

Hands-On System
Programming with Linux

Explore Linux system programming interfaces, theory,
and practice

Kaiwan N Billimoria

BIRMINGHAM - MUMBAI

Hands-On System Programming with
Linux
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Priyanka Deshpande
Technical Editor: Rutuja Patade
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tom Scaria
Production Coordinator: Arvindkumar Gupta

First published: October 2018

Production reference: 1311018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-847-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Kaiwan N Billimoria taught himself programming on his dad's IBM PC back in 1983.
He was programming in C and Assembly on DOS until he discovered the joys of
Unix (via Richard Steven's iconic book, UNIX Network Programming, and by writing C
code on SCO Unix).

Kaiwan has worked on many aspects of the Linux system programming stack,
including Bash scripting, system programming in C, kernel internals, and embedded
Linux work. He has actively worked on several commercial/OSS projects. His
contributions include drivers to the mainline Linux OS, and many smaller projects
hosted on GitHub. His Linux passion feeds well into his passion for teaching these
topics to engineers, which he has done for over two decades now. It doesn't hurt that
he is a recreational ultra-marathoner too.

Writing a book is a lot of hard work, tightly coupled with teamwork. My deep
gratitude to the team at Packt: Rohit, Priyanka, and Rutuja, as well as the technical
reviewer, Tigran, and so many other behind-the-scenes workers. Of course, none of
this would have been remotely possible without support from my family: my
parents, Diana and Nadir; my brother, Darius; my wife, Dilshad; and my super
kids, Sheroy and Danesh! Heartfelt thanks to you all.

About the reviewer
Tigran Aivazian has a master's degree in computer science and a master's degree in
theoretical physics. He has written BFS and Intel microcode update drivers that have
become part of the official Linux kernel. He is the author of a book titled Linux 2.4
Kernel Internals, which is available in several languages on the Linux documentation
project. He worked at Veritas as a Linux kernel architect, improving the kernel and
teaching OS internals. Besides technological pursuits, Tigran has produced scholarly
Bible editions in Hebrew, Greek, Syriac, Slavonic, and ancient Armenian. Recently, he
published The British Study Edition of the Urantia Papers. He is currently working on
the foundations of quantum mechanics in a branch of physics called quantum
infodynamics.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Linux System Architecture 9
Technical requirements 9
Linux and the Unix operating system 10
The Unix philosophy in a nutshell 11

Everything is a process – if it's not a process, it's a file 12
One tool to do one task 15
Three standard I/O channels 17

Word count 18
cat 19

Combine tools seamlessly 21
Plain text preferred 23
CLI, not GUI 24
Modular, designed to be repurposed by others 24
Provide mechanisms, not policies 25

Pseudocode 25
Linux system architecture 27

Preliminaries 27
The ABI 27
Accessing a register's content via inline assembly 31
Accessing a control register's content via inline assembly 33
CPU privilege levels 34

Privilege levels or rings on the x86 35
Linux architecture 38

Libraries 39
System calls 40
Linux – a monolithic OS 41

What does that mean? 42
Execution contexts within the kernel 46

Process context 47
Interrupt context 47

Summary 48

Chapter 2: Virtual Memory 49
Technical requirements 49
Virtual memory 50

No VM – the problem 51
Objective 52

Virtual memory 54
Addressing 1 – the simplistic flawed approach 58
Addressing 2 – paging in brief 61

Table of Contents

[ii]

Paging tables – simplified 63
Indirection 65
Address-translation 65

Benefits of using VM 66
Process-isolation 66
The programmer need not worry about physical memory 67
Memory-region protection 68
SIDEBAR :: Testing the memcpy() C program 69

Process memory layout 73
Segments or mappings 74

Text segment 76
Data segments 76
Library segments 77
Stack segment 78

What is stack memory? 78
Why a process stack? 78
Peeking at the stack 81

Advanced – the VM split 84
Summary 89

Chapter 3: Resource Limits 90
Resource limits 90
Granularity of resource limits 92

Resource types 93
Available resource limits 93

Hard and soft limits 95
Querying and changing resource limit values 98

Caveats 100
A quick note on the prlimit utility 101

Using prlimit(1) – examples 101
API interfaces 104

Code examples 106
Permanence 111

Summary 112

Chapter 4: Dynamic Memory Allocation 113
The glibc malloc(3) API family 114

The malloc(3) API 114
malloc(3) – some FAQs 117
malloc(3) – a quick summary 122

The free API 122
free – a quick summary 124

The calloc API 124
The realloc API 125

The realloc(3) – corner cases 126
The reallocarray API 127

Beyond the basics 128
The program break 128
Using the sbrk() API 128

Table of Contents

[iii]

How malloc(3) really behaves 132
Code example – malloc(3) and the program break 133

Scenario 1 – default options 133
Scenario 2 – showing malloc statistics 134
Scenario 3 – large allocations option 135

Where does freed memory go? 136
Advanced features 136

Demand-paging 137
Resident or not? 139

Locking memory 140
Limits and privileges 141
Locking all pages 145

Memory protection 146
Memory protection – a code example 147

An Aside – LSM logs, Ftrace 155
LSM logs 155
Ftrace 156
An experiment – running the memprot program on an ARM-32 156
Memory protection keys – a brief note 159

Using alloca to allocate automatic memory 159
Summary 163

Chapter 5: Linux Memory Issues 164
Common memory issues 165

Incorrect memory accesses 167
Accessing and/or using uninitialized variables 168

Test case 1: Uninitialized memory access 168
Out-of-bounds memory accesses 170

Test case 2 170
Test case 3 171
Test case 4 172
Test case 5 173
Test case 6 174
Test case 7 175

Use-after-free/Use-after-return bugs 176
Test case 8 177
Test case 9 178
Test case 10 179

Leakage 182
Test case 11 182
Test case 12 184
Test case 13 187

Test case 13.1 188
Test case 13.2 189
Test case 13.3 191

Undefined behavior 192
Fragmentation 193
Miscellaneous 194

Summary 195

Chapter 6: Debugging Tools for Memory Issues 196
Tool types 197

Table of Contents

[iv]

Valgrind 198
Using Valgrind's Memcheck tool 198
Valgrind summary table 210
Valgrind pros and cons : a quick summary 210

Sanitizer tools 211
Sanitizer toolset 212
Building programs for use with ASan 213
Running the test cases with ASan 214
AddressSanitizer (ASan) summary table 227
AddressSanitizer pros and cons – a quick summary 228

Glibc mallopt 230
Malloc options via the environment 232

Some key points 233
Code coverage while testing 233
What is the modern C/C++ developer to do? 234
A mention of the malloc API helpers 234

Summary 236

Chapter 7: Process Credentials 237
The traditional Unix permissions model 238

Permissions at the user level 239
How the Unix permission model works 239

Determining the access category 242
Real and effective IDs 244

A puzzle – how can a regular user change their password? 247
The setuid and setgid special permission bits 249

Setting the setuid and setgid bits with chmod 250
Hacking attempt 1 251

System calls 254
Querying the process credentials 254

Code example 255
Sudo – how it works 256
What is a saved-set ID? 257

Setting the process credentials 257
Hacking attempt 2 258

An aside – a script to identify setuid-root and setgid installed programs 262
setgid example – wall 264
Giving up privileges 267
Saved-set UID – a quick demo 268
The setres[u|g]id(2) system calls 271

Important security notes 273
Summary 274

Chapter 8: Process Capabilities 275
The modern POSIX capabilities model 276

Motivation 276
POSIX capabilities 277
Capabilities – some gory details 280

OS support 280

Table of Contents

[v]

Viewing process capabilities via procfs 280
Thread capability sets 282
File capability sets 283

Embedding capabilities into a program binary 284
Capability-dumb binaries 288

Getcap and similar utilities 288
Wireshark – a case in point 289

Setting capabilities programmatically 290
Miscellaneous 296

How ls displays different binaries 296
Permission models layering 297
Security tips 298

FYI – under the hood, at the level of the Kernel 298
Summary 299

Chapter 9: Process Execution 300
Technical requirements 300
Process execution 301

Converting a program to a process 301
The exec Unix axiom 302

Key points during an exec operation 303
Testing the exec axiom 304

Experiment 1 – on the CLI, no frills 305
Experiment 2 – on the CLI, again 305

The point of no return 306
Family time – the exec family APIs 307

The wrong way 310
Error handling and the exec 310
Passing a zero as an argument 310
Specifying the name of the successor 311

The remaining exec family APIs 314
The execlp API 314
The execle API 316
The execv API 316

Exec at the OS level 317
Summary table – exec family of APIs 318
Code example 319

Summary 322

Chapter 10: Process Creation 323
Process creation 324

How fork works 324
Using the fork system call 327

Fork rule #1 328
Fork rule #2 – the return 329
Fork rule #3 335

Atomic execution? 337
Fork rule #4 – data 337
Fork rule #5 – racing 338
The process and open files 339

Table of Contents

[vi]

Fork rule #6 – open files 341
Open files and security 343

Malloc and the fork 344
COW in a nutshell 346

Waiting and our simpsh project 347
The Unix fork-exec semantic 348

The need to wait 349
Performing the wait 350

Defeating the race after fork 350
Putting it together – our simpsh project 351
The wait API – details 355

The scenarios of wait 358
Wait scenario #1 359
Wait scenario #2 359
Fork bombs and creating more than one child 360
Wait scenario #3 362

Variations on the wait – APIs 362
The waitpid(2) 362
The waitid (2) 365
The actual system call 366

A note on the vfork 368
More Unix weirdness 368

Orphans 368
Zombies 369

Fork rule #7 370
The rules of fork – a summary 371

Summary 371

Chapter 11: Signaling - Part I 372
Why signals? 373

The signal mechanism in brief 373
Available signals 376

The standard or Unix signals 377
Handling signals 380

Using the sigaction system call to trap signals 381
Sidebar – the feature test macros 382
The sigaction structure 382
Masking signals 387

Signal masking with the sigprocmask API 387
Querying the signal mask 388

Sidebar – signal handling within the OS – polling not interrupts 391
Reentrant safety and signalling 391

Reentrant functions 391
Async-signal-safe functions 393

Alternate ways to be safe within a signal handler 393
Signal-safe atomic integers 394

Powerful sigaction flags 397
Zombies not invited 398

No zombies! – the classic way 399
No zombies! – the modern way 400

The SA_NOCLDSTOP flag 402

Table of Contents

[vii]

Interrupted system calls and how to fix them with the SA_RESTART 402
The once only SA_RESETHAND flag 404
To defer or not? Working with SA_NODEFER 405

Signal behavior when masked 405
Case 1 : Default : SA_NODEFER bit cleared 406
Case 2 : SA_NODEFER bit set 407
Running of case 1 – SA_NODEFER bit cleared [default] 411
Running of case 2 – SA_NODEFER bit set 412

Using an alternate signal stack 415
Implementation to handle high-volume signals with an alternate signal stack 416
Case 1 – very small (100 KB) alternate signal stack 418
Case 2 : A large (16 MB) alternate signal stack 419

Different approaches to handling signals at high volume 420
Summary 420

Chapter 12: Signaling - Part II 421
Gracefully handling process crashes 422

Detailing information with the SA_SIGINFO 422
The siginfo_t structure 423
Getting system-level details when a process crashes 427

Trapping and extracting information from a crash 428
Register dumping 433
Finding the crash location in source code 437

Signaling – caveats and gotchas 439
Handling errno gracefully 439

What does errno do? 439
The errno race 440
Fixing the errno race 441

Sleeping correctly 442
The nanosleep system call 443

Real-time signals 446
Differences from standard signals 447

Real time signals and priority 448
Sending signals 452

Just kill 'em 452
Killing yourself with a raise 453
Agent 00 – permission to kill 453
Are you there? 454

Signaling as IPC 455
Crude IPC 455
Better IPC – sending a data item 456

Sidebar – LTTng 461
Alternative signal-handling techniques 463

Synchronously waiting for signals 463
Pause, please 464

Waiting forever or until a signal arrives 464
Synchronously blocking for signals via the sigwait* APIs 465

The sigwait library API 465
The sigwaitinfo and the sigtimedwait system calls 470

The signalfd(2) API 471

Table of Contents

[viii]

Summary 474

Chapter 13: Timers 475
Older interfaces 476

The good ol' alarm clock 476
Alarm API – the downer 479

Interval timers 479
A simple CLI digital clock 483

Obtaining the current time 485
Trial runs 487

A word on using the profiling timers 488
The newer POSIX (interval) timers mechanism 490

Typical application workflow 491
Creating and using a POSIX (interval) timer 491

The arms race – arming and disarming a POSIX timer 494
Querying the timer 496
Example code snippet showing the workflow 496
Figuring the overrun 499

POSIX interval timers – example programs 500
The reaction – time game 500

How fast is fast? 500
Our react game – how it works 501
React – trial runs 503
The react game – code view 505

The run:walk interval timer application 509
A few trial runs 510
The low – level design and code 512

Timer lookup via proc 516
A quick mention 517

Timers via file descriptors 517
A quick note on watchdog timers 519

Summary 520

Chapter 14: Multithreading with Pthreads Part I - Essentials 521
Multithreading concepts 522

What exactly is a thread? 522
Resource sharing 523

Multiprocess versus multithreaded 527
Example 1 – creation/destruction – process/thread 528

The multithreading model 529
Example 2 – matrix multiplication – process/thread 531
Example 3 – kernel build 536

On a VM with 1 GB RAM, two CPU cores and parallelized make -j4 536
On a VM with 1 GB RAM, one CPU core and sequential make -j1 538

Motivation – why threads? 539
Design motivation 539

Taking advantage of potential parallelism 539
Logical separation 540
Overlapping CPU with I/O 540
Manager-worker model 541
IPC becoming simple(r) 541

Table of Contents

[ix]

Performance motivation 541
Creation and destruction 541
Automatically taking advantage of modern hardware 541
Resource sharing 542
Context switching 542

A brief history of threading 543
POSIX threads 543
Pthreads and Linux 544

Thread management – the essential pthread APIs 545
Thread creation 546
Termination 549

The return of the ghost 551
So many ways to die 554

How many threads is too many? 554
How many threads can you create? 556

Code example – creating any number of threads 558
How many threads should one create? 560

Thread attributes 562
Code example – querying the default thread attributes 563

Joining 566
The thread model join and the process model wait 571
Checking for life, timing out 572
Join or not? 573

Parameter passing 574
Passing a structure as a parameter 575
Thread parameters – what not to do 577

Thread stacks 579
Get and set thread stack size 579
Stack location 580
Stack guards 582

Summary 586

Chapter 15: Multithreading with Pthreads Part II - Synchronization 587
The racing problem 588

Concurrency and atomicity 589
The pedagogical bank account example 589
Critical sections 592

Locking concepts 593
Is it atomic? 595

Dirty reads 599
Locking guidelines 600

Locking granularity 602
Deadlock and its avoidance 603

Common deadlock types 604
Self deadlock (relock) 604
The ABBA deadlock 604

Avoiding deadlock 605
Using the pthread APIs for synchronization 606

The mutex lock 607

Table of Contents

[x]

Seeing the race 610
Mutex attributes 613

Mutex types 613
The robust mutex attribute 615
IPC, threads, and the process-shared mutex 617

Priority inversion, watchdogs, and Mars 623
Priority inversion 623
Watchdog timer in brief 625
The Mars Pathfinder mission in brief 627
Priority inheritance – avoiding priority inversion 628
Summary of mutex attribute usage 630

