Hands-On

System
Programming
with Linux

Hands-On System
Programming with Linux

Explore Linux system programming interfaces, theory,
and practice

Kaiwan N Billimoria

BIRMINGHAM - MUMBAI

Hands-On System Programming with
Linux

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Gebin George

Acquisition Editor: Rohit Rajkumar

Content Development Editor: Priyanka Deshpande
Technical Editor: Rutuja Patade

Copy Editor: Safis Editing

Project Coordinator: Drashti Panchal

Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Tom Scaria

Production Coordinator: Arvindkumar Gupta

First published: October 2018
Production reference: 1311018

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-847-5

www.packtpub.com

http://www.packtpub.com

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and

videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

¢ Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt .com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Kaiwan N Billimoria taught himself programming on his dad's IBM PC back in 1983.
He was programming in C and Assembly on DOS until he discovered the joys of
Unix (via Richard Steven's iconic book, UNIX Network Programming, and by writing C
code on SCO Unix).

Kaiwan has worked on many aspects of the Linux system programming stack,
including Bash scripting, system programming in C, kernel internals, and embedded
Linux work. He has actively worked on several commercial/OSS projects. His
contributions include drivers to the mainline Linux OS, and many smaller projects
hosted on GitHub. His Linux passion feeds well into his passion for teaching these
topics to engineers, which he has done for over two decades now. It doesn't hurt that
he is a recreational ultra-marathoner too.

Writing a book is a lot of hard work, tightly coupled with teamwork. My deep
gratitude to the team at Packt: Rohit, Priyanka, and Rutuja, as well as the technical
reviewer, Tigran, and so many other behind-the-scenes workers. Of course, none of
this would have been remotely possible without support from my family: my
parents, Diana and Nadir; my brother, Darius; my wife, Dilshad; and my super
kids, Sheroy and Danesh! Heartfelt thanks to you all.

About the reviewer

Tigran Aivazian has a master's degree in computer science and a master's degree in
theoretical physics. He has written BFS and Intel microcode update drivers that have
become part of the official Linux kernel. He is the author of a book titled Linux 2.4
Kernel Internals, which is available in several languages on the Linux documentation
project. He worked at Veritas as a Linux kernel architect, improving the kernel and
teaching OS internals. Besides technological pursuits, Tigran has produced scholarly
Bible editions in Hebrew, Greek, Syriac, Slavonic, and ancient Armenian. Recently, he
published The British Study Edition of the Urantia Papers. He is currently working on
the foundations of quantum mechanics in a branch of physics called quantum
infodynamics.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: Linux System Architecture 9
Technical requirements 9
Linux and the Unix operating system 10
The Unix philosophy in a nutshell 11
Everything is a process — if it's not a process, it's a file 12
One tool to do one task 15
Three standard I/O channels 17
Word count 18

cat 19
Combine tools seamlessly 21
Plain text preferred 23
CLI, not GUI 24
Modular, designed to be repurposed by others 24
Provide mechanisms, not policies 25
Pseudocode 25

Linux system architecture 27
Preliminaries 27
The ABI 27
Accessing a register's content via inline assembly 31
Accessing a control register's content via inline assembly 33

CPU privilege levels 34
Privilege levels or rings on the x86 35

Linux architecture 38
Libraries 39

System calls 40

Linux — a monolithic OS 41

What does that mean? 42
Execution contexts within the kernel 46
Process context 47
Interrupt context 47
Summary 48
Chapter 2: Virtual Memory 49
Technical requirements 49
Virtual memory 50
No VM — the problem 51
Objective 52

Virtual memory 54
Addressing 1 — the simplistic flawed approach 58

Addressing 2 — paging in brief 61

Table of Contents

Paging tables — simplified 63

Indirection 65
Address-translation 65

Benefits of using VM 66
Process-isolation 66

The programmer need not worry about physical memory 67
Memory-region protection 68
SIDEBAR :: Testing the memcpy() C program 69
Process memory layout 73
Segments or mappings 74
Text segment 76

Data segments 76

Library segments 77

Stack segment 78

What is stack memory? 78

Why a process stack? 78

Peeking at the stack 81

Advanced — the VM split 84
Summary 89
Chapter 3: Resource Limits 90
Resource limits 20
Granularity of resource limits 92
Resource types 93
Available resource limits 93

Hard and soft limits 95
Querying and changing resource limit values 98
Caveats 100

A quick note on the prlimit utility 101

Using prlimit(1) — examples 101

APl interfaces 104
Code examples 106
Permanence 111
Summary 112
Chapter 4: Dynamic Memory Allocation 113
The glibc malloc(3) API family 114
The malloc(3) API 114
malloc(3) — some FAQs 117
malloc(3) — a quick summary 122

The free API 122
free — a quick summary 124

The calloc API 124
The realloc API 125
The realloc(3) — corner cases 126

The reallocarray API 127
Beyond the basics 128
The program break 128
Using the sbrk() API 128

[ii]

Table of Contents

How malloc(3) really behaves

Code example — malloc(3) and the program break
Scenario 1 — default options
Scenario 2 — showing malloc statistics
Scenario 3 — large allocations option

Where does freed memory go?

Advanced features

Demand-paging
Resident or not?

Locking memory
Limits and privileges
Locking all pages

Memory protection
Memory protection — a code example

An Aside — LSM logs, Ftrace
LSM logs
Ftrace
An experiment — running the memprot program on an ARM-32
Memory protection keys — a brief note

Using alloca to allocate automatic memory

Summary

Chapter 5: Linux Memory Issues
Common memory issues

Incorrect memory accesses
Accessing and/or using uninitialized variables
Test case 1: Uninitialized memory access
Out-of-bounds memory accesses
Test case 2
Test case 3
Test case 4
Test case 5
Test case 6
Testcase 7
Use-after-free/Use-after-return bugs
Test case 8
Test case 9
Test case 10
Leakage
Test case 11
Test case 12
Test case 13
Test case 13.1
Test case 13.2
Test case 13.3
Undefined behavior
Fragmentation
Miscellaneous

Summary

Chapter 6: Debugging Tools for Memory Issues
Tool types

132
133
133
134
135
136
136
137
139
140
141
145
146
147
155
155
156
156
159
159

163

164
165
167
168
168
170
170
171
172
173
174
175
176
177
178
179
182
182
184
187
188
189
191
192
193
194

195

196
197

[iii]

Table of Contents

Valgrind
Using Valgrind's Memcheck tool
Valgrind summary table
Valgrind pros and cons : a quick summary
Sanitizer tools
Sanitizer toolset
Building programs for use with ASan
Running the test cases with ASan
AddressSanitizer (ASan) summary table
AddressSanitizer pros and cons — a quick summary
Glibc mallopt
Malloc options via the environment
Some key points
Code coverage while testing
What is the modern C/C++ developer to do?
A mention of the malloc API helpers

Summary

Chapter 7: Process Credentials
The traditional Unix permissions model
Permissions at the user level
How the Unix permission model works
Determining the access category
Real and effective IDs
A puzzle — how can a regular user change their password?
The setuid and setgid special permission bits
Setting the setuid and setgid bits with chmod
Hacking attempt 1
System calls
Querying the process credentials
Code example
Sudo — how it works
What is a saved-set ID?
Setting the process credentials
Hacking attempt 2
An aside — a script to identify setuid-root and setgid installed programs
setgid example — wall
Giving up privileges
Saved-set UID — a quick demo
The setres[u|glid(2) system calls
Important security notes

Summary

Chapter 8: Process Capabilities
The modern POSIX capabilities model
Motivation
POSIX capabilities
Capabilities — some gory details
OS support

198
198
210
210
211
212
213
214
227
228
230
232

233
233
234
234
236

237
238
239
239
242
244
247
249
250
251
254
254
255
256
257
257
258
262
264
267
268
271
273

274

275
276
276
277
280
280

[iv]

Table of Contents

Viewing process capabilities via procfs
Thread capability sets
File capability sets

Embedding capabilities into a program binary

Capability-dumb binaries
Getcap and similar utilities
Wireshark — a case in point
Setting capabilities programmatically
Miscellaneous
How Is displays different binaries
Permission models layering
Security tips

FYI — under the hood, at the level of the Kernel

Summary

Chapter 9: Process Execution
Technical requirements
Process execution
Converting a program to a process
The exec Unix axiom
Key points during an exec operation
Testing the exec axiom
Experiment 1 — on the CLI, no frills
Experiment 2 — on the CLI, again
The point of no return
Family time — the exec family APls
The wrong way
Error handling and the exec
Passing a zero as an argument
Specifying the name of the successor
The remaining exec family APIs
The execlp API
The execle API
The execv API
Exec at the OS level
Summary table — exec family of APIs
Code example

Summary

Chapter 10: Process Creation
Process creation
How fork works
Using the fork system call
Fork rule #1
Fork rule #2 — the return
Fork rule #3
Atomic execution?
Fork rule #4 — data
Fork rule #5 — racing
The process and open files

280
282
283
284
288
288
289
290
296
296
297
298
298

299

300
300
301
301
302
303
304
305
305
306
307
310
310
310
311
314
314
316
316
317
318
319

322

323
324
324
327
328
329
335
337
337
338
339

[v]

Table of Contents

Fork rule #6 — open files
Open files and security
Malloc and the fork
COW in a nutshell
Waiting and our simpsh project
The Unix fork-exec semantic
The need to wait
Performing the wait
Defeating the race after fork
Putting it together — our simpsh project
The wait API — details
The scenarios of wait
Wait scenario #1
Wait scenario #2
Fork bombs and creating more than one child
Wait scenario #3
Variations on the wait — APlIs
The waitpid(2)
The waitid (2)
The actual system call
A note on the vfork
More Unix weirdness
Orphans
Zombies
Fork rule #7
The rules of fork — a summary

Summary

Chapter 11: Signaling - Part |
Why signals?
The signal mechanism in brief
Available signals
The standard or Unix signals
Handling signals
Using the sigaction system call to trap signals
Sidebar — the feature test macros
The sigaction structure
Masking signals
Signal masking with the sigprocmask API
Querying the signal mask
Sidebar — signal handling within the OS — polling not interrupts
Reentrant safety and signalling
Reentrant functions
Async-signal-safe functions
Alternate ways to be safe within a signal handler
Signal-safe atomic integers
Powerful sigaction flags
Zombies not invited
No zombies! — the classic way
No zombies! — the modern way
The SA_NOCLDSTOP flag

341
343
344
346
347
348
349
350
350
351
355
358
359
359
360
362
362
362
365
366
368
368
368
369
370
371

371

372
373
373
376
377
380
381
382
382
387
387
388
391
391
391
393
393
394
397
398
399
400
402

[vil

Table of Contents

Interrupted system calls and how to fix them with the SA_RESTART 402

The once only SA_RESETHAND flag 404

To defer or not? Working with SA_NODEFER 405

Signal behavior when masked 405

Case 1 : Default : SA_NODEFER bit cleared 406

Case 2 : SA_NODEFER bit set 407

Running of case 1 — SA_NODEFER bit cleared [default] 411

Running of case 2 — SA_NODEFER bit set 412

Using an alternate signal stack 415
Implementation to handle high-volume signals with an alternate signal stack 416

Case 1 — very small (100 KB) alternate signal stack 418

Case 2 : A large (16 MB) alternate signal stack 419

Different approaches to handling signals at high volume 420
Summary 420
Chapter 12: Signaling - Part Il 421
Gracefully handling process crashes 422
Detailing information with the SA_SIGINFO 422
The siginfo_t structure 423

Getting system-level details when a process crashes 427
Trapping and extracting information from a crash 428

Register dumping 433

Finding the crash location in source code 437
Signaling — caveats and gotchas 439
Handling errno gracefully 439
What does errno do? 439

The errno race 440

Fixing the errno race 441
Sleeping correctly 442
The nanosleep system call 443
Real-time signals 446
Differences from standard signals 447
Real time signals and priority 448
Sending signals 452
Just kill 'em 452
Killing yourself with a raise 453

Agent 00 — permission to Kill 453

Are you there? 454
Signaling as IPC 455
Crude IPC 455

Better IPC — sending a data item 456

Sidebar — LTTng 461
Alternative signal-handling techniques 463
Synchronously waiting for signals 463
Pause, please 464

Waiting forever or until a signal arrives 464
Synchronously blocking for signals via the sigwait* APIs 465

The sigwait library API 465

The sigwaitinfo and the sigtimedwait system calls 470

The signalfd(2) API 471

[vii]

Table of Contents

Summary

Chapter 13: Timers
Older interfaces
The good ol' alarm clock
Alarm API — the downer
Interval timers
A simple CLI digital clock
Obtaining the current time
Trial runs
A word on using the profiling timers
The newer POSIX (interval) timers mechanism
Typical application workflow
Creating and using a POSIX (interval) timer
The arms race — arming and disarming a POSIX timer
Querying the timer
Example code snippet showing the workflow
Figuring the overrun
POSIX interval timers — example programs
The reaction — time game
How fast is fast?
Our react game — how it works
React — trial runs
The react game — code view
The run:walk interval timer application
A few trial runs
The low — level design and code
Timer lookup via proc
A quick mention
Timers via file descriptors
A quick note on watchdog timers

Summary

Chapter 14: Multithreading with Pthreads Part | - Essentials
Multithreading concepts
What exactly is a thread?
Resource sharing
Multiprocess versus multithreaded
Example 1 — creation/destruction — process/thread
The multithreading model
Example 2 — matrix multiplication — process/thread
Example 3 — kernel build
On a VM with 1 GB RAM, two CPU cores and parallelized make -j4
On a VM with 1 GB RAM, one CPU core and sequential make -j1
Motivation — why threads?
Design motivation
Taking advantage of potential parallelism
Logical separation
Overlapping CPU with I/O
Manager-worker model
IPC becoming simple(r)

474

475
476
476
479
479
483
485
487
488
490
491
491
494
496
496
499
500
500
500
501
503
505
509
510
512
516

517
517
519
520

521
522
522
523
527
528
529
531
536
536
538
539
539
539
540
540
541
541

[viii]

Table of Contents

Performance motivation
Creation and destruction

Automatically taking advantage of modern hardware

Resource sharing
Context switching
A brief history of threading
POSIX threads
Pthreads and Linux

Thread management — the essential pthread APls

Thread creation
Termination
The return of the ghost
So many ways to die

How many threads is too many?

How many threads can you create?
Code example — creating any number of threads
How many threads should one create?

Thread attributes

Code example — querying the default thread attributes

Joining

The thread model join and the process model wait

Checking for life, timing out
Join or not?
Parameter passing

Passing a structure as a parameter

Thread parameters — what not to do

Thread stacks
Get and set thread stack size
Stack location
Stack guards

Summary

Chapter 15: Multithreading with Pthreads Part Il - Synchronization

The racing problem
Concurrency and atomicity

The pedagogical bank account example

Critical sections
Locking concepts
Is it atomic?
Dirty reads
Locking guidelines
Locking granularity
Deadlock and its avoidance

Common deadlock types
Self deadlock (relock)
The ABBA deadlock

Avoiding deadlock

Using the pthread APIs for synchronization

The mutex lock

[ix]

541
541
541
542
542
543
543
544
545
546
549
551
554
554
556
558
560
562
563
566
571
572
573
574
575
577
579
579
580
582

586

587
588
589
589
592
593
595
599
600
602
603
604
604
604
605
606
607

Table of Contents

Seeing the race

Mutex attributes
Mutex types
The robust mutex attribute
IPC, threads, and the process-shared mutex

Priority inversion, watchdogs, and Mars
Priority inversion
Watchdog timer in brief
The Mars Pathfinder mission in brief
Priority inheritance — avoiding priority inversion
Summary of mutex attribute usage

Mutex locking — additional variants
Timing out on a mutex lock attempt
Busy-waiting (non-blocking variant) for the lock
The reader-writer mutex lock
The spinlock variant

A few more mutex usage guidelines
Is the mutex locked?

Condition variables

No CV - the naive approach

Using the condition variable

A simple CV usage demo application

CV broadcast wakeup

Summary

Chapter 16: Multithreading with Pthreads Part Il
Thread safety
Making code thread-safe
Reentrant-safe versus thread-safe
Summary table — approaches to making functions thread-safe
Thread safety via mutex locks
Thread safety via function refactoring
The standard C library and thread safety
List of APIs not required to be thread-safe
Refactoring glibc APIs from foo to foo_r
Some glibc foo and foo_r APIs
Thread safety via TLS
Thread safety via TSD
Thread cancelation and cleanup
Canceling a thread
The thread cancelation framework
The cancelability state
The cancelability type
Canceling a thread — a code example
Cleaning up at thread exit
Thread cleanup — code example
Threads and signaling
The issue
The POSIX solution to handling signals on MT
Code example — handling signals in an MT app

Threads vs processes — look again

610
613
613
615
617
623
623
625
627
628
630
631
631
632
632
634
636
637
638
639
639
641
645

647

648
648
651
651
653
653
656
658
658
659
661
662
664
665
665
666
666
667
670

672
673
675
676
676
677
679

[x]

Table of Contents

The multiprocess vs the multithreading model — pros of the MT model 680
The multiprocess vs the multithreading model — cons of the MT model 681

Pthreads — a few random tips and FAQs

Pthreads — some FAQs

Debugging multithreaded (pthreads) applications with GDB
Summary

Chapter 17: CPU Scheduling on Linux
The Linux OS and the POSIX scheduling model
The Linux process state machine
The sleep states
What is real time?
Types of real time
Scheduling policies
Peeking at the scheduling policy and priority
The nice value
CPU affinity
Exploiting Linux's soft real-time capabilities
Scheduling policy and priority APIs
Code example — setting a thread scheduling policy and priority
Soft real-time — additional considerations
RTL - Linux as an RTOS

Summary

Chapter 18: Advanced File 1/0
/0 performance recommendations
The kernel page cache
Giving hints to the kernel on file I/O patterns
Via the posix_fadvise(2) API
Via the readahead(2) API
MT app file I1/0 with the pread, pwrite APIs
Scatter — gather 110
Discontiguous data file — traditional approach
Discontiguous data file — the SG — I/O approach
SG - I/O variations
File 1/0 via memory mapping
The Linux I/O code path in brief
Memory mapping a file for I/O
File and anonymous mappings
The mmap advantage
Code example
Memory mapping — additional points
DIO and AIO
Direct I/O (DIO)
Asynchronous I/0O (AIO)
I/O technologies — a quick comparison
Multiplexing or async blocking I/O — a quick note
I/O — miscellaneous

682
682
683
685

686
686
687
688
690
691
692
694
695
696
699
699
701
706
707

708

709
710
711
712
712
713
714
716
716
718
721
721
722
725
728
730
732
732
734
734
735
736
737
738

[xi]

Table of Contents

Linux's inotify framework 738

I/O schedulers 738

Ensuring sufficient disk space 740

Utilities for I/O monitoring, analysis, and bandwidth control 741
Summary 742
Chapter 19: Troubleshooting and Best Practices 743
Troubleshooting tools 744
perf 744
Tracing tools 745

The Linux proc filesystem 745

Best practices 746
The empirical approach 746
Software engineering wisdom in a nutshell 746
Programming 747

A programmer’s checklist — seven rules 747

Better testing 748

Using the Linux kernel's control groups 748
Summary 749
Other Books You May Enjoy 750
Index 753

[xii]

Preface

The Linux OS and its embedded and server applications are critical components of
today's key software infrastructure in a decentralized and networked universe.
Industry demand for proficient Linux developers is ever-increasing. This book aims
to give you two things: a solid theoretical base, and practical, industry-relevant
information—illustrated by code—covering the Linux system programming domain.
This book delves into the art and science of Linux system programming, including
system architecture, virtual memory, process memory and management, signaling,
timers, multithreading, scheduling, and file I/O.

This book attempts to go beyond the use API X to do Y approach; it takes pains

to explain the concepts and theory required to understand the

programming interfaces, the design decisions, and trade-offs made by

experienced developers when using them and the rationale behind them.
Troubleshooting tips and industry best practices round out the book's coverage. By
the end of this book, you will have the conceptual knowledge, as well as the hands-
on experience, needed for working with Linux system programming interfaces.

Who this book is for

Hands-On System Programming with Linux is for Linux professionals: system engineers,
programmers, and testers (QA). It's also for students; anyone, really, who wants to go
beyond using an API set to understand the theoretical underpinnings and concepts
behind the powerful Linux system programming APIs. You should be familiar with
Linux at the user level, including aspects such as logging in, using the shell via the
command-line interface, and using tools such as find, grep, and sort. A working
knowledge of the C programming language is required. No prior experience with
Linux systems programming is assumed.

What this book covers

Chapter 1, Linux System Architecture, covers the key basics: the Unix design
philosophy and the Linux system architecture. Along the way, other important
aspects—CPU privilege levels, the processor ABI, and what system calls really
are—are dealt with.

Preface

Chapter 2, Virtual Memory, dives into clearing up common misconceptions about
what virtual memory really is and why it is key to modern OS design; the layout of
the process virtual address space is covered too.

Chapter 3, Resource Limits, delves into the topic of per-process resource limits and the
APIs governing their usage.

Chapter 4, Dynamic Memory Allocation, initially covers the basics of the

popular malloc family of APIs, then dives into more advanced aspects, such as the
program break, how malloc really behaves, demand paging, memory locking and
protection, and using the alloca function.

Chapter 5, Linux Memory Issues, introduces you to the (unfortunately) prevalent
memory defects that end up in our projects due to a lack of understanding of the
correct design and use of memory APIs. Defects such as undefined behavior (in
general), overflow and underflow bugs, leakage, and others are covered.

Chapter 6, Debugging Tools for Memory Issues, shows how to leverage existing tools,
including the compiler itself, Valgrind, and AddressSanitizer, which is used to detect
the memory issues you will have seen in the previous chapter.

Chapter 7, Process Credentials, is the first of two chapters focused on having you think
about and understand security and privilege from a system perspective. Here, you'll
learn about the traditional security model - a set of process credentials — as well as the
APIs for manipulating them. Importantly, the concepts of setuid-root processes and
their security repercussions are delved into.

Chapter 8, Process Capabilities, introduces you to the modern POSIX capabilities
model and how security can benefit when application developers learn to use and
leverage this model instead of the traditional model (seen in the previous chapter).
What capabilities are, how to embed them, and practical design for security is also
looked into.

Chapter 9, Process Execution, is the first of four chapters dealing with the broad area
of process management (execution, creation, and signaling). In this particular chapter,
you'll learn how the (rather unusual) Unix exec axiom behaves and how to use the
API set (the exec family) to exploit it.

[2]

Preface

Chapter 10, Process Creation, delves into how exactly the fork (2) system call
behaves and should be used; we depict this via our seven rules of fork. The Unix fork-
exec-wait semantic is described (diving into the wait APIs as

well), orphan and zombie processes are also covered.

Chapter 11, Signaling — Part I, deals with the important topic of signals on the Linux
platform: the what, the why, and the how. We cover the powerful sigaction (2)
system call here, along with topics such as reentrant and signal-async safety, sigaction
flags, signal stacks, and others.

Chapter 12, Signaling — Part I, continues our coverage of signaling, what with

it being a large topic. We take you through the correct way to write a signal handler
for the well-known and fatal segfault, working with real-time signals, delivering
signal to processes, performing IPC with signals, and alternate means to handle
signals.

Chapter 13, Timers, teaches you about the important (and signal-related) topic of how
to set up and handle timers in real-world Linux applications. We first cover the
traditional timer APIs and quickly move onto the modern POSIX interval timers and
how to use them to this end. Two interesting, small projects are presented and walked
through.

Chapter 14, Multithreading with Pthreads Part I — Essentials, is the first of a trilogy on
multithreading with the pthreads framework on Linux. Here, we introduce you to
what exactly a thread is, how it differs from a process, and the motivation (in terms of
design and performance) for using threads. The chapter then guides you through the
essentials of writing a pthreads application on Linux ,covering thread creation,
termination, joining, and more.

Chapter 15, Multithreading with Pthreads Part II — Synchronization, is a chapter
dedicated to the really important topic of synchronization and race prevention. You
will first understand the issue at hand, then delve into the key topics of atomicity,
locking, deadlock prevention, and others. Next, the chapter teaches you how to use
pthreads synchronization APIs with respect to the mutex lock and condition
variables.

Chapter 16, Multithreading with Pthreads Part I1l, completes our work on
multithreading; we shed light on the key topics of thread safety, thread cancellation
and cleanup, and handling signals in a multithreaded app. We round off the chapter
with a discussion on the pros and cons of multithreading and address some FAQs.

[31]

Preface

Chapter 17, CPU Scheduling on Linux, introduces you to scheduling-related topics
that the system programmer should be aware of. We cover the Linux process/thread
state machine, the notion of real time and the three (minimal) POSIX CPU scheduling
policies that the Linux OS brings to the table. Exploiting the available APIs, you'll
learn how to write a soft real-time app on Linux. We finish the chapter with a brief
look at the (interesting!) fact that Linux can be patched to work as an RTOS.

Chapter 18, Advanced File I/O, is completely focused on the more advanced ways of
performing IO on Linux in order to gain maximum performance (as IO is often the
bottleneck). You are briefly shown how the Linux IO stack is architected (the page
cache being critical), and the APIs that give advice to the OS on file access patterns.
Writing IO code for performance, as you'll learn, involves the use of technologies
such as SG-I/O, memory mapping, DIO, and AIO.

Chapter 19, Troubleshooting and Best Practices, is a critical summation of the key points
to do with troubleshooting on Linux. You'll be briefed upon the use of powerful tools,
such as perf and tracing tools. Then, very importantly, the chapter attempts to
summarize key points on software engineering in general and programming on
Linux in particular, looking at industry best practices. We feel these are critical
takeaways for any programmer.

appendix 3, File I/O Essentials, introduces you to performing efficient file I/O on the
Linux platform, via both the streaming (stdio library layer) API set as well as the
underlying system calls. Along the way, important information on buffering and its
effects on performance are covered.

For this Chapter refer to: https://www.packtpub.com/sites/default/files/
downloads/File_IO_Essentials.pdf.

Appendix B, Daemon Processes, introduces you, in a succinct fashion, to the world of
the daemon process on Linux. You'll be shown how to write a traditional SysV-style
daemon process. There is also a brief note on what is involved in constructing a
modern, new-style daemon process.

For this Chapter refer to: https://www.packtpub.com/sites/default/files/

downloads/Daemon_Processes.pdf.

[4]

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Preface

To get the most out of this book

As mentioned earlier, this book is targeted at both Linux software professionals—be
they developers, programmers, architects, or QA staff members—as well as serious
students looking to expand their knowledge and skills with the key topics of system
programming on the Linux OS.

We assume that you are familiar with using a Linux system via the command-line
interface, the shell. We also assume that you are familiar with programming in the C
language, know how to use the editor and the compiler, and are familiar with the
basics of the Makefile. We do not assume that you have any prior knowledge of the
topics covered in the book.

To get the most out of this book—and we are very clear on this point—you must not
just read the material, but must also actively work on, try out, and modify the code
examples provided, and try and finish the assignments as well! Why?

Simple: doing is what really teaches you and internalizes a topic; making mistakes
and fixing them being an essential part of the learning process. We always advocate
an empirical approach—don't take anything at face value. Experiment, try it out for
yourself, and see.

To this end, we urge you to clone this book's GitHub repository (see the following
section for instructions), browse through the files, and try them out. Using a Virtual
Machine (VM) for experimentation is (quite obviously) definitely recommended (we
have tested the code on both Ubuntu 18.04 LTS and Fedora 27/28). A listing of
mandatory and optional software packages to install on the system is also provided
within the book's GitHub repository; please read through and install all required
utilities to get the best experience.

Last, but definitely not least, each chapter has a Further reading section, where
additional online links and books (in some cases) are mentioned; we urge you to
browse through these. You will find the Further reading material for each chapter
available on the book's GitHub repository.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

[5]

http://www.packtpub.com
http://www.packtpub.com/support

Preface

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

e WIinRAR/7-Zip for Windows
¢ Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/HandsfonfsystemfProgrammingfwithfLinux.VVeiﬂSOIIave(ﬁher
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https://www.packtpub.com/sites/default/
files/downloads/9781788998475_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Let's check these out via the source code of

our membugs . ¢ program.”

