaging each term over the section Σx, the latter equation is reduced
to

c̄t + v̄c̄x + vc̃x = k2c̄xx, (19.7)

where the third term on the left-hand side requires further explanation. With
this term removed, the resulting partial differential equation (PDE) would
simply be a convection-diffusion equation for the average concentration
with diffusivity constant k2 and Tayor’s paper would not be so important.
All of the interesting behavior comes from that third term.

Subtract Eq. (19.7) from Eq. (19.6) and rearrange the result in the form

c̃t + (v − v̄)c̄x + vc̃x − vc̃x = k2(c̃xx + c̃yy + c̃zz). (19.8)

Taylor’s idea (translated to the context of Eq. (19.8)) arises from physical
reasoning: After a sufficiently long time has passed and in case the axial
length over which the fluctuations are considered is large compared with the
size of the cross-sectional regions over which the averages are computed,
the quantities

c̃t, vc̃x − vc̃x, k2c̃xx (19.9)

are all small relative to the other quantities in the differential equation. By
neglecting the small terms, the model equation is reduced to

(v − v̄)c̄x = k2(c̃yy + c̃zz). (19.10)

This equation can be solved for c̃ and the result may then be substituted to
tame the problematic third term in Eq. (19.7).
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Returning to Taylor’s original configuration, which he used to conduct
physical experiments, recall that the velocity of a Poiseuille flow in a round
pipe of radius a is given by

v = c(a2 − r2)

for some constant c. A simple calculation shows that in fact

v = 2v̄(1− r2

a2
). (19.11)

Check this!

Put v from Eq. (19.11) in Eq. (19.10) and change the Laplacian to polar
coordinates. Notice that c̄x does not depend on the radial polar variable
r. For an axially symmetric initial concentration, the evolution of the
concentration does not depend on the angular polar coordinate. Thus, the
resulting equation for c̃ depends only on r with x playing the role of a
parameter. This equation can be easily integrated twice with respect to r at
the price of introducing two constants of integration. Check that the constant
introduced by the first integration is the coefficient of ln r after the second
integration. It must be set to zero to ensure a physically relevant solution
that does not blow up at r = 0. The second constant of integration can
be determined because the average value of c̃ vanishes over each cross-
sectional disk. In fact, after these computations, the fluctuation is seen to
be

c̃ =
v̄c̄x
k2

(
1

4
r2 − r4

8a2
− 1

12
a2). (19.12)

In checking the computations be careful to use the polar area element
rdrdθ, and remember to divide by the area of the disk when computing
the averages.

The problematic term in Eq. (19.7) is ready to be tamed. Insert the
formulas for v and c̃ and compute. The result is

vc̃x = −a
2v̄2

48k2
c̄xx.

Substitute this into Eq. (19.7) and rearrange to obtain

c̄t + v̄c̄x = (k2 +
a2v̄2

48k2
)c̄xx. (19.13)
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This remarkable result states that (up to the specified approximations) the
average concentration satisfies a convection-diffusion equation with the
effective diffusivity

k2 +
a2v̄2

48k2
,

a quantity that is likely to be much larger than k2. In practice, k2 is small
relative to a and v̄.

There is a useful conclusion: The shear caused by the no-slip boundary
condition at the pipe wall increases the effective diffusivity. Also, the
effective model equation (19.13) can be solved exactly (see Eq. (9.29)).

Using carefully designed numerical experiments, discuss the evolution
of an axially symmetric initial concentration of substance introduced into
a round pipe at time t = 0. In particular, approximate the average
concentration of the substance as it is carried downstream by the advection
and diffusion processes governed by model equation (19.4), where u is
a given Poiseuille flow. The PDE in this situation is two-dimensional; it
depends on the radial coordinate in the transverse direction to the flow,
the axial coordinate, and time. Discuss the sizes of the terms (19.9) in
comparison to the terms in differential equation (19.10) to evidence the
validity of Taylor’s approximations.

In at least one experiment, consider a cylindrical plug of the substance
introduced into the pipe that has the same radius as the pipe and discuss the
geometric shape of the evolution of the plug as it is carried downstream by
the flow.

Discuss the relevance of Taylor’s result versus the use of numerical
integration to approximate the full convection-diffusion model. As part of
your report, be sure to include details confirming the computations outlined
in this section.

As mentioned previously, Taylor’s ideas are used to make measurements
of diffusion coefficients. Consider the following quote (with internal cita-
tions removed) from a typical paper in the literature1

1Mohsen Ghanavati, Hassan Hassanzadeh, and Jalal Abedi (2014), Application of Taylor
dispersion technique to measure mutual diffusion coefficient in hexane+bitumen system,
AIChE Journal, 60(7), 2670–2682, July 2014.
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In a Taylor dispersion experiment, a minute amount of solute, called a
pulse, is injected into a laminar carrier stream of a slightly different
composition of solvent flowing in a long capillary tube. As the pulse
travels through the tube, it spreads out into a nearly Gaussian profile
under the combined actions of molecular diffusion and convection.
The shape of the dispersed peak measured by an appropriate detector,
commonly at the end of the tube, is used to determine the molecular
diffusion coefficient D from the dispersion coefficient K

D +
R2ū2

48D
,

where R is the tube internal radius and inline image is the average ve-
locity of the laminar flow in the tube. It is noteworthy that experimental
conditions are usually designed such that the first term in comparison
to the second term in [the equation] can be safely ignored.

Describe in detail exactly what the authors are describing. What is meant
by “The shape of the dispersed peak?"

Taylor performed physical experiments that verified to some extent his
approximation. Many other physical experiments have been performed by
other researchers, and as in the last paragraph, Taylor’s ideas are widely used
to make practical measurements. More sophisticated mathematical analysis
has been carried out by several authors to justify Taylor’s approximation in
some operating regimes. Although Taylor’s approximation is widely used, it
does not always agree with reality. Nonetheless, it is a beautiful example
of applied mathematics. The basic insight that shears in flows enhance
diffusion is obviously important.

19.4 LID-DRIVEN CAVITY FLOW

Reconsider the numerical experiments for lid-driven cavity flow (starting
on page 418). For low Reynolds numbers, the flow settles to a steady
state. One way to quantify this fact, which is certainly not definitive, is to
choose a spatial position (for example the center of the cavity) and plot
the magnitude of the velocity field at this point as a function of time. In
steady state, this quantity will remain constant. There seems to be a critical
value of the Reynolds number such that for Reynolds numbers above this
value there is no stable time-independent steady state indicated by the plot
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of the magnitude of the velocity field: the time trace oscillates with time.
What is this critical value? The project is to use your code to detect the
critical value and to give evidence that the value you determine is the correct
prediction from your code. There are many papers and experiment reports
on lid-driven cavity flow (see, for example, [15, 36, 59]). The oscillation
might be periodic. If so, what is its period. The oscillation might be chaotic.
Is there good evidence for this behavior?

19.5 AERODYNAMIC DRAG

Reconsider the tailgate-up versus tailgate-down Problem 16.1.

Recall that bodies placed in a flow field are generally of two types with
respect to the drag force: streamlined and bluff. A streamlined body is
surrounded by a flow that is approximately Eulerian; thus, the pressure drag
is nearly zero and the drag is dominated by skin friction in a thin boundary
layer (at least for moderate Reynolds numbers for which the boundary
layer does not separate from the body). A bluff body has boundary layer
separations even for moderate Reynolds numbers, and the drag is dominated
by pressure drag. Indeed, the pressure on the downstream side of the body
(where backwash, vortex shedding, or turbulent flow is prevalent) is lower
than at the upstream side (where a more organized boundary layer is usually
found). This pressure difference is responsible for the pressure drag. At least
this is the basic scenario that is often recited. Such statements are not simple
to justify using the Navier–Stokes model. Because good predictions of drag
are so important in the design of airplanes and boats, this important problem
has been studied extensively using theory and experimental measurements.

For this project, start by writing a computational fluid dynamics (CFD)
code (based on the projection method) to approximate velocity and pressure
fields for the two boxy truck configurations given in the text. Render
the velocity field in a figure and approximate the pressure drag produced
by a free-stream velocity of 70 miles per hour. At least treat this as a
goal. Perhaps lower velocities are required to keep the Reynolds number
sufficiently small for your code to produce reliable results. Compute an
approximation of drag, perhaps by using the pressure Poisson equation
[Eq. (16.12)] at the last step of a projection method computation, by
integration of pressure times the outer normal −pη over the truck surface
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followed by projection onto the free-stream direction. This is called a near-
field method for approximating pressure drag.

By surrounding the truck inside the region of space bounded by a
closed surface, consider the annular region bounded by the truck body and
the surface; in three dimensions, this region is topologically a ball with
an interior ball removed. Conservation of momentum inside the annular
region leads to an expression for computing pressure drag by integration
over the outer surface only, a far-field approximation. Develop your own
formula or learn how this is done from the literature. Use the far-field
theory to approximate drag using your CFD computation. How does your
result compare with the near-field computation? Which is more accurate for
projection method approximations?

Predict which boxy truck configuration has the least drag.

Add improvements to the truck model by replacing the vertical wind-
screen of the boxy truck with an inclined ramp windscreen. How should
curved boundaries be handled in the projection method code? Add improve-
ments to the model by fairing the boxy model into a more realistic curved
shape. How much does the shape have to be modified to detect a change in
your CFD computations?

For which configurations, if any, of the truck shape does the flow field
around the truck moving in a steady ambient flow reach a steady state?

How big must the computational domain be relative to the truck size to
eliminate (for all practical purposes) boundary effects due to confining the
free-stream flow to a bounded computational domain?

Make a movie to show the evolution of the flow field as the truck speed
is varied from zero to 70 miles per hour. Refine the grid size until there is no
change in the computational results or the computational expense exceeds
available computer power.

How does the flow field change when two parameters are altered: the
relative length of the truck bed and the height of the tailgate? What tailgate
height for a given truck bed-length produces the least drag? Solid results on
these problems could produce useful research publications. See [72] for a
modern view of the physics of aerodynamic drag and reread the discussion
of lift on page 331.
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Do an engineering study of fuel cost for a trucking company. Is reducing
aerodynamic drag a significant factor in operating costs?

19.6 LOW REYNOLDS NUMBER FLOW

(a) Consider the Stokes flow as in Section 11.3. Learn how to model
Stokes flow past a sphere immersed in a hypothetical body of water with
infinite extent (see, for example, [60]) and report on the corresponding exact
solution of Stokes’ equations in this context. Write a proof of Stokes’ drag
formula for this case: the drag force is 6πµru, where µ is the viscosity and
r is the radius of the sphere. Explain how Robert A. Millikan (in his oil drop
experiment preformed in 1909) used this result to determine the charge on
an electron. Discuss Stokes’ paradox.
(b) Consider two-dimensional lid-driven cavity flow for a highly viscous
fluid: flow of a fluid filling a box where the lid of the box is moving with
nonzero constant velocity relative to the velocity of the box. A Navier–
Stokes flow in this setting is depicted in Fig. 16.4. Approximate such a
two-dimensional flow numerically using the Stokes model and display your
results in a comparable figure. Hint: You may wish to read Chapter 16.

19.7 FLUID MOTION IN A CYLINDER

(a) Address the following numerical (and analytical) challenge: Imagine a
cylindrical bottle full of a viscous fluid and capped at both ends. Suppose
the bottle is rotating with constant velocity about its central axis. Describe
the motion of the fluid inside the bottle. There are numerous variations on
this theme. Perhaps one or both of the caps are fixed during the rotation,
the rotation speed of the cylinder is zero but one of both of the caps are
rotating, the speed of rotation is increasing with time, the bottle is instead
rotating end over end, and so on. What can you say? Report on analysis and
numerics. Hint: For some of the suggested scenarios, a rotating coordinate
system (as discussed in Chapter 14) may be helpful. These problems have
received some attention (see, for example, [105]). Why would anyone care
about solutions to such problems?

(b) Imagine the fluid-filled cylinder in flight. To model this situation in a
realistic manner requires at least coupling Newton’s second law of motion
for the cylindrical body with the fluid equations. More realistically, lift and
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Fig. 19.2 Schematic diagram of flow through a diffuser inlet over a flat bottom, with a free surface, and through a free
outlet. Fluid fills the entire region Ω.

drag due to the cylinder moving through air (or water) must be taken into
account. How would the motion of the fluid inside the cylinder affect the
flight of the cylinder? This is a nontrivial modeling problem. Do some
research (literature search) on what is known, write a report discussing your
findings, and write a detailed account of at least one mathematical result or
numerical experiment that makes a useful prediction from a model.

19.8 FREE-SURFACE FLOW
19.8.1 Free-Surface Flow via Dubreil–Jacotin Transform
The ideal water wave model [Eqs. (15.1)–(15.4)] does not include vorticity
and does not lead naturally to a boundary value problem (BVP) where the
unknown free surface is incorporated into a fixed domain. An alternative
that does allow for these properties, at least in the case of steady flow, is
formulated by considering stream functions instead of potentials.

The project is to determine the free-surface profile of flow over a flat
bottom past a diffuser (see Fig. 19.2).

Begin with some mathematical considerations.

Recall Exercise 13.6 and show that an incompressible flow has a stream
function. Of course, the fluid velocity field (u, v) can be recovered when the
stream function ψ is known:

u = ψy, v = −ψx. (19.14)

A useful idea, for some flow problems, is to find a closed set of equations
for the stream function and use these instead of the Euler equations for the
velocity field. One of the goals of this project is to determine such a set of
equations for the diffuser problem.
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Show, by simply using its definition, that the vorticity ω is given by

ω = −∆ψ.

Also show that if the vorticity vanishes everywhere, then ∆ψ = 0 (as in the
ideal water wave equations) and the flow is given by a potential. Show that
the potential and stream function are related by

φx = ψy, φy = −ψx. (19.15)

Before considering the geometry of the diffuser problem, suppose that
the fluid resides over a horizontal bottom B := {(x, y) : y = −wd} and its
surface is given by S := {(x, y) : y = η(x)} for some unknown function
η. Also, let Ω denote the region occupied by the fluid. The main objective
is to determine η from the boundary and initial data of the physical problem
being modeled.

The simplest case is zero vorticity where the stream function formulation
may be derived directly from the ideal water wave equations and the system
of PDEs (19.15). There is a constant C (uniform over the entire flow) such
that

∆ψ = 0 on Ω,
ψyηx + ψx = 0 on S,

ψx = 0 on B,
1

2
(ψ2

x + ψ2
y) + gη = C on S. (19.16)

The last equation is an expression of Bernoulli’s law

1

2
(ψ2

x + ψ2
y) + gh+

p

ρ
= constant, (19.17)

where g is the magnitude of the acceleration due to gravity (9.8 m / sec2) and
h is the height above some reference surface. In the model, surface pressure
is assumed to be held at a constant atmospheric pressure and the motion of
the water is assumed not to affect the atmospheric pressure. Surface tension,
a topic not covered in this book, is ignored. Constant terms are moved to the
right-hand side to obtain the last equation in display (19.16).

Measurements are required to determine the Bernoulli constant C. For
instance, the depth of the water at some horizontal position together with
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Fig. 19.3 The figure depicts some schematic streamlines, the top and bottom of the fluid domain, and a (dashed) cross
section.

the surface flow speed are enough to determine this value. This number is
simply treated as a parameter for this project.

Imagine the pattern of streamlines for the flow. They are curves in Ω that
are the images of solutions of the autonomous ODE system corresponding
to the vector field (19.14). These curves—also called integral curves of the
vector field with components u and v—never intersect. Why? Moreover,
these curves are level sets of the stream function ψ. Prove this.

An entire region of fluid might be a single level set of the stream function.
How can this happen? In the interesting cases where the fluid is flowing
over the bottom, the usual streamline pattern would be akin to that shown in
Fig. 19.3. The dashed line in the figure is a cross section of the flow; that is,
a curve (in this two-dimensional case) situated such that the flow velocity
field is never one of its tangents. What is the corresponding notion of cross
section for a three-dimensional flow?

In the ideal case depicted in Fig. 19.3, the positions of fluid particles
are determined by a coordinate value on the cross section (at the point of
intersection of the streamline containing the particle and the cross section)
and a second coordinate measuring horizontal position along this streamline.
True, but not yet interesting. To tie the new coordinate system more directly
to the flow, consider choosing the coordinate at a point on the cross section to
be the value of the stream function ψ at this place. Then points elsewhere in
the fluid have two coordinates: the value of the stream function and the usual
horizontal coordinate. Following the notation in the excellent paper [57], the
stream function is adjusted (by adding a constant if necessary) so that its
value on S is zero, and its value on B is a constant p0 to be determined.

The new coordinates are

q = x, p = −ψ(x, y);

the coordinate transformation is called the Dubreil-Jacotin (DJ) transforma-
tion (Marie-Louise Dubriel-Jacotin 1905–1972, see [32]). The minus sign
ensures that the vertical coordinate has a negative value at the bottom of
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the fluid. Because the surface of the fluid is a streamline, its second DJ
coordinate is constant (equal to zero). Likewise, the bottom boundary of the
fluid corresponds to the constant second coordinate p0. Thus, a wonderful
property of the DJ transformation is revealed: It transforms the fluid domain
Ω into a new domain bounded by parallel lines. In particular, the (unknown)
free surface in DJ coordinates is a horizontal line.

Why were the DJ coordinates chosen to be (q, p) and not (p, q), which
might seem more natural? The answer is not important for this project,
but searching for the answer might open new doors. Hint: Learn about
Hamiltonian mechanics.

Once the stream function is adjusted (by adding a constant) so that its
value on the fluid surface is zero, the value of the stream function is also
determined at the bottom of the fluid. To see this, consider the flux of the
fluid velocity field through a vertical cross section. The convention in this
project is (as in Fig. 19.3) flow from right to left. Thus, it is natural to
consider the outer unit normal on a vertical section to be the vector with
components (−1, 0). The flux over the cross section is

flux =

∫ η(x)

−wd

(
u
v

)
·
(
−1
0

)
dy.

Show that this flux is a positive quantity equal to ψ(x,−wd) for 0 ≤ x ≤ `.
Moreover, on the entire level set B that is taken to be a streamline, this
quantity is the same constant p0. In particular, the flux does not depend
on the horizontal coordinate x. The DJ coordinates along the bottom are
(q,−p0) due to the minus sign in the definition of the DJ transformation.

Consider the diffuser geometry in Fig. 19.2. The specified (x, y) coordi-
nates use the length parameters L > ` > 0, the water depth wd > 0, and
the scale factor 0 < sf < 1. The free surface is on the interval [0, `]. The
entire bottom is solid and the upper boundary between the points (`, 0) and
(L, 0) is solid. The inlet is the far-right dashed vertical line and the outlet is
the left-most dashed vertical line.

In the figure, a cubic polynomial function G provides the profile of the
curved solid lower boundary of the diffuser; it is chosen to have zero slope at
its end points. What is the precise formula for this diffuser profile function?
Of course, you are free to try different diffuser profiles to predict their
influence on the flow.
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Fig. 19.4 A schematic diagram of fixed domain Υ using DJ transformation of Ω is depicted.

Flow at the inlet must be specified. The obvious simple choice is uniform
horizontal flow

ψy(L, y) = −a, ψx(L, y) = 0 (19.18)

with the constant a > 0. Recall that atmospheric pressure is specified to have
value zero. The pressure at the inlet must also be specified. The simplest,
but perhaps unrealistic choice, is uniform pressure given by some positive
number pin.

For computation, the nonlinear boundary condition on the free surface S
is

1

2
(ψ2

x + ψ2
y) + gη = C, (19.19)

where the parameter C may be positive, negative, or zero.

The most problematic boundary condition is at the outlet. There is no way
to determine it precisely without taking into account the actual fluid motion
beyond the outlet. Correct specification of outflow is a major problem in
fluid mechanics that does not have a simple solution. You may wish to try
different approaches to appreciate the problem and to see how different
choices might affect the predicted flow. One approach is the do-nothing
boundary condition: the flow is the same just before and just after the
outlet. When the outlet is sufficiently far downstream from the part of the
flow under consideration, this boundary condition makes sense as the flow
should have no memory of what happened far upstream. At least this is
true for viscous flow (which includes dissipation). For the Eulerian flow
considered here, the do-nothing condition is less physically realistic but
perhaps reasonable for determining a first approximation to the actual flow.
Can you do better?

With the physical free-surface problem defined, take advantage of the DJ
transformation to determine a fixed BVP for the change of coordinates. A
minor change in the choice of DJ coordinates is useful to make the problem
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dimensionless and to incorporate the inlet flux into the equations as a control
parameter:

q =
x

L
, p = −ψ(x, y)

p0
. (19.20)

The inverse transformation is taken to be

x = Lq, y = LH(q, p) (19.21)

for an unknown dimensionless function H . The key equation is

y = LH(
x

L
,−ψ(x, y)

p0
). (19.22)

Using the chain rule, an easy computation relates the partial derivatives of
the stream function and the unknown function H:

ψx(x, y) =
p0Hq(

x
L ,−

ψ(x,y)
p0

)

LHp(
x
L ,−

ψ(x,y)
p0

)
, ψy(x, y) =

−p0

LHp(
x
L ,−

ψ(x,y)
p0

)
. (19.23)

Going further, show that Poisson’s equation ∆ψ = 0 in Ω is transformed to

H2
pHqq − 2HpHqHqp + (H2

q + 1)Hpp = 0 (19.24)

on the strip

Υ = {(q, p) : 0 < q < 1, −1 < p < 0}.

Thus, the PDE for the inverse coordinate transform H is defined on a fixed
domain. This is of course the most important feature of the DJ coordinates.

To obtain a PDE BVP for H , the boundary conditions must be set on the
strip Υ (see Fig. 19.4).

The solid bottom of the fluid domain corresponds to the level set {(x, y) :
ψ(x, y) = −p0}. From the key equation and using the diffuser profile
function G, y = LH(q,−1) on this set; therefore,

H(q,−1) =

{
−wd

L , 0 < q < `
L ,

G(Lq)
L , `

L ≤ q < 1.
(19.25)

Likewise, the top boundary corresponds to the level set {(x, y) :
ψ(x, y) = 0} and the key equation reduces to y = LH(q, 0). On the solid
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part of the boundary `/L < q < 1, the boundary condition is simply

H(q, 0) = 0. (19.26)

On the free surface, the boundary condition using the same methodology
would be

H(q, 0) = η(Lq)/L. (19.27)

But, this equation alone is not a viable boundary condition because we do
not know the free-surface elevation η, which is the most important unknown
to be determined. Instead, Eq. (19.27) together with the nonlinear free-
surface boundary condition [Eq. (19.19)], where η appears in an equation,
is used.

Note that the inlet flux is sf wd a and therefore

p0 = sf wd a. (19.28)

Also, define the dimensionless parameters

α :=
C

Lg
, γ :=

(sf wd a)2

2gL3
. (19.29)

Here, α is a measure of the inlet fluid pressure and γ (which is a nonnegative
parameter) measures the product of the inlet fluid velocity and the diffuser
size. This formulation suggests that a smaller diffuser opening and a larger
velocity would produce the same flow as a larger diffuser opening and a
smaller velocity.

After some algebraic manipulation using boundary conditions (19.19)
and (19.27), Eq. (19.28), partial derivatives (19.23), and dimensionless
parameters (19.29), the free-surface nonlinear boundary condition on the
set

{(q, p) : 0 < q <
`

L
, p = 0}

is

γ(H2
q + 1) +H2

p (H − α) = 0. (19.30)
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In view of partial derivatives (19.23) and Eq. (19.28), the inlet condi-
tion (19.18) is recast in the form

Hp(1, p) =
sf wd

L
. (19.31)

Due to the scaling, the control parameter a does not appear. For numerics,
the inlet condition is best expressed as

H(1, p) =
sf wd

L
p, (19.32)

where the constant of integration is taken to be zero so that H vanishes on
the solid top surface of the diffuser.

A do-nothing boundary condition may be viable at the outlet. Perhaps
the simplest possibility is to suppose that the fluid velocity does not change
in the horizontal direction near the outlet. More precisely, we may suppose
that there is some positive ε such that η is constant on the interval [0, ε] and

ψy(0, y) = ψy(x, y)

on the set {(x, y) : 0 ≤ x ≤ ε, −wd < y < η(0)}. Integration
of this expression yields the equality ψ(0, y) = ψ(x, y) + ω(x) for an
arbitrary function ω, which is the constant of integration. Under the further
assumption that (0, y) and (x, y) are on the same streamline for 0 ≤ x ≤ ε,
the function ω vanishes and

ψ(0, y) = ψ(x, y).

Such a condition is not mathematically elegant. It implies (the Neumann
condition) ψx(0, y) = 0, which might be tried instead. Using the DJ change
of coordinates,

H(0,−ψ(0, y)

p0
) = H(

x

L
,−ψ(x, y)

p0
)

for every fixed choice of y. In case (0, y) and (x, y) are on the same
streamline (as they are under the assumption) and the DJ coordinates p =
−ψ(x, y)/p0 and q = x/L are used, the corresponding do-nothing boundary
condition at the outlet is

H(0, p) = H(q, p) (19.33)
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for small 0 < q < ε/L. So, again, this condition might be replaced by
Hq(0, p) = 0.

A fixed BVP for H has been defined. Although the outlook for making
a numerical approximation seems promising, there is a major unresolved
mathematical consideration: Do solutions of the BVP exist and are they
unique? To approach this problem requires a sophisticated mathematical
analysis. As applied mathematicians, we should not try to approximate a
solution of a BVP until we know it exists and is unique. Unfortunately,
the required mathematical analysis is often difficult or simply beyond what
is currently known. Indeed, exactly this issue lies at the heart of many
basic problems of fluid dynamics: existence and uniqueness are generally
unknown. Of course, even if the analytic problem is known to have a unique
solution, the corresponding discrete problem addressed in a computer
code may not have a unique solution and vice versa. Nonlinear problems
are difficult, but they are important and a source of endless fascination.
Numerical experiments may be performed, but caution is advised. One other
point is worth mentioning: The full Navier–Stokes equations—at least as
long as they are considered to be the correct model for fluid motion—
should be used for (numerical) approximations in fluid simulations, and
simplifications of this model (like the irrotational Stokes flow considered
here) should be used for (mathematical) analysis to gain insight into the
true motion of fluids. But sometimes making numerical approximations
of approximate models is useful; here, doing so certainly provides good
practice in making numerical experiments. Are there other reasons why the
full Navier–Stokes model might not be viable for numerical experiments
when modeling a physical problem?

The project challenge is to explore the behavior of the model flow over
the parameter space (especially considering the parameters a and c) by
numerical approximations of solutions of the BVP for H as a method
to obtain approximate streamlines in the physical domain. Is there any
interesting behavior on the free surface? There is unlimited opportunity for
experimentation and analysis. New, carefully obtained results that exhibit
interesting phenomena might be part of a publishable research article. Of
course, the ultimate project would be to compare numerical predictions
using the model equations with physical experiments.

Here, the diffuser is viewed as the outlet of some covered channel
containing flowing water and the downstream free-surface profile is to be
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Fig. 19.5 The figure depicts computed streamlines for a cubic diffuser profile for irrotational flow with system
parameters L = 10.0, ` = 9.0, wd = 1.0, sf = 0.8, a = 100.0, c = a2/2, and g = 9.8. The DJ fixed
domain BVP was solved on a 40× 40 grid and the stream function was approximated from the computed solution. In
the figure flow is from right to left, and the dashed line marks the downstream outlet of the diffuser.

determined. But, this is not the usual situation. Diffusers are used in gas
flow to manipulate pressure in ducts. In this case boundary layers and
vorticity play an important role. This subject is ripe for investigation as part
of the suggested project. Of course, many other free-surface problems in
hydraulics could be approached using the DJ transformation (for instance,
flow over a weir as in Fig. 19.6). Also, vorticity may be included in the
model (see, for example, [57]).

A few programming notes might prove helpful. Set up a rectangular grid
for the fixed BVP on the rectangle [0, 1]×[−1, 0] and use the PDE forH and
the boundary conditions to write one equation for each computational node
on the grid. In case your grid has m horizontal and n vertical subdivisions,
there will be (m+ 1)(n+ 1) nodes. The computational nodes are the union
of the subset of these, consisting of all interior nodes ((m− 1)× (n− 1) of
them) and the boundary nodes corresponding to the free surface, which may
be taken to be the nodes with indices (i, n+ 1), i = 2, 3, . . . ,floor(`m/L).
In this scheme, the upper left node is not in the computational domain; it
is used to implement the do-nothing boundary condition on the downstream
end of the free surface: the value ofH is the same at the last two downstream
nodes. With this convention, there are exactly N := (m − 1)(n − 1) +
(floor(`m/L)− 1) nonlinear equations in N variables.

The equations (rearranged so that their right-hand sides are zero) may be
viewed as defining a function F : RN → RN . Your job is to find a zero of
this function. There should be exactly one zero, but this fact is not obvious.
Newton’s method (or one of its variants) can be used to approximate this
root. Once it is in hand, you have an approximation of the function H
over the rectangular domain. This approximation can be used to construct
streamlines in the physical domain. Strive for graphical representations such
as in Fig. 19.5.
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Fig. 19.6 Computed streamlines are shown for flow over a weir with flat top and cubic sides. The flow is from right to
left with constant horizontal inlet velocity specified and do-nothing boundary conditions imposed at the outlet.

Implementation of Newton’s method to solve F (x) = 0 requires the
derivative DF evaluated at each iterate and a method to approximate
the solution of a system of linear equations. The basic algorithm for
approximating a root of a nonlinear function F : RN → RN should be
familiar from reading this book (if not, see Appendix A.14 ): Make an initial
guess x0. Suppose that the iterate xk, for some k ≥ 0, has been computed.
To obtain the next iterate xk+1, solve the linear system

DF (xk)y = F (xk)

and set xk+1 = xk − y. Computing and coding the derivative DF (xk) is
feasible for this project. An iteration technique, such as SOR, can be used
to solve the linear system at each step; Gaussian elimination is a viable
(perhaps better) alternative. With a faithful implementation, convergence is
rapid, but the computational overhead per step is high and encoding the
components of the derivative is tedious. You might wish to learn about
automatic differentiation or computer algebra if you wish the computer to do
this task. The number of equations is on the order of mn and thus becomes
large as the grid is refined. Taking advantage of the banded structure of the
matrix corresponding to the derivative allows finer grids to be employed.

One way to avoid computing the derivatives is to approximate them
using difference quotients (divided differences). A good way to make the
approximation from a subroutine that approximates F , is to approximate
the partial derivatives of F by viewing them as directional derivatives in the
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directions of the usual basis vectors:

d

dt
F (x0 + tei)

∣∣
t=0

= DF (x0)ei.

The suggested approximation of the first column of the matrix DF (x0) in
the usual basis is, for some small t > 0,

DF (x0)ei ≈
1

t
(F (x0 + tei)− F (x0)). (19.34)

Is there a good way to chose t? Comment on this issue. When t is too
large, the truncation error is large; when t is too small, significant digits
can be lost (that is, the roundoff error can be large) due to subtraction of
nearly equal quantities (which is one of the insidious problems in numerical
computation).

Another better alternative is to use a quasi-Newton method, for example
Broyden’s method (Charles George Broyden, 1965) as explained in Ap-
pendix A.14.

All this being said, there is a major difficulty in implementing a
viable code: the Jacobian matrix DF (xk) is highly ill-conditioned (nearly
singular). This is the reason for choosing the perhaps nonphysical inlet speed
of 100 meters/second. For the parameters used to make Fig. 19.5 the ill-
conditioning is manageable. At least, the DJ BVP suggested in this project
is an excellent example of ill-conditioning arising in a realistic model.

A remedy for the ill-conditioning (which goes by the name regulariza-
tion) is beyond the scope of this book, but is well worth your attention. Very
briefly, imagine a linear system Ax = b that does not have a solution. The
matrix A is singular and b is not in the range of this operator, or perhaps
A has more rows than columns as in the least squares problem discussed
in Appendix A.12. An approximate solution is sought as the minimizer of
‖Ax−b‖2. In an ill-conditioned problem whereA is a nearly singular square
matrix, it can be advantageous to seek solutions of the original linear system
as the minimizer of the function

x 7→ ‖Ax− b‖2 + λ2‖x‖2

for a carefully chosen positive real number λ called the regularization
parameter. The idea is to penalize a vector x for which the norm of the
residual (‖Ax− b‖) is small whenever the norm of this vector (scaled by λ)
is too large. Minimizing this function for fixed λ can easily be transformed
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to a least squares problem and solved efficiently using the singular value
decomposition also discussed in the same appendix. Regularization is an
important subject that goes far beyond the basic statements made here (see,
for example, [47]).

19.8.2 Free-Surface Flow via the Dirichlet-to-Neumann
Operator
Reconsider the ideal water wave model [Eqs (15.1)–(15.4)], and recall that
it is a free boundary value problem. A clever reformulation (originally due
to V. E. Zakharov [124] and used to advantage by many other authors, for
example, [22] and [119]) replaces the free BVP for the unknown free-surface
profile function η and fluid velocity potential φ by an equivalent fixed BVP
for η and the new auxiliary function ζ defined by ζ(x, t) = φ(x, η(x, t), t).

To formulate the new BVP, ignore for the moment the definition of ζ
and simply consider it to be an arbitrary smooth function of (x, t). Using
the surface profile η and the potential φ define the Dirichlet-to-Neumann
operator G by

G(η)ζ = φy − φxηx,

where φ is the solution of the PDE

φxx + φyy = 0 on Ω,
φy = 0 on B,
φ = ζ on S (19.35)

together with as yet unspecified boundary conditions on the left and right
boundaries of the fluid-filled domain Ω. The operator G takes η and ζ as
arguments and produces a new function of (x, t).

The desired reformulation of the ideal water wave model is the system of
PDEs

ηt = G(η)ζ,

ζt = −gη − ζ2
x

2
+

(G(η)ζ + ηxζx)2

2(1 + η2
x)

(19.36)

together with appropriate initial and boundary data.

The first part of the project is to show the equivalence of the two systems
of PDEs. At least, show that if η and φ solve the ideal water wave model,
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then η and ζ solve the first-order system of differential equations (19.36).
The first differential equation in this system follows immediately from the
definition of the operator G; the second differential equation is obtained
by first differentiating both sides of the definition of ζ with respect to time
(see [22]).

The second part of the project is to apply the reformulated model to
approximate the solution of a free boundary problem. Although the steady
state diffuser problem discussed in the previous subsection would be an
excellent choice, a simpler problem is suggested for an initial approach to
numerical computation with model (19.36).

Imagine two-dimensional ideal flow over a weir as in Fig. 19.6, where
the flow is from right to left. To ensure a fixed BVP, remove the boundary
by assuming periodic boundary conditions; that is, the state variables are
all exactly the same at both ends of the fluid domain. Or, if you like, the
flow is on the surface of a cylinder. Specify two functions p(x) and q(x),
which respect the periodic boundary conditions, and assign the initial data
η(x, 0) = p(x) and ζ(x, 0) = q(x). Numerically approximate the pair
(η(x, t), ζ(x, t)) by integrating forward in time. Does the approximation
appear to reach a steady state? If so, make a figure similar to Fig. 19.6 to
display the approximate steady state. Does the steady state depend on the
initial data? Each forward time step of the numerical scheme will require the
(approximate) solution of BVP (19.35). The latter task should be relegated
to a subroutine designed to approximate solutions of Laplace’s equation on
a fixed domain with mixed boundary data.

Periodic boundary conditions may not be physically realistic. For ex-
ample, suppose the inflow at the right end of the two-dimensional fluid
domain is specified for all time t ≥ 0 and the problem is to determine
the downsteam flow. Although the inlet boundary conditions are set by the
physical problem, formulating physically realistic boundary conditions at
the outlet is a genuine challenge and a worthy modeling project. Of course,
inlet and outlet boundary conditions are required to solve for the potential
potential φ used to define the Dirichlet-to-Neumann operator.