Mutex locking – additional variants 631
Timing out on a mutex lock attempt 631
Busy-waiting (non-blocking variant) for the lock 632
The reader-writer mutex lock 632
The spinlock variant 634

A few more mutex usage guidelines 636
Is the mutex locked? 637

Condition variables 638
No CV – the naive approach 639
Using the condition variable 639
A simple CV usage demo application 641
CV broadcast wakeup 645

Summary 647

Chapter 16: Multithreading with Pthreads Part III 648
Thread safety 648

Making code thread-safe 651
Reentrant-safe versus thread-safe 651
Summary table – approaches to making functions thread-safe 653
Thread safety via mutex locks 653
Thread safety via function refactoring 656
The standard C library and thread safety 658

List of APIs not required to be thread-safe 658
Refactoring glibc APIs from foo to foo_r 659
Some glibc foo and foo_r APIs 661

Thread safety via TLS 662
Thread safety via TSD 664

Thread cancelation and cleanup 665
Canceling a thread 665

The thread cancelation framework 666
The cancelability state 666
The cancelability type 667
Canceling a thread – a code example 670

Cleaning up at thread exit 672
Thread cleanup – code example 673

Threads and signaling 675
The issue 676
The POSIX solution to handling signals on MT 676
Code example – handling signals in an MT app 677

Threads vs processes – look again 679

Table of Contents

[xi]

The multiprocess vs the multithreading model – pros of the MT model 680
The multiprocess vs the multithreading model – cons of the MT model 681

Pthreads – a few random tips and FAQs 682
Pthreads – some FAQs 682
Debugging multithreaded (pthreads) applications with GDB 683

Summary 685

Chapter 17: CPU Scheduling on Linux 686
The Linux OS and the POSIX scheduling model 686

The Linux process state machine 687
The sleep states 688

What is real time? 690
Types of real time 691

Scheduling policies 692
Peeking at the scheduling policy and priority 694
The nice value 695
CPU affinity 696

Exploiting Linux's soft real-time capabilities 699
Scheduling policy and priority APIs 699

Code example – setting a thread scheduling policy and priority 701
Soft real-time – additional considerations 706

RTL – Linux as an RTOS 707
Summary 708

Chapter 18: Advanced File I/O 709
I/O performance recommendations 710

The kernel page cache 711
Giving hints to the kernel on file I/O patterns 712

Via the posix_fadvise(2) API 712
Via the readahead(2) API 713

MT app file I/O with the pread, pwrite APIs 714
Scatter – gather I/O 716

Discontiguous data file – traditional approach 716
Discontiguous data file – the SG – I/O approach 718
SG – I/O variations 721

File I/O via memory mapping 721
The Linux I/O code path in brief 722
Memory mapping a file for I/O 725

File and anonymous mappings 728
The mmap advantage 730
Code example 732
Memory mapping – additional points 732

DIO and AIO 734
Direct I/O (DIO) 734
Asynchronous I/O (AIO) 735
I/O technologies – a quick comparison 736

Multiplexing or async blocking I/O – a quick note 737
I/O – miscellaneous 738

Table of Contents

[xii]

Linux's inotify framework 738
I/O schedulers 738
Ensuring sufficient disk space 740
Utilities for I/O monitoring, analysis, and bandwidth control 741

Summary 742

Chapter 19: Troubleshooting and Best Practices 743
Troubleshooting tools 744

perf 744
Tracing tools 745
The Linux proc filesystem 745

Best practices 746
The empirical approach 746
Software engineering wisdom in a nutshell 746
Programming 747

A programmer’s checklist – seven rules 747
Better testing 748
Using the Linux kernel's control groups 748

Summary 749

Other Books You May Enjoy 750

Index 753

Preface
The Linux OS and its embedded and server applications are critical components of
today's key software infrastructure in a decentralized and networked universe.
Industry demand for proficient Linux developers is ever-increasing. This book aims
to give you two things: a solid theoretical base, and practical, industry-relevant
information—illustrated by code—covering the Linux system programming domain.
This book delves into the art and science of Linux system programming, including
system architecture, virtual memory, process memory and management, signaling,
timers, multithreading, scheduling, and file I/O.

This book attempts to go beyond the use API X to do Y approach; it takes pains
to explain the concepts and theory required to understand the
programming interfaces, the design decisions, and trade-offs made by
experienced developers when using them and the rationale behind them.
Troubleshooting tips and industry best practices round out the book's coverage. By
the end of this book, you will have the conceptual knowledge, as well as the hands-
on experience, needed for working with Linux system programming interfaces.

Who this book is for
Hands-On System Programming with Linux is for Linux professionals: system engineers,
programmers, and testers (QA). It's also for students; anyone, really, who wants to go
beyond using an API set to understand the theoretical underpinnings and concepts
behind the powerful Linux system programming APIs. You should be familiar with
Linux at the user level, including aspects such as logging in, using the shell via the
command-line interface, and using tools such as find, grep, and sort. A working
knowledge of the C programming language is required. No prior experience with
Linux systems programming is assumed.

What this book covers
Chapter 1, Linux System Architecture, covers the key basics: the Unix design
philosophy and the Linux system architecture. Along the way, other important
aspects—CPU privilege levels, the processor ABI, and what system calls really
are—are dealt with.

Preface

[2]

Chapter 2, Virtual Memory, dives into clearing up common misconceptions about
what virtual memory really is and why it is key to modern OS design; the layout of
the process virtual address space is covered too.

Chapter 3, Resource Limits, delves into the topic of per-process resource limits and the
APIs governing their usage.

Chapter 4, Dynamic Memory Allocation, initially covers the basics of the
popular malloc family of APIs, then dives into more advanced aspects, such as the
program break, how malloc really behaves, demand paging, memory locking and
protection, and using the alloca function.

Chapter 5, Linux Memory Issues, introduces you to the (unfortunately) prevalent
memory defects that end up in our projects due to a lack of understanding of the
correct design and use of memory APIs. Defects such as undefined behavior (in
general), overflow and underflow bugs, leakage, and others are covered.

Chapter 6, Debugging Tools for Memory Issues, shows how to leverage existing tools,
including the compiler itself, Valgrind, and AddressSanitizer, which is used to detect
the memory issues you will have seen in the previous chapter.

Chapter 7, Process Credentials, is the first of two chapters focused on having you think
about and understand security and privilege from a system perspective. Here, you'll
learn about the traditional security model – a set of process credentials – as well as the
APIs for manipulating them. Importantly, the concepts of setuid-root processes and
their security repercussions are delved into.

Chapter 8, Process Capabilities, introduces you to the modern POSIX capabilities
model and how security can benefit when application developers learn to use and
leverage this model instead of the traditional model (seen in the previous chapter).
What capabilities are, how to embed them, and practical design for security is also
looked into.

Chapter 9, Process Execution, is the first of four chapters dealing with the broad area
of process management (execution, creation, and signaling). In this particular chapter,
you'll learn how the (rather unusual) Unix exec axiom behaves and how to use the
API set (the exec family) to exploit it.

Preface

[3]

Chapter 10, Process Creation, delves into how exactly the fork(2) system call
behaves and should be used; we depict this via our seven rules of fork. The Unix fork-
exec-wait semantic is described (diving into the wait APIs as
well), orphan and zombie processes are also covered.

Chapter 11, Signaling – Part I, deals with the important topic of signals on the Linux
platform: the what, the why, and the how. We cover the powerful sigaction(2)
system call here, along with topics such as reentrant and signal-async safety, sigaction
flags, signal stacks, and others.

Chapter 12, Signaling – Part II, continues our coverage of signaling, what with
it being a large topic. We take you through the correct way to write a signal handler
for the well-known and fatal segfault, working with real-time signals, delivering
signal to processes, performing IPC with signals, and alternate means to handle
signals.

Chapter 13, Timers, teaches you about the important (and signal-related) topic of how
to set up and handle timers in real-world Linux applications. We first cover the
traditional timer APIs and quickly move onto the modern POSIX interval timers and
how to use them to this end. Two interesting, small projects are presented and walked
through.

Chapter 14, Multithreading with Pthreads Part I – Essentials, is the first of a trilogy on
multithreading with the pthreads framework on Linux. Here, we introduce you to
what exactly a thread is, how it differs from a process, and the motivation (in terms of
design and performance) for using threads. The chapter then guides you through the
essentials of writing a pthreads application on Linux ,covering thread creation,
termination, joining, and more.

Chapter 15, Multithreading with Pthreads Part II – Synchronization, is a chapter
dedicated to the really important topic of synchronization and race prevention. You
will first understand the issue at hand, then delve into the key topics of atomicity,
locking, deadlock prevention, and others. Next, the chapter teaches you how to use
pthreads synchronization APIs with respect to the mutex lock and condition
variables.

Chapter 16, Multithreading with Pthreads Part III, completes our work on
multithreading; we shed light on the key topics of thread safety, thread cancellation
and cleanup, and handling signals in a multithreaded app. We round off the chapter
with a discussion on the pros and cons of multithreading and address some FAQs.

Preface

[4]

Chapter 17, CPU Scheduling on Linux, introduces you to scheduling-related topics
that the system programmer should be aware of. We cover the Linux process/thread
state machine, the notion of real time and the three (minimal) POSIX CPU scheduling
policies that the Linux OS brings to the table. Exploiting the available APIs, you'll
learn how to write a soft real-time app on Linux. We finish the chapter with a brief
look at the (interesting!) fact that Linux can be patched to work as an RTOS.

Chapter 18, Advanced File I/O, is completely focused on the more advanced ways of
performing IO on Linux in order to gain maximum performance (as IO is often the
bottleneck). You are briefly shown how the Linux IO stack is architected (the page
cache being critical), and the APIs that give advice to the OS on file access patterns.
Writing IO code for performance, as you'll learn, involves the use of technologies
such as SG-I/O, memory mapping, DIO, and AIO.

Chapter 19, Troubleshooting and Best Practices, is a critical summation of the key points
to do with troubleshooting on Linux. You'll be briefed upon the use of powerful tools,
such as perf and tracing tools. Then, very importantly, the chapter attempts to
summarize key points on software engineering in general and programming on
Linux in particular, looking at industry best practices. We feel these are critical
takeaways for any programmer.

Appendix A, File I/O Essentials, introduces you to performing efficient file I/O on the
Linux platform, via both the streaming (stdio library layer) API set as well as the
underlying system calls. Along the way, important information on buffering and its
effects on performance are covered.

For this chapter refer to: https:/ / www. packtpub. com/ sites/ default/ files/
downloads/File_ IO_ Essentials. pdf.

Appendix B, Daemon Processes, introduces you, in a succinct fashion, to the world of
the daemon process on Linux. You'll be shown how to write a traditional SysV-style
daemon process. There is also a brief note on what is involved in constructing a
modern, new-style daemon process.

For this chapter refer to: https:/ / www. packtpub. com/ sites/ default/ files/
downloads/Daemon_ Processes. pdf.

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Preface

[5]

To get the most out of this book
As mentioned earlier, this book is targeted at both Linux software professionals—be
they developers, programmers, architects, or QA staff members—as well as serious
students looking to expand their knowledge and skills with the key topics of system
programming on the Linux OS.

We assume that you are familiar with using a Linux system via the command-line
interface, the shell. We also assume that you are familiar with programming in the C
language, know how to use the editor and the compiler, and are familiar with the
basics of the Makefile. We do not assume that you have any prior knowledge of the
topics covered in the book.

To get the most out of this book—and we are very clear on this point—you must not
just read the material, but must also actively work on, try out, and modify the code
examples provided, and try and finish the assignments as well! Why?
Simple: doing is what really teaches you and internalizes a topic; making mistakes
and fixing them being an essential part of the learning process. We always advocate
an empirical approach—don't take anything at face value. Experiment, try it out for
yourself, and see.

To this end, we urge you to clone this book's GitHub repository (see the following
section for instructions), browse through the files, and try them out. Using a Virtual
Machine (VM) for experimentation is (quite obviously) definitely recommended (we
have tested the code on both Ubuntu 18.04 LTS and Fedora 27/28). A listing of
mandatory and optional software packages to install on the system is also provided
within the book's GitHub repository; please read through and install all required
utilities to get the best experience.

Last, but definitely not least, each chapter has a Further reading section, where
additional online links and books (in some cases) are mentioned; we urge you to
browse through these. You will find the Further reading material for each chapter
available on the book's GitHub repository.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Hands- on- System- Programming- with- Linux. We also have other
code bundles from our rich catalog of books and videos available at https:/ / github.
com/PacktPublishing/ . Check them out.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /www. packtpub. com/ sites/ default/
files/downloads/ 9781788998475_ ColorImages. pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Let's check these out via the source code of
our membugs.c program."

A block of code is set as follows:

include <pthread.h>
int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict
attr, int *restrict type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf

Preface

[7]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

include <pthread.h>
int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict
attr, int *restrict type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

Any command-line input or output is written as follows:

$./membugs 3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select C as the language via the drop-down."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title
in the subject of your message. If you have questions about any aspect of this book,
please email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[8]

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Linux System Architecture

This chapter informs the reader about the system architecture of the Linux ecosystem.
It first conveys the elegant Unix philosophy and design fundamentals, then delves
into the details of the Linux system architecture. The importance of the ABI, CPU
privilege levels, and how modern operating systems (OSes) exploit them, along with
the Linux system architecture's layering, and how Linux is a monolithic architecture,
will be covered. The (simplified) flow of a system call API, as well as kernel-code
execution contexts, are key points.

In this chapter, the reader will be taken through the following topics:

The Unix philosophy in a nutshell
Architecture preliminaries
Linux architecture layers
Linux—a monolithic OS
Kernel execution contexts

Along the way, we'll use simple examples to make the key philosophical and
architectural points clear.

Technical requirements
A modern desktop PC or laptop is required; Ubuntu Desktop specifies the following
as recommended system requirements for installation and usage of the distribution:

2 GHz dual core processor or better
RAM

Running on a physical host: 2 GB or more system memory
Running as a guest: The host system should have at least 4
GB RAM (the more, the better and smoother the experience)

Linux System Architecture Chapter 1

[10]

25 GB of free hard drive space
Either a DVD drive or a USB port for the installer media
Internet access is definitely helpful

We recommend the reader use one of the following Linux distributions (can be
installed as a guest OS on a Windows or Linux host system, as mentioned):

Ubuntu 18.04 LTS Desktop (Ubuntu 16.04 LTS Desktop is a good choice too
as it has long term support as well, and pretty much everything should
work)

Ubuntu Desktop download link: https:/ /www. ubuntu. com/
download/ desktop

Fedora 27 (Workstation)
Download link: https:/ / getfedora. org/en_ GB/
workstation/ download/

Note that these distributions are, in their default form, OSS and non-proprietary, and
free to use as an end user.

There are instances where the entire code snippet isn't included in
the book . Thus the GitHub URL to refer the codes: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.
Also, for the Further reading section, refer to the preceding GitHub
link.

Linux and the Unix operating system
Moore's law famously states that the number of transistors in an IC will double
(approximately) every two years (with an addendum that the cost would halve at
pretty much the same rate). This law, which remained quite accurate for many years,
is one of the things that clearly underscored what people came to realize, and even
celebrate, about the electronics and the Information Technology (IT) industry; the
sheer speed with which innovation and paradigm shifts in technology occur here is
unparalleled. So much so that we now hardly raise an eyebrow when, every year,
even every few months in some cases, new innovations and technology appear,
challenge, and ultimately discard the old with little ceremony.