A block of code is set as follows:

include <pthread.h>

int pthread_mutexattr_gettype (const pthread_mutexattr_t *restrict
attr, int *restrict type);

int pthread_mutexattr_settype (pthread_mutexattr_t *attr, int type);

[6]

http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf

Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

include <pthread.h>

int pthread_mutexattr_gettype (const pthread_mutexattr_t *restrict
attr, int *restrict type);

int pthread_mutexattr_settype (pthread_mutexattr_t *attr, int type);

Any command-line input or output is written as follows:
$./membugs 3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select C as the language via the drop-down."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title
in the subject of your message. If you have questions about any aspect of this book,
please email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt .com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

[7]

http://www.packtpub.com/submit-errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt .com.

[81]

http://authors.packtpub.com/
https://www.packtpub.com/

Linux System Architecture

This chapter informs the reader about the system architecture of the Linux ecosystem.
It first conveys the elegant Unix philosophy and design fundamentals, then delves
into the details of the Linux system architecture. The importance of the ABI, CPU
privilege levels, and how modern operating systems (OSes) exploit them, along with
the Linux system architecture's layering, and how Linux is a monolithic architecture,
will be covered. The (simplified) flow of a system call API, as well as kernel-code
execution contexts, are key points.

In this chapter, the reader will be taken through the following topics:

The Unix philosophy in a nutshell

Architecture preliminaries
¢ Linux architecture layers
e Linux—a monolithic OS

e Kernel execution contexts

Along the way, we'll use simple examples to make the key philosophical and
architectural points clear.

Technical requirements

A modern desktop PC or laptop is required; Ubuntu Desktop specifies the following
as recommended system requirements for installation and usage of the distribution:

¢ 2 GHz dual core processor or better

e RAM
¢ Running on a physical host: 2 GB or more system memory

¢ Running as a guest: The host system should have at least 4
GB RAM (the more, the better and smoother the experience)

Linux System Architecture Chapter 1

e 25 GB of free hard drive space
e Either a DVD drive or a USB port for the installer media
e Internet access is definitely helpful

We recommend the reader use one of the following Linux distributions (can be
installed as a guest OS on a Windows or Linux host system, as mentioned):

e Ubuntu 18.04 LTS Desktop (Ubuntu 16.04 LTS Desktop is a good choice too
as it has long term support as well, and pretty much everything should
work)

¢ Ubuntu Desktop download link: https://www.ubuntu.com/
download/desktop

e Fedora 27 (Workstation)

e Download link: https://getfedora.org/en_GB/
workstation/download/

Note that these distributions are, in their default form, OSS and non-proprietary, and
free to use as an end user.

There are instances where the entire code snippet isn't included in

the book . Thus the GitHub URL to refer the codes: https://
github.com/PacktPublishing/Hands-on-System-Programming-—

with-Linux.
Also, for the Further reading section, refer to the preceding GitHub
link.

Linux and the Unix operating system

Moore's law famously states that the number of transistors in an IC will double
(approximately) every two years (with an addendum that the cost would halve at
pretty much the same rate). This law, which remained quite accurate for many years,
is one of the things that clearly underscored what people came to realize, and even
celebrate, about the electronics and the Information Technology (IT) industry; the
sheer speed with which innovation and paradigm shifts in technology occur here is
unparalleled. So much so that we now hardly raise an eyebrow when, every year,
even every few months in some cases, new innovations and technology appear,
challenge, and ultimately discard the old with little ceremony.

[10]

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Linux System Architecture Chapter 1

Against this backdrop of rapid all-consuming change, there lives an engaging
anomaly: an OS whose essential design, philosophy, and architecture have changed
hardly at all in close to five decades. Yes, we are referring to the venerable Unix
operating system.

Organically emerging from a doomed project at AT&T's Bell Labs (Multics) in around
1969, Unix took the world by storm. Well, for a while at least.

But, you say, this is a book about Linux; why all this information about Unix? Simply
because, at heart, Linux is the latest avatar of the venerable Unix OS. Linux is a Unix-
like operating system (among several others). The code, by legal necessity, is unique;
however, the design, philosophy, and architecture of Linux are pretty much identical
to those of Unix.

The Unix philosophy in a nutshell

To understand anyone (or anything), one must strive to first understand their (or its)
underlying philosophy; to begin to understand Linux is to begin to understand the
Unix philosophy. Here, we shall not attempt to delve into every minute detail; rather,
an overall understanding of the essentials of the Unix philosophy is our goal. Also,
when we use the term Unix, we very much also mean Linux!

The way that software (particularly, tools) is designed, built, and maintained on Unix
slowly evolved into what might even be called a pattern that stuck: the Unix design
philosophy. At its heart, here are the pillars of the Unix philosophy, design, and
architecture:

e Everything is a process; if it's not a process, it's a file
¢ One tool to do one task

Three standard I/O channel

Combine tools seamlessly

Plain text preferred
CLI, not GUI
Modular, designed to be repurposed by others

Provide the mechanism, not the policy

Let's examine these pillars a little more closely, shall we?

[11]

Linux System Architecture Chapter 1

Everything is a process - if it's not a process,
it's a file

A process is an instance of a program in execution. A file is an object on the
filesystem; beside regular file with plain text or binary content; it could also be a

directory, a symbolic link, a device-special file, a named pipe, or a (Unix-domain)
socket.

The Unix design philosophy abstracts peripheral devices (such as the keyboard,
monitor, mouse, a sensor, and touchscreen) as files — what it calls device files. By
doing this, Unix allows the application programmer to conveniently ignore the details
and just treat (peripheral) devices as though they are ordinary disk files.

The kernel provides a layer to handle this very abstraction —it's called the Virtual
Filesystem Switch (VES). So, with this in place, the application developer can open a
device file and perform I/O (reads and writes) upon it, all using the usual API
interfaces provided (relax, these APIs will be covered in a subsequent chapter).

In fact, every process inherits three files on creation:

e Standard input (stdin: fd 0): The keyboard device, by default

¢ Standard output (stdout: fd 1): The monitor (or terminal) device, by
default

¢ Standard error (stderr: fd 2): The monitor (or terminal) device, by default

fd is the common abbreviation, especially in code, for file
descriptor; it's an integer value that refers to the open file in
question.

0 Also, note that we mention it's a certain device by default — this
implies the defaults can be changed. Indeed, this is a key part of the
design: changing standard input, output, or error channels is called

redirection, and by using the familiar <, > and 2> shell operators,
these file channels are redirected to other files or devices.

On Unix, there exists a class of programs called filters.

modifies the input, and writes the filtered result to its standard
output.

0 A filter is a program that reads from its standard input, possibly

[12]

Linux System Architecture Chapter 1

Filters on Unix are very common utilities, such as cat, wc, sort, grep, perl, head,
and tail.

Filters allow Unix to easily sidestep design and code complexity. How?

Let's take the sort filter as a quick example. Okay, we'll need some data to sort. Let's
say we run the following commands:

$ cat fruit.txt
orange
banana
apple
pear
grape
pineapple
lemon
cherry
papaya
mango

$

Now we consider four scenarios of using sort; based on the parameter(s) we pass,
we are actually performing explicit or implicit input-, output-, and/or error-
redirection!

Scenario 1: Sort a file alphabetically (one parameter, input implicitly redirected to
file):

$ sort fruit.txt
apple
banana
cherry
grape
lemon
mango
orange
papaya
pear
pineapple

[13]

Linux System Architecture Chapter 1

All right!

Hang on a second, though. If sort is a filter (and it is), it should read from its stdin
(the keyboard) and write to its stdout (the terminal). It is indeed writing to the
terminal device, but it's reading from a file, fruit.txt.

This is deliberate; if a parameter is provided, the sort program treats it as standard
input, as clearly seen.

Also, note that sort fruit.txt isidentical to sort < fruit.txt.

Scenario 2: Sort any given input alphabetically (no parameters, input and output
from and to stdin/stdout):

$ sort
mango
apple
pear
~D
apple
mango
pear

$

Once you type sort and press the Enter key, and the sort process comes alive and just
waits. Why? It's waiting for you, the user, to type something. Why? Recall, every
process by default reads its input from standard input or stdin — the keyboard

device! So, we type in some fruit names. When we're done, press Ctrl + D. This is the
default character sequence that signifies end-of-file (EOF), or in cases such as this,
end-of-input. Voila! The input is sorted and written. To where? To the sort process's
stdout — the terminal device, hence we see it.

Scenario 3: Sort any given input alphabetically and save the output to a file (explicit
output redirection):

$ sort > sorted.fruit.txt
mango

apple

pear

D

$

[14]

Linux System Architecture Chapter 1

Similar to Scenario 2, we type in some fruit names and then Ctrl + D to tell sort we're
done. This time, though, note that the output is redirected (via the > meta-character)
to the sorted. fruits.txt file!

So, as expected is the following output:

$ cat sorted.fruit.txt
apple
mango
pear

$

Scenario 4: Sort a file alphabetically and save the output and errors to a file (explicit
input-, output-, and error-redirection):

$ sort < fruit.txt > sorted.fruit.txt 2> /dev/null
$

Interestingly, the end result is the same as in the preceding scenario, with the added
advantage of redirecting any error output to the error channel. Here, we redirect the
error output (recall that file descriptor 2 always refers to stderr) to

the /dev/null special device file; /dev/null is a device file whose job is to act as a
sink (a black hole). Anything written to the null device just disappears forever! (Who
said there isn't magic on Unix?) Also, its complement is /dev/zero; the zero device
is a source — an infinite source of zeros. Reading from it returns zeroes (the first ASCII
character, not numeric 0); it has no end-of-file!

One tool to do one task

In the Unix design, one tries to avoid creating a Swiss Army knife; instead, one
creates a tool for a very specific, designated purpose and for that one purpose only.
No ifs, no buts; no cruft, no clutter. This is design simplicity at its best.

"Simplicity is the ultimate sophistication.”
- Leonardo da Vinci

Take a common example: when working on the Linux CLI (command-line interface),
you would like to figure out which of your locally mounted filesystems has the most
available (disk) space.

[15]

Linux System Architecture Chapter 1

We can get the list of locally mounted filesystems by an appropriate switch (just df
would do as well):

$ df —--local

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 20640636 1155492 18436728 6% /

udev 10240 0 10240 0% /dev
tmpfs 51444 160 51284 1% /run
tmpfs 5120 0 5120 0% /run/lock
tmpfs 102880 0 102880 0% /run/shm
$

To sort the output, one would need to first save it to a file; one could use a temporary
file for this purpose, tmp, and then sort it, using the sort utility, of course. Finally,
we delete the offending temporary file. (Yes, there's a better way, piping; refer to

the, Combine tools seamlessly section)

Note that the available space is the fourth column, so we sort accordingly:

$ df —--local > tmp
$ sort -k4nr tmp

rootfs 20640636 1155484 18436736 6% /

tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run

udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
Filesystem 1K-blocks Used Available Use% Mounted on
$

Whoops! The output includes the heading line. Let's first use the versatile sed
utility — a powerful non-interactive editor tool — to eliminate the first line, the header,
from the output of df:

$ df --local > tmp
$ sed --in-place '1ld' tmp
$ sort -kdnr tmp

rootfs 20640636 1155484 18436736 6% /

tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock

$ rm —-f tmp

So what? The point is, on Unix, there is no one utility to list mounted filesystems and
sort them by available space simultaneously.

[16]

Linux System Architecture Chapter 1

Instead, there is a utility to list mounted filesystems: df. It does a great job of it, with
option switches to choose from. (How does one know which options? Learn to use the
man pages, they're extremely useful.)

There is a utility to sort text: sort. Again, it's the last word in sorting text, with plenty
of option switches to choose from for pretty much every conceivable sort one might
require.

The Linux man pages: man is short for manual; on a Terminal
window, type man man to get help on using man. Notice the manual
is divided into 9 sections. For example, to get the manual page on
the stat system call, typeman 2 stat as all system calls are in
section 2 of the manual. The convention used is cmd or API; thus,
we refer to it as stat (2).

As expected, we obtain the results. So what exactly is the point? It's this: we used
three utilities, not one. df , to list the mounted filesystems (and their related
metadata), sed, to eliminate the header line, and sort, to sort whatever input its
given (in any conceivable manner).

df can query and list mounted filesystems, but it cannot sort them. sort can sort text;
it cannot list mounted filesystems.

Think about that for a moment.

Combine them all, and you get more than the sum of its parts! Unix tools typically do
one task and they do it to its logical conclusion; no one does it better!

Having said this, I would like to point out — a tiny bit sheepishly —
the highly renowned tool Busybox. Busybox
(http://busybox.net)is billed as The Swiss Army Knife of
Embedded Linux. It is indeed a very versatile tool; it has its place in
the embedded Linux ecosystem — precisely because it would be too
expensive on an embedded box to have separate binary executables
for each and every utility (and it would consume more RAM).
Busybox solves this problem by having a single binary executable
(along with symbolic links to it from each of its applets, such asIs,
ps, df, and sort).

So, nevertheless, besides the embedded scenario and all the resource
limitations it implies, do follow the One tool to do one task rule!

[17]

Linux System Architecture Chapter 1

Three standard 1/0 channels

Several popular Unix tools (technically, filters) are, again, deliberately designed to
read their input from a standard file descriptor called standard input (stdin) —
possibly modify it, and write their resultant output to a standard file

descriptor standard output (stdout). Any error output can be written to a separate
error channel called standard error (stderr).

In conjunction with the shell's redirection operators (> for output-redirection and <
for input-redirection, 2> for stderr redirection), and even more importantly with
piping (refer section, Combine tools seamlessly), this enables a program designer to
highly simplify. There's no need to hardcode (or even softcode, for that matter) input
and output sources or sinks. It just works, as expected.

Let's review a couple of quick examples to illustrate this important point.

Word count

How many lines of source code are there in the C netcat . c source file I
downloaded? (Here, we use a small part of the popular open source netcat utility
code base.) We use the wc utility. Before we go further, what's wc? word count (wc) is
a filter: it reads input from stdin, counts the number of lines, words, and characters in
the input stream, and writes this result to its stdout. Further, as a convenience, one
can pass filenames as parameters to it; passing the -1 option switch has wc only print
the number of lines:

$ we -1 src/netcat.c
618 src/netcat.c

$

Here, the input is a filename passed as a parameter to wc.

[18]

Linux System Architecture Chapter 1

Interestingly, we should by now realize that if we do not pass it any parameters, wc
would read its input from stdin, which by default is the keyboard device. For
example is shown as follows:

$ we -1
hey, a small
quick test
of reading from stdin
by wc!
~D
4
$

Yes, we typed in 4 lines to stdin; thus the result is 4, written to stdout — the terminal
device by default.

Here is the beauty of it:

$ we -1 < src/netcat.c > num
$ cat num

618

$

As we can see, wc is a great example of a Unix filter.

cat

Unix, and of course Linux, users learn to quickly get familiar with the daily-use cat
utility. At first glance, all cat does is spit out the contents of a file to the terminal.

For example, say we have two plain text files, myfilel.txt and myfile2.txt:

$ cat myfilel.txt

Hello,

Linux System Programming,
World.

$ cat myfile2.txt

Okey dokey,

bye now.

$
Okay. Now check this out:

$ cat myfilel.txt myfile2.txt
Hello,
Linux System Programming,

[19]

Linux System Architecture Chapter 1

World.
Okey dokey,
bye now.

$

Instead of needing to run cat twice, we ran it just once, by passing the two filenames
to it as parameters.

In theory, one can pass any number of parameters to cat: it will use them all, one by
one!

Not just that, one can use shell wildcards too (* and ?; in reality, the shell will first
expand the wildcards, and pass on the resultant path names to the program being
invoked as parameters):

$ cat myfile?.txt

Hello,

Linux System Programming,
World.

Okey dokey,

bye now.

$

This, in fact, illustrates another key point: any number of parameters or none is
considered the right way to design a program. Of course, there are exceptions to
every rule: some programs demand mandatory parameters.

Wait, there's more. cat too, is an excellent example of a Unix filter (recall: a filter is a
program that reads from its standard input, modifies its input in some manner, and
writes the result to its standard output).

So, quick quiz, if we just run cat with no parameters, what would happen?
Well, let's try it out and see:

$ cat

hello,

hello,

oh cool

oh cool

it reads from stdin,

it reads from stdin,

and echoes whatever it reads to stdout!
and echoes whatever it reads to stdout!
ok bye

ok bye

D

$

[20]

Linux System Architecture Chapter 1

Wow, look at that: cat blocks (waits) at its stdin, the user types in a string and
presses the Enter key, cat responds by copying its stdin to its stdout — no surprise
there, as that's the job of cat in a nutshell!

One realizes the commands shown as follows:

e cat fname is the same as cat < fname

e cat > fname creates or overwrites the fname file

There's no reason we can't use cat to append several files together:

$ cat fnamel fname2 fname3 > final_fname

$

There's no reason this must be done with only plain text files; one can join together
binary files too.

In fact, that's what the utility does — it concatenates files. Thus its name; as is the norm
on Unix, is highly abbreviated — from concatenate to just cat. Again, clean and
elegant — the Unix way.

cat shunts out file contents to stdout, in order. What if one wants to
display a file's contents in reverse order (last line first)? Use the
Unix tac utility — yes, that's cat spelled backward!

Also, FYI, we saw that cat can be used to efficiently join files. Guess
what: the split (1) utility can be used to break a file up into
pieces.

Combine tools seamlessly

We just saw that common Unix utilities are often designed as filters, giving them the
ability to read from their standard input and write to their standard output. This
concept is elegantly extended to seamlessly combine together multiple utilities, using
an IPC mechanism called a pipe.

Also, we recall that the Unix philosophy embraces the do one task only design. What
if we have one program that does task A and another that does task B and we want to
combine them? Ah, that's exactly what pipes do! Refer to the following code:

prg_does_taskA | prg_does_taskB

[21]

Linux System Architecture Chapter 1

A pipe essentially is redirection performed twice: the output of the
left-hand program becomes the input to the right-hand program. Of
course, this implies that the program on the left must write to
stdout, and the program on the read must read from stdin.

An example: sort the list of mounted filesystems by space available (in reverse order).

As we have already discussed this example in the One tool to do one task section, we
shall not repeat the same information.

Option 1: Perform the following code using a temporary file (refer section, One tool to
do one task):

$ df —--local | sed '1ld' > tmp

$ sed --in-place '1ld' tmp

$ sort -kdnr tmp

rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run

udev 10240 0 10240 0% /dev

tmpfs 5120 0 5120 0% /run/lock

$ rm —-f tmp

Option 2 : Using pipes—clean and elegant:

$ df —-local | sed 'ld' | sort -kdnr

rootfs 20640636 1155492 18436728 6% /

tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$

Not only is this elegant, it is also far superior performance-wise, as writing to
memory (the pipe is a memory object) is much faster than writing to disk.

One can extend this notion and combine multiple tools over multiple pipes; in effect,
one can build a super tool from several regular tools by combining them.

[22]

Linux System Architecture Chapter 1

As an example: display the three processes taking the most (physical) memory; only
display their PID, virtual size (VSZ), resident set size (RSS) (RSS is a fairly accurate
measure of physical memory usage), and the name:

$ ps au | sed '1d' | awk '{printf("%6d %10d %10d %-32s\n", $2, $5, $6,
$11)}' | sort -k3n | tail -n3
10746 3219556 665252 /usr/libé64/firefox/firefox
10840 3444456 1105088 /usr/libé64/firefox/firefox
1465 5119800 1354280 /usr/bin/gnome-shell
$

Here, we've combined five utilities, ps, sed, awk, sort, and tail, over four pipes.
Nice!

Another example: display the process, not including daemons*, taking up the most
memory (RSS):

ps aux | awk '{if ($7 != "?") print $0}' | sort -kén | tail -nl

A daemon is a system background process; we'll cover this concept
in Daemon Process here: https://www.packtpub.com/sites/

default/files/downloads/Daemon_Processes.pdf

Plain text preferred

Unix programs are generally designed to work with text as it's a universal interface.
Of course, there are several utilities that do indeed operate on binary objects (such as
object and executable files); we aren't referring to them here. The point is this: Unix
programs are designed to work on text as it simplifies the design and architecture of
the program.

A common example: an application, on startup, parses a configuration file. The
configuration file could be formatted as a binary blob. On the other hand, having it as
a plain text file renders it easily readable (invaluable!) and therefore easier to
understand and maintain. One might argue that parsing binary would be faster.
Perhaps to some extent this is so, but consider the following;:

¢ With modern hardware, the difference is probably not significant

¢ A standardized plain text format (such as XML) would have optimized
code to parse it, yielding both benefits

Remember, simplicity is key!

[23]

https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Linux System Architecture Chapter 1

CLI, not GUI

The Unix OS, and all its applications, utilities, and tools, were always built to be used
from a command-line-interface (CLI), typically, the shell. From the 1980s onward,
the need for a Graphical User Interface (GUI) became apparent.

Robert Scheifler of MIT, considered the chief design architect behind the X Window
System, built an exceedingly clean and elegant architecture, a key component of
which is this: the GUI forms a layer (well, actually, several layers) above the OS,
providing libraries for GUI clients, that is, applications.

The GUI was never designed to be intrinsic to applications or the
0 OS—it's always optional.

This architecture still holds up today. Having said that, especially on embedded
Linux, performance reasons are seeing the advent of newer architectures, such as the
frame buffer and Wayland. Also, though Android, which uses the Linux kernel,
necessitates a GUI for the end user, the system developer's interface to Android, ADB,
is a CLIL

A huge number of production-embedded and server Linux systems run purely on
CLI interfaces. The GUI is almost like an add-on feature, for the end user's ease of
operation.

Wherever appropriate, design your tools to work in the CLI
environment; adapting it into a GUI at a later point is then
straightforward.

Cleanly and carefully separating the business logic of the project or
product from its GUI is a key to good design.

Modular, designed to be repurposed by others

From its very early days, the Unix OS was deliberately designed and coded with the
tacit assumption that multiple programmers would work on the system. Thus, the
culture of writing clean, elegant, and understandable code, to be read and worked
upon by other competent programmers, was ingrained.

[24]

Linux System Architecture Chapter 1

Later, with the advent of the Unix wars, proprietary and legal concerns overrode this
sharing model. Interestingly, history shows that the Unix's were fading in relevance
and industry use, until the timely advent of none other than the Linux OS — an open
source ecosystem at its very best! Today, the Linux OS is widely acknowledged as the
most successful GNU project. Ironic indeed!

Provide mechanisms, not policies

Let's understand this principle with a simple example.

When designing an application, you need to have the user enter a login name and
password. The function that performs the work of getting and checking the password
is called, let's say, mygetpass (). It's invoked by the mylogin () function: mylogin ()
— mygetpass().

Now, the protocol to be followed is this: if the user gets the password wrong three
times in a row, the program should not allow access (and should log the case). Fine,
but where do we check this?

The Unix philosophy: do not implement the logic, if the password is specified
wrongly three times, abort in the mygetpass () function. Instead, just have
mygetpass () return a Boolean (true when the password is right, false when the
password is wrong), and have the mylogin () calling function implement whatever
logic is required.

Pseudocode

The following is the wrong approach:

mygetpass ()
{

numtries=1

<get the password>
if (password-is-wrong) {
numtries ++
if (numtries >= 3) {
<write and log failure message>
<abort>
i
i

<password correct, continue>

[25]

Linux System Architecture Chapter 1

t
mylogin ()
{
mygetpass ()
t

Now let's take a look at the right approach: the Unix way! Refer to the following code:

mygetpass ()
{
<get the password>

if (password-is-wrong)
return false;

return true;

}

mylogin ()
{
maxtries = 3
while (maxtries——) {
if (mygetpass () == true)

<move along, call other routines>

}

// If we're here, we've failed to provide the
// correct password

<write and log failure message>

<abort>

}

The job of mygetpass () is to get a password from the user and check whether it's
correct; it returns success or failure to the caller — that's it. That's the mechanism. It is
not its job to decide what to do if the password is wrong — that's the policy, and left to
the caller.

Now that we've covered the Unix philosophy in a nutshell, what are the important
takeaways for you, the system developer on Linux?

Learning from, and following, the Unix philosophy when designing and
implementing your applications on the Linux OS will provide a huge payoff. Your
application will do the following;:

¢ Be a natural fit on the system; this is very important
¢ Have greatly reduced complexity

[26]

Linux System Architecture Chapter 1

¢ Have a modular design that is clean and elegant
¢ Be far more maintainable

Linux system architecture

In order to clearly understand the Linux system architecture, one needs to first
understand a few important concepts: the processor Application Binary Interface
(ABI), CPU privilege levels, and how these affect the code we write. Accordingly, and
with a few code examples, we'll delve into these here, before diving into the details of
the system architecture itself.

Preliminaries

If one is posed the question, "what is the CPU for?", the answer is pretty obvious: the
CPU is the heart of the machine — it reads in, decodes, and executes machine
instructions, working on memory and peripherals. It does this by incorporating
various stages.

Very simplistically, in the Instruction Fetch stage, it reads in machine instructions
(which we represent in various human-readable ways — in hexadecimal, assembly,
and high-level languages) from memory (RAM) or CPU cache. Then, in the
Instruction Decode phase, it proceeds to decipher the instruction. Along the way, it
makes use of the control unit, its register set, ALU, and memory/peripheral interfaces.

The ABI

Let's imagine that we write a C program, and run it on the machine.

Well, hang on a second. C code cannot possibly be directly deciphered by the CPU; it
must be converted into machine language. So, we understand that on modern
systems we will have a toolchain installed — this includes the compiler, linker, library
objects, and various other tools. We compile and link the C source code, converting it
into an executable format that can be run on the system.

[27]

Linux System Architecture Chapter 1

The processor Instruction Set Architecture (ISA) — documents the machine's
instruction formats, the addressing schemes it supports, and its register model. In
fact, CPU Original Equipment Manufacturers (OEMs) release a document that
describes how the machine works; this document is generally called the ABI. The ABI
describes more than just the ISA; it describes the machine instruction formats, the
register set details, the calling convention, the linking semantics, and the executable
file format, such as ELF. Try out a quick Google for x86 ABI - it should reveal
interesting results.

The publisher makes the full source code for this book available on
their website; we urge the reader to perform a quick Git clone on the
following URL. Build and try it: https://github.com/

PacktPublishing/Hands-on-System-Programming-with-Linux.

Let's try this out. First, we write a simple Hello, World type of C program:

$ cat hello.c
/*
* hello.c

*

Ak hkhkhkh kA hhkhkhhkhhkhkhhkhkhhkrhhkhkhhkhkhkhAhhkrhhkrhkhkhhhkhhkrhhkrhhkrhkhkrhkhkhkkxhkkxkhk*x

* This program is part of the source code released for the book

* "Linux System Programming"

* (c) Kaiwan N Billimoria

* Packt Publishers

*

* From:

* Ch 1 : Linux System Architecture

kA hkhkhkh kA hhkhkhhkhhhkhhkhkhhkrhhkhkhhkhkhkhAhhkrhhkrhkhkhhhkhkhkrhhkrhhkrhkhkrhkhkhkkxhkxkhk*x

* A gquick 'Hello, World'-like program to demonstrate using
* objdump to show the corresponding assembly and machine

* language.

*/

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main (void)
{

int a;

printf ("Hello, Linux System Programming, World!\n");
a = 5;
exit (0);

—~

[28]

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Linux System Architecture Chapter 1

We build the application via the Makefile, with make. Ideally, the
code must compile with no warnings:

$ gcc -Wall -Wextra hello.c -o hello
hello.c: In function ‘main':

hello.c:23:6: warning: variable ‘a' set but not used [-Wunused-but-set-

variable]
int a;
A

Important! Do not ignore compiler warnings with production code.
Strive to get rid of all warnings, even the seemingly trivial ones; this
will help a great deal with correctness, stability, and security.

In this trivial example code, we understand and anticipate the unused
variable warning that gcc emits, and just ignore it for the purpose of this demo.

The exact warning and/or error messages you see on your system
could differ from what you see here. This is because my Linux
distribution (and version), compiler/linker, library versions, and
perhaps even CPU, may differ from yours. I built this on a x86_64
box running the Fedora 27/28 Linux distribution.

Similarly, we build the debug version of the hello program (again, ignoring the
warning for now), and run it:

$ make hello_dbg

[...]

$./hello_dbg

Hello, Linux System Programming, World!