For simplicity, assume that the inlet velocity field is horizontal with
constant magnitude. Note that the outlet boundary conditions must at least
respect conservation of mass; that is, the total outlet flux must be inlet
velocity a times water depth wd. Under the assumption that the outlet
has horizontal coordinate x = 0 and outlet velocity is horizontal, mass
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conservation requires that

−
∫ η(0,t)

−wd
φx(x, y, t) dy = awd .

In case the horizontal velocity component is constant (say φx(0, y, t) ≡ −b),

b =
awd

η(0, t) + wd
.

The corresponding boundary condition is

φx(0, y, t) ≡ − awd

η(0, t) + wd
.

Of course, the value of b changes as the system evolves. For numerical time
stepping, the value η(0, t) can be used to set the boundary condition during
the computation of (η(x, t+ ∆t), ζ(x, t+ ∆t).

To reiterate, the proposed problem is to obtain an approximation of
steady state flow by marching to a steady state by integrating the system
forward in time. The key advantage of the Dirichlet-to-Neumann operator in
this scenario is the avoidance of a free BVP at each time step. Start with an
initial specification of the functions η and ζ over the horizontal extent of the
computational domain, solve the fixed BVP (19.36) for the potential φ in the
computational domain with top and bottom horizontal boundary conditions
set by the choice of η and ζ and left and right boundary conditions set by
assumption, use the computed potential together with η and ζ to advance
one step in time to produce updated η and ζ, treat these updates as the new
initial data, and repeat until the system settles to a steady state.

The solution of the Laplace equation at each time step can be compu-
tationally expensive. With a deeper mathematical analysis, more efficient
algorithms to compute the Dirichlet-to-Neumann operator (at least for
the case of periodic boundary conditions) can be constructed (see, for
example, [119]). A direct approach to the Laplace BVP requires treatment of
the curved upper boundary given by the graph of y = ζ(x, t) for some fixed
t. Curved boundaries can be confronted directly by taking appropriate finite
differences as parts of the boundary pass through rectangular computational
cells, the boundary can be approximated by a curve consisting only of
horizontal and vertical line segments that are boundaries of cells, or the
computational domain can be transformed to a rectangle at the price of
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modifying the PDE. The latter method might be implemented by using the
DJ transformation discussed in the previous subsection.

Consider applications of the Dirichlet-to-Neumann operator approach to
the diffuser problem or some other flow problem that you find interesting?

A theoretical problem, which is not too difficult, is to redo the Dirichlet-
to-Neumann operator approach using the stream function instead of the
velocity potential. Discuss the advantages or disadvantages of using the
stream function.

An understanding of the mathematical context in which a model is set
often leads to advantageous reformulations. At least, thinking should always
precede computing.

19.9 CHANNEL FLOW TRAVELING WAVES

Consider the dimensionless channel flow model [Eqs. (17.74)]:

As = −Qξ + p,

Qs = − (1− ι

2
)
(Q2

A
)
ξ
−
(A2

2

)
ξ

+
1

δ
(Qξξ − δ

(QAξ
A
)
ξ
)− cQ

2

A2

+ σ
(
ε
Q

A
−
(Q
A

)2)
+A sin(ϑ)−ABξ. (19.37)

Does this system support traveling waves in the form of fronts or pulses?

In pure form, the traveling wave problem would be for a channel flow
with no external flow (p = 0), a flat bottom (Bξ = 0), and no inclination
(θ = 0). As usual, the basic idea is to seek solutions for the reduced model
of the form

A(ξ, s) = F (ξ − Cs), Q(ξ, s) = G(ξ − Cs),

where C is some unknown wave speed.

Using the first equation of the model, show that the wave profiles must
be related via

G(t) = CF (t) + b,

where t is used here as a new independent variable and b is the constant of
integration. There are two undetermined constants, but using the relation,
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only one (second-order) ODE. This is obtained from the second PDE by
introducing F andG, differentiating, and then using the relation to eliminate
G. At this stage, the translation ξ −Cs may be replace by t and, for beauty,
F may be set to x and F ′ to y. This introduces the equation x′ = y and the
second-order ODE may be replaced by a system of the form

ẋ = y, ẏ = f(x, y).

Find f explicitly.

A traveling wave front exists when both limits limt→±∞ x(t) exist and
are distinct real numbers; a traveling pulse exists when both limits exist and
are the same. Explain this statement.

For the required limits to exist, solutions must approach rest points of the
system of ODEs in the phase plane. In particular, rest points of appropriate
types must exist. Moreover, physically realistic traveling waves correspond
to orbits t 7→ (x(t), y(t)) where x(t) > 0 for −∞ < t <∞.

Start with the case where the wave speed is C > 0, Cδ < 1, and σ =
0, and show there are no traveling wave solutions. Something surprising
happens when rest points are analyzed. What is this surprise? Recall that the
term in the equation of motion with factor σ models the rate of change of the
downstream component of velocity with respect to the vertical coordinate.
Due to the crude approximation used to model this effect, this term was
previously ignored.

Suppose σ > 0. Show that traveling wave fronts exist for C > 0 and
Cδ < 1.

What would such a front look like with respect to the original state
variables of the channel flow model?



CHAPTER 2020
Classical Electromagnetism

Two jewels of classical physics are James Clerk Maxwell’s field equa-
tions (1861–1862) and the Lorentz force law (Henrick Lorentz, 1892) for
electrodynamics. Although this field theory is not exact in some extreme
situations, it is bedrock physics that has been used successfully to solve
many problems in applied science. Maxwell compiled the known laws
of electrodynamics introduced by Gauss and Faraday, and he corrected
Ampère’s law to produce the full set of field equations. The Lorentz force
law is used to determine the motion of a charged particle moving in an
electromagnetic field.

As fundamental laws, the equations of electrodynamics are simple to
understand. The complete theory, in its essential features, will be explained
in just a few paragraphs. Of course, this is not the entire story. In applications
to the physical world, first-principle applications are usually impossible
due to the existence of unknown or approximately known charge and
current densities in materials. For practical applications, constitutive laws
and approximate forms of the theory are used. Circuit theory is a prime
example.

The main theme of this chapter is the application of electromagnetism
to transmission lines. This realistic and practical application serves to
illustrate the use of differential equations in an important application of
electromagnetism.

The chapter is meant to be self-contained, but it is certainly not a
complete course of study in electrodynamics. There is more emphasis on
the mathematics and practical application than the underlying physics. In
particular, the field equations are stated without motivation; they are not
derived from an action principle, and their relativistic invariance—which is
another milestone in the history of physics—is ignored.

20.1 MAXWELL’S LAWS AND THE LORENTZ FORCE LAW

Four time-dependent vector fields in three-dimensional space are considered
in Maxwell’s theory: The electric field E, magnetic field H , the displace-
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ment field D, and the magnetic induction field B. In SI units, E is measured
in volts per meter,H in ampere’s per meter,D in coulombs per square meter,
and B in webers per square meter. In addition, the charge density is denoted
by ρ and the current flux density by J with respective units of coulombs per
cubic meter and ampere’s per square meter.

An important note is to beware of different systems of units used in
electromagnetism. The SI units, which at present are the most popular,
are used here. A consistent choice of units is of course essential when
mathematical models are compared with experiments.

Gauss’s law states that the electric flux through a closed surface is the
total charge enclosed by the surface; in equations,∫

∂Ω
D · dS =

∫
Ω
ρ dV. (20.1)

For magnetism, Gauss’s law states that the magnetic flux through a closed
surface is zero; that is, ∫

∂Ω
B · dS = 0. (20.2)

Faraday’s law of induction states that the line integral of the electric field
around a loop equals the negative time derivative of the magnetic flux
through the surface bounded by the loop:∫

∂Ω
E · d` = − d

dt

∫
Ω
B · dS. (20.3)

And, Maxwell’s correction of Ampère’s law states that the integral of the
magnetic field around a loop equals the current flux through the surface
bounded by the loop plus the time derivative of the electric flux through the
surface bounded by the loop:∫

∂Ω
H · d` =

∫
Ω
J · dS +

d

dt

∫
Ω
D · dS. (20.4)

Maxwell’s correction of Ampère’s law together with Gauss’s law implies
that charge is conserved; that is, the current flux through a closed surface is
the negative time derivative of the charge enclosed by the surface:∫

∂Ω
J · dS = − d

dt

∫
Ω
ρ dV. (20.5)
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In case the fields are sufficiently smooth, the integral forms of Maxwell’s
equations can be recast as equivalent partial differential equations (PDEs)

∇ ·D = ρ, (20.6)
∇ ·B = 0, (20.7)

∇× E = −∂B
∂t
, (20.8)

∇×H = J +
∂D

∂t
, (20.9)

and the conservation of charge (also called the continuity equation) is given
by

∂ρ

∂t
+∇ · J = 0. (20.10)

The flux densities are related to the field intensities by constitutive
relations. In linear, homogeneous, and isotropic materials (where the po-
larization is parallel to the electric field, the material is the same everywhere
and in all directions), the constitutive relations are

D = εE, B = µH, (20.11)

where ε is the (electric) permittivity and µ is the (magnetic) permeability of
the medium in which the fields reside. Also, the current density is related to
the electric field by the constitutive relation (called Ohm’s law)

J = σE, (20.12)

where σ is the (specific) conductivity of the medium. The new quantities
ε, µ, and σ may be functions of space and time as well as the fields E
and H . The constitutive laws given here are in the simplest forms that are
used in practice for real materials. The reader should be aware that the
fields in some composite materials are related (perhaps by the design of the
material) by much more complex relations. Indeed, much of the difficulty
in applications of electromagnetism is dealing with more complex materials
and their electromagnetic properties. Materials where D is proportional to
E and B is proportional to H are called linear.

For simplicity, the materials considered here are linear and isotropic
(that is, materials whose electromagnetic properties are the same in all
directions). Under this assumption, ε, µ, and σ may depend on time but
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not on position. For simplicity a linear and isotropic material will simply be
called isotropic.

Constitutive equation (20.12) is used to define conductors and dielectrics.
A conductor is a material with large conductivity; a dielectric is a material
with small conductivity. A perfect conductor is a material with infinite σ;
that is, E = 0. An insulator is a material with σ = 0; that is, J = 0.

The speed of light in a material is (defined to be)

c =
1√
εµ

and the impedance by

Z =

√
µ

ε
.

In free space,

ε = ε0 ≈ 8.854× 10−12 farad /m, µ = µ0 ≈ 4π10−7 henry /m .

Of course, the free space speed of light c0 = 1/
√
ε0µ0 has the usually

quoted value c0 ≈ 2.9979× 108 m / sec.

Using constitutive relations (20.11) and assuming that ε and µ are
constants, Maxwell’s equations take the (perhaps more familiar) form

∇ · E =
1

ε
ρ, (20.13)

∇ ·B = 0, (20.14)

∇× E = −∂B
∂t
, (20.15)

c2∇×B =
1

ε
J +

∂E

∂t
. (20.16)

Because ∇ ·B = 0, there exists a vector potential A such that

B = ∇×A. (20.17)

Clearly,A is not uniquely determined byB (for example, the addition of the
gradient of any function to A would not affect B). Combining Eqs. (20.8)
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and (20.17), we obtain

∇× (E +
∂A

∂t
) = 0, (20.18)

which implies that there exists a scalar potential ϕ such that

E = −∇ϕ− ∂A

∂t
. (20.19)

Again, the choice of ϕ is not unique. In particular, given the potentials A
and ϕ, if f is an appropriately smooth function of space and time, then the
redefined potentials

A′ = A+∇f (20.20)

and

ϕ′ = ϕ− ∂f

∂t
(20.21)

yield the same fields E and B in Eqs. (20.17) and (20.19). This is called the
gauge freedom for the potentials A and ϕ.

Combining Eqs. (20.16), (20.17), and (20.19), and using the vector
identity

∇×∇×A = ∇(∇ ·A)−∆A (20.22)

(which defines the vector Laplacian ∆A in this context), we obtain the
following PDE for the vector potential:

1

c2

∂2A

∂t2
−∆A =

J

εc2
−∇(∇ ·A+

1

c2

∂ϕ

∂t
). (20.23)

Assuming the Lorentz gauge condition

∇ ·A+
1

c2

∂ϕ

∂t
= 0, (20.24)

Eq. (20.23) reduces to the nonhomogeneous wave equation

1

c2

∂2A

∂t2
−∆A = µJ. (20.25)
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Combining Eqs. (20.6), (20.19), and (20.24), we obtain the nonhomoge-
neous wave equation for ϕ:

1

c2

∂2ϕ

∂t2
−∆ϕ =

ρ

ε
. (20.26)

If initial conditions forA and ϕ (and their first time derivatives) are imposed
in the distant past with sufficient spatial decay, then Eqs. (20.25) and (20.26)
have the retarded potential solutions

A(r1, t) =
µ

4π

∫
R3

J(r2, t− r12

c )

r12
dV (r2) (20.27)

and

ϕ(r1, t) =
1

4πε

∫
R3

ρ(r2, t− r12

c )

r12
dV (r2), (20.28)

where r1, r2 ∈ R3 and r12 = |r1−r2|, where |·| denotes the usual Euclidean
norm.

The observation—made by Maxwell—that the electromagnetic fields all
satisfy wave equations—which is an obvious corollary because the vector
and scalar potentials satisfy wave equations—is one of the most important
moments in the history of science. The upshot is that Maxwell’s theory
predicts the existence of electromagnetic waves that travel at the speed
of light. Guglielmo Marconi (building on earlier work of Heinrich Hertz)
verified this prediction with his discovery (circa 1896) of the long-distance
transmission of radio (frequency) waves. He was awarded a Nobel prize
(shared with Karl Ferdinand Braun) in 1909 for the body of his work on
telecommunications.

A charged particle of mass m, charge q, and velocity v moves in the
electromagnetic field (at least for velocities that are small compared with
the speed of light) according to Newton’s second law of motion and the
Lorentz force law:

d

dt
(mv) = q(E + v ×B). (20.29)

Exercise 20.1. Show that conservation of charge is a consequence of Maxwell’s
equations. Hint: Compute the divergence of the Maxwell–Ampère law and Gauss’s law.
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Exercise 20.2. Use the Lorentz force equation to determine the motion of a single
charged particle, with unit mass and negative unit charge, in two cases: (a) A constant
electric field E and (b) A constant magnetic induction field B.

20.2 BOUNDARY CONDITIONS

Although the electromagnetic fields are assumed to be continuous in each
isotropic region of a medium in which the fields reside, the fields are discon-
tinuous at material interfaces in the presence of surface charges or currents at
these boundaries. Maxwell’s equations imply that the discontinuities are not
arbitrary. Rather, definite boundary conditions are imposed at an interface.

The simplest case is for the magnetic flux B. Indeed, consider a volume
Ω, taken for simplicity to be a solid cylinder, with the interface between the
two media cutting the cylinder transverse to its central axis. Using Eq. (20.7)
and the divergence theorem, we have that

0 =

∫
Ω
∇ ·B dV =

∫
∂Ω
B · η dS,

where η is the outward unit normal on the surface of the cylinder. With
the configuration just described, the top and bottom of the cylinder are
essentially parallel to the interface. These surfaces converge to the area equal
to the intersection of the interface with the cylinder as the lateral surface
height of the cylinder shrinks to zero. To take advantage of this limit, write

0 =

∫
∂Ω
B · η dS =

∫
top
B · η dS +

∫
bot
B · η dS +

∫
lat
B · η dS,

where η denotes the outward unit normal restricted to the corresponding part
of the cylinder boundary. By passing to the limit as the lateral surface height
shrinks to zero, the last equation becomes

0 =

∫
top
B · ηtop dS +

∫
bot
B · ηbot dS.

Choose a unit normal for the surface interface of the two materials and note
that in the limit it must be ηtop or ηbot. Suppose the unit normal is ηtop, which
is of course −ηbot. We then have

0 =

∫
top
B · ηtop dS −

∫
bot
B · ηtop dS.
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The tangential component of B along the interface plays no role in the
formula; it might be discontinuous across this boundary. But, by shrinking
the surface to some point in this set, the equality of the integrals implies
that the normal components of the B field in the two adjacent media (which
are labeled a and b with the interface normal pointing from a to b) must
be the same at the chosen point. Thus, the normal component of the field is
continuous across the shared interface boundary. The same result is encoded
in the formula

(Bb −Ba) · η = 0, (20.30)

where Ba denotes the limiting value of the B field in the region marked
a at the boundary of this set and Bb is defined similarly. This continuity
statement is called the electromagnetic boundary condition for the B field.

Similar (perhaps more difficult) arguments imply boundary conditions
for the remaining fields.

By choosing the unit normal η at the materials interface to point from
medium a toward medium b, the cross product of the difference of the E
fields (taken in the appropriate order) with the unit normal vanishes:

(Eb − Ea)× η = 0, (20.31)

and the difference of the normal components of the D field taken in the
appropriate order is equal to the surface charge density:

(Db −Da) · η = ρinterface. (20.32)

With the same unit normal η as for the D field boundary condition, the
H field boundary condition is

(Hb −Ha)× η = Jinterface. (20.33)

Eqs. (20.30)–(20.33) are called the (usual) electromagnetic boundary
conditions.
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20.3 AN ELECTROMAGNETIC BOUNDARY VALUE
PROBLEM

Maxwell’s laws [Eqs. (20.6)–(20.9)] are eight scalar equations for the twelve
unknown components of the fields. Thus, at the outset, the system of
equations is underdetermined. The constitutive relations reduce the number
of unknown field components to the six components of the two fields B and
E. With this modification, the new system appears to be overdetermined:
eight equations for six unknowns. But, for given charge and current densities
that satisfy the continuity equation in an isotropic, homogeneous, and linear
medium (constant permittivity ε > 0 and permeability µ > 0), the system

∂B

∂t
= −∇× E,

∂D

∂t
= ∇×H − J,

D = εE,

B = µH, (20.34)

which includes the constitutive relations, has the same number of equations
and unknowns (12 equations in 12 unknowns). By substituting the constitu-
tive relations, this system is reduced to

∂B

∂t
= −∇× E,

εµ
∂E

∂t
= ∇×B − µJ. (20.35)

It has six equations and six unknowns.

In physical applications, E and B fields that satisfy system (20.35)
can always be modified to produce a solution of Maxwell’s equations that
satisfies the electromagnetic boundary conditions. An outline of the proof
of this result is given in the remainder of this section.

Consider some homogeneous medium that fills a region Ω in space that
has a piecewise smooth boundary ∂Ω. Suppose that ∂Ω is the interface
to some medium where the electromagnetic field (B̃b, Ẽb) is given. The
medium in Ω is labeled a and the medium outside of Ω is labeled b as in the
discussion of the electromagnetic boundary conditions, and the unit normal
defined on ∂Ω points into the b medium.
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Suppose that B and E are twice continuously differentiable vector fields
that satisfy Eqs. (20.35) and extend continuously to ∂Ω.

By applying the divergence operator to both sides of Eqs. (20.35), using
the continuity equation (ρt + ∇ · J = 0), and using the vector identity
∇ · (∇×X) = 0, we have that

∂(∇ ·B)

∂t
= 0,

∂(∇ · εE − ρ)

∂t
= 0.

In other words, ∇ · B and ∇ · εE − ρ are scalar functions on Ω that are
independent of time. For notational simplicity, define

f := ∇ ·B,
g := ε∇ · E − ρ.

Recall the Helmholtz decomposition (which is also called the fundamen-
tal theorem of vector analysis): Let Ω be an open set in three-dimensional
space with (piecewise) smooth boundary ∂Ω. If (1) h is a smooth function
and Y a smooth divergence-free vector function defined on Ω, (2) γ is a
smooth function and Υ a smooth vector function defined on ∂Ω, then there
is a unique vector function X defined on the closure of Ω such that

∇ ·X = h, ∇×X = Y

on Ω and either

X · η = γ

or

X × η = Υ

on ∂Ω. Moreover there is a scalar function φ and a vector function Z defined
on Ω such that

X = ∇φ+∇× Z.

The latter equality is called a Helmholtz decomposition of X (for a proof,
see [30] or [14]).
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According to the Helmholtz theorem, there are (time-independent) vector
fields F and K defined on Ω such that

∇ · F = −f, ∇× F = 0,

∇ ·K = −g, ∇×K = 0,

and on ∂Ω,

F · η = (B̃b −Ba) · η, K × η = (Ẽb − Ea)× η.

In Ω, define the modified fields

B̃a := B + F, Ẽa := E +K.

Gauss’s law is satisfied for these fields. Indeed,

∇ · B̃a = ∇ · (B + F ) = f +∇ · F = 0,

ε∇ · Ẽa = ε∇ · (E +K) = ε(∇ · E − g) = ρ.

Using that F and K are time independent, Eqs. (20.35) remain valid for the
fields B̃a and Ẽa. In fact,

∂B̃a
∂t

=
∂B

∂t
+
∂F

∂t
=
∂B

∂t
= −∇× E = −∇× (Ẽa −K) = −∇× Ẽa,

µε
∂Ẽa
∂t

= µε
∂E

∂t
= ∇×B − µJ = ∇× (B̃a − F )− µJ = ∇× B̃a − µJ.

At the boundary,

(B̃b − B̃a) · η = (B̃b − (B + F )) · η = (B̃b −B) · η − (B̃b −Ba) · η = 0,

(Ẽb − Ẽa)× η = (Ẽb − (E +K))× η = (Ẽb − E)× η −K × η = 0.

Thus, our goal is achieved: The fields B̃ and Ẽ satisfy the full Maxwell’s
equations together with the electromagnetic boundary conditions. Also, with
the definitions

D̃a := εẼa, H̃a :=
1

µ
B̃a,

the interface charge and current densities are modeled by

(D̃b − D̃a) · η = ρinterface, (H̃b − H̃a)× η = Jinterface.
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In case the surface charge and current densities are given, the boundary value
problem (BVP) should be solved for theD andH fields. TheE andB fields
are then defined by the constitutive relations.

System (20.35) may be difficult to solve for the unknown fields B
and E. In practice, physical intuition is often used to suggest solutions
of some special type (sinusoids, for example) that are expected to satisfy
the boundary conditions and the field equations (including the Gauss laws)
but not necessarily the initial data. The solution of the field equations is
sought as a linear combination (superposition) of solutions of the special
type that does satisfy the initial data. This strategy is often successful. If
not, numerical methods are used to approximate the desired solution.

A procedure has been outlined that can be used to determine a solution of
Maxwell’s equations that satisfies the electromagnetic boundary conditions.
Perhaps a different procedure would produce a different solution. This
would not be satisfactory for a physical theory. The BVP should produce
a unique solution once the charges and currents are specified and the initial
values of the fields are given. In fact, under these conditions the fields are
unique.

To show the uniqueness of solutions, suppose there are two elec-
tromagnetic fields (B1, E1) and (B2, E2) that satisfy the full Maxwell
system together with the boundary and initial data. In particular, these
electromagnetic fields satisfy system (20.35). The boundary data is assumed
to include the assumption that there is a specified external field Eb so
that both E1 and E2 if taken as Ea satisfy the electromagnetic boundary
condition [Eq. (20.31)].

Define new fields B := B1 − B2 and E := E1 − E2. The strategy is to
prove that (B,E) is zero.

By substitution into system (20.35), it follows immediately that

∂B

∂t
= −∇× E, εµ

∂E

∂t
= ∇×B.

Define a new quantity

Q :=

∫
Ω

( ε
2
E · E +

1

2µ
B ·B

)
dV
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and note that by using the divergence theorem and a vector identity,

dQ

dt
=

∫
Ω

(
εE · ∂E

∂t
+

1

µ
B · ∂B

∂t

)
dV

=
1

µ

∫
Ω

(
E · ∇ ×B −B · ∇ × E

)
dV

= − 1

µ

∫
Ω
∇ · (E ×B) dV

= − 1

µ

∫
∂Ω
E ×B · η dS

=
1

µ

∫
∂Ω
B · E × η dS.

By subtracting the electromagnetic boundary condition for E1 and E2, we
have that E × η = 0 on the boundary of Ω. Thus, Q must be a time-
independent scalar function. At the initial time, both (B1, E1) and (B2, E2)
satisfy the same initial data. This means the electromagnetic field (B,E)
vanishes at the initial time. Hence, Q vanishes for all time. By inspection of
the integrand in the definition of Q (which is the square of a length of the
electromagnetic field with respect to a new inner product), we must have as
desired that (E,B) is the zero electromagnetic field at every instant of time
that it exists.

The field E×B is called the Poynting vector; it plays a role in problems
involving electromagnetic energy, which is given by the quantity Q. Note
that the uniqueness argument includes a proof that electromagnetic energy
is conserved.

From a mathematical perspective, an initial boundary value problem
(IBVP) is called well posed when it has a unique solution that depends
continuously on the initial data and the boundary data. The idea for this
definition should be clear. The continuous dependence requirement is a
precise way of saying that small changes in the data result in small changes
in the solution. In a physical problem, the data might be measured by
experiment. For a well posed problem, small errors in measurements of
boundary or initial data would be expected to change the solution by a
comparable small amount. Of course, to quantify what is meant by a small
amount requires further analysis that is beyond the scope of this book.

Exercise 20.3. Suppose that f is defined and smooth on a rectangular solid box Ω in
three-dimensional space whose boundary has outer unit normal η. Show that there is a
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vector function F defined on Ω such that ∇ · F = −f and F · η = 0. Hint: Look for F
as the gradient of a scalar function and use Fourier series.

20.4 COMMENTS ON MAXWELL’S THEORY

Maxwell’s theory is a description of the fields produced by charged particles:
The fields are produced once the charge and current densities are known.
One of the main applications of the theory occurs under the assumption
that the charge and current densities are specified (along with initial and
boundary conditions and the constitutive laws for the behavior of the fields
in some medium); the problem is to determine the electromagnetic fields.
In addition, the Lorentz force law specifies how charged particles interact
with given electromagnetic fields. Under the assumption that the fields are
specified, the motion of charged particles is determined using mechanics;
that is, force—including the Lorentz force—equals mass times acceleration
for slow particles and, for particles moving with nearly the speed of light,
force equals the time rate of change of mass times velocity v divided by
the Lorentz factor

√
1− v2/c2, where c is the speed of light. In both cases,

the motions of the charged particles is governed by a system of ordinary
differential equations. These two aspects of Maxwell–Lorentz theory are the
bedrock of applied electromagnetism and they are enormously successful in
making useful predictions. Both, however, are not correct at a fundamental
level where the fields and the motions of charges must be coupled and solved
simultaneously.

Suppose there were exactly two charges in the universe and in some
inertial coordinate system one of the charges is accelerating relative to the
other. It produces an electromagnetic field that moves at the finite speed of
light. The other particle interacts with this field (after the delay required for
the field to reach it). The second particle produces an electromagnetic field
that will eventually interact with the first particle. The particles also interact
with the fields that they produce. So, to determine the motion of the two-
particle system requires a coupling of the fields produced by the moving
charges and the interactions (via the Lorentz law) of these fields with the
particle motions. There does not seem to be a complete solution of this
electrodynamic two-body problem. Indeed, when the self force (radiation
reaction) is taken into account, the theory leads to apparent contradictions
that have not been resolved (see, for example, [37]).
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Fortunately, excellent results that agree with experiments are obtained
by making approximations and ignoring small interaction effects. A strong
electromagnetic field can be produced and used to determine the motions
of a few (relative to the strength of the field) charges by simply ignoring
the interaction of the fields produced by the test charges on the strong
field. Likewise, the fields around a conductor, for example, can be measured
without taking into account the interactions of these fields with the strong
current in the conductor. For most applications it is not necessary to use the
full coupling of the fields and the charges. But, it is wise to recognize and
understand the approximations that are employed.

One tool for avoiding the Maxwell–Lorentz coupling is to assume Ohm’s
(constitutive) law: current density is the conductance times the electric field:
J = σE. It replaces the Lorentz force law by specifying the coupling of the
current density and the electric field.

20.5 TIME-HARMONIC FIELDS

Under the assumption that all fields can be represented as a superposition
of sinusoidal fields, many problems in electrodynamics are simplified by
considering sinusoidal fields oscillating at some fixed frequency. From a
more sophisticated mathematical viewpoint, which will not be considered
here, we simply transfer the fields from the time domain to the frequency
domain via the Fourier transform. The naive approach discussed here
produces the same results.

Using the generic complex vector field X , suppose all fields under
consideration when evaluated at a point in space-time have the from

X(x, y, z, t) = X̃(x, y, z)e−iωt,

where the circular frequency ω does not depend on its position in space-time.
As is customary, let us write X for X̃ when the harmonic time-dependence
is understood. Also, the physical field is taken to be the real part ofX . Using
these conventions, system (20.34) for time-harmonic fields (including the
current density J) is recast in the form

iωB = ∇× E,
iωD = J −∇×H,
D = εE,
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B = µH. (20.36)

Of course, the main simplification is removal of the time derivatives.

For a material where the current density obeys Ohm’s law [Eq. (20.12)],
system (20.36) may be rewritten for the E and B fields in the form

iωB = ∇× E,
iεωµE = µσE −∇×B. (20.37)

By computing the curl of both sides of the first equation, using the definition
of the vector Laplacian [Eq. (20.22)], and eliminating∇×B, the result is a
PDE for the E field:

∆E + ωµ(εω + σi)E = ∇(∇ · E).

Apply the divergence operator (∇·) to both sides of the second equation
in display (20.37) to obtain

(σ − iεω)∇ · E = 0,

and note that therefore ∇ · E = 0. This result implies that E satisfies
Helmholtz’s equation

∆E + ωµ(εω + σi)E = 0. (20.38)

Also, under our assumptions (time-hamonic, Ohm’s law, isotropic medium)
and Gauss’s law, the charge density is zero in the medium. If Ohm’s
law holds and charge is conserved, then the charge density decreases
exponentially fast (see Exercise 20.4). The additional assumptions require
the charge density has already decayed to zero.

The B field in the present context also satisfies the same Helmholtz
equation:

∆B + ωµ(εω + σi)B = 0. (20.39)

Exercise 20.4. Show that in an isotropic material where Ohm’s law holds, the charge
density decreases exponentially fast. What is the decay constant?

Exercise 20.5. In the context of Eq. (20.38), show that the B field also satisfies
Helmholtz’s equation.



CHAPTER 2121
Transverse Electromagnetic (TEM) Mode

The electromagnetic fields outside two ideal conductors can be defined
consistently in a special configuration called a transverse electromagnetic
(TEM) mode, which is discussed in this section.

A conductor (usually made of metal) has free charges that are confined
to the material. In an ideal conductor, the free charges (which must be all of
the same sign) are assumed to repel each other so that they instantly move
to an equidistant configuration on the surface of the conductor in such a way
that the surface density produces a zero electric field inside the conductor.
In reality, the charges penetrate the conductor in a very thin layer such that
the outer boundary of the layer is the conductor’s surface.

For the remainder of this section, all conductors are assumed to be ideal.

When charges are in motion on the surface of a conductor with outward
unit normal η, the electric field E vanishes in the conductor. By the first and
fourth equations in display (20.36), they produce a magnetic field H that
also vanishes inside the conductor. And, by employing the electromagnetic
boundary conditions, there is a corresponding surface current

η ×H = Jsurface.

Because the electric field vanishes in the conductor, the electric field
boundary condition implies that the electric field in the exterior of the
conductor has zero tangential component on the interface boundary. Thus,
the external electric field E must be perpendicular to the boundary of the
conductor.

As H = 0 inside the conductor, B = 0 inside the conductor. The B field
boundary condition implies that this field (at the interface) is tangential to
the boundary. Thus, the magnetic field H in this situation is tangential at the
interface.

Under the conditions just described, the electric field lines meet the
two conductors orthogonal to their surfaces. The magnetic field lines are

An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation.
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y

z

Fig. 21.1 The figure depicts a schematic cross section of a coaxial cable running in the direction of the x-axis in
a Cartesian coordinate system. The inner disk represents the inner conductor; the outer circle represents the inner
surface of the outer conductor.

tangential to these surfaces; thus, they are transverse to the electric field lines
near the conductors (that is, the tangent vectors B and E are not parallel at
crossing points of the field lines near the conductor).

For definiteness and in preparation for a discussion of transmission lines
(the main application of this chapter), assume the two conductors are coaxial
(as suggested in Fig. 21.1) and the inner conductor is a circular cylinder
whose radius is smaller than the outer coaxial cylindrical conductor.

A TEM mode is a choice of the electromagnetic fields that is consistent
with Maxwell’s equations, satisfies the electromagnetic boundary conditions
at the inner surface of the outer conductor and the outer surface of the inner
conductor, and is such that the field components vanish in the direction of the
axis of the conductors. For rectangular coordinates chosen such that the axis
of the conductors is the x-axis of the coordinate system, the electromagnetic
fields are allowed to have nonzero (time-varying) components in the y and z
directions, but not in the x direction. To be clear, the generic field of this type
X represented in the usual components relative to the rectangular (x, y, z)
coordinate system has the form (0, X2(x, y, z, t), X3(x, y, z, t)).
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Let us seek an axial plane wave time-harmonic TEM mode between
two conductors (for example, in the annulus between coaxial conductors
whose cross section is depicted in Fig. 21.1) in case the homogeneous and
isotropic material between the conductors is such that the current density in
the material obeys Ohm’s law J = σE.

The generic complex field X is an axial plane wave when it has the
special component form

X(x, y, z, t) = (0, X2(y, z)ei(kx−ωt), X3(y, z)ei(kx−ωt)), (21.1)

where (the wave number) k might be complex. The physical field is the real
part of X .

The wave number cannot be arbitrary; it is determined using sys-
tem (20.37). Indeed, by substituting the special forms of the B and E fields
into this system, the second component of the first equation becomes

ωB2 = −kE3, (21.2)

and the third component of the second equation is

ikB2 = (µσ − iωεµ)E3.

By eliminating B2, a simple computation can be used to show that

k2 = ωµ(ωε+ iσ), (21.3)

which is exactly the coefficient in Helmholtz’s equations (20.38)
and (20.39).

Substitute the special B and E fields into these equations and use
Eq. (21.3) to show that

∂2B2

∂y2
+
∂2B2

∂z2
= 0,

∂2B3

∂y2
+
∂2B3

∂z2
= 0,

∂2E2

∂y2
+
∂2E2

∂z2
= 0,

∂2E3

∂y2
+
∂2E3

∂z2
= 0. (21.4)
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It is not necessary to solve all four of the Eqs. (21.4). In fact, it suffices
to solve one of them. For example, B2 and E3 are related by Eq. (21.2). A
full set of relations is

ωB2 = −kE3, ωB3 = kE2,
∂E2

∂z
=
∂E3

∂y
,

∂B3

∂y
=
∂B2

∂z
. (21.5)

Thus, it suffices, to determine E2. One way to do so is to solve the two-
dimensional Laplace equation for E2 with appropriate boundary conditions
and recover the remaining fields using these relations.

Inspection of the full set of equations in display (21.5) suggests an
alternative method for determining the fields. Converting the fourth equation
in this set to an E field equation via the first pair of equations produces the
partial differential equations (PDEs)

∂E3

∂y
=
∂E2

∂z
,

∂E3

∂z
= −∂E2

∂y
, (21.6)

which are exactly the Cauchy–Riemann equations for the pair of functions
(E3, E2) viewed as functions of (y, z). Equivalently, the curl of the field
(0, E2(y, z), E3(y, z)) vanishes. This fact implies something we already
know: both functions E2 and E3 are harmonic with respect to (y, z); that
is, the Laplacian with respect to these variables of each function vanishes.
Moreover, the vector field

E∗(y, z) := (E2(y, z), E3(y, z)),

which more properly should be defined as a column vector, must be the
gradient of a harmonic potential φ. In symbols, and in keeping with the
usual sign conventions in electrodynamics where E is the negative gradient
of the electric potential, these statements are written

E∗ = −∇φ, ∆φ = 0. (21.7)

To be clear, in this context E∗ is viewed as a two-dimensional vector field
with components (E2, E3), and the Laplace equation for the scalar function
φ = φ(y, z) defined in a cross section of the medium between the conductors
is

∂2φ

∂y2
+
∂2φ

∂z2
= 0.
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Polar coordinates are advantageous for the circular geometry of the coax-
ial conductors. Recall that the polar coordinate representation of Laplace’s
equation is

1

r

∂ψ

∂r
+
∂2ψ

∂r2
+

1

r2

∂2ψ

∂θ2
= 0, (21.8)

where y = r cos θ, z = r sin θ, and ψ(r, θ) := φ(r cos θ, r sin θ) (see
Exercise 21.1).