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Linux System Architecture Chapter 1

[11]

Against this backdrop of rapid all-consuming change, there lives an engaging
anomaly: an OS whose essential design, philosophy, and architecture have changed
hardly at all in close to five decades. Yes, we are referring to the venerable Unix
operating system.

Organically emerging from a doomed project at AT&T's Bell Labs (Multics) in around
1969, Unix took the world by storm. Well, for a while at least.

But, you say, this is a book about Linux; why all this information about Unix? Simply
because, at heart, Linux is the latest avatar of the venerable Unix OS. Linux is a Unix-
like operating system (among several others). The code, by legal necessity, is unique;
however, the design, philosophy, and architecture of Linux are pretty much identical
to those of Unix.

The Unix philosophy in a nutshell
 To understand anyone (or anything), one must strive to first understand their (or its)
underlying philosophy; to begin to understand Linux is to begin to understand the
Unix philosophy. Here, we shall not attempt to delve into every minute detail; rather,
an overall understanding of the essentials of the Unix philosophy is our goal. Also,
when we use the term Unix, we very much also mean Linux!

The way that software (particularly, tools) is designed, built, and maintained on Unix
slowly evolved into what might even be called a pattern that stuck: the Unix design
philosophy. At its heart, here are the pillars of the Unix philosophy, design, and
architecture:

Everything is a process; if it's not a process, it's a file
One tool to do one task
Three standard I/O channel
Combine tools seamlessly
Plain text preferred
CLI, not GUI
Modular, designed to be repurposed by others
Provide the mechanism, not the policy

Let's examine these pillars a little more closely, shall we?

Linux System Architecture Chapter 1

[12]

Everything is a process – if it's not a process,
it's a file
A process is an instance of a program in execution. A file is an object on the
filesystem; beside regular file with plain text or binary content; it could also be a
directory, a symbolic link, a device-special file, a named pipe, or a (Unix-domain)
socket.

The Unix design philosophy abstracts peripheral devices (such as the keyboard,
monitor, mouse, a sensor, and touchscreen) as files – what it calls device files. By
doing this, Unix allows the application programmer to conveniently ignore the details
and just treat (peripheral) devices as though they are ordinary disk files.

The kernel provides a layer to handle this very abstraction – it's called the Virtual
Filesystem Switch (VFS). So, with this in place, the application developer can open a
device file and perform I/O (reads and writes) upon it, all using the usual API
interfaces provided (relax, these APIs will be covered in a subsequent chapter).

In fact, every process inherits three files on creation:

Standard input (stdin: fd 0): The keyboard device, by default
Standard output (stdout: fd 1): The monitor (or terminal) device, by
default
Standard error (stderr: fd 2): The monitor (or terminal) device, by default

fd is the common abbreviation, especially in code, for file
descriptor; it's an integer value that refers to the open file in
question.

Also, note that we mention it's a certain device by default – this
implies the defaults can be changed. Indeed, this is a key part of the
design: changing standard input, output, or error channels is called
redirection, and by using the familiar <, > and 2> shell operators,
these file channels are redirected to other files or devices.

On Unix, there exists a class of programs called filters.

A filter is a program that reads from its standard input, possibly
modifies the input, and writes the filtered result to its standard
output.

Linux System Architecture Chapter 1

[13]

Filters on Unix are very common utilities, such as cat, wc, sort, grep, perl, head,
and tail.

Filters allow Unix to easily sidestep design and code complexity. How?

Let's take the sort filter as a quick example. Okay, we'll need some data to sort. Let's
say we run the following commands:

$ cat fruit.txt
orange
banana
apple
pear
grape
pineapple
lemon
cherry
papaya
mango
$

Now we consider four scenarios of using sort; based on the parameter(s) we pass,
we are actually performing explicit or implicit input-, output-, and/or error-
redirection!

Scenario 1: Sort a file alphabetically (one parameter, input implicitly redirected to
file):

$ sort fruit.txt
 apple
 banana
 cherry
 grape
 lemon
 mango
 orange
 papaya
 pear
 pineapple
$

Linux System Architecture Chapter 1

[14]

All right!

Hang on a second, though. If sort is a filter (and it is), it should read from its stdin
(the keyboard) and write to its stdout (the terminal). It is indeed writing to the
terminal device, but it's reading from a file, fruit.txt.

This is deliberate; if a parameter is provided, the sort program treats it as standard
input, as clearly seen.

Also, note that sort fruit.txt is identical to sort < fruit.txt.

Scenario 2: Sort any given input alphabetically (no parameters, input and output
from and to stdin/stdout):

$ sort
mango
apple
pear
^D
apple
mango
pear
$

Once you type sort and press the Enter key, and the sort process comes alive and just
waits. Why? It's waiting for you, the user, to type something. Why? Recall, every
process by default reads its input from standard input or stdin – the keyboard
device! So, we type in some fruit names. When we're done, press Ctrl + D. This is the
default character sequence that signifies end-of-file (EOF), or in cases such as this,
end-of-input. Voila! The input is sorted and written. To where? To the sort process's
stdout – the terminal device, hence we see it.

Scenario 3: Sort any given input alphabetically and save the output to a file (explicit
output redirection):

$ sort > sorted.fruit.txt
mango
apple
pear
^D
$

Linux System Architecture Chapter 1

[15]

Similar to Scenario 2, we type in some fruit names and then Ctrl + D to tell sort we're
done. This time, though, note that the output is redirected (via the > meta-character)
to the sorted.fruits.txt file!

So, as expected is the following output:

$ cat sorted.fruit.txt
apple
mango
pear
$

Scenario 4: Sort a file alphabetically and save the output and errors to a file (explicit
input-, output-, and error-redirection):

$ sort < fruit.txt > sorted.fruit.txt 2> /dev/null
$

Interestingly, the end result is the same as in the preceding scenario, with the added
advantage of redirecting any error output to the error channel. Here, we redirect the
error output (recall that file descriptor 2 always refers to stderr) to
the /dev/null special device file; /dev/null is a device file whose job is to act as a
sink (a black hole). Anything written to the null device just disappears forever! (Who
said there isn't magic on Unix?) Also, its complement is /dev/zero; the zero device
is a source – an infinite source of zeros. Reading from it returns zeroes (the first ASCII
character, not numeric 0); it has no end-of-file!

One tool to do one task
In the Unix design, one tries to avoid creating a Swiss Army knife; instead, one
creates a tool for a very specific, designated purpose and for that one purpose only.
No ifs, no buts; no cruft, no clutter. This is design simplicity at its best.

"Simplicity is the ultimate sophistication."

- Leonardo da Vinci

Take a common example: when working on the Linux CLI (command-line interface),
you would like to figure out which of your locally mounted filesystems has the most
available (disk) space.

Linux System Architecture Chapter 1

[16]

We can get the list of locally mounted filesystems by an appropriate switch (just df
would do as well):

$ df --local
Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 20640636 1155492 18436728 6% /
udev 10240 0 10240 0% /dev
tmpfs 51444 160 51284 1% /run
tmpfs 5120 0 5120 0% /run/lock
tmpfs 102880 0 102880 0% /run/shm
$

To sort the output, one would need to first save it to a file; one could use a temporary
file for this purpose, tmp, and then sort it, using the sort utility, of course. Finally,
we delete the offending temporary file. (Yes, there's a better way, piping; refer to
the, Combine tools seamlessly section)

Note that the available space is the fourth column, so we sort accordingly:

$ df --local > tmp
$ sort -k4nr tmp
rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
Filesystem 1K-blocks Used Available Use% Mounted on
$

Whoops! The output includes the heading line. Let's first use the versatile sed
utility – a powerful non-interactive editor tool – to eliminate the first line, the header,
from the output of df:

$ df --local > tmp
$ sed --in-place '1d' tmp
$ sort -k4nr tmp
rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$ rm -f tmp

So what? The point is, on Unix, there is no one utility to list mounted filesystems and
sort them by available space simultaneously.

Linux System Architecture Chapter 1

[17]

Instead, there is a utility to list mounted filesystems: df. It does a great job of it, with
option switches to choose from. (How does one know which options? Learn to use the
man pages, they're extremely useful.)

There is a utility to sort text: sort. Again, it's the last word in sorting text, with plenty
of option switches to choose from for pretty much every conceivable sort one might
require.

The Linux man pages: man is short for manual; on a Terminal
window, type man man to get help on using man. Notice the manual
is divided into 9 sections. For example, to get the manual page on
the stat system call, type man 2 stat as all system calls are in
section 2 of the manual. The convention used is cmd or API; thus,
we refer to it as stat(2).

As expected, we obtain the results. So what exactly is the point? It's this: we used
three utilities, not one. df , to list the mounted filesystems (and their related
metadata), sed, to eliminate the header line, and sort, to sort whatever input its
given (in any conceivable manner).

df can query and list mounted filesystems, but it cannot sort them. sort can sort text;
it cannot list mounted filesystems.

Think about that for a moment.

Combine them all, and you get more than the sum of its parts! Unix tools typically do
one task and they do it to its logical conclusion; no one does it better!

Having said this, I would like to point out – a tiny bit sheepishly –
the highly renowned tool Busybox. Busybox
(http://busybox.net) is billed as The Swiss Army Knife of
Embedded Linux. It is indeed a very versatile tool; it has its place in
the embedded Linux ecosystem – precisely because it would be too
expensive on an embedded box to have separate binary executables
for each and every utility (and it would consume more RAM).
Busybox solves this problem by having a single binary executable
(along with symbolic links to it from each of its applets, such as ls,
ps, df, and sort).
So, nevertheless, besides the embedded scenario and all the resource
limitations it implies, do follow the One tool to do one task rule!

Linux System Architecture Chapter 1

[18]

Three standard I/O channels
Several popular Unix tools (technically, filters) are, again, deliberately designed to
read their input from a standard file descriptor called standard input (stdin) –
possibly modify it, and write their resultant output to a standard file
descriptor standard output (stdout). Any error output can be written to a separate
error channel called standard error (stderr).

In conjunction with the shell's redirection operators (> for output-redirection and <
for input-redirection, 2> for stderr redirection), and even more importantly with
piping (refer section, Combine tools seamlessly), this enables a program designer to
highly simplify. There's no need to hardcode (or even softcode, for that matter) input
and output sources or sinks. It just works, as expected.

Let's review a couple of quick examples to illustrate this important point.

Word count
How many lines of source code are there in the C netcat.c source file I
downloaded? (Here, we use a small part of the popular open source netcat utility
code base.) We use the wc utility. Before we go further, what's wc? word count (wc) is
a filter: it reads input from stdin, counts the number of lines, words, and characters in
the input stream, and writes this result to its stdout. Further, as a convenience, one
can pass filenames as parameters to it; passing the -l option switch has wc only print
the number of lines:

$ wc -l src/netcat.c
618 src/netcat.c
$

Here, the input is a filename passed as a parameter to wc.

Linux System Architecture Chapter 1

[19]

Interestingly, we should by now realize that if we do not pass it any parameters, wc
would read its input from stdin, which by default is the keyboard device. For
example is shown as follows:

$ wc -l
hey, a small
quick test
 of reading from stdin
by wc!
^D
4
$

Yes, we typed in 4 lines to stdin; thus the result is 4, written to stdout – the terminal
device by default.

Here is the beauty of it:

$ wc -l < src/netcat.c > num
$ cat num
618
$

As we can see, wc is a great example of a Unix filter.

cat
Unix, and of course Linux, users learn to quickly get familiar with the daily-use cat
utility. At first glance, all cat does is spit out the contents of a file to the terminal.

For example, say we have two plain text files, myfile1.txt and myfile2.txt:

$ cat myfile1.txt
Hello,
Linux System Programming,
World.
$ cat myfile2.txt
Okey dokey,
bye now.
$

Okay. Now check this out:

$ cat myfile1.txt myfile2.txt
Hello,
Linux System Programming,

Linux System Architecture Chapter 1

[20]

World.
Okey dokey,
bye now.
$

Instead of needing to run cat twice, we ran it just once, by passing the two filenames
to it as parameters.

In theory, one can pass any number of parameters to cat: it will use them all, one by
one!

Not just that, one can use shell wildcards too (* and ?; in reality, the shell will first
expand the wildcards, and pass on the resultant path names to the program being
invoked as parameters):

$ cat myfile?.txt
Hello,
Linux System Programming,
World.
Okey dokey,
bye now.
$

This, in fact, illustrates another key point: any number of parameters or none is
considered the right way to design a program. Of course, there are exceptions to
every rule: some programs demand mandatory parameters.

Wait, there's more. cat too, is an excellent example of a Unix filter (recall: a filter is a
program that reads from its standard input, modifies its input in some manner, and
writes the result to its standard output).

So, quick quiz, if we just run cat with no parameters, what would happen?
Well, let's try it out and see:

$ cat
hello,
hello,
oh cool
oh cool
it reads from stdin,
it reads from stdin,
and echoes whatever it reads to stdout!
and echoes whatever it reads to stdout!
ok bye
ok bye
^D
$

Linux System Architecture Chapter 1

[21]

Wow, look at that: cat blocks (waits) at its stdin, the user types in a string and
presses the Enter key, cat responds by copying its stdin to its stdout – no surprise
there, as that's the job of cat in a nutshell!

One realizes the commands shown as follows:

cat fname is the same as cat < fname
cat > fname creates or overwrites the fname file

There's no reason we can't use cat to append several files together:

$ cat fname1 fname2 fname3 > final_fname
$

There's no reason this must be done with only plain text files; one can join together
binary files too.

In fact, that's what the utility does – it concatenates files. Thus its name; as is the norm
on Unix, is highly abbreviated – from concatenate to just cat. Again, clean and
elegant – the Unix way.

cat shunts out file contents to stdout, in order. What if one wants to
display a file's contents in reverse order (last line first)? Use the
Unix tac utility – yes, that's cat spelled backward!

Also, FYI, we saw that cat can be used to efficiently join files. Guess
what: the split (1) utility can be used to break a file up into
pieces.

Combine tools seamlessly
We just saw that common Unix utilities are often designed as filters, giving them the
ability to read from their standard input and write to their standard output. This
concept is elegantly extended to seamlessly combine together multiple utilities, using
an IPC mechanism called a pipe.

Also, we recall that the Unix philosophy embraces the do one task only design. What
if we have one program that does task A and another that does task B and we want to
combine them? Ah, that's exactly what pipes do! Refer to the following code:

prg_does_taskA | prg_does_taskB

Linux System Architecture Chapter 1

[22]

A pipe essentially is redirection performed twice: the output of the
left-hand program becomes the input to the right-hand program. Of
course, this implies that the program on the left must write to
stdout, and the program on the read must read from stdin.

An example: sort the list of mounted filesystems by space available (in reverse order).

As we have already discussed this example in the One tool to do one task section, we
shall not repeat the same information.

Option 1: Perform the following code using a temporary file (refer section, One tool to
do one task):

$ df --local | sed '1d' > tmp
$ sed --in-place '1d' tmp
$ sort -k4nr tmp
rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$ rm -f tmp

Option 2 : Using pipes—clean and elegant:

$ df --local | sed '1d' | sort -k4nr
rootfs 20640636 1155492 18436728 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$

Not only is this elegant, it is also far superior performance-wise, as writing to
memory (the pipe is a memory object) is much faster than writing to disk.