$

We use the powerful objdump utility to see the intermixed source-assembly-machine

language of our program (ocbjdump's --source option switch
-S, ——source Intermix source code with disassembly):

$ objdump —--source ./hello_dbg
./hello_dbg: file format elf64-x86-64

Disassembly of section .init:

0000000000400400 <_init>:
400400: 48 83 ec 08 sub $0x8, $rsp

[29]

Linux System Architecture Chapter 1

[...]

int main (void)

{

400527: 55 push %rbp

400528: 48 89 eb5 mov %rsp, srbp

40052b: 48 83 ec 10 sub $0x10, %rsp
int a;

printf ("Hello, Linux System Programming, World!\n");

40052f: bf e0 05 40 00 mov $0x4005e0, $edi

400534: e8 f7 fe ff ff callg 400430 <puts@plt>
a = 5;

400539: c7 45 fc 05 00 00 00 movl $0x5,-0x4 (%$rbp)
exit (0);

400540: bf 00 00 00 00 mov $0x0, $edi

400545: e8 f6 fe ff ff callg 400440 <exit@plt>

40054a: 66 0f 1f 44 00 00 nopw 0x0 (%$rax, $rax, 1)

The exact assembly and machine code you see on your system will,
in all likelihood, differ from what you see here; this is because my
Linux distribution (and version), compiler/linker, library versions,
and perhaps even CPU, may differ from yours. I built this on a
x86_64 box running Fedora Core 27.

Alright. Let's take the line of source code a = 5; where, objdump reveals the
corresponding machine and assembly language:

a = 5;
400539: c7 45 fc 05 00 00 00 movl $0x5, -0x4 (%rbp)

We can now clearly see the following:

C source Assembly language Machine instructions

a = 5; movl $0x5,-0x4 (%rbp) c7 45 fc 05 00 00 0O

So, when the process runs, at some point it will fetch and execute the machine
instructions, producing the desired result. Indeed, that's exactly what a
programmable computer is designed to do!

[30]

Linux System Architecture Chapter 1

Though we have shown examples of displaying (and even writing a
bit of) assembly and machine code for the Intel CPU, the concepts
and principles behind this discussion hold up for other CPU
architectures, such as ARM, PPC, and MIPS. Covering similar
examples for all these CPUs goes beyond the scope of this book;
however, we urge the interested reader to study the processor
datasheet and ABI, and try it out.

Accessing a register's content via inline assembly

Now that we've written a simple C program and seen its assembly and machine code,
let's move on to something a little more challenging: a C program with inline
assembly to access the contents of a CPU register.

Details on assembly-language programming are outside the scope of
this book; refer to the Further reading section on the GitHub
repository.

x86_64 has several registers; let's just go with the ordinary RCX register for this
example. We do make use of an interesting trick: the x86 ABI calling convention states
that the return value of a function will be the value placed in the accumulator, that is,
RAX for the x86_64. Using this knowledge, we write a function that uses inline
assembly to place the content of the register we want into RAX. This ensures that this
is what it will return to the caller!

Assembly micro-basics includes the following;:

at&t syntax:

movqg <src_reg>, <dest_reg>
Register : prefix name with %
Immediate value : prefix with $

For more, see the Further reading section on the GitHub repository.

Let's take a look at the following code:

$ cat getreg_rcx.c
/*

* getreg_rcx.c

*

kA hkhkhkh kA hhkhkhhkh kA hhkhkhhkrhhkhkhhkhkhk Ak hkrhhkrhkhkhkhkhkhkhkrhkhkrhkkhkrhkhkhkhkhkhkkhxhkkxkhk*x

* This program is part of the source code released for the book

[31]

Linux System Architecture Chapter 1

* "Linux System Programming"

* (c) Kaiwan N Billimoria

* Packt Publishers

*

* From:

* Ch 1 : Linux System Architecture

RR R Rk I b 2 b b b 2 b b b 2 b 2 b I b b b db b b b b b db b I b b b b b b S 2 b 2 b 2 b 2 b 2 b 2 b 2 b b b 2 b 2 b O b O 3
* Inline assembly to access the contents of a CPU register.

* NOTE: this program is written to work on x86_64 only.

*/

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

typedef unsigned long u64;

static u64 get_rcx(void)

{
/* Pro Tip: x86 ABI: query a register's value by moving its value
into RAX.
* [RAX] is returned by the function! */
asm__ _ volatile_ (

"push %$rcx\n\t"
"movg $5, %$rcx\n\t"
"movqg %rcx, %Srax");
/* ats&t syntax: movqg <src_reg>, <dest_reg> */
asm__ __volatile__ ("pop %rcx");

int main (void)
{

printf ("Hello, inline assembly:\n [RCX] = 0x%1lx\n",

get_rcx());

exit (0);
}
$ gcc -Wall -Wextra getreg rcx.c —-o getreg_rcx
getreg_rcx.c: In function ‘get_rcx':
getreg_rcx.c:32:1: warning: no return statement in function returning
non-void [-Wreturn-type]

}

$./getreg_rcx

Hello, inline assembly:
[RCX] = 0x5

$

There; it works as expected.

[32]

Linux System Architecture Chapter 1

Accessing a control register's content via inline
assembly

Among the many fascinating registers on the x86_64 processor, there happen to be six
control registers, named CRO through CR4, and CR8. There's really no need to delve
into detail regarding them; suffice it to say that they are crucial to system control.

For the purpose of an illustrative example, let's consider the CRO register for a
moment. Intel's manual states: CRO—contains system control flags that control
operating mode and states of the processor.

Intel's manuals can be downloaded conveniently as PDF documents
from here (includes the Intel® 64 and

IA-32 Architectures Software Developer's Manual, Volume 3 (34, 3B
and 3C): System Programming Guide):

https://software.intel.com/en-us/articles/intel-sdm

Clearly, CRO is an important register!

We modify our previous program to access and display its content (instead of the
ordinary RCX register). The only relevant code (which has changed from the previous
program) is the function that queries the CRO register value:

static u64 get_cr0(void)
{
/* Pro Tip: x86 ABI: query a register's value by moving it's value
into RAX.
* [RAX] is returned by the function! */
__asm__ __volatile__ ("movqg %cr0, S%rax");
/* at&t syntax: movqg <src_reg>, <dest_reg> */

}

Build and run it:

$ make getreg_cr0

[...1]

$./getreg_cr0

Segmentation fault (core dumped)
$

It crashes!

Well, what happened here? Read on.

[33]

https://software.intel.com/en-us/articles/intel-sdm

Linux System Architecture Chapter 1

CPU privilege levels

As mentioned earlier in this chapter, the essential job of the CPU is to read in machine
instructions from memory, decipher, and execute them. In the early days of
computing, this is pretty much all the processor did. But then, engineers, thinking
deeper on it, realized that there is a critical issue with this: if a programmer can feed
an arbitrary stream of machine instructions to the processor, which it, in turn, blindly
and obediently executes, herein lies scope to do damage, to hack the machine!

How? Recall from the previous section the Intel processor's CR0 control

register: Contains system control flags that control operating mode and states of the
processor. If one has unlimited (read/write) access to the CRO register, one could
toggle bits that could do the following;:

e Turn hardware paging on or off
e Disable the CPU cache
e Change caching and alignment attributes

¢ Disable WP (write protect) on memory (technically, pages) marked as read-
only by the OS

Wow, a hacker could indeed wreak havoc. At the very least, only the OS should be
allowed this kind of access.

Precisely for reasons such as the security, robustness, and correctness of the OS and
the hardware resources it controls, all modern CPUs include the notion of privilege
levels.

The modern CPU will support at least two privilege levels, or modes, which are
generically called the following;:

e Supervisor
e User

[34]

Linux System Architecture

Chapter 1

You need to understand that code, that is, machine instructions, runs on the CPU at a
given privilege level or mode. A person designing and implementing an OS is free to
exploit the processor privilege levels. This is exactly how modern OSes are designed.
Take a look at the following table Generic CPU Privilege Levels:

Privilege level or mode name

Privilege level|Purpose

Terminology

Supervisor

High

OS code runs here

kernel-space

User

Low

Application code runs here

user-space (or userland)

Table 1: Generic CPU Privilege Levels

Privilege levels or rings on the x86

To understand this important concept better, let's take the popular x86 architecture as
a real example. Right from the 1386 onward, the Intel processor supports four
privilege levels or rings: Ring 0, Ring 1, Ring 2, and Ring 3. On the Intel CPU's, this is

how the levels work:

Privilege

Figure 1: CPU ring levels and privilege

Let's visualize this Figure 1 in the form of a Table 2: x86 privilege or ring levels:

Privilege or ring level Privilege Purpose

Ring 0 Highest OS code runs here

Ring 1 <ring 0 <Unused>

Ring 2 <ring 1 <Unused>

Ring 3 Lowest Application code runs here (userland)

Table 2: x86 privilege or ring levels

[35]

Linux System Architecture Chapter 1

Originally, ring levels 1 and 2 were intended for device drivers, but
modern OSes typically run driver code at ring 0 itself. Some
hypervisors (VirtualBox being one) used to use Ring 1 to run the
guest kernel code; this was the case earlier when no hardware
virtualization support was available (Intel VI-x, AMD SV).

The ARM (32-bit) processor has seven modes of execution; of these,
six are privileged, and only one is the non-privileged mode. On
ARM, generically, the equivalent to Intel's Ring 0 is Supervisor
(SVC) mode, and the equivalent to Intel's Ring 3 is User mode.

For interested readers, there are more links in the Further
reading section on the GitHub repository.

The following diagram clearly shows of all modern OSes (Linux, Unix, Windows, and
macOS) running on an x86 processor exploit processor-privilege levels:

User Mode / Userland:
Apps (processes)
U [)'(86: Ring 3
. cPU =
K \ /
xB86: Ring 0

Kemel Mode / kemel-space:
OS kernel, device drivers, etc

Figure 2: User-Kernel separation

Importantly, the processor ISA assigns every machine instruction with a privilege
level or levels at which they are allowed to be executed. A machine instruction that is
allowed to execute at the user privilege level automatically implies it can also be
executed at the Supervisor privilege level. This distinguishing between what can and
cannot be done at what mode also applies to register access.

To use the Intel terminology, the Current Privilege Level (CPL) is the privilege level
at which the processor is currently executing code.

[36]

Linux System Architecture Chapter 1

For example, that on a given processor shown as follows:

¢ The fool machine instruction has an allowed privilege level of Supervisor
(or Ring 0 for x86)

¢ The foo2 machine instruction has an allowed privilege level of User (or
Ring 3 for x86)

So, for a running application that executes these machine instructions, the following
table emerges:

Machine instruction|Allowed-at mode|CPL (current privilege level) Works?
. 0 Yes
fool Supervisor (0)
3 No
0 Yes
foo2 User (3)
3 Yes

Table 3: Privilege levels — an example

So, thinking about it, foo2 being allowed at User mode would also
be allowed to execute with any CPL. In other words, if the CPL <=
allowed privilege level, it works, otherwise it does not.

When one runs an application on, say, Linux, the application runs as a process (more
on this later). But what privilege (or mode or ring) level does the application code run
at? Refer to the preceding table: User Mode (Ring 3 on x86).

Aha! So now we see. The preceding code example, getreg_rcx.c, worked because it
attempted to access the content of the general-purpose RCX register, which is allowed
in User Mode (Ring 3, as well as at the other levels, of course)!

But the code of getreg_cr0. c failed; it crashed, because it attempted to access the
content of the CRO control register, which is disallowed in User Mode (Ring 3), and
allowed only at the Ring 0 privilege! Only OS or kernel code can access the control
registers. This holds true for several other sensitive assembly-language instructions as
well. This approach makes a lot of sense.

Technically, it crashed because the processor raised a General
Protection Fault (GPF).

[37]

Linux System Architecture Chapter 1

Linux architecture

The Linux system architecture is a layered one. In a very simplistic way, but ideal to
start on our path to understanding these details, the following diagram illustrates the
Linux system architecture:

s Y
Application
N <
i ™y
Libraries
A <
' Y

glibc / System Call Interface (5CI)

Ty
A

Operating System (0S) kernel, drivers, etc

T
A

Hardware Layer

Figure 3: Linux — Simplified layered architecture

Layers help, because each layer need only be concerned with the layer directly above
and below it. This leads to many advantages:

Clean design, reduces complexity

Standardization, interoperability

Ability to swap layers in and out of the stack

Ability to easily introduce new layers as required

On the last point, there exists the FTSE. To quote directly from
Wikipedia:

The "fundamental theorem of software engineering (FTSE)" is a
term originated by Andrew Koenig to describe a remark by Butler
Lampson attributed to the late David J. Wheeler

We can solve any problem by introducing an extra level of
indirection.

[38]

Linux System Architecture Chapter 1

Now that we understand the concept of CPU modes or privilege levels, and how
modern OSes exploit them, a better diagram (expanding on the previous one) of the
Linux system architecture would be as follows:

User Mode / Userland:
Apps (processes)

@@G'Ol@

| | | | -1..
Libraries
L N] -

xB6: Ring 3

x86: Ring 0

Kemel Mode / kermel-space:
OS kernel, device drivers, etc

Figure 4: Linux system architecture

In the preceding diagram, P1, P2, ..., Pn are nothing but userland processes (Process
1, Process 2) or in other words, running applications. For example, on a Linux laptop,
we might have the vim editor, a web browser, and terminal windows (gnome-
terminal) running.

Libraries

Libraries, of course, are archives (collections) of code; as we well know, using libraries
helps tremendously with code modularity, standardization, preventing the reinvent-
the-wheel syndrome, and so on. A Linux desktop system might have libraries
numbering in the hundreds, and possibly even a few thousand!

The classic K&R hello, world C program uses the printf API to write the string
to the display:

printf (“hello, world\n”);

[39]

Linux System Architecture Chapter 1

Obviously, the code of print£ is not part of the hello, world source. So where
does it come from? It's part of the standard C library; on Linux, due to its GNU
origins, this library is commonly called GNU libc (glibc).

Glibc is a critical and required component on a Linux box. It not only contains the
usual standard C library routines (APIs), it is, in fact, the programming interface to
the operating system! How? Via its lower layer, the system calls.

System calls

System calls are actually kernel functionality that can be invoked from userspace via
glibc stub routines. They serve a critical function; they connect userspace to kernel-
space. If a user program wants to request something of the kernel (read from a file,
write to the network, change a file's permissions), it does so by issuing a system call.
Therefore, system calls are the only legal entry point to the kernel. There is no other
way for a user-space process to invoke the kernel.

For a list of all the available Linux system calls, see section 2 of the
8 man pages (https://linux.die.net/man/2/). One can also do: man

2 syscalls to see the man page on all supported system calls

Another way to think of this: the Linux kernel internally has literally thousands of
APIs (or functions). Of these, only a small fraction are made visible or available, that
is, exposed, to userspace; these exposed kernel APIs are system calls! Again, as an
approximation, modern Linux glibc has around 300 system calls.

On an x86_64 Fedora 27 box running the 4.13.16-302.fc27.x86_64
0 kernel, there are close to 53,000 kernel APIs!

Here is the key thing to understand: system calls are very different from all other
(typically library) APIs. As they ultimately invoke kernel (OS) code, they have the
ability to cross the user-kernel boundary; in effect, they have the ability to switch
from normal unprivileged User mode to completely privileged Supervisor or kernel
mode!

[40]

https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/

Linux System Architecture Chapter 1

How? Without delving into the gory details, system calls essentially work by
invoking special machine instructions that have the built-in ability to switch the
processor mode from User to Supervisor. All modern CPU ABIs will provide at least
one such machine instruction; on the x86 processor, the traditional way to implement
system calls is to use the special int 0x80 machine instruction. Yes, it is indeed a
software interrupt (or trap). From Pentium Pro and Linux 2.6 onward, the
sysenter/syscall machine instructions are used. See the Further reading section on the
GitHub repository.

From the viewpoint of the application developer, a key point regarding system calls is
that system calls appear to be regular functions (APIs) that can be invoked by the
developer; this design is deliberate. The reality: the system call APIs that one invokes
—such as open (), read (), chmod (), dup (), and write () —are merely stubs. They
are a neat mechanism to get at the actual code that is in the kernel (getting there
involves populating a register the accumulator on x86 — with the system call number,
and passing parameters via other general-purpose registers) to execute that kernel
code path, and return back to user mode when done. Refer to the following table:

CPU Machin.e instruction(s) used to trap to Allocated Register for
Supervisor (kernel) Mode from User Mode |system call number

x86[_64][int 0x80 or syscall EAX / RAX

ARM swi / svc RO to R7

Aarché64 [svc X8

MIPS syscall SvO0

Table 4: System calls on various CPU Architectures for better understanding

Linux — a monolithic OS

Operating systems are generally considered to adhere to one of two major
architectural styles: monolithic or microkernel.

Linux is decidedly a monolithic OS.

[41]

Linux System Architecture Chapter 1

What does that mean?

The English word monolith literally means a large single upright block of stone:

Figure 5: Corinthian columns — they're monolithic!

[42]

Linux System Architecture Chapter 1

On the Linux OS, applications run as independent entities called processes. A process
may be single-threaded (original Unix) or multithreaded. Regardless, for now, we
will consider the process as the unit of execution on Linux; a process is defined as an
instance of a program in execution.

When a user-space process issues a library call, the library AP], in turn, may or may
not issue a system call. For example, issuing the atoi (3) API does not cause glibc to
issue a system call as it does not require kernel support to implement the conversion
of a string into an integer. <api-name> (n) ; n is the man page section.

To help clarify these important concepts, let's check out the famous and classic K&R
Hello, World C program again:

#include <stdio.h>
main ()

{
printf (“hello, world\n”);

}

Okay, that should work. Indeed it does.
But, the question is, how exactly does the print £ (3) API write to the monitor
device?

The short answer: it does not.

The reality is that print £ (3) only has the intelligence to format a string as specified;
that's it. Once done, print £ actually invokes the write (2) API - a system call. The
write system call does have the ability to write the buffer content to a special device
file — the monitor device, seen by write as stdout. Go back to our discussion regarding
The Unix philosophy in a nutshell : if it's not a process, it's a file! Of course, it gets really
complex under the hood in the kernel; to cut a long story short, the kernel code of
write ultimately switches to the correct driver code; the device driver is the only
component that can directly work with peripheral hardware. It performs the actual
write to the monitor, and return values propagate all the way back to the application.

[43]

Linux System Architecture Chapter 1

In the following diagram, P is the hello, world process at runtime:

User Mode / Userland:
Apps (processes)

Kemnel Mode / kermnel-space:
08 kernel, device drivers, etc

Fig 6: Code flow: printf-to-kernel

Also, from the diagram, we can see that glibc is considered to consist of two parts:

¢ Arch-independent glibc: The regular libc APIs (such as [sIsn|v]printf,
memcpy, memcmp, atoi)

¢ Arch-dependent glibc: The system call stubs

Here, by arch, we mean CPU.
0 Also the ellipses (...) represent additional logic and processing

within kernel-space that we do not show or delve into here.

Now that the code flow path of hello, worldis clearer, let's get back to the
monolithic stuff!

[44]

Linux System Architecture Chapter 1

It's easy to assume that it works this way:

The hello, world app (process)issues the printf (3) library call.
printf issues the write (2) system call.

We switch from User to Supervisor (kernel) Mode.

The kernel takes over — it writes hello, world onto the monitor.

O L=

Switch back to non-privileged User Mode.
Actually, that's NOT the case.

The reality is, in the monolithic design, there is no kernel; to word it another way, the
kernel is actually part of the process itself. It works as follows:

1. The hello, worldapp (process)issues the printf (3) library call.
2. printf issues the write (2) system call.

3. The process invoking the system call now switches from User to Supervisor
(kernel) Mode.

4. The process runs the underlying kernel code, the underlying device driver
code, and thus, writes hello, world onto the monitor!

5. The process is then switched back to non-privileged User Mode.

To summarize, in a monolithic kernel, when a process (or thread) issues a system call,
it switches to privileged Supervisor or kernel mode and runs the kernel code of the
system call (working on kernel data). When done, it switches back to unprivileged
User mode and continues executing userspace code (working on user data).

This is very important to understand:

User Mode (non-
privileged) execution

t t t t

0 1 2 n

/N < N “ee V

&= =
Birth System Call Death

Supervisor (kernel) Mode
privileged execution

Fig 7: Life of a process in terms of privilege modes

[45]

Linux System Architecture Chapter 1

The preceding diagram attempts to illustrate that the X axis is the timeline, and the Y
axis represents User Mode (at the top) and Supervisor (kernel) Mode (at the bottom):

e time to: A process is born in kernel mode (the code to create a process is
within the kernel of course). Once fully born, it is switched to User (non-
privileged) Mode and it runs its userspace code (working on its userspace
data items as well).

e time t;: The process, directly or indirectly (perhaps via a library API),
invokes a system call. It now traps into kernel mode (refer the table System
Calls on CPU Architectures shows the machine instructions depending on
the CPU to do so) and executes kernel code in privileged Supervisor Mode
(working on kernel data items as well).

e time t,: The system call is done; the process switches back to non-privileged
User Mode and continues to execute its userspace code. This process
continues, until some point in the future.

e time t: The process dies, either deliberately by invoking the exit API, or it
is killed by a signal. It now switches back to Supervisor Mode (as the exit(3)
library API invokes the _exit(2) system call), executes the kernel code of
_exit(), and terminates.

In fact, most modern operating systems are monolithic (especially the Unix-like ones).

Technically, Linux is not considered 100 percent monolithic. It's
considered to be mostly monolithic, but also modular, due to the

fact that the Linux kernel supports modularization (the plugging in
0 and out of kernel code and data, via a technology called Loadable

Kernel Modules (LKMs)).

Interestingly, MS Windows (specifically, from the NT kernel
onward) follows a hybrid architecture that is both monolithic and
microkernel.

Execution contexts within the kernel

Kernel code always executes in one of two contexts:

e Process
e Interrupt

[46]

Linux System Architecture Chapter 1

It's easy to get confused here. Remember, this discussion applies to
the context in which kernel code executes, not userspace code.

Process context

Now we understand that one can invoke kernel services by issuing a system call.
When this occurs, the calling process runs the kernel code of the system call in kernel
mode. This is termed process context — kernel code is now running in the context of
the process that invoked the system call.

Process context code has the following attributes:

e Always triggered by a process (or thread) issuing a system call
e Top-down approach
¢ Synchronous execution of kernel code by a process

Interrupt context

At first glance, there appears to be no other way that kernel code executes. Well, think
about this scenario: the network receive path. A network packet destined for your
Ethernet MAC address arrives at the hardware adapter, the hardware detects that it's
meant for it, collects it, and buffers it. It now must let the OS know; more technically,
it must let the Network Interface Card (NIC) device driver know, so that it can fetch
and process packets as they arrive. It kicks the NIC driver into action by asserting a
hardware interrupt.

Recall that device drivers reside in kernel-space, and therefore their code runs in
Supervisor or kernel Mode. The (kernel privilege) driver code Interrupt service
routine (ISR) now executes, fetches the packet, and sends it up the OS network
protocol stack for processing.

The NIC driver's ISR code is kernel code, and it is has run but in what context? It's
obviously not in the context of any particular process. In fact, the hardware interrupt
probably interrupted some process. Thus, we just call this interrupt context.

[47]

Linux System Architecture Chapter 1

The interrupt context code has the following attributes:

e Always triggered by a hardware interrupt (not a software interrupt, fault or
exception; that's still process context)

¢ Bottom-up approach

¢ Asynchronous execution of kernel code by an interrupt

If, at some point, you do report a kernel bug, it helps if you point
out the execution context.

Technically, within interrupt context, we have further distinctions, such as hard-IRQs
and softirgs, bottom halves, and tasklets. However, this discussion goes beyond the
scope of this book.

Summary

This chapter started by explaining the Unix design philosophy, including the central
principles or pillars of the Unix philosophy, design, and architecture. We then
described the Linux system architecture, where we covered the meaning of CPU-ABI
(Application Binary Interface), ISA, and toolchain (using objdump to disassemble a
simple program, and accessing CPU registers with inline assembly). CPU privilege
levels and their importance in the modern OS were discussed, leading in to the Linux
system architecture layers — application, libraries, system calls, and the kernel. The
chapter finished with a discussion on how Linux is a monolithic OS and then
explored kernel execution contexts.

In the next chapter, the reader will delve into the mysteries of, and get a solid grasp
of, virtual memory — what exactly it means, why it's in all modern OSes, and the key
benefits it provides. We will discuss relevant details of the making of process virtual
address space.

[48]

Virtual Memory

Coming back to this chapter, we will look at the meaning and purpose of virtual
memory (VM) and, importantly, why it is a key concept and required one. We will
cover the meaning and importance of VM, paging and address-translation, the
benefits of using VM, the memory layout of a process in execution, and the internal
layout of a process as seen by the kernel. We shall also delve into what segments
make up the process virtual address space. This knowledge is indispensable in
difficult-to-debug situations.

In this chapter, we will cover the following topics:

e Virtual memory
e Process virtual address space

Technical requirements

A modern desktop PC or laptop is required; Ubuntu Desktop specifies
the following as recommended system requirements for installation and usage of the
distribution:

¢ 2 GHz dual core processor or better

e RAM
¢ Running on a physical host: 2 GB or more system memory

¢ Running as a guest: The host system should have at least 4
GB RAM (the more, the better and smoother the experience)

Virtual Memory Chapter 2

e 25 GB of free hard drive space
e Either a DVD drive or a USB port for the installer media
e Internet access is definitely helpful

We recommend the reader use one of the following Linux distributions (can be
installed as a guest OS on a Windows or Linux host system, as mentioned):

e Ubuntu 18.04 LTS Desktop (Ubuntu 16.04 LTS Desktop is a good choice too
as it has long term support as well, and pretty much everything should
work)

¢ Ubuntu Desktop download link: https://www.ubuntu.com/
download/desktop

e Fedora 27 (Workstation)

e Download link: https://getfedora.org/en_GB/
workstation/download/

Note that these distributions are, in their default form, OSS and non-proprietary, and
free to use as an end user.

There are instances where the entire code snippet isn't included in
the book . Thus the GitHub URL to refer the codes: https://
github.com/PacktPublishing/Hands-on-System-Programming-—
with-Linux.

Also, for the further reading section, refer to the preceding GitHub
link.

Virtual memory

Modern operating systems are based on a memory model called VM. This includes
Linux, Unixes, MS Windows, and macOS. Truly understanding how a modern OS
works under the hood requires a deep understanding of VM and memory
management — not topics we delve into in intricate detail in this book; nevertheless, a
solid grasp of VM concepts is critical for Linux system developers.

[50]

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Virtual Memory Chapter 2

No VM - the problem

Let's imagine for a moment that VM, and all the complex baggage it lugs around,
does not exist. So, we're working on a (fictional) pure flat physical memory platform
with, say, 64 MB RAM. This is actually not that unusual — most old OSes (think DOS)

and even modern Real-Time Operating Systems (RTOSes) operate this way:

r—— 64 MB

- 0mMB

Figure 1: Flat physical address space of 64 MB

Obviously, everything that runs on this machine must share this physical memory
space: the OS, device drivers, libraries, and applications. We might visualize it this
way (of course, this is not intended to reflect an actual system — it's just a highly
simplified example to help you understand things): one OS, several device drivers (to
drive the hardware peripherals), a set of libraries, and two applications. The physical
memory map (not drawn to scale) of this fictional (64 MB system) platform might
look like this:

Object Space taken Address range

Operating system (OS) 3 MB 0x03d0 0000 - 0x0400 0000
Device Drivers 5MB 0x02d0 0000 — 0x0320 0000
Libraries 10 MB 0x00a0 0000 — 0x0140 0000
Application 2 1 MB 0x0010 0000 — 0x0020 0000
Application 1 0.5 MB 0x0000 0000 — 0x0008 0000
Overall Free Memory 44.5 MB <various>

Table 1: The physical memory map

[51]

Virtual Memory Chapter 2

The same fictional system is represented in the following diagram:

-t 64 MB
0s

Drivers

Libraries

App 2

LT 0 MB

A

Fig 2: The physical memory map of our fictional 64 MB system

Normally, of course, the system will undergo rigorous testing before release and will
perform as expected; except, there's this thing you might have heard of in our
industry called bugs. Yes, indeed.

But let's imagine a dangerous bug creeps into Application 1, say, within the use of the
ubiquitous memcpy (3) glibc API, due to either of the following;:

e Inadvertent programming errors
¢ Deliberate malicious intent

As a quick reminder, the usage of the memcpy library API is shown as follows:

void *memcpy (void *dest, const void *src, size_t n).

Objective

This C program snippet as follows intends to copy some memory, say 1,024 bytes,
using the usual memcpy (3) glibc API, from a source location 300 KB into the program
to a destination location 400 KB into the program. As Application 1 is the program at
the low end of physical memory (see the preceding memory map), it starts at

the 0x0 physical offset.

[52]

Virtual Memory Chapter 2

We understand that on a modern OS nothing will start at address
0x0; that's the canonical NULL memory location! Keep in mind that
this is just a fictional example for learning purposes

First, let's see the correct usage case.