The boundary conditions for the E∗ field are specializations of the
electromagnetic boundary conditions to the geometry of the coaxial con-
ductors. The outer normal on the inner conductor in Cartesian components
is η = (0, cos θ, sin θ), where θ is the polar angle at a boundary point
(0, y, z). The outer normal (which points toward the inner conductor) is
−η. Because the E field vanishes in the conductors and the corresponding
electromagnetic boundary condition is E × η = 0, it follows that

E2 sin θ − E3 cos θ = 0 (21.9)

on both boundaries. In particular, E has zero tangential component at the
boundaries. In addition,D = εE in the medium bounded by the conductors.
Thus, the boundary condition for D (which is D · η = ±ρinterface) gives a
second boundary condition for E. On the inner boundary

E2 cos θ + E3 sin θ =
ρinner

ε

and on the outer boundary

E2 cos θ + E3 sin θ = −ρouter

ε
.

For the potential function φ, we have the Neumann boundary condition

∇φ · η = −ρinner

ε
, ∇φ · η =

ρouter

ε
, (21.10)

where, as previously mentioned, η = (0, cos θ, sin θ) is the unit vector in the
radial direction.

The voltage V at point P measured relative to a point G on a reference
ground is defined to be

V (P ) = −
∫
γ
E · d`,
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where γ is a curve connecting G to P through a region where the electric
field is defined. Of course, the integral is independent of path when E =
−∇φ, for some potential φ. Indeed, in this case and for γ parameterized
(for instance) on the interval [0, 1] with γ(0) = G and γ(1) = P ,

V (P ) = −
∫
γ
E · d` =

∫ 1

0
∇φ(γ(s)) · γ′(s) ds = φ(P )− φ(G), (21.11)

and the voltage is exactly the electric potential difference at the two points.

Returning to the Neumann boundary data (21.10), there is a compatibility
condition for the charge densities on the inner and outer conductors: Their
strengths must be equal and opposite to support the static electric field−∇φ.
More precisely, the condition is

− αρinner

ε
= β

ρouter

ε
, (21.12)

where α is the outer radius of the inner conductor and β is the inner radius
of the outer conductor. To see why this is true, note that in the static case the
total charge sums to zero and the charges on each surface form an equidistant
configuration. The total charge on the inner and outer surfaces (with cylinder
length `) is

2πα`ρinner + 2πβ`ρouter = 0,

which is a restatement of the compatibility condition.

In its purest form, the boundary value problem (BVP) for E∗ on a cross
section of the coaxial configuration in polar coordinates (where ψ(r, θ) =
φ(r cos θ, r sin θ)) is

1

r

∂ψ

∂r
+
∂2ψ

∂r2
+

1

r2

∂2ψ

∂θ2
= 0 (21.13)

with the boundary conditions

∂ψ

∂r
= −ρinner

ε
,

∂ψ

∂r
=
ρouter

ε
, (21.14)

where, of course, the first equation holds for r = α, the second for r =
β, and they satisfy the compatibility condition. The normal derivatives in
display (21.10) become radial derivatives in polar coordinates.

Due to the symmetry of the problem, the solution is radial (that is, it does
not depend on the angle θ). By elementary ordinary differential equation
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(ODE) theory, the general solution of the radial differential equation

1

r

∂ψ

∂r
+
∂2ψ

∂r2
= 0 (21.15)

is

ψ(r, θ) = k ln r +K, (21.16)

where k and K are constants (see Exercise 21.2). Using the inner boundary
condition, which suffices due to the compatibility condition [Eq. (21.12)],

ψ(r, θ) = −αρinner

ε
ln r +K,

where K is an arbitrary constant.

The BVP does not have a unique solution. But, this result is physically
reasonable. A potential should only be defined up to an additive constant.
Because the electric field is the negative gradient of the potential, the
additive constant does not appear in the electric field. Finally, at least in the
static case, voltage is always the difference in electric potential at two points;
therefore, the additive constant does not appear in measured voltages. For all
the stated reasons, we may as well take the potential ψ to be

ψ(r, θ) = −αρinner

ε
ln r. (21.17)

This function does not depend on θ.

The (transpose of the desired complex) electric field between the two
coaxial conductors is

E(x, y, z, t) = (0,
aρinner

ε

y

y2 + z2
ei(kx−ωt),

aρinner

ε

z

y2 + z2
ei(kx−ωt)).

(21.18)
Of course, the physical electric field is the real part of E.

Using the definition of voltage [Eq. (21.11)], the (complex) voltage V
across the conductors (with the outer conductor as the reference ground) is

V = V (x, t) = (ψ(α, θ)− ψ(β, θ))ei(kx−ωt) =
αρinner

ε
ln
β

α
ei(kx−ωt)

(21.19)
(see Exercise 21.3).
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By the relations (21.5),

B(x, y, z, t) = (0,−kαρinner

ωε

z

y2 + z2
ei(kx−ωt),

kαρinner

ωε

y

y2 + z2
ei(kx−ωt)).

(21.20)

To obtain the current in the conductors, recall that the (signed) current I
through a surface Σ is exactly the flux of the current density through Σ with
respect to the direction specified by one of its unit normals η:

I =

∫
Σ
J · η dS.

Also, Ampère’s law for time-harmonic fields is

iωεE = J − 1

µ
∇×B.

Thus, we have (for our isotropic material)

I =

∫
Σ
J · η dS =

1

µ

∫
Σ

(∇×B) · η dS + iωε

∫
Σ
E · η dS.

Consider a curve Γ in a cross section of the coaxial arrangement of
conductors that surrounds the inner conductor and has the outer conductor
in the exterior of the bounded surface Σ whose boundary is Γ. For the outer
conductor, there is an annular surface Σ̃ also in the cross-sectional plane
whose inner boundary is Γ and whose outer boundary is some curve Γ∗ that
lies in the outer conductor.

The TEM mode electric field E is everywhere orthogonal to η (which is
pointing in the axial direction of the cylinder) on both surfaces Σ and Σ∗.
Thus, the surface integral of E vanishes. By Stokes’s theorem, the current
in the inner conductor is

I =
1

µ

∫
Σ

(∇×B) · η dS =
1

µ

∫
Γ
B · d`.

Taking Γ to be a circle with radius R such that α < R < β oriented
clockwise to be compatible with the normal to the cross section that points
in the positive direction of the axial coordinate, an easy computation can be
used to show that the (complex) current in this direction is

I = I(x, t) = 2π
kαρinner

ωµε
ei(kx−ωt). (21.21)
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See Exercise 21.5 for the current in the outer conductor.

There are several relations between I and V . The most important of
these is a system of first-order PDEs that have these functions as one of
its solutions.

For notational simplicity, define the voltage

V0 =
αρinner

ε
(21.22)

and differentiate in Eqs (21.21) and (21.19) to obtain the partial derivatives

Ix = ik2 2πV0

ωµ
ei(kx−ωt), Vt = −iωV0 ln

β

α
ei(kx−ωt) (21.23)

Also, recall that

k2 = ωµ(ωε+ iσ). (21.24)

There are two real numbers

C :=
2πε

ln(β/α)
, G :=

2πσ

ln(β/α)
(21.25)

such that

CVt = −Ix −GV. (21.26)

Because C and G are real, the real parts of I and V (which are the
physical fields) satisfy this PDE. The parameter C has the units of farads
per meter and G is measured in siemens per meter. Thus, these quantities
are immediately identified with the capacitance per meter between the
two conductors and the conductance per meter of the media between the
conductors.

Differentiate again in Eqs (21.21) and (21.19) to obtain the partial
derivatives

It = −i2πkV0

µ
ei(kx−ωt), Vx = ikV0 ln

β

α
ei(kx−ωt) (21.27)

and define the real number

L =
µ

2π
ln
β

α
, (21.28)
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which has the units of henries per meter. The current and voltage satisfy the
PDE

LIt = −Vx, (21.29)

where L is the inductance per meter of the conductor.

The system of Eqs. (21.26) and (21.29) for voltage and current is a direct
consequence of the TEM mode assumption for time-harmonic fields for
an isotropic and ohmic medium between two coaxial conductors. Exactly
the same equations, albeit with different expressions for the capacitance,
conductance and inductance, can be derived for more general configurations
of two conductors separated by an isotropic and ohmic medium; that is, the
form of the equations is exactly the same for all transmission lines with two
(not necessarily circularly cylindrical or coaxial) conductors. The system

CVt = −Ix −GV, LIt = −Vx (21.30)

is called the (ideal) transmission line equations.

The (perhaps complex) quantity

Z :=
V

I
(21.31)

is constant in the TEM mode; Z is called the (line) impedance.

The wave number k is a function of frequency. Thus, in general, the wave
speed depends on frequency. For this reason, relation (21.24),

k2 = ωµ(ωε+ iσ),

is called the dispersion relation.

TEM modes can exist with attenuated electromagnetic waves. This
occurs when k is not real; that is, when σ 6= 0. In this case, the medium
between the conductors has nonzero conductance, and from Ohm’s law
(J = σE), there is a nonzero current in the direction of the E field.
Attenuation occurs because of the factor exp(− Im(k)x), where Im is the
projection onto the imaginary part of a complex number. This exponential
factor grows or decays with position according to the sign of Im(k).

In case σ = 0 and k is real, the wave speed takes a familiar form. By
substituting the value of the wave number k = ω

√
µε from the dispersion
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relation into the exponent i(kx− ωt) and simplifying, it follows that

i(kx− ωt) = iω
√
µε(x− 1√

µε
t).

Therefore, the corresponding wave speed is

c := 1/
√
εµ,

a number that does not depend on the frequency. When σ = 0, there is no
dispersion in TEM waves.

Of course, the wave nature of the fields must be reflected in the
transmission line equations. In fact, both V and I satisfy (damped) wave
equations. For example,

Vtt +
G

C
Vt =

1

LC
Vxx. (21.32)

In the realm of physical measurements for engineering applications,
the culmination of the theory of TEM modes is the (ideal) transmission
line model [Eqs. (21.30)]. The derivation of this model, which relies on
Maxwell’s theory, is on solid physical grounds under assumptions that often
closely approximate reality: perfect conductors, isotropic media, Ohm’s law,
and time-harmonic fields. Voltages and currents predicted by this model
agree with experimental measurements. Of course, the approximations
built into these assumptions can be improved to construct more accurate
physical models. Making predictions from more accurate models that adhere
strictly to basic physics (Maxwell’s laws) is generally a much more difficult
process. There is, however, a simple and reasonable way to relax the perfect
conductor assumption with a simple modification of the ideal transmission
line equations to account for (line) resistance in real conductors. It is
discussed in the next chapter.

Exercise 21.1. (a) Derive the polar coordinate representation for the Laplace equation
in two-dimensional space. (b) Derive the cylindrical coordinate representation for the
Laplace equation in three-dimensional space.

Exercise 21.2. Derive the general solution of ODE (21.15).

Exercise 21.3. The voltage across the conductors of the transmission line discussed in
this Chapter is (ψ(α, θ)− ψ(β, θ))ei(kx−ωt). Alternatively, this quantity is the negative
of the integral of E field (21.18) along a path connecting the outer and inner conductors.
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Show with all details of the computations that both approaches lead to the voltage V in
display (21.19).

Exercise 21.4. Check that V in Eq. (21.19) has units of volts and I in Eq. (21.21) has
units of amperes.

Exercise 21.5. Using the curves and surfaces defined in preparation for the formula
for the induced inner conductor current [Eq. (21.21)], compute the induced current in
the outer conductor.

Exercise 21.6. In case the conductance σ 6= 0, there is a current I leaking through
the ohmic material between the inner and outer conductors where J = σE. Choose
a position with coordinates (x, y, z) along the inner conductor and consider a portion
of a circular cylinder Σ whose radius is R (with α < R < β) and whose ends are in
the cross-sectional planes of the coaxial conductors at the points x − ∆x and x + ∆x.
Note that the E field restricted to Σ is everywhere parallel to the outer unit normal η on
Σ, which is radial along the cylinder. (1) Show that the total current through Σ in the
direction of η is

Itotal = 2πσ
αρinner
ε

∫ x+∆x

x−∆x

ei(kξ−ωt) dξ.

and the total current per length at (x, t) is

I(x, t) = 2πσ
αρinner

ε
ei(kx−ωt). (21.33)

(2) Compare this result with the current due to conduction corresponding to the voltage
term in the transmission line equation (21.26). Hint: Use Ohm’s law V = IR, where R
is the resistance.

Exercise 21.7. (1) Derive the (damped) wave equation (21.32). (2) Derive a similar
wave equation for I. (3) Determine the predicted wave speed and compare with the wave
speed of TEM waves.



CHAPTER 2222
Transmission Lines

22.1 TIME-DOMAIN REFLECTOMETRY MODEL

Electromagnetic waves may move along a transmission line (think coaxial
cable such as those used in TV cable systems) according to the material
properties of the dielectric between the wire at the center of the cable
and the (usually braided) metal cylinder surrounding it (see Fig. 22.1).
The nature of such a wave is disrupted (perhaps partially reflected) when
the uniformity of the dielectric material is broken. Avoidance of reflected
waves is often a desired property that leads to serious design challenges.
For example, connectors between transmission lines and electronic devices
always disrupt transverse electromagnetic (TEM) waves. On the one hand,
well designed (perhaps expensive) connectors are designed to minimize the
effects of this disruption. On the other hand, the physical effects, such as
wave reflection, due to changes in the dielectric can be used to advantage in
other applications. One of these is discussed in some detail in this section.

A common method of testing for faults in a transmission line is called
time-domain reflectometry (TDR). A pulse or voltage step is generated and
sent into the line, it moves as a wave and is reflected from places along the
line where a fault in the dielectric occurs. Perhaps the line is cracked, it has
been pierced by a nail, or it is disrupted by a loose connection. By measuring
the time of return of the wave and using the known transmission wave speed,
the distance to a fault is easily computed.

Using the same idea for a different application, a test chamber in the form
of a transmission line can be constructed so that the dielectric is some new
substance, perhaps moist soil, whose electric properties (permittivity, for
example) are unknown. These might be measured by analyzing the shape

TDR

Coaxial Cable

Connector

Chamber

Fig. 22.1 The figure depicts a schematic TDR with test chamber filled with layers of dielectric materials.
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Line FaultVoltage Traveling Wave Front

TDR

Fig. 22.2 Time of voltage wave generation is recorded. At fault, part of the wave is reflected and part transmitted. Time
of return of reflected wave is detected as a jump in recorded voltage. Wave speed in the coaxial cable is known (perhaps
given by the manufacturer at 0.8c). The distance to the fault can be computed simply from d = r × t.

of the returning electromagnetic wave after it passes through the soil and is
reflected by a known load at the end of the test line. A typical application
is the measurement of soil moisture as a function of soil depth. This is an
example of an inverse scattering problem whose full solution is not known.

When the electric properties of the substance in the chamber are known,
solving for the electromagnet wave involves the transmission line equations
and a proper choice of boundary conditions. This is called the forward prob-
lem. Recovering the coefficients of the model partial differential equation
(PDE) from reflected waves is called the inverse problem. Some of the
(applied) mathematical features of the forward and inverse problems, along
with some insight into their solutions, will be discussed. Typical challenge
problem: “Drive a transmission line into the ground, run a TDR test, and
determine the depths, compositions, and moisture contents of the layers of
silt, sand, gravel, and clay at the test site." Of course there are many other
applications.

The transmission line (or telegrapher’s) equations derived by Oliver
Heaviside (1885) for the voltage v (across the outer and central conductor
measured as a function of position x and time t) and current i (which is
equal and oppositely oriented in these two conductors and also measured as
a function of position and time) is the system of PDEs given by

vt +
1

C
ix = −G

C
v,

it +
1

L
vx = −R

L
i. (22.1)

The quantities appearing in the model have units

[i] = ampere, [v] = volt, [R] =
ohm

meter
,

[L] =
henry

meter
, [C] =

farad

meter
, [G] =

siemen

meter
.
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These equations are a generalization of the (lossless) transmission line
model [Eqs. (21.30)] of the previous section, which are derived from
Maxwell’s laws. Note: Lower case i is used here to denote current in keeping
with convention in electrical engineering. Elsewhere in this book i =

√
−1,

which is usual in mathematics; engineers use j =
√
−1.

To see how Heaviside’s equations can be derived more directly from
circuit theory, imagine a conductor with resistance and inductance dis-
tributed along its length connected to another reference conductor, which
may be viewed as a ground. The quantities of interest are the voltage along
the conductor measured relative to the second conductor and the current
along the conductor. Let x be the coordinate that measures length along
the line and t the temporal variable. At two nearby points x and x + ∆x
along the line, there are two voltages v(x, t) and v(x+ ∆x, t). The voltage
change v(x + ∆x, t) − v(x, t) along this section of the line is determined
by the distributed voltage drops due to the resistance per length R and
the inductance per length L. Ohm’s law in this context states that the
voltage drop across a resistor is the product of current and resistance. For
an inductor, the voltage drop is the product of the inductance and the time
rate of change of the current through the inductor. In the distributed case,

v(x+ ∆x, t)− v(x, t) = −
∫ x+∆x

x
Ri(ξ, t) dξ −

∫ x+∆x

x
Lit(ξ, t) dξ.

(22.2)
The minus sign takes into account the direction of the current. For the
positive node v(x + ∆x, t) (accumulation of positive charge) and the
negative node v(x, t), current flows from the position with coordinate
x + ∆x toward the position with coordinate x. The voltage drop in this
direction is v(x, t) − v(x + ∆x, t), which must be equal to the sum of
the voltage drops given by the integrals. In case the signs of the nodes are
reversed, current flows in the opposite direction and the same analysis leads
to Eq. (22.2).

What about losses in the current? Two losses are considered in the
segment of the transmission line from x to x+∆x: leakage of current to the
other conductor (the ground) through a resistor with resistance per length R̃
or through a capacitor with capacitance per length C. The loss of current in
this scenario is given by

i(x+ ∆x, t)− i(x, t) = −
∫ x+∆x

x

1

R̃
v(ξ, t) dξ −

∫ x+∆x

x
Cvt(ξ, t) dξ.



734 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

With G := 1/R̃, called the conductance per length, the current loss is

i(x+ ∆x, t)− i(x, t) = −
∫ x+∆x

x
Gv(ξ, t) dξ −

∫ x+∆x

x
Cvt(ξ, t) dξ.

(22.3)

By dividing both sides of Eqs. (22.2) and (22.3) by ∆x and passing to
the limit as ∆x goes to zero, we recover Heaviside’s transmission line model
[Eqs. (22.1)].

To obtain a physically relevant solution of the transmission line equations
in an applied problem, the PDEs must be augmented with initial and
boundary data.

Natural initial data

v(x, 0) = v0(x), i(x, 0) = i0(x) (22.4)

specifies the voltage and current along the line at time t = 0. For many
applications, the initial state of the line is zero voltage and zero current.

Boundary conditions depend on the application. For the TDR problem,
input to the chamber is produced by a wave generator. A viable simple model
is obtained by deriving the left-hand boundary condition (which, with an
appropriate choice of spatial coordinate, may be taken at x = 0) for the
transmission line from a circuit consisting of a voltage source, a resistor,
and the voltage across the line at x = 0. By Ohm’s law and Kirchhoff’s loop
law, the voltage across the resistor plus the voltage across the transmission
line (Rini(0, t)+v(0, t)) is equal to the input voltage vin due to the generator,
which is defined for t ≥ 0. Thus, we have the left-hand boundary condition

Rini(0, t) + v(0, t) = vin(t). (22.5)

The right-hand boundary condition is determined by the device at the end
of the transmission line, which (in principle) could be an arbitrary circuit.
A simple model is provided by specifying the i-v relation at the end of the
line:

v(`, t) = f(i(`, t)).

For many applications, including the TDR test chamber, a viable model is
obtained by supposing the inner and outer conductors are connected by a
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resistor, that is,

v(`, t) = Rendi(`, t). (22.6)

The initial boundary value problem (IBVP) for PDE (22.1), initial
data (22.4), and boundary data (22.5)–(22.6) is expected to predict a unique
voltage and current on the line for all t > 0. Of course, this is a mathematical
assertion that requires a proof. At this point, we will simply assume that the
system has a unique solution.

Two important right-end boundary conditions are the extremes: right-end
shorted by a perfect conductor connecting the inner and outer conductors
(Rend = 0) and right-end open (Rend = ∞). In case the line is shorted, the
right-end boundary condition is v(`, t) = 0; in case it is open, the boundary
condition is i(`, t) = 0.

22.2 TDR MATRIX SYSTEM

A compact form of the transmission line model is obtained by viewing
the state of the system (voltage and current) as the vector u(x, t) :=
(v(x, t), i(x, t)) so that the transmission line equations become the matrix
system

ut +A(x)ux = −B(x)u, (22.7)

where

A =

(
0 1

C
1
L 0

)
, B =

(
G
C 0

0 R
L

)
(22.8)

with space-dependent capacitance C, inductance L, resistance R, and
conductance G.

The matrix A has two real eigenvalues ±(LC)−1/2. As we will see, the
function

c :=
1√
LC

gives the wave speed (depending on spatial position) for the electromagnetic
waves in the transmission line. Here, c is used for the wave speed, which
might not be the speed of light in vacuum. The meaning of c should always
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be clear from the context. Another important quantity is the impedance

Z :=

√
L

C
.

A matrix T of eigenvectors (whose columns are in the order correspond-
ing to the eigenvalues −c and c ) and its inverse are

T :=

(
−Z Z
1 1

)
, T−1 =

1

2Z

(
−1 Z
1 Z

)
. (22.9)

The matrix A is diagonalized by the similarity transformation

T−1AT =

(
−c 0
0 c

)
. (22.10)

22.3 INITIAL VALUE PROBLEM FOR THE IDEAL
TRANSMISSION LINE

As a first step in the analysis of the transmission line equations, consider the
initial value problem (IVP) for the two-dimensional system

ut +Aux = 0 (22.11)

where u is an unknown vector function, A is a given constant matrix with
real distinct eigenvalues, and u is defined on the whole real line at some
fixed initial time t0 by u(x, t0) = u0(x).

The matrix A is diagonalizable. Indeed, let the distinct eigenvalues of
A be c1 < c2, let R be the matrix whose columns are the corresponding
eigenvectors r1 and r2, and let the rows of the inverse matrix R−1 be `1
and `2, the left eigenvectors corresponding to these eigenvalues. The matrix
R−1AR is diagonal with c1 and c2 its diagonal elements in the given order.

The vector function p := R−1u satisfies the decoupled system of PDEs

pt +R−1ARpx = 0;

that is,

p1
t + c1p

1
x = 0, p2

t + c2p
2
x = 0.



Transmission Lines 737

Also, employing the usual inner product in two-dimensional Euclidean
space as well as the definitions of p and the vectors `1 and `2,

p1 = 〈`1, u〉, p2 = 〈`2, u〉.

The general solution of the uncoupled system is a pair of waves whose
profiles are given by as yet undetermined functions φ1 and φ2:

p1(x, t) = φ1(x− c1t), p2(x, t) = φ2(x− c2t).

The unknown wave profiles are determined by the initial data.

To determine p1(x, t) at some point (x, t) = (ξ, τ), consider the
coordinate plane with horizontal coordinate x and vertical coordinate t,
and the line x − c1t = ξ − c1τ (called a characteristic line) that passes
through the point (ξ, τ). The function p1 is constant along this line; in fact,
if (x, t) is a point on this line, then p1(x, t) = φ1(x − c1t) = φ1(ξ − c1τ).
More generally, p1 is constant on every line of the form x − c1t = k
where k is some real number. To determine p1(ξ, τ), simply note that the
point where the characteristic line through (ξ, τ) meets the line t = t0 is
(x, t) = (ξ + c1(t0 − τ), t0) and set

p1(ξ, τ) = p1(ξ + c1(t0 − τ), t0) = 〈`1, u0((ξ + c1(t0 − τ))〉,

where u0 is the given initial value of u. The same result may be recast as

φ1(x−c1t) = p1(x, t) = 〈`1, u0((x+c1(t0−t))〉 = 〈`1, u0((x−c1t)+c1t0)〉.

Hence, the wave profile φ1 is given by

φ1(s) = 〈`1, u0(s+ c1t0)〉.

Likewise,

φ2(s) = 〈`2, u0(s+ c2t0)〉.

The solution of the original IVP (22.11) is u = Rp, or

u(x, t) = 〈`1, u0((x−c1t)+c1t0)〉r1+〈`2, u0((x−c2t)+c2t0)〉r2. (22.12)
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22.4 THE INITIALLY DEAD IDEAL TRANSMISSION LINE
WITH CONSTANT DIELECTRICS

An important special case is the ideal transmission line with no resistance or
conductance and constant capacitance and inductance. It is modeled by the
PDE

ut +Aux = 0

for t ≥ 0 and 0 ≤ x ≤ `, where

A =

(
0 1

C
1
L 0

)
is constant, and the components of u are the voltage and current. The basic
problem is to determine the solution of this PDE with the left-hand boundary
condition

Rini(0, t) + v(0, t) = vin(t) (22.13)

(where, for convenience in writing some of the formulas to follow, vin is
defined to be zero for t < 0), the right-hand boundary condition

v(`, t) = Rendi(`, t), (22.14)

and the initial condition u(x, 0) = 0, for 0 ≤ x ≤ `.

Using the change of variables u = Tw (where T is defined in
display (22.9)) the system decouples. Indeed, we have that

Twt +ATwx = 0

and

wt + T−1ATwx = 0.

For the vector state w = (p, q), this latter system reduces to two uncoupled
PDEs

pt − cpx = 0, qt + cqx = 0.

These one-way wave equations have the general solutions

p(x, t) = φ(x+ ct), q(x, t) = ψ(x− ct),
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where φ and ψ are arbitrary (continuously differentiable) functions. The
solution p is a wave traveling to the left with speed c; likewise, q is a wave
traveling to the right with the same speed c.

The corresponding voltage and current u = Tw are

v(x, t) = −Zφ(x+ ct) + Zψ(x− ct), i(x, t) = φ(x+ ct) + ψ(x− ct).
(22.15)

The voltage and current are both zero at time t = 0. Thus,

− φ(x) + ψ(x) = 0, φ(x) + ψ(x) = 0. (22.16)

It follows that φ(x) = 0 and ψ(x) = 0 for 0 ≤ x ≤ `. For a spatial
coordinate x in this interval, φ(x+ ct) vanishes for 0 ≤ t ≤ (`− x)/c and
ψ(x− ct) vanishes for 0 ≤ t ≤ x/c.

The left-hand boundary condition is Rini(0, t) + v(0, t) = vin(t). At x =
0 and 0 ≤ t ≤ `/c,

v(0, t) = Zψ(−ct), i(0, t) = ψ(−ct).

Over this time interval,

Rinψ(−ct) + Zψ(−ct) = vin(t).

Thus, with s := −ct

ψ(s) =
1

Rin + Z
vin(−s/c)

over the interval −` ≤ s ≤ 0, and the state of the system is

v(x, t) =
Z

Rin + Z
vin(−(x− ct)/c) =

Z

Rin + Z
vin(t− x/c),

i(x, t) =
1

Rin + Z
vin(−(x− ct)/c) =

1

Rin + Z
vin(t− x/c) (22.17)

for 0 ≤ t ≤ (`− x)/c.

Using the right-hand boundary condition,

−Zφ(`+ ct) + Zψ(`− ct) = Rend(φ(`+ ct) + ψ(`− ct)).

As ψ(`− ct) = 0 on the interval 0 ≤ t < `/c,

− Zφ(`+ ct) = Rendφ(`+ ct), (22.18)
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and because Rend + Z > 0, we have that φ(`+ ct) = 0 for 0 ≤ t ≤ `/c, or
φ(s) = 0 on the interval ` ≤ s < 2`.

So far, φ is defined on the interval [0, 2`] and ψ on [−`, `].

For 0 ≤ t ≤ `/c a wave of voltage and current travels to the right along
the transmission line. What happens when the wave reaches the right-hand
boundary? Answer: The voltage and current (given by the general solution
of the transmission line equations) must satisfy the right-hand boundary
condition for later times at x = `. In fact, we must have

v(`, t) = −Zφ(`+ ct) +
Z

Z +Rin
vin(t− `/c),

i(`, t) = φ(`+ ct) +
1

Z +Rin
vin(t− `/c)

on the interval 0 ≤ t ≤ 2`/c. The boundary condition requires v(`, t) =
Rendi(`, t). By imposing this condition and rearranging the resulting equa-
tion, it follows that

φ(`+ ct) =
Z −Rend

Z +Rend

1

Z +Rin
vin(t− `/c)

on the same time interval. Thus, the function φ is defined by

φ(s) =
Z −Rend

Z +Rend

1

Z +Rin
vin((s− 2`)/c)

for 2` ≤ s < 3`. At s = 3` the left-hand boundary condition must be
employed.

The voltage and current are given on the time interval 0 ≤ t ≤ (`+ x)/c
by

v(x, t) = −Z −Rend

Z +Rend

Z

Z +Rin
vin(t− (2`− x)/c) +

Z

Z +Rin
vin(t− x/c),

i(x, t) =
Z −Rend

Z +Rend

1

Z +Rin
vin(t− (2`− x)/c) +

1

Z +Rin
vin(t− x/c).

Note that the incoming wave is reflected at the right boundary (which
is the end of the transmission line). The amplitude of the reflected wave is
the amplitude of the incoming wave times the reflection coefficient (Z −
Rend)/(Z + Rend), and of course, the reflected wave travels in the opposite
direction, which in this case is toward the beginning of the transmission line.
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The part of the solution obtained so far simply uses the boundary
conditions in turn to extend given portions of the solution. This suggests
a more systematic approach: Use the general solution [Eqs. (22.15)] of the
ideal transmission line equations and the general corresponding boundary
conditions. Together, they imply a system of functional differential equa-
tions for the unknown functions φ and ψ:

(Rin − Z)φ(ct) + (Rin + Z)ψ(−ct) = vin(t),

(Rend + Z)φ(`+ ct) + (Rend − Z)ψ(`− ct) = 0.

Set s = ct in the first equation and σ = ` + ct in the second to obtain the
system

(Rin − Z)φ(s) + (Rin + Z)ψ(−s) = vin(
s

c
),

(Rend + Z)φ(σ) + (Rend − Z)ψ(2`− σ) = 0. (22.19)

These equations must hold for all s ≥ 0 and σ ≥ `. In particular, the second
equation holds for σ > 2`. For such σ, we have σ − 2` ≥ 0; thus, this
quantity may be substituted for s in the first equation. After solving for
ψ(2`− σ) in both equations, equating the results, and rearranging, we have
two cases: For Rin − Z 6= 0, the functional equation

φ(σ) = −(Rin − Z)(Rend − Z)

(Rin + Z)(Rend + Z)

(vin((σ − 2`)/c)

(Rin − Z)
− φ(σ − 2`)

)
(22.20)

and for Rin − Z = 0, the explicit equation

φ(σ) = − (Rend − Z)

(Rin + Z)(Rend + Z)
vin((σ − 2`)/c) (22.21)

for φ.

To obtain φ from functional equation (22.20), recall that (using
Eqs. (22.16) and (22.18)) this function vanishes on the interval 0 ≤ σ < 2`.
It follows that the function σ 7→ φ(σ − 2`) vanishes on the interval
2` ≤ σ < 4`. Using functional equation (22.20), φ is defined on this
latter interval by

φ(σ) = − (Rend − Z)

(Rin + Z)(Rend + Z)
vin((σ − 2`)/c).

By the same process, φ may be defined for 4` ≤ σ ≤ 6`, and continuing in
the same manner, φ is defined for all positive real numbers.
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Fig. 22.3 A schematic diagram of the Riemann problem for the ideal transmission line equation ut + Aux = 0 is
depicted. The linear equations are for the solid lines emanating from the point (x0, t0).

The function ψ is obtained from φ using the second equation in
display (22.19). With τ := 2` − σ and some rearrangement, φ is defined
for all negative real numbers by the functional equation

ψ(τ) = −Rend + Z

Rend − Z
φ(2`− τ). (22.22)

The voltage and current are determined from φ and ψ by the formulas in
display (22.15).

In case Rin − Z = 0, a similar construction can be used to define φ and
ψ.

Thus, a solution is constructed for the IBVP for the ideal transmission
line equations on the spatial interval 0 ≤ x ≤ ` for all time t ≥ 0.

Exercise 22.1. Write out the voltage and current using Eqs. (22.22) and (22.15).

Exercise 22.2. Suppose that the input voltage vin is a bounded smooth function and
the ideal transmission line is initially dead. (a) Show that the voltage and current remain
bounded for every finite time. (b) Do the voltage and current remain bounded for all
time? Hint: This question has not been answered by the author.

22.5 THE RIEMANN PROBLEM

A key to further understanding of the general solution of the transmission
line equations for layered media and numerical methods for approximating
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solutions is the analysis of the Riemann problem on the whole real line for
the ideal transmission line equation

ut +A(x)ux = 0,

where u is the vector whose components are voltage and current, A is
defined in display (22.8), and the following (perhaps discontinuous data)
is given on the real line: For some t0 ≥ 0, real coordinate x = x0, and given
vector-valued functions u` and ur of one real variable,

u(x, t0) = u`(x),

for x < x0 and

u(x, t0) = ur(x),

for x > x0. The Riemann problem is to determine u(x, t) for (almost) all x
(that is, except for a set of measure zero) and all t > t0. Usually, the vector
functions u` and ur are assumed to be constant and distinct. This restriction
is not necessary here.

To begin, suppose that the matrix A, with structure as in displays (22.9)
and (22.10), is constant and recall that A is diagonalizable with distinct
eigenvalues ±c. Let the columns of the matrix T be the eigenvectors r1

and r2 corresponding to −c and c (respectively), and let the rows of the
inverse matrix T−1 be `1 and `2, the left eigenvectors corresponding to these
eigenvalues.

With p := T−1u, the vector function p satisfies the decoupled system of
PDEs

pt + T−1ATpx = 0;

that is,

p1
t − cp1

x = 0, p2
t + cp2

x = 0.

Also, employing the usual inner product in two-dimensional space,

p1 = 〈`1, u〉, p2 = 〈`2, u〉.

As usual, the general solution of the uncoupled system is a pair of waves

p1(x, t) = φ1(x+ ct), p2(x, t) = φ2(x− ct)
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whose profiles φ1 and φ2 are to be determined from the initial data of the
Riemann problem (see Fig. 22.3 but read A` = A and Ar = A, c` = c, and
cr = c).