One can extend this notion and combine multiple tools over multiple pipes; in effect,
one can build a super tool from several regular tools by combining them.

Linux System Architecture Chapter 1

[23]

As an example: display the three processes taking the most (physical) memory; only
display their PID, virtual size (VSZ), resident set size (RSS) (RSS is a fairly accurate
measure of physical memory usage), and the name:

$ ps au | sed '1d' | awk '{printf("%6d %10d %10d %-32s\n", $2, $5, $6,
$11)}' | sort -k3n | tail -n3
 10746 3219556 665252 /usr/lib64/firefox/firefox
 10840 3444456 1105088 /usr/lib64/firefox/firefox
 1465 5119800 1354280 /usr/bin/gnome-shell
$

Here, we've combined five utilities, ps, sed, awk, sort, and tail, over four pipes.
Nice!

Another example: display the process, not including daemons*, taking up the most
memory (RSS):

ps aux | awk '{if ($7 != "?") print $0}' | sort -k6n | tail -n1

A daemon is a system background process; we'll cover this concept
in Daemon Process here: https:/ /www. packtpub. com/sites/
default/ files/ downloads/ Daemon_ Processes. pdf.

Plain text preferred
Unix programs are generally designed to work with text as it's a universal interface.
Of course, there are several utilities that do indeed operate on binary objects (such as
object and executable files); we aren't referring to them here. The point is this: Unix
programs are designed to work on text as it simplifies the design and architecture of
the program.

A common example: an application, on startup, parses a configuration file. The
configuration file could be formatted as a binary blob. On the other hand, having it as
a plain text file renders it easily readable (invaluable!) and therefore easier to
understand and maintain. One might argue that parsing binary would be faster.
Perhaps to some extent this is so, but consider the following:

With modern hardware, the difference is probably not significant
A standardized plain text format (such as XML) would have optimized
code to parse it, yielding both benefits

Remember, simplicity is key!

https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Linux System Architecture Chapter 1

[24]

CLI, not GUI
The Unix OS, and all its applications, utilities, and tools, were always built to be used
from a command-line-interface (CLI), typically, the shell. From the 1980s onward,
the need for a Graphical User Interface (GUI) became apparent.

Robert Scheifler of MIT, considered the chief design architect behind the X Window
System, built an exceedingly clean and elegant architecture, a key component of
which is this: the GUI forms a layer (well, actually, several layers) above the OS,
providing libraries for GUI clients, that is, applications.

The GUI was never designed to be intrinsic to applications or the
OS—it's always optional.

This architecture still holds up today. Having said that, especially on embedded
Linux, performance reasons are seeing the advent of newer architectures, such as the
frame buffer and Wayland. Also, though Android, which uses the Linux kernel,
necessitates a GUI for the end user, the system developer's interface to Android, ADB,
is a CLI.

A huge number of production-embedded and server Linux systems run purely on
CLI interfaces. The GUI is almost like an add-on feature, for the end user's ease of
operation.

Wherever appropriate, design your tools to work in the CLI
environment; adapting it into a GUI at a later point is then
straightforward.
Cleanly and carefully separating the business logic of the project or
product from its GUI is a key to good design.

Modular, designed to be repurposed by others
From its very early days, the Unix OS was deliberately designed and coded with the
tacit assumption that multiple programmers would work on the system. Thus, the
culture of writing clean, elegant, and understandable code, to be read and worked
upon by other competent programmers, was ingrained.

Linux System Architecture Chapter 1

[25]

Later, with the advent of the Unix wars, proprietary and legal concerns overrode this
sharing model. Interestingly, history shows that the Unix's were fading in relevance
and industry use, until the timely advent of none other than the Linux OS – an open
source ecosystem at its very best! Today, the Linux OS is widely acknowledged as the
most successful GNU project. Ironic indeed!

Provide mechanisms, not policies
Let's understand this principle with a simple example.

When designing an application, you need to have the user enter a login name and
password. The function that performs the work of getting and checking the password
is called, let's say, mygetpass(). It's invoked by the mylogin() function: mylogin()
→ mygetpass().

Now, the protocol to be followed is this: if the user gets the password wrong three
times in a row, the program should not allow access (and should log the case). Fine,
but where do we check this?

The Unix philosophy: do not implement the logic, if the password is specified
wrongly three times, abort in the mygetpass() function. Instead, just have
mygetpass() return a Boolean (true when the password is right, false when the
password is wrong), and have the mylogin() calling function implement whatever
logic is required.

Pseudocode
The following is the wrong approach:

mygetpass()
{
 numtries=1

 <get the password>
 if (password-is-wrong) {
 numtries ++
 if (numtries >= 3) {
 <write and log failure message>
 <abort>
 }
 }
 <password correct, continue>

Linux System Architecture Chapter 1

[26]

}
mylogin()
{
 mygetpass()
}

Now let's take a look at the right approach: the Unix way! Refer to the following code:

mygetpass()
{
 <get the password>

 if (password-is-wrong)
 return false;

 return true;
}
mylogin()
{
 maxtries = 3

 while (maxtries--) {
 if (mygetpass() == true)
 <move along, call other routines>
 }

 // If we're here, we've failed to provide the
 // correct password
 <write and log failure message>
 <abort>
}

The job of mygetpass() is to get a password from the user and check whether it's
correct; it returns success or failure to the caller – that's it. That's the mechanism. It is
not its job to decide what to do if the password is wrong – that's the policy, and left to
the caller.

Now that we've covered the Unix philosophy in a nutshell, what are the important
takeaways for you, the system developer on Linux?

Learning from, and following, the Unix philosophy when designing and
implementing your applications on the Linux OS will provide a huge payoff. Your
application will do the following:

Be a natural fit on the system; this is very important
Have greatly reduced complexity

Linux System Architecture Chapter 1

[27]

Have a modular design that is clean and elegant
Be far more maintainable

Linux system architecture
In order to clearly understand the Linux system architecture, one needs to first
understand a few important concepts: the processor Application Binary Interface
(ABI), CPU privilege levels, and how these affect the code we write. Accordingly, and
with a few code examples, we'll delve into these here, before diving into the details of
the system architecture itself.

Preliminaries
If one is posed the question, "what is the CPU for?", the answer is pretty obvious: the
CPU is the heart of the machine – it reads in, decodes, and executes machine
instructions, working on memory and peripherals. It does this by incorporating
various stages.

Very simplistically, in the Instruction Fetch stage, it reads in machine instructions
(which we represent in various human-readable ways – in hexadecimal, assembly,
and high-level languages) from memory (RAM) or CPU cache. Then, in the
Instruction Decode phase, it proceeds to decipher the instruction. Along the way, it
makes use of the control unit, its register set, ALU, and memory/peripheral interfaces.

The ABI
Let's imagine that we write a C program, and run it on the machine.

Well, hang on a second. C code cannot possibly be directly deciphered by the CPU; it
must be converted into machine language. So, we understand that on modern
systems we will have a toolchain installed – this includes the compiler, linker, library
objects, and various other tools. We compile and link the C source code, converting it
into an executable format that can be run on the system.

Linux System Architecture Chapter 1

[28]

The processor Instruction Set Architecture (ISA) – documents the machine's
instruction formats, the addressing schemes it supports, and its register model. In
fact, CPU Original Equipment Manufacturers (OEMs) release a document that
describes how the machine works; this document is generally called the ABI. The ABI
describes more than just the ISA; it describes the machine instruction formats, the
register set details, the calling convention, the linking semantics, and the executable
file format, such as ELF. Try out a quick Google for x86 ABI – it should reveal
interesting results.

The publisher makes the full source code for this book available on
their website; we urge the reader to perform a quick Git clone on the
following URL. Build and try it: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

Let's try this out. First, we write a simple Hello, World type of C program:

 $ cat hello.c
 /*
 * hello.c
 *
 **
 * This program is part of the source code released for the book
 * "Linux System Programming"
 * (c) Kaiwan N Billimoria
 * Packt Publishers
 *
 * From:
 * Ch 1 : Linux System Architecture
 **
 * A quick 'Hello, World'-like program to demonstrate using
 * objdump to show the corresponding assembly and machine
 * language.
 */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
 int a;

 printf("Hello, Linux System Programming, World!\n");
 a = 5;
 exit(0);
}
$

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Linux System Architecture Chapter 1

[29]

We build the application via the Makefile, with make. Ideally, the
code must compile with no warnings:

$ gcc -Wall -Wextra hello.c -o hello
hello.c: In function ‘main':
hello.c:23:6: warning: variable ‘a' set but not used [-Wunused-but-set-
variable]
 int a;
 ^
$

Important! Do not ignore compiler warnings with production code.
Strive to get rid of all warnings, even the seemingly trivial ones; this
will help a great deal with correctness, stability, and security.

In this trivial example code, we understand and anticipate the unused
variable warning that gcc emits, and just ignore it for the purpose of this demo.

The exact warning and/or error messages you see on your system
could differ from what you see here. This is because my Linux
distribution (and version), compiler/linker, library versions, and
perhaps even CPU, may differ from yours. I built this on a x86_64
box running the Fedora 27/28 Linux distribution.

Similarly, we build the debug version of the hello program (again, ignoring the
warning for now), and run it:

$ make hello_dbg
[...]
$./hello_dbg
Hello, Linux System Programming, World!
$

We use the powerful objdump utility to see the intermixed source-assembly-machine
language of our program (objdump's --source option switch
 -S, --source Intermix source code with disassembly):

$ objdump --source ./hello_dbg
./hello_dbg: file format elf64-x86-64

Disassembly of section .init:

0000000000400400 <_init>:
 400400: 48 83 ec 08 sub $0x8,%rsp

Linux System Architecture Chapter 1

[30]

[...]

int main(void)
{
 400527: 55 push %rbp
 400528: 48 89 e5 mov %rsp,%rbp
 40052b: 48 83 ec 10 sub $0x10,%rsp
 int a;

 printf("Hello, Linux System Programming, World!\n");
 40052f: bf e0 05 40 00 mov $0x4005e0,%edi
 400534: e8 f7 fe ff ff callq 400430 <puts@plt>
 a = 5;
 400539: c7 45 fc 05 00 00 00 movl $0x5,-0x4(%rbp)
 exit(0);
 400540: bf 00 00 00 00 mov $0x0,%edi
 400545: e8 f6 fe ff ff callq 400440 <exit@plt>
 40054a: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

[...]

$

The exact assembly and machine code you see on your system will,
in all likelihood, differ from what you see here; this is because my
Linux distribution (and version), compiler/linker, library versions,
and perhaps even CPU, may differ from yours. I built this on a
x86_64 box running Fedora Core 27.

Alright. Let's take the line of source code a = 5; where, objdump reveals the
corresponding machine and assembly language:

 a = 5;
 400539: c7 45 fc 05 00 00 00 movl $0x5,-0x4(%rbp)

We can now clearly see the following:

C source Assembly language Machine instructions
a = 5; movl $0x5,-0x4(%rbp) c7 45 fc 05 00 00 00

So, when the process runs, at some point it will fetch and execute the machine
instructions, producing the desired result. Indeed, that's exactly what a
programmable computer is designed to do!

Linux System Architecture Chapter 1

[31]

Though we have shown examples of displaying (and even writing a
bit of) assembly and machine code for the Intel CPU, the concepts
and principles behind this discussion hold up for other CPU
architectures, such as ARM, PPC, and MIPS. Covering similar
examples for all these CPUs goes beyond the scope of this book;
however, we urge the interested reader to study the processor
datasheet and ABI, and try it out.

Accessing a register's content via inline assembly
Now that we've written a simple C program and seen its assembly and machine code,
let's move on to something a little more challenging: a C program with inline
assembly to access the contents of a CPU register.

Details on assembly-language programming are outside the scope of
this book; refer to the Further reading section on the GitHub
repository.

x86_64 has several registers; let's just go with the ordinary RCX register for this
example. We do make use of an interesting trick: the x86 ABI calling convention states
that the return value of a function will be the value placed in the accumulator, that is,
RAX for the x86_64. Using this knowledge, we write a function that uses inline
assembly to place the content of the register we want into RAX. This ensures that this
is what it will return to the caller!

Assembly micro-basics includes the following:

at&t syntax:
 movq <src_reg>, <dest_reg>
Register : prefix name with %
Immediate value : prefix with $

For more, see the Further reading section on the GitHub repository.

Let's take a look at the following code:

$ cat getreg_rcx.c
/*
 * getreg_rcx.c
 *
 **
 * This program is part of the source code released for the book

Linux System Architecture Chapter 1

[32]

 * "Linux System Programming"
 * (c) Kaiwan N Billimoria
 * Packt Publishers
 *
 * From:
 * Ch 1 : Linux System Architecture
 **
 * Inline assembly to access the contents of a CPU register.
 * NOTE: this program is written to work on x86_64 only.
 */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

typedef unsigned long u64;

static u64 get_rcx(void)
{
 /* Pro Tip: x86 ABI: query a register's value by moving its value
into RAX.
 * [RAX] is returned by the function! */
 __asm__ __volatile__(
 "push %rcx\n\t"
 "movq $5, %rcx\n\t"
 "movq %rcx, %rax");
 /* at&t syntax: movq <src_reg>, <dest_reg> */
 __asm__ __volatile__("pop %rcx");
}

int main(void)
{
 printf("Hello, inline assembly:\n [RCX] = 0x%lx\n",
 get_rcx());
 exit(0);
}
$ gcc -Wall -Wextra getreg_rcx.c -o getreg_rcx
getreg_rcx.c: In function ‘get_rcx':
getreg_rcx.c:32:1: warning: no return statement in function returning
non-void [-Wreturn-type]
 }
 ^
$./getreg_rcx
Hello, inline assembly:
 [RCX] = 0x5
$

There; it works as expected.

Linux System Architecture Chapter 1

[33]

Accessing a control register's content via inline
assembly
Among the many fascinating registers on the x86_64 processor, there happen to be six
control registers, named CR0 through CR4, and CR8. There's really no need to delve
into detail regarding them; suffice it to say that they are crucial to system control.

For the purpose of an illustrative example, let's consider the CR0 register for a
moment. Intel's manual states: CR0—contains system control flags that control
operating mode and states of the processor.

Intel's manuals can be downloaded conveniently as PDF documents
from here (includes the Intel® 64 and
IA-32 Architectures Software Developer's Manual, Volume 3 (3A, 3B
and 3C): System Programming Guide):

https://software.intel.com/en-us/articles/intel-sdm

Clearly, CR0 is an important register!
We modify our previous program to access and display its content (instead of the
ordinary RCX register). The only relevant code (which has changed from the previous
program) is the function that queries the CR0 register value:

static u64 get_cr0(void)
{
 /* Pro Tip: x86 ABI: query a register's value by moving it's value
into RAX.
 * [RAX] is returned by the function! */
 __asm__ __volatile__("movq %cr0, %rax");
 /* at&t syntax: movq <src_reg>, <dest_reg> */
}

Build and run it:

$ make getreg_cr0
[...]
$./getreg_cr0
Segmentation fault (core dumped)
$

It crashes!