Refer to the following pseudocode:

phy_offset = 0x0;

src = phy_offset + (300*1024); /* = 0x0004 b000 */
dest = phy_offset + (400*%1024); /* = 0x0006 4000 */
n = 1024;

memcpy (dest, src, n);

The effect of the preceding code is shown in the following diagram:

phy offset = 0Ox0 -

App 1
phy offset = OxB0008 0000 -
dest @ 400 KE = 0xB4000
n=1024 b
Src @ 300 KE = Gx4booa

Fig 3: Zoomed into App 1: the correct memcpy()

As can be seen in the preceding diagram, this works! The (big) arrow shows the copy

path from source to destination, for 1,024 bytes. Great.

Now for the buggy case.

[53]

Virtual Memory Chapter 2

All remains the same, except that this time, due to a bug (or malicious intent),
the dest pointer is modified as follows:

phy_offset = 0x0;

src = phy_offset + (300*1024); /* = 0x0004 b000 */

dest = phy_offset + (400%1024%*156); /* 0x03cf 0000 !BUG! */
n = 1024;

memcpy (dest, src, n);

The destination location is now around 64 KB (0x03cf0000 — 0x03d00000) into the
operating system! The best part: the code itself does not fail. memcpy () does its job.

Of course, now the OS is probably corrupted and the entire system will (eventually)
crash.

Note that the intent here is not to debug the cause (we know); the intent here is to
clearly realize that, in spite of this bug, memcpy succeeds.

How come? This is because we are programming in C — we are free to read and write
physical memory as we wish; inadvertent bugs are our problem, not the language's!

So what now? Ah, this is one of the key reasons why VM systems came into existence.

Virtual memory

Unfortunately, the term virtual memory (VM) is often misunderstood or hazily
understood, at best, by a large proportion of engineers. In this section, we attempt to
clarify what this term and its associated terminologies (such as memory pyramid,
addressing, and paging) really mean; it's important for developers to clearly
understand this key area.

First, what is a process?

A process is an instance of a program in execution.

A program is a binary executable file: a dead, disk object. For
example, take the cat program:

$ 1s -1 /bin/cat

-rwxr-xr-x 1 root root 36784 Nov 10 23:26 /bin/cat
$

When we run cat it becomes a live runtime schedulable entity,
which, in the Unix universe, we call a process.

[54]

Virtual Memory Chapter 2

In order to understand deeper concepts clearly, we start with a small, simple, and
fictional machine. Imagine it has a microprocessor with 16 address lines. Thus, it's
easy to see, it will have access to a total potential memory space (or address space) of
2'° = 65,536 bytes = 64 KB:

~4—————— 64 Kb

VM

- 0 Kb

Fig 4: Virtual memory of 64 KB

But what if the physical memory (RAM) on the machine is a lot less, say, 32 KB?
Clearly, the preceding diagram depicts virtual memory, not physical.
Meanwhile, physical memory (RAM) looks as follows:

e 32 Kb

< 0 Kb

Fig 5: Physical memory of 32 KB

[55]

Virtual Memory Chapter 2

Still, the promise made by the system to every process alive: every single process will
have available to it the entire virtual address space, that is, 64 KB. Sounds absurd,
right? Yes, until one realizes that memory is more than just RAM; in fact, memory is
viewed as a hierarchy — what's commonly referred to as the memory pyramid:

} A&
Speed

Swap

Size

Fig 6: The Memory pyramid

As with life, everything's a trade-off. Toward the apex of the pyramid, we gain in
Speed at the cost of size; toward the bottom of the pyramid, it's inverted: Size at the
cost of speed. One could also consider CPU registers to be at the very apex of the
pyramid; as its size is almost insignificant, it has not been shown.

Swap is a filesystem type — a raw disk partition is formatted as swap
upon system installation. It's treated as second-level RAM by the
OS. When the OS runs out of RAM, it uses swap. As a rough
heuristic, system administrators sometimes configure the size of the
swap partition to be twice that of available RAM.

[56]

Virtual Memory

Chapter 2

To help quantify this, according to Computer Architecture, A Quantitative Approach, 5th

Ed, by Hennessy & Patterson, fairly typical numbers follow:

Type CPU registers CPU caches RAM Swap/storage
L1 [L2 L3
Server 1000 bytes |64 KB|256 KB |2 -4 MB 4-16 GB 4-16TB
300 ps Ins |3-10ns [10-20ns 50-100ns |5-10ms
Embedded 500 bytes 64 KB[256 KB |- 256 - 512 MB|4 - 8 GB Flash
500 ps 2ns |10 - 20 ns|- 50-100ns |25-50us

Table 2: Memory hierarchy numbers

Many (if not most) embedded Linux systems do not support a swap
partition; the reason is straightforward: embedded systems mostly
use flash memory as the secondary storage medium (not a
traditional SCSI disk as do laptops, desktops, and servers). Writing
to a flash chip wears it out (it has limited erase-write cycles); hence,
embedded-system designers would rather sacrifice swap and just
use RAM. (Please note that the embedded system can still be VM-
based, which is the usual case with Linux and Win-CE, for example).

The OS will do its best to keep the working set of pages as high up the pyramid as is
possible, optimizing performance.

It's important for the reader to note that, in the sections that follow,
while this book attempts to explain some of the inner workings of
advanced topics such as VM and addressing (paging), we quite
deliberately do not paint a complete, realistic, real-world view.

The reason is straightforward: the deep and gory technical details
are well beyond the scope of this book. So, the reader should keep in
mind that several of the following areas are explained in concept
and not in actuality. The Further reading section provides references
for readers who are interested in going deeper into these matters.
Refer it on the GitHub repository.

[57]

Virtual Memory Chapter 2

Addressing 1 - the simplistic flawed approach

Okay, now to the memory pyramid; even if we agree that virtual memory is now a
possibility, a key and difficult hurdle to overcome remains. To explain this, note that
every single process that is alive will occupy the entire available virtual address
space (VAS). Thus, each process overlaps with every other process in terms of VAS.
But how would this work? It wouldn't, by itself. In order for this elaborate scheme to
work, the system has to somehow map every virtual address in every process to a
physical address! Refer to the following mapping of virtual address to physical
address:

Process P:virtual address (va) - RAM:physical address (pa)

So, the situation is something like this now:

Pl:val P2:va2 Pn:vaz
FProcess FP1 FProcess P2 Process Pn
aEEn
D Pl:val D P2:val D Pn:val
RAM

Fig 7: Processes containing virtual addresses

[58]

Virtual Memory Chapter 2

Processes P1, P2, and Pn, are alive and well in VM. Their virtual address spaces cover
0 to 64 KB and overlap each other. Physical memory, RAM, of 32 KB is present on this
(fictional) system.

As an example, two virtual addresses for each process are shown in the following
format:

P'r':va'n'; where r is the process number and n is 1 and 2.

As mentioned earlier, the key now is to map each process's virtual addresses to
physical addresses. So, we need to map the following;:

Pl:val
Pl:va2

— Pl:pal
— Pl:pa2
P2:val
P2:va2

P2:pal
P2:pa2

1l

Pn:val
Pn:va2

Pn:pal
Pn:pa2

1l

[59]

Virtual Memory Chapter 2

We could have the OS perform this mapping; the OS would then maintain a mapping
table per process to do so. Diagrammatically and conceptually it looks as follows:

Piva2 [_| P2:va2 /j P2:va2

Process P1 Process P2 e Process Pn

Plval ? Pl:val Pl:val

RAM
I:L| P1:pa2 Pn:pa2
P2:pa2
P1:pal P2:pal Pn:pal

Fig 8: Direct mapping virtual addresses to physical RAM addresses

So that's it, then? Seems quite simple, actually. Well, no, it won't work in reality: to
map all the possible virtual addresses per process to physical addresses in RAM, the
OS would need to maintain a va-to-pa translation entry per address per process!
That's too expensive, as each table would possibly exceed the size of physical
memory, rendering the scheme useless.

A quick calculation reveals that we have 64KB virtual memory, that is, 65,536 bytes or
addresses. Each of these virtual addresses need to be mapped to a physical address.
So each process would require:

® 65536 * 2 =131072 = 128 KB, for a mapping table. per process.

[60]

Virtual Memory Chapter 2

It gets worse in reality; the OS would need to store some metadata along with each
address-translation entry; let's say 8 bytes of metadata. So now, each process would
require:

e 65536 * 2 * 8 =1048576 = 1 MB, for a mapping table. per process.

Wow, 1 megabyte of RAM per process! That's far too much (think of an embedded
system); also, on our fictional system, there's a total of 32 KB of RAM. Whoops.

Okay, we can reduce this overhead by not mapping each byte but mapping each
word; say, 4 bytes to a word. So now, each process would require:

e (65536 *2*8) /4 =262144 = 256 KB, for a mapping table. per process.

Better, but not good enough. If there are just 20 processes alive, we'd require 5 MB of
physical memory to store just the mapping metadata. With 32 KB of RAM, we can't
do that.

Addressing 2 - paging in brief

To address (pun intended) this tricky issue, computer scientists came up with a
solution: do not attempt to map individual virtual bytes (or even words) to their
physical counterpart; it's far too expensive. Instead, carve up both physical and
virtual memory space into blocks and map them.

A bit simplistically, there are broadly two ways to do this:

e Hardware-segmentation
¢ Hardware-paging

Hardware-segmentation: Carves up the virtual and physical address space into
arbitrary-sized chunks called segments. The best example is Intel 32-bit processors.

Hardware-paging: Carves up the virtual and physical address space into equal-sized
chunks called pages. Most real-world processors support hardware-paging, including
Intel, ARM, PPC, and MIPS.

Actually it's not even up to the OS developer to select which scheme to use: the choice
is dictated by the hardware MMU.

[61]

Virtual Memory Chapter 2

scope of this book. See the Further reading section on the GitHub
repository.

0 Again, we remind the reader: the intricate details are beyond the

Let's assume we go with the paging technique. The key takeaway is that we stop
attempting to map all possible virtual addresses per process to physical addresses in
RAM, instead, we map virtual pages (just called pages) to physical pages (called page
frames).

Common Terminology

virtual address space : VAS
Virtual page within the process VAS : page
Physical page in RAM : page frame (pf)

Does NOT work: virtual address (va) — physical address (pa)
0 Does work: (virtual) page — page frame
As a rule of thumb (and the generally accepted norm), the size of a page is 4 kilobytes

(4,096 bytes). Again, it's the processor Memory Management Unit (MMU) that
dictates the page size.

The left-to-right arrow represents the mapping.

So how and why does this scheme help?

Think about it for a moment; in our fictional machine, we've got: 64 KB of VM, that is,
64K/4K = 16 pages, and 32 KB of RAM, that is, 32K/4K = 8 page frames.

Mapping 16 pages to corresponding page frames requires a table of only 16 entries
per process; this is viable!

As in our earlier calculations:
16 * 2 * 8 = 256 bytes, for a mapping table per process.

The very important thing, it bears repeating: we map (virtual) pages to (physical)
page frames!

[62]

Virtual Memory Chapter 2

This is done by the OS on a per-process basis. Thus, each process has its own
mapping table that translates pages to page frames at runtime; it's commonly called
the Paging Table (PT):

PLp2 [] P2:p2 /] Pn:p2

Process P1 Process P2 e Process Pn
Legend

P1:pl ? EKDQ:pl }j Pn:pl
—— mapping

RAM [] =virtual page (p)
M ripr Pn:pa2 B =page frame (o)
P2:pa2
P1:pfl P2:pal Pn:pal

Mapping :: p — pf

Fig 9: Mapping (virtual) pages to (physical) page frames

Paging tables — simplified
Again, in our fictional machine, we've got: 64 KB of VM, that is, 64K/4K = 16 pages,
and 32 KB of RAM, that is, 32K/4K = 8 page frames.

Mapping the 16 (virtual) pages to corresponding (physical) page frames requires a
table of only 16 entries per process, which makes the whole deal viable.

[63]

Virtual Memory Chapter 2

Very simplistically, the OS-created PT of a single process look as follows:

(Virtual) page (Physical) page frame
0 3

1 2

2 5

[...] [...]

15 6

Table 3: OS-created PT

Of course, the astute reader will notice that we have a problem: we've got 16 pages
and just eight page frames to map them into — what about the remaining eight pages?

Well, consider this:

e In reality, every process will not use every available page for code or data
or whatever; several regions of the virtual address space will remain empty
(sparse),

¢ Even if we do require it, we have a way: don't forget the memory pyramid.
When we're out of RAM, we use swap. So the (conceptual) PT for a process
might appear like this (as an example, pages 13 and 14 are residing in

swap):
(Virtual) page (Physical) page frame
0 3
1 2
2 5
[...] [...]
13 <swap—-address>
14 <swap—address>
15 6

Table 4: Conceptual PT

Again, please note that this description of PTs is purely conceptual;

actual PTs are more complex and highly arch (CPU/MMU)
dependent.

[64]

Virtual Memory Chapter 2

Indirection

By introducing paging, we have actually introduced a level of indirection: we no
longer think of a (virtual) address as an absolute offset from zero, but rather as a
relative quantity: va = (page, offset).

We think of each virtual address as associated with a page number and an offset from
the beginning of that page. This is called using one level of indirection.

So each time a process refers to a virtual address (and of course, note that this is
happening almost all of the time), the system must translate the virtual address to the
corresponding physical address based on the PTs for that process.

Address-translation

So, at runtime, the process looks up a virtual address which is, say, 9,192 bytes from 0,
that is, its virtual address: va = 9192 = 0x000023E8. If each page is 4,096 bytes in
size, this implies the va address is on the third page (page #2), at an offset of 1,000
bytes from the start of that page.

So, with one level of indirection, we have: va = (page, offset) = (2, 1000).

Aha! Now we can see how address-translation works: the OS sees that the process
wants an address in page 2. It does a lookup on the PT for that process, and finds that
page 2 maps to page frame 5. To calculate the physical address shown as follows:

pa = (pf * PAGE_SIZE) + offset
= (5 * 4096) + 1000
= 21480 = 0x000053ES8
Voila!

The system now places the physical address on the bus and the CPU performs its
work as usual. It looks quite simple, but again, it's not realistic—please see the
information box as follows as well.

Another advantage gained by the paging schema is the OS only needs to store a page-
to-page-frame mapping. This automatically lets us translate any byte in the page to
the corresponding physical byte in the page frame by just adding the offset, as there is
a 1:1 mapping between a page and a page frame (both are of identical size).

[65]

Virtual Memory Chapter 2

In reality, it's not the OS that does the actual calculations to perform
address-translation. This is because doing this in the software would
be far too slow (remember, looking up virtual addresses is an
ongoing activity happening almost all the time). The reality is that
the address lookup and translation is done by silicon — the

hardware Memory Management Unit (MMU) within the CPU!

Keep the following in mind:
* The OS is responsible for creating and maintaining PTs for each

process.

* The MMU is responsible for performing runtime
address-translation (using the OS PTs).

* Beyond this, modern hardware supports hardware accelerators,
such as the TLB, use of CPU caches, and virtualization extensions,
which go a long way toward getting decent performance.

Benefits of using VM

At first glance, the sheer overhead introduced due to virtual memory and the
associated address-translation would seem to warrant not using it. Yes, the overhead
is high, but the reality is given as follows:

* Modern hardware-acceleration (via TLBs/CPU caches/prefetching)
mitigates this overhead and provides decent enough performance

¢ The benefits one derives from VM outweigh the performance issues
On a VM-based system, we get the following benefits:

¢ Process-isolation
¢ The programmer need not worry about physical memory
¢ Memory-region protection

It's important to understand these a bit better.

Process-isolation

With virtual memory, every process runs inside a sandbox, which is the extent of its
VAS. The key rule: it cannot look outside the box.

[66]

Virtual Memory Chapter 2

So, think about it, it's impossible for a process to peek or poke the memory of any
other process's VAS. This helps in making the system secure and stable.

Example: we have two processes, A and B. Process A wants to write to

the 0x10ea virtual address in process B. It cannot, even if it attempts to write to that
address, all it's really doing is writing to its own virtual address, 0x10ea! The same
goes for reading.

So we get process-isolation — each process is completely isolated from every other
process.

Virtual address X for process A is not the same as virtual address X for process B; in
all likelihood, they translate to different physical addresses (via their PTs).
Exploiting this property, the Android system is designed to very deliberately use the
process model for Android apps: when an Android app is launched, it becomes a
Linux process, which lives within its own VAS, isolated and thus protected from
other Android apps (processes)!

¢ Again, don't make the mistake of assuming that every single (virtual) page
within a given process is valid for that process itself. A page is only valid if
it's mapped, that is, it's been allocated and the OS has a valid translation for
it (or a way to get to it). In fact, and especially true for the enormous 64-bit
VAS, the process virtual address space is considered to be sparse, that is,
scanty.

e If process-isolation is as described, then what if process A needs to talk to
process B? Indeed, this is a frequent design requirement for many, if not
most, real Linux applications — we need some mechanism(s) to be able to
read/write the VAS of another process. Modern OSes provide mechanisms
to achieve this: Inter-Process Communication (IPC) mechanisms. (A little
on IPC can be found in chapter 15, Multithreading with Pthreads Part II -
Synchronization.)

The programmer need not worry about physical
memory

On older OSes and even modern RTOSes, the programmer is expected to understand
the memory layout of the entire system in detail and use memory accordingly (recall
Fig 1). Obviously, this places a major burden on the developer; they have to ensure
that they work well within the physical constraints of the system.

[67]

Virtual Memory Chapter 2

Most modern developers working on modern OSes never even think this way: if we
want, say, 512 Kb of memory, do we not just allocate it dynamically (with

malloc (3), seen later in detail in Chapter 4, Dynamic Memory Allocation), leaving the
precise details of how and where it's done to the library and OS layers? In fact, we can
do this kind of thing dozens of times and not worry about stuff such as, "Will there be
enough physical RAM? Which physical page frames should be used? What about
fragmentation/wastage?"

We get the added benefit that the memory returned to us by the system is guaranteed
to be contiguous; of course, it's just virtually contiguous, it need not be physically
contiguous, but that kind of detail is exactly what the VM layers take care of!

All is handled, really efficiently, by the library layer and the underlying memory-
management system in the OS.

Memory-region protection

Perhaps the most important benefit of VM is this: the ability to define protections on
virtual memory and have them honored by the OS.

Unix and friends (including Linux), allow four protection or permission values on
memory pages:

Protection or permission type Meaning

None No permission to do anything on the page
Read Page can be read from

Write Page can be written to

Execute Page (code) can be executed

Table 5: Protection or permission values on memory pages

Let's consider a small example: we allocate four pages of memory in our process
(numbered 0 to 3). By default, the default permission or protections on the pages is
RW (Read-Write), which means the pages can be both read from and written to.

[68]

Virtual Memory Chapter 2

With virtual memory OS-level support, the OS exposes APIs (the mmap (2) and
mprotect (2) system calls) with which one can change the default page
protections! Kindly take a look at the following table:

Memory page # Default protections Changed protections
0 RW- -none-

1 RW- Read-only (R--)

2 RW- Write-only (-W-)

3 RW- Read-Execute (R-X)

With powerful APIs such as this, we can set memory protections to the granularity of
a single page!

Applications (and indeed the OS) can, and do, leverage these powerful mechanisms;
in fact, that's precisely what is done on particular regions of process address space by
the OS (as we'll learn in the next section, SIDEBAR :: Testing the memcpy() 'C’" program).

Okay, fine, we can set certain protections on certain pages, but what if an application
disobeys them? For example, after setting page #3 (as seen in the preceding table) to
read-execute, what if the app (or OS) attempts to write to that page?

This is where the real power of virtual memory (and memory management) is seen:
the reality is that on a VM-enabled system, the OS — more realistically, the MMU - is
able to trap into every single memory access and determine whether the end user
process is obeying the rules or not. If it is, the access proceeds successfully; if not, the
MMU hardware raises an exception (similar, but not identical, to an interrupt). The
OS now jumps into a code routine called the exception (or fault) handler. The OSes
exception-handling routine determines whether the access is indeed illegal, and if so,
the OS immediately kills the process attempting this illegal access.

How's that for memory protection? In fact, this is pretty much exactly what a
Segmentation Violation or segfault is; more on this in chapter 12, Signaling - Part II.
The exception-handler routine is called the OSes fault-handler.

SIDEBAR :: Testing the memcpy() C program

Now that we better understand the what and why of a VM system, let's go back to the
buggy pseudocode example we considered at the beginning of this chapter: the case
where we used memcpy (3) to copy some memory but specified the wrong
destination address (and it would have overwritten the OS itself in our fictional
physical-memory-only system).

[69]

Virtual Memory Chapter 2

A conceptually similar C program, but which runs on Linux—a full-fledged virtual-
memory-enabled OS—is shown and tried out here. Let's see how the buggy program
works on Linux:

$ cat mem_applbuggy.c

/*
* mem_applbuggy.c

R S S R I R I I S I S R I I S S b S S I S b S b I b b S b S b 2 3

This program is part of the source code released for the book
"Linux System Programming"

(c) Kaiwan N Billimoria

Packt Publishers

From:
Ch 2 : Virtual Memory

R S B I S I R S I R S I b S I I S b I b S b b S b S b I Sh b b b S b b S

A simple demo to show that on Linux - full-fledged Virtual
Memory enabled OS - even a buggy app will _NOT_ cause system
failure; rather, the buggy process will be killed by the
kernel!

On the other hand, if we had run this or a similar program in a

flat purely

* physical address space based 0S, this seemingly trivial bug
* can wreak havoc, bringing the entire system down.

#define _GNU_SOURCE
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "../common.h"

int main(int argc, char **argv)

{

void *ptr = NULL;

void *dest, *src = "abcdef0123456789";

void *arbit_addr = (void *)0Oxffffffffff601000;
int n = strlen(src);

ptr = malloc (256 * 1024);
if (!ptr)
FATAL ("malloc (256*1024) failed\n");

if (argc == 1)

dest = ptr; /* correct */
else

dest = arbit_addr; /* bug! */

[70]

Virtual Memory Chapter 2

memcpy (dest, src, n);

free(ptr);
exit (0);
t

The malloc (3) API will be covered in detail in the next chapter; for now, just
understand that it is used to dynamically allocate 256 KB of memory to the process.
Also, of course, memcpy (3) is used to copy memory from a source to a destination
pointer, for n bytes:

void *memcpy (void *dest, const void *src, size_t n);

The interesting part is that we have a variable called arbit_addr; it's set to an
arbitrary invalid (virtual) address. As you can see from the code, we set the
destination pointer to arbit_addr when the user passes any argument to the
program, making it the buggy test case. Let's try running the program for both the
correct and buggy cases.

Here is the correct case:

$./mem_applbuggy
$

It runs fine, with no errors.

Here is the buggy case:

$./mem_applbuggy buggy-case pass—-params forcing-argc-to-not-be-1
Segmentation fault (core dumped)
$

It crashes! As described earlier, the buggy memcpy causes the MMU to fault; the OSes
fault-handling code realizes that this is indeed a bug and it kills the offending
process! The process dies because it's at fault, not the system. Not only is this correct,
the segfault caused also alerts the developer to the fact that their code is buggy and
must be fixed.

[71]

Virtual Memory Chapter 2

1. What's a core dump anyway?

A core dump is a snapshot of certain dynamic regions (segments) of
the process at the time it crashed (technically, it's a snapshot of
minimally the data and stack segments). The core dump can be
analyzed postmortem using debuggers such as GDB. We do not
cover these areas in this book.

2. Hey, it says (core dumped) but I don't see any core file?

Well, there can be several reasons why the core file isn't present; the
details lie beyond the scope of this book. Please refer to the man
page on core (5) for details: https://linux.die.net/man/5/core.

Think about what has happened here in a bit more detail: the destination pointer's
value is OxffffEEEf£££601000; on the x86_64 processor, this is actually a kernel
virtual address. Now we, a user mode process, are trying to write some memory to
this destination region, which is protected against access from userspace. Technically,
it's in the kernel virtual address space, which is not available to user mode processes
(recall our discussion of CPU privilege levels in Chapter 1, Linux System Architecture).
So when we — a user mode process — attempt to write to kernel virtual address space,
the protection mechanism spins up and prevents us from doing this, killing us in the
bargain.

Advanced: How does the system know that this region is protected and what kind of
protection it has? These details are encoded into the Paging Table Entry (PTEs) for
the process, and are checked by the MMU on every access!

This kind of advanced memory protection would be impossible without support in
both hardware and software:

e Hardware support via the MMU found in all modern microprocessors
¢ Software support via the operating system

There are many more benefits that VM provides, including (but not limited to)
making powerful technologies, such as demand paging, copy-on-write (COW)
handling, defragmentation, memory overcommit, memory-compaction, Kernel
Samepage Merging (KSM), and Transcendent Memory (TM), possible. Within this
book's scope, we will cover a couple of these at later points.

[72]

https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core

Virtual Memory Chapter 2

Process memory layout

A process is an instance of a program in execution. It is seen as a live, runtime
schedulable entity by the OS. In other words, it's the process that runs when we
launch a program.

The OS, or kernel, stores metadata about the process in a data structure in kernel
memory; on Linux, this structure is often called the process descriptor—though the
term task structure is a more accurate one. Process attributes are stored in the task
structure; the process PID (process identifier) — a unique integer identifying the
process, process credentials, open-file information, signaling information, and a
whole lot more, reside here.

From the earlier discussion, Virtual memory, we understand that a process has, among
many other attributes, a VAS. The VAS is the sum-total space potentially available to
it. As in our earlier example, with a fictional computer with 16 address lines, the VAS
per process would be 216 = 64 KB.

Now, let's consider a more realistic system: a 32-bit CPU with 32 lines for addressing.
Clearly, each process has a VAS of 2732, a fairly large quantity of 4 GB.

4 GB in hexadecimal format is 0x100000000; so the VAS spans from the low address
of 0x0 to the high address of 4GB - 1 = Oxffff ffff.

However, we have yet to learn more details (see the Advanced: VM split) regarding the
exact usage of the high end of the VAS. Therefore, for the time being at least, let's just
refer to this as the high address and not put a particular numerical value to it.

[73]

Virtual Memory Chapter 2

Here is its diagrammatic representation:

- High address

Process
VAS
(Virtual
Address
Space)

Low address: 0x0

o

Fig 10: Process virtual address space (VAS)

So, the thing to understand for now is that on a 32-bit Linux, every process alive has
this image:
0x0 to Oxffff ffff = 4 GB of virtual address space.

Segments or mappings

When a new process is created (details in chapter 10, Process Creation), its VAS must
be set up by the OS. All modern OSes divide up the process VAS into homogeneous
regions called segments (don't confuse these segments with the hardware-
segmentation approach mentioned in the, Addressing 2 —paging in brief section).

A segment is a homogeneous or uniform region of the process VAS; it consists of
virtual pages. The segment has attributes, such as start and end addresses, protections
(RWX/none), and mapping types. The key point for now: all pages belonging to a
segment share the same attributes.

Technically, and more accurately from the OS viewpoint, the segment is called a
mapping.

[74]

Virtual Memory Chapter 2

From now on, when we use the word segment, we also mean
mapping and vice versa.

Briefly, from the lower to high end, every Linux process will have the following
segments (or mappings):

e Text (code)

e Data
e Library (or other)
e Stack
= High address
Stack [rw-] N
| |
| |
n
Process
i VAS
Library (Virtual
Mappings Address
. Space)
|
|
Heap
Uninitialized Data [rw-]
Initialized
Text [rFx]
o Low address: 0x0

Fig 11: Overall view of the process VAS with segments

Read on for more details about each of these segments.

[75]

Virtual Memory Chapter 2

Text segment

Text is code: the actual opcodes and operands that make up the machine instructions
that are fed to the CPU to consume. Readers may recall the objdump --source
./hello_dbg we did in chapter 1, Linux System Architecture, showing C code
translated into assembly and machine language. This machine code resides within the
process VAS in a segment called text. For example, let's say a program has 32 KB of
text; when we run it, it becomes a process and the text segment takes 32 KB of virtual
memory; that's 32K/4K = 8 (virtual) pages.

For optimization and protection, the OS marks, that is, protects, all these eight pages
of text as read-execute (r-x). This makes sense: code will be read from memory and
executed by the CPU, not written to it.

The text segment on Linux is always toward the low end of the process VAS. Note
that it will never start at the 0x0 address.

As a typical example, on the IA-32, the text segment usually starts at
0x0804 8000. This is very arch-specific though and changes in the
presence of Linux security mechanisms like Address Space Layout
Randomization (ASLR).