The functions p1 and p2 are determined at each point (ξ, τ) with τ > t0
by tracing back along characteristics, which are lines of the form x− ct = k
or x + ct = k for some constant k. As depicted in Fig. 22.3, there are
three regions above the horizontal line t = t0 bounded by the characteristics
emanating from the point (x0, t0). The point (ξ, τ) in this figure is in
the middle region between the two aforementioned characteristics. One
characteristic through this point meets the line t = t0 to the left of (x0, t0),
the other characteristic meets this line on the right of this point. The
characteristics through a point (in the left region) below and to the left of
the characteristic x + ct = x0 + ct0 both meet the line t = t0 to the left
of (x0, t0); likewise, the characteristics through a point (in the right region)
below and to the right of the characteristic x− ct = x0 − ct0 both meet the
line t = t0 to the right of (x0, t0). Using this information and the method
in Section 22.3, the complete solution of the Riemann problem is easily
constructed: For (x, t) in the left region,

u(x, t) = 〈`1, ul((x+ ct)− ct0)〉r1 + 〈`2, u`((x− ct) + ct0)〉r2. (22.23)

In the middle region,

u(x, t) = 〈`1, ur((x+ ct)− ct0)〉r1 + 〈`2, u`((x− ct) + ct0)〉r2. (22.24)

In the right region,

u(x, t) = 〈`1, ur((x+ ct)− ct0)〉r1 + 〈`2, ur((x− ct) + ct0)〉r2. (22.25)

In case the initial functions u` and ur on the line t = t0 have constant
(vector) values denoted by the same function names, the solution u is
constant in each region; in fact, for (x, t) in the left region,

u(x, t) = 〈`1, ul〉r1 + 〈`2, u`〉r2 = u`; (22.26)

in the middle region,

u(x, t) = um := 〈`1, ur〉r1 + 〈`2, u`〉r2, (22.27)

and in the right region,

u(x, t) = 〈`1, ur〉r1 + 〈`2, ur〉r2 = ur. (22.28)
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If ul 6= ur, then the piecewise constant solution u is discontinuous
across the characteristics emanating from the point (x0, t0). The solution
is continuous on the portion of the vertical line x = x0 for t > t0.

The jump across the characteristic x− ct = x0 − ct0 is (by definition)

ur − um = 〈`1, ur〉r1 + 〈`2, ur〉r2 − 〈`1, ur〉r1 − 〈`2, u`〉r2

= (〈`2, ur〉 − 〈`2, u`〉)r2. (22.29)

Note that the jump, which has just been shown to be a scalar multiple of r2,
is an eigenvector ofA corresponding to the eigenvalue c. Likewise, the jump
um−u` is an eigenvector of A corresponding to−c. This is a version of the
Rankine–Hugoniot jump condition for systems of conservation laws.

For layered media, the matrix A is piecewise constant. As in Fig. 22.3,
the value of A is the constant matrix A` to the left of (x0, t0) and the
constant Ar to the right of this point. The solution u will be constructed
for the case where the initial functions u` and ur are constants. The solution
u has constant values u` and ur in the left and right regions, respectively,
exactly as for the case where A is constant except that the eigenvalues and
eigenvectors are computed using A` in the left region and Ar in the right
region.

Using the Rankine–Hugoniot condition directly instead of the analysis
just completed, there would be unknown scalars λ` and λr such that

ur − um = λr

(
Zr
1

)
, um − u` = λ`

(
−Z`

1

)
. (22.30)

To determine these unknown constants, simply add the two equations and
note that

ur − u` =

(
−Z` Zr

1 1

)(
λ`
λr

)
=: T`rλ. (22.31)

Thus, the unknown vector λ is determined by

λ = T−1
`r (ur − u`), (22.32)

where all quantities on the right-hand side are known. For (x, t) in the left
region,

u(x, t) = u`; (22.33)
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in the middle region,

u(x, t) = um := u` + λ`

(
−Z`

1

)
, (22.34)

and in the right region,

u(x, t) = ur. (22.35)

This is a complete solution of the Riemann problem for the layered media
case.

For reference, um is given in components by(
vm
im

)
=

(
v`
i`

)
+
Zr(ir − i`)− (vr − v`)

Zr + Z`

(
−Z`

1

)
, (22.36)(

vm
im

)
=

(
vr
ir

)
+
Z`(ir − i`) + vr − v`

Zr + Z`

(
Zr
1

)
. (22.37)

22.6 REFLECTED AND TRANSMITTED WAVES

Suppose that the dielectric media along a transmission line changes its
properties at x0, and a wave front of voltage and current moves to the right
and reaches the position x0 on the line at time t0. The change in dielectric
properties is modeled by assuming the matrix A is piecewise constant as in
Section 22.5 with a single jump discontinuity at x0, where the impedance Z
changes from some value Z` on the left to Zr on the right. For simplicity,
assume that the profile of the traveling wave front is the function φ given
by φ(s) = u` for s < 0 and φ(s) = ur for s > 0, and the wave is
u(x, t) = φ(x− ct− (x0 − ct0)). What happens to the wave for t > t0?

In Section 22.5, the left and right initial values u` and ur may be chosen
arbitrarily because no assumption is made about the state of the line for
t < t0. For the case at hand where the line has a traveling wave front, the
jump ur − u` at the wave front cannot be arbitrary. In fact, this jump in the
wave, which is supposed to be moving to the right, must satisfy the Rankine–
Hugoniot jump condition along the characteristic x − c`t = x0 − c`t0 for
t ≤ t0 corresponding to this wave front up to and including the moment
that the wave meets the interface between the two dielectrics at x0. For this
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reason, there is a constant β such that

ur − u` = β

(
Z`
1

)
; (22.38)

that is, the jump must be an eigenvector of A corresponding the eigenvalue
c`.

From Eq. (22.32) and using the extra condition (22.38), the vector λ
(whose components give the strengths of the outgoing waves) is given by

λ = T−1
`,r (ur − u`) = βT−1

`,r

(
Z`
1

)
=

β

Zr + Z`

(
Zr − Z`

2Z`

)
,

and its components are

λ` =
Zr − Z`
Zr + Z`

β, λr =
2Z`

Zr + Z`
β.

The constant value of the middle state (from Eq. (22.34)) is

um := u` + λ`

(
−Z`

1

)
= u` + β

Zr − Z`
Zr + Z`

(
−Z`

1

)
. (22.39)

Using the first equation in display (22.30), this same state is

um := ur − λr
(
Zr
1

)
= ur − β

2Z`
Zr + Z`

(
Zr
1

)
. (22.40)

Suppose an observer at x∗ < x0 measures the voltage across the trans-
mission line. The observer will record the voltage u1

` (the first component of
u`) after the right-going wave passes x∗ up to time t∗ = (x0 − x∗)/c` + t0,
which is later than t0, when the wave front corresponding at the jump across
the characteristic x + c`t = x0 + c`t0 due to reflection at x0 reaches x∗.
After this time, the reflected wave front has passed to the left of the observer
who measures the new voltage

u1
` + β

Zr − Z`
Zr + Z`

(−Z`).

In view of relation (22.38)

u1
r − u1

` = βZ`,
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this measured voltage is

u1
` −

Zr − Z`
Zr + Z`

(u1
r − u1

` ). (22.41)

In other words, the observed voltage after the reflected wave front passes is
the original voltage minus the reflection coefficient times the jump in voltage
in the original wave. Likewise, for an observer at a point x∗ > x0, the
voltage measured after passage of the transmitted wave front, which moves
to the right, is

u1
r −

2Zr
Zr + Z`

(u1
r − u1

` ). (22.42)

The quantity (Zr − Z`)/(Zr + Z`) is called the voltage reflection
coefficient and 2Zr/(Zr+Z`) the voltage transmission coefficient. Warning:
Formulas and sign conventions for the reflection and transmission coeffi-
cients differ for different situations. Check the context before using textbook
formulas in computer codes.

For a front arriving from the right at x0 at time t0 where ur is the
constant state to the right and u` is the constant state to the left, the Rankine–
Hugoniot jump condition (for some new scalar β) is

ur − u` = β

(
−Zr

1

)
and, exactly as before,

λ = T−1
`r (ur − u`).

By combining these relations, we have that

λ` =
2βZr
Z` + Zr

, λr = β
Z` − Zr
Z` + Zr

.

The middle state is

ur − λr
(
−Zr

1

)
;

the middle voltage (the voltage reflected to the right) is

u1
r +

Z` − Zr
Z` + Z

(u1
r − u1

l ).
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Using the alternative representation of the middle state,

u` + λ`

(
−Z`

1

)
,

the transmitted voltage is

u1
` +

2Z`
Z` + Zr

(u1
r − u1

` ).

The reflection coefficient (Zr −Z`)/(Zr +Z`), for the right-going wave
ranges in size from −1 to 1. For Zr = 0 and the value is −1. This
corresponds to a shorted line. The reflected voltage is vr. At the other
extreme, Zr = ∞, the value is 1, the line is open, and the reflected voltage
is 2v` − vr. For Zr = Z`, the (impedance of the) line is matched at the
interface and there is no reflection.

Exercise 22.3. Show that transmitted and reflected voltages from a dielectric break
are equal.

Exercise 22.4. Find the current reflection and transmission coefficients.

Exercise 22.5. Consider an infinitely long ideal transmission line with three dielectric
segments; that is, the line has a finite middle segment with wave speed c and impedance
Z, the infinite segment to the left has wave speed c` and impedance Z`, and the
infinite segment to the right has wave speed cr and impedance Zr . There is a voltmeter
somewhere in the finite segment that measures the voltage across the line. A wave comes
from the left, hits the left boundary of the finite segment of the line, and is transmitted
into this segment. The wave in the segment has constant left and right voltages v` and
vr at its front. This wave front will eventually be reflected from the right boundary. In
fact, the wave with be reflected from the right and left boundaries an infinite number of
times. What is the voltage measured by the meter after a long time (relative to the wave
speed in the finite segment)?

22.7 A NUMERICAL METHOD FOR THE LOSSLESS
TRANSMISSION LINE EQUATION

General solution methods for conservation laws remain to be addressed. In
this section, the idea is to take full advantage of the special form of the ideal
(lossless) transmission line equations. In particular, note that in each layer of
the dielectric medium (where the matrix A is constant) the wave speeds are
equal. This fact allows an (almost) exact numerical solution of the lossless
transmission line PDE with initial and boundary conditions. It is wise to
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consider the principle that every applied problem has some special features
that can and should be exploited. Often key special features are not obvious,
but they might be uncovered by careful consideration of the mathematical
context in which the problem at hand is posed.

Assume that the transmission line has total length ` and a coordinate x is
chosen so that x = 0 is at the left boundary of the line. The right boundary
resides at x = `. In addition, suppose that the interior boundaries of the
layers in the medium are at the coordinate values {x1, x2, x3, . . . , xm}, with
x1 = 0 and xm = `. The interval (xk, xk+1) is defined to be the kth
layer. Also, the flux matrix A (which carries the information on dielectric
capacitance and line inductance for the lossless model ut +A(x)ux = 0) is
constant for xk < x < xk+1. In this layer, each matrixA(x) has eigenvalues
±ck, corresponding to the constant wave speed ck. Waves may move in
either direction, but their speeds are the same.

More notation: let `k denote the length of the kth interval; that is,
`k := xk+1 − xk. Define the electrical length of the kth interval to be
the elapsed time Tk := `k/ck a wave takes to traverse this interval. To
take full advantage of the constant wave speeds in each layer, the spatial
discretization along the transmission line should correspond to intervals of
equal electrical lengths (instead of the usual equal lengths). Although exact
electrical length discretizations do not exist in general, they always exist up
to a predictable error that can be made arbitrarily small by refining the mesh.

Choose an integer n ≥ 1 (the number of subdivisions in the electrically
shortest layer), let Tmin := min{T1, T2, T3, . . . Tm−1} be the shortest
electrical length, and define pk to be the nearest integer to the real number
nTk/Tmin. With this choice, Tk = pkTmin/n + δk and |δk| < Tmin/n.
Using Tmin/n as the unit of time measurement, a perfect way to proceed
would be to chop the ith original layer into pieces each of length ckTmin/n.
Because the original lengths may not be evenly divisible by pieces of these
specified lengths, let us accept errors in the computational lengths of the
layers by redefining the spatial computational domain and its discretization
as follows: Starting at x = 0, define p1 + 1 new nodes kc1Tmin/n, for
k = 0, . . . , p1; p2 new nodes p1c1Tmin/n + kc2Tmin/n, for k = 1, . . . , p2;
p3 new nodes p1c1Tmin/n + p2c2Tmin/n + kc3Tmin/n, for k = 1, . . . , p3;
and so on. This new spatial mesh determines intervals (between the nodes)
that are traversed in equal times and it fills out a computational domain
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Fig. 22.4 At tj , graphs of the discontinuous voltage profile is depicted on the bottom third of the figure. The middle
third shows the voltage profile shortly after time tj , and the upper third shows the voltage profile at time tj plus half
the electrical length divided by the wave speed.

that approximates the actual lengths of the layered medium. The differential
equation model stays the same except that the spatially varying matrix
A(x) is redefined to have corresponding constant values over each of the
approximate layers that are equal to the corresponding constant values on
the original layers.

The modified problem is an approximation of the original IBVP. The
accuracy of the approximation clearly depends on n, the number of subdi-
visions of the electrically shortest layer. In fact, the error goes to zero as n
increases without bound, but there is some work involved to prove this fact.

Suppose that the modified problem has been set so that every interval
(cell) in the discretization has the same electrical length and these corre-
spond to contiguous sets of intervals corresponding to the layers of the
medium such that A is constant on each layer.

According to the analysis of the Riemann problem in Section 22.5, the
exact solution of the transmission line model for layered media is given in
Eqs. (22.33), (22.34), and (22.35) at least in the case of two layers. In the
multilayer case, exactly the same solution formulas are true as long as the
time advance from the starting time to the new time does not exceed half of
the smallest electrical length of the cells.

Why is this true?
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Consider the cell with end nodes xk+1 and xk and recall from Sec-
tion 22.5 that the left, middle, and right solutions are determined in the
regions bounded by the characteristics. Suppose the starting time is t = 0. At
xk the characteristic with positive slope (corresponding to a wave moving
to the right) is given by x − ct = xi and the characteristic at xk+1 with
negative slope has equation x + ct = xk+1. In both cases, the wave speed
c is the constant wave speed in the cell with boundaries xk and xk+1.
The Riemann problem solution is valid in forward time t > 0 as long as
these two characteristics do not meet. As time passes beyond the time at
which they cross, new regions are formed bounded by these characteristics.
When do they cross? To determine this time, simply solve the two equations
simultaneously for t. This value is

t =
xk+1 − xk

2c
,

exactly half the electrical length of the interval. Because every cell has the
same electrical length, the Riemann solution at each cell boundary is valid
as long as the forward advance in time is less than half of this constant
electrical length.

Fig. 22.4 depicts the time evolution of the graphs of one component of
the solution u (for example the voltage) that is determined by solving the
Riemann problem at each cell interface, as time increases from bottom to
top from tj at the start to tj+1 at the end of the evolution where the final time
is tj plus half of the electrical length of the cells. Due to the discontinuities
at the cell interfaces, waves travel left and right from each interface as time
increases. The wave profiles are constant step functions as shown in the
figure. The constant values of the new voltages and currents at the interfaces
are given exactly by Eq. (22.36). At the final time, the waves coming from
left and right meet exactly in the middle of each cell as shown in the top row
of the figure. The end state u is again piecewise constant (with values given
via Eq. (22.36)) in the staggered mesh determined by the midpoints of the
cells.

What happens when the solution is advanced in time to an additional
half of the electrical length of the cells. Fortunately, the Riemann problem
solution again determines the new piecewise constant end state. The dis-
continuities occur at the mid points of cells where A is constant. At the
interfaces at the original cells, there are no discontinuities in the state. There
are discontinuities in A at these later interfaces. But the waves leaving them
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Fig. 22.5 Simulated TDR voltage versus time (in nanoseconds) is plotted for an open line (infinite resistance at the end
of the line) of electrical length 100 nanoseconds and impedance profile as follows: 50 ohms for first nine nanoseconds,
30 for 11 nanoseconds, 50 for 15 nanoseconds, 75 for 11 nanoseconds, 50 for 14 nanoseconds, 10 for 11 nanoseconds,
and 50 for the remainder of the line. The input voltage is one volt and the TDR trace is the voltage in the first of the 100
cells. The wave speed is assumed to be constant (at the speed of light) along the line.

do not have jumps; they remain at the same constant values as the initial
state but travel at different speeds. The discontinuities at the cell midpoints
produce left- and right-going waves that move at the same speed within each
original cell and meet the original cell boundaries at exactly the end time
advance of half of the electrical length of the cells. At the end of this time,
the discontinuities in the state are exactly at the original cell boundaries, as
in the bottom row of Fig. 22.4. Again the state u is constant in each cell and
these constant values are determined by Eq. (22.36) or (22.37), where the
left and right impedances (Z` and Zr) are both equal to the impedance in
the cell where the midpoint resides.

Boundary conditions are respected by specifying the boundary states
in ghost cells to the right and left of the end points of the computational
domain.

At the end of the line, a useful implementation of boundary condi-
tion (22.6), which is simply Ohm’s law in the form v(`, t) = Rendi(`, t),
depends on the size of the ohmic resistance Rend.

Recall that the last node in the discretization is xm = `. The initial data,
usually zero voltage and zero current, should be compatible with the end-
of-line boundary condition; that is, the values assigned to vm and im at time
zero satisfy the relation vm = Rendim. Assume such an assignment is made.
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For large resistances, which might include the open line where the ideal
resistance is infinite, the intermediate voltage Vm at the end of the line
is computed using the first component of vector equation (22.36), and the
intermediate current Im is set to

Im =
Vm
Rend

.

For small resistances, which might include the shorted line where the
ideal resistance is zero, the intermediate current is set using the second
component of Eq. (22.36), and the voltage is assigned, in accordance with
the boundary condition, by

Vm = RendIm.

The left-end ghost cell is assumed to take on this assigned voltage and
current over its entire length, which might be imagined to have infinite
leftward extent. Also, the intermediate voltages are assigned to vm and im
in preparation for the intermediate step on the computational domain.

In the ghost cell at the beginning of the transmission line, the initial
voltage and current are set together with the voltage generator so that the
voltage v0 and current i0 in the ghost cell are compatible with the boundary
condition

v0 +Rini0 = vin(0).

Usually, v0, i0 and vin(0) all vanish at t = 0. The intermediate current I
is determined from the second component of vector equation (22.37) and
assigned as the updated i0. The new ghost cell voltage is defined to be

v0 = vin(t)−Rini0,

where t is set to the end value of t at the current time step.

The complete algorithm for advancing the voltage and current (de-
fined at time t on the computational domain cells (xk, xk+1) for k =
1, 2, 3, 4, . . . ,m − 1, the left-end ghost cell, and the right-end ghost cell)
for one time step to time t + ∆t, starts with the computation of the new
intermediate states in the ghost cells.
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Using the second component of the vector equation (22.37) and capital
letters for intermediate voltages and currents, the intermediate current in the
left-end ghost cell is

I0 = i1 +
Rin(i1 − i0) + (v1 − v0)

Rin + Z1
,

where the impedance in this ghost cell is (as it should be by definition) the
ohmic resistance of the circuit connection modeled in this cell. Taking into
account the boundary condition, the ghost cell voltage is

V0 = vin(t+ ∆t)−RinI0.

At the right-end ghost cell, the size of Rend is tested; for example, in
relation to the impedance Zm−1 in the last computational cell. For Rend ≥
Zm−1, the ghost cell intermediate voltage is set to

Vm := vm−1 − Zm−1
Rend(im − im−1)− (vm − vm−1)

Rend + Zm−1
, (22.43)

and in accordance with the boundary condition, the intermediate current Im
is

Im =
Vm
Rend

. (22.44)

For Rend < Zm−1, the intermediate current is defined to be

Im = im−1 +
Rend(im − im−1)− (vm − vm−1)

Rend + Zm−1

and the voltage is

Vm = RendIm.

The ideal open line may be approximated by assigning Rend to some
value much larger than Zm−1. Alternatively, the open line is modeled
exactly by first taking limits as Rend → ∞ in the assignment formulas for
Rend ≥ Zm−1. In this case, the current vanishes in the ghost cell. The shorted
line is modeled by taking Rend = 0. In this case, the voltage vanishes in the
ghost cell.

The values of v0, i0, vm, and im are reset to V0, I0, Vm, and Im.
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New intermediate states in the computational domain are(
Vk
Ik

)
=

(
vk−1

ik−1

)
+
Zk(ik − ik−1)− (vk − vk−1)

Zk + Zk−1

(
−Zk−1

1

)
(22.45)

for indices k = 1, 2, 3, . . . ,m− 1.

And, for these same indices, new voltages and currents on the computa-
tional domain cells are(

vk
ik

)
=

(
Vk
Ik

)
+
Zk(Ik+1 − Ik)− (Vk+1 − Vk)

2Zk

(
−Zk

1

)
.

(22.46)

This completes the time step.

After advancing the time to exactly the current time plus the electrical
length of the cells, using the two-step process just described, the process can
be repeated in increments of the constant electrical length of the cells. As
n grows large, the electrical lengths go to zero. Thus, the number of steps
required to reach some fixed future time increases as it should to produce
more accurate solutions.

A typical simulated TDR voltage signal is depicted in Fig. 22.5.

An important special case is the launch of a front into the transmission
line. At time t = 0 the line is dead (voltage and current are zero). Sometime
between zero and ∆t the input voltage (modeled by the function vin) rises to
some nonzero value, which (by an abuse of notation) we denote by vin, and it
is held at this constant value as time increases. According to the algorithm,
at the beginning of the first time step v0 = 0 and i0 = 0. The intermediate
values are

I0 = 0, V0 = vin.

The intermediate state in the first cell is given by

V1 = vin − vin
Rin

Rin + Z1
, I1 = vin

1

Rin + Z1
,

and the voltage in this cell at the end of the first time step is

v1 =
vin

2

(
1− Rin

Rin + Z1
+

Z1

Rin + Z1

)
.
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In the special case where the voltage generator is (impedance) matched to
the line, that is, Rin = Z1, the voltage is exactly

v1 =
vin

2
.

A traveling voltage wave front with this amplitude is propagated down the
ideal transmission line. Thus, to launch a voltage front of some desired
amplitude in case the voltage generator is matched to the line, the model
requires the generator to produce exactly twice the desired voltage with a
rise time to this voltage less than the duration of one time step.

Exercise 22.6. Show that a traveling current wave front is propagated down the line
when sometime between zero and ∆t the input voltage (modeled by the function vin)
rises to some nonzero value and is held at this constant value. Determine the amplitude
of this front.

Exercise 22.7. Suppose a voltage-current wave front reaches the end of the trans-
mission line terminated as in the model discussed in this section. (a) Determine the
amplitudes of the reflected and transmitted waves using the algorithm discussed in this
section. Consider separately the open line and the shorted line. (b) Does the algorithm
suggested for computing the time evolution of voltages and currents produce reflected
and transmitted waves at the end of the line that agree with the exact predictions of the
model equations?

22.8 THE LOSSY TRANSMISSION LINE

The full transmission line model [Eq. (22.7)] encodes resistance and
conductance along the line into the matrix function B. The inclusion of
these effects introduce dissipation of energy (damping) into the system. In
the engineering literature, the adjective lossy is often used to describe the
model. Of course, all real transmission lines are lossy.

As stated previously, a theme of this chapter is to take advantage of the
special features of applied problems. For the lossless transmission line, an
important feature is that the wave speeds are the same in both directions in
cells where A is constant. This fact led to the exact solution of the IBVP
discussed in Section 22.7. For the lossy line, there are two special features:
B does not depend on time (at least in the model considered here) and B(x)
is diagonal for each spatial coordinate x. How can we take advantage of
these facts?
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Rewrite the model PDE in the form

ut = −A(x)ux −B(x)u. (22.47)

This formulation suggests that u might be viewed as the solution of an
ordinary differential equation (ODE), which would have the form ut =
F (u) for some function F . The theory of ODEs is understood much better
than the theory of PDEs. Thus, there is a powerful incentive to view PDEs
as ODEs. Perhaps, at first glance, there is no obvious way to do this, but in
fact, this idea has been very fruitful for understanding the behaviors of an
important class of PDEs. A glimpse into the ramifications of this powerful
idea is provided in this section.

To view PDE (22.47) as an ODE ut = F (u), the function F must be
given by

F (u) = −A(x)ux −B(x)u.

Something is wrong: The right side involves ux and x appears explicitly on
the right-hand side. If A were zero and B were constant, then there would
be no problem as F (u) = −Bu makes perfect sense. In this special case,
F is simply a linear transformation and ut = −Bu is a matrix ODE with
solution

u(t) = e−tBu(0).

This is not quite right. With A(x) ≡ 0 the PDE becomes an ODE, but the
solution of the original PDE should depend on both x and t. This problem
is simply resolved. In fact,

u(x, t) = e−tBu(x, 0)

is a solution of ut = −Bu viewed as an ODE for u in the space of all (two-
dimensional vector-valued) functions defined for 0 ≤ x ≤ `. Instead of the
usual setting for the ODE u̇ = f(u) with f a function from some Euclidean
n-dimensional space into itself, which has solutions that are functions t →
u(t) defined on some time interval 0 ≤ t < T , the correct way to view
ut = −Bu is in the form ut = f(u) where f is defined on a space of
(vector-valued) functions themselves defined on [0, `]. A solution t → u(t)
is now a curve in this function space. For each t, u(t) is a vector-valued
function defined on [0, `] starting at the vector-valued function x 7→ u(x, 0).
Its value at xmay be denoted by u(x, t), or if you wish, its value at xmay be
denoted u(t)(x). In the latter interpretation, u(t) is the name of a function
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and its value at x is as usual its name followed by x enclosed in parenthesis.
This is exactly what we mean when we write f(x). The name of the function
is f and its value at x is f(x).

There is no problem when B is a matrix function of x. We may still view
ut = −B(x)u as a PDE whose solution is

u(x, t) = e−tB(x)u(x, 0).

Again, the correct interpretation of the solution of ut = B(x)u is a curve of
functions defined for 0 ≤ x ≤ ` and parameterized by t starting at t = 0 at
the initial vector-valued function x 7→ u(x, 0).

In case B is the zero matrix function and F (u) = −A(x)ux, we may
again consider F as a function defined on a space of vector-valued functions
defined on [0, `]. The value of F on such a function involves the derivative
of this function. But, this does not preclude F itself from being a function.
To each u it assigns a unique function F (u) as long as u is differentiable.
The solution of ut = −A(x)ux is the solution u(x, t) derived previously.
It can be interpreted as a curve in a function space: for each t the function
x 7→ u(x, t) is the point in the function space on the curve at time t.

This discussion is purposely vague in the specification of the function
space of functions defined on [0, `]. The specification of this space is
essential in the discussion of the well posedness of the PDE. To say that a
unique solution exists, for example, requires a precise definition of what we
mean by a solution. In the context of transmission line problems, the matrix
functions A and B are likely to be discontinuous. Solutions of the PDE
will also be discontinuous. As a result, solutions will not be differentiable.
This means ut and ux do not always exist. How is it possible that we
have already found solutions of the ideal transmission line equation? A
glib answer is that we simply did not require solutions to be differentiable
at all points. Solutions were allowed to be piecewise differentiable. The
space of functions in which solution curves of our ODE reside must include
piecewise differentiable functions. A precise definition of this function
space and the precise meaning of a solution requires the notion of a weak
solution, which will be postponed until a later section. We may proceed,
as before, but under the warning that the discussion here is informal.
Fortunately, all stated results can be made precise. Also, to avoid awkward
references to the unspecified function space, let’s give it a name and call
it L(0, `). Elements of this set are vector-valued functions defined on the



760 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

interval [0, `]. Although we do not specify which functions to include, let us
assume that L(0, `) is a vector space. This ensures that linear combinations
of elements of L(0, `) with real coefficients are elements of L(0, `).

Recall the concept of a splitting method for approximating the solution
of an ODE as in Chapter 7. The basic example is a linear ODE ż = Pz+Qz,
where P andQ are constant matrices and z is a vector variable. The solution
of this ODE is

z(t) = et(P+Q)z(0).

In case eP+Q is more difficult or time-consuming to compute than etP and
etQ, there would be a great saving if z(t) were equal to etP etQz(0). The
solution could then be determined by applying etQ followed by etP . This
strategy is almost never viable because eP+Q is equal to eP eQ only if P and
Q commute; that is, PQ = QP . Nonetheless, there is a definite relation
between the two exponentials. For example, the Trotter product formula
states that

et(P+Q) = lim
n→∞

(et/nP et/nQ)n. (22.48)

This result suggests approximating the solution of the ODE by a finite
product z(t) ≈ (et/nP et/nQ)nz(0) for some positive integer n.

Important note: In case P and Q commute and the solution is given by
z(t) = etP etQz(0), where theQ part of the splitting is applied for time t and
then the P part is applied again for time t, we might believe that the solution
should have been advanced to time 2t. This is not the case: etaetb = et(a+b).
After all, we are advancing only part of the original differential equation in
each step.

The transmission line model [Eq. (22.47)] may be written in the form

ut = Pu+Qu (22.49)

with the linear transformations P and Q defined on L(0, `) by

(Pw)(x) = A(x)wx(x), Q(w)(x) = B(x)w(x).

Both operators are indeed linear (for instance, Q(aw + by) = aQ(w) +
bQ(y) whenever w and y are in L(0, `) and a and b are real numbers)
on the subsets of L(0, `) where they are defined. The linear operator P is
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called a differential operator because its action on functions involves their
derivatives.

Under the expectation that the solution of the transmission line PDE
behaves similar to et(P+Q)u(x, 0) with an appropriate definition of the
exponential, it is reasonable to expect that the solution may be well-
approximated by a finite product (et/nP et/nQ)nu(x, 0). In other words, the
solution might be closely approximated by starting at the initial data, solving
wt = −B(x)w for a short time t/n and reaching the evolved state w(t/n),
followed by solving yt = −A(x)yx for a short time with initial data w(t/n)
to reach the new state y(2t/n), solving again for w starting at this new state,
then for y, and continuing in this manner until the alternate directions reach
time t. The final state in this process is the approximation to u(x, t).

The alternate direction method is viable, but its implementation as
a numerical method requires surmounting at least one more problem:
boundary conditions must be incorporated.

As an explicit example, consider the PDE

Ut + cUx = −b(x)U (22.50)

defined for −∞ < x < ∞ and t ≥ 0 with initial data U(x, 0) = U0(x)
defined on the whole real line.

To reveal the operator splitting as in Eq. (22.49), note first that the general
solution in case b vanishes is U(x, t) = φ(x − ct) for some function φ. By
imposing the initial condition

U(x, 0) = φ(x),

the function φ is determined and the solution of the PDE is

U(x, t) = U0(x− ct).

In this example, the operator P (as in Eq. (22.49)) is given by (Pw)(x) =
cwx(x), where the function w is defined on the whole real line. The
definition of the solution operator etP in this case is

(etPw)(x) = w(x− ct).

In particular,

(etPU0)(x) = U0(x− ct).
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The exponential is a suggestive notation that is not to be taken literally. On
the other hand, it does convey the correct intuition. For example, it is easy
to check that

(e(t+s)PU0)(x) = U0(x− c(t+ s)) = (esP etPU0)(x).

With c equal to zero, the general solution is

U(x, t) = e−tb(x)U0(x),

where the exponential is to be taken literally. In other words,

(etQw)(x) = e−tb(x)w(x).

Do the operators P and Q commute? If they do, we can expect the
general solution of the full equation to be

U(x, t) = (etQetPU0)(x) = e−tb(x)U0(x− ct).

By substitution of this function U into the PDE, it is easy to show that it is a
solution if and only if b′(x) = 0; that is, b is a constant function. In this case
and with b used to denote the constant value of the function,

U(x, t) = e−tbU0(x− ct)

is the unique solution, the operators P and Q commute, and etQetP =
et(P+Q).

Although the solution of PDE (22.50) cannot in general be expressed in
such a simple form when b is not a constant, there are some special cases
with exact solutions. For instance, the PDE

Ut + Ux = −2xU (22.51)

with initial data U0(x) = ex−x
2

has the solution

U(x, t) = e−x
2

ex−t.

This is a good example to test operator splitting as a numerical method.

For PDE (22.51),

(et/nQet/nPU0)(x) = ex−x
2

e−t/n−t
2/n2
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and

((et/nQet/nP )nU0)(x) = ex−x
2

e−t−t
2/n. (22.52)

Hence, as expected,

lim
n→∞

((et/nQet/nP )nU0)(x) = e−x
2

ex−t. (22.53)

The Trotter product formula is valid for the operators P and Q.

As a numerical method, the solution at time t > 0 would be approxi-
mated by taking n steps, for some positive integer n, as in Eq. (22.52). The
error is

|ex−x2

e−t−t
2/n − ex−x2

e−t| = ex−t−x
2 |e−t2/n − 1| ≤ te−x2

ex−t
t

n
;

(22.54)
therefore, the method is order one (see Exercise 22.8).

Splitting approximations are improved by replacing et/nQet/nP with

et/(2n)P et/nQet/(2n)P .

For PDE (22.51), the improvement is dramatic; in fact, using this splitting
produces the exact solution

((et/(2n)P et/nQet/(2n)P )nU0)(x) = e−x
2

ex−t. (22.55)

Although the operator splitting method seems viable in the setting of a
conservation law with a source, its application to the lossy transmission line
requires at least one more important consideration: the boundary conditions.

Consider the toy example Ut +Ux = −bU , where b is a constant and the
boundary condition is U(0, t) = f(t) for some function f defined on the
whole real line. The solution of this BVP is

U(x, t) = e−bxf(t− x).

Following the splitting prescription, consider solving the PDE

Wt +Wx = 0 (22.56)

with the boundary condition W (0, t) = f(t) and then the ODE

Yt = −bY (22.57)
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with initial data W (x, t) forward for time t. The result should be an
approximation (or perhaps the exact solution) of the original PDE at time
t. Unfortunately, this simple approach is not correct. Note that W (x, t) =
f(t − x) and Y (x, t) = e−btY0; therefore, the approximation is U(x, t) =
e−btf(t − x). The boundary condition for the original PDE is not satisfied
because the ODE does not preserve the boundary condition that W satisfies.
As usual, boundary conditions are troublesome.

A cure for operator splitting applied to the toy problem is to set the
boundary condition for the PDE Wt +Wx = 0 so that the correct boundary
condition for the original PDE is met after the ODE is applied. To determine
this boundary condition, note that the general solution of PDE (22.56) is

W (x, t) = φ(x− t)

for φ an arbitrary function defined on the whole real line. ODE (22.57)
applied to this initial data yields the approximation U(x, t) = e−btφ(x− t).
It satisfies the boundary condition at x = 0 provided that e−btφ(−t) = f(t).
Hence, W (x, t) = φ(x− t) must satisfy the boundary condition

W (0, t) = φ(−t) = ebtf(t)

so that

W (x, t) = e−b(x−t)f(t− x).

By solving PDE (22.56) with boundary condition W (0, t) = ebtf(t)
followed by solving ODE (22.57) with initial data W (x, t), the operator
splitting in this form gives the exact solution of the toy problem:

U(x, t) = e−btφ(x− t) = e−bt(e−b(x−t)f(t− x)) = e−bxf(t− x).

For the lossy transmission line equation, operator splitting is viable, but
the boundary conditions for the PDE Wt +A(x)Wx = 0 must be set so that
after completing a time step by advancing the solution of this PDE by the
ODE Yt = −B(x)Y the boundary conditions for ut + A(x)ux = −B(x)u
are satisfied. As a general principle for the case of a splitting into a PDE and
an ODE, a three-step procedure should be employed: Move the boundary
condition backward one time step via the ODE, advance the current states
of the line voltage and current one time step using the lossless-line PDE and
the modified boundary conditions, and advance the resulting line current and
voltages one time step using the time-advance map of the ODE.
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The fundamental matrix solution at t = 0 of the linear ODE is e−tB(x).
Thus, the time advance for the autonomous ODE is the same matrix
exponential e−∆tB(x), where ∆t is the duration of the time advance from
the current time. For the transmission line PDE, the matrixB(x) is diagonal;
therefore, the time-advance map is also diagonal. It is given by the matrix(

e−∆tG(x)/C(x) 0

0 e−∆tR(x)/L(x)

)
. (22.58)

In other words, at the position with coordinate x on the line, the ODE part
of the splitting advances the voltage v(x) forward an additional time ∆t to
e−∆tG(x)/C(x)v(x) and the current i(x) to e−∆tR(x)/L(x)i(x).