Well, what happened here? Read on.

https://software.intel.com/en-us/articles/intel-sdm

Linux System Architecture Chapter 1

[34]

CPU privilege levels
As mentioned earlier in this chapter, the essential job of the CPU is to read in machine
instructions from memory, decipher, and execute them. In the early days of
computing, this is pretty much all the processor did. But then, engineers, thinking
deeper on it, realized that there is a critical issue with this: if a programmer can feed
an arbitrary stream of machine instructions to the processor, which it, in turn, blindly
and obediently executes, herein lies scope to do damage, to hack the machine!

How? Recall from the previous section the Intel processor's CR0 control
register: Contains system control flags that control operating mode and states of the
processor. If one has unlimited (read/write) access to the CR0 register, one could
toggle bits that could do the following:

Turn hardware paging on or off
Disable the CPU cache
Change caching and alignment attributes
Disable WP (write protect) on memory (technically, pages) marked as read-
only by the OS

Wow, a hacker could indeed wreak havoc. At the very least, only the OS should be
allowed this kind of access.

Precisely for reasons such as the security, robustness, and correctness of the OS and
the hardware resources it controls, all modern CPUs include the notion of privilege
levels.

The modern CPU will support at least two privilege levels, or modes, which are
generically called the following:

Supervisor
User

Linux System Architecture Chapter 1

[35]

You need to understand that code, that is, machine instructions, runs on the CPU at a
given privilege level or mode. A person designing and implementing an OS is free to
exploit the processor privilege levels. This is exactly how modern OSes are designed.
Take a look at the following table Generic CPU Privilege Levels:

Privilege level or mode name Privilege level Purpose Terminology
Supervisor High OS code runs here kernel-space
User Low Application code runs here user-space (or userland)

Table 1: Generic CPU Privilege Levels

Privilege levels or rings on the x86
To understand this important concept better, let's take the popular x86 architecture as
a real example. Right from the i386 onward, the Intel processor supports four
privilege levels or rings: Ring 0, Ring 1, Ring 2, and Ring 3. On the Intel CPU's, this is
how the levels work:

Figure 1: CPU ring levels and privilege

Let's visualize this Figure 1 in the form of a Table 2: x86 privilege or ring levels:

Privilege or ring level Privilege Purpose
Ring 0 Highest OS code runs here
Ring 1 < ring 0 <Unused>
Ring 2 < ring 1 <Unused>
Ring 3 Lowest Application code runs here (userland)

Table 2: x86 privilege or ring levels

Linux System Architecture Chapter 1

[36]

Originally, ring levels 1 and 2 were intended for device drivers, but
modern OSes typically run driver code at ring 0 itself. Some
hypervisors (VirtualBox being one) used to use Ring 1 to run the
guest kernel code; this was the case earlier when no hardware
virtualization support was available (Intel VT-x, AMD SV).

The ARM (32-bit) processor has seven modes of execution; of these,
six are privileged, and only one is the non-privileged mode. On
ARM, generically, the equivalent to Intel's Ring 0 is Supervisor
(SVC) mode, and the equivalent to Intel's Ring 3 is User mode.

For interested readers, there are more links in the Further
reading section on the GitHub repository.

The following diagram clearly shows of all modern OSes (Linux, Unix, Windows, and
macOS) running on an x86 processor exploit processor-privilege levels:

Figure 2: User-Kernel separation

Importantly, the processor ISA assigns every machine instruction with a privilege
level or levels at which they are allowed to be executed. A machine instruction that is
allowed to execute at the user privilege level automatically implies it can also be
executed at the Supervisor privilege level. This distinguishing between what can and
cannot be done at what mode also applies to register access.

To use the Intel terminology, the Current Privilege Level (CPL) is the privilege level
at which the processor is currently executing code.

Linux System Architecture Chapter 1

[37]

For example, that on a given processor shown as follows:

The foo1 machine instruction has an allowed privilege level of Supervisor
(or Ring 0 for x86)
The foo2 machine instruction has an allowed privilege level of User (or
Ring 3 for x86)

So, for a running application that executes these machine instructions, the following
table emerges:

Machine instruction Allowed-at mode CPL (current privilege level) Works?

foo1 Supervisor (0)
0 Yes
3 No

foo2 User (3)
0 Yes
3 Yes

Table 3: Privilege levels – an example

So, thinking about it, foo2 being allowed at User mode would also
be allowed to execute with any CPL. In other words, if the CPL <=
allowed privilege level, it works, otherwise it does not.

When one runs an application on, say, Linux, the application runs as a process (more
on this later). But what privilege (or mode or ring) level does the application code run
at? Refer to the preceding table: User Mode (Ring 3 on x86).

Aha! So now we see. The preceding code example, getreg_rcx.c, worked because it
attempted to access the content of the general-purpose RCX register, which is allowed
in User Mode (Ring 3, as well as at the other levels, of course)!

But the code of getreg_cr0.c failed; it crashed, because it attempted to access the
content of the CR0 control register, which is disallowed in User Mode (Ring 3), and
allowed only at the Ring 0 privilege! Only OS or kernel code can access the control
registers. This holds true for several other sensitive assembly-language instructions as
well. This approach makes a lot of sense.

Technically, it crashed because the processor raised a General
Protection Fault (GPF).

Linux System Architecture Chapter 1

[38]

Linux architecture
The Linux system architecture is a layered one. In a very simplistic way, but ideal to
start on our path to understanding these details, the following diagram illustrates the
Linux system architecture:

Figure 3: Linux – Simplified layered architecture

Layers help, because each layer need only be concerned with the layer directly above
and below it. This leads to many advantages:

Clean design, reduces complexity
Standardization, interoperability
Ability to swap layers in and out of the stack
Ability to easily introduce new layers as required

On the last point, there exists the FTSE. To quote directly from
Wikipedia:

The "fundamental theorem of software engineering (FTSE)" is a
term originated by Andrew Koenig to describe a remark by Butler
Lampson attributed to the late David J. Wheeler

We can solve any problem by introducing an extra level of
indirection.

Linux System Architecture Chapter 1

[39]

Now that we understand the concept of CPU modes or privilege levels, and how
modern OSes exploit them, a better diagram (expanding on the previous one) of the
Linux system architecture would be as follows:

Figure 4: Linux system architecture

In the preceding diagram, P1, P2, …, Pn are nothing but userland processes (Process
1, Process 2) or in other words, running applications. For example, on a Linux laptop,
we might have the vim editor, a web browser, and terminal windows (gnome-
terminal) running.

Libraries
Libraries, of course, are archives (collections) of code; as we well know, using libraries
helps tremendously with code modularity, standardization, preventing the reinvent-
the-wheel syndrome, and so on. A Linux desktop system might have libraries
numbering in the hundreds, and possibly even a few thousand!

The classic K&R hello, world C program uses the printf API to write the string
to the display:

printf(“hello, world\n”);

Linux System Architecture Chapter 1

[40]

Obviously, the code of printf is not part of the hello, world source. So where
does it come from? It's part of the standard C library; on Linux, due to its GNU
origins, this library is commonly called GNU libc (glibc).

Glibc is a critical and required component on a Linux box. It not only contains the
usual standard C library routines (APIs), it is, in fact, the programming interface to
the operating system! How? Via its lower layer, the system calls.

System calls
System calls are actually kernel functionality that can be invoked from userspace via
glibc stub routines. They serve a critical function; they connect userspace to kernel-
space. If a user program wants to request something of the kernel (read from a file,
write to the network, change a file's permissions), it does so by issuing a system call.
Therefore, system calls are the only legal entry point to the kernel. There is no other
way for a user-space process to invoke the kernel.

For a list of all the available Linux system calls, see section 2 of the
man pages (https:/ / linux. die. net/ man/2/). One can also do: man
2 syscalls to see the man page on all supported system calls

Another way to think of this: the Linux kernel internally has literally thousands of
APIs (or functions). Of these, only a small fraction are made visible or available, that
is, exposed, to userspace; these exposed kernel APIs are system calls! Again, as an
approximation, modern Linux glibc has around 300 system calls.

On an x86_64 Fedora 27 box running the 4.13.16-302.fc27.x86_64
kernel, there are close to 53,000 kernel APIs!

Here is the key thing to understand: system calls are very different from all other
(typically library) APIs. As they ultimately invoke kernel (OS) code, they have the
ability to cross the user-kernel boundary; in effect, they have the ability to switch
from normal unprivileged User mode to completely privileged Supervisor or kernel
mode!

https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/

Linux System Architecture Chapter 1

[41]

How? Without delving into the gory details, system calls essentially work by
invoking special machine instructions that have the built-in ability to switch the
processor mode from User to Supervisor. All modern CPU ABIs will provide at least
one such machine instruction; on the x86 processor, the traditional way to implement
system calls is to use the special int 0x80 machine instruction. Yes, it is indeed a
software interrupt (or trap). From Pentium Pro and Linux 2.6 onward, the
sysenter/syscall machine instructions are used. See the Further reading section on the
GitHub repository.

From the viewpoint of the application developer, a key point regarding system calls is
that system calls appear to be regular functions (APIs) that can be invoked by the
developer; this design is deliberate. The reality: the system call APIs that one invokes
– such as open(), read(), chmod(), dup(), and write() – are merely stubs. They
are a neat mechanism to get at the actual code that is in the kernel (getting there
involves populating a register the accumulator on x86 – with the system call number,
and passing parameters via other general-purpose registers) to execute that kernel
code path, and return back to user mode when done. Refer to the following table:

CPU Machine instruction(s) used to trap to
Supervisor (kernel) Mode from User Mode

Allocated Register for
system call number

x86[_64] int 0x80 or syscall EAX / RAX

ARM swi / svc R0 to R7
Aarch64 svc X8

MIPS syscall $v0

Table 4: System calls on various CPU Architectures for better understanding

Linux – a monolithic OS
Operating systems are generally considered to adhere to one of two major
architectural styles: monolithic or microkernel.

Linux is decidedly a monolithic OS.

Linux System Architecture Chapter 1

[42]

What does that mean?
The English word monolith literally means a large single upright block of stone:

Figure 5: Corinthian columns – they're monolithic!

Linux System Architecture Chapter 1

[43]

On the Linux OS, applications run as independent entities called processes. A process
may be single-threaded (original Unix) or multithreaded. Regardless, for now, we
will consider the process as the unit of execution on Linux; a process is defined as an
instance of a program in execution.

When a user-space process issues a library call, the library API, in turn, may or may
not issue a system call. For example, issuing the atoi(3) API does not cause glibc to
issue a system call as it does not require kernel support to implement the conversion
of a string into an integer. <api-name>(n) ; n is the man page section.

To help clarify these important concepts, let's check out the famous and classic K&R
Hello, World C program again:

#include <stdio.h>
main()
{
 printf(“hello, world\n”);
}

Okay, that should work. Indeed it does.
But, the question is, how exactly does the printf(3) API write to the monitor
device?

The short answer: it does not.
The reality is that printf(3) only has the intelligence to format a string as specified;
that's it. Once done, printf actually invokes the write(2) API – a system call. The
write system call does have the ability to write the buffer content to a special device
file – the monitor device, seen by write as stdout. Go back to our discussion regarding
The Unix philosophy in a nutshell : if it's not a process, it's a file! Of course, it gets really
complex under the hood in the kernel; to cut a long story short, the kernel code of
write ultimately switches to the correct driver code; the device driver is the only
component that can directly work with peripheral hardware. It performs the actual
write to the monitor, and return values propagate all the way back to the application.

Linux System Architecture Chapter 1

[44]

In the following diagram, P is the hello, world process at runtime:

Fig 6: Code flow: printf-to-kernel

Also, from the diagram, we can see that glibc is considered to consist of two parts:

Arch-independent glibc: The regular libc APIs (such as [s|sn|v]printf,
memcpy, memcmp, atoi)
Arch-dependent glibc: The system call stubs

Here, by arch, we mean CPU.
Also the ellipses (...) represent additional logic and processing
within kernel-space that we do not show or delve into here.

Now that the code flow path of hello, world is clearer, let's get back to the
monolithic stuff!

Linux System Architecture Chapter 1

[45]

It's easy to assume that it works this way:

The hello, world app (process) issues the printf(3) library call.1.
printf issues the write(2) system call.2.
We switch from User to Supervisor (kernel) Mode.3.
The kernel takes over – it writes hello, world onto the monitor.4.
Switch back to non-privileged User Mode.5.

Actually, that's NOT the case.

The reality is, in the monolithic design, there is no kernel; to word it another way, the
kernel is actually part of the process itself. It works as follows:

The hello, world app (process) issues the printf(3) library call.1.
printf issues the write(2) system call.2.
The process invoking the system call now switches from User to Supervisor3.
(kernel) Mode.
The process runs the underlying kernel code, the underlying device driver4.
code, and thus, writes hello, world onto the monitor!
The process is then switched back to non-privileged User Mode.5.

To summarize, in a monolithic kernel, when a process (or thread) issues a system call,
it switches to privileged Supervisor or kernel mode and runs the kernel code of the
system call (working on kernel data). When done, it switches back to unprivileged
User mode and continues executing userspace code (working on user data).

This is very important to understand:

Fig 7: Life of a process in terms of privilege modes

Linux System Architecture Chapter 1

[46]

The preceding diagram attempts to illustrate that the X axis is the timeline, and the Y
axis represents User Mode (at the top) and Supervisor (kernel) Mode (at the bottom):

time t0: A process is born in kernel mode (the code to create a process is
within the kernel of course). Once fully born, it is switched to User (non-
privileged) Mode and it runs its userspace code (working on its userspace
data items as well).
time t1: The process, directly or indirectly (perhaps via a library API),
invokes a system call. It now traps into kernel mode (refer the table System
Calls on CPU Architectures shows the machine instructions depending on
the CPU to do so) and executes kernel code in privileged Supervisor Mode
(working on kernel data items as well).
time t2: The system call is done; the process switches back to non-privileged
User Mode and continues to execute its userspace code. This process
continues, until some point in the future.
time tn: The process dies, either deliberately by invoking the exit API, or it
is killed by a signal. It now switches back to Supervisor Mode (as the exit(3)
library API invokes the _exit(2) system call), executes the kernel code of
_exit(), and terminates.

In fact, most modern operating systems are monolithic (especially the Unix-like ones).

Technically, Linux is not considered 100 percent monolithic. It's
considered to be mostly monolithic, but also modular, due to the
fact that the Linux kernel supports modularization (the plugging in
and out of kernel code and data, via a technology called Loadable
Kernel Modules (LKMs)).
Interestingly, MS Windows (specifically, from the NT kernel
onward) follows a hybrid architecture that is both monolithic and
microkernel.

Execution contexts within the kernel
Kernel code always executes in one of two contexts:

Process
Interrupt

Linux System Architecture Chapter 1

[47]

It's easy to get confused here. Remember, this discussion applies to
the context in which kernel code executes, not userspace code.

Process context
Now we understand that one can invoke kernel services by issuing a system call.
When this occurs, the calling process runs the kernel code of the system call in kernel
mode. This is termed process context – kernel code is now running in the context of
the process that invoked the system call.

Process context code has the following attributes:

Always triggered by a process (or thread) issuing a system call
Top-down approach
Synchronous execution of kernel code by a process

Interrupt context
At first glance, there appears to be no other way that kernel code executes. Well, think
about this scenario: the network receive path. A network packet destined for your
Ethernet MAC address arrives at the hardware adapter, the hardware detects that it's
meant for it, collects it, and buffers it. It now must let the OS know; more technically,
it must let the Network Interface Card (NIC) device driver know, so that it can fetch
and process packets as they arrive. It kicks the NIC driver into action by asserting a
hardware interrupt.