Data segments

Immediately above the text segment is the data segment, which is the place where the
process holds the program's global and static variables (data).

Actually, it's not one mapping (segment); the data segment consists of three distinct
mappings. In order from the low address, it consists of: the initialized data segment,
the uninitialized data segment, and the heap segment.

We understand that, in a C program, uninitialized global and static variables are
automatically initialized to zero. What about initialized globals? The initialized data
segment is the region of address space where explicitly initialized global and static
variables are stored.

The uninitialized data segment is the region of address space where, of course,
uninitialized globals and static variables reside. The key point: these are implicitly
initialized to zero (they're actually memset to zero). Also, older literature often refers
to this region as the BSS. BSS is an old assembler directive — Block Started by

Symbol - that can be ignored; today, the BSS region or segment is nothing but the
uninitialized data segment of the process VAS.

[76]

Virtual Memory Chapter 2

The heap should be a term familiar to most C programmers; it refers to the memory
region reserved for dynamic memory allocations (and subsequent free's). Think of the
heap as a free gift of memory pages made available to the process at startup.

A key point: the text, initialized data, and uninitialized data segments are fixed in
size; the heap is a dynamic segment — it can grow or shrink in size at runtime. It's
important to note that the heap segment grows toward higher virtual

addresses. Further details on the heap and its usage can be found in the next chapter.

Library segments

When linking a program, we have two broad choices:

e Static linking
¢ Dynamic linking

Static linking implies that any and all library text (code) and data is saved within the
program's binary executable file (hence it's larger, and a bit faster to load up).

Dynamic linking implies that any and all shared library text (code) and data is not
saved within the program's binary executable file; instead, it is shared by all processes
and mapped into the process VAS at runtime (hence the binary executable is a lot
smaller, though it might take a bit longer to load up). Dynamic linking is always the
default.

Think about the Hello, world C program. You invoked printf (3), butdid you
write the code for it? No, of course not; we understand that it's within glibc and will
be linked into our process at runtime. That's exactly what happens with dynamic
linking: at process load time, all the library text and data segments that the program
depends upon (uses) are memory-mapped (details in chapter 18, Advanced File

1/0)into the process VAS. Where? In the region between the top of the heap and the
bottom of the stack: the library segments (refer to the preceding diagram).

Another thing: other mappings (besides library text and data) may find their way into
this region of address space. A typical case is explicit memory mappings made by the
developer (using the mmap (2) system call), implicit mappings such as those made by

IPC mechanisms, such as shared memory mappings, and the malloc routines (refer to
Chapter 4, Dynamic Memory Allocation).

[77]

Virtual Memory Chapter 2

Stack segment

This section explains the process stack: what, why, and how.

What is stack memory?

You probably remember being taught that stack memory is just memory but with a
special push/pop semantic; the memory you push last resides at the top of the stack,
and if you perform a pop operation, that memory gets popped off — removed from —
the stack.

The pedagogical example of visualizing a stack of dinner plates is a good one: the
plate you place last is at the top, and you take the top plate off to give it to your
dinner guest (of course, you could insist that you give them the plate from the middle
or bottom of the stack, but we think that the plate on the very top would be the easiest
one to pop off).

Some literature also refers to this push/pop behavior as Last In First Out (LIFO). Fair
enough.

The high end of the process VAS is used for the stack segment (refer to Fig 11). Okay,
fine, but what exactly is it for? How does it help?

Why a process stack?

We're taught to write nice modular code: divide your work into subroutines, and
implement them as small, easily readable, and maintainable C functions. That's great.

The CPU, though, does not really understand how to invoke a C function, how to
pass parameters, store local variables, and return a result to the calling function. Our
savior, the compiler, takes over, converting C code into an assembly language that is
capable of making this whole function thing work.

The compiler generates assembly code to invoke a function, passes along parameters,
allocates space for local variables, and finally, emits a return result back to the caller.
To do this, it uses the stack! So, similar to the heap, the stack is also a dynamic
segment.

Every time a function is called, memory is allocated in the stack region (or segment or
mapping) to hold metadata that has the function call, parameter passing and the
function return mechanism work. This metadata region for each function is called the
stack frame.

[78]

Virtual Memory Chapter 2

The stack frame holds the metadata necessary to implement the
function call-parameter use-return value mechanism. The exact
layout of a stack frame is highly CPU (and compiler) dependent; it's
one of the key areas addressed by the CPU ABI document.

On the IA-32 processor, the stack frame layout essentially is as
follows:

[<—— high address
[Function Parameters ...]
[RET address |
[Saved Frame Pointer] (optional)
[Local Variables ...]
] <—-— SP: lowest address

Consider some pseudocode:
bar() { jail();}
foo() { bar();}
main() { foo();}

The call graph is quite obvious:

main --> foo --> bar --> jail

The arrow drawn like --> means calls; so, main calls foo, and so on.

The thing to understand: every function invocation is represented at runtime by a
stack frame in the process's stack.

If the processor is issued a push or pop instruction, it will go ahead and perform it.
But, think about it, how does the CPU know where exactly — at which stack memory
location or address — it should push or pop memory? The answer: we reserve a
special CPU register, the stack pointer (usually abbreviated to SP), for precisely this
purpose: the value in SP always points to the top of the stack.

The next key point: the stack segment grows toward lower virtual addresses. This is
often referred to as stack-grows-down semantics. Also note that the direction of stack
growth is a CPU-specific feature dictated by the ABI for that CPU; most modern
CPUs (including Intel, ARM, PPC, Alpha, and Sun SPARC) follow the stack-grows-
down semantic.

[79]

Virtual Memory Chapter 2

The SP always points to the top of the stack; as we use a downward-growing stack,
this is the lowest virtual address on the stack!

For clarity, let's check out a diagram that visualizes the process stack just after the call
tomain () (main () isinvoked by a __libc_start_main () glibc routine):

-~ High address
il

Stack frame of
__libc_start_main Stack Segment

Stack frame of main

-~ SP: Lowest stack address

-

* Direction of stack growth

Figure 12: Process stack after main() is called

The process stack upon entry to the jail () function:

-~ High address
[

Stack frame of
_ libc_start_main Stack Segment

Stack frame of main

Stack frame of foo

Stack frame of bar

Stack frame of jail
| E SP: Lowest stack address
L |]

* Direction of stack growth

Figure 13: Process stack after jail() is called

[80]

Virtual Memory Chapter 2

Peeking at the stack

We can take a peek into the process stack (technically, the stack of main ())in
different ways. Here, we show two possibilities:

e Automatically via the gstack (1) utility
e Manually with the GDB debugger

Peek at the usermode stack, first, via gstack (1):

WARNING! Ubuntu users, you might face an issue here. At the time
of writing (Ubuntu 18.04), gstack does not seem to be available for
Ubuntu (and its alternative, pstack, does not work well either!).
Please use the second method (via GDB), as follows.

As a quick example, we look up the stack of bash (the parameter is the PID of the
process):

$ gstack 14654

#0 0x00007f3539ece7ea in waitpid () from /1ib64/libc.so.6
#1 0x000056474b4b41d9 in waitchld.isra ()

#2 0x000056474b4b595d in wait_for ()

#3 0x000056474b4a5033 in execute_command_internal ()

#4 0x000056474b4a52c2 in execute_command ()

#5 0x000056474b48£f252 in reader_loop ()

#6 0x000056474b48dd32 in main ()

$

The stack frame number appears on the left preceded by the # symbol; note that
frame #0 is the top of the stack, (the lowest frame). Read the stack in a bottom-up
fashion, that is, from frame #6 (the frame for the main () function) up to frame #0 (the
frame for the waitpid () function). Also note that, if the process is multithreaded,
gstack will show the stack of each thread.

Peek at the Usermode Stack, next, via GDB.

The GNU Debugger (GDB) is a renowned, very powerful debug tool (if you don't
already use it, we highly recommend you learn how to; check out the link in the
Further reading section). Here, we'll use GDB to attach to a process and, once attached,
peek at its process stack.

[81]

Virtual Memory Chapter 2

A small test C program, that makes several nested function calls, will serve as a good
example. Essentially, the call graph will look as follows:

main() —--> foo() —--> bar() --> bar_is_now_closed() --> pause()

The pause (2) system call is a great example of a blocking call — it puts the calling
process to sleep, waiting (or blocking) on an event; the event it's blocking upon here is
the delivery of any signal to the process. (Patience; we'll learn more in Chapter 11,
Signaling - Part I, and Chapter 12, Signaling - Part II).

Here is the relevant code (ch2/stacker.c):

static void bar_is_now_closed (void)
{
printf ("In function %$s\n"
"\t (bye, pl go '~/' now).\n", _ FUNCTION_);
printf ("\n Now blocking on pause()...\n"
" Connect via GDB's 'attach' and then issue the 'bt' command"
" to view the process stack\n");
pause(); /*process blocks here until it receives a signal */
t
static void bar (void)
{
printf ("In function %s\n", _ FUNCTION_);
bar_is_now_closed();
t
static void foo (void)
{
printf ("In function %s\n", _ FUNCTION_);
bar();
t
int main(int argc, char **argv)
{
printf ("In function %s\n", _ FUNCTION_);
foo();
exit (EXIT_SUCCESS);
t

Note that, for GDB to see the symbols (names of functions, variables, line numbers),
one must compile the code with the —g switch (produces debug information).

[82]

Virtual Memory Chapter 2

Now, we run the process in the background:

$./stacker_dbg &

[2] 28957
In function main
In function foo
In function bar
In function bar_is_now_closed

(bye, pl go '~/' now).

Now blocking on pause()...

Connect via GDB's 'attach' and then issue the 'bt' command to view
the process stack

$

Next, open GDB; within GDB, attach to the process (the PID is displayed in the
preceding code), and view its stack with the backtrace (bt) command:

$ gdb --quiet

(gdb) attach 28957 # parameter to 'attach' is the PID of the process
to attach to

Attaching to process 28957

Reading symbols from <...>/Hands-on-System-Programming-with-
Linux/ch2/stacker_dbg. . .done.

Reading symbols from /1ib64/libc.so.6...Reading symbols from
/usr/lib/debug/usr/1ib64/1libc-2.26.so0.debug. . .done.

done.

Reading symbols from /1ib64/1d-linux-x86-64.s0.2...Reading symbols
from /usr/lib/debug/usr/1ib64/1d-2.26.so0.debug. . .done.

done.

0x00007£fce204143bl in _ libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:30

30 return SYSCALL_CANCEL (pause);

(gdb) bt

#0 0x00007fce204143bl in _ libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:30

#1 0x00000000004007ce in bar_is_now_closed () at stacker.c:31
#2 0x00000000004007ee in bar () at stacker.c:36

#3 0x000000000040080e in foo () at stacker.c:41

#4 0x0000000000400839 in main (argc=1l, argv=0x7ffca9ac5£ff8) at
stacker.c:47

(gdb)

On Ubuntu, due to security, GDB will not allow one to attach to any
process; one can overcome this by running GDB as root; then it
works well.

[83]

Virtual Memory

Chapter 2

How about looking up the same process via gstack (at the time of writing, Ubuntu
users, you're out of luck). Here it is on a Fedora 27 box:

$ gstack 28957

#0 0x00007fce204143bl in __ libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:30

#1 0x00000000004007ce
#2 0x00000000004007ee
#3 0x000000000040080e
#4 0x0000000000400839
stacker.c:47

$

in
in
in
in

bar_is_now_closed () at stacker.c:31
bar () at stacker.c:36
foo () at stacker.c:41
main (argc=1l, argv=0x7ffca9ac5ff8) at

Guess what? It turns out that gstack is really a wrapper shell script
that invokes GDB in a non-interactive fashion and it issues the very
same backtrace command we just used!

As a quick learning exercise, check out the gstack script.

Advanced - the VM split

What we have seen so far is actually not the complete picture; in reality, this address
space needs to be shared between user and kernel space.

This section is considered advanced. We leave it to the reader to
decide whether to dive into the details that follow. While they're
very useful, especially from a debug viewpoint, it's not strictly
required for following the rest of this book.

Recall what we mentioned in the Library segments section: if a Hello, world
application is to work, it needs to have a mapping to the printf (3) glibc routine.
This is achieved by having the dynamic or shared libraries memory-mapped into the
process VAS at runtime (by the loader program).

[84]

Virtual Memory Chapter 2

A similar argument could be made for any and every system call issued by the
process: we understood from Chapter 1, Linux System Architecture, that the system
call code is actually within the kernel address space. Thus, if issuing a system call
were to succeed, we would need to re-vector the CPU's Instruction Pointer (IP or PC
register) to the address of the system call code, which, of course, is within kernel
address space. Now, if the process VAS consists of just text, data, library, and stack
segments, as we have been so far suggesting, how would it work? Recall the
fundamental rule of virtual memory: you cannot look outside the box (available
address space).

In order for this whole scheme to succeed, therefore, even kernel virtual address
space—yes, please note, even the kernel address space is considered virtual — must
somehow be mapped into the process VAS.

As we saw earlier, on a 32-bit system, the total VAS available to a process is 4 GB. So
far, the implicit assumption is that the top of the process VAS on 32-bit is therefore 4
GB. That's right. As well, again, the implicit assumption is that the stack segment
(consisting of stack frames) lies here—at the 4 GB point at the top. Well, that's
incorrect (please refer to Fig 11).

The reality is this: the OS creates the process VAS, and arranges for the segments
within it; however, it reserves some amount of virtual memory at the top end for the
kernel or OS-mapping (meaning, the kernel code, data structures, stacks, and drivers).
By the way, this segment, which contains kernel code and data, is usually referred to
as the kernel segment.

How much VM is kept for the kernel segment? Ah, that's a tunable or a configurable
that is set by kernel developers (or the system administrator) at kernel-configuration
time; it's called VMSPLIT. This is the point in the VAS where we split the address
space between the OS kernel and user mode memory — the text, data, library, and
stack segments!

[85]

Virtual Memory

Chapter 2

In fact, for clarity, let's reproduce Fig 11 (as Fig 14), but this time, explicitly reveal the

VM Split:

Library
Mapping

{

Kemel Segment

High address

Stack [rw-]

v

+--

Heap

Uninitialized

Initialized

Text [r-x]

................................. et

"Splitting" point

Process
VAS
(Virtual
Address
Space)

}Data [rw-]

h

................................ —

Low address: 0x0

Kernel Space

User Space

Figure 14: The process VM Split

Let's not get into the gory details here: suffice it to say that on an IA-32 (Intel x86 32-
bit), the splitting point is typically the 3 GB point. So, we have a ratio: userspace VAS :

kernel VAS :: 3GB:1GB

; on the IA-32.

Remember, this is tunable. On other systems, such as a typical ARM-32 platform, the
split might be like this instead: userspace VAS : kernel VAS :: 2 GB:2 GB ; on the

ARM-32.

[86]

Virtual Memory Chapter 2

On an x86_64 with a gargantuan 2764 VAS (that's a mind-boggling 16 Exabytes!), it
would be: userspace VAS : kernel VAS :: 128 TB : 128 TB ; on the x86_64.

Now one can clearly see why we use the term monolithic to describe the Linux OS
architecture — each process is indeed like a single, large piece of stone!

Each process contains both of the following:

e Userspace mappings

Text (code)
Data

o Initialized data
¢ Uninitialized data (BSS)
e Heap

Library mappings

Other mappings
e Stack

¢ Kernel segments

Every process alive maps into the kernel VAS (or kernel segment, as it's usually
called), in its top end.

This is a crucial point. Let's look at a real-world case: on the Intel IA-32 running the
Linux OS, the default value of vMSPLIT is 3 GB (which is 0xc0000000). Thus, on this
processor, the VM layout for each process is as follows:

* 0x0 to Oxbfffffff : userspace mappings, that is, text, data, library and stack.
e 0xc0000000 to Oxffffffff : kernel space or the kernel segment.

[87]

Virtual Memory Chapter 2
This is made clear in the following diagram:
OxfEFEEEET
Kernel Segment Kernel Space
OXDELELLET
Stack [rw-] Stack [rw-] Stack [rw-]
. : .
] .]
Library mappings Library mappings Library mappings
Process Process s 2 Process User Space
P1 P2 P'n'

i

Heap

Uninitialized

Initialized

Text [r-x]

*

Heap

Uninitialized

Initialized

Text [rFx]

*

Heap

Uninitialized

Initialized

Text [rx]

Fig 15: Full process VAS on the IA-32

Notice how the top gigabyte of VAS for every process is the same — the kernel
segment. Also keep in mind that this layout is not the same on all systems — the
VMSPLIT and the size of user and kernel segments varies with the CPU architecture.

Since Linux 3.3 and especially 3.10 (kernel versions, of course), Linux supports

the prctl (2) system call. Looking up its man page reveals all kinds of interesting,
though non-portable (Linux-only), things one could do. For example, prct1 (2), used
with the PR_SET_MM parameter, lets a process (with root privileges) essentially
specify its VAS layout, its segments, in terms of start and end virtual addresses for
text, data, heap, and stack. This is certainly not required for normal applications.

[88]

Virtual Memory Chapter 2

Summary

This chapter delved into an explanation of VM concepts, why VM matters, and its
many benefits to modern operating systems and the applications running on them.
We then covered the layout of the process virtual address space on the Linux OS,
including some information on the text, (multiple) data, and stack segments. The true
reasons for the stack, and its layout, were covered as well.

In the next chapter, the reader will learn about per-process resource limits: why they
are required, how they work, and of course, the programmer interfaces required to
work with them.

[89]

Resource Limits

In this chapter, we will look at per-process resource limits—what they are, and why
we require them. We will go on to describe the granularity and the types of resource
limits, distinguishing between soft and hard limits. Details on how a user (or system
administrator) can query and set the per-process resource limits using appropriate
CLI frontends (ulimit, prlimit) will be covered.

The programming interfaces (APIs)—practically speaking, the key prlimit (2)
system call API—will be covered in detail. Two detailed code examples, querying the
limits and setting a limit on CPU usage, will give the reader hands-on experience of
working with resource limits.

In this chapter, with regard to resource limits, we will cover the following topics:

¢ Necessity

e Granularity

e Types—soft and hard

¢ The resource limits APIs, with example code

Resource limits

A common hack is the (Distributed) denial-of-service ((D)DoS) attack. Here, the
malicious attacker attempts to consume, indeed overload, resources on the target
system to such an extent that the system either crashes, or at the very least, becomes
completely unresponsive (hung).

Interestingly, on an untuned system, performing this type of attack is quite easy; as
an example, let's imagine we have shell access (not root, of course, but as a regular
user) on a server. We could attempt to have it run out of disk space (or at least run
short) quite easily by manipulating the ubiquitous dd (1) (disk dump) command.
One use of dd is to create files of arbitrary lengths.

Resource Limits Chapter 3

For example, to create a 1 GB file filled with random content, we could do the
following;:

$ dd if=/dev/urandom of=tst count=1024 bs=1M

1024+0 records in

1024+0 records out

1073741824 bytes (1.1 GB, 1.0 GiB) copied, 15.2602 s, 70.4 MB/s
$ 1s -1h tst

-rw—-rw-r—— 1 kai kai 1.0G Jan 4 12:19 tst

$

What if we bump the blocksize (bs) value to 1G, like this:

dd if=/dev/urandom of=tst count=1024 bs=1G

dd will now attempt to create a file that is 1,024 GB—a terabyte—in size! What if we
run this line (in a script) in a loop? You get the idea.

To control resource-usage, Unix (including Linux) has a resource limit, that is, an
artificial limit imposed upon a resource by the OS.

A point to be clear on from the very beginning: these resource limits are on a per-
process basis and not system-wide globals—more on this in the next section.

Before diving into more detail, let's continue with our hack example to eat up a
system's disk space, but this time with the resource limit for the maximum size of a
file set in place beforehand.

The frontend command to view and set resource limits is a built-in shell command
(these commands are called bash-builtins): ulimit. To query the maximum possible
size of files written to by the shell process (and its children), we set the - £ option
switch to ulimit:

$ ulimit -f
unlimited

$

Okay, it's unlimited. Really? No, unlimited only implies that there is no particular
limit imposed by the OS. Of course it's finite, limited by the actual available disk
space on the box.

[91]

Resource Limits Chapter 3

Let's set a limit on the maximum file size, simply by passing the - £ option switch and
the actual limit. But what's the unit of the size? bytes, KB, MB? Let's look up its man
page: by the way, the man page for ulimit is the man page for bash (1). This is
logical, as ulimit is a built-in shell command. Once in the bash (1) man page, search
for ulimit; the manual informs us that the unit (by default) is 1,024-byte increments.
Thus, 2 implies 1,024*2 = 2,048 bytes. Alternatively, to get some help on ulimit, just
type help ulimit on the shell.

So, let's try this: reduce the file size resource limit to just 2,048 bytes and then test
with da:

ulimit -f
unlimited

ulimit - 2

ulimit -f

2
dd if=/dev/urandom of=tst count=20848 bs=1

204840 records in

2048+0 records out

2048 bytes (2.0 kB, 2.0 KiB) copied, ©.00688134 s, 298 kB/s
dd if=/dev/urandom of=tst count=2849 bs=1

File size limit exceeded {(core dumped)

Figure 1: A simple test case with ulimit -f

As can be seen from the preceding screenshot, we reduce the file size resource limit to
2, implying 2,048 bytes, and then test with dd. As long as we create a file at or below
2,048 bytes, it works; the moment we attempt to go beyond the limit, it fails.

As an aside, note that dd does not attempt to use some clever logic to
test the resource limit, displaying an error if it were to attempt to
create a file over this limit. No, it just fails. Recall from chapter 1,
Linux System Architecture, the Unix philosophy principle: provide
mechanisms, not policies!

Granularity of resource limits

In the previous example with dd (1), we saw that we can indeed impose a limit upon
the maximum file size. An important question arises: what is the scope or granularity
of the resource limit? Is it system-wide?

[92]

Resource Limits Chapter 3

The short answer: no, it's not system-wide, it's process-wide, implying that the resource
limits apply at the granularity of a process and not the system. To clarify this,
consider two shells—nothing but the bash process—shell A and shell B. We modify
the maximum file-size resource limit for shell A (with the usual ulimit -f <new-
limit> command), but leave the resource limit for maximum file size for shell B
untouched. If now they both use dd (as we did), we would find that the dd process
invoked within shell A would likely die with the 'File size limit exceeded
(core dumped) ' failure message, whereas the dd process invoked within shell B
would likely continue and succeed (provided, of course, there's sufficient disk space
available).

This simple experiment proves that the granularity of a resource limit is per process.

When we delve into the inner details of multithreading, we'll revisit
the granularity of resource limits and how they apply to individual
threads. For the impatient, all resource limits-except for the stack
size are shared by all threads within the process

Resource types

So far, we've only checked out the maximum file size resource limit; are there not
others? Yes, indeed, there are several others.

Available resource limits

The following table enumerates the available resource limits on a typical Linux
system (alphabetically ordered by the ulimit option switch column):

ulimit
Resource limit option Default value(Unit
switch
max core file size -C unlimited |KB
max data segment size -d unlimited [KB
max scheduling priority (nice) -e 0 Unscaled
max file size -f unlimited |KB
max (real-time) pending signals -i <varies> |Unscaled
max locked memory -1 <varies> |KB
max memory size -m unlimited [KB
max open files -n 1024 Unscaled

[93]

Resource Limits

Chapter 3

max pipe size -P 8 51}bym
increments

max POSIX message queues -gq <varies> |Unscaled
max real-time scheduling priority |-r 0 Unscaled
max stack segment size -s 8192 KB

max CPU time -t unlimited |Seconds
max user processes -u <varies> |Unscaled
address space limitormax virtual —y unlimited kB
memory

max file locks held -X unlimited [Unscaled

There are a few points to note:

e At a glance, some of the resource limit meanings are quite obvious; several
may not be. Most of them are not explained here, some of them will be
touched upon in subsequent chapters.

¢ The second column is the option switch to pass to ulimit to display the
current value for the particular resource limit in that row; for
example, ulimit -s to print out the current value of the stack size
resource limit (unit: KB).

¢ The third column is Default value. This, of course, could vary across Linux
platforms. In particular, enterprise-class servers may tune their default
values to be much higher than, say, an embedded Linux system. Also, quite
often the default value is a calculation (based on, say, amount of RAM
installed on the box); hence, the entry <varies> in some cases. Also, as
mentioned earlier, unlimited does not mean infinite—it implies that no
artificial upper limit has been enforced.

¢ Regarding the fourth column, Unit, the (bash (1)) man page
(source: https://linux.die.net/man/1/bash) states the following:

[...] If limit is given, it is the new value of the specified
resource (the -a option is display only). If no option is
given, then -f is assumed. Values are in 1024-byte increments,
except for -t, which is in seconds, -p, which is in units of
512-byte blocks, and -T, -b, -n, and -u, which are unscaled
values. The return status is 0 unless an invalid option or
argument is supplied, or an error occurs while setting a new
limit. [...]

[94]

https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash

Resource Limits Chapter 3

Also, unscaled implies it's just a number.

One can display all resource limits via the —a option switch; we leave it to you to try
out the ulimit -a command.

Note that ulimit -a orders the resource limits alphabetically by option switch, just
as we did in the table.

Also, it's really important to understand that these resource limits are with respect to
a single process—the shell process (Bash)—that invoked the ulimit command.

Hard and soft limits

Unixes make a further distinction: in reality (under the hood), the resource limit for a
given type is not one number—it's two:

e A value for the hard limit
e A value for the soft limit

The hard limit is the true maximum; as a regular user, it's impossible to exceed this
limit. What if a process attempts this? Simple: it gets killed by the OS.

The soft limit, on the other hand, can be breached: in the case of some resource limits,
the process (that exceeds the soft limit) will be sent a signal by the kernel. Think of
this as a warning: you're nearing the limit kind of thing. Again, don't worry, we take a
deep dive into signaling in chapter 11, Signaling - Part I, and, chapter 12, Signaling -
Part I1. For example, if a process exceeds the soft limit for file size, the OS responds by
delivering the SIGXFSz signal—SIGnal: eXceeding FileSize—to it! Overstep
the soft limit for CPU and guess what? You will be the proud recipient of the
SIGXCPU signal.

Well, there's more to it: the man page on prlimit (2) shows

how, on Linux, with regard to the CPU limit, SIGKILL is sent after
multiple warnings via SIGXCPU. The right behavior: the application
should clean up and terminate upon receiving the first SIGXCPU
signal. We will look at signal-handling in chapter 11, Signaling —
Part 1!

[95]

Resource Limits Chapter 3

It's instructive to think of the hard limit as a ceiling value for the soft limit; in effect,
the range of the soft limit for a given resource is [0, hard-limit].

To view both the hard and soft limits on your shell process, use the -s and -H option
switches on ulimit, respectively. Here's the output of ulimit -a$s on our trusty
Fedora 28 desktop system:

$ ulimit -aSs

core file size (blocks, -c) unlimited
data seg size (kbytes, -d) unlimited
scheduling priority (-e) O

file size (blocks, —-f) unlimited
pending signals (-1) 63260

max locked memory (kbytes, -1) 64

max memory size (kbytes, -m) unlimited
open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, —-qg) 819200
real-time priority (-r) O

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited
max user processes (-u) 63260
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$

When we run ulimit with both the following:

e —as: Display all Soft resource limit values
e —aH: Display all Hard resource limit values

A question comes up: where exactly do the soft and hard limits (for the Bash process)
differ? Instead of trying to manually interpret it, let's use a super GUI frontend to
diff (well, it's more than just a diff frontend actually), called meld:

S ps

PID TTY TIME CMD
23843 pts/6 00:00:00 bash
29305 pts/6 00:00:00 ps
$

$ ulimit -aS > ulimit-aS.txt
$ ulimit -aH > ulimit-aH.txt
$ meld ulimit-aS.txt ulimit-aH.txt &

[96]

Resource Limits

Chapter 3

Screenshot of meld comparing the soft and hard limit resource values shown as

follows:
ulimit-aS.txt — ulimit-aH.txt - o x
File Edit Changes View
@ E Save Undo 7 [)
ulimit-aS.txt...ulimit-aH. txt
* ulimit-aS. txt = & ulimit-aH. txt =
core file size (blocks, -c) unlimited core file size (blocks, -c) unlimited
data seg size (kbytes, -d) unlimited data seg size (kbytes, -d) unlimited
scheduling priority (-e) @ scheduling priority (-e) @
file size (blocks, -f) unlimited file size (blocks, -f) unlimited
pending signals (-1) 63260 pending signals (-1) 63260
max locked memory (kbytes, -1) 64 max locked memory (kbytes, -1) 64
max memory size (kbytes, -m) unlimited max memory size (kbytes, -m) unlimited
D open files (-n) 1824 -» 4= open files (-n) 4096
pipe size (512 bytes, -p) 8 pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200 POSIX message queues (bytes, -q) 819200
real-time priority (-r) @ real-time priority (-r) e
D stack size (kbytes, -s) 8192 - 4= stack size (kbytes, -s) unlimited
cpu time (seconds, -t) unlimited cpu time (seconds, -t) unlimited
max User processes (-u) 63260 max user processes (-u) 63260
virtual memory (kbytes, -v) unlimited virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited file locks (-x) unlimited
Ln8, Coll INS

Figure 2: Screenshot showing meld comparing the soft and hard limit resource values

Note that we run ps; this is to reiterate the fact that the resource limit values we're
seeing / are with respect to it (PID 23843). So, meld clearly shows us that, by default
on a typical Linux system, only two resource limits differ in their soft and hard
values: the max open files (soft=1024, hard=4096), and max stack size (soft=8192 KB =
8 MB, hard=unlimited).

meld is extremely valuable to developers; we often use it to (peer-)
review code and make changes (merges via the right- and left-
pointing arrows). In fact, the powerful Git SCM uses me1d as one of
the available tools (with the git mergetool command). Install
meld on your Linux box using the appropriate package manager for
your distribution and try it out.