For some important transmission line applications, the operator splitting
method does not require a boundary condition adjustment at the left end of
the line. Usually, the voltage generator connection to the transmission line is
manufactured to be impedance matched to the connection (which is itself a
segment of the entire transmission line), and in addition, the conductance of
the insulator at the connection and the ohmic resistance along the connection
are manufactured to be so small that they are negligible at the connection.
In this case, the matrix B may be taken to vanish at the left end of the line.

The right-end boundary condition for the lossless-line calculation usually
requires an adjustment to ensure the system boundary condition is met.
Currents and voltages passed to this part of the operator splitting algorithm
are assumed to satisfy the full system right-end boundary condition. A
viable modification of the ideal-line algorithm at Eqs. (22.43)–(22.44) is
to compute the intermediate ghost cell current Im using Eq. (22.43), store

im = e∆tG(`)/C(`)Im,

replace Im by im (so that these two quantities are equal), compute

Vm = e−∆tR(`)/L(`)RendIm,

and store vm = Vm. These values of Vm, vm , Im, and im are used in the
second step of the lossless-line algorithm. At the end of the time step, the
ghost cell voltage and current satisfy the modified boundary condition

e∆tR(`)/L(`)vm = Rende
∆tG(`)/C(`)im.

A similar modification is made for the case Rend < Zm−1.
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The updated voltages and currents in the cells of the computation domain
together with vm and im are passed to the lossy part of the operator splitting
algorithm. In the kth cell, the resistance divided by the inductance is denoted
here by ωk and the conductance divided by the capacitance by µk, and
in the ghost cell, ωm and µm are computed by the ratios of the same
quantities evaluated at x = `. The voltage in the kth cell (including k = m)
is multiplied by the exponential e−∆tωk and the current by e−∆tµk . The
new ghost cell voltage and current satisfy the system right-end boundary
condition. They are passed to the lossless-line algorithm in the next time
step. Thus, the system boundary conditions are satisfied by the approximate
solution obtained via operator splitting.

Exercise 22.8. Show that (1 − e−x)/x < 1 for 0 < x < ∞ and use this result to
establish the inequality in estimate (22.54).

Exercise 22.9. Does the order of operation etP etQ or etQetP in the splitting method
affect the accuracy of the approximation?

Exercise 22.10. Determine all the solutions of PDE (22.50) that can be expressed as
a product U(x, t) = f(x)g(t) with separated variables.

Exercise 22.11. Is Eq. (22.55) true for every solution of PDE (22.50) that is of the
form U(x, t) = f(x)g(t)?

Exercise 22.12. (a) What are the fundamental units to measure resistance divided by
inductance? (b) What about conductance divided by capacitance?

Exercise 22.13. [Historically Important Transmission Line Application] Heaviside’s
transmission line model played an important role in the history of telegraph communi-
cations via the early transatlantic cables. The first transatlantic cable communication
was made on April 16, 1858. Due to a controversy over high-voltage versus low-
voltage transmissions, the insulation of the cable was compromised and the cable was
soon inoperative. A viable new cable was laid in 1866. Although communication was
established, the information transmission rate was slow: on the order of a few words
per minute. Faster transmission rates were realized after Heaviside’s theoretical work—
which was controversial at the time for economic reasons related to laying expensive
cables—explained the origin of signal distortion, the main obstacle to improving
information transmission rates. His work is a gem of applied mathematics. An important
result, which you will derive in this exercise, is Heaviside’s condition for distortionless
transmission.
(a) Use the transmission line model [Eqs. (22.1)] to derive the telegrapher’s wave
equation for voltage:

vtt +
(R
L

+
G

C

)
vt −

1

LC
vxx = −RG

LC
v.

(b) The objective is to transmit signals as waves that have a definite profile (shape)
that is maintained along the line; that is, these waves propagate with no distortion. It
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is too much to ask for waves that maintain their strength because there will be losses
due to the conductance G of the dielectric between the conductors and the resistance R
of the conductors. The model equation is linear, so it is reasonable to expect losses to
be modeled by exponential decay. Thus, it is reasonable to expect voltage waves of the
form

v(x, t) = e−γxf(x− at), (22.59)

where f is the wave profile, γ > 0 is the loss rate per distance along the line, and a is
the wave speed. Are waves of this type solutions of the telegrapher’s wave equation?
(c) The answer to part (b) is yes. Heaviside asked a more important question: What
condition would have to be satisfied by the system parameters C, G, L, and R so that
every profile f (which we might wish to send down our cable) is not distorted? In other
words, is there a condition on these parameters so that all profiles f can be transmitted
as distortionless waves (of the form given in Eq. (22.59))? Show that the answer is yes
provided that Heaviside’s condition

C

L
=
G

R

is satisfied, the wave speed is a = (LC)−1/2 and the loss per length is γ = (RG)1/2.
Hint: Substitute the distortionless wave form [Eq. (22.59)] into the telegrapher’s
equation and determine conditions to make this equation hold for all profiles f .

For a typical cable manufactured in the 19th century, RC was much greater than
LG. The natural, or so it seemed, direction was to build cables that would decrease RC.
Heaviside realized that this was unnecessary and argued that LG should be increased, a
controversial position at the time. This could be done by increasing the inductance L at
a relatively low cost. It is also possible to increase G by using higher frequency signals,
but to understand this possibility more fully requires more physics and engineering than
space allows in this book. Heaviside’s theory is based on correct physics (Maxwell’s
equations). So, of course, his theory eventually became the industry standard. (See [80]
for much more on Heaviside’s legacy.)

22.9 TDR APPLICATIONS

Fig. 22.6 depicts TDR data collected from an experimental apparatus as in
Fig. 22.1 where the chamber is filled with water. Fig. 22.7 shows the result
of a simulation that depicts a similar graph of voltage versus time. All the
conceptual ingredients for reproducing the simulated data in the figure have
been discussed. The required parameters are given in this section.
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Fig. 22.6 Experimental TDR output of voltage (in volts) versus time (in seconds) for a coaxial cable connected to a
dielectric filled chamber is depicted.

0 1.´10
-8

2.´10
-8

3.´10
-8

4.´10
-8

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Fig. 22.7 Simulated TDR output of voltage (in volts) versus time (in seconds) for a coaxial cable connected to a
dielectric filled chamber is depicted.
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From basic physics, recall the free-space permittivity ε0 and permeability
µ0 have numerical values

ε0 = 8.85× 10−12 farad

meter
, µ0 = 4π × 10−7 henry

meter
.

The permittivity and permeability of materials are usually specified as
ε = εrε0 and µ = µrµ0 using dimensionless relative permittivity εr and
permeability µr. Of course, for free-space εr = µr = 1.

For coaxial cable with core conductor diameter a and shield (inner)
diameter b the inductance and capacitance are

L =
µ

2π
ln
b

a
, C =

2π

ε
(ln

b

a
)−1.

The impedance and (lossless line) wave speed are

Z =

√
L

C
=

1

2π

√
µ

ε
ln
b

a
, c =

1√
LC

=
1√
µε
.

The free-space impedance is (approximately) 376.73 ohm and the wave
speed c is the speed of light 2.99792× 108 meter / second.

Consider a TDR experimental apparatus as in Fig. 22.1. For definiteness,
suppose the reflectometer is attached to the test chamber with a manufac-
turer certified 50 ohm coaxial cable (that is, the cable’s impedance is 50
ohm) that has electrical length 3.0 nanosecond and physical length 0.75
meter.

The coaxial test chamber has length 0.3 meter. Its cylindrical central
conductor has outer diameter 3.175 cm and its cylindrical outer conductor
has inner diameter 7.2898 cm. Also, the chamber is shorted with a metallic
cap whose total resistance is measured to be 0.3 ohm. For a first approxi-
mation, the electrical properties of the connector between the coaxial cable
and the chamber can be safely ignored.

The chamber is filled with a dielectric. Treated as a transmission line,
the filled chamber has electrical length 2.5 nanosecond and impedance is
5.57 ohm. Both the ohmic resistance of the chamber and the conductance
of the dielectric are known to be small and can be ignored. The inductance
and capacitance of the dielectric filled chamber can be computed from its
impedance and electromagnetic wave speed.
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Exercise 22.14. Determine the inductance in nanohenries and the capacitance in
picofarads for a 50 ohm coaxial cable with electromagnetic wave speed 0.6733c.

Exercise 22.15. (a) Using the transmission line equations and boundary conditions
as in Section 22.1 together with the data provided in this section, reproduce Fig. 22.7
under the assumption that a quarter-volt step wave is launched with a rise time of 10
picosecond into the coaxial cable by the TDR. (b) Typical resistance and inductances
the chamber and the dielectric filling it are in the microsiemens per meter and and ohm
per meter range. Quantify the change in the results of the simulation for resistances and
inductances of this size.

22.10 AN INVERSE PROBLEM

One purpose of TDR is to determine the position of a fault on a transmission
line. The position of the fault is easily determined from the known dielectric
parameters and the time at which a reflection from the fault reaches the
TDR monitor. A much more challenging problem is to determine the
dielectric parameters of an unknown substance (or substances) that occupy
the space between the two conductors of the transmission line from TDR
data. This idea is pervasive in many scientific and engineering problems:
shine radiation on something and determine what that something is from the
return signal.

A TDR voltage trace contains two kinds of information: the voltages
and the times of reflections. The voltages can be used to estimate the
impedances; the reflection times can be used to determine wave speeds.
From these two pieces of information we can deduce the inductance and
the capacitances of the dielectrics in case the resistance of the coaxial
transmission line is known and the conductance of the dielectric is small
enough to be ignored.

More precisely, imagine an experimental apparatus, such as the chamber
depicted in Fig. 22.1. A typical experiment is to fill the chamber with
some substance and attempt to determine its dielectric constants from
TDR measurements. The four dialectic parameters C, L, G and R are
typically computed for the connections to the test chamber. Indeed, a typical
apparatus would be calibrated to a 50 Ohm cable. Coaxial cables and
connectors would be matched to this fixed impedance as closely as possible
to avoid spurious reflections due to the apparatus. The resistivity of the
chamber is a property of its conducting inner and outer walls. Thus, R
should be known before samples are tested.
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Fig. 22.8 The graph of a simulated TDR time trace ( volts) versus time (seconds) is shown.

The basic problem of TDR is to determine C, L, and G for a test sample
(or perhaps a layered test sample) that fills a portion of the chamber.

To discuss an important specific application (which allows a further
simplification), suppose that test samples are known to be nonmagnetic; that
is, the magnetic permeability of the test samples are known to be close to
free-space permeability µ0. Using the circular geometry of the test chamber,
the inductance (from Eq. (21.28)) is then known to be

L =
µ0

2π
ln
b

a
, (22.60)

where a < b are the radii of the inner and outer walls inside the test chamber.
Thus, the inverse problem of determining the dielectric constants is reduced
to two parameters:C andG, the capacitance and conductance of the sample.
In case the general class of samples is known to have small conductance,
the problem is reduced to determining the capacitance. A typical inductance
assumed here is 1.5×10−7 henry /meter. Given this value, the capacitance
can be computed from the impedance Z :=

√
L/C.

Exercise 22.16. [TDR Inverse Problem] Fig. 22.8 shows a TDR output of voltage
(in volts) versus time (in seconds) for the apparatus discussed in this chapter. The
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coaxial cable from the TDR to the chamber has electrical length 0.3 nanosecond and the
chamber, filled with some unknown dielectric substance, is 0.3 meter long. Approximate
the electrical length of the dielectric filled chamber and the capacitance of the unknown
substance. Hint: A close approximation to this graph can be made by simply joining the
points in the following list with line segments.

(3.125× 10−11, 0.000), (2.394× 10−8,−0.015),
(4.062× 10−10, 0.250), (2.416× 10−8, 0.016),
(6.062× 10−9, 0.250), (3.287× 10−8, 0.016),
(6.219× 10−9, 0.028), (3.306× 10−8,−0.006),
(1.500× 10−8, 0.027), (4.178× 10−8,−0.006),
(1.519× 10−8,−0.015).

Write a code for a numerical function that takes as input the electrical length and
impedance of the dielectric and returns a (discretized) TDR voltage versus time function.
Also, write a code that takes as input the output of the first code and outputs a real
number that measures the least squares fit to the function obtained by connecting
the points in the list. Recall that after a spatial discretization t1, t2, t3, . . . , tn of the
time interval over which the TDR trace is taken, the square of the least squares
distance between the simulated TDR time trace f and the given TDR time trace g is∑
j=1,n|f(tj) − g(tj)|2. A strategy for determining the best fit is to minimize the sum

over all feasible electrical lengths and impedances. For one exercise, trial and error might
work without undue effort, but an automated approach is of course preferred.

What is an efficient algorithm for minimizing a scalar function on a finite-
dimensional space? This question does not have a simple answer. Discussions of
available algorithms would likely fill an entire book. When derivatives are easily
computed, the methods of calculus (find the first derivative and set it to zero) are
preferred. If the zeroes of the derivative are not easy to locate, the method of steepest
descent (going in the direction of the negative gradient) can be used to find a zero. Even
better, Newton’s method can be employed in some cases to speed up the convergence.
In case derivatives are not readily available or their zeros are difficult to locate, a
direct search algorithm can be effective. Before describing a direct search method that
might be useful for minimizing the least squares fit for the TDR inverse problem, there
is an essential point that must be addressed: a major problem with all methods of
minimization or root finding (when there are multiple roots) is that the chosen algorithm
may converge to a root or a local minimum that is not the desired root or the global
minimum. There is no known way to avoid this problem in general. Sometimes a
local minimum, for example, is good enough. More thorough searches can be made
by searching several times with different starting points, altering the parameters in
the search algorithm, employing randomization, or mimicking biological evolution.
The latter idea, which incorporates random mutations, leads to methods called genetic
algorithms.

Simple direct search algorithms are based on an obvious idea: Choose some
tolerance ε > 0 that will be used to stop the algorithm, a search increment δ > 0,
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and an integer M > 0 that is defined to be the largest number of iterations allowed.
Also choose a unit basis v1, v2, v3, . . . , vn for the vector space containing the feasible
set and define an augmented set of vectors given by wj := vj for j = 1, 2, 3, . . . , n and
wj := −vj−n for j = n + 1, n + 2, n + 3, . . . , 2n. Start the search in the feasible set
(in the TDR problem this is the first quadrant in two-dimensional space). Compute the
function F to be minimized at the starting point p0 and compute the function F at the
points p0 + δwj , for j = 1, 2, 3, . . . , 2n. If |F (p0)− F (p0 + δwj)| < ε for all j, choose
the point p0 + δwj corresponding the smallest computed value of F and return it as the
approximation of the point where F reaches its minimum. Also, the function value at this
point is an approximation of the desired minimum. Otherwise, replace p0 by p0 + δwj
with j chosen so that this point gives the smallest value of F over j = 1, 2, 3, . . . , 2n.
Repeat this process until a minimum is found or the maximum number of iterations is
reached.

The algorithm just described is viable, but it can be made more efficient in several
different ways; for example, by using a smaller set of search vectors than the set
{wj}2nj=1. How should a smaller set be chosen? Can you devise other modifications
to carry out a direct search that might be more efficient? Write codes to implement
your ideas, test and compare algorithms against minimization problems with known
solutions, and apply the best methods to the TDR problem. Remark: Standard test
problems abound in the literature on optimization.



CHAPTER 2323
Problems and Projects: Waveguides, Lord
Kelvin’s Model

A waveguide is a hollow (usually metal) tube that is used to transport
electromagnetic energy. A waveguide is similar to a transmission line except
that there is no central conductor. One important application is the transport
of electromagnetic fields from a high-frequency generator to an antenna.
The design and plumbing of waveguides remains a thriving industry.

Recall that (under the assumptions that the material in the tube is ohmic
and isotropic, and the conductors are perfect) the transverse electromagnetic
(TEM) mode in a transmission line is determined by the scalar potential
[Eq. (21.17)] defined in a cross section of the waveguide and this potential
is proportional to the natural logarithm of the radial coordinate. If there
were no central conductor, the electric field would have to be defined and
continuous at the radial coordinate r = 0. This is not possible because the
potential blows up at this point. For this reason, there are no TEM modes in
a waveguide satisfying the same assumptions.

The most important modes in a waveguide are the transverse electric (TE)
and transverse magnetic (TM) modes. These are defined exactly as expected:
TE modes have electric fields with zero components in the axial direction
of the waveguide; TM modes have magnetic fields with zero components in
the axial direction.

Most practical waveguides have rectangular, circular, or elliptical cross
sections. They are manufactured from metal pipes that are usually coated on
the inside with copper or gold to ensure the inside skin is nearly a perfect
conductor.

It turns out that the design of a waveguide determines the frequency of the
electromagnetic waves that it will transport most efficiently. The first project
is an outline of the steps required to appreciate this fact in the context of a
circular cylindrical waveguide, which is chosen to build on the knowledge
base in this chapter on circular transmission lines. The second project is to
repeat the entire program for rectangular waveguides, which are in fact the
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most common type in practical use. These projects require some (perhaps)
new mathematical analysis that is useful in many other contexts.

23.1 TE MODES IN WAVEGUIDES WITH CIRCULAR
CROSS SECTIONS

Consider a circular pipe with inner radius b and choose coordinates so that
positions along the central axis of the pipe are measured with respect to
the first coordinate x of a rectangular coordinate system so that each cross
section of the pipe is a disk centered at the origin in the second and third
coordinates y and z. A TE mode is an electromagnetic field inside the pipe
such that the first component of the E field with respect to these coordinates
vanishes. The first component of the B field is not required to vanish; in
fact, the first component of the B field of a nonzero TE mode is not zero.

Consider a TE mode in the pipe where the E and B fields are time-
harmonic plane waves moving in the axial direction of the pipe. The
E field has the form of generic field (21.1). Under the assumption of
no electromagnetic sources in the pipe, Faraday’s law and the Ampère–
Maxwell law are given by

∇×B = iωµεE, ∇× E = iωB.

Using these vector identities and time-harmonic plane waveforms for the E
and B fields—not assuming yet that E1 = 0, show that

E2 = − iω

ω2εµ+ k2
(B1z +

k

ω
E1y),

E3 = − iω

ω2εµ+ k2
(−B1y +

k

ω
E1z),

B2 =
iωεµ

ω2εµ+ k2
(E1z +

k

ωεµ
B1y),

B3 =
iωεµ

ω2εµ+ k2
(−E1y +

k

ωεµ
B1z).

Thus, the electromagnetic field is determined once E1 andB1 are known. In
the TE mode, the electromagnetic field is determined from B1.

From previous results, the first component B1 of the time-harmonic
magnetic flux must satisfy Helmholtz’s equation

∆B1 + ω2µεB1 = 0 (23.1)
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Fig. 23.1 A computer-generated (solid line) plot of the derivative of the Bessel function of the first kind of order zero
(J ′0) is depicted together with a (dashed line) plot of the derivative of the Bessel function of the first kind of order one
(J ′1).

with zero Neumann boundary condition at r = b.

Using the circular geometry, show that the first component in polar
coordinates B̃1(r, θ), where the temporal coordinate is suppressed, is given
by

B̃1(r, θ) = R(r)Θ(θ),

whenever there is a constant c such that

Θ′′(θ) + cΘ(θ) = 0, r2R′′(r) + rR′(r) + (ω2εµr2 − c)R(r) = 0

and the following boundary conditions are satisfied: (1) Θ is a 2π periodic
function, (2) R′(b) = 0, and (3) R(0) is finite.

Show that c must be the square of an integer (c = n2). Also, by the
change of variables r = sω

√
εµ, it is enough to solve Bessel’s differential

equation s2R̃′′(s)+sR̃′(s)+(s2−n2)R̃(s) = 0 for R̃(s) := R(s/(ω
√
εµ))

with the boundary conditions R̃′(bω
√
εµ) = 0 and R̃(0) finite. HereR(r) =

R̃(r/(ω
√
εµ)).

Bessel functions have been studied extensively because they arise in
many different important applications with circular symmetry (via the
Laplacian in polar coordinates). The extensive scope of the theory is
apparent in [117].
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Bessel’s equation is a second-order linear ordinary differential equation
(ODE) with nonconstant coefficients. As such, there is a fundamental set of
two solutions (on the interval s > 0) whose linear combinations give all
other solutions. One choice of fundamental solutions consists of the Bessel
function of the first kind of order n and the Bessel function of the second
kind of order n. These functions can be represented as power series. In fact,
the Bessel function of the first kind of integer-order n is given by

Jn(s) =

∞∑
j=0

(−1)j

j!(j + n)!

(s
2

)2j+n
. (23.2)

Verify that this power series converges for all s ≥ 0 and satisfies Bessel’s
equation. In particular, this function (for each fixed n) extends analytically
to give a finite value at s = 0, which is required by the second boundary
condition for the waveguide problem.

A second solution can be found by reduction of order. Show that every
choice of an independent second solution blows up at s = 0. Thus, the
solution to our boundary value problem (BVP) (if it exists) is a constant
multiple of Jn. We may as well take the constant to be unity. Why?

The original BVP for R is solved provided that

R′(b) = ω
√
εµJ ′n(b ω

√
εµ) = 0. (23.3)

As suggested in the numerical plots in Fig. 23.1, derivatives of integer
order Bessel functions of the first kind have infinitely many zeros. Let j′n,m
denote the mth nonnegative zero of J ′n. Show (using power series) that
j′(0, 1) = 0 and using a numerical method that j′(1, 1) ≈ 1.84. It is possible
to show that j′(1, 1) is the smallest such positive zero among integer order
Bessel functions. This choice results in the TE1,1 mode (Bessel function
of order one, first zero), which is the usual mode of operation in practical
waveguides with circular cross sections.

Why not work in the TE88,100 mode?

To support an electromagnetic wave with the lowest possible nonzero
frequency ω (called the cutoff frequency) in an air-filled waveguide with
radius b meters and the speed of light c in meters per second, requires that
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Fig. 23.2 A schematic cross-shaped waveguide is depicted.

the cutoff frequency be

ω =
j′(1, 1)

b
√
εµ
≈ 1.84cb ≈ 1.84

b
× 2.9979× 108 Hz, (23.4)

In view of the frequencies in the electromagnetic spectrum, discuss what
this result means for the manufacture of practical waveguides.

Determine the B and E fields for the TE mode.

The number k2 := ω2εµ in Helmholtz’s equation (23.1) should be
viewed as an eigenvalue of the negative Laplacian −∆ with Helmholtz’s
equation written in the form

−∆B1 = k2B1

with zero Neumann boundary condition. In the present case,

k2 = 2π
j′(1, 1)

P
,

where P is the perimeter of the circular boundary of a cross section. In this
language, the square of the TE mode cutoff frequency for a waveguide with
circular cross section is

ω2 = 2π
j′(1, 1)

εµP
.
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This result suggests an interesting question. How does the cutoff frequency
depend on the shape of the cross section when the perimeter is held
constant? Or, put as a more abstract mathematical question, how does the
smallest nonzero eigenvalue of the (negative) Neumann Laplacian depend
on the shape of a planar domain whose boundary has some fixed perimeter
P ? Which domain has the smallest such eigenvalue? Perhaps it would
be possible to manufacture waveguides with exotic shapes whose cutoff
frequencies are small compared to waveguides with circular cross sections.

The design of waveguides provides a wonderful use of mathematics to
solve an applied problem.

23.2 RECTANGULAR WAVEGUIDES AND CAVITY
RESONATORS

Exercise 23.1. [Transverse Fields in Rectangular Waveguides] (1) Discuss TE modes
in rectangular waveguides. (2) Discuss TM modes in rectangular waveguides. (3) How
do cutoff frequencies compare with those for circular waveguides?

Exercise 23.2. Suppose someone decides to build a waveguide whose cross section
is in the form of a cross: the boundary consists of portions of two rectangles crossing at
right angles with the center of each rectangle at the center of the cross (see Fig. 23.2).
Before the waveguide is built and tested, you are asked to determine the TE mode
theoretically. The key step is to solve Helmholtz’s equation ∆B1 + ω2µεB1 = 0

with zero Neumann boundary condition. Generally, the cutoff frequency is the smallest
nonzero ω for which this Neumann BVP has a solution. Approximate the smallest
nonzero real number k such that ∆B1 + k2B1 = 0 has a solution with this boundary
condition for cross-shaped waveguides and use this result to determine the cutoff
frequency. Hint: Use four parameters to determine the dimensions of the waveguide.
Choose values for the dimensions and work numerically. Make graphs and charts to
suggest how the cutoff frequency varies with the parameters, perhaps taking them one
or two at a time. This project seems to require some new mathematics not covered in
this book. The basic difficulty is finding a viable method for approximating the smallest
positive eigenvalue of the negative Neumann Laplacian (that is, the smallest k > 0 such
that −∆u = k2u has a nonzero solution that satisfies the boundary conditions). One
approach is to employ the method of Rayleigh. The desired eigenvalue is obtained as
the minimum of the functional

u 7→
∫
Ω
|∇u|2 dS∫

Ω
|u|2 dS

over all functions u that satisfy the following three conditions: (1)
∫
Ω
|u|2 dS 6= 0, (2) the

integral
∫
Ω
|∇u|2 dS is defined, and (3)

∫
Ω
u dS = 0. Explain why this method produces
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the desired result and create a numerical method based on it that produces numbers that
would in principle converge to the minimum. A useful starting point for understanding
Rayleigh’s method is to consider a symmetric matrix A and use Lagrange multipliers to
minimize the function

x 7→ 〈Ax, x〉
|x|2

over {x : |x|2 = 1}. What is the minimum? Are there other local minima?

Exercise 23.3. [Cavity Resonators] Can an electromagnetic field exist inside a closed
rectangular box made of a conducting material? If so, how does the frequency of the
field depend on the dimensions of the box? Can you imagine a reason why someone
would want to build a devise that supports only waves of a fixed frequency? Hint: The
key phrase is cavity resonator.

Exercise 23.4. How much of Exercise 22.16 can be done by hand? Using the
approximation of a lossless transmission line, the underlying equations are simply wave
equations that can be solved exactly. The only issues are the boundary conditions and
keeping track of the reflections and transmissions of the waves.

Exercise 23.5. [Lord Kelvin’s Transmission Line Model and the Heat Kernel] Before
Heaviside’s transmission line model, which leads to the telegrapher’s equation

LCvtt + (RC +GL)vt − vxx = −RGv

for the voltage v as in Exercise 22.13, the accepted model for telegraph transmission
was derived by Lord Kelvin in 1854 (see [80]). He ignored the inductance of the line
and the conductance of the insulator. Under these assumptions he correctly derived the
(too crude) model

RCvt = vxx.

Fourier’s theory of heat had already been published. Kelvin’s PDE was the same as
for heat flow; thus, for a while, some people believed (wrongly) that electricity flowed
in a transmission line by a diffusion process. Heaviside’s model eventually convinced
the scientific community that transmissions were more accurately viewed as (damped)
waves.

Although Lord Kelvin’s model is not viable for transmission lines, the theory of the
one-dimensional heat equation certainly is important. Some of its properties and exact
solutions were derived by Kelvin, George Gabriel Stokes, and Heaviside in contexts
other than heat transfer. These results remain important contributions because the heat
equation arises, as we have seen, in many different applied problems. This project
outlines some basic theory for constructing solutions of the heat equation on the line
and on the half-line. The outline should contain enough sign posts for the reader to fill
in the details. One goal of the project is to solve the model problem

(PDE) vt =
1

RC
vxx, x > 0, t > 0;
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(BC) v(0, t) = g(t), t > 0;

(IC) v(x, 0) = 0.

It may be viewed as the model for a telegraph signal on an initially dead line (IC) with an
input (BC), perhaps induced by pressing a telegraph key, that might be in the form of an
impulse or a step that is zero for large t. This is exactly the problem solved by Stokes in
1854. To recover Stokes’s solution requires the development of some important theory.

(a) [The heat equation on the whole real line]

Consider the heat equation on the whole real line −∞ < x <∞, which will from now
on be written

ut = k2uxx, (23.5)

together with the initial condition u(x, 0) = f(x). The value u(x, t) is supposed to
model the temperature at position x measured at time t. The function f models the
initial temperature along the line.

To be a viable physical model, the initial temperature f should be propagated (by
solving the heat equation with this initial condition) to a new function x 7→ u(x, t) that
models the temperature along the line for each time t > 0. This process is analogous
to the action of the flow of an autonomous ODE, which propagates an initial state to a
new state for each t > 0. For example, the ODE ẏ = ay propagates the initial condition
y(0) = x forward in time via its flow by the rule y(x, t) = eatx. More precisely, the
flow should be viewed as a group of transformations x 7→ φ(x, t), one for each t. Using
this notation, φ(x, t) = eatx. The same equation is sometimes written φt(x) = eatx or
φt(x) = eatx to more clearly suggest that φt or φt is a transformation (or propagator)
acting on x, a point in the space of states of the system.

If there is justice in the mathematical universe, the heat equation should also produce
a flow. The only technical difference is that the initial data (representing the initial state
of the system) is no longer a number x; it is a function f . The set of such functions
represent the possible states of the system, and the flow or propagator for the PDE (also
denoted φ) assigns to each initial state f and each time t > 0 a new function φ(f, t) :

R → R. In particular, the propagated state at time t is the function x 7→ φ(f, t)(x) on
the real line. The problem is to determine the flow φ for the heat equation.

Where to start? The first idea is to simply play with the heat equation. Not having a
better idea, you might try to make the equation dimensionless. Define a scaling

u = av, x = bξ, t = cτ

so that v, ξ, and τ are dimensionless. Check that under this transformation

u(x, t) = av(
x

b
,
t

c
)
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and

vτ =
ck2

b2
vξξ.

By choosing b and c such that ck2/b2 = 1, the dimensionless equation is reduced to
vτ = vξξ . Notice that this calculation reveals another interesting fact: If c = b2, then v
is a solution of the original form of the PDE, vτ = k2vξξ , where only names have been
changed. In other words, if u solves the heat equation, then so does

v(x, t) := u(bx, b2t)

for every choice of b. Check this fact. What does it mean? A solution u of the heat
equation must be a function of x and t such that when x is multiplied by b, and t is
multiplied by b2, its value is unchanged.

Is there a function that has this invariance property? Check that the function (x, t) 7→
x/
√
t has the required invariance, and as a corollary, so does (x, t) 7→ h(x/

√
t) whenever

h : R→ R.

There must be a choice of h so that (x, t) 7→ h(x/
√
t) is a solution of the PDE. This

is indeed the case. Show that if h is a solution of the ODE

k2 d
2h

dσ2
+
σ

2

dh

dσ
= 0,

then (x, t) 7→ h(x/
√
t) is a solution of heat equation (23.5). Make the second-order

(nonautonomous) ODE into a first-order system by defining p = dh/dσ and show that

k2 dp

dσ
+
σ

2
p = 0.

Solve the latter equation to obtain, for an arbitrary constant d,

p(σ) = de−σ
2/(4k2), h(σ) = h(0) + d

∫ σ

0

ey
2/4 dy.

Using the function h, check that a solution of the heat equation is given by

u(x, t) := h(0) + d

∫ x/
√
t

0

ey
2/(4k2) dy.

Is there a way to avoid the integration so as to make the solution formula more
explicit? Suppose that u is an arbitrary solution of the PDE ut = k2uxx, differentiate
both sides with respect to x, and check that

(ux)t = k2(ux)xx.

Thus, if u is a solution, so is ux, at least when u is sufficiently smooth. How smooth?
Check that, for a sufficiently smooth solution u, every partial derivative of u is a solution
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of the heat equation. Apply this result to see that

Ũ(x, t) := d
1√
t
e−x

2/(4k2t)

is a solution of the heat equation for every real number d. This solution—called a
similarity solution—is usually normalized so that its total mass is unity for every time
t > 0; that is, so that ∫ ∞

−∞
Ũ(x, t) dx = 1.

Show that this normalization holds for the choice d = 1/(2k
√
π) and produces the (most

important) solution of the heat equation:

U(x, t) :=
1√

4πk2t
e−x

2/(4k2t). (23.6)

This solution is defined on the whole real line for each t > 0; it is called the heat kernel
or the fundamental solution.

The heat kernel is not defined for t = 0. But, show that

lim
t→0+

U(x, t) =

{
0, if x 6= 0;
∞, if x = 0.

Also, recall that U has unit mass. This should suggest the Dirac delta function plays
a role. Recall that the delta function is defined by its action on test functions, which
are smooth functions with compact support (zero off a closed bounded set). The delta
function maps the set of test functions to the real numbers via the formula

δ(ψ) = ψ(0).

This is often written as the formal statement∫ ∞
−∞

δ(x)ψ(x) dx = ψ(0),

which is interpreted by saying the delta function is the unit mass measure at the origin.
The unit mass measure at some other point, say the point with coordinate y on the real
line, is denoted δy and often viewed as the translate of the Dirac delta (whose mass is
concentrated at the origin) to allow the formal statement∫ ∞

−∞
δ(x− y)ψ(x) dx = ψ(y).

With this definition, we are tempted to write limt→0+ U(x, t) = δ as convenient
shorthand for

lim
t→0+

∫ ∞
−∞

U(x, t)ψ(x) dx = ψ(0),
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or more generally,

lim
t→0+

∫ ∞
−∞

U(y − x, t)ψ(y) dy = ψ(x).

Of course, these statements can be proved (with some careful analysis) by computing
the limits. Check that they are correct.

Using results from advanced calculus about differentiation under the integral sign,
check that (for a test function f ) the function u given by

u(x, t) =

∫ ∞
−∞

U(x−y, t)f(y)) dy =
1√

4πk2t

∫ ∞
−∞

e−(x−y)2/(4k2t)f(y) dy

(23.7)
is a solution of the heat equation for all x and t > 0 with the initial data u(x, 0) = f(x)

in the sense that the initial condition is satisfied via the limit

lim
t→0+

u(x, t) = f(x).

The singularity due to the function u being undefined at t = 0 is removable. At least
the function u can be extended to a continuos function on 0 ≤ t < ∞ by assigning the
value u(x, 0) = f(x).

One important note is that the result concerning initial data is true (with a slight
modification) for much more general initial functions f . It is enough to have good
convergence properties of the integral in Eq. (23.7). The exponent −x2 causes the heat
kernel to decrease rapidly to zero. Thus, the integral will converge as long as |f | does not
increase too fast toward∞. Also, the differentiation required to satisfy the heat equation
is related to the function u, not f . Thus, the initial function could, for example, be
discontinuous. In such a case, the state x 7→ u(x, t), for t > 0, is not only continuous; it
is infinitely differentiable. The diffusion process immediately smooths out rough initial
data. To make all this precise, the required modification at a jump discontinuity at x = a

is to allow a slight change in the limit as t goes to zero by not insisting the limit be f(a)

and instead taking the limit limt→0+ u(a, t) to be the average of the right- and left- hand
limits at this point. Check this fact.

It might be more pleasing to have a solution of the initial value problem (IVP)
without the removable singularity at t = 0, but no such solution exists. To see this,
suppose that u is a solution of the heat equation that vanishes as x approaches ±∞, and
consider the (energy) function E defined by

E(t) :=

∫ ∞
−∞

u2(x, t) dx.
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Make an easy computation using the heat equation and use one integration by parts to
show (at least for t > 0) the statement

E′(t) = −2k2
∫ ∞
−∞

u2
x(x, t) dx.