Recall that device drivers reside in kernel-space, and therefore their code runs in
Supervisor or kernel Mode. The (kernel privilege) driver code Interrupt service
routine (ISR) now executes, fetches the packet, and sends it up the OS network
protocol stack for processing.

The NIC driver's ISR code is kernel code, and it is has run but in what context? It's
obviously not in the context of any particular process. In fact, the hardware interrupt
probably interrupted some process. Thus, we just call this interrupt context.

Linux System Architecture Chapter 1

[48]

The interrupt context code has the following attributes:

Always triggered by a hardware interrupt (not a software interrupt, fault or
exception; that's still process context)
Bottom-up approach
Asynchronous execution of kernel code by an interrupt

If, at some point, you do report a kernel bug, it helps if you point
out the execution context.

Technically, within interrupt context, we have further distinctions, such as hard-IRQs
and softirqs, bottom halves, and tasklets. However, this discussion goes beyond the
scope of this book.

Summary
This chapter started by explaining the Unix design philosophy, including the central
principles or pillars of the Unix philosophy, design, and architecture. We then
described the Linux system architecture, where we covered the meaning of CPU-ABI
(Application Binary Interface), ISA, and toolchain (using objdump to disassemble a
simple program, and accessing CPU registers with inline assembly). CPU privilege
levels and their importance in the modern OS were discussed, leading in to the Linux
system architecture layers – application, libraries, system calls, and the kernel. The
chapter finished with a discussion on how Linux is a monolithic OS and then
explored kernel execution contexts.

In the next chapter, the reader will delve into the mysteries of, and get a solid grasp
of, virtual memory – what exactly it means, why it's in all modern OSes, and the key
benefits it provides. We will discuss relevant details of the making of process virtual
address space.

2
Virtual Memory

Coming back to this chapter, we will look at the meaning and purpose of virtual
memory (VM) and, importantly, why it is a key concept and required one. We will
cover the meaning and importance of VM, paging and address-translation, the
benefits of using VM, the memory layout of a process in execution, and the internal
layout of a process as seen by the kernel. We shall also delve into what segments
make up the process virtual address space. This knowledge is indispensable in
difficult-to-debug situations.

In this chapter, we will cover the following topics:

Virtual memory
Process virtual address space

Technical requirements
A modern desktop PC or laptop is required; Ubuntu Desktop specifies
the following as recommended system requirements for installation and usage of the
distribution:

2 GHz dual core processor or better
RAM

Running on a physical host: 2 GB or more system memory
Running as a guest: The host system should have at least 4
GB RAM (the more, the better and smoother the experience)

Virtual Memory Chapter 2

[50]

25 GB of free hard drive space
Either a DVD drive or a USB port for the installer media
Internet access is definitely helpful

We recommend the reader use one of the following Linux distributions (can be
installed as a guest OS on a Windows or Linux host system, as mentioned):

Ubuntu 18.04 LTS Desktop (Ubuntu 16.04 LTS Desktop is a good choice too
as it has long term support as well, and pretty much everything should
work)

Ubuntu Desktop download link: https:/ /www. ubuntu. com/
download/ desktop

Fedora 27 (Workstation)
Download link: https:/ / getfedora. org/en_ GB/
workstation/ download/

Note that these distributions are, in their default form, OSS and non-proprietary, and
free to use as an end user.

There are instances where the entire code snippet isn't included in
the book . Thus the GitHub URL to refer the codes: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.
Also, for the further reading section, refer to the preceding GitHub
link.

Virtual memory
Modern operating systems are based on a memory model called VM. This includes
Linux, Unixes, MS Windows, and macOS. Truly understanding how a modern OS
works under the hood requires a deep understanding of VM and memory
management – not topics we delve into in intricate detail in this book; nevertheless, a
solid grasp of VM concepts is critical for Linux system developers.

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Virtual Memory Chapter 2

[51]

No VM – the problem
Let's imagine for a moment that VM, and all the complex baggage it lugs around,
does not exist. So, we're working on a (fictional) pure flat physical memory platform
with, say, 64 MB RAM. This is actually not that unusual – most old OSes (think DOS)
and even modern Real-Time Operating Systems (RTOSes) operate this way:

Figure 1: Flat physical address space of 64 MB

Obviously, everything that runs on this machine must share this physical memory
space: the OS, device drivers, libraries, and applications. We might visualize it this
way (of course, this is not intended to reflect an actual system – it's just a highly
simplified example to help you understand things): one OS, several device drivers (to
drive the hardware peripherals), a set of libraries, and two applications. The physical
memory map (not drawn to scale) of this fictional (64 MB system) platform might
look like this:

Object Space taken Address range
Operating system (OS) 3 MB 0x03d0 0000 - 0x0400 0000
Device Drivers 5 MB 0x02d0 0000 – 0x0320 0000
Libraries 10 MB 0x00a0 0000 – 0x0140 0000
Application 2 1 MB 0x0010 0000 – 0x0020 0000
Application 1 0.5 MB 0x0000 0000 – 0x0008 0000
Overall Free Memory 44.5 MB <various>

Table 1: The physical memory map

Virtual Memory Chapter 2

[52]

The same fictional system is represented in the following diagram:

Fig 2: The physical memory map of our fictional 64 MB system

Normally, of course, the system will undergo rigorous testing before release and will
perform as expected; except, there's this thing you might have heard of in our
industry called bugs. Yes, indeed.

But let's imagine a dangerous bug creeps into Application 1, say, within the use of the
ubiquitous memcpy(3) glibc API, due to either of the following:

Inadvertent programming errors
Deliberate malicious intent

As a quick reminder, the usage of the memcpy library API is shown as follows:

void *memcpy(void *dest, const void *src, size_t n).

Objective
This C program snippet as follows intends to copy some memory, say 1,024 bytes,
using the usual memcpy(3) glibc API, from a source location 300 KB into the program
to a destination location 400 KB into the program. As Application 1 is the program at
the low end of physical memory (see the preceding memory map), it starts at
the 0x0 physical offset.

Virtual Memory Chapter 2

[53]

We understand that on a modern OS nothing will start at address
0x0; that's the canonical NULL memory location! Keep in mind that
this is just a fictional example for learning purposes

First, let's see the correct usage case.

Refer to the following pseudocode:

phy_offset = 0x0;
src = phy_offset + (300*1024); /* = 0x0004 b000 */
dest = phy_offset + (400*1024); /* = 0x0006 4000 */
n = 1024;
memcpy(dest, src, n);

The effect of the preceding code is shown in the following diagram:

Fig 3: Zoomed into App 1: the correct memcpy()

As can be seen in the preceding diagram, this works! The (big) arrow shows the copy
path from source to destination, for 1,024 bytes. Great.

Now for the buggy case.

Virtual Memory Chapter 2

[54]

All remains the same, except that this time, due to a bug (or malicious intent),
the dest pointer is modified as follows:

phy_offset = 0x0;
src = phy_offset + (300*1024); /* = 0x0004 b000 */
dest = phy_offset + (400*1024*156); /* = 0x03cf 0000 !BUG! */
n = 1024;
memcpy(dest, src, n);

The destination location is now around 64 KB (0x03cf0000 – 0x03d00000) into the
operating system! The best part: the code itself does not fail. memcpy() does its job.
Of course, now the OS is probably corrupted and the entire system will (eventually)
crash.

Note that the intent here is not to debug the cause (we know); the intent here is to
clearly realize that, in spite of this bug, memcpy succeeds.
How come? This is because we are programming in C – we are free to read and write
physical memory as we wish; inadvertent bugs are our problem, not the language's!

So what now? Ah, this is one of the key reasons why VM systems came into existence.

Virtual memory
Unfortunately, the term virtual memory (VM) is often misunderstood or hazily
understood, at best, by a large proportion of engineers. In this section, we attempt to
clarify what this term and its associated terminologies (such as memory pyramid,
addressing, and paging) really mean; it's important for developers to clearly
understand this key area.

First, what is a process?

A process is an instance of a program in execution.
A program is a binary executable file: a dead, disk object. For
example, take the cat program:
$ ls -l /bin/cat
-rwxr-xr-x 1 root root 36784 Nov 10 23:26 /bin/cat
$

When we run cat it becomes a live runtime schedulable entity,
which, in the Unix universe, we call a process.

Virtual Memory Chapter 2

[55]

In order to understand deeper concepts clearly, we start with a small, simple, and
fictional machine. Imagine it has a microprocessor with 16 address lines. Thus, it's
easy to see, it will have access to a total potential memory space (or address space) of
216 = 65,536 bytes = 64 KB:

Fig 4: Virtual memory of 64 KB

But what if the physical memory (RAM) on the machine is a lot less, say, 32 KB?
Clearly, the preceding diagram depicts virtual memory, not physical.
Meanwhile, physical memory (RAM) looks as follows:

Fig 5: Physical memory of 32 KB

Virtual Memory Chapter 2

[56]

Still, the promise made by the system to every process alive: every single process will
have available to it the entire virtual address space, that is, 64 KB. Sounds absurd,
right? Yes, until one realizes that memory is more than just RAM; in fact, memory is
viewed as a hierarchy – what's commonly referred to as the memory pyramid:

Fig 6: The Memory pyramid

As with life, everything's a trade-off. Toward the apex of the pyramid, we gain in
Speed at the cost of size; toward the bottom of the pyramid, it's inverted: Size at the
cost of speed. One could also consider CPU registers to be at the very apex of the
pyramid; as its size is almost insignificant, it has not been shown.

Swap is a filesystem type – a raw disk partition is formatted as swap
upon system installation. It's treated as second-level RAM by the
OS. When the OS runs out of RAM, it uses swap. As a rough
heuristic, system administrators sometimes configure the size of the
swap partition to be twice that of available RAM.

Virtual Memory Chapter 2

[57]

To help quantify this, according to Computer Architecture, A Quantitative Approach, 5th
Ed, by Hennessy & Patterson, fairly typical numbers follow:

Type CPU registers
CPU caches

RAM Swap/storage
L1 L2 L3

Server
1000 bytes 64 KB 256 KB 2 - 4 MB 4 - 16 GB 4 - 16 TB
300 ps 1 ns 3 - 10 ns 10 - 20 ns 50 - 100 ns 5 - 10 ms

Embedded
500 bytes 64 KB 256 KB - 256 - 512 MB 4 - 8 GB Flash
500 ps 2 ns 10 - 20 ns - 50 - 100 ns 25 - 50 us

Table 2: Memory hierarchy numbers

Many (if not most) embedded Linux systems do not support a swap
partition; the reason is straightforward: embedded systems mostly
use flash memory as the secondary storage medium (not a
traditional SCSI disk as do laptops, desktops, and servers). Writing
to a flash chip wears it out (it has limited erase-write cycles); hence,
embedded-system designers would rather sacrifice swap and just
use RAM. (Please note that the embedded system can still be VM-
based, which is the usual case with Linux and Win-CE, for example).

The OS will do its best to keep the working set of pages as high up the pyramid as is
possible, optimizing performance.

It's important for the reader to note that, in the sections that follow,
while this book attempts to explain some of the inner workings of
advanced topics such as VM and addressing (paging), we quite
deliberately do not paint a complete, realistic, real-world view.

The reason is straightforward: the deep and gory technical details
are well beyond the scope of this book. So, the reader should keep in
mind that several of the following areas are explained in concept
and not in actuality. The Further reading section provides references
for readers who are interested in going deeper into these matters.
Refer it on the GitHub repository.

Virtual Memory Chapter 2

[58]

Addressing 1 – the simplistic flawed approach
Okay, now to the memory pyramid; even if we agree that virtual memory is now a
possibility, a key and difficult hurdle to overcome remains. To explain this, note that
every single process that is alive will occupy the entire available virtual address
space (VAS). Thus, each process overlaps with every other process in terms of VAS.
But how would this work? It wouldn't, by itself. In order for this elaborate scheme to
work, the system has to somehow map every virtual address in every process to a
physical address! Refer to the following mapping of virtual address to physical
address:

Process P:virtual address (va) → RAM:physical address (pa)

So, the situation is something like this now:

Fig 7: Processes containing virtual addresses

Virtual Memory Chapter 2

[59]

Processes P1, P2, and Pn, are alive and well in VM. Their virtual address spaces cover
0 to 64 KB and overlap each other. Physical memory, RAM, of 32 KB is present on this
(fictional) system.

As an example, two virtual addresses for each process are shown in the following
format:

P'r':va'n'; where r is the process number and n is 1 and 2.

As mentioned earlier, the key now is to map each process's virtual addresses to
physical addresses. So, we need to map the following:

P1:va1 → P1:pa1
P1:va2 → P1:pa2
...

P2:va1 → P2:pa1
P2:va2 → P2:pa2
...

[...]

Pn:va1 → Pn:pa1
Pn:va2 → Pn:pa2
...

Virtual Memory Chapter 2

[60]

We could have the OS perform this mapping; the OS would then maintain a mapping
table per process to do so. Diagrammatically and conceptually it looks as follows:

Fig 8: Direct mapping virtual addresses to physical RAM addresses

So that's it, then? Seems quite simple, actually. Well, no, it won't work in reality: to
map all the possible virtual addresses per process to physical addresses in RAM, the
OS would need to maintain a va-to-pa translation entry per address per process!
That's too expensive, as each table would possibly exceed the size of physical
memory, rendering the scheme useless.

A quick calculation reveals that we have 64KB virtual memory, that is, 65,536 bytes or
addresses. Each of these virtual addresses need to be mapped to a physical address.
So each process would require:

65536 * 2 = 131072 = 128 KB, for a mapping table. per process.

Virtual Memory Chapter 2

[61]

It gets worse in reality; the OS would need to store some metadata along with each
address-translation entry; let's say 8 bytes of metadata. So now, each process would
require:

65536 * 2 * 8 = 1048576 = 1 MB, for a mapping table. per process.

Wow, 1 megabyte of RAM per process! That's far too much (think of an embedded
system); also, on our fictional system, there's a total of 32 KB of RAM. Whoops.

Okay, we can reduce this overhead by not mapping each byte but mapping each
word; say, 4 bytes to a word. So now, each process would require:

(65536 * 2 * 8) / 4 = 262144 = 256 KB, for a mapping table. per process.

Better, but not good enough. If there are just 20 processes alive, we'd require 5 MB of
physical memory to store just the mapping metadata. With 32 KB of RAM, we can't
do that.

Addressing 2 – paging in brief
To address (pun intended) this tricky issue, computer scientists came up with a
solution: do not attempt to map individual virtual bytes (or even words) to their
physical counterpart; it's far too expensive. Instead, carve up both physical and
virtual memory space into blocks and map them.

A bit simplistically, there are broadly two ways to do this:

Hardware-segmentation
Hardware-paging

Hardware-segmentation: Carves up the virtual and physical address space into
arbitrary-sized chunks called segments. The best example is Intel 32-bit processors.

Hardware-paging: Carves up the virtual and physical address space into equal-sized
chunks called pages. Most real-world processors support hardware-paging, including
Intel, ARM, PPC, and MIPS.

Actually it's not even up to the OS developer to select which scheme to use: the choice
is dictated by the hardware MMU.

Virtual Memory Chapter 2

[62]

Again, we remind the reader: the intricate details are beyond the
scope of this book. See the Further reading section on the GitHub
repository.