[971]

Resource Limits Chapter 3

Querying and changing resource limit values

We now understand that it's the kernel (the OS) that sets up resource limits per
process and tracks usage, even killing the process if necessary—if it attempts to
exceed a resource's hard limit. This raises the question: is there a way one can change
the soft and hard resource-limit values? We've already seen it in fact: ulimit. More
than that, though, the deeper question is: are we allowed to set any hard/soft limits?

The kernel has certain preset rules regarding the changing of a resource

limit. Querying or setting a process's resource limits can only be done by the calling
process upon itself or upon a process that it owns; more correctly, for any other
process besides itself, the process must have the CAP_sYS_RESOURCE capability bit set
(worry not, detailed coverage on process capabilities can be found in chapter 8,
Process Capabilities):

* Querying: Anyone can query the resource limits hard and soft (current)
values of the processes they own.
o Setting:
¢ A hard limit, once set, cannot be further increased (for that
session).
e A soft limit can be increased up to the hard limit value only,
that is, soft limit range = [0, hard-limit].
e When one sets the resource limit using ulimit, the system
internally sets both the hard and soft limits. This has important
consequences (see the preceding points).

Permissions for setting resource limits is given as follows:

e A privileged process (such as superuser/root/sysadmin, or one with
the aforementioned CAP_SYS_RESOURCE capability) can increase or
decrease both hard and soft limits.

¢ A non-privileged process (non-root):

¢ Can set the soft limit of a resource in the range [0, hard-limit]
for that resource.

e Can irreversibly decrease a resource's hard limit (once
reduced, it cannot ever increase it, but can only continue to
decrease it). More precisely, the hard limit can be decreased
to a value greater than or equal to the current soft limit.

[98]

Resource Limits Chapter 3

Every good rule has an exception: a non-privileged user can
decrease and/or increase the core file resource limit. This is usually to
allow developers to generate a core dump (which can be
subsequently analyzed via GDB).

A quick test case to demonstrate this is in order; let's manipulate the max open
files resource limit:

$ ulimit -n

1024

$ ulimit —-aS |grep "open files"

open files (-n) 1024
$ ulimit —aH |grep "open files"

open files (-n) 4096
$

$ ulimit -n 3000

$ ulimit —-aS |grep "open files"

open files (-n) 3000
$ ulimit —-aH |grep "open files"
open files (-n) 3000

$ ulimit -n 3001

bash: ulimit: open files: cannot modify limit: Operation not permitted
S ulimit -n 2000

$ ulimit -n

2000

$ ulimit —-aS |grep "open files"

open files (-n) 2000

$ ulimit —-aH |grep "open files"

open files (-n) 2000

S ulimit -n 3000

bash: ulimit: open files: cannot modify limit: Operation not permitted

$
The preceding command are explained as follows:

o The current soft limit is 1,024 (the default)
o The soft limit is 1,024, the hard limit is 4,096

e Using ulimit, we set the limit to 3,000; this, internally, has caused both the
soft and hard limits to be set to 3,000

e Attempting to set the value higher (to 3,001) fails

¢ Reducing the value (to 2,000) succeeds

¢ Realize though, that again, both the soft and hard limits have been set to
2,000

¢ Attempting to go back to a previously valid value fails (3,000); this is
because the valid range now is [0, 2,000]

[99]

Resource Limits Chapter 3

Testing this with root access is left as an exercise to the reader; see the Caveats section
that follows, though.

Caveats
Things to consider, and exceptions that apply:

e Even if one can, increasing a resource limit may do more harm than good;
think through what you are trying to achieve here. Put yourself in the
malicious-hacker mindset (recall (DDoS attacks). On both server class, as
well as on highly resource-constrained systems (often an embedded one),
setting resource limits appropriately can help mitigate risk.

e Setting a resource limit to a higher value requires root privilege. For
example: we wish to increase the max open files resource limit from 1,024
to 2,000. One would assume that using sudo should do the job. However,
at first surprisingly, something such as sudo ulimit -n 2000 will not
work! Why? Well, when you run it, sudo expects that ulimit is a binary
executable and thus searches for it in the PATH; but of course, that's not the
case: ulimit is a built-in shell command and thus fails to launch. So, try it
this way:

$ ulimit -n

1024

$ sudo bash -c "ulimit -n 2000 && exec ulimit —-n"
[sudo] password for kai: xxx

2000

$

Don't worry, if you don't fully understand why we use the exec in the preceding
snippet; the precise details regarding exec semantics will be covered in chapter 9,
Process Execution.

¢ Exception—you cannot seem to change the max pipe size resource limit.

Advanced: The default maximum pipe size is actually in
/proc/sys/fs/pipe-max-size and defaults to 1 MB (from Linux
2.6.35). What if the programmer must change the pipe size? To do
so, one could use the fcnt1 (2) system call, via the F_GETPIPE_SZ
and F_SETPIPE_SZz parameters. Refer to the fcntl(2) man page for
details.

[100]

Resource Limits Chapter 3

A quick note on the prlimit utility
Besides using ulimit, another frontend to querying and displaying resource limits is

the prlimit utility. prlimit differs from ulimit in the following ways:

¢ It's a newer, modern interface (Linux kernel version 2.6.36 onward)

e It can be used to modify limits as required and launch another program that
will inherit the new limits (a useful feature; see the following examples)

e It's a binary executable program in itself, not a built-in like ulimit is

Without any parameters, prlimit displays the resource limits of the calling process
(itself). One can optionally pass resource limit <name=value> pairs to set the same,
the PID of the process to query/set resource limits, or a command to be launched with
the newly set resource limits. Here is the synopsis from its man page:

prlimit [options] [--resource[=limits] [--pid PID]
prlimit [options] [--resource[=limits] command [argument...]

Note how the —-pid and command options are mutually exclusive.

Using prlimit(1) — examples
Example 1—querying limits:
$ prlimit

Output for the preceding command is as follows:

RESOURCE DESCRIPTION SOFT HARD UNITS
AS address space limit unlimited unlimited bytes
CORE max core file size 6 unlimited blocks
CPU CPU time unlimited unlimited seconds
DATA max data size unlimited unlimited bytes
FSIZE max file size 2048 2048 blocks
LOCKS max number of file locks held unlimited unlimited
MEMLOCK max locked-in-memory address space 65536 65536 bytes
MSGQUEUE max bytes in POSIX mgueues 819200 819200 bytes
NICE max nice prio allowed to raise 0] e
NOFILE max number of open files 2080 2000
NPROC max number of processes 7741 7741
RSS max resident set size unlimited unlimited pages
RTPRIO max real-time priority 8 a8
RTTIME timeout for real-time tasks unlimited unlimited microsecs
SIGPENDING max number of pending signals 7741 7741
STACK max stack size 8388608 unlimited bytes
$ ps
PID TTY TIME CMD
2917 pts/7 00:00:00 bash

[101]

Resource Limits Chapter 3

3339 pts/7 00:00:00 ps

$ prlimit --pid=2917
RESOURCE DESCRIPTION SOFT HARD
UNITS
AS address space limit unlimited unlimited
bytes
CORE max core file size unlimited unlimited
bytes
CPU CPU time unlimited unlimited
seconds

[...]
$

Here, we have abbreviated the output for better readability.

Example 2—set the resource limits for max file size and max stack size for the
(preceding) shell process:

$ prlimit —--pid=2917 --£fsize=2048000 --stack=12582912
$ prlimit —--pid=2917 | egrep -i "fsize|stack"

FSIZE max file size 2048000 2048000 bytes
STACK max stack size 12582912 12582912 bytes
$

Example 3—a program, rlimit_primes, that generates prime numbers; have it
generate a large number of primes but give it only two seconds of CPU time to do so.

Note that the r1imit_primes program, along with its source code,
is described in detail in the API interfaces section.

For now, we just run it within the scope of the built-in pr1imit program, ensuring
that the r1imit_primes process only gets the CPU bandwidth (in seconds) that we
pass via the prlimit --cpu= option switch. In the example, we ensure the
following;:

e We give our prime number generator process two seconds (via prlimit)

e We pass -2 as the second parameter; this will cause
the rlimit_primes program to skip setting the CPU resource limit itself

[102]

Resource Limits Chapter 3

o We ask it to generate primes up to the number 8,000,000:

$./rlimit_primes
Usage: ./rlimit_primes limit-to-generate-primes-upto CPU-time-
limit

argl : max is 10000000

arg2 : CPU-time-limit:

-2 = don't set
-1 = unlimited
0 = 1s

$ prlimit —--cpu=2 ./rlimit_primes 8000000 -2
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131,

[...]

18353, 18367, 18371, 18379, 18397, 18401, 18413, 18427,
18433, 18439,

18443, 18451, 18457, 18461, 18481, 18493, 18503, 18517,
18521, 18523,

18539, 18541, 18553, 18583, 18587, 18593,
Killed
$

Note how, once it's out of its newly constrained CPU time resource (two seconds, in
the preceding example), it gets killed by the kernel! (Technically, by the

SIGKILL signal; a lot more on signals follows in chapter 11, Signaling - Part I, and
Chapter 12, Signaling - Part 1I). Note how the word Killed appears, indicating that
the OS has killed the process.

Refer to the man page on prlimit (1) for further details.

A practical case: When running fairly heavy software such as Eclipse
and Dropbox, I have found it necessary to bump up the resource
limits for them (as advised); otherwise, they abort as they run out of
resources.

Advanced: From the Linux kernel version 2.6.24 onward, one can
look up the resource limits for a given process PID via the powerful
proc filesystem: /proc/<PID>/limits.

[103]

Resource Limits Chapter 3

APl interfaces

Querying and/or setting resource limits programmatically can be achieved with the
following APIs—the system calls:

® getrlimit
e setrlimit

e prlimit

Of these, we will only focus on prlimit (2); [get |set]rlimit (2) is an older
interface, has quite a few issues (bugs), and is generally considered outdated.

For prlimit (2) to work properly, one must be running on Linux
kernel version 2.6.36 or later.

How does one determine the Linux kernel version one is running
on?
Simple: use the uname utility to query the kernel version:

$ uname -r
4.14.11-300.£fc27.x86_64
$

Let's get back to the pr1imit (2) system call API:

#include <sys/time.h>
#include <sys/resource.h>

int prlimit (pid_t pid, int resource,
const struct rlimit *new_limit, struct rlimit *old_limit);

The prlimit () system call can be used to both query and set a given resource
limit—only one resource limit per call—for or on a given process. It receives four
arguments; the first argument, pid, is the PID of the process to act upon. The

special 0 value implies that it acts upon the calling process itself. The second
argument, resource, is the name of the resource limit we wish to query or set (refer to
the following table for the full list). Both the third and fourth arguments are pointers
to struct rlimit; the third parameter, if non-NULL, is the new value we want to
set (which is why it is marked const); the fourth parameter, if non-NULL, is the
structure where we will receive the previous (or old) limit.

[104]

Resource Limits

Chapter 3

Experienced C programmers will realize how easy it is to create

structures.

The rlimit structure contains two members, the soft and hard limits
(rlim_cur and rlim_max, respectively):

struct rlimit {
rlim_t rlim_cur;
rlim_t rlim_max;

}i

/* Soft limit */
/* Hard limit

(ceiling for rlim_cur)

bugs. It's the programmer's responsibility to ensure that the memory
for the rlimit structures (third and fourth parameters), if used, must
be allocated; the OS certainly does not allocate memory for these

*/

Back to the second argument, resource, which is the programmatic name of the
resource limit we wish to query or set. The following table enumerates all of them:

Resource limit

Programmatic
name (use in API)

Default value

Unit

max core file size RLIMIT_CORE unlimited [KB
max data segment size RLIMIT_DATA unlimited [KB
n;ijcz():hedulmg priority RLIMIT_NICE 0 unscaled
max file size RLIMIT_FSIZE unlimited [KB
Zi;n;ial_tlme) pending RLIMIT_SIGPENDING|<varies> |unscaled
max locked memory RLIMIT_MEMLOCK <varies> |KB
max open files RLIMIT_NOFILE 1024 unscaled
max POSIX message queues RLIMIT_MSGQUEUE |<varies> |unscaled
max real-time priority RLIMIT_RTTIME 0 microseconds
max stack segment size RLIMIT_STACK 8192 KB
max CPU time RLIMIT_CPU unlimited [seconds
max user processes RLIMIT_NPROC <varies> [|unscaled
address space limit or max .

virtual mZmory ?Allslfiiafeis Space) unlimited KB

max file locks held RLIMIT_LOCKS unlimited |unscaled

[105]

Resource Limits Chapter 3

Points to note are given as follows:

e The RLIM_INFINITY value for a resource value implies that there is no
limit.

e Alert readers will notice that there is no entry for max pipe size (as there
was in the previous table); this is because this resource cannot be modified
via the prlimit (2) APL

¢ Technically, to modify a resource limit value, a process requires the
CAP_SYS_RESOURCE capability (capabilities is explained in details in
Chapter 8, Process Capabilities). For now, let's just use the traditional
approach and say that in order to change a process's resource limit, one
needs to own the process (or be root; being root or superuser is pretty
much a shortcut to all the rules).

Code examples

The following two C programs are used to demonstrate the usage of the prlimit (2)
APIL:

e The first program, r1imits_show.c, queries all resource limits for the
current or calling process and prints out their values.

¢ The second, given a CPU resource limit (in seconds), runs a simple prime
number generator under the influence of that limit.

For readability, only the relevant parts of the code are displayed. To
view and run it, the entire source code is available at https://
github.com/PacktPublishing/Hands-on-System-Programming—

with-Linux.

Refer to the following code:

/* From ch3/rlimits_show.c */
#define ARRAY_LEN (arr) (sizeof((arr))/sizeof ((arr) [0]))
static void query_rlimits (void)
{
unsigned i;
struct rlimit rlim;
struct rlimpair {
int rlim;
char *name;
}i
struct rlimpair rlimpair_arr([] = {
{RLIMIT_CORE, "RLIMIT_CORE"},

[106]

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Resource Limits

Chapter 3

{RLIMIT DATA, "RLIMIT_DATA"},
{RLIMIT_NICE, "RLIMIT_NICE"},

{RLIMIT FSIZE, "RLIMIT FSIZE"},

{RLIMIT_ SIGPENDING, "RLIMIT_SIGPENDING"},
{RLIMIT_ MEMLOCK, "RLIMIT_ MEMLOCK"},
{RLIMIT NOFILE, "RLIMIT NOFILE"},
{RLIMIT_MSGQUEUE, "RLIMIT_ MSGQUEUE"},
{RLIMIT_RTTIME, "RLIMIT RTTIME"},

{RLIMIT_STACK, "RLIMIT STACK"},

{RLIMIT_CPU, "RLIMIT_CPU"},

{RLIMIT_NPROC, "RLIMIT_NPROC"},

{RLIMIT_AS, "RLIMIT_AS"},

{RLIMIT_LOCKS, "RLIMIT_LOCKS"},

bi
char tmpl[16], tmp2[l1l6];

printf ("RESOURCE LIMIT

SOFT HARD\n") ;

for (i = 0; 1 < ARRAY_LEN(rlimpair_arr); i++) {
if (prlimit (0, rlimpair_arr[i].rlim, O, &rlim) == -1)

handle_err (EXIT_FAILURE,

failed\n",

"$s:%s:%d: prlimit[%d]

__FILE_, _ FUNCTION__, _ LINE_ , 1i);

snprintf (tmpl, 16, "%1d", rlim.rlim_cur);
snprintf (tmp2, 16, "%1d", rlim.rlim_max);

printf("%-18s: %16s
rlimpair_arr[i].name,
(rlim.rlim_cur == -1 ?
(rlim.rlim _max == -1 ?

)
}

Let's try it out:

$ make rlimits_show

[...]

$./rlimits_show

RESOURCE LIMIT SOFT

$16s\n",

"unlimited"
"unlimited"

RLIMIT_CORE unlimited
RLIMIT_DATA unlimited
RLIMIT_NICE 0
RLIMIT_FSIZE unlimited
RLIMIT_SIGPENDING 63229
RLIMIT_MEMLOCK 65536
RLIMIT_NOFILE 1024
RLIMIT_MSGQUEUE 819200
RLIMIT_RTTIME unlimited

[107]

tmpl),
tmp2)

HARD
unlimited
unlimited

0
unlimited
63229
65536
4096

819200
unlimited

Resource Limits Chapter 3

RLIMIT_STACK : 8388608 unlimited
RLIMIT_CPU : unlimited unlimited
RLIMIT_NPROC : 63229 63229
RLIMIT_AS : unlimited unlimited
RLIMIT_LOCKS : unlimited unlimited
$ ulimit -£

unlimited

$ ulimit -f 512000
$ ulimit -f

512000

$./rlimits_show | grep FSIZE

RLIMIT_FSIZE : 524288000 524288000
$

We first use the program to dump all the resource limits. Then, we query the file-size
resource limit, modify it (lower it from unlimited to about 512 KB using ulimit), and
run the program again, which reflects the change.

Now for the second program; given a CPU resource limit (in seconds), we run a
simple prime number generator under the influence of that CPU resource limit.

For readability, relevant parts of the source code (the relevant source file is
ch3/rlimit_primes.c) are shown.

Here is the simple prime number generator function:

#define MAX 10000000 // 10 million
static void simple_primegen (int limit)

{

int i, J, num = 2, isprime;
printf(" 2, 3, ");
for (i = 4; i <= limit; i++) {
isprime = 1;
for (3 = 2; J < limit / 2; J++) {
if ((1 !'=3J) && (1 % 3 == 0)) A
isprime = 0;
break;

}
if (isprime) {
num++;
printf ("%e6d, ", 1i);
/* Wrap after WRAP primes are printed on a line;
* this is crude; in production code, one must query
* the terminal window's width and calculate the column
* to wrap at.

[108]

Resource Limits Chapter 3

*/
#define WRAP 16
if (num % WRAP == 0)
printf ("\n");

}
printf ("\n");
}

Here is the function to set up the CPU resource limit to the parameter passed, which
is the time in seconds:

/*
* Setup the CPU resource limit to 'cpulimit' seconds
*/
static void setup_cpu_rlimit (int cpulimit)
{
struct rlimit rlim_new, rlim old;
if (cpulimit == -1)
rlim new.rlim_cur = rlim new.rlim_max = RLIM_INFINITY;
else
rlim_new.rlim_cur = rlim_new.rlim_max = (rlim_t)cpulimit;
if (prlimit (0, RLIMIT_CPU, &rlim new, &rlim old) == -1)
FATAL ("prlimit:cpu failed\n");
printf

("CPU rlimit [soft,hard] new: [%$1d:%1d]s : old [%1d:%1d]ls (-1
= unlimited) \n",

rlim _new.rlim_cur, rlim_new.rlim_max, rlim_old.rlim_cur,

rlim_old.rlim_max);

[109]

Resource Limits Chapter 3

In the following code, we first just do a quick test run—we print the first 100 primes
and leave the CPU resource limit value untouched (it typically defaults to infinite).
Then we invoke it to print the first 90,000 primes with five seconds of CPU time
available to it. As expected (on modern hardware), both succeed:

$ prlimit | grep "CPU time"

CPU CPU time unlimited unlimited seconds
$./rlimit_primes
Usage: ./rlimit_primes limit-to-generate-primes-upto CPU-time-limit

argl : max is 10000000
arg2 : CPU-time-limit:
-2 = don't set
-1 = unlimited
0 = 1s
$./rlimit_primes 100 -2
2, 3, 5, 17, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97,
$
$./rlimit_primes 90000 5
CPU rlimit [soft,hard] new: [5:5]s : old [-1:-1]s (-1 = unlimited)
2, 3, 5, 17, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,

89753, 89759, 89767, 89779, 89783, 89797, 89809, 89819, 89821, 89833,
89839, 89849, 89867, 89891, 89897, 89899, 89909, 89917, 89923, 89939,
89959, 89963, 89977, 89983, 89989,

$

Now for the fun part: we invoke rlimit_primes to print the first 200,000 primes
with only one second of CPU time available to it; this time it fails (note that we
redirect standard output to a temporary file, so that we are not distracted by all the
output):

$ prlimit | grep "CPU time"

CPU CPU time unlimited unlimited seconds
$./rlimit_primes 200000 1 > /tmp/prm
Killed

$ tail -nl /tmp/prm
54727, 54751, 54767, 54773, 54779, 54787, 54799, 54829, 54833, 54851,
54869, 54877, 54881, §

[110]

Resource Limits Chapter 3

Why did it fail? Obviously, the CPU resource limit—just one second—was too small a
time for it to complete the given task; when the process attempted to exceed this limit,
it was killed by the kernel.

A note to advanced readers: one can use the very powerful and
versatile perf (1) Linux utility to see this too:

$ sudo perf stat ./rlimit_primes 200000 1 >/tmp/prm
./rlimit_primes: Killed

Performance counter stats for './rlimit_primes 200000
1':

1001.917484 task-clock (msec) # 0.999 CPUs
utilized

17 context—-switches # 0.017 K/sec
1 cpu-migrations # 0.001 K/sec
51 page—faults # 0.051 K/sec
3,018,577,481 cycles # 3.013 GHz
5,568,202,738 instructions # 1.84 insn per

cycle
982,845,319 branches # 980.964 M/sec
88,602 branch-misses # 0.01% of all
branches

1.002659905 seconds time elapsed

$

Permanence

We've demonstrated that, within its operational framework, one can indeed query
and set per-process resource limits using frontends, such as ulimit,

prlimit (1), as well as programmatically via library and system call APIs. However,
the changes we wrought are temporary—for that process's life or the session's life
only. How does one make a resource limit value change permanent?

The Unix way is to use (ASCII-text) configuration files that reside on the filesystem. In
particular, on most Linux distributions, editing the /etc/security/limits.conf
configuration file is the answer. We shall not delve further into the details here; if
interested, check out the man page on limits.conf (5).

[111]

Resource Limits Chapter 3

Summary

This chapter initially delved into the motivation behind per-process resource limits
and why we require them. We also explained the granularity and the types of
resource limits, distinguishing between soft and hard limits. Then we looked at how a
user (or system administrator) can query and set the per-process resource limits using
appropriate CLI frontends (ulimit (1), prlimit (1)).

Finally, we explored the programming interfaces (APIs)—practically speaking, the
prlimit (2) system call—in detail. Two detailed code examples, querying the limits
and setting a limit on CPU usage, rounded out the discussion.

In the next chapter, we will learn about the crucial, dynamic memory-management
APIs and their correct usage. We'll go well beyond the basics of using the typical
malloc () API, delving into a few subtle and important inner details.

[112]

Dynamic Memory Allocation

In this chapter, we will delve into a key aspect of system programming on a modern
OS—the management of dynamic (runtime) memory allocation and deallocation.
We'll first cover the basic glibc APIs used to allocate and free memory dynamically.
We'll then move beyond these basics, examining the program break within the VAS
and the behavior of malloc (3) under differing circumstances.

We will then immerse the reader in a few advanced discussions: demand-paging,
memory locking and protection, and the usage of the alloca APL

Code examples provide the reader with an opportunity to explore these topics in a
hands-on manner.

In this chapter, we will cover the following topics:

Basic glibc dynamic memory-management APIs and their correct usage in
code

The program break (and its management via the sbrk (3) API)

The internal behavior of malloc (3) when allocating differing amounts of
memory
Advanced features:

¢ The demand-paging concept

e Memory locking
e Memory region protection
e Using the alloca (3) API alternative

Dynamic Memory Allocation Chapter 4

The glibc malloc(3) API family

In chapter 2, Virtual Memory, we learned that there are regions or segments meant
for the use of dynamic memory-allocation within the process of Virtual Address
Space (VAS). The heap segment is one such dynamic region—a free gift of memory
made available to the process for its runtime consumption.

How exactly does the developer exploit this gift of memory? Not just that, the
developer has to be extremely careful with matching memory allocations to
subsequent memory frees, otherwise the system isn't going to like it!

The GNU C library (glibc) provides a small but powerful set of APIs to enable the
developer to manage dynamic memory; the details of their usage is the content of this
section.

As you will come to see, the memory-management APIs are literally a handful:
malloc (3), callocg, realloc, and free. Still, using them correctly remains a
challenge! The subsequent sections (and chapters) will reveal why this is the case.
Read on!

The malloc(3) API

Perhaps one of the most common APIs used by application developers is the
renowned malloc (3).

The foo (3) syntax indicates that the foo function is in section 3 of
the manual (the man pages) — a library APL not a system call. We
recommend you develop the habit of reading the man pages. The
man pages are available online, and you can find them at https://

linux.die.net/man/.

We usemalloc (3) to dynamically allocate a chunk of memory at runtime. This is as
opposed to static—or compile-time — memory-allocation where we make a statement,
such as:

char buf[256];
In the preceding case, the memory has been statically allocated (at compile-time).
So, how exactly do you use malloc (3)? Let's check out its signature:

#include <stdlib.h>
void *malloc(size_t size);

[114]

https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/

Dynamic Memory Allocation Chapter 4

The parameter to malloc (3) is the number of bytes to allocate. But what is the
size_t data type? Obviously, it's not a C primitive data type; it's a typedef - long
unsigned int on your typical 64-bit platform (the exact data type does vary with
the platform; the important point is that it's always unsigned — it cannot be negative.
On a 32-bit Linux, it will be unsigned int). Ensuring that your code precisely
matches the function signature and data types is crucial in writing robust and correct
programs. While we're at it, ensure that you include the header file that the man page
displays with the API signature.

To print a variable of the size_t type within a printf, use the $zu
format specifier:

size_t sz = 4 * getpagesize();

[...]

printf("size = %$zu bytes\n", sz);

In this book, we will not delve into the internal implementation details regarding how
malloc (3) and friends actually store, allocate, and free memory (refer the Further
reading section on the GitHub repository.) Suffice to say, the internal implementation
strives to be as efficient as can be; using these APIs is usually considered the right
way to perform memory-management.

The return value is a pointer to the zeroth byte of the newly-allocated memory region
on success, and NULL on failure.

You will come across, shall we say optimists, who say things such as,
"Don't bother checking malloc for failure, it never fails". Well, take
that sage advice with a grain of salt. While it's true that malloc
would rarely fail, the fact is (as you shall see), it could fail. Writing
defensive code — code that checks for the failure case immediately —
is a cornerstone of writing solid, robust programs.

So, using the API is very straightforward: as an example, allocate 256 bytes of
memory dynamically, and store the pointer to that newly allocated region in
the pt r variable:

void *ptr;
ptr = malloc(256);

[115]

Dynamic Memory Allocation Chapter 4

As another typical example, the programmer needs to allocate memory for a data
structure; let's call it st ruct sbar. You could do so like this:

struct sbar {
int a[10], b[10];
char buf[512];

} *psbar;

psbar = malloc(sizeof (struct sbar));
// initialize and work with it

[...]

free (psbar);

Hey, astute reader! What about checking the failure case? It's a key point, so we will
rewrite the preceding code like so (and of course it would be the case for the
malloc (256) code snippet too):

struct [...] *psbar;
sbar = malloc(sizeof (struct sbar));
if (!sbar) {

<... handle the error ...>

}

Let's use one of the powerful tracing tools 1trace to check that this works as
expected; 1trace is used to display all library APIs in the process-execution path
(similarly, use strace to trace all system calls). Let's assume that we compile the
preceding code and the resulting binary executable file is called tst:

$ ltrace ./tst

malloc (592) = 0xd60260
free (0xd60260) = <void>
exit (0 <no return ...>

+++ exited (status 0) +++

$

We can clearly see malloc (3) (and the fact that the example structure we used took
up 592 bytes on an x86_64), and its return value (following the = sign). The free API
follows, and then it simply exits.