Conclude that E does not increase. For two solutions u1 and u2 of the heat equation
with the same initial data u(x, 0) = f(x), show that u := u1 − u2 is also a solution
but with initial data u(x, 0) = 0. For this u, suppose there is some τ > 0 and some
number ξ such that u(ξ, τ) is not zero. Prove that E(τ) > 0. This inequality contradicts
the statement E′(t) ≤ 0 for 0 < t ≤ τ . Conclude that solutions are unique. This method
of proving uniqueness is called the energy method.

For completeness, consider the IVP for the heat equation with a source on the whole
real line:

(PDE) vt = k2vxx + h(x, t), −∞ < x <∞, t > 0;

(IC) v(x, 0) = f(x), x > 0, (23.8)

where h models a source for v. In the case of heat transfer, what units would be assigned
to h?

The corresponding homogenous problem is

(PDE) vt = k2vxx, −∞ < x <∞, t > 0;

(IC) v(x, 0) = f(x), x > 0. (23.9)

There is a beautiful way to use solutions of the homogeneous initial value problem to
solve the nonhomogeneous problem that is a special case of a general principle, which is
often called Duhamel’s principle (Jean-Marie Duhamel, 1845): If you can solve a linear
differential equation for all initial data, then you can solve the inhomogeneous problem.
You should have already seen an important example of this principle in action in the
study of nonhomogeneous linear ODEs, where the IVP is

v̇ = Av + h(t), v(0) = η. (23.10)

Here, A is a constant n×n matrix, η is an n vector, and h is an n vector-valued function
of t. Perhaps n = 1, A and η are real numbers, and h is a scalar function. Check that the
general solution of the homogeneous problem is t 7→ etAη. In other words, the flow φ

of the ODE propagates a state η ∈ Rn after time t to the new state

φ(η, t) = etAη. (23.11)
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The inhomogeneous problem [Eq. (23.9)] is solved by variation of parameters.
Indeed, check that

v(t) := φ(η, t) +

∫ t

0
φ(h(τ), t− τ) dτ (23.12)

is the unique solution of IVP (23.10). To see where the variation of parameters
formula comes from, suppose that the solution of the inhomogeneous problem is given
by v(t) = Φ(z(t), t) for some unknown function z (which is called a variation of
the initial parameter η) and find out which differential equation is solved by z (see
Appendix A.15). The moral of the story is that the solution of the inhomogeneous
problem is constructed using solutions of the homogeneous problem.

The homogeneous heat equation has the (heat kernel) propagator

φ(f, t) :=

∫ ∞
−∞

U(x− y, t)f(y)) dy, (23.13)

again a function of two variables where the first variable is taken from a space of
appropriate functions (perhaps the space of test functions) and the second variable is
a real number. Just like in the finite-dimensional (vector space) case, a point in the
function space is propagated to a new point in the function space via this flow. A natural
expectation (in view of Eq. (23.12)) is that the solution of the inhomogeneous problem
[Eq. (23.8)] is given by

v(x, t) := φ(f, t)(x) +

∫ t

0
φ(h(x, τ), t− τ) dτ. (23.14)

This formula, which is also called Duhamel’s formula, is the infinite-dimensional
(function space) version of variation of constants. Show that v is indeed a solution of
inhomogeneous BVP (23.8).

What does this model (23.8) predict in case f = 0 and h(x, t) = 1? A more
interesting choice is f = 0 and

h(x, t) :=
1

2
(1−H(t− t0))(H(x+ x0) +H(x− x0))

for positive t0 and x0 where H is the Heaviside step function defined by H(t) = 0 for
t < 0 and H(t) = 1 for t ≥ 0. Interpret this choice and the corresponding prediction
physically.

(b) [The heat equation on the half-line]

In part (a) you showed that the IVP for the heat equation on the whole real line has
unique solutions. The IVP

(PDE) vt = k2vxx, x > 0, t > 0;

(IC) v(x, 0) = f(x), x > 0



788 An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation

does not have unique solutions. It is posed on a domain 0 < x < ∞ that has a finite
boundary; namely, x = 0. To have unique solutions an appropriate boundary condition
must be imposed at x = 0. The general inhomogeneous, initial boundary value problem
(IBVP)

(PDE) vt = k2vxx + h(x, t), x > 0, t > 0;

(BC) v(0, t) = g(t), t > 0;

(IC) v(x, 0) = f(x), x > 0 (23.15)

does have unique solutions. It is more general than necessary to solve Lord Kelvin’s
problem for telegraph signals. But problems of this general type can all be solved via
integral representations for known functions f , g, and h. The methods are elementary,
but not obvious.

The homogeneous heat equation is linear. Thus, the sum of two solutions is a
solution. This superposition is not valid in the presence of a nonzero source or a
nonzero boundary condition. For this reason, it is almost always a good idea to work
with homogeneous (zero) boundary conditions. In the present context where a Dirichlet
boundary condition is imposed, there is a simple way to make an equivalent problem
with a homogeneous boundary condition: subtract the boundary condition from the
required solution. More precisely, define

u = v − g(t)

and show that v solves IBVP (23.15) if and only if u solves the IBVP

(PDE) ut = k2uxx + h(x, t)− g′(t), x > 0, t > 0;

(BC) u(0, t) = 0, t > 0;

(IC) u(x, 0) = f(x)− g(0), x > 0. (23.16)

A natural approach is to somehow convert to a problem on the whole real line and
use the known solution for the latter IVP. Making this idea work requires some care: the
boundary condition must be taken into account.

As stated, the functions p given by (x, t) 7→ h(x, t)−g′(t) and q by x 7→ f(x)+g(0)

are defined for x > 0 and t > 0. To work on the whole line, these functions must be
extended to −∞ < x < ∞. There are several possible choices: For example, the zero
extension of p defined to be p for x ≥ 0 and zero for x < 0; the odd extension given by

P (x) =


p(x), x > 0;

0, x = 0;
−p(−x), x < 0;
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or the even extension where P (x) = p(−x) for x < 0. One can simply start working by
trying the various possibilities. It turns out that the odd extensions of P and Q are the
correct choices.

For arbitrary extensions (that are nice enough functions for the integrations and
differentiations to be defined) the IVP corresponding to IBVP (23.16) is extended to
the whole line and it has the unique solution

u(x, t) := φ(Q, t)(x) +

∫ t

0
φ(P (x, τ), t− τ) dτ. (23.17)

What about the boundary condition? This is the key point. Show that without a boundary
condition the initial value on the half-line has many different solutions. The odd
extensions lead to solutions that satisfy the boundary condition.

The simplest computation is for the homogeneous case

(PDE) ut = k2uxx, x > 0, t > 0;

(BC) u(0, t) = 0, t > 0;

(IC) u(x, 0) = f(x)− g(0), x > 0. (23.18)

Using the odd extension Q for the initial data, the solution is v(x, t) = φ(Q, t)(x). Show
that the solution on the whole line is

u(x, t) =
1√

4πk2t

∫ ∞
−∞

e−(x−y)2/(4k2t)Q(y) dy

=
1√

4πk2t

∫ ∞
0

(
e−(x−y)2/(4k2t) − e−(x+y)2/(4k2t)

)
Q(y) dy.

Check that the boundary condition is satisfied when this function is restricted to the half-
line and that it is the unique solution of the homogeneous IBVP. A similar argument
shows that the second summand of the claimed solution [Eq. (23.17)] solves the
inhomogeneous IBVP

(PDE) ut = k2uxx + h(x, t)− g′(t), x > 0, t > 0;

(BC) u(0, t) = 0, t > 0;

(IC) u(x, 0) = 0, x > 0 (23.19)

when the odd extension P is used to extend it to the whole line.

Returning to Lord Kelvin’s problem, the solution is given by Eq. (23.17) but with h
and f both zero in the definitions of the extensions P and Q. More explicitly, check that
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the solution is

v(x, t) = g(t)(1− H̃(x)) +
x

2k
√
π

∫ t

0
(t− τ)−3/2e−x

2/(4k2(t−τ))g(τ) dτ,

(23.20)
where H̃(x) = 0 for x = 0 and H̃(x) = 1 for x > 0. Here the value of the unit step at
x = 0 is important to capture the correct boundary condition v(0, t) = g(t). Reducing
Eq. (23.17) (with k2 = 1/(RC)) to the solution [Eq. (23.20)] of the model problem

(PDE) vt = k2vxx, x > 0, t > 0;

(BC) v(0, t) = g(t), t > 0;

(IC) v(x, 0) = 0 (23.21)

takes some careful and lengthy calculations, including an integration by parts. Carrying
out the details is an instructive project.

There are more efficient methods that may be used to solve the model problem.
Stokes, the first person to find this solution, used the Fourier transform (see [111,
p. 391]). Can you fill in the details of his argument? Note that Stokes did not include the
first summand of Eq. (23.20). Why not?

Suppose that g is an impulse at t = t0 > 0. It can be modeled by the delta function
translated to t0. For x > 0 and t > t0, the voltage in the infinite line is

v(x, t) =
x

2k
√
π

(t− t0)−3/2e−x
2/(4k2(t−t0)). (23.22)

Check that an observer at x sees the maximum voltage at time

t = t0 +
1

6
RCx2.

As discussed in [80], this result—sometimes called the Stokes–Thompson square law—
caused some difficulty in the development of undersea telegraph cables: The peak
voltage (for an observer at the end of the line who is looking for a telegraph pulse
signal) seemed to depend on the square of the length of the cable. Thus, to send a signal
over a cable of length twice the length of a given cable would take four times as long.
This prediction did not bode well for the utility of long undersea cables. Fortunately, the
diffusion model is not correct. The Heaviside transmission line theory (that takes into
account the inductance and conductance) gives the correct result because it captures the
correct physics: the wave nature of impulse signals on a telegraph line. What is the speed
of transmission, with respect to maximum voltage, for the diffusion model? Note that t
is proportional to x2 or x is proportional to

√
t. This is a manifestation of the scaling

invariance of the heat equation used previously to construct a similarity solution.

Approximate the solution of model (23.21) numerically and verify the square law.
Choose g to be a short duration pulse. Work on a finite interval that is long relative to the
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duration of the pulse, and use zero Dirichlet boundary conditions. The interval should
be long enough so that the boundary conditions do not affect (too much) the diffusion
of the pulse. Choose some points on the interval and check that the maximum voltage at
these observation points occurs according to the square law.

Reinterpret Lord Kelvin’s model in a physical context where the underlying physics
is correct and discuss the Stokes–Thompson square law for the new model.



Mathematical and Computational Notes

A.1 ARZELA–ASCOLI THEOREM

A set S of continuous functions defined on a compact set Ω is uniformly
bounded if there is some number M > 0 such that supx∈Ω|f(x)| ≤ M for
every f ∈ S. The set is equicontinuous if for every ε > 0 there is a δ > 0
such that |f(x)− g(y)| < ε whenever f and g are in S and |x− y| < δ. For
a proof see, for example, [1].

Theorem A.1. The closure of a uniformly bounded and equicontinuous
set is compact. In particular, every sequence has a uniformly convergent
subsequence.

The limit of the uniformly convergent subsequence may not be in the set
S.

A.2 C1 CONVERGENCE

Suppose that {fn}∞n=1 is a sequence of continuous functions defined on the
closure Ω̄ of an open set Ω in a Euclidean space. If {fn}∞n=1 converges
uniformly to a function f defined on Ω, then f is continuous and extends to
a continuous function on Ω̄. If, in addition, each fn is differentiable on Ω
and the sequence of these derivatives {Dfn}∞n=1 converges uniformly to a
function g defined on Ω, then f is differentiable and Df = g. Moreover g
is uniformly continuous and thus extends continuously to Ω̄. This theorem
is proved (in various forms) in books on advanced calculus.

A.3 EXISTENCE, UNIQUENESS, AND CONTINUOUS
DEPENDENCE

If f : Rn×R×Rk → Rn is a continuously differentiable function, x0 ∈: Rn,
t0 ∈ R, and λ0 ∈ Rk, then the initial value problem

dx

dt
= f(x, t, λ0), x(t0) = x0

has a unique solution defined for t in some open interval containing t0. More
generally, there is a continuously differentiable function φ(t, ξ, λ) defined in

793
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some product neighborhood of t0, x0, and λ0 such that t 7→ φ(t, τ, ξ, λ) is
the solution of the initial value problem

dx

dt
= f(x, t, λ), x(τ) = ξ

defined in some open interval containing τ .

In short, smooth ordinary differential equations (ODEs) always have
solutions that depend continuously on initial data and parameters. The
solutions are as smooth as the function f . Solutions may be defined only for
a short time. On the other hand, solutions exist until they reach the boundary
of the (spatial) domain of definition of f , which might not be defined on all
of Rn or until they blow up to infinity.

A.4 GREEN’S THEOREM AND INTEGRATION BY PARTS

Theorem A.2 (Green’s Theorem/Divergence Theorem). Let Ω be a
bounded open subset of Rn whose boundary ∂Ω is a piecewise smooth
hypersurface. If F is a continuously differentiable function F : Rn → Rn
defined on the closure of Ω (that is, Ω together with ∂Ω), and η is the outer
unit normal on ∂Ω, then∫

Ω
divF dV =

∫
∂Ω
F · η dS,

where dV is the Euclidean volume and dS is the surface area element
induced on the hypersurface via the outer unit normal.

Proof. See a book on advanced calculus. 2

Corollary A.3. With the same notation as in Green’s theorem, suppose
that f : Rn → R is continuously differentiable and i is an integer in the
range 1 ≤ i ≤ n. Then, ∫

Ω
fxi dV =

∫
∂Ω
fηi dS.

Proof. Define a vector-valued function F whose component functions are
all zero except for the ith component that is defined to be f and apply
Green’s theorem. 2
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Corollary A.4 (Integration by Parts). With the same notation as in
Green’s theorem and the first corollary, suppose that g : Rn → R and
h : Rn → R are continuously differentiable. Then,∫

Ω
gxih dV = −

∫
Ω
ghxi dV +

∫
∂Ω
ghηi dS. (A.1)

Proof. Define f to be the product of g and h and apply the first corollary. 2

A.5 GERSCHGORIN’S THEOREM

Let A = aij be an n × n matrix and let Γi denote the closed disk in the
complex plane with center at aii and radius

∑n
j=1,j 6=i|aij |. The eigenvalues

of A are contained in the set ∪ni=1Γi. See [12] for a proof of this result and
additional information.

A.6 GRAM–SCHMIDT PROCEDURE

Let {vi}Ni=1 be a basis for an inner product space H whose inner product is
denoted by angle brackets. An orthogonal basis consists of the set of vectors
{gi}Ni=1 given by

g1 := v1, gi := vi −
i−1∑
j=1

〈vi, gj〉
〈gj , gj〉

gj .

An orthonomal basis is given by { 1
|gi|gi}

N
i=1, where

|gi| =
√
〈gj , gj〉.

A.7 GROBMAN–HARTMAN THEOREM

A smooth system of (autonomous) differential equations is locally conjugate
to its linearization at a hyperbolic rest point (that is, all eigenvalues have
nonzero real parts). See [20] for a proof.
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A.8 ORDER NOTATION

Given two functions f and g, we say that f(x) = g(x) +O(xn) if

|f(x)− g(x)|
|xn|

is bounded by a positive constant for |x| sufficiently close to zero. We say
that f(x) = g(x) + o(xn) if

lim
x→0

|f(x)− g(x)|
|xn| = 0.

For example, we have that

x− sinx = O(x3), x− sinx = o(x2).

A.9 TAYLOR’S FORMULA

Taylor’s formula is an essential tool in mathematical analysis for approxi-
mating the values of functions. Suppose that f : Rm → Rn is smooth (at
least C2 for this appendix). Let x and h be elements of Rm and t ∈ R. We
have that

d

dt
f(x+ th) = Df(x+ th)h.

After integration on the interval 0 ≤ t ≤ 1, we have the identity

f(x+ h) = f(x) +

∫ 1

0
Df(x+ th)h dt,

or equivalently,

f(x) = f(a) +

∫ 1

0
Df(x+ t(x− a))(x− a) dt.

It follows immediately that

f(x+ h) = f(x) +Df(x)h+

∫ 1

0
(Df(x+ th)h−Df(x)h) dt,
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or equivalently,

f(x) = f(a)+Df(a)(x−a)+

∫ 1

0
(Df(x+t(x−a))(x−a)−Df(a)(x−a)) dt.

A.10 LIOUVILLE’S THEOREM

Suppose that t 7→ Φ(t) is a matrix solution of the homogeneous linear
system ẋ = A(t)x on the open interval J , det denotes determinant, and
tr denotes trace. If t0 ∈ J , then

d

dt
det Φ(t) = trA(t) det Φ(t)

and

det Φ(t) = det Φ(t0)e
∫ t
t0

trA(s) ds.

See [20] for a proof.

A.11 TRANSPORT THEOREM

Let φt denote the flow of the system ẋ = f(x), x ∈ Rn, and let Ω be a
bounded region in Rn. Define

V (t) =

∫
φt(Ω)

dx1dx2 · · · dxn

and recall that the divergence of a vector field f = (f1, f2, . . . , fn) on Rn
with the usual Euclidean structure is

div f =

n∑
i=1

∂fi
∂xi

.

Liouville’s theorem and the change of variables formula for multiple
integrals can be used to prove that

V̇ (t) =

∫
φt(Ω)

div f(x)dx1dx2 · · · dxn.

In particular, the flow of a vector field whose divergence is everywhere
negative contracts volume.
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Suppose that g : Rn×R→ R is smooth and, for notational convenience,
let dx = dx1dx2 · · · dxn. The (Reynolds) transport theorem states that

d

dt

∫
φt(Ω)

g(x, t) dx =

∫
φt(Ω)

gt(x, t) + div(gf)(x, t) dx. (A.2)

A standard proof has three steps: The change of variables formula is used to
freeze the integration over the set Ω so that the time-derivative may be taken
across the integral sign; differentiation with respect to t is carried out under
the integral sign, Liouville’s theorem is used to write the time-derivative of
the Jacobian as the product of the trace of the derivative of the flow field
(which is the divergence of f ) and the Jacobian, and the change of variables
formula is applied to obtain the form given in the statement of the theorem.

A useful alternate form of the transport theorem is obtained by applying
the divergence theorem to the second term in the integrand on the right-hand
side of formula (A.2):

d

dt

∫
φt(Ω)

g dV =

∫
φt(Ω)

gt dV +

∫
∂φt(Ω)

gf · η dS, (A.3)

where η is the outer unit normal on the boundary ∂φt(Ω).

A.12 LEAST SQUARES AND SINGULAR VALUE
DECOMPOSITION

The basic problem of linear algebra is to solve for the unknown vector x in
the system of linear equationsAx = b, whereA is a matrix and b is a vector.
In caseA is a square matrix that is nonsingular (its determinant is not zero or
its columns are linearly independent), there is a unique solution x = A−1b.
In general, the worst possible way to compute the solution x is to compute
the matrix inverse. Two central principles of numerical linear algebra state:
never compute a determinant and never compute the inverse of a matrix. The
best solution methods for linear systems are based on Gaussian elimination
or iteration. Some iterative methods are discussed in this book.

There are important problems in applied mathematics that require a
solution of Ax = b in case A is not a square matrix or A is singular.
The prime example is one-dimensional linear regression where the matrix is
generally not square: We are given a finite set of points in the plane (xi, yi)
for i = 1, 2, 3, . . . , N and asked to find the best fitting line. More precisely,
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the problem is to find the line with equation y = mx+ β such that the sum
of the squares of the deviations at the xi from the line to yi is minimized;
that is,

min
(m,b)∈R2

N∑
i=1

|mxi + β − yi|2.

This problem may be recast into the abstract form

min
x∈R
|Ax− b|2,

where the vertical bars denote the Euclidean norm; A is the N × 2 matrix
with first column the transpose of the row vector (x1, x2, x3, . . . , xN ) and
second column theN vector all of whose entries are one; b is the transpose of
the row vector (y1, y2, y3, . . . , yN ); and x is the column vector of unknowns
(m,β). The corresponding matrix equation Ax = b is a prototypical
example of an overdetermined system of linear equations (more equations
than unknowns). This equation has a solution exactly when every coordinate
pair (xi, yi) lies on the same line. The purpose of linear regression is to find
a line that best fits the data when the data points do not all lie on the same
line.

The reason for the squares is to simplify the mathematics. For instance,
the problem

∑N
i=1 minm,b|mxi + b − yi| is more difficult. The key point

is that the Euclidean norm is defined by an inner product. In fact, using
the usual inner (dot) product 〈v, w〉 :=

∑
viwi, the length of a vector v

is defined to be |v| =
√
〈v, v〉. The square of the length is just the inner

product.

Assume that A is m × n with m ≥ n and define f : Rn → R by
f(x) = |Ax − b|2 = 〈Ax − b, Ax − b〉. We wish to minimize f over all
of Rn. From calculus we know that the derivative of f must vanish at a
minimum. To compute the derivative Df(x) abstractly, which is best in this
case, recall thatDf(x) is a linear transformation from Rn to R. Let v denote
an arbitrary vector in Rn. By the chain rule,

d

dt
f(x+ tv)

∣∣
t=0

= Df(x)v.

Thus, we have that

Df(x)v =
d

dt
〈A(x+ tv)− b, A(x+ tv)− b〉

∣∣
t=0
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= 〈Av,Ax− b〉+ 〈Ax− b, Av〉
= 2〈Ax− b, Av〉.

Let us denote the matrix transpose (interchanging rows and columns of A)
by AT . An important property (which is easy to check by a computation in
components) is that 〈w,Az〉 = 〈ATw, z〉 for every pair of vectors w and
z. Alternatively, we may define the matrix transpose of A to be the unique
matrix AT that satisfies the inner product identity and then prove that in
coordinates AT is obtained from A by interchanging its rows and columns.
Using the transpose, it follows that

Df(x)v = 2〈ATAx−AT b, v〉.

Suppose that 〈u, v〉 = 0 for every v. Then, in particular, |u|2 = 〈u, u〉 =
0 and u = 0. Hence, if the derivative Df(x) is the zero matrix, then

ATAx−AT b = 0.

This latter equation is called the normal equation for the least squares
problem. Because A is m× n, the matrix ATA is n× n.

For simplicity, let us make an additional assumption (which is the case
for linear regression): The columns of A are linearly independent. In this
case, ATA is invertible. To prove this fact, suppose that v is a vector and
ATAv = 0. Taking the inner product with respect to v, we have that

0 = 〈ATAv, v〉 = 〈Av,Av〉 = |Av|2.

Because the columns of A are linearly independent and Av is a linear
combination of these columns, Av = 0 only if v = 0. This means that
ATA has linearly independent columns and hence is invertible.

Under the assumption that the columns of A are independent, the normal
equation has a unique solution

x = (ATA)−1AT b.

Thus, our function f has a unique critical point, which must be a minimum
because f(x) ≥ 0 for every x and f(x) grows to infinity as |x| grows
without bound.

The quantity (ATA)−1AT is called the pseudoinverse of A. Using the
pseudoinverse, the linear regression problem is solved: the transpose of the
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vector (m, b) is exactly (ATA)−1AT b for the given N × 2 matrix A and the
N vector b.

In practice, the pseudoinverse is not computed directly. The normal
equations are solved by elimination or an iterative method, or better yet, the
pseudoinverse is computed using the singular value decomposition (SVD)
of A. The reason for not simply solving the normal equations is that these
equations may be ill-conditioned; for example, the matrix ATA may be
nearly singular.

The SVD of an m× n real matrix A, which always exists, has the form

A = UΣV T ,

where U is an m ×m orthogonal matrix (that is, UTU = UUT = I), Σ is
an m×n diagonal matrix, and V is an n×n orthogonal matrix. The square
roots of the diagonal elements of Σ are called the singular values of A. This
decomposition provides a natural way to look at the action of A as a linear
operator. To see why, note that A : Rn → Rm. Thus, the columns of V
provide an orthonormal basis for the domain and the columns of U are an
orthonormal basis of the space containing the range. Choose a column, say
vi of V and check that

Avi = σiui

where σi is the ith singular value of A. In this sense the bases given by the
columns of U and V are the right bases for Rm and Rn with respect to the
matrixA. It follows immediately that the null space (kernel) ofA is spanned
by the columns of V corresponding to zero singular values and the range of
A is the span of the columns of U corresponding to nonzero singular values.

Using the SVD and the properties of its factors, the normal equation may
be written in the form

V ΣTUTUΣV Tx = V ΣTUT b,

and simplified to

ΣTΣV Tx = ΣTUT b.

In case the matrixA has linearly independent columns, its singular values
are all positive. The matrix ΣTΣ is square and its diagonal elements are
the squares of the singular values of A. Because ATA = V ΣTΣV T , the
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squares of the singular values are also the eigenvalues of ATA. Note that
the inverse of ΣTΣ is diagonal and its diagonal elements are simply the
reciprocals of its diagonal elements. An easy calculation shows that Σ+ :=
(ΣTΣ)−1ΣT is diagonal (but n × m so usually not square) with diagonal
elements the reciprocals of the singular values of A. It follows that the least
squares minimum is achieved at

x = V Σ+UT b.

The matrix V Σ+UT is the SVD pseudoinverse of A. The ease of the
inversion of ΣTΣ and the efficiency of the numerical algorithms available to
calculate the SVD make the method presented here the most used numerical
method for computation of least squares problems. Of course, the SVD has
many other applications.

Algorithms for the efficient numerical computation of the SVD are
presented in all books on numerical linear algebra.

A.13 THE MORSE LEMMA

If a class C∞ function f : Rn → R has a nondegenerate critical point a
(that is, Df(a) = 0 and zero is not an eigenvalue of the symmetric linear
transformation representing the quadratic form D2f(a)(x, x)), then there is
a C∞ change of coordinates defined in a neighborhood of a that transforms
f to the function ξ 7→ f(a) +D2f(a)(ξ, ξ).

A general proof of Morse’s lemma is given in [1]. The proof for the one-
dimensional case is elementary. Reduce to the case where the function f is
given by f(x) = x2h(x) and h(0) > 0. Define g(x) = x

√
h(x) and prove

that there is a function k such that g(k(x)) = x. The desired change of
coordinates is given by x = k(z).

A.14 NEWTON’S METHOD

Newton’s method can be used to approximate solutions of systems of n
equations in n unknowns. It is the premier algorithm for this task whenever
the first partial derivatives of the functions that define the system of
equations are known.
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Consider a system of equations of the form

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0,

and let F : Rn → Rn denote the function whose components are
(f1, f2, . . . , fn). Suppose that r ∈ Rn is a solution (that is, F (r) = 0).
The idea underlying Newton’s method is to guess an approximation a ∈ Rn
of r and improve this approximation using linearization. We must assume
that F is smooth (at least class C1 to implement the method and at least C2

for the method to perform as it should).

For a ∈ Rn and using the notation of Appendix A.8,

0 = F (r) = F (a+ (r − a)) = F (a) +DF (a)(r − a) +O(|r − a|2).

In case a is close to r so that |r − a|2 is small compared to |r − a|, the
first two terms of the Taylor expansion closely approximate zero; that is,
F (a) + DF (a)(r − a) ≈ 0. By solving for r under the assumption that
DF (a) is invertible, we might expect the vector a − [DF (a)]−1F (a) to
be a better approximation to r than a. This process can be repeated. More
precisely, Newton’s method is to guess an initial approximation x0 := a
of the desired root and seek to improve this approximation via the iteration
process

xj+1 = xj − [DF (xj)]−1F (xj). (A.4)

The point xj+1 ∈ Rn is expected to be closer to the desired root r than the
approximation xj .

Newton’s method has a special feature that makes it very effective when
the initial guess is sufficiently close to a root of F : the sequence of iterates
produced by the method converge at a quadratic rate to the root. To see what
is meant by quadratic convergence, note first that an alternative way to view
Newton’s method is to define a new function G : Rn → Rn by

G(x) = x− [DF (x)]−1F (x) (A.5)

and observe that the Newton iterates are obtained by composition: x1 =
G(x0), x2 = G(x1) = G(G(x0)), and so on. Indeed, we have xj+1 =
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G(xj) and this point can be obtained by composingG with itself j+1 times
and evaluating the composition at x0. If Newton’s method converges to the
root r, it follows that r = G(r); that is, r is fixed point of G. The converse
is also true: a fixed point of G is a root of F .

Suppose that a is an approximation of r and G happens to be a function
with a fixed point at r. Maybe this G does not come from Newton’s method
as in Eq. (A.5). Using Taylor’s formula in Appendix A.9, we have the
identity

|G(a)− r| = |G(a)−G(r)| = |
∫ 1

0
DG(r + t(a− r))(a− r) dt|, (A.6)

and in case the norm of the derivative of G is bounded by M , the estimate

|G(a)− r| ≤M |a− r|. (A.7)

If we are lucky and M < 1, then G(a) is closer to r than a. Continuing in
the same manner

|G(G(a))− r| ≤M2|a− r|,

and so on. Hence, the iterates of a obtained by applying G do indeed
converge to r as the number of iterates goes to infinity.

In case G is a scalar function of a scalar variable (n = 1), G′ is a
continuous function, and

0 < |G′(r)| < 1,

Eq. (A.6) implies the equaltiy

|G(aj)− r| = |
∫ 1

0
G′(r + t(aj − r)) dt||aj − r|. (A.8)

Using that G′(r) is not zero and passing to the limit as j →∞,

lim
j→∞

|G(aj)− r|
|aj − r| = |G′(r)|.

The convergence rate is called linear (or first order) because each iterate
decreases the error (which is the absolute value of the difference between
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the iterate and the root) by a factor of

|
∫ 1

0
G′(r + t(aj − r)) dt| ≈ |G′(r)|

as stated in Eq. (A.8). Analogous results for G : Rn → Rn are more
complicated because iterates are not confined to one direction of approach
to the root. But when the derivative of G does not vanish, some choices for
the starting value will lead to iterations that converge linearly to the root.

For Newton’s method, the key observation about G is that DG(r) = 0, a
fact that is easy to check. Because DG(r) = 0, the size of DG can be made
as small as we like as long as DG is evaluated at points near r. In particular,
the number M in the above analysis can be made less than 1, and as long as
the stating point is close enough to the root r, the iterates ofG will converge
to r; that is, if DF (r) is invertible so that G is defined and the starting value
is close enough to the desired root, then Newton’s method converges to this
root.

How fast does Newton’s method converge? Because DG(r) = 0 and
using Taylor’s formula again, note that

|G(a)−r| = |G(a)−G(r)| = |
∫ 1

0
DG(r+t(a−r))(a−r)−DG(r)(a−r) dt|.

(A.9)
Taylor’s formula also applies to the functionDG. Under the assumption that
the second derivative of G is bounded by M , it is not difficult to prove the
inequality

|DG(r + t(a− r))−DG(r)| ≤M |r − a|.

Using this estimate in Eq. (A.9), note that

|G(a)− r| ≤M |a− r|2.

In this case, whereDG(r) = 0, the convergence is faster than linear; in fact,
the ratio

|aj+1 − r|
|aj − r| =

|G(aj)− r|
|aj − r| ≤

M |aj − r|2
|aj − r|

goes to zero as j increases to infinity (which means the numerator is much
smaller than the denominator). As least, the error |aj+1 − r| compared to
the previous error |aj − r| is cut by a factor of M |aj − r|. As the iterates
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approach the root, |aj − r| < 1; thus, in this case, the contraction factor
M |aj − r| is much smaller than M . For this reason, the convergence rate is
faster than linear; it is at least second order (or quadratic).

In general and more precisely, we say a convergent sequence {aj}∞j=1

has order of convergence α > 0 if

lim
j→∞

|aj+1 − r|
|aj − r|α

is a positive number. Newton’s method has order of convergence at least
2. The order of convergence is greater in case the second derivative of G
vanishes.

For some examples, check that { 1
2j }∞j=1 is linearly convergent and

{ 1
22j
}∞j=1 is quadratically convergent.

An important result that gives sufficient conditions for the convergence
of Newton’s method is the Newton–Kantorovich theorem. This result has
several variants; two of them are stated here. A proof of the first version is
given in [52]; the second version is proved in [56].

Theorem A.5. Suppose that F : Ω → Rn is a differentiable function
from the open subset Ω in Rn to Rn, ω ∈ Ω, and the derivative DF (ω) :
Rn → Rn is invertible. Define v = −[Df(ω)]−1(ω)F (ω) and U the ball of
radius |v| centered at ω + v ∈ Rn. If U ⊂ Ω, there is a positive number M
such that

‖Df(x)−Df(y)‖ ≤M |x− y| for all x and y in U,

and

M |F (ω)| ‖[Df(ω)]−1(ω)‖2 ≤ 1

2
,

then F has a unique zero in U and for every starting point in U Newton’s
method converges to this zero.

Theorem A.6. Suppose that

(1) F : Ωr → Y is a twice continuously differentiable function from the
open ball Ωr of radius r > 0 of the Banach space X to the Banach
space Y ;
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(2) A is a bounded linear operator A : X → Y ;

(3) ω ∈ Ωr and there are positive constants η, δ, and C such that

(a) ‖AF (ω)‖ ≤ η,

(b) ‖ADF (ω)− I‖ ≤ δ < 1, and

(c) ‖AD2F (x)‖ ≤ C for all x ∈ Ωr.

Define

h =
Cη

(1− δ)2
, α =

(1−
√

1− 2h)η

h(1− δ) , β =
(1 +

√
1− 2h)η

h(1− δ) .

If α ≤ r < β and h < 1/2, or α ≤ r ≤ β and h = 1/2, then F has a unique
zero ω∞ ∈ Ωr, the sequence {ωj}∞j=1 of Newton approximates converges
to ω∞, and

‖ω∞ − ωj‖ ≤ (2h)2jη

2j(1− δ) .

In the second version of the theorem,A is usually taken to be [DF (ω)]−1

in case this operator is bounded.

To implement Newton’s method as a numerical algorithm, computation
of inverses of matrices is avoided by recasting Eq. (A.10) to the form

DF (xj)(xj+1 − xj) = −F (xj), (A.10)

approximating the solution z of the matrix system DF (xj)z = −F (xj),
and then defining xj+1 = z + xj .

For large-scale problems, Newton’s method has some weaknesses: cod-
ing the derivative DF can be a major problem, solving a large system of
linear equations at each step is computationally expensive, and choosing
a starting value close enough to the desired root is not trivial. Given the
central importance of solving nonlinear systems in applied mathematics, all
of these problems have been addressed with some success. These issues are
discussed in textbooks on scientific computing (see [82] for an excellent
treatment).

As a general rule, computing and coding the derivative is good practice
when approximating the solution of a particular problem. Writing a general



808 Notes

purpose code is another matter. Quasi-Newton methods are often used
in general purpose software to avoid computation of the derivative. One
of the most popular quasi-Newton methods is due to Broyden (compare
the discussion in [12] or [82]); it employs secant approximations of the
derivative DF .

As in Newton’s method, start with an initial guess x0 for the desired root.
Suppose, for the moment, that j ≥ 2 and the iterates xj−1 and xj have been
computed. Using Taylor’s formula,

F (xj)− F (xj−1) ≈ DF (xj)(xj − xj−1)

and this approximation improves as the length of the vector xj − xj−1

approaches zero. Because function values will be part of the iteration
process, all the data in the latter formula, except for DF (xj), is available.
To avoid computation of this matrix, Broyden’s proposal is to substitute a
new matrix Aj , which is close to DF (xj), so that

F (xj)− F (xj−1) = Aj(x
j − xj−1) (A.11)

and use this Aj in place of DF (xj) for a (quasi) Newton iteration step—
solving a linear system of equations—to produce xj+1. The challenge
is to choose Aj to be a good approximation of the derivative. Consider
the very first iterate x1. How is it to be computed when only the initial
guess x0 is available? A possibility is to use Newton’s method for this
step. As mentioned, this is expensive, but Broyden shows (by doing some
mathematics) that there is a big payoff: a good approximation of DF (x0)
can be used to avoid approximations of subsequent derivatives.