Let's assume we go with the paging technique. The key takeaway is that we stop
attempting to map all possible virtual addresses per process to physical addresses in
RAM, instead, we map virtual pages (just called pages) to physical pages (called page
frames).

Common Terminology

virtual address space : VAS
Virtual page within the process VAS : page
Physical page in RAM : page frame (pf)

Does NOT work: virtual address (va) → physical address (pa)
Does work: (virtual) page → page frame

The left-to-right arrow represents the mapping.

As a rule of thumb (and the generally accepted norm), the size of a page is 4 kilobytes
(4,096 bytes). Again, it's the processor Memory Management Unit (MMU) that
dictates the page size.

So how and why does this scheme help?

Think about it for a moment; in our fictional machine, we've got: 64 KB of VM, that is,
64K/4K = 16 pages, and 32 KB of RAM, that is, 32K/4K = 8 page frames.

Mapping 16 pages to corresponding page frames requires a table of only 16 entries
per process; this is viable!

As in our earlier calculations:
16 * 2 * 8 = 256 bytes, for a mapping table per process.

The very important thing, it bears repeating: we map (virtual) pages to (physical)
page frames!

Virtual Memory Chapter 2

[63]

This is done by the OS on a per-process basis. Thus, each process has its own
mapping table that translates pages to page frames at runtime; it's commonly called
the Paging Table (PT):

Fig 9: Mapping (virtual) pages to (physical) page frames

Paging tables – simplified
Again, in our fictional machine, we've got: 64 KB of VM, that is, 64K/4K = 16 pages,
and 32 KB of RAM, that is, 32K/4K = 8 page frames.

Mapping the 16 (virtual) pages to corresponding (physical) page frames requires a
table of only 16 entries per process, which makes the whole deal viable.

Virtual Memory Chapter 2

[64]

Very simplistically, the OS-created PT of a single process look as follows:

(Virtual) page (Physical) page frame
0 3

1 2

2 5

[...] [...]

15 6

Table 3: OS-created PT

Of course, the astute reader will notice that we have a problem: we've got 16 pages
and just eight page frames to map them into – what about the remaining eight pages?

Well, consider this:

In reality, every process will not use every available page for code or data
or whatever; several regions of the virtual address space will remain empty
(sparse),
Even if we do require it, we have a way: don't forget the memory pyramid.
When we're out of RAM, we use swap. So the (conceptual) PT for a process
might appear like this (as an example, pages 13 and 14 are residing in
swap):

(Virtual) page (Physical) page frame
0 3

1 2

2 5

[...] [...]

13 <swap-address>

14 <swap-address>

15 6

Table 4: Conceptual PT

Again, please note that this description of PTs is purely conceptual;
actual PTs are more complex and highly arch (CPU/MMU)
dependent.

Virtual Memory Chapter 2

[65]

Indirection
By introducing paging, we have actually introduced a level of indirection: we no
longer think of a (virtual) address as an absolute offset from zero, but rather as a
relative quantity: va = (page, offset).

We think of each virtual address as associated with a page number and an offset from
the beginning of that page. This is called using one level of indirection.

So each time a process refers to a virtual address (and of course, note that this is
happening almost all of the time), the system must translate the virtual address to the
corresponding physical address based on the PTs for that process.

Address-translation
So, at runtime, the process looks up a virtual address which is, say, 9,192 bytes from 0,
that is, its virtual address: va = 9192 = 0x000023E8. If each page is 4,096 bytes in
size, this implies the va address is on the third page (page #2), at an offset of 1,000
bytes from the start of that page.

So, with one level of indirection, we have: va = (page, offset) = (2, 1000).

Aha! Now we can see how address-translation works: the OS sees that the process
wants an address in page 2. It does a lookup on the PT for that process, and finds that
page 2 maps to page frame 5. To calculate the physical address shown as follows:

pa = (pf * PAGE_SIZE) + offset
 = (5 * 4096) + 1000
 = 21480 = 0x000053E8

Voila!

The system now places the physical address on the bus and the CPU performs its
work as usual. It looks quite simple, but again, it's not realistic—please see the
information box as follows as well.

Another advantage gained by the paging schema is the OS only needs to store a page-
to-page-frame mapping. This automatically lets us translate any byte in the page to
the corresponding physical byte in the page frame by just adding the offset, as there is
a 1:1 mapping between a page and a page frame (both are of identical size).

Virtual Memory Chapter 2

[66]

In reality, it's not the OS that does the actual calculations to perform
address-translation. This is because doing this in the software would
be far too slow (remember, looking up virtual addresses is an
ongoing activity happening almost all the time). The reality is that
the address lookup and translation is done by silicon – the
hardware Memory Management Unit (MMU) within the CPU!

Keep the following in mind:
 • The OS is responsible for creating and maintaining PTs for each
process.
 • The MMU is responsible for performing runtime
address-translation (using the OS PTs).
 • Beyond this, modern hardware supports hardware accelerators,
such as the TLB, use of CPU caches, and virtualization extensions,
which go a long way toward getting decent performance.

Benefits of using VM
At first glance, the sheer overhead introduced due to virtual memory and the
associated address-translation would seem to warrant not using it. Yes, the overhead
is high, but the reality is given as follows:

Modern hardware-acceleration (via TLBs/CPU caches/prefetching)
mitigates this overhead and provides decent enough performance
The benefits one derives from VM outweigh the performance issues

On a VM-based system, we get the following benefits:

Process-isolation
The programmer need not worry about physical memory
Memory-region protection

It's important to understand these a bit better.

Process-isolation
With virtual memory, every process runs inside a sandbox, which is the extent of its
VAS. The key rule: it cannot look outside the box.

Virtual Memory Chapter 2

[67]

So, think about it, it's impossible for a process to peek or poke the memory of any
other process's VAS. This helps in making the system secure and stable.

Example: we have two processes, A and B. Process A wants to write to
the 0x10ea virtual address in process B. It cannot, even if it attempts to write to that
address, all it's really doing is writing to its own virtual address, 0x10ea! The same
goes for reading.

So we get process-isolation – each process is completely isolated from every other
process.
Virtual address X for process A is not the same as virtual address X for process B; in
all likelihood, they translate to different physical addresses (via their PTs).
Exploiting this property, the Android system is designed to very deliberately use the
process model for Android apps: when an Android app is launched, it becomes a
Linux process, which lives within its own VAS, isolated and thus protected from
other Android apps (processes)!

Again, don't make the mistake of assuming that every single (virtual) page
within a given process is valid for that process itself. A page is only valid if
it's mapped, that is, it's been allocated and the OS has a valid translation for
it (or a way to get to it). In fact, and especially true for the enormous 64-bit
VAS, the process virtual address space is considered to be sparse, that is,
scanty.
If process-isolation is as described, then what if process A needs to talk to
process B? Indeed, this is a frequent design requirement for many, if not
most, real Linux applications – we need some mechanism(s) to be able to
read/write the VAS of another process. Modern OSes provide mechanisms
to achieve this: Inter-Process Communication (IPC) mechanisms. (A little
on IPC can be found in Chapter 15, Multithreading with Pthreads Part II -
Synchronization.)

The programmer need not worry about physical
memory
On older OSes and even modern RTOSes, the programmer is expected to understand
the memory layout of the entire system in detail and use memory accordingly (recall
Fig 1). Obviously, this places a major burden on the developer; they have to ensure
that they work well within the physical constraints of the system.

Virtual Memory Chapter 2

[68]

Most modern developers working on modern OSes never even think this way: if we
want, say, 512 Kb of memory, do we not just allocate it dynamically (with
malloc(3), seen later in detail in Chapter 4, Dynamic Memory Allocation), leaving the
precise details of how and where it's done to the library and OS layers? In fact, we can
do this kind of thing dozens of times and not worry about stuff such as, "Will there be
enough physical RAM? Which physical page frames should be used? What about
fragmentation/wastage?"

We get the added benefit that the memory returned to us by the system is guaranteed
to be contiguous; of course, it's just virtually contiguous, it need not be physically
contiguous, but that kind of detail is exactly what the VM layers take care of!

All is handled, really efficiently, by the library layer and the underlying memory-
management system in the OS.

Memory-region protection
Perhaps the most important benefit of VM is this: the ability to define protections on
virtual memory and have them honored by the OS.

Unix and friends (including Linux), allow four protection or permission values on
memory pages:

Protection or permission type Meaning
None No permission to do anything on the page
Read Page can be read from
Write Page can be written to
Execute Page (code) can be executed

Table 5: Protection or permission values on memory pages

Let's consider a small example: we allocate four pages of memory in our process
(numbered 0 to 3). By default, the default permission or protections on the pages is
RW (Read-Write), which means the pages can be both read from and written to.

Virtual Memory Chapter 2

[69]

With virtual memory OS-level support, the OS exposes APIs (the mmap(2) and
mprotect(2) system calls) with which one can change the default page
protections! Kindly take a look at the following table:

Memory page # Default protections Changed protections
0 RW- -none-
1 RW- Read-only (R--)
2 RW- Write-only (-W-)
3 RW- Read-Execute (R-X)

With powerful APIs such as this, we can set memory protections to the granularity of
a single page!

Applications (and indeed the OS) can, and do, leverage these powerful mechanisms;
in fact, that's precisely what is done on particular regions of process address space by
the OS (as we'll learn in the next section, SIDEBAR :: Testing the memcpy() 'C' program).

Okay, fine, we can set certain protections on certain pages, but what if an application
disobeys them? For example, after setting page #3 (as seen in the preceding table) to
read-execute, what if the app (or OS) attempts to write to that page?

This is where the real power of virtual memory (and memory management) is seen:
the reality is that on a VM-enabled system, the OS – more realistically, the MMU – is
able to trap into every single memory access and determine whether the end user
process is obeying the rules or not. If it is, the access proceeds successfully; if not, the
MMU hardware raises an exception (similar, but not identical, to an interrupt). The
OS now jumps into a code routine called the exception (or fault) handler. The OSes
exception-handling routine determines whether the access is indeed illegal, and if so,
the OS immediately kills the process attempting this illegal access.

How's that for memory protection? In fact, this is pretty much exactly what a
Segmentation Violation or segfault is; more on this in Chapter 12, Signaling - Part II.
The exception-handler routine is called the OSes fault-handler.

SIDEBAR :: Testing the memcpy() C program
Now that we better understand the what and why of a VM system, let's go back to the
buggy pseudocode example we considered at the beginning of this chapter: the case
where we used memcpy(3) to copy some memory but specified the wrong
destination address (and it would have overwritten the OS itself in our fictional
physical-memory-only system).

Virtual Memory Chapter 2

[70]

A conceptually similar C program, but which runs on Linux—a full-fledged virtual-
memory-enabled OS—is shown and tried out here. Let's see how the buggy program
works on Linux:

$ cat mem_app1buggy.c
/*
 * mem_app1buggy.c
 *

 * This program is part of the source code released for the book
 * "Linux System Programming"
 * (c) Kaiwan N Billimoria
 * Packt Publishers
 *
 * From:
 * Ch 2 : Virtual Memory
 **
 * A simple demo to show that on Linux - full-fledged Virtual
 * Memory enabled OS - even a buggy app will _NOT_ cause system
 * failure; rather, the buggy process will be killed by the
 * kernel!
 * On the other hand, if we had run this or a similar program in a
flat purely
 * physical address space based OS, this seemingly trivial bug
 * can wreak havoc, bringing the entire system down.
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "../common.h"

int main(int argc, char **argv)
{
 void *ptr = NULL;
 void *dest, *src = "abcdef0123456789";
 void *arbit_addr = (void *)0xffffffffff601000;
 int n = strlen(src);

 ptr = malloc(256 * 1024);
 if (!ptr)
 FATAL("malloc(256*1024) failed\n");

 if (argc == 1)
 dest = ptr; /* correct */
 else
 dest = arbit_addr; /* bug! */

Virtual Memory Chapter 2

[71]

 memcpy(dest, src, n);

 free(ptr);
 exit(0);
}

The malloc(3) API will be covered in detail in the next chapter; for now, just
understand that it is used to dynamically allocate 256 KB of memory to the process.
Also, of course, memcpy(3) is used to copy memory from a source to a destination
pointer, for n bytes:

void *memcpy(void *dest, const void *src, size_t n);

The interesting part is that we have a variable called arbit_addr; it's set to an
arbitrary invalid (virtual) address. As you can see from the code, we set the
destination pointer to arbit_addr when the user passes any argument to the
program, making it the buggy test case. Let's try running the program for both the
correct and buggy cases.

Here is the correct case:

$./mem_app1buggy
$

It runs fine, with no errors.

Here is the buggy case:

$./mem_app1buggy buggy-case pass-params forcing-argc-to-not-be-1
Segmentation fault (core dumped)
$

It crashes! As described earlier, the buggy memcpy causes the MMU to fault; the OSes
fault-handling code realizes that this is indeed a bug and it kills the offending
process! The process dies because it's at fault, not the system. Not only is this correct,
the segfault caused also alerts the developer to the fact that their code is buggy and
must be fixed.

Virtual Memory Chapter 2

[72]

1. What's a core dump anyway?
A core dump is a snapshot of certain dynamic regions (segments) of
the process at the time it crashed (technically, it's a snapshot of
minimally the data and stack segments). The core dump can be
analyzed postmortem using debuggers such as GDB. We do not
cover these areas in this book.

2. Hey, it says (core dumped) but I don't see any core file?
Well, there can be several reasons why the core file isn't present; the
details lie beyond the scope of this book. Please refer to the man
page on core(5) for details: https:/ /linux. die.net/ man/ 5/core.

Think about what has happened here in a bit more detail: the destination pointer's
value is 0xffffffffff601000; on the x86_64 processor, this is actually a kernel
virtual address. Now we, a user mode process, are trying to write some memory to
this destination region, which is protected against access from userspace. Technically,
it's in the kernel virtual address space, which is not available to user mode processes
(recall our discussion of CPU privilege levels in Chapter 1, Linux System Architecture).
So when we – a user mode process – attempt to write to kernel virtual address space,
the protection mechanism spins up and prevents us from doing this, killing us in the
bargain.

Advanced: How does the system know that this region is protected and what kind of
protection it has? These details are encoded into the Paging Table Entry (PTEs) for
the process, and are checked by the MMU on every access!

This kind of advanced memory protection would be impossible without support in
both hardware and software:

Hardware support via the MMU found in all modern microprocessors
Software support via the operating system

There are many more benefits that VM provides, including (but not limited to)
making powerful technologies, such as demand paging, copy-on-write (COW)
handling, defragmentation, memory overcommit, memory-compaction, Kernel
Samepage Merging (KSM), and Transcendent Memory (TM), possible. Within this
book's scope, we will cover a couple of these at later points.

https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core
https://linux.die.net/man/5/core

Virtual Memory Chapter 2

[73]

Process memory layout
A process is an instance of a program in execution. It is seen as a live, runtime
schedulable entity by the OS. In other words, it's the process that runs when we
launch a program.

The OS, or kernel, stores metadata about the process in a data structure in kernel
memory; on Linux, this structure is often called the process descriptor—though the
term task structure is a more accurate one. Process attributes are stored in the task
structure; the process PID (process identifier) – a unique integer identifying the
process, process credentials, open-file information, signaling information, and a
whole lot more, reside here.