It's important to understand that the content of the memory chunk allocated by
malloc (3) is considered to be random. Thus, it's the programmer's responsibility to
initialize the memory before reading from it; if you fail to do so, it results in a bug
called Uninitialized Memory Read (UMR) (more on this in the next chapter).

[116]

Dynamic Memory Allocation Chapter 4

malloc (3) always returns a memory region that is aligned on an 8-
byte boundary. Need larger alignment values? Use the
posix_memalign (3) APIL Deallocate its memory as usual with
free(3).

Details can be found on the man page at https://linux.die.net/

man/3/posix_memalign.

Examples of using the posix_memalign (3) API can be found in
the Locking memory and Memory protection sections.

malloc(3) - some FAQs

The following are some FAQs that will help us to learn more about malloc (3):
e FAQ 1: How much memory can malloc (3) allocate with a single call?

A rather pointless question in practical terms, but one that is often
asked!

The parameter tomalloc (3) is an integer value of the size_t data
type, so, logically, the maximum number we can pass as a parameter to
malloc (3) is the maximum value a size_t can take on the platform.
Practically speaking, on a 64-bit Linux, size_t will be 8 bytes, which
of course, in bits is 8*8 = 64. Therefore, the maximum amount of
memory that can be allocated in a single malloc (3) callis 2~ 64!

So, how much is it? Let's be empirical (it's important to read in chapter
19, Troubleshooting and Best Practices, and the brief discussion there on
The empirical approach).and actually try it out (note that the following
code snippet has to be linked with the math library using the —1m
switch):

int szt = sizeof(size_t);

float max=0;

max = pow (2, szt*8);

printf ("sizeof size_t = %u; "
"max value of the param to malloc = %$.0f\n",
szt, max);

[117]

https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign

Dynamic Memory Allocation Chapter 4

The output, on an x86_64:

sizeof size_t = 8; max param to malloc = 18446744073709551616

Aha! That's a mighty large number; more readably, it's as follows:

2764 = 18,446,744,073,709,551,616 = OXffffffffffffffff
That's 16 EB (exabytes, which is 16,384 PB, which is 16 million TB)!

So, on a 64-bit OS, malloc (3) can allocate a maximum of 16 EB in a single call. In
theory.

As usual, there's more to it: please see FAQ 2; it will reveal that the
theoretical answer to this question is 8 exabytes (8 EB).

In practice, obviously, this would be impossible because, of course, that's
the entire usermode VAS of the process itself. In reality, the amount of
memory that can be allocated is limited by the amount of free memory
contiguously available on the heap. Actually, there's more to it. As we shall
soon learn (in the How malloc(3) really behaves section), memory

formalloc (3) can come from other regions of the VAS, too. Don't forget
there's a resource limit on data segment size; the default is usually
unlimited, which as we discussed in this chapter, really means that there's
no artificial limit imposed by the OS.

So, in practice, it's best to be sensible, not assume anything, and check the
return value for NULL.

As an aside, what's the maximum value a size_t can take on a 32-bit
OS? Accordingly, we compile on x86_64 for 32-bit by passing the -m32
switch to the compiler:

$ gcc -m32 mallocmax.c -0 mallocmax32 -Wall -1m
$./mallocmax32

*** max_malloc () ***

sizeof size_t = 4; max value of the param to malloc =
4294967296

[...]

$

[118]

Dynamic Memory Allocation Chapter 4

Clearly, it's 4 GB (gigabytes) — again, the entire VAS of a 32-bit process.
e FAQ2: Whatif I passmalloc (3) anegative argument?

The data type of the parameter to malloc (3), size_t, is an unsigned
integer quantity — it cannot be negative. But, humans are imperfect,
and Integer OverFlow (IOF) bugs do exist! You can imagine a scenario

where a program attempts to calculate the number of bytes to allocate,
like this:

num = ga * gb;

What if num is declared as a signed integer variable and ga and gb are
large enough that the result of the multiplication operation causes an
overflow? The num result will then wrap around and become
negative! malloc (3) should fail, of course. But hang on: if

the num variable is declared as size_t (which should be the case), the
negative quantity will turn into some positive quantity!

The mallocmax program has a test case for this.

Here is the output when run on an x86_64 Linux box:

*** negative_malloc () ***

size_t max = 18446744073709551616

1d_num2alloc = -288225969623711744

szt_num2alloc = 18158518104085839872

1. long int used: malloc(-288225969623711744) returns
(nil)

2. size_t used: malloc(18158518104085839872) returns
(nil)

3. short int used: malloc(6144) returns 0x136b670

4. short int used: malloc (-4096) returns (nil)

5. size_t used: malloc (18446744073709547520) returns
(nil)

[119]

Dynamic Memory Allocation

Chapter 4

Here are the relevant variable declarations:

const size_t onePB
int ga = 28*1000000;
long int 1d_num2alloc
size_t szt_num2alloc

short int sd_num2alloc;

1125899907000000; /* 1 petabyte */

ga * onePB;
ga * onePB;

Now, let's try it with a 32-bit version of the program.

Note that on a default-install Ubuntu Linux box, the 32-bit compile
may fail (with an error such as fatal error: bits/libc-
header-start.h: No such file or directory). Don't panic:
this usually implies that the compiler support for building 32-bit
binaries isn't present by default. To get it (as mentioned in

the Hardware-Software List document), install the multilib
compiler package: sudo apt-get install gcc-multilib.

Compile it for 32-bit and run it:

$./mallocmax32

*** max_malloc () ***

sizeof size_t = 4; max param to malloc = 4294967296
*** negative_malloc () ***

size_t max = 4294967296

1d_num2alloc = 0

szt_num2alloc = 1106247680
1. long int used: malloc(-108445696) returns (nil)

L o WD

(
size_t used: malloc (
short int used: malloc(6144) returns 0x85d1570
short int used: malloc(
size_t used: malloc (

4186521600) returns (nil)

-4096) returns (nil)
4294963200) returns (nil)

To be fair, the compiler does warn us:

gcec -Wall —-c —-o mallocmax.o mallocmax.c

mallocmax.c: In function ‘negative_malloc’:

mallocmax.c:87:6: warning: argument 1 value ‘18446744073709551615’
exceeds maximum object size 9223372036854775807 [-Walloc-size-larger-—

than=]
ptr = malloc(-1UL);

In file included from mallocmax.c:18:0:
/usr/include/stdlib.h:424:14: note: in a call to allocation function

‘malloc’ declared here
extern void *malloc

(size_t _ size) _ THROW __ attribute_malloc_

[120]

Dynamic Memory Allocation Chapter 4

wur;

[...]

Interesting! The compiler answers our FAQ 1 question now:

[...] warning: argument 1 value ‘18446744073709551615° exceeds maximum
object size 9223372036854775807 [-Walloc-size-larger—-than=] [...]

The maximum value you can allocate as per the compiler seems to
be 9223372036854775807.

Wow. A little calculator time reveals that this is 8192 PB = 8 EB! So, we
must conclude that the correct answer to the previous question: How
much memory can malloc allocate with a single call? Answer: 8 exabytes.
Again, in theory.

o FAQ 3: Whatif Tlusemalloc (0)?

Not much; depending on the implementation, malloc (3) will return
NULL, or, a non-NULL pointer that can be passed to free. Of course,
even if the pointer is non-NULL, there is no memory, so don't attempt
to use it.

Let's try it out:

void *ptr;
ptr = malloc(0);
free (ptr);

We compile and then run it via 1trace:

$ ltrace ./a.out

malloc (0) = 0x£50260
free (0x£50260) = <void>
exit (0 <no return ...>

+++ exited (status 0) +++

$

[121]

Dynamic Memory Allocation Chapter 4

Here, malloc (0) did indeed return a non-NULL pointer.

e FAQ4: Whatif [usemalloc (2048) and attempt to read/write beyond
2,048 bytes?

This is a bug of course — an out-of-bounds memory-access bug, further
defined as a read or write buffer overflow. Hang on please, the detailed
discussion of memory bugs (and subsequently, how to find and fix
them) is the subject of chapter 5, Linux Memory Issues, and Chapter

6, Debugging Tools for Memory Issues.

malloc(3) — a quick summary

So, let's summarize the key points regarding usage of the malloc (3) APL

e malloc (3) dynamically (at runtime) allocates memory from the process
heap
¢ As we shall soon learn, this is not always the case

¢ The single parameter tomalloc (3) is an unsigned integer value—the
number of bytes to allocate
¢ The return value is a pointer to the start of the newly allocated memory
chunk on success, or NULL on failure:
* You must check for the failure case; don't just assume it will
succeed
e malloc (3) always returns a memory region that is aligned
on an 8-byte boundary

¢ The content of the newly allocated memory region is considered to be
random
¢ You must initialize it before reading from any part of it

You must free the memory you allocate

The free API

One of the golden rules of development in this ecosystem is that programmer-
allocated memory must be freed.

[122]

Dynamic Memory Allocation Chapter 4

Failure to do so leads to a bad situation — a bug, really — called memory leakage; this
is covered in some depth in the next chapter. Carefully matching your allocations and
frees is essential.

Then again, in smaller real-world projects (utils), you do come
across cases where memory is allocated exactly once; in such cases,
freeing the memory is pedantic as the entire virtual address space is
destroyed upon process-termination. Also, using the alloca(3) API
implies that you do not need to free the memory region (seen later
in, Advanced features section). Nevertheless, you are advised to err on
the side of caution!

Using the free (3) APl is straightforward:
void free(void *ptr);

It accepts one parameter: the pointer to the memory chunk to be freed. pt r must be a
pointer returned by one of the malloc (3) family routines: malloc (3), calloc, or
realloc[array].

free does not return any value; don't even attempt to check whether it worked; if
you used it correctly, it worked. More on free is found in the Where does freed memory
go0? section. Once a memory chunk is freed, you obviously cannot attempt to use any
part of that memory chunk again; doing so will result in a bug (or what's called UB —
undefined behavior).

A common misconception regarding free () sometimes leads to its being used in a
buggy fashion; take a look at this pseudocode snippet:

void *ptr = NULL;
[...]
while (<some-condition-is-true>) {
if (!'ptr)
ptr = malloc(n);

(...
<use 'ptr' here>

-]

free (ptr);

[123]

Dynamic Memory Allocation Chapter 4

This program will possibly crash in the loop (within the <use 'ptr' here> code)in
a few iterations. Why? Because the pt r memory pointer is freed and is attempting to
be reused. But how come? Ah, look carefully: the code snippet is only going to
malloc (3) the ptr pointer if it is currently NULL, that is, its programmer has
assumed that once we free () memory, the pointer we just freed gets set to NULL.
This is not the case!!

Be wary and be defensive in writing code. Don't assume anything; it's a rich source of
bugs. Importantly, our chapter 19, Troubleshooting and Best Practices, covers such
points)

free — a quick summary
So, let's summarize the key points regarding the usage of the free API:

e The parameter passed to free (3) must be a value returned by one of
themalloc (3) family APIs (malloc (3), calloc, or realloc [array]).

e free has no return value.

e Calling free (ptr) does not set ptr to NULL (that would be nice, though).

e Once freed, do not attempt to use the freed memory.

¢ Do not attempt to free the same memory chunk more than once (it's a bug —
UB).

e For now, we will assume that freed memory goes back to the system.

¢ For Heaven's sake, do not forget to free memory that was dynamically
allocated earlier. The forgotten memory is said to have leaked out and that's
a really hard bug to catch! Luckily, there are tools that help us catch these
bugs. More in Chapter 5, Linux Memory Issues, and Chapter 6, Debugging
Tools for Memory Issues.

The calloc API

The calloc (3) APlis almostidentical tomalloc (3), differing in two main respects:

e It initializes the memory chunk it allocates to the zero value (that is, ASCII
0 or NULL, not the number 0)

e It accepts two parameters, not one

[124]

Dynamic Memory Allocation Chapter 4

The calloc (3) function signature is as follows:
void *calloc(size_t nmemb, size_t size);

The first parameter, nmemb, is n members; the second parameter, size, is the size of
each member. In effect, calloc (3) allocates a memory chunk of (nmemb*size)
bytes. So, if you want to allocate memory for an array of, say, 1,000 integers, you can
do so like this:

int *ptr;
ptr = calloc (1000, sizeof (int));

Assuming the size of an integer is 4 bytes, we would have allocated a total of (1000%4)
= 4000 bytes.

Whenever one requires memory for an array of items (a frequent use case in
applications is an array of structures), calloc is a convenient way to both allocate
and simultaneously initialize the memory.

Demand paging (covered later in this chapter), is another reason
programmers use calloc rather thanmalloc (3) (in practice, this is
mostly useful for realtime applications). Read up on this in the up
coming section.

The realloc API

The realloc APl is used to resize an existing memory chunk—to grow or shrink it.
This resizing can only be performed on a piece of memory previously allocated with
one of themalloc (3) family of APIs (the usual suspects: malloc (3), calloc, or
realloc[array]). Here is its signature:

void *realloc(void *ptr, size_t size);

The first parameter, ptr, is a pointer to a chunk of memory previously allocated with
one of themalloc (3) family of APIs; the second parameter, size, is the new size of
the memory chunk—it can be larger or smaller than the original, thus growing or
shrinking the memory chunk.

A quick example code snippet will help us understand realloc:

void *ptr, *newptr;
ptr = calloc (100, sizeof (char)); // error checking code not shown here
newptr = realloc(ptr, 150);

[125]

Dynamic Memory Allocation Chapter 4

if (!'newptr) {
fprintf (stderr, "realloc failed!");
free (ptr);
exit (EXIT_FAILURE);

t

< do your stuff >
free (newptr) ;

The pointer returned by realloc is the pointer to the newly resized chunk of
memory; it may or may not be the same address as the original pt r. In effect, you
should now completely disregard the original pointer ptr and regard the realloc-
returned newpt r pointer as the one to work with. If it fails, the return value is NULL
(check it!) and the original memory chunk is left untouched.

A key point: the pointer returned by realloc (3), newptr, is the one that must be
subsequently freed, not the original pointer (ptr) to the (now resized) memory chunk.
Of course, do not attempt to free both pointers, as that to is a bug.

What about the contents of the memory chunk that just got resized? They remain
unchanged up to MIN (original_size, new_size). Thus, in the preceding
example, MIN (100, 150) = 100, the contents of memory up to 100 bytes will be
unchanged. What about the remainder (50 bytes)? It's considered to be random
content (just like malloc (3)).

The realloc(3) — corner cases

Consider the following code snippet:

void *ptr, *newptr;
ptr = calloc (100, sizeof (char)); // error checking code not shown here
newptr = realloc(NULL, 150);

The pointer passed to realloc is NULL? The library treats this as equivalent to a new
allocation —malloc (150); and all the implications of the malloc (3) That's it.

Now, consider the following code snippet:

void *ptr, *newptr;
ptr = calloc (100, sizeof(char)); // error checking code not shown here
newptr = realloc(ptr, 0);

The size parameter passed to realloc is 0? The library treats this as equivalent to
free (ptr). That's it.

[126]

Dynamic Memory Allocation Chapter 4

The reallocarray API

A scenario: you allocate memory for an array using calloc (3); later, you want to
resize it to be, say, a lot larger. We can do so with realloc (3); for example:

struct sbar *ptr, *newptr;
ptr = calloc (1000, sizeof (struct sbar)); // array of 1000 struct
sbar's

[...]
// now we want 500 more!
newptr = realloc (ptr, 500*sizeof (struct sbar));

Fine. There's an easier way, though—using the reallocarray (3) APL Its signature
is as follows:

void *reallocarray(void *ptr, size_t nmemb, size_t size);

With it, the code becomes simpler:

[...]
// now we want 500 more!
newptr = reallocarray (ptr, 500, sizeof (struct sbar));

The return value of reallocarray is pretty identical to that of the realloc API: the
new pointer to the resized memory chunk on success (it may differ from the original),
NULL on failure. If it fails, the original memory chunk is left untouched.

reallocarray has one real advantage over realloc — safety. From the man page on
realloc(3), see this snippet:

However, unlike that realloc() call, reallocarray () fails safely
in the case where the multiplication would overflow. If such an
overflow occurs, reallocarray() returns NULL, sets errno to ENOMEM,
and leaves the original block of memory unchanged.

Also realize that the reallocarray APl is a GNU extension; it will work on modern
Linux but should not be considered portable to other OSes.

[127]

Dynamic Memory Allocation Chapter 4

Finally, consider this: some projects have strict alignment requirements for their data
objects; using calloc (or even allocating said objects viamalloc (3)) can result in
subtle bugs! Later in this chapter, we'll use the posix_memalign (3) API—it
guarantees allocating memory to a given byte alignment (you specify the number of
bytes)! For example, requiring a memory-allocation to be aligned to a page
boundary is a fairly common occurrence (Recall, malloc always returns a memory
region that is aligned on an 8-byte boundary).

The bottom line: be careful. Read the documentation, think, and decide which API
would be appropriate given the circumstances. More on this in the Further
reading section on the GitHub repository.

Beyond the basics

In this section, we will dig a bit deeper into dynamic memory management with the
malloc (3) APIfamily. Understanding these areas, and the content of chapter

5, Linux Memory Issues, and Chapter 6, Debugging Tools for Memory Issues, will go a
long way in helping developers effectively debug common memory bugs and issues.

The program break

When a process or thread wants memory, it invokes one of the dynamic memory
routines—usually malloc (3) or calloc (3); this memory (usually) comes from the
heap segment. As mentioned earlier, the heap is a dynamic segment — it can grow
(toward higher virtual addresses). Obviously though, at any given point in time, the
heap has an endpoint or top beyond which memory cannot be taken. This
endpoint—the last legally reference-able location on the heap — is called the program
break.

Using the sbrk() API

So, how do you know where the current program break is? That's easy — the sbrk (3)
API, when used with a parameter value of zero, returns the current program break!
Let's do a quick lookup:

#include <unistd.h>
[...]
printf ("Current program break: %p\n", sbrk(0));

[128]

Dynamic Memory Allocation Chapter 4

You will see some sample output as follows when the preceding line of code runs:

$./show_curbrk

Current program break: 0x1bb4000
$./show_curbrk

Current program break: 0x1e93000
$./show_curbrk

Current program break: 0x1677000
$

It works, but why does the program break value keep changing (seemingly
randomly)? Well, it really is random: for security reasons, Linux randomizes the
layout of a process's virtual address space (we covered the process VAS layout in
Chapter 2, Virtual Memory). This technique is called Address Space Layout
Randomization (ASLR).

Let's do a bit more: we will write a program that, if run without any parameters,
merely displays the current program break and exits (like the one we just saw); if
passed a parameter — the number of bytes of memory to dynamically allocate — it does
so (withmalloc (3)), then prints the heap address returned as well as the original
and current program break. Here, you will only be allowed to request less than 128
KB, for reasons that will be made clear shortly.

Refer to the ch4/show_curbrk.c:

int main(int argc, char **argv)
{

char *heap_ptr;

size_t num = 2048;

/* No params, Jjust print the current break and exit */
if (argc == 1) {
printf ("Current program break: %p\n", sbrk(0));
exit (EXIT_SUCCESS) ;
}

/* If passed a param - the number of bytes of memory to
* dynamically allocate - perform a dynamic alloc, then
* print the heap address, the current break and exit.

*/
num = strtoul (argv([1l], 0, 10);
if ((errno == ERANGE && num == ULONG_MAX)

|l (errno != 0 && num == 0))

handle_err (EXIT_FAILURE, "strtoul (%$s) failed!\n", argv[1l]);
if (num >= 128 * 1024)

handle_err (EXIT_FAILURE, "%$s: pl pass a value < 128 KB\n",

[129]

Dynamic Memory Allocation Chapter 4

argv[0]);

printf ("Original program break: %$p ; ", sbrk(0));
heap_ptr = malloc (num);
if ('heap_ptr)
handle_err (EXIT_FAILURE, "malloc failed!");
printf ("malloc(%1lu) = %$16p ; curr break = %$16p\n",
num, heap_ptr, sbrk(0));
free (heap_ptr) ;

exit (EXIT_SUCCESS) ;
}

Let's try it out:

$ make show_curbrk && ./show_curbrk
[...]

Current program break: 0x1247000

$./show_curbrk 1024

Original program break: 0x1488000 ; malloc(1024) = 0x1488670 ;
curr break = 0x14a9000
$

Interesting (see the following diagram)! With an allocation of 1,024 bytes, the heap
pointer that's returned to the start of that memory chunk is 0x1488670; that's
0x1488670 — 0x1488000 = 0x670 = 1648 bytes from the original break.

Also, the new break value is 0x14a9000, which is (0x14a9000 - 0x1488670 =
133520), approximately 130 KB from the freshly allocated block. Why did the heap
grow by so much for a mere 1 KB allocation? Patience; this, and more, will be
examined in the next section, How malloc(3) really behaves. Meanwhile, refer to the
following diagram:

[130]

Dynamic Memory Allocation

Chapter 4

Mew program

A

a
1]
=3

E:

break |
130 KB heap_pn'
1 KB
Original |
prograim Heap
break —
Uninitialized
Initialized
Text [rx

Process
VAS - Focus
on Heap

Data [rw-]

With respect to the preceding diagram:

Heap and the Program Break

Original program break = 0x1488000

heap_ptr
New program break

0x1488670
0x14a9000

Note that sbrk (2) can be used to increment or decrement the program break (by
passing it an integer parameter). At first glance, this might seem like a good way to
allocate and deallocate dynamic memory; in reality, it's always better to use the well-
documented and portable glibc implementation, the malloc (3) family APIs.

sbrk is a convenient library wrapper over the brk (2) system call.

[131]

Dynamic Memory Allocation Chapter 4

How malloc(3) really behaves

The general consensus it that malloc (3) (and calloc (3) and

realloc[array] (3)) obtains its memory from the heap segment. This is indeed the
case, but digging a bit deeper reveals that it's not always the case. The modern glibc
malloc (3) engine uses some subtle strategies to make the most optimal use of
available memory regions and the process VAS—which, especially on today's 32-bit
systems, is fast becoming a rather scarce resource.

So, how does it work? The library uses a predefined MMAP_ THRESHOLD variable — its
value is 128 KB by default — to determine from where memory gets allocated. Let's
imagine we are allocating n bytes of memory with malloc(n):

e If n <MMAP_THRESHOLD, use the heap segment to allocate the requested
n bytes

e If n >= MMAP_THRESHOLD, and if n bytes are not available on the heap's
free list, use an arbitrary free region of virtual address space to satisfy the
requested n bytes allocation

How exactly is the memory allocated in the second case? Ah, malloc (3) internally
calls mmap (2) — the memory map system call. The mmap system call is very versatile.
In this case, it is made to reserve a free region of n bytes of the calling process's virtual
address space!

Why use mmap (2) ? The key reason is that mmap-ed memory can
always be freed up (released back to the system) in an independent
fashion whenever required; this is certainly not always the case with
free(3).

Of course, there are some downsides: mmap allocations can be
expensive because, the memory is page-aligned (and could thus be

0 wasteful), and the kernel zeroes out the memory region (this hurts

performance).

The mallopt (3) man page (circa December 2016) also notes that
nowadays, glibc uses a dynamic mmap threshold; initially, the value
is the usual 128 KB, but if a large memory chunk between the
current threshold and DEFAULT_MMAP_THRESHOLD_MAX is freed, the
threshold is increased to become the size of the freed block.

[132]

Dynamic Memory Allocation Chapter 4

Code example — malloc(3) and the program break

Seeing for ourselves the effect of malloc (3) allocations on the heap and process
virtual address space is interesting and educational. Check out the output of the
following code example (the source is available in this book's Git repository):

$./malloc_brk_test -h

Usage: ./malloc_brk_test [option | —-—-help]
option = 0 : show only mem pointers [default]
option = 1 : opt 0 + show malloc stats as well
option = 2 : opt 1 + perform larger alloc's (over MMAP_THRESHOLD)
option = 3 : test segfault 1
option = 4 : test segfault 2
-h | —--help : show this help screen
$

There are several scenarios running in this application; let's examine some of them
now.

Scenario 1 — default options

We run the malloc_brk_test program with no parameters, that is, using the
defaults:

$./malloc_brk_test

init_brk = 0x1c97000
#: malloc(n) = heap_ptr cur_brk delta
[cur_brk-

init_brk]

0: malloc(8) = 0x1c97670 0x1cb8000 [135168]
1: malloc(4083) = 0x1c97690 0x1cb8000 [135168]
2: malloc(3) = 0x1c98690 0x1cb8000 [135168]
$

The process prints out its initial program break value: 0x1c97000. It then
allocates just 8 bytes (via the malloc (3) API); under the hood, the glibc allocation
engine invokes the sbrk(2) system call to grow the heap; the new break is

now 0x1cb8000, an increase of 135,168 bytes = 132 KB from the previous break
(clearly seen in the delta column in the preceding code)!

[133]

Dynamic Memory Allocation Chapter 4

Why? Optimization: glibc anticipates that, in the future, the process will require more
heap space; instead of the expense of invoking a system call (sbrk/brk) each time, it
performs one large-ish heap-growing operation. The next twomalloc (3) APIs
(numbers 1 and 2 in the left-most column) prove this is the case: we allocate 4,083 and
3 bytes respectively, and what do you notice? The program break does not change —
the heap is already large enough to accommodate the requests.

Scenario 2 — showing malloc statistics

This time, we pass the 1 parameter, asking it to display malloc (3) statistics as well
(achieved using the malloc_stats (3) API):

$./malloc_brk_test 1

init_brk = 0x184e000
#: malloc(n) = heap_ptr cur_brk delta
[cur_brk-init_brk]
0: malloc(8) = 0x184e670 0x186£000 [135168]
Arena O:
system bytes = 135168
in use bytes = 1664
Total (incl. mmap) :
system bytes = 135168
in use bytes = 1664
max mmap regions = 0
max mmap bytes = 0
1: malloc(4083) = 0x184e690 0x186£000 [135168]
Arena O:
system bytes = 135168
in use bytes = 5760
Total (incl. mmap) :
system bytes = 135168
in use bytes = 5760
max mmap regions = 0
max mmap bytes = 0
2: malloc(3) = 0x184£690 0x186£000 [135168]
Arena O:
system bytes = 135168
in use bytes = 5792
Total (incl. mmap) :
system bytes = 135168
in use bytes = 5792
max mmap regions = 0
max mmap bytes = 0

[134]

Dynamic Memory Allocation Chapter 4

The output is similar, except the program invokes the useful malloc_stats (3) API,
which queries and prints malloc (3) state information to stderr (by the way, an
arena is an allocation area that's internally maintained by the malloc (3) engine).
From this output, notice that:

¢ The available free memory — system bytes — is 132 KB (after performing a
tiny 8 byte malloc (3))

¢ In-use bytes increases with each allocation but system bytes remains the
same

e mmap regions and mmap bytes is zero as no mmap-based allocations have
occurred.

Scenario 3 - large allocations option

This time, we pass the 2 parameter, asking the program to perform larger allocations
(greater than MMAP_ THRESHOLD):

$./malloc_brk_test 2

init_brk = 0x2209000
#: malloc(n) = heap_ptr cur_brk delta
[cur_brk-

init_brk]

[...]

3: malloc(136168) = 0x7£57288cd010 0x222a000 [135168]
Arena O:

system bytes = 135168

in use bytes = 5792
Total (incl. mmap) :

system bytes = 274432

in use bytes = 145056
max mmap regions = 1
max mmap bytes = 139264

4: malloc(1048576) = 0x7£57287c7010 0x222a000 [135168]
Arena O:

system bytes = 135168

in use bytes = 5792
Total (incl. mmap) :

system bytes = 1327104

in use bytes = 1197728
max mmap regions = 2
max mmap bytes = 1191936

$

[135]

Dynamic Memory Allocation Chapter 4

(Note that the preceding code we have clipped the output of the first two small
allocations and only show the relevant large ones).