After taking one Newton iterate, DF (x0) may be stored along with
x0, x1, and F (x0). The function value F (x1) is computed with one
additional function call. Broyden’s (exceptionally good) answer to approxi-
mating DF (x1) is to determine A1 using two assumptions: (1) A1 satisfies
Eq. (A.11) for j = 1 and (2) A1v = DF (x0)v whenever v is a vector
orthogonal to x1−x0. These assumptions uniquely determineA1. By simple
linear algebra, A1 must be of the form A1 = DF (x0) + B where the
unknown matrix B is zero on every vector orthogonal to x1 − x0. This
observation suggests that By = v · (x1 − x0)T y for some unknown vector
u. Indeed, u is determined as a consequence of assumption (1); in fact,

A1 = DF (x0)+
F (x1)− F (x0)−DF (x0)(x1 − x0)

|x1 − x0|2 (x1−x0)T . (A.12)



Notes 809

Note that the second term on the right can be expressed as a (p× p) matrix.

The matrix A1 is used instead of DF (x1) to perform a (quasi) Newton
step that produces x2. Subsequent iterations proceed as expected: The
matrix

Aj = Aj−1 +
F (xj)− F (xj−1)−Aj−1(xj − xj−1)

|xj − xj−1|2 (xj−xj−1)T (A.13)

is used instead of DF (xj) to perform a (quasi) Newton step that produces
xj+1.

Broyden’s method is effective, but as for Newton’s method, each iteration
is completed by solving a system of linear equations. This computational
overhead can be mollified by employing a matrix inversion formula called
the Sherman–Morrison formula (Jack Sherman and Winifred J. Morrison,
approximately 1950), which is a special case of Max Woodbury’s formula
(approximately 1950). Tracking down and writing the true history of these
formulas would be an interesting project.

To derive the Sherman–Morrison formula, recall from second semester
calculus that, whenever |z| < 1,

(1− z)−1 = 1− z + z2 − z3 + · · · .

Formally (that is, without regard to convergence) the formula is simply
obtained by long division. The same formula is true when z is a matrix,
the number 1 is replaced by the identity matrix (except in the exponent of
course), the left-hand side is viewed as a matrix inverse, and the absolute
value is replaced by a matrix norm (which will not be used here).

Let u and v be vectors in Rp. Their combination uT v is a scalar and uvT

is a (p× p) matrix. A bit of formal play leads to something interesting:

(I + uvT )−1 = I − uvT + (uvT )(uvT )− (uvT )(uvT )(uvT ) + · · ·
= I − uvT + u(vTu)vT − u(vTu)2vT + · · ·
= I − u(1− vTu+ (vTu)2 − (vTu)3 + · · · )IvT

= I − u(1 + vTu)−1IvT

= I − 1

1 + vTu
uvT , (A.14)
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at least under the hypothesis that vTu 6= −1. Thus, assuming that the
identity is correct under this hypothesis, the matrix inverse is given by a
simple formula. The formula can be proved simply from the definition of
the inverse of a matrix.

The desired Sherman–Morrison formula is a corollary of this result.
Suppose that A is an invertible matrix, v and w are vectors, and vTA−1w 6=
−1. Set u = A−1w in Eq. (A.14) and check that

(I +A−1wvT )−1 = I − 1

1 + vTA−1w
A−1wvT .

Factor out A−1 on the left-hand side and do the algebra to obtain the desired
Sherman-Morrison formula: In case A is invertible and vTA−1w 6= −1,

(A+ wvT )−1 = A−1 − 1

1 + vTA−1w
A−1wvTA−1. (A.15)

Carefully inspect Eq. (A.13) until you realize that its right-hand side is
a matrix in the form A+ wvT , exactly what is required to invert the matrix
Ak on the left-hand side. Check that the procedure would be

v := xk − xk−1, w :=
1

|v|2F (xk)− F (xk−1)−Ak−1v

followed by

(Ak)
−1 = (Ak−1)−1 − 1

1 + vT (Ak−1)−1w
(Ak−1)−1wvT (Ak−1)−1.

Each new matrix inverse is obtained by multiplying vectors by previously
computed matrices. No costly matrix inversions are necessary after the first
matrix inverse is computed. Is the condition vTA−1w 6= −1 satisfied? If
not, a check will be needed in a numerical code based on this formula.

There is one remaining problem: (A0)−1 is required to start the iteration;
that is, the matrix DF (x0) must be inverted. This can be done numerically
by solving p linear systems: DF (x0)y = ei, for the usual basis vectors ei
and i = 1, 2, 3, . . . , p.

Broyden’s method together with the Sherman–Morrison formula makes
a beautiful algorithm that is numerically efficient (fast), at least after the
first iterate is completed. It converges to a root most of the time. Although
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it is not quadratically convergence, its convergence is superlinear; that is, its
order of convergence lies in the open interval (1, 2).

A.15 VARIATION OF PARAMETERS FORMULA

Proposition A.7 (Variation of Parameters Formula). Consider the initial
value problem

ẋ = A(t)x+ g(x, t), x(t0) = x0 (A.16)

and let t 7→ Φ(t) be a fundamental matrix solution for the homogeneous
linear system ẋ = A(t)x that is defined on some interval J0 containing t0.
If t 7→ φ(t) is the solution of the initial value problem defined on some
subinterval of J0, then we have (the variation of parameters formula)

φ(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)g(φ(s), s) ds. (A.17)

Proof. Define a new function z by z(t) = Φ−1(t)φ(t). We have

φ̇(t) = A(t)Φ(t)z(t) + Φ(t)ż(t).

Thus,

A(t)φ(t) + g(φ(t), t) = A(t)φ(t) + Φ(t)ż(t)

and

ż(t) = Φ−1(t)g(φ(t), t).

Also note that z(t0) = Φ−1(t0)x0.

By integration,

z(t)− z(t0) =

∫ t

t0

Φ−1(s)g(φ(s), s) ds,

or in other words,

φ(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)g(φ(s), s) ds. 2
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A.16 THE VARIATIONAL EQUATION

Let t 7→ φ(t, ξ, λ) denote the solution of the differential equation

ẋ = f(x, t, λ) (A.18)

such that φ(0, ξ, λ) = ξ, where λ is a parameter in Rk, x ∈ Rn, and ξ ∈ Rn.
The first (matrix) variational equation (also called the linearization) along
the solution φ is given by

Ẇ = Dxf(φ(t, ξ, λ), t, λ)W

with initial condition W (0) = I , where I is the n × n identity matrix and
Dx denotes the derivative of f with respect to x. The second variational
equation is

U̇ = Df(φ(t, ξ, λ), t, λ)U +Dλ(fφ(t, ξ, λ))

with initial condition U(0) = 0, where Dλ denotes the derivative of f with
respect to λ.

These equations are important for several reasons. The first variational
equation is the differential equation for the derivative of φ with respect to
the initial condition; in fact,

W (t) = Dξφ(t, ξ, λ).

The second variational equation is the differential equation for φ with
respect to the parameter; in fact,

U(t) = Dλφ(t, ξ, λ).

These facts follow immediately by differentiating both sides of differential
equation (A.18) with x replaced by φ. The key observations are that

DξDt = DtDξ and DλDt = DtDλ,

under the assumption that f is class C1

The first variational equation also arises as a linearization. Indeed, let ψ
denote a solution of differential equation (A.18) and consider its deviation η
from the given solution φ; that is,

ψ = φ+ η.
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We have that

η̇ = φ̇− ψ̇
= f(φ, t, λ)− f(ψ, t, λ)

= f(φ, t, λ)− f(φ+ η, t, λ)

= Dxf(φ, t, λ)η +O(η2),

where the last equation is obtained by expanding the function x 7→ f(φ +
x, t, λ) in its Taylor series at x = 0. This suggests that the solution of the
differential equation

η̇ = Dxf(φ(t, ξ, λ), t, λ)η

provides a good approximation to the deviation η when ψ is close to φ. The
initial condition is η(0) = ξ − ψ(0).

A.17 LINEARIZATION AND STABILITY

For a differential equations on Rn of the form

u̇ = Au+ g(u) (A.19)

where A is an n × n matrix and g : Rn → Rn is a smooth function such
that g(0) = Dg(0) = 0, the origin u = 0 is a rest point whose linearization
is ẇ = Aw. The system matrix A of the linearized system can be used to
determine the stability of the rest point.

Theorem A.8. If all the real parts of the eigenvalues of the system matrix
of the linearization at a rest point of an autonomous system have negative
real parts, then the rest point is (locally) asympotically stable.

Theorem A.8 is a basic result. One method used to prove it is based on
Lyapunov’s direct approach, which is the content of another basic result in
stability theory for ODEs.

Consider a rest point x0 for the autonomous differential equation

ẋ = f(x), x ∈ Rn. (A.20)
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A continuous function V : U → R , where U ⊆ Rn is an open set with
x0 ∈ U , is called a Lyapunov function for the differential equation at x0 if

(i) V (x0) = 0,
(ii) V (x) > 0 for x ∈ U \ {x0},
(iii) the function V is continuously differentiable on the set U \ {x0}, and

on this set, V̇ (x) := gradV (x) · f(x) ≤ 0.

The function V is called a strict Lyapunov function if, in addition,

(iv ) V̇ (x) < 0 for x ∈ U \ {x0}.

Theorem A.9 (Lyapunov’s Stability Theorem). If there is a Lyapunov
function defined in an open neighborhood of a rest point of differential
equation (A.20), then the rest point is stable. If, in addition, the Lyapunov
function is a strict Lyapunov function, then the rest point is asymptotically
stable.

For Eq. (A.19), assume that every eigenvalue of A has negative real part,
and for some a > 0, there is a constant k > 0 such that (using the usual
norm on Rn)

|g(x)| ≤ k|x|2

whenever |x| < a. To show that the origin is an asymptotically stable rest
point, it suffices to construct a quadratic Lyapunov function. To do this, let
〈·, ·〉 denote the usual inner product on Rn, and A∗ the transpose of the real
matrix A. Suppose that there is a real, symmetric, positive-definite n × n
matrix that also satisfies Lyapunov’s equation

A∗B +BA = −I

and define V : Rn → R by

V (x) = 〈x,Bx〉.

The restriction of V to a sufficiently small neighborhood of the origin is a
strict Lyapunov function. To see this, make an estimate using the Schwarz
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inequality. To complete the proof show that

B :=

∫ ∞
0

etA
∗
etA dt

is a symmetric positive definite n × n matrix that satisfies Lyapunov’s
equation. This claim is proved with a few observations. First, note that A∗

and A have the same eigenvalues, all of which are in the open left-half of
the complex plane. There is some number λ > 0 such that all eigenvalues
of both matrices have real parts less than −λ. In this case,

‖etAx‖ ≤ Ce−λt‖x‖

for all t ≥ 0 and all x ∈ Rn. This estimate is used to prove that the integral
converges.

Alternatively, we can solve Lyapunov’s equation using the following
outline: Lyapunov’s equation in the form A∗B + BA = S, where A is
diagonal, S is symmetric and positive definite, and all pairs of eigenvalues
of A have nonzero sums, has a symmetric positive-definite solution B.
In particular, under these hypotheses, the operator B 7→ A∗B + BA is
invertible. The same result is true without the hypothesis that A is diagonal.
This fact can be proved using the density of the diagonalizable matrices and
the continuity of the eigenvalues of a matrix with respect to its components.

Theorem A.10 (Routh–Hurwitz Criterion). Suppose that the characteris-
tic polynomial of the real matrix A is written in the form

λn + a1λ
n−1 + · · ·+ an−1λ+ an,

let am = 0 for m > n, and define the determinants ∆k for k = 1, 2, . . . , n
by

∆k := det


a1 1 0 0 0 0 · · · 0
a3 a2 a1 1 0 0 · · · 0
a5 a4 a3 a2 a1 1 · · · 0
...

...
...

...
...

...
...

...
a2k−1 a2k−2 a2k−3 a2k−4 a2k−5 a2k−6 · · · ak

 .

If ∆k > 0 for k = 1, 2, . . . n, then all roots of the characteristic polynomial
have negative real parts.
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A.18 POINCARÉ–BENDIXSON THEOREM

Two versions of the Poincaré–Bendixson theorem and an important corol-
lary are stated here (see, for example, [20]).

Theorem A.11. If a closed and bounded positively invariant set for a C1

autonomous system in the plane contains no rest points, then it contains at
least one limit cycle.

Theorem A.12. If a closed bounded positively invariant set in the plane
for a C1 autonomous system contains no periodic orbits and exactly one
hyperbolic asymptotically stable rest point (the real parts of the eigenvalues
of the system matrix of the linearization at the rest point are negative), then
every solution starting in the invariant set is asymptotic to the rest point.

Theorem A.13. A periodic orbit for aC1 autonomous system in the plane
surrounds at least one rest point.

A.19 EIGENVALUES OF TRIDIAGONAL TOEPLITZ
MATRICES

A tridiagonal matrix is a banded matrix with bandwidth three: only the main
diagonal, the first subdiagonal, and the first superdiagonal have nonzero
components. A Toeplitz matrix has constant diagonals; that is, each diagonal
has all its components equal. A useful fact is that the eigenvalues (and
eigenvectors) of a tridiagonal Toeplitz matrix can be computed explicitly.

LetA be anN×N tridiagonal Toeplitz matrix such that every component
on the first subdiagonal is the real number α, every component on the main
diagonal is β, and every component on the first superdiagonal is γ. The
eigenvalues of A are

β +
√
αγ cos

kπ

N + 1
, k = 1, 2, 3, . . . , N. (A.21)

In case αγ < 0, the square root is taken to be i
√
|αγ|.

If α or γ is zero, the formula states that β is an eigenvalue of algebraic
multiplicity N , a fact that is easy to check. Thus, we may assume that
αγ 6= 0. To derive this formula, suppose that Av = λv and note that the
components of the vector v must satisfy a boundary value problem (BVP)
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for a difference equation:

αvj+1 + βvj + γvj−1 = λvj , j = 1, 2, 3, . . . , N ; v0 = 0, vN+1 = 0.

Here, the boundary components v0 and vN are fictitious, but using them
is a convenient way to state the exact problem to be solved: find λ and
{vj}j=Nj=1 that satisfy the BVP. The vector v, with components {vj}j=Nj=1 , is
an eigenvector with eigenvalue λ for the matrix A.

Look for the components of v in the form vj = rj for some undetermined
number r. By substitution of this guess into the difference equation, it
follows that a necessary condition for such a solution to exist is

α+ (β − λ)r + γr2 = 0. (A.22)

Thus, the two roots of this quadratic equation, say r and s, provide candidate
solutions vj = rj and vj = sj . By the linearity of the difference equation,
every linear combination of these two vectors is a candidate solution of the
BVP. This suggests the solution of the BVP

vj = arj + bsj .

The boundary conditions are satisfied when a and b solve the linear system

a+ b = 0, arN+1 + bsN+1 = 0.

It has nontrivial solutions when

rN+1 = sN+1.

In fact, these solutions are the pairs (a, b), where b = −a. But also r and s
are roots of the quadratic polynomial (A.22). The product of these roots is
α/γ. Using this fact, s = α/(rγ), and the first equation implies that(r2γ

α

)N+1
= 1.

Allowing for complex roots of unity and a yet unspecified eigenvalue, the
two possible roots of the quadratic are given by

r =

√
α

γ
ekπi/(N+1), s =

√
α

γ
e−kπi/(N+1), k = 1, 2, 3, . . . N.
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The sum of the roots of the quadratic polynomia is (λ− β)/α. Thus, the
desired eigenvalues are given by

λ = β + 2γ

√
α

γ

ekπi/(N+1) + e−kπi/(N+1)

2
,

a formula that simplifies to the desired quantity [Eq. (A.21)].

An eigenvector corresponding to the eigenvalue with some fixed k has
components

vj = rj − sj .

A.20 CONJUGATE GRADIENT METHOD

The conjugate gradient method is designed to approximate solutions of
linear systems Ax = b or minimize the function E : Rn → R given by
E(x) = 1

2〈x,Ax〉 − 〈b, x〉 in case the n × n matrix A is symmetric and
positive definite, and the angled brackets denote the usual inner product (also
called the dot product) on Rn.

Solving the matrix system and minimizing the function are equivalent
problems. This fact is proved using calculus.

The critical points of E are determined by computing the first derivative
of the (polynomial) function E and setting it equal to zero. The derivative
of E at x (the gradient at this point) is DE(x) = Ax − b and the second
derivative (the Hessian) is given by the positive definite matrix A. Thus,
the critical points of E occur exactly at the solutions of the linear system
Ax = b and each critical point is a local minimum. Because A is positive
definite, there is exactly one such local minimum. If there were two solutions
of Ax = b, their difference y would be a nonzero vector in the null space
of A (that is, Ay = 0) in contradiction to the inequality 〈y,Ay〉 > 0 for
nonzero y. Equivalence of the two problems will be proved if the unique
local minimum of E is a global minimum of E. This will be true unless
the minimum of E were to occur at infinity. In fact, E(x) → ∞ whenever
|x| → ∞ and the validity of this claim would complete the proof. One way
to prove it is to use some important facts from matrix theory, in particular,
the spectral theorem: A real symmetric matrix can be diagonalized by an
orthogonal transformation. By this result, there is a real orthogonal matrix
Q such that QTAQ = Λ, where QT denotes the transpose of Q and Λ is a
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diagonal matrix. The elements on the main diagonal of Λ are the eigenvalues
of A and these are all positive real numbers because A is positive definite.
Using the new variable y = QTx, the function Λ is given by λ(y) = Λ(Qy)
and

λ(y) =
1

2
〈Qy,AQy〉 − 〈b,Qy〉

=
1

2
〈y,QTAQy〉 − 〈b,Qy〉

=
1

2
〈y,Λy〉 − 〈b,Qy〉.

It is easy to see that if c > 0 is smaller than the smallest eigenvalue
of A, then 1

2〈y,Λy〉 ≥ c|y|2. And, by the Cauchy–Schwarz inequality
〈b,Qy〉 ≤ |QT b||y|. Thus, λ(y) ≥ c|y|2 − |QT b||y|. The right-hand side
of this inequality is a quadratic polynomial whose second-degree term has
a positive coefficient. Thus, the right-hand side goes to infinity as |y| grows
without bound. This completes the proof.

The word “gradient,” which appears in the name “conjugate gradient
method,” refers to the gradient already computed: DE, which when eval-
uated at x is the vector Ax − b. Recall from calculus that the function E
increases in the direction of its gradient (in fact, the gradient direction at a
point is the direction of maximal increase). To search for the minimum ofE,
which is the basic problem to be solved, it seems reasonable to start at some
vector x0 in Rn and go in the direction of the negative gradient; namely, the
vector r0 = b − Ax0. More precisely, this idea would be implemented by
considering the function f0(α) := E(x0 + αr0). It decreases for α in some
interval with zero as its left-hand end point. Perhaps the ray x0 +αr0 passes
through the vector that minimizes E. In this case, the minimum of f is the
desired minimum of E. But, more likely, f decreases, reaches a minimum,
and then increases again. It must eventually increase because E increases
without bound as the absolute value of its argument goes to infinity. For
this reason, a good idea is to find the α0 that minimizes f and define
x1 = x0 + αr0. The value of E at the new vector x1 is smaller than E(x0).
In this sense, the line search (as it is called) improves the estimate x0 and
the line search strategy can be applied again starting at x1 and proceeding
in the direction of the negative gradient at this new point. The next step is
to minimize f1(α) := E(x1 + αr1), where now r1 = b − Ax1. Clearly
this iterative procedure produces a sequence of vectors x0, x1, . . . such that
E(xj+1) < E(xj) unless there is exceptional luck: after a finite number of
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steps the absolute minimum is reached. The latter case would be detected by
the appearance of a zero residual rj := b−Axj , which is just another way to
say thatAxj = b orE is minimized at xj . This particular line search method
is called steepest descent. It can be used to approximate solutions of the
minimization problem. In practice, this method works but the convergence
can be (very) slow.

A great idea for improving the convergence speed is to do line searches in
a sequence of nonzero directions d0, d1, d2, . . . , dn−1 that form a basis of the
vector space Rn and perhaps have extra properties so that, after completing n
line searches with exact arithmetic, the last vector xn obtained is the solution
of Ax = b. To implement this algorithm concept in an efficient manner, one
of the most important ideas is to take advantage of the natural inner product
for the problem: (x, y) = 〈x,Ay〉. This function from Rn × Rn → R has
the same essential properties as the usual inner product given by the pointed
brackets. Indeed, the function denoted by round brackets is such that (1)
(x, x) ≥ 0 for all x ∈ Rn and equal to zero only if x = 0, (2) (x, y) = (y, x)
for all x and y in Rn, and (3) λ(x, y) = (λx, y) for every real number λ and
all x and y in Rn. The essential features of the problem that make these
properties true are the symmetry and positive definiteness ofA. Two vectors
x and y are called orthogonal if 〈x, y〉 = 0. Similarly, these vectors are A-
conjugate if (x, y) = 0; at least this is the origin of the word “conjugate.”
Perhaps a better terminology for this notion is A-orthogonal, which will be
used here.

Suppose that {d0, d1, d2, . . . , dn−1} is an A-orthogonal set of vectors;
that is, every pair of vectors in the set areA-orthogonal. Choose some vector
x0 in Rn and do line searches in these directions. The first search produces
a vector x1 := x0 + α0d0 such that

E(x1) = min
α∈R

E(x0 + αd0).

The j + 1st search produces xj+1 = xj + αjdj such that

E(xj+1) = min
α∈R

E(xj + αdj).

After n steps the vector xn produced in this manner is the unique solution of
Ax = b and the point where E has its absolute minimum. The main part of
the proof is to show that if theA-orthogonal set is chosen appropriately, then
the vector xj+1 produced at the j + 1st line search is (in addition to being
the minimizer for the search along the line) the minimizer over the span
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of the search directions {d0, d1, d2, . . . , dj}. The last search produces the
minimizer over span{d0, d1, d2, . . . , dn−1}, which is the entire space. Thus,
after n steps (and with exact arithmetic) the global minimizer is obtained.
Assume this result is true for some as yet unspecified choice of the A-
orthogonal set.

The scalar αj that minimizes the j + 1st line search is given by a simple
and important formula. To derive it, use calculus to find the minimizer of
fj(α) = E(xj + αdj). As usual, the desired critical point is a zero of the
derivative

f ′j(α) = DE(xj + αdj)dj = 〈A(xj + αdj)− b, dj〉

found by solving the equation 〈A(xj + αdj) − b, dj〉 = 0 for α. Using the
properties of the inner product, the minimizer is

αj =
〈rj , dj〉
(dj , dj)

, (A.23)

where as before the rj := b − Axj is the residual. Note the usual
inner product appears in the numerator and the A inner product in the
denominator.

Although some facts are not yet proved, a description of the desired
algorithm is almost complete: Determine an appropriate A-orthogonal set
containing n vectors (so that it spans the entire space) and do successive
line searches in the A-orthogonal directions. The only remaining ingredient
is producing an appropriate A-orthogonal set.

The correct choices are made iteratively: Given a starting vector x0, the
starting direction d0 is the residual r0 = b − Ax0. This is the same choice
as for steepest descent. As before, the line search in this direction produces

x1 = x0 + α0d0,

where

α0 =
〈r0, d0〉
(d0, d0)

.

Instead of making the next search in the direction of the negative gradient
evaluated at x1 (given by the residual r1 = b−Ax1), this direction is made
A-orthogonal (or, in other words, A-conjugate) to d0 by subtracting off a
scalar multiple of d0. More precisely, consider making a choice of scalar β
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so that the vector r1 − βd0 is A-orthogonal to d0. This is easy. To make
(r1 − βd0, d0) = 0, simply solve for β to obtain

β0 =
(r1, d0)

(d0, d0)
.

This time the numerator and denominator are round bracket inner products.
The line search in the direction d1 := r1 − β0d0 is used to obtain

x2 := x1 + α1d1,

where

α1 =
〈r1, d1〉
(d1, d1)

.

This completes the second step.

The third and subsequent steps (up to the nth step) are the same. This is
the conjugate gradient method

At the third step the search direction is obtained as prescribed by

d2 := r2 − β1d1

with

β1 =
(r2, d1)

(d1, d1)
.

This choice is made so that (d2, d1) = 0. The miracle of the conjugate
gradient method is that (d2, d0) = 0. In other words, the new search
direction is orthogonal to all the previous search directions. This fact is not
obvious, but it makes the conjugate gradient method an efficient algorithm.
The work involved is simply the computation of a few inner products, which
involve multiplications by A. It is not necessary to make a more extensive
calculation that would ensure the new search direction is orthogonal to all
previous directions (see, for example, [116] for complete proofs).
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A.21 NUMERICAL COMPUTATION AND PROGRAMMING
GEMS OF WISDOM

This book invites the reader to do numerical experiments as a method to
gain insight into the prediction of mathematical models. A few of the gems
of wisdom that come with experience are shared here.

A.21.1 There Is Only One Way to Debug a Numerical Code
On its face this statement is false. But, countless hours of valuable time
are wasted reading code to find mistakes. The only method that works is
to isolate some block of code—perhaps a single line—and print out the
input and output of that block. The basic principle is to ascertain what the
code actually produces rather than deluding yourself by believing the code
produces what you intended.

A.21.2 Write Modular Programs
Break up a complicated program into subprograms (subroutines) that each
perform a single task. Call the subroutines to build the main program.

A.21.3 Test Code against Known Solutions
This is a general principle. But, for differential equations specifically, use
exact solutions of perhaps simplified models to test code. There are some
clever ways to obtain exact solutions in case none are available for the
problem at hand. A typical example might be a differential equation ẋ =
f(x, t) with some initial data x(0) = x0. If no suitable exact solution
is available, pick your favorite function y, perhaps a function that has
some features expected of the solution (growth, oscillation, asymptotes,
and so on), and simply substitute y into the differential equation to obtain
ẏ− f(y, t) = R(t), where R is defined by the left-hand side. You now have
an exact solution of the differential equation ẋ = f(x, t) +R(t) with initial
condition x(0) = y(0). This is not exactly the original problem, but it is
close enough to gain some insight into the performance of your code. The
same idea works for partial differential equations (PDEs).

A.21.4 Use Dimensionless Models
In realistic applied problems there are often natural parameters that vary in
size by many orders of magnitude. This fact can cause serious problems
for numerical codes, especially when subtracting nearly equal quantities
and dividing by very small numbers. There is no general way to avoid
these problems, but the first line of defense is to change to dimensionless
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variables. Taking this step at least allows meaningful size comparison of
pure numbers. Of course, making a model dimensionless is not a unique
process. After a change to dimensionless variables, further changes of
variables might help to tame the differences in the magnitudes of parameters.
A lot of research is related to this subject. It turns out that a small parameter
multiplying a term that does not contain the highest-order derivative (as, for
example, in the ODE ẋ = f(x, t)+εg(x, t) for some ε such that |ε| is small )
is usually not a serious issue. Mathematicians call this a regular perturbation
problem. The other case, for example, the system εẋ = f(x, y, t) and
ẏ = g(x, y, t), is much worse. It is called a singular perturbation problem.
Special methods are used for analysis and numerical approximation of such
problems. Division by εmakes the right-hand side of the first equation much
larger than the right-hand side of the second equation. Evolution on widely
different timescales can also occur in nonlinear systems of differential
equations that are not caused by coefficients that differ widely in magnitude.
Instead the differing timescales occur due to nonlinearity. Such systems are
called stiff by numerical analysts. Special numerical methods not discussed
in this book are used to overcome (sometimes) this difficulty.

A.21.5 Why Worry about Numerical Difficulties When
Commercial Codes Are Available
Commercial codes for approximating solutions of ODEs and PDEs have
reached a high level of sophistication. They often test for underlying
numerical problems such as stiffness and switch methods internally to try to
overcome internally diagnosed problems. High-order accuracy is available
from carefully written, extensively tested, and efficient codes. The only
shortcomings of commercial codes are due to their very nature: they are
general purpose codes. The applied problem at hand is usually special in
some way. Taking advantage of special features can inform the decision on
how to write a successful code to approximate solutions. Also, writing your
own code can help to gain insight into the nature of the underlying model.
In research problems this can be a key to understanding. Good decisions
on the use of a commercial code or a code written by hand are made after
an assessment of the purpose of making an approximation. Will a bridge
fall down, an airplane crash, or a control device fail if the approximation
is not accurate? Does the code have to be run only a few times to obtain a
desired approximation, or is the code intended to be used often on a long-
term basis? Do you understand the basic features of the underlying model,
or are you treating the model as a black box?
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A.21.6 Document Code
A code should contain at least as many comments as commands. The
necessity for explanatory comments becomes immediately apparent when
you return to one of your codes that you have not read recently. It will
likely be incomprehensible unless it is well documented. At the very least,
each subroutine should be commented with a statement of its purpose and
a description of all its arguments on input and output. A code that might be
used by people other than its author should also include external documenta-
tion containing carefully written instructions on how to implement, compile,
and run the code along with a description of all its functionality. Of course,
basic and perhaps advanced examples with actual input and output should
be included. Manuals can be frustrating documents because they never seem
to contain an explanation for the problem you wish to address. Perhaps you
can write a user-friendly manual for your code.



Answers to Selected Exercises

Page 14

Ex. 2.2 (c) The long-term behavior is sinusoid. After the transient is
too small to measure, the response is

x(t) =
64

257
sin t− 4

257
cos t.

The amplitude of the steady state response is 4/
√

257.

Page 16

Ex. 2.5 The monthly payment M (assuming continuously com-
pounded interest) is

M =
rP

12(1− e−rT )
.

Ex. 2.4 The limit as time grows without bound is 10. One solution
method is to separate the variables and use partial fractions. A
second method is to use the Bernoulli transformation Q = 1/P .

Page 18

Ex. 2.11 f(φ, θ) = (A sin θ + B cos θ)
(

1−cos θ
sin θ

)
. After separation of

variables we find the ODE sinφ p′′+ cosφ p′− p = 0, which can
be written in the form (sinφ p′)′ = p/ sinφ. This suggests the
substitution u = sinφ p′, and so on.

Ex. 2.12 (g) The answer is probably not known. But, with a high level
of confidence, it seems that the fate of the solution with initial
data x(0) = 0 and ẋ(0) = 1 converges to the constant solution
x(t) = 1.

Page 19

Ex. 2.12 (d) Determine the energy of the saddles. The corresponding
energy curve in the phase plane meets the line x = 0 at ẋ =

827
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1/
√

2 > 7/10. Thus, the solution with the given initial condition
is periodic.

Page 28

Ex. 2.27 (a) The solutions obtained by the power series method are
multiples of the polynomial y = 1− 2r + r2 − r3/6 + r4/120.
(b) The reduction of order method is to seek a solution y = zy1,
where y1 is the polynomial solution of part (a). This leads to the
system of ODEs

w′ + (
2− r
r

+ 2
y′1
y1

)w = 0, z′ = w.

The first equation can be solved using an integrating factor to
obtain the nonzero solution

w =
er

r2y2
1(r)

.

Thus, z is given by an antiderivative of w. The result is z =
−1/r+5 log r+O(r). The second solution is the same at leading
order; hence, it blows up (like 1/r) as r → 0. The sign of the
leading term is not important. (d) y(1) ≈ −0.09893. There is
an issue worth mentioning: By ODE theory, power series can
be used to represent the solution of the IVP in some interval
containing r = 2. In other words, there is a power series in
powers of (r − 2) that convergences to the solution of the IVP
in some interval containing r = 2. The problem is proving that
r = 1 is contained in this interval of convergence. There is no
easy way to check. In the present case, numerics agree with the
power series truncated to a polynomial of degree 15. You should
check the approximations by truncated power series at several
lower and higher orders to see if the approximation seems to be
converging. Whenever a sequence of approximations is available,
it is a good idea to check for convergence of the desired value
instead of simply choosing a member of the sequence to make
the approximation.

Page 81
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Limit Cycles

Hopf Curve

No Limit Cycles
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Fig. A.1 Bifurcation Diagram for Ex. 4.19.

Ex. 4.19 The bifurcation diagram is depicted in Fig. A.1.

Page 113

Ex. 5.26 u(0.4, 60) ≈ 0.66.

Page 160

Ex. 5.42 (b) The steady state has the form U(ξ) = (aξ + b)1/(γ+1)

where a and b are determined from the boundary conditions. Note
the identity

u(uγ)x =
γ

γ + 1
(uγ+1)x.

Using it and the dimensionless quantity a, the steady state flux
through the downstream end is

−a `p0ρ0kγ

µ(γ + 1)
,

which is approximately 4.835× 10−3 kg / s.

Page 184
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Ex. 5.47 Suppose that it takes N steps to reach L. The global error is
proportional to Nhn+1. This quantity is equal to

N
( L
N

)(N
L

)
hn+1 = L

1

h
hn+1 = Lhn.

Page 188

Ex. 5.61 The data were generated using a = 0.001 and b = 1.23 by
rounding off the values of f to two decimal places.

Page 189

Ex. 5.61 The data were generated using a = 0.44 and b = 888 by
rounding off the values of f to three decimal places.

Page 239

Ex. 8.7 The dynamical system is given by the mass balance: rate of
change of mass equals mass in minus mass out. For f(t) the mass
flow rate into the tank and ρA

√
2gz the mass flow rate through

the drain (whereA is the area of the drain cross section), the mass
balance differential equation is

d

dt
(ρπa2z) = f(t)− ρA

√
2gz.

The valve control mechanism actuates the control by changing
the areaA of the drain cross section. There does not seem to be an
obvious way to implement the control; that is, to define the radius
of the drain cross section as a function of the proportional error
k(zset − z). This function would be used to run the actuator that
moves the valve mechanism. Control design requires experience
and ingenuity. One possible actuation function is

A = π[
r

2π
(π − arctan(k(zset − z))]2,

where the controller gain is assumed to be positive. When the
water level exceeds the set-point depth, the argument of the arc-
tangent is negative and approaches −π as the depth of the water
in the tank increases; thus, the area of the drain cross section
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,

Fig. A.2 The left-hand panel shows the motion of the first two particles in the horizontal coordinate plane; the right-hand
panel is a graph of the third coordinate of the third particle versus time. System parameters are those of Exercise 10.9
part (f). The numerical method is Störmer-Verlet with ∆t = 0.005.

increases toward r. The opening rate of the orifice increases as the
control gain k increases or the water depth increases. Likewise,
the area decreases as the depth or control gain decreases. Note:
We have implemented the inherently linear P control as the
argument of a nonlinear function! By assumption, the mass
inflow rate is less than ρπr2

√
2gh, which with the given choice

of parameters is approximately 491 kg /m.
Numerical experiments show that it is not possible to maintain
the set-point depth for an inflow of 300 kg / sec. Why not? In
practice, it is usually better to analyze the system before doing
numerical experiments. But, the results of computation might
suggest that something in the control design is not working as
expected.
The problem is apparent by looking at the steady state(s) of
the control system. The steady state of the model is not at the
set point. For the given data, the steady state is zss ≈ 7.23.
Thus, there is good reason to incorporate an I control. Because
I controls are explicitly time-dependent their presence makes the
control process nonautonomous; no steady states exist unless the
depth is at the set point over the entire time the integral controller
is functioning.

Page 285

Ex. 10.9 Fig. A.2 shows the planar two-body motion of the first two
masses and the motion of the third particle along the third coor-
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dinate axis versus time over 40 time units. The first two particles
orbit each other while the third particle oscillates perpendicular
to this plane passing through the center of mass of the two-body
motion. After 10 units of time, and a bit more numerical analysis,
the computed positions of the three particles (to three decimal
places) are

x1 = (−0.326, 1.038, 0.000), x2 = (0.326,−1.038, 0.000),

x3 = (0.000, 0.000,−1.008).

Page 326

Ex. 12.4

PD = VFR× 8`µ

πa4
.