From the earlier discussion, Virtual memory, we understand that a process has, among
many other attributes, a VAS. The VAS is the sum-total space potentially available to
it. As in our earlier example, with a fictional computer with 16 address lines, the VAS
per process would be 2^16 = 64 KB.

Now, let's consider a more realistic system: a 32-bit CPU with 32 lines for addressing.
Clearly, each process has a VAS of 2^32, a fairly large quantity of 4 GB.

4 GB in hexadecimal format is 0x100000000; so the VAS spans from the low address
of 0x0 to the high address of 4GB - 1 = 0xffff ffff.

However, we have yet to learn more details (see the Advanced: VM split) regarding the
exact usage of the high end of the VAS. Therefore, for the time being at least, let's just
refer to this as the high address and not put a particular numerical value to it.

Virtual Memory Chapter 2

[74]

Here is its diagrammatic representation:

Fig 10: Process virtual address space (VAS)

So, the thing to understand for now is that on a 32-bit Linux, every process alive has
this image:
0x0 to 0xffff ffff = 4 GB of virtual address space.

Segments or mappings
When a new process is created (details in Chapter 10, Process Creation), its VAS must
be set up by the OS. All modern OSes divide up the process VAS into homogeneous
regions called segments (don't confuse these segments with the hardware-
segmentation approach mentioned in the, Addressing 2 – paging in brief section).

A segment is a homogeneous or uniform region of the process VAS; it consists of
virtual pages. The segment has attributes, such as start and end addresses, protections
(RWX/none), and mapping types. The key point for now: all pages belonging to a
segment share the same attributes.

Technically, and more accurately from the OS viewpoint, the segment is called a
mapping.

Virtual Memory Chapter 2

[75]

From now on, when we use the word segment, we also mean
mapping and vice versa.

Briefly, from the lower to high end, every Linux process will have the following
segments (or mappings):

Text (code)
Data
Library (or other)
Stack

Fig 11: Overall view of the process VAS with segments

Read on for more details about each of these segments.

Virtual Memory Chapter 2

[76]

Text segment
Text is code: the actual opcodes and operands that make up the machine instructions
that are fed to the CPU to consume. Readers may recall the objdump --source
./hello_dbg we did in Chapter 1, Linux System Architecture, showing C code
translated into assembly and machine language. This machine code resides within the
process VAS in a segment called text. For example, let's say a program has 32 KB of
text; when we run it, it becomes a process and the text segment takes 32 KB of virtual
memory; that's 32K/4K = 8 (virtual) pages.

For optimization and protection, the OS marks, that is, protects, all these eight pages
of text as read-execute (r-x). This makes sense: code will be read from memory and
executed by the CPU, not written to it.

The text segment on Linux is always toward the low end of the process VAS. Note
that it will never start at the 0x0 address.

As a typical example, on the IA-32, the text segment usually starts at
0x0804 8000. This is very arch-specific though and changes in the
presence of Linux security mechanisms like Address Space Layout
Randomization (ASLR).

Data segments
Immediately above the text segment is the data segment, which is the place where the
process holds the program's global and static variables (data).

Actually, it's not one mapping (segment); the data segment consists of three distinct
mappings. In order from the low address, it consists of: the initialized data segment,
the uninitialized data segment, and the heap segment.

We understand that, in a C program, uninitialized global and static variables are
automatically initialized to zero. What about initialized globals? The initialized data
segment is the region of address space where explicitly initialized global and static
variables are stored.

The uninitialized data segment is the region of address space where, of course,
uninitialized globals and static variables reside. The key point: these are implicitly
initialized to zero (they're actually memset to zero). Also, older literature often refers
to this region as the BSS. BSS is an old assembler directive – Block Started by
Symbol – that can be ignored; today, the BSS region or segment is nothing but the
uninitialized data segment of the process VAS.

Virtual Memory Chapter 2

[77]

The heap should be a term familiar to most C programmers; it refers to the memory
region reserved for dynamic memory allocations (and subsequent free's). Think of the
heap as a free gift of memory pages made available to the process at startup.

A key point: the text, initialized data, and uninitialized data segments are fixed in
size; the heap is a dynamic segment – it can grow or shrink in size at runtime. It's
important to note that the heap segment grows toward higher virtual
addresses. Further details on the heap and its usage can be found in the next chapter.

Library segments
When linking a program, we have two broad choices:

Static linking
Dynamic linking

Static linking implies that any and all library text (code) and data is saved within the
program's binary executable file (hence it's larger, and a bit faster to load up).

Dynamic linking implies that any and all shared library text (code) and data is not
saved within the program's binary executable file; instead, it is shared by all processes
and mapped into the process VAS at runtime (hence the binary executable is a lot
smaller, though it might take a bit longer to load up). Dynamic linking is always the
default.

Think about the Hello, world C program. You invoked printf(3), but did you
write the code for it? No, of course not; we understand that it's within glibc and will
be linked into our process at runtime. That's exactly what happens with dynamic
linking: at process load time, all the library text and data segments that the program
depends upon (uses) are memory-mapped (details in Chapter 18, Advanced File
I/O)into the process VAS. Where? In the region between the top of the heap and the
bottom of the stack: the library segments (refer to the preceding diagram).

Another thing: other mappings (besides library text and data) may find their way into
this region of address space. A typical case is explicit memory mappings made by the
developer (using the mmap(2) system call), implicit mappings such as those made by
IPC mechanisms, such as shared memory mappings, and the malloc routines (refer to
Chapter 4, Dynamic Memory Allocation).

Virtual Memory Chapter 2

[78]

Stack segment
This section explains the process stack: what, why, and how.

What is stack memory?
You probably remember being taught that stack memory is just memory but with a
special push/pop semantic; the memory you push last resides at the top of the stack,
and if you perform a pop operation, that memory gets popped off – removed from –
the stack.

The pedagogical example of visualizing a stack of dinner plates is a good one: the
plate you place last is at the top, and you take the top plate off to give it to your
dinner guest (of course, you could insist that you give them the plate from the middle
or bottom of the stack, but we think that the plate on the very top would be the easiest
one to pop off).

Some literature also refers to this push/pop behavior as Last In First Out (LIFO). Fair
enough.

The high end of the process VAS is used for the stack segment (refer to Fig 11). Okay,
fine, but what exactly is it for? How does it help?

Why a process stack?
We're taught to write nice modular code: divide your work into subroutines, and
implement them as small, easily readable, and maintainable C functions. That's great.

The CPU, though, does not really understand how to invoke a C function, how to
pass parameters, store local variables, and return a result to the calling function. Our
savior, the compiler, takes over, converting C code into an assembly language that is
capable of making this whole function thing work.

The compiler generates assembly code to invoke a function, passes along parameters,
allocates space for local variables, and finally, emits a return result back to the caller.
To do this, it uses the stack! So, similar to the heap, the stack is also a dynamic
segment.

Every time a function is called, memory is allocated in the stack region (or segment or
mapping) to hold metadata that has the function call, parameter passing and the
function return mechanism work. This metadata region for each function is called the
stack frame.

Virtual Memory Chapter 2

[79]

The stack frame holds the metadata necessary to implement the
function call-parameter use-return value mechanism. The exact
layout of a stack frame is highly CPU (and compiler) dependent; it's
one of the key areas addressed by the CPU ABI document.

On the IA-32 processor, the stack frame layout essentially is as
follows:

[<-- high address
 [Function Parameters ...]
 [RET address]
 [Saved Frame Pointer] (optional)
 [Local Variables ...]
] <-- SP: lowest address

Consider some pseudocode:

bar() { jail();}
foo() { bar();}
main() { foo();}

The call graph is quite obvious:

main --> foo --> bar --> jail

The arrow drawn like --> means calls; so, main calls foo, and so on.

The thing to understand: every function invocation is represented at runtime by a
stack frame in the process's stack.

If the processor is issued a push or pop instruction, it will go ahead and perform it.
But, think about it, how does the CPU know where exactly – at which stack memory
location or address – it should push or pop memory? The answer: we reserve a
special CPU register, the stack pointer (usually abbreviated to SP), for precisely this
purpose: the value in SP always points to the top of the stack.

The next key point: the stack segment grows toward lower virtual addresses. This is
often referred to as stack-grows-down semantics. Also note that the direction of stack
growth is a CPU-specific feature dictated by the ABI for that CPU; most modern
CPUs (including Intel, ARM, PPC, Alpha, and Sun SPARC) follow the stack-grows-
down semantic.

Virtual Memory Chapter 2

[80]

The SP always points to the top of the stack; as we use a downward-growing stack,
this is the lowest virtual address on the stack!

For clarity, let's check out a diagram that visualizes the process stack just after the call
to main() (main() is invoked by a __libc_start_main() glibc routine):

Figure 12: Process stack after main() is called

The process stack upon entry to the jail() function:

Figure 13: Process stack after jail() is called

Virtual Memory Chapter 2

[81]

Peeking at the stack
We can take a peek into the process stack (technically, the stack of main()) in
different ways. Here, we show two possibilities:

Automatically via the gstack(1) utility
Manually with the GDB debugger

Peek at the usermode stack, first, via gstack(1):

WARNING! Ubuntu users, you might face an issue here. At the time
of writing (Ubuntu 18.04), gstack does not seem to be available for
Ubuntu (and its alternative, pstack, does not work well either!).
Please use the second method (via GDB), as follows.

As a quick example, we look up the stack of bash (the parameter is the PID of the
process):

$ gstack 14654
#0 0x00007f3539ece7ea in waitpid () from /lib64/libc.so.6
#1 0x000056474b4b41d9 in waitchld.isra ()
#2 0x000056474b4b595d in wait_for ()
#3 0x000056474b4a5033 in execute_command_internal ()
#4 0x000056474b4a52c2 in execute_command ()
#5 0x000056474b48f252 in reader_loop ()
#6 0x000056474b48dd32 in main ()
$

The stack frame number appears on the left preceded by the # symbol; note that
frame #0 is the top of the stack, (the lowest frame). Read the stack in a bottom-up
fashion, that is, from frame #6 (the frame for the main() function) up to frame #0 (the
frame for the waitpid() function). Also note that, if the process is multithreaded,
gstack will show the stack of each thread.

Peek at the Usermode Stack, next, via GDB.

The GNU Debugger (GDB) is a renowned, very powerful debug tool (if you don't
already use it, we highly recommend you learn how to; check out the link in the
Further reading section). Here, we'll use GDB to attach to a process and, once attached,
peek at its process stack.

Virtual Memory Chapter 2

[82]

A small test C program, that makes several nested function calls, will serve as a good
example. Essentially, the call graph will look as follows:

main() --> foo() --> bar() --> bar_is_now_closed() --> pause()

The pause(2) system call is a great example of a blocking call – it puts the calling
process to sleep, waiting (or blocking) on an event; the event it's blocking upon here is
the delivery of any signal to the process. (Patience; we'll learn more in Chapter 11,
Signaling - Part I, and Chapter 12, Signaling - Part II).

Here is the relevant code (ch2/stacker.c):

static void bar_is_now_closed(void)
{
 printf("In function %s\n"
 "\t(bye, pl go '~/' now).\n", __FUNCTION__);
 printf("\n Now blocking on pause()...\n"
 " Connect via GDB's 'attach' and then issue the 'bt' command"
 " to view the process stack\n");
 pause(); /*process blocks here until it receives a signal */
}
static void bar(void)
{
 printf("In function %s\n", __FUNCTION__);
 bar_is_now_closed();
}
static void foo(void)
{
 printf("In function %s\n", __FUNCTION__);
 bar();
}
int main(int argc, char **argv)
{
 printf("In function %s\n", __FUNCTION__);
 foo();
 exit (EXIT_SUCCESS);
}

Note that, for GDB to see the symbols (names of functions, variables, line numbers),
one must compile the code with the -g switch (produces debug information).

Virtual Memory Chapter 2

[83]

Now, we run the process in the background:

$./stacker_dbg &
[2] 28957
In function main
In function foo
In function bar
In function bar_is_now_closed
 (bye, pl go '~/' now).
 Now blocking on pause()...
 Connect via GDB's 'attach' and then issue the 'bt' command to view
the process stack
$

Next, open GDB; within GDB, attach to the process (the PID is displayed in the
preceding code), and view its stack with the backtrace (bt) command:

$ gdb --quiet
(gdb) attach 28957 # parameter to 'attach' is the PID of the process
to attach to
Attaching to process 28957
Reading symbols from <...>/Hands-on-System-Programming-with-
Linux/ch2/stacker_dbg...done.
Reading symbols from /lib64/libc.so.6...Reading symbols from
/usr/lib/debug/usr/lib64/libc-2.26.so.debug...done.
done.
Reading symbols from /lib64/ld-linux-x86-64.so.2...Reading symbols
from /usr/lib/debug/usr/lib64/ld-2.26.so.debug...done.
done.
0x00007fce204143b1 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:30
30 return SYSCALL_CANCEL (pause);
(gdb) bt
#0 0x00007fce204143b1 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:30
#1 0x00000000004007ce in bar_is_now_closed () at stacker.c:31
#2 0x00000000004007ee in bar () at stacker.c:36
#3 0x000000000040080e in foo () at stacker.c:41
#4 0x0000000000400839 in main (argc=1, argv=0x7ffca9ac5ff8) at
stacker.c:47
(gdb)

On Ubuntu, due to security, GDB will not allow one to attach to any
process; one can overcome this by running GDB as root; then it
works well.

Virtual Memory Chapter 2

[84]

How about looking up the same process via gstack (at the time of writing, Ubuntu
users, you're out of luck). Here it is on a Fedora 27 box:

$ gstack 28957
#0 0x00007fce204143b1 in __libc_pause () at
../sysdeps/unix/sysv/linux/pause.c:30
#1 0x00000000004007ce in bar_is_now_closed () at stacker.c:31
#2 0x00000000004007ee in bar () at stacker.c:36
#3 0x000000000040080e in foo () at stacker.c:41
#4 0x0000000000400839 in main (argc=1, argv=0x7ffca9ac5ff8) at
stacker.c:47
$

Guess what? It turns out that gstack is really a wrapper shell script
that invokes GDB in a non-interactive fashion and it issues the very
same backtrace command we just used!
As a quick learning exercise, check out the gstack script.

Advanced – the VM split
What we have seen so far is actually not the complete picture; in reality, this address
space needs to be shared between user and kernel space.

This section is considered advanced. We leave it to the reader to
decide whether to dive into the details that follow. While they're
very useful, especially from a debug viewpoint, it's not strictly
required for following the rest of this book.

Recall what we mentioned in the Library segments section: if a Hello, world
application is to work, it needs to have a mapping to the printf(3) glibc routine.
This is achieved by having the dynamic or shared libraries memory-mapped into the
process VAS at runtime (by the loader program).

Virtual Memory Chapter 2

[85]

A similar argument could be made for any and every system call issued by the
process: we understood from Chapter 1, Linux System Architecture, that the system
call code is actually within the kernel address space. Thus, if issuing a system call
were to succeed, we would need to re-vector the CPU's Instruction Pointer (IP or PC
register) to the address of the system call code, which, of course, is within kernel
address space. Now, if the process VAS consists of just text, data, library, and stack
segments, as we have been so far suggesting, how would it work? Recall the
fundamental rule of virtual memory: you cannot look outside the box (available
address space).

In order for this whole scheme to succeed, therefore, even kernel virtual address
space—yes, please note, even the kernel address space is considered virtual