Now, we allocate 132 KB (point 3 in the preceding output); some thing to take note of
are as follows:

o The allocations (#3 and #4) are for 132 KB and 1 MB - both above the
MMAP_THRESHOLD (value of 128 KB)

¢ The (arena 0) heap in-use bytes (5,792) has not changed at all across these
two allocations, indicating that heap memory has not been used

¢ The max mmap regions and max mmap bytes numbers have changed to
positive values (from zero), indicating the use of mmap-ed memory

A couple of remaining scenarios will be examined later.

Where does freed memory go?

free (3), of course, is a library routine — so it stands to reason that when we free up
memory, previously allocated by one of the dynamic allocation routines, it does not
get freed back to the system, but rather to the process heap (which, of course, is
virtual memory).

However, there are at least two cases where this may not occur:

e If the allocation was satisfied internally via mmap rather than via the heap
segment, it gets immediately freed back to the system

¢ On modern glibc, if the amount of heap memory being freed is very large,
this triggers the return of at least some of the memory chunks back to the
Os.

Advanced features

A few advanced features will now be covered:

¢ Demand paging

¢ Locking memory in RAM

¢ Memory protection
Allocation with the alloca(3)

[136]

Dynamic Memory Allocation Chapter 4

Demand-paging
Most of us know that if a process dynamically allocates memory, with malloc, say it
does ptr = malloc(8192) ;,then, assuming success, the process is now allocated

8 KB of physical RAM. It might come as a surprise, but, on modern OSes such as
Linux, this is actually not the case.

So, what is the case? (In this book, we do not delve into kernel-level details. Also, as
you might be aware, the granularity of memory at the level of the OS allocator is
a page, which is typically 4 KB.)

It's not a good idea to assume anything when writing robust
software. So, how can you correctly determine the page size on the
OS? Use the sysconf (3) API; for example, printf ("page size
$1d\n", sysconf (_SC_PAGESIZE)) ;, which outputs page size
= 4096.

Alternatively, use the getpagesize (2) system call to retrieve the
system page size. (Importantly, see chapter 19, Troubleshooting and
Best Practices, covering similar points in the section A Programmer’s
Checklist: 7 Rules).

Realistically, all malloc does is reserve virtual pages of memory from the process
VAS.

So, when does the process get the actual physical pages? Ah, as and when the process
actually peeks or pokes any byte in a page, in reality when it makes any kind of
access on any byte of the page (attempting to read/write/execute it), the process traps
into the OS - via a hardware exception called a page fault — and in the OS's fault
handler, if all's well, the OS allocates a physical page frame for the virtual page. This
highly optimized manner of handing out physical memory to processes is called
demand-paging — the pages are only physically allocated when they are actually
required, on-demand! This is closely related to what OS folks call the memory or VM
overcommit feature; yes, it's a feature, not a bug.

[137]

Dynamic Memory Allocation Chapter 4

If you want to guarantee that physical page frames are allocated
after a virtual allocation you can:

e Domalloc (3) followed by memset (3) on all the bytes in
all pages

e Just use the calloc (3); it will set the memory to zero,
thus faulting it in

On many implementations, the second method - using calloc (3) —
is faster than the first.

It's really because of demand-paging that we can write an application that malloc's
huge amounts of memory and never free's it; it will work as long as the process does
not attempt to read, write, or execute any byte in any (virtual) page of the allocated
region. Apparently, there are many real-world applications that are quite poorly
designed and do exactly this kind of thing — allocate huge amounts of memory via
malloc (3) justin case we need it. Demand-paging is an OS hedge against wastefully
eating up huge amounts of physical memory that hardly gets used in practice.

Of course, you, the astute reader, will realize that to every upside there's probably a
downside. In this scenario, this could conceivably happen with several processes
simultaneously performing large memory allocations. If all of them allocate large
portions of virtual memory and then want to actually claim those pages physically at
around the same time, this would put a tremendous amount of memory pressure on
the OS! And guess what, the OS makes absolutely no guarantee that it will succeed in
servicing everyone. In fact, in the worst case, the Linux OS will run short of physical
RAM to the extent that it must invoke a bit of a controversial component — the Out-of-
Memory (OOM) Killer — whose job is to identify the memory-hogging process and
kill it and its descendants, thus reclaiming memory and keeping the system alive.
Reminds you of the Mafia, huh.

Again, the man page onmalloc (3) clearly notes the following:

By default, Linux follows an optimistic memory allocation strategy.
This means that when malloc() returns non-NULL there is no guarantee
that the memory really is available. 1In case it turns out that the
system is out of memory, one or more processes will be killed by the
OOM killer.

[...]

If interested, dig deeper with the references in the Further reading section on the
GitHub repository.

[138]

Dynamic Memory Allocation Chapter 4

Resident or not?

Now that we clearly understand that the pages allocated by malloc and friends are
virtual and not guaranteed to be backed by physical frames (at least to start with),
imagine we have a pointer to a (virtual) memory region and we know its length. We
would now like to know whether the corresponding pages are in RAM, that is,
whether they are resident or not.

It turns out there's a system call available that gives precisely this information:
mincore (2).

The mincore (2) system call is pronounced m-in-core, not min-
core. Core is an old word used to describe physical memory.

Let's take a look at the following code:

#include <unistd.h>
#include <sys/mman.h>

int mincore (void *addr, size_t length, unsigned char *vec);

Given the starting virtual address and length, mincore (2) populates the third
parameter — a vector array. After the call successfully returns, for every byte of the
vector array, if the LSB (Least Significant Bit) is set, it implies that the corresponding
page is resident (in RAM), otherwise it's not (possibly not allocated or in swap).

Usage details are available via the mincore (2) man page: https://linux.die.net/

man/2/mincore.

Of course, you should realize that the information returned on page residency is
merely a snapshot at that point in time of the state of the memory pages: it could
change under us, that is, it is (or could be) very transient in nature.

[139]

https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore

Dynamic Memory Allocation Chapter 4

Locking memory

We understand that on a virtual memory-based OS, such as Linux, a usermode page
can be swapped at any point in time; the Linux kernel memory management code
makes these decisions. To the regular application process, this should not matter: any
time it attempts to access (read, write, or execute) the page content, the kernel will
page it back into RAM, and allow it to use it as though nothing had occurred. This
handling is generally called servicing a page fault (there is a lot more to it, but for the
purpose of this discussion, this is sufficient), and is completely transparent to the
usermode application process.

However, there are some situations where memory pages being paged — written from
RAM to swap and vice-versa — is undesirable:

¢ Realtime applications
¢ Cryptography (security) applications

In real-time applications, the key factor (at least within its critical code paths)
is determinism — the iron-clad guarantee that the work will take a certain worst-case
amount of time, and no more, no matter the load on the system.

Imagine that the real-time process is executing a critical code path and a data page
has to be paged in from the swap partition at that moment - the latency (delay)
introduced could ruin the application's characteristics, resulting in dismal failure (or
worse). In these cases, we, the developers, need a way to guarantee that said pages of
memory can guaranteed to be resident in RAM, thus avoiding any page faulting.

In some types of security applications, they would likely store some secrets in
memory (a password, a key); if the memory pages containing these are written out to
disk (swap), there is always the possibility that it remains on disk well after the
application exits — resulting in what's called information leakage, which is a bug
attackers are just waiting to pounce upon! Here, again, the need of the hour is to
guarantee that those pages cannot be swapped out.

Enter the mlock (2) (and friends: mlock2 and mlockall) system calls; the express
purpose of these APIs is to lock memory pages within the calling process's virtual
address space. Let's figure out how to use mlock (2) . Here is its signature:

int mlock (const void *addr, size_t len);

[140]

Dynamic Memory Allocation Chapter 4

The first parameter, addr, is a pointer to the (virtual) memory region to lock; the
second parameter, len, is the number of bytes to lock into RAM. As a trivial example,
take look at the following code (here, to keep it easily readable, we don't show error-
checking code; in a real application, please do so!):

long pgsz = sysconf (_SC_PAGESIZE);
size_t len = 3*pgsz;

void *ptr = malloc(len);

[...] // initialize the memory, etc

// Lock it!

if (mlock(ptr, len) != 0) {
// mlock failed, handle it
return ...;

[...] /* use the memory, confident it is resident in RAM & will stay
there until unlocked */

munlock (ptr, len); // it's now unlocked, can be swapped

Limits and privileges

A privileged process, either by running as root, or, better yet, by having the
CAP_IPC_LOCK capability bit set in order to lock memory (we shall describe process
credentials and capabilities in detail in their own chapters - chapter 7, Process
Credentials, and chapter 8, Process Capabilities), can lock unlimited amounts of
memory.

From Linux 2.6.9 onward, for a non-privileged process, it is limited by
the RLIMIT_MEMLOCK soft resource limit (which, typically, is not set very high). Here
is an example on an x86_64 Fedora box (as well as Ubuntu):

$ prlimit | grep MEMLOCK
MEMLOCK max locked-in-memory address space 65536 65536 bytes
$

[141]

Dynamic Memory Allocation Chapter 4

It's just 64 KB (ditto on an embedded ARM Linux, by default).

At the time of writing this book, on a recent Fedora 28 distro running
on x86_64, the resource limit for max locked memory seems to have
been amped up to 16 MB! The following prlimit(1) output shows just
this:

$ prlimit | grep MEMLOCK

MEMLOCK max locked-in-memory address space
16777216 16777216 bytes

$

Hang on a second, though; while using mlock(2), the POSIX standard requires that
addr is aligned to a page boundary (that is, if you take the memory start address and
divide it by the system page size, the remainder will be zero, that is, (addr %

pgsz) == 0.You can use the posix_memalign (3) APIto guarantee this; so, we can
change our code slightly to accommodate this alignment requirement:

Refer to the following (ch4/mlock_try.c):

[...]
#define CMD_MAX 256
static void disp_locked_mem (void)
{
char *cmd = malloc (CMD_MAX) ;
if (!cmd)
FATAL ("malloc (%$zu) failed\n", CMD_MAX);
snprintf (cmd, CMD_MAX-1, "grep Lck /proc/%d/status", getpid());
system(cmd) ;
free(cmd) ;

}

static void try_mlock (const char *cpgs)
{
size_t num_pg = atol (cpgs);
const long pgsz = sysconf (_SC_PAGESIZE);
void *ptr= NULL;
size_t len;

len = num_pg * pgsz;
if (len >= LONG_MAX)
FATAL ("too many bytes to alloc (%zu), aborting now\n", len);

/* ptr = malloc(len); */
/* Don't use the malloc; POSIX wants page—-aligned memory for mlock */
posix_memalign (&ptr, pgsz, len);

[142]

Dynamic Memory Allocation

Chapter 4

int

if (!'ptr)
FATAL ("posix_memalign (for %zu bytes) failed\n", len);

/* Lock the memory region! */
if (mlock(ptr, len)) {
free (ptr);
FATAL ("mlock failed\n");
t
printf ("Locked %zu bytes from address %p\n", len, ptr);
memset (ptr, 'L', len);
disp_locked_mem() ;
sleep(1l);

/* Now unlock it.. */
if (munlock (ptr, len)) {

free (ptr);

FATAL ("munlock failed\n");
}
printf ("unlocked..\n");
free(ptr);

main (int argc, char **argv)

if (argc < 2) |
fprintf (stderr, "Usage: %s pages-to-alloc\n", argv[0]);
exit (EXIT_FAILURE) ;

t

disp_locked_mem() ;

try_mlock (argv[1l]);

exit (EXIT_SUCCESS);

[143]

Dynamic Memory Allocation Chapter 4

Let's give it a spin:

$./mlock_try
Usage: ./mlock_try pages—-to—-alloc
$./mlock_try 1

VmLck : 0 kB

Locked 4096 bytes from address 0x1a6e000
VmLck : 4 kB

unlocked. .

$./mlock_try 32

VmLck : 0 kB

mlock_try.c:try _mlock:79: mlock failed
perror says: Cannot allocate memory

$

$./mlock_try 15

VmLck : 0 kB

Locked 61440 bytes from address 0x842000
VmLck : 60 kB

unlocked. .

$ sudo ./mlock_try 32
[sudo] password for <user>: XXX

VmLck : 0 kB

Locked 131072 bytes from address 0x7£6b478db000

VmLck : 128 kB

unlocked..

$ prlimit | grep MEMLOCK

MEMLOCK max locked-in-memory address space 65536 65536
bytes

$

Notice, in the successful cases, the address returned by
posix_memalign (3); it's on a page boundary. We can quickly tell
by looking at the last three digits (from the right) of the address — if
they are all zeroes, it's cleanly divisible by page size and thus on a
page boundary. This is because the page size is usually 4,096 bytes,
and 4096 decimal = 0x1000 hex!

We request 32 pages; the allocation is successful, but mlock fails because 32 pages =
32*4K =128 KB; the resource limit is just 64 KB for locked memory. However, when
we sudo it (thus running with root access), it works.

[144]

Dynamic Memory Allocation Chapter 4

Locking all pages

mlock basically allows us to tell the OS to lock a certain range of memory into RAM. In
some real-world cases, though, we cannot predict exactly which pages of memory we
will require resident in advance (a real-time application might require various, or all,
memory pages to always be resident).

To solve this tricky issue, another system call — mlockall(2) — exists; as you can guess, it
allows you to lock all process memory pages:

int mlockall (int flags);

If successful (remember, the same privilege restrictions apply to mlockall as to mlock),
all the process's memory pages —such as text, data segments, library pages, stack, and
shared memory segments — are guaranteed to remain resident in RAM until
unlocked.

The flags argument provides further control to the application developer; it can be
bitwise OR of the following;:

e MCL_CURRENT
e MCL_FUTURE
e MCL_ONFAULT (Linux 4.4 onward)

Using MCL_CURRENT asks the OS to lock all current pages within the calling process's
VAS into memory.

But what if you issue the mlockall(2) system call at initialization time, but the real-time
process is going to perform an malloc of say, 200 kilobytes, 5 minutes from now? We
need to guarantee that those 200 KB of memory (which is 50 pages, given a 4 KB page
size) is always resident in RAM (otherwise, the real-time application will suffer too
great a latency from possible future page faulting). That is the purpose of the
MCL_FUTURE flag: it guarantees the memory pages that become part of the calling
process's VAS in the future will remain resident in memory until unlocked.

We learned in the Demand-paging section that performing malloc does nothing more
than reserve virtual memory, not physical. As an example, if an (non-real-time)
application performs a rather large allocation of a megabyte (that's 512 pages), we
understand that only 512 virtual pages are reserved and the physical page frames are
not actually allocated — they will get faulted in on-demand. A typical realtime
application will therefore need to somehow guarantee that, once faulted in, these 512
pages will remain locked (resident) in RAM. Use the MCL_ONFAULT flag to achieve
this.

[145]

Dynamic Memory Allocation Chapter 4

This flag must be used in conjunction with either the MCL_CURRENT or MCL_FUTURE
flag, or both. The idea is that physical memory consumption remains extremely
efficient (as no physical allocation is done at the time of malloc), and yet, once the
application starts to touch the virtual pages (that is, read, write, or execute data or
code within the page), the physical page frames get faulted in and they will then be
locked. In other words, we do not pre-fault the memory, thus we get the best of both
worlds.

The other side of the coin is that, when done, the application can unlock all memory
pages by issuing the counterpart API: munlockall(2).

Memory protection

An application dynamically allocates, say, four pages of memory. By default, this
memory is both readable and writable; we refer to these as the memory protections on
the page.

Wouldn't it be nice if the application developer could dynamically modify memory
protections on a per-page basis? For example, keep the first page with default
protections, make the second page read-only, the third page read+execute, and on the
fourth page, not allow any kind of access (a guard page, perhaps?).

Well, this feature is precisely what the mprotect (2) system call is designed for. Let's
delve into how we can exploit it to do all that. Here is its signature:

#include <sys/mman.h>
int mprotect (void *addr, size_t len, int prot);

It's really quite straightforward: starting at the (virtual) address, addr, for len bytes
(that is, from addr up to addr+len-1), apply the memory protections specified by
the prot bitmask. As the granularity of mprotect is a page, the first parameter, addr, is
expected to be page-aligned (on a page boundary; recall that this is exactly what
mlock[all] (2) expects too).

The third parameter, prot, is where you specify the actual protections; it is a bitmask
and can either be just the PROT_NONE bit or the bitwise OR of the remainder:

Protection bit Meaning of memory protection
PROT_NONE No access allowed on the page
PROT_READ Reads allowed on the page
PROT_WRITE Writes allowed on the page
PROT_EXEC Execute access allowed on the page

[146]

Dynamic Memory Allocation Chapter 4

Within the man page on mprotect(2), there are several other rather
arcane protection bits and useful information under the NOTES
section. If required (or just curious), read about it here: http://

man7.org/linux/man-pages/man2/mprotect.2.html.

Memory protection — a code example

Let's consider an example program where the process dynamically allocates four
pages of memory and wants to set them up so that the memory protections for each
page are as shown in the following table:

Page #

Page 0 Page 1 Page 2 Page 3

Protection bits rw-— r—— rwx -

Relevant portions of the code are shown as follows:

First, the main function dynamically allocates page-aligned memory (four pages) with
the posix_memalign (3) API and then invokes the memory protection and the
memory testing functions in turn:

(...

]

/* Don't use the malloc; POSIX wants page-aligned memory for

mprotect (2) */

(...

posix_memalign (&ptr, gPgsz, 4*gPgsz);
if (!ptr)
FATAL ("posix_memalign (for %$zu bytes) failed\n", 4*gPgsz);
protect_mem(ptr);
test_mem(ptr, atoi(argv([l]));
]

Here is the memory protection function:

int okornot[4];
static void protect_mem(void *ptr)

{

int 1i;
u64d start_off=0;
char str_prots([][128] = {"PROT_READ|PROT_WRITE", "PROT_READ",

"PROT_WRITE|PROT_EXEC", "PROT_NONE"};
int prots[4] = {PROT_READ|PROT_WRITE, PROT_ READ,
PROT_WRITE |PROT_EXEC, PROT_NONE};

printf ("$s () :\n", __ _FUNCTION_);
memset (okornot, 0, sizeof (okornot));

/* Loop over each page, setting protections as required */

[147]

http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html

Dynamic Memory Allocation Chapter 4

}

for

(1=0; i<4; 1i++) {
start_off = (u64)ptr+(i*gPgsz);
printf ("page %d: protections: %$30s: "
"range [0x%11lx:0x%11lx]\n",
i, str_prots[i], start_off, start_off+gPgsz-1);

if (mprotect ((void *)start_off, gPgsz, prots[i]) == -1)
WARN ("mprotect (%$s) failed\n", str_prots[il]);

else
okornot [i] = 1;

After setting up the memory protections, we have the main () function invoke the
memory testing function, test_mem. The second parameter determines whether we
will attempt to write on read-only memory (we require this test case for page 1 as it's
read-only protected):

static void test_mem(void *ptr, int write_on_ro_mem)

{

o

int byte = random() % gPgsz;
char *start_off;

printf ("\n-—-—- $s () ————-— \n", _ FUNCTION_);

/* Page 0 : rw [default] mem protection */

if (okornot[0] == 1) {
start_off = (char *)ptr + O0*gPgsz + byte;
TEST_WRITE (0, start_off, 'a');
TEST_READ (0, start_off);

} else

printf ("*** Page 0 : skipping tests as memprot failed...\n");

/* Page 1 : ro mem protection */

if (okornot[1l] == 1) {
start_off = (char *)ptr + 1l*gPgsz + byte;
TEST_READ (1, start_off);
if (write_on_ro_mem == 1) {
TEST_WRITE (1, start_off, 'b');
}
} else

printf ("*** Page 1 : skipping tests as memprot failed...\n");

/* Page 2 : RWX mem protection */

if

(okornot[2] == 1) {

start_off = (char *)ptr + 2*gPgsz + byte;
TEST_READ (2, start_off);

TEST_WRITE (2, start_off, 'c');

[148]

Dynamic Memory Allocation Chapter 4

} else
printf ("*** Page 2 : skipping tests as memprot failed...\n");

/* Page 3 : 'NONE' mem protection */
if (okornot[3] == 1) {
start_off (char *)ptr + 3*gPgsz + byte;

TEST_READ (3, start_off);
TEST_WRITE (3, start_off, 'd');
} else
printf ("*** Page 3 : skipping tests as memprot failed...\n");
t

Prior to attempting to test it, we check that the page has indeed been protected by
the mprotect call (via our simple okornot [] array). Also, for readability, we build
the simple TEST_READ and TEST_WRITE macros:

#define TEST_READ (pgnum, addr) do { \
printf ("page %d: reading: byte @ 0x%1lx is ", \
pgnum, (u64)addr); \
fflush (stdout); \
printf (" %x", *addr); \
printf (" [OK]\n"); \
} while (0)

#define TEST_WRITE (pgnum, addr, byte) do { \

printf ("page %d: writing: byte '$c' to address 0x%1lx now ...", \
pgnum, byte, (u64)addr); \
fflush (stdout); \
*addr = byte; \
printf (" [OK]\n"); \
} while (0)

If the process violates any of the memory protections, the OS will summarily kill it via
the usual segfault mechanism (explained in detail within chapter 12, Signaling Part
1I).

Let's perform some test runs on the memprot program,; first (for reasons that will
become clear soon) we'll try it out on a generic Ubuntu Linux box, then on a Fedora
system, and finally on an (emulated) ARM-32 platform!

Case #1.1: The memprot program on standard Ubuntu 18.04 LTS with parameter
0 (output reformatted for readability):

$ cat /etc/issue
Ubuntu 18.04 LTS \n \1

$ uname -r

[149]

Dynamic Memory Allocation Chapter 4

4.15.0-23-generic
$

$./memprot

Usage: ./memprot test-write-to-ro-mem [0]1]

$./memprot O

77777 protect_mem() —-———-—

page 0: protections: PROT_READ|PROT_WRITE: range
[0x55796ccd5000:0x55796ccd5f£f]

page 1: protections: PROT_READ: range [0x55796ccd6000:0x55796ccd6fff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range
[0x55796ccd7000:0x55796ccd7fff]

page 3: protections: PROT_NONE: range [0x55796ccd8000:0x55796ccd8fff]

77777 test_mem() —-————-—

page 0: writing: byte 'a' to address 0x55796ccd5567 now ... [OK]
page 0: reading: byte @ 0x55796ccd5567 is 61 [OK]

page 1: reading: byte @ 0x55796ccd6567 is 0 [OK]

page 2: reading: byte @ 0x55796ccd7567 is 0 [OK]

page 2: writing: byte 'c' to address 0x55796ccd7567 now ... [OK]
page 3: reading: byte @ 0x55796ccd8567 is Segmentation fault

$

Okay, so the parameter to memprot is 0 or 1; 0 implies that we do not perform a
write-to-read-only-memory test, whereas 1 implies we do. Here, we've run it with the
0 parameter.

Some things to notice within the preceding output are as follows:

e The protect_mem () function sets up memory protections on a per-page
basis. We have allocated 4 pages, thus we loop 4 times, and on each loop
iteration i, perform mprotect (2) on the i-th memory page.

¢ Asyou can clearly see in the code, it's been done in this fashion, on each
loop iteration

e Page 0 : rw-:Set page protections to PROT_READ |
PROT_WRITE

e Page 1 : r—-:Set page protections to PROT_READ

e Page 2 : rwx:Set page protections to
PROT_READ| PROT_WRITE | PROT_EXEC

e Page 3 : —--:Set page protections to PROT_NONE, that is,
make the page inaccessible

[150]

Dynamic Memory Allocation Chapter 4

e In the preceding output, the output format displayed after mprotect is as
follows:

page <#>: protections: <PROT_xx|[...]> range
[<start_addr>:<end_addr>]

¢ All goes well; the four pages get new protections as required.

e Next, the test_mem () function is invoked, which tests each page's
protections (the memory protection of the page is shown within square
brackets in the usual [rwx] format):

e On page 0 [default: rw-]: It writes and reads a random byte
within the page

e On page 1 [r--]: It reads a random byte within the page,
and if the user passed the parameter as 1 (not the case here,
but it will be in the following case), it attempts to write to a
random byte within that page

* On page 2 [rwx]: As expected, reading and writing a random
byte here succeeds

¢ On page 3 [-—-]: It attempts to both read and write a random
byte within the page.

e The very first access — a read — fails with a
segfault; this is expected of course — the page
has no permissions whatsoever (we reproduce
the output for this case): page 3: reading:
byte @ 0x55796ccd8567 is
Segmentation fault

¢ To summarize, with the parameter as 0, test cases on pages 0, 1, and 2
succeed; as expected, any access on page 3 causes the OS to kill the process
(via the segmentation-violation signal).

[151]

Dynamic Memory Allocation Chapter 4

Case #1.2: The memprot program on standard Ubuntu 18.04 LTS with parameter
1 (output reformatted for readability).

Let's now re-run the program with the parameter set to 1, thus attempting to write to
the read-only page 1:

$./memprot 1

————— protect_mem() —-—-————

page 0: protections: PROT_READ|PROT_WRITE: range
[0x564d74£2d000:0x564d74f2dfff]

page 1: protections: PROT_READ: range [0x564d74f2e000:0x564d74f2efff]
page 2: protections: PROT_READ|PROT_WRITE |PROT_EXEC: range
[0x564d74£2£f000:0x564d74f2f£fff]

page 3: protections: PROT_NONE: range [0x564d74£30000:0x564d74£f30fff]

————— test_mem() --———-
page 0: writing: byte 'a' to address 0x564d74£2d567 now ... [OK]
page 0: reading: byte @ 0x564d74f2d567 is 61 [OK]

page 1: reading: byte @ 0x564d74f2e567 is 0 [OK]

page 1: writing: byte 'b' to address 0x564d74f2e567 now
.. .Segmentation fault

$

Indeed, as expected, it segfaults when it violates the read-only page permissions.
Case #2: The memprot program on a standard Fedora 28 system.

At the time of writing this book, the latest and greatest Fedora workstation
distribution is ver 28:

$ 1lsb_release -a

LSB Version: :core-4.l-amd64:core-4.1-noarch
Distributor ID: Fedora

Description: Fedora release 28 (Twenty Eight)
Release: 28

Codename: TwentyEight

$ uname -r

4.16.13-300.fc28.x86_64

$

[152]

Dynamic Memory Allocation Chapter 4

We build and run our memprot program on this standard Fedora 28 workstation
system (passing 0 as the parameter — implying that we do not attempt writing to the
read-only memory page):

$./memprot O
————— protect_mem() —-———-—
page 0: protections: PROT_READ|PROT_WRITE: range [0x15d8000:0x15d8fff]
page 1: protections: PROT_READ: range [0x15d9000:0x15d9fff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range
[0x15da000:0x15dafff]
!WARNING! memprot.c:protect_mem:112:
mprotect (PROT_READ | PROT_WRITE |PROT_EXEC) failed
perror says: Permission denied
page 3: protections: PROT_NONE: range [0x15db000:0x15dbfff]

————— test_mem() ————-

page 0: writing: byte 'a' to address 0x15d8567 now ... [OK]

page 0: reading: byte @ 0x15d8567 is 61 [OK]

page 1: reading: byte @ 0x15d9567 is 0 [OK]

**% Page 2 : skipping tests as memprot failed...

page 3: reading: byte @ 0x15db567 is Segmentation fault (core dumped)
$

How do we interpret the preceding output? The following is the explanation for the
same:

o All goes well for pages 0, 1, and 3: the mprotect API succeeds in setting the
page's protections exactly as shown

e However, we get a failure (and a Warning message) when we attempt the
mprotect (2) system call on page 2 with the PROT_READ | PROT_WRITE
| PROT_EXEC attributes. Why?

e The usual OS security is the Discretionary Access
Control (DAC) layer. Many modern Linux distros, including
Fedora, come with a powerful security feature — an
additional layer of security within the OS — the Mandatory
Access Control (MAC) layer. These are implemented on
Linux as Linux Security Modules (LSMs). Popular LSMs
include the NSA's SELinux (Security-Enhanced Linux),
AppArmor, Smack, TOMOYO, and Yama.

[153]

Dynamic Memory Allocation Chapter 4

$./memprot 0O

page 0:
page 1:

page 3:

W NN OO

e Fedora uses SELinux while Ubuntu variants tend to use
AppArmor. Whichever the case, it is often these LSMs that
can fail userland-issued system calls when they violate a
security policy. This is precisely what happened with
our mprotect(2) system call on the third page (when the page
protections were attempted to be set to [rwx])!

¢ As a quick proof-of-concept, and to just get it working for
now, we temporarily disable SELinux and retry:

® $ getenforce
Enforcing
$ setenforce
usage: setenforce [Enforcing | Permissive | 1 |
01
$ sudo setenforce 0
[sudo] password for <username>: XXX
$ get<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>