Page 331

Ex. 13.3 Choose a Cartesian coordinate system whose horizontal axis
is in the downstream direction of the river bottom and whose
vertical is in the direction of the river’s surface. Let x and z
be names of the coordinates and u and v the corresponding
components of the fluid velocity. According to the assumptions
v = 0 and ux = 0. Thus, the continuity equation is satisfied
automatically. The gravitational force per volume is given in
these coordinates by (ρg sin θ,−ρg cos θ), and the steady state
two-dimensional Navier–Stokes equations are given by

0 = µuzz + ρg sin θ, 0 = −pz − ρg cos θ. (A.24)

It follows immediately that there are constants c and d such that

µu = −ρg sin θ

2
z2 + cz + d. (A.25)

The no-slip boundary condition at the river bottom (where z = 0)
implies d = 0. Under the assumption that the flow is Eulerian
near the river’s surface, Bernoulli’s law holds and there is a
constant C such that

p+
1

2
ρu2 + gρz = C.
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By differentiation with respect to z, and using the second compo-
nent of the Navier–Stokes equations (A.24),

2ρuuz = gρ(cos θ − 1).

The angle θ measuring the tilt of the river bottom is small;
therefore, cos θ − 1 ≈ 0. To balance the equation, uz must be
small. Taking uz = 0 as an approximation, the unknown constant
c in Eq. (A.25) is determined, and the formula for u stated in the
exercise is obtained with a simple algebraic manipulation from
Eq. (A.25).

Note: How small is small for cos θ−1? Surely, to make a comparison,
quantities should be made dimensionless. Use a characteristic speed
V and a characteristic length L to make the quantities in the equation
2uuz = g(cos θ − 1) dimensionless. What would you take for V and
L for the Mississippi river? Is the formula applicable in this case?

Page 335

Ex. 13.5 The push forward of the vector field (c, 0) by Q is

(
cσ

2(σ2 + τ2)
,− cτ

2(σ2 + τ2)
).

This vector field is not divergence free; therefore, it is not a steady
state solution of the incompressible Euler’s equations.

Page 503

Ex. 16.39 Using the predictor-corrector scheme [Eq. (16.138)], com-
pute the local truncation error in three steps: Apply Taylor series
expansions to obtain

y(t+ ∆t) = y(t) + y′(t)∆t+
y′′(t)

2
∆t2 +O(∆t3)

= y(t) + f(y(t))∆ +
1

2
f ′(y(t)f(y(t))∆t2 +O(∆t3)

and

yn+1 = yn + ∆tf(yn +
∆t

2
f(yn−1/2)
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= yn + ∆t(f(yn) +
1

2
f ′(yn)f(yn−1/2)∆t) +O(∆t3),

estimate the error by

|y(t+∆t)−yn+1|=
1

2
|f ′(ynf(yn)−f ′(yn)f(yn−1/2)|∆t2+O(∆t3),

and use the mean value theorem to estimate the important
difference

|f(yn)− f(yn−1/2| = |f ′(ξ)||yn − yn−1/2|
≤ |f ′(ξ)|(|yn − yn−1|+ |yn−1 − yn−1/2|).

The predictor-corrector formulas for the previous step can be
used to show that |yn − yn−1| and |yn−1 − yn−1/2| are O(∆t).

Page 541

Ex. 17.10 The upstream and downstream momenta modeled by
Q2/A+ 2gA2 are both equal to

2g(BD −BU )AUAD
AD −AU

and AD 6= AU . It is not physically realistic for the momenta to
be zero (because A > 0) and BD = BU .

Page 588

Ex. 18.1 We have that

ρv̇i = (λεkkδij + 2µεij)j + ρbi

= λ
1

2
(uk,kj + uk,kj)δij + µ(ui,jj + uj,ij) + ρbi

= λuk,kjδij + µ(ui,jj + uj,ij) + ρbi

= λuk,ki + µ(ui,jj + uj,ij) + ρbi

= λuj,ij + µ(ui,jj + uj,ij) + ρbi.

The quantity ∇u is a 3 × 3 matrix. Also recall that ∇u̇ = ∇Tu.
These two facts are all that is needed to show that ∇ · (∇u) =
uj,ij .
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Ex. 18.15 To prove that the set L of square integrable functions on
the interval [0, L] is not finite-dimensional, let us suppose that L
has a generating set consisting of n ≥ 1 elements. Recall that
ek := sin kπx

L is in L for each positive integer k. For the case
n = 1, suppose there is a function g1 that generates every element
in L. Then there are two nonzero numbers a and b such that e1 =
ag and e2 = bg. The functions e1 and e2 are orthogonal. Thus,
(ag, bg) = 0. Equivalently, ab‖g‖2 = 0. But this is impossible
because ‖g‖ > 0.
Suppose there is a generating set with n > 1 elements, say
{gi}ni=1. There are real numbers {b`}n`=1 such that en+1 =∑n

`=1 b`g
`. By renumbering the elements in the generating set

if necessary and noting that en+1 6= 0, we may assume that
b1 6= 0. Also, there is an n × n array of numbers aij such that
ei =

∑n
j=1 aijg

j , for i = 1, 2, 3, . . . n. The function en+1 is
orthogonal to each such ei. Hence, we have that

0 = (

n∑
`=1

b`g
`,

n∑
j=1

aijg
j) =

n∑
`

n∑
j=1

b`ai,j(g
`, gj) =

n∑
j=1

ai,jbj .

By rearranging, dividing by b1 6= 0, and defining cj = −bj/b1,
for j = 2, 3, 4, . . . , n, we obtain the identities

ai1 =

n∑
j=2

cjaij , i = 1, 2, 3, . . . , n.

Note that, by substitution for ai1,

ei =

n∑
j=1

aijg
j = (

n∑
j=2

cjaij)g
1+

n∑
j=2

aijg
j =

n∑
j=2

aij(cjg
1+gj).

Thus, the set of n independent vectors {ei}ni=1 is generated by
the set Gn−1 of n− 1 functions

c2g
1 + g2, c3g

1 + g3, c4g
1 + g4, . . . , cng

1 + gn.

The element en is orthogonal to each ei, for i = 1, 2, 3, ..., n− 1.
There must be at least one nonzero function in Gn−1. Thus, by
renumbering if necessary, we may assume that the first coefficient
of the linear combination of functions in Gn−1 equal to en is
not zero. The same argument used to obtain Gn−1 can be used
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,

,

Fig. A.3 The graphs (for Exercise refex:wavemod) are numerical approximations to a wave traveling (from left to right)
along a rope tied to a tree. The wave is fully developed in the top left panel, reaches the tree in the top right panel, is
reflected from the tree in the bottom left panel, and approaches the position of the hand in the bottom right panel.

to show that the set of n − 1 independent vectors {ei}n−1
i=1 is

generated by a set Gn−2 of n − 2 functions. Continuing in
this manner, we may conclude that e1 and e2 are generated
by one function, which we have shown to be impossible. This
contradiction completes the proof.

Page 607

Ex. 18.20 Some graphs for the solution of the rope wave model are
depicted in Fig. A.3. These are made using the spectral method
described in the problem. Thirty Fourier modes are used to
approximate the wave profiles, which are in scaled variables. The
physical length of the rope is 8 m and the wave speed is 2 m / sec,
and the scaling is described in the statement of the problem. The
profile function g was constructed with cubic polynomials to be
zero outside the interval [0.125, 0.125] (obtained by imagining
hand motion of 1 sec duration), have maximum height of 0.127



Answers 837

0 1 2 3 4 5 6

0

2

4

6

8

Fig. A.4 Graph of solution Ex. 18.32.

(corresponding to a 4-inch displacement) at the origin, and be
symmetric about the origin.

Page 645

Ex. 18.32 For part (g), a graph of the solution of the boundary value
problem uxx + sin(x)u = 1 with u(0) = 0 and u(2π) = 0 is
depicted in Fig. A.4.

Page 640

Ex. 18.28 For part (a) guess that γ(x) = 2 for 0 ≤ x ≤ 1/2 and
γ(x) = −2 for 1/2 < x ≤ 1 is the desired weak derivative. To
check this, compute first∫ 1

0
γψ dx = 2

∫ 1/2

0
ψ dx− 2

∫ 1

1/2
ψ dx.

Next, using integration by parts, compute

−
∫ 1

0
γψ′ dx = −

∫ 1/2

0
2xψ′(x) dx−

∫ 1

1/2
(2− 2x)ψ′(x) dx

= −ψ(
1

2
) + 2

∫ 1/2

0
ψ dx+ ψ(

1

2
)− 2

∫ 1

1/2
ψ dx

and note that the cancellation of the term ψ(1
2) would not occur

unless the function φ is continuous (as it is here). This proves
that γ is the weak derivative of φ. The H1-norm of φ is

√
13/3.
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For part(b), the given function is square integrable but it does not
have a weak square integrable derivative.

Page 749

Ex. 22.5 Answer:

(1 + b)v` − (1 + a)bvr
1− ab ,

where

a =
Z` − Z
Z` + Z

, b =
Zr − Z
Zr + Z

.

Derivation: A dynamical systems approach to this problem is to
view the wave reflected off the right-hand boundary as a function
of the voltage-front vector v whose components are the incoming
constant voltage values vr and v`; that is, v = (vr, v`). The
reflected voltage-front vector is the product of the matrix

R =

(
−b 1 + b
0 1

)
with the transpose of the incoming vector v. Likewise, the
reflection off the left-hand boundary of a wave traveling left
(given again by the vector whose components are the right and
left voltages at the front) is determined by multiplication of the
incoming vector by the matrix

L =

(
1 0

1 + a −a

)
.

The voltage-front vector evolves by repeated application of R
followed by L. After n right and left reflections, the voltage-front
is (LR)nv. The product matrix LR has two eigenvalues 1 and ab
with corresponding eigenvectors(

1
1

)
,

(
1 + b

(1 + a)b

)
.

Becuase all impedances are positive, it follows that the second
eigenvalue has |ab| < 1. The initial vector v is represented in the
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eigenbasis by(
vr
v`

)
=

(1 + b)v` − (1 + a)bvr
1− ab

(
1
1

)
+
vr − v`
1− ab

(
1 + b

(1 + a)b

)
.

After applying (LR)n, we have the state

(LR)n
(
vr
v`

)
=

(1 + b)v` − (1 + a)bvr
1− ab

(
1
1

)
+ (ab)n

vr − v`
1− ab

(
1 + b

(1 + a)b

)
. (A.26)

In the long run, the factor (ab)n approaches zero and the desired
result follows.

Page 771

Ex. 22.16 Answer: The electrical length is 4.5 nanosecond,
the impedance is 2.88 ohm, the wave speed is 6.667 ×
107 meter / second, and the capacitance is 5.21 × 10−9

farad /meter.
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C1 convergence theorem, 793
H1

inner product, 634
norm, 631

L2

inner product, 214
norm, 214, 596, 600
∇, 294

Courant–Friedrichs–Lewy number, 428
lid-driven cavity flow, 681
Störmer–Verlet method, 608

absolute stability, 186
acceleration

Aitken’s ∆2, 168
Richardson’s, 142

acid dissociation, 39
action at a distance, 100
Adams-Bashforth method, 501
aerodynamic, 682
agent-based model, 278
Airy’s equation, 389
Aitken’s ∆2-method, 168
Ampère, 703
Arzela–Ascoli theorem, 793
asymptotically stable, 187
attenuation, 728

backward Euler method, 190
banded matrix, 174, 183, 421
basis, 602
Belousov–Zhabotinsky reaction, 67
BEM, 450
Bendixson’s theorem, 51
Bessel function, 777
bifurcation

homoclinic loop, 126
Hopf, 71, 124, 569
saddle-loop, 575
saddle-node, 120

Big O, 796
binomial coefficient, 247
Blasius

equation, 533
problem, 531
solution, 530

Blasius, H, 528
body force, 295

conservative, 312

boundary condition, 116
Dirichlet, 116
do-nothing, 689
electromagnetic, 710
essential, 630, 649
natural, 630, 649
Neumann, 116
no penetration, 315
periodic, 116
zero flux, 89

boundary element method, 450
boundary layer, 315, 398, 504

equations, 351
separation, 535

boundary value problem
exterior Neumann, 343
ill-posed, 349
two-point, 26

Boussinesq approximation, 387
Brownian motion, 288

mathematical, 264
Broyden’s method, 696, 808
Brusselator, 82
buckling, 24, 27
buffering, 39
Burgers’s equation, 389, 431, 544

calculus of varaitions, 615
Cauchy sequence, 632
Cauchy’s equation, 299
Cauchy–Riemann equations, 333, 722
cavity resonator, 781
center, 395
central limit theorem, 265
centrifugal force, 363, 374
CFD, 403, 442
CFL condition, 99, 422
change of variables formula for integrals, 662
channel flow, 511

control volume, 512
discharge, 513
prismatic, 513
roll wave, 565

characteristic
curve, 545
length, 313
velocity, 314

chemotaxis, 277
circuit theory, 198
circulation, 335
classical solution of PDE, 550

847
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closed loop, 234
closing a model, 156
compartment model, 32
complete function space, 632
complex potential, 334
computational fluid dynamics, 403, 442
concentration gradient, 277
condition error, 134
conditional stability, 133
conductor, 706
conjugate gradient method, 818
conservation law, 431

with source, 557
constitutive law, 3, 13, 301
continuity equation, 87, 295
control

cruise control, 278
example where integral control is required, 831
fluid level in a tank, 239
gain scheduling, 239
heater/cooler, 234
open loop, 239
PDE, 229
PID, 229
temperature in chamber, 229
tuning, 235

control volume (channel flow), 512
convection, 87
convergence

quadratic, 166
Coriolis force, 363, 374
Courant–Friedrichs–Lewy condition, 99, 133,

139, 163, 422
Crank–Nicolson

numerical stability, 165
cross product, 361
cruise control, 278
cubic spline, 640
cutoff frequency, 779

d’Alembert’s
paradox, 342, 528
solution, 591

DAE, 74, 216, 217, 562
Darcy’s law, 156
data fitting, 567
data structure, 659
deformation, 577
del operator, 294
derivative

weak, 637
determinism, 11
dielectric, 706
diffeomorphism, 662
differential algebraic system, 74, 216, 217, 562
differential equation, 11

continuity, 87
Euler’s

fluid motion, 315

for fluids, see fluid dynamics
Navier–Stokes, 314
reaction-diffusion, 86

diffuser, 685
diffusion, 85, 87, 241, 277, 671

equation, 87, 88
kernel, 192

dilatation scaling, 531
dimensional analysis, 108
Dirac delta function, 263, 784
direct search minimization, 772
Dirichlet

boundary condition, 101, 107, 116, 207, 319,
406, 591, 604, 630, 788

Dirichlet–Newmann map, 697
discharge (channel flow), 513
discretization error, 118
discretize, 117
dispersion

relation, 389, 728
Taylor, 677

displacement gradient, 580
dissociation constant, 42
distortionless transmission, 766
distribution

Gaussian, 263
normal, 263

distributional derivative, 637
divergence, 88

theorem, 794
do-nothing boundary condition, 689
drag, 335, 682

pressure, 335
viscous, 335

Duffing’s equation, 390
Duhamel’s principle, 786
Dulac

function, 52
theorem, 54

dynamic viscosity, 309
dynamical system, 187

stable fixed point, 187

eigenvalues
and bifurcation, 569
and CFL, 99
and CFL condition, 422
and convergence of iteration, 282
and convergence of SOR, 181
and rows of matrix, 795
and stability, 35, 70, 132, 162, 393
and wave speed, 735
of symmetric matrix, 100
singular value decomposition, 802
tridiagonal matrix, 816

Einstein’s summation convention, 318, 584
elasticity, 577
electrical length, 750
electrodynamics, 703
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electromagnetic boundary conditions, 710
energy method, 93, 786
enthalpy, 327
entropy condition, 555
enzyme kinetics, 53
equation

Burgers’s, 431
Cauchy’s, 299
continuity, 87, 295
Duffing’s, 19, 390
Euler’s, 302
Fokker–Planck, 257
full potential, 355
Helmholtz, 718
ideal fluid, 302
KdV, 388
Korteweg–de Vries, 387
Langevin, 288
Lyapunov’s, 814
momentum balance, 297, 516
Navier-Stokes, 311
of state, 156, 479
Poisson, 406
Prandtl–Glauert, 354
Saint-Venant, 542

equicontinuous, 793
error

propagation, 99
relative, 135

essential boundary condition, 630, 649
Euler’s equations, 302, 303

fluid dynamics, 315
Euler’s method, 117, 129, 501

backward Euler method, 190
explicit improved, 171
implicit improved, 161

Eulerian fluid motion, 475
explicit improved Euler, 171
exponential of matrix, 221
exterior Neumann problem, 343
extrapolation

Richardson, 142

Falkner–Skan solution, 535
Faraday, 703
fast time, 75
FEM, 638
fictitious force, 363
finite volume method, 432
finite-element method, 624
first integral, 48, 62, 393
Fisher model, 105
fitting data, 567
FitzHugh–Nagumo model, 196
flow of an ODE, 224, 786
fluid dynamics

Chorin projection method, 408
Bernoulli’s

equation, 327, 329

Bernoulli’s equation, 327
boundary conditions, 303
boundary layer, 504
circulation, 335
corner flow, 334
drag, 335
enthalpy, 327
equations of motion, 293
Euler’s equations, 315
flow in a pipe, 321
geostrophic flow, 379
incompressible, 311, 383
inviscid, 383
irrotational, 383
irrotational flow, 329
isentropic flow, 327
kinematic viscosity, 314
lift, 335
Navier–Stokes equations, 293, 311, 403
plug flow, 324
potential flow, 329, 383
pressure equation method, 405
Proudman–Taylor theorem, 380
rotation, 357
stream function, 333
viscosity, 311
vorticity, 329, 383
water waves, 384

flux function, 431
Fokker–Planck equation, 257
formula

Lie–Trotter product, 221
variation of parameters, 811

forward difference, 118
Fourier series, 470
L2 minimization property, 603
convergence of, 603

Fourier’s law of heat flow, 230
free-surface flow, 685
Frobenius inner product, 650
front

shock, 563
traveling wave, 700
versus pulse, 113

Froude number, 391
full matrix, 466
full potential equation, 355

gain scheduling, 239
Galërkin method, 646
Gauss, 703
Gauss–Seidel method, 179
Gaussian, 263, 675

distribution, 263
elimination, 174, 466
profile, 681

geometric singular perturbation theory, 74
geostrophic flow, 379
Gerschgorin theorem, 164, 428, 795
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ghost cell, 413
Gibbs phenomenon, 101, 605
globally asymptotically stable, 51
gradient, 88

coordinate change, 371
in cylindrical coordinates, 355
in polar coordinates, 345
operator, 294

Gram–Schmidt orthogonalization, 795
gravitational potential, 675
Green’s

first identity, 497
second identity, 451
theorem, 51, 794

grid
ghost cell, 413
staggered, 413

Grobman–Hartman theorem, 795

Hölder function, 458
Hagen–Poiseuille law, 326
harmonic function, 333

mean value property, 455
harmonic oscillator, 4
heat equation, 87, 88, 782

with source, 786
heat kernel, 192, 784
Heaviside

condition, 766
step function, 787

Helmholtz
decomposition, 407, 587, 712
equation, 718

heteroclinic
orbit, 210

Hilbert matrix, 647
Hodge decomposition, 407, 587
homoclinic

loop, 396, 573
loop bifurcation, 126
orbit, 210

Hooke’s law, 4, 577, 586
Hopf bifurcation, 71, 124, 205, 569

stability index, 126
Hopf–Cole transformation, 444
hydraulic

diameter, 570
jump, 539
radius, 558, 564

IBVP, 735
ideal fluid, 302, 303
ideal gas law, 157
ill-conditioned, 134, 647
ill-posed

BVP, 349
model, 626

impedance, 728
improved Euler method, 161

incompressible, 311, 383
inertial coordinates, 357
infinite dimensional, 602
infinitesimal rotation, 581
inner product

properties, 601
inverse problem, 732, 771
inviscid, 383
irrotational, 328, 383
isentropic, 327
isotropic material, 706

Jacobi method, 191
Jacobian, 662
Jordan curve theorem, 51

KdV
equation, 387, 388

Kelvin’s
circulation theorem, 349
transmission line model, 781

Kirchhoff’s rules, 198
Kolmogorov–Petrovskii–Piscounov model, 105
Korteweg–de Vries equation, 387
Kutta–Zhukovsky theorem, 338

Lagrange–Green tensor, 578
Lagrangian

coordinates, 476
flow map, 476
form of Euler’s equations, 478
marker, 476
SPH formulation, 477

Lamé constants, 590
Langevin equation, 288
Laplacian, 311

coordinate change, 371
in cylindrical coordinates, 355
in polar coordinates, 343
vector, 707

law
Ampère’s, 704
Bernoulli’s, 330, 384
constitutive, 3
constitutive stress, 301
Coulomb’s, 197
Darcy’s, 86
electrodynamic laws, 703
Faraday’s, 200
Fick’s, 86, 277
Fourier’s, 86, 231
fundamental, 3
Gauss’s, 704
Hooke’s, 13, 309, 577
hyperbolic conservation, 558
ideal gas, 157
Kepler, 2
Kirchhoff’s laws, 198
Lorentz force, 198
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Maxwell’s, 711
Newton, 2
Newton cooling, 229, 231
Newton’s second, 293
nonlinear conservation, 431
of large numbers, 249
of mass action, 115
Ohm’s, 705
scalar conservation, 434
system of conservation laws, 542

leap frog method, 283, 674
least squares, 772, 798

normal equation, 800
length scale, 377
Lennard–Jones force, 504
lid-driven cavity flow, 418
lift, 335
limit cycle, 205
linear material, 705
linearization, 352, 813
Liouville’s theorem, 797
Lipschitz function, 458
little o, 796
local truncation error, 162
localization, 482, 639

functions, 497
of basis, 639

localizing sequence of functions, 483
Lorentz force law, 198
LU decomposition, 175
Lyapunov

equation, 814
function, 814
stability theorem, 814

Mach number, 354
mass action, 40, 115
master equation, 250
material derivative, 477, 582
matrix exponential, 221
Maxwell, 703
Maxwell-Lorentz theory, 716
mean value property, 455
mesh-free method, 624
method of lines, 191
Michaelis–Menton kinetics, 53
midpoint method, 283, 674
minimization

direct search, 772
via pattern search, 472

Minkowski’s inequality, 600
mode

fundamental, 609
model

acid dissociation, 39
amplifier, 616
Belousov–Zhabotinsky, 67
boundary layer flow, 527
Boussinesq, 387

buckling, 24
Chézy, 558
chemotaxis, 277
closed loop, 30
compression of block, 620
constitutive, 3
convection, 85
cruise control, 278
dam break, 506
diffusion, 85
drag, 335
draining sink, 375
excitable media, 195
Fisher’s, 105
FitzHugh–Nagumo, 195, 196
flow over plate, 448
fluid motion, 293
for time domain reflectometry, 731
free surface flow, 685
fundamental, 3
Gray–Scott, 113
growth, 15
heat flow, 88
heated chamber, 229
Heaviside’s, 766
Hookean, 5
hurricane rotation, 375
ill-posed, 626
inverse problem, 771
Kelvin’s transmission line, 781
Kirchhoff’s circuit, 198
Kolmogorov–Petrovskii–Piscounov, 105
Korteweg–de Vries, 387
Langevin’s, 289
lid-driven cavity flow, 418
lift, 335
linear elasticity, 577
logistic growth, 15
longitudinal waves, 611
Manning, 558
mass action, 39
molecular dynamics, 287
mutant gene, 104
Oregonator, 67
oscillating reaction, 67
Pearson’s, 273, 283
pollutant, 31
porous medium, 155
Prandtl–Glauert, 354
reaction, 85
resonance horn, 620
river flow, 331, 558, 564
rope tied to tree, 607
Saint-Venant, 526
ship steering, 30
spring, 12
surface waves, 565
taut wire, 589
Taylor dispersion, 677
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thermoelastic damping, 673
Tiger fountain, 397
titration, 54
transmission line, 731
truck with tailgate, 411
unicycle, 282
vibrating wire sensor, 609
Volterra-Lotka, 54
water waves, 383

molecular dynamics, 287, 288
momentum balance equation, 297, 516
Monte Carlo integration, 192
Morse lemma, 802
moving coordinates, 357
multiple timescales, 567
multistep method, 284

nabla, 294
natural boundary condition, 630, 649
Navier–Stokes equations, 311, 314, 403
Neumann

boundary condition, 89, 101, 116, 138, 236,
347, 410, 617, 626, 651, 723

Laplacian, 780
Neumann–Richmeyer artificial viscosity, 493
Newton’s

equation, 285
law of cooling, 230
method, 165, 184, 186, 696, 772, 802
second law of motion, 297

Newton–Kantorovich theorem, 806
Newtonian fluid, 490
no-penetration boundary condition, 315
no-slip boundary condition, 303
norm, 214, 596
H1, 631
L2, 596
supremum, 596

normal
distribution, 263
equation for least squares, 800

normally hyperbolic, 76
numerical

linear algebra, 174
method, 117

numerical analysis
discretization error, 118
truncation error, 118

numerical gems of wisdom, 823
numerical instability, 284, 428
numerical method

Adam’s–Bashforth, 503
Aiken’s ∆2, 169
alternate direction, 761
backward Euler method, 190
BEM, 465
BLAS, 186
boundary element, 624
Broyden’s, 696, 808

central difference, 429
Chorin’s, 409
conjugate gradient, 819
Crank–Nicolson, 161
efficient, 136
Euler’s method, 118
far field, 683
finite difference, 94
finite element, 624
finite volume, 432
for Burgers’s equation, 431
for computational fluid dynamics, 403
for DAEs, 217
for linear elasticity, 647
for system of linear equations, 171
for transmission lines, 749
for traveling waves, 211
for water waves, 446
forward Euler, 129
Galërkin’s, 646
Gauss–Seidel method, 179
Gaussian elimination, 174
iterative for linear equations, 175
Jacobi’s, 191
LAPACK, 186
leap frog, 283
least squares, 798
LU decomposition, 175
mesh-free, 624
method of lines, 191
midpoint, 283
Monaghan’s, 502
Monte Carlo integration, 192
multigrid, 421
multistep, 284
near field, 683
Newton one variable at a time, 185
Newton’s, 165, 802
of lines, 235
order of convergence, 167
pattern search, 472
predictor-corrector, 503
projection method, 408
quadratically convergent, 167
quasi-Newton, 808
Rayleigh’s, 781
Richardson extrapolation, 142
singular value decompositon, 798
smoothed particle hydrodynamics, 475
SOR, 179
spectral, 608
splitting, 221, 760
Störmer–Verlet method, 286
stability of ODE solvers, 283
steepest descent, 772
Steffensen’s method, 169
successive relaxation, 175
trapezoidal, 161
unconditionally stable, 165
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upwind, 431

Ohm’s law, 705
open loop, 234, 239
order notation, 796
order of convergence, 166
Oregonator, 66
orientation, 376
orthogonal

Gram–Schmidt orthogonalization, 795
in function space, 601
matrix, 581
polynomial, 606, 607
transformation, 359, 363, 819
unit basis, 309

orthonormal
set, 599

panel flutter, 672
parameter estimation, 33
partial differential equation, 18

reaction-diffusion, 85
partial differential

equations
fluids, see fluid dynamics

path line, 328
pattern search, 472
periodic boundary condition, 116, 698
perturbation theory, 73

geometric singular, 74
phenomenological model, 3
PID control, 37, 229
plane wave, 721
plug flow, 324, 333
Poincaré map, 128, 188
Poincaré–Bendixson theorem, 816
pointwise convergence, 604
Poiseuille flow, 325, 326
Poisson equation, 406
polarization identity, 581
population model, 54
porosity, 155
porous medium, 155

equation, 157
positive spanning set, 472
positively oriented, 376
potential

electric, 722
flow, 383
gravitational, 675
vector, 706

power law, 156
Prandtl, L, 315, 528
Prandtl–Glauert equation, 354
preconditioner, 179
pressure, 302, 582

drag, 335
equation method, 405
Poisson equation, 406

principle of mass action, 40
prismatic channel, 513
projection method, 408
Projects

1-d Finite Element Coding, 645
Channel Flow Traveling Wave, 700
Aerodynamic Drag, 682
Agent-Based Modeling, 278
Alternative Galëkin method, 646
Approximation and Orthogonal Polynomials,

606
Automatic Control of Steering a Ship, 29
Barbell-Shaped Rod, 671
Beam Theory, 673
Body versus Traction Force, 671
Boundary Element Code I, 474
Boundary Element Code II, 475
Cavity Resonators, 781
Channel Flow Modeling, 574
Chemotaxis, 277
Clamped Plate, 672
Concentration Gradient, 277
Convection-Diffusion, 674
Cruise Control, 278
Dam Break with SPH, 508
Discrete Dynamical Systems, 187
Elastic Plate with Elliptical Hole, 670
Exasticity vesus Rod Equation, 671
Falling Fluid Films, 538
FEM 3-d Coding, 670
Fireplace Heating and Cooling, 193
Fluid Motion in Cylinder, 684
Free-Surface Flows, 685
Gravitational Potential, 675
Heat Fluctuations in a Bar, 238
Heat Kernel, 782
Heaviside Transmission Line, 766
Intermittent Fountain, 671
Iteration and Eigenvalues, 282
Lid Driven Cavity Flow, 446
Linearly Tapered Rod, 671
Lord Kelvin’s Transmission Line Model, 781
Low Reynolds Number Flow, 684
Method of Lines, 191
Mississippi River Flow Rate, 564
Modeling and Control, 239
Molecular Dynamics, 287
Newton’s Method for an ODE Model, 170
Newton’s Method in Mountain Terrain, 169
Nonlinear Eigenvalue Problem via DAEs., 218
Numerical Integration of Newton’s Equation,

285
Numerical Pulse Type Traveling Waves, 219
ODE Nonlinear BVPs, 188
Oscillations Carried by Diffusion, 104
Panel Flutter, 672
Pattern Formation, 291
Pearson’s Random Walk, 283
Rayleigh Method, 780
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Resonance Horn Amplification, 620
Splines and FEM, 640
Stability of Numerical ODE Solvers, 219
Stability of ODE Solvers, 283
Still Water with SPH, 508
Taylor Dispersion, 677
TDR Inverse Problem, 771
TE Modes in Waveguides, 776
Thermoelastic Damping, 673
Unicycle Control, 282
Upwinding, 445
Vibrating Wire Sensors, 609
Wave Modeling and Numerics, 607

propagator, 786
Proudman–Taylor theorem, 380
pseudo inverse of a matrix, 800
pulse

traveling wave, 209, 575
versus front, 113

punctured plane, 343

quadratic convergence, 166
quasi-Newton method, 696, 808

Broyden’s method, 696

random walk, 241
master equation, 250

Rankine–Hugoniot jump condition, 552, 745
Rayleigh method, 780
reflection coefficient, 748
regression

linear, 606
regular perturbation, 74
relative error, 135
rescaling

in Navier–Stokes
equations, 314

resonance
horn, 619
lenght, 671
response, 610
ultrasonic, 619

rest point
center, 395
hyperbolic saddle, 69

Reynolds number, 314, 377
low limit, 316

Richardson extrapolation, 142
Riemann problem, 742, 751
roll wave, 565
root mean square, 160, 600
Rossby number, 378
rotation

in three dimensions, 364
Routh–Hurwitz criterion, 815

saddle
loop, 573
point, 69, 111, 120, 210, 393, 572

saddle-node bifurcation, 120
Saint-Venant equations, 526
scalar field

coordinate change, 368
scale

length, 377
velocity, 377

Schwarz inequality, 600, 631
semiflow, 225
sensor

vibrating wire, 609
separation of variables, 89
shape function, 643
shear

flow, 677
modulus, 588, 590
strain, 306
strain rate, 306
strain rate tensor, 308
stress, 525

Sherman–Morrison formula, 809
shock

front, 563
speed, 555
traveling wave, 700
wave, 355, 493, 549, 552, 555

shooting method, 26, 188, 535
similar matrices, 365
similarity solution, 531, 784
simply connected, 329
singular perturbation, 73, 74, 380, 823
singular value decomposition, 798, 801
skew-symmetric matrix, 360, 581
slow

manifold, 77
relaxation oscillation, 572
time, 75, 151
timescale, 205

smoothed particle hydrodynamics, 475
SOR, 179
sound speed, 494
sparse matrix, 174, 646, 669
spectral

method, 608
radius, 283
theorem, 818

SPH, 475
splines, 640

and FEM, 640
and interpolation, 640

spring equation, 4
square brackets [ ], 47
square integrable, 214
Störmer–Verlet method, 286
stability, 813

absolute, 186
index, 125, 126
numerical, 428

stable
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fixed point, 187
manifold, 69

staggered grid, 413
standard map, 187
steepest descent, 820
Steffensen’s method, 169
stiff ODE, 186
stochastic differential equation, 289
Stokes

flow, 684
theorem, 338, 341

strain, 305, 577
rate tensor, 308
volumetric strain rate, 310

stream
function, 333
line, 328, 333

stress, 582
field, 612
shear, 564, 573
strain relation, 610
tensor, 296, 490, 515
vector, 296

subcritical flow, 540
successive

overrelaxation, 179
relaxation, 175

supercritical flow, 540
superlinear convergence, 188
support of a function, 550
supremum norm, 596

Taylor
and Proudman theorem, 379
dispersion, 677
expansion and linearization, 353
formula, 796
multivariate series, 271
series, 118
series in h2, 142
theorem, 95

TDR, 731
TE mode, 776
telegrapher’s wave equation, 766
temperature control, 229
tensor field, 580
test function, 550, 637
theorem
C1 convergence, 793
Arzela–Ascoli, 793
Bendixson’s, 51
Boundary integral, 458
central limit, 265
divergence, 794
Dulac’s, 54
Gerschgorin, 164, 428, 795
Gerschgorin’s, 133
Green’s, 51, 794
Grobman–Hartman, 394, 795

Helmholtz-Hodge, 407
Hopf bifurcation, 211
Implicit Function, 64, 73
Kelvin’s circulation, 349
Kutta–Zhukovsky, 338
Law of large numbers, 249
Lie–Trotter product, 221
linearized stability, 813
Liouville’s, 797
Lyapunov

stability, 814
Newton–Kantorovich, 806
Poincaré–Bendixson, 51, 127, 816
Proudman–Taylor, 379, 380
Routh–Hurwitz, 815
spectral, 818
Stokes, 338, 341
Taylor’s, 95
Transport, 295, 797

topology
nontrivial, 347

traction, 582
transmission coefficient, 748
transmission line, 731

equations
ideal, 728

Kelvin’s model, 781
Transport theorem, 797
trapezoidal method, 161
traveling wave, 109, 208, 429, 568, 700

front, 113, 700
periodic, 573
pulse, 209, 573, 575, 700

tridiagonal matrix, 816
Trotter product formula, 221, 760
truncation error, 118
Turing’s principle, 114

ultrasonic resonance, 619
unconditionally stable, 163
uniform convergence, 604
uniformly bounded, 793
uniqueness

and lift, 346
and Neumann boundary data, 462
heat equation, 786
Helmholtz decompotion, 587
via energy method, 93, 786

unstable method, 284
upwind numerical scheme, 431

variation of parameters, 786, 811
variational equation, 812
vector field

coordinate change, 368
vector Laplacian, 707
velocity profile, 334
vibrating wire sensor, 609
viscosity, 311
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dynamic, 308
viscous

drag, 335
Volterra-Lotka model, 54
volumetric strain rate, 310
vorticity, 328, 383, 504

water wave equations, 384
water waves, 685
wave equation, 588, 589

one-way, 428
wave number, 728
waveguide

cutoff frequency, 779
weak solution, 551, 634
well posed, 715
Wendland localization, 498

zero flux boundary condition, 89
Zhukovsky, 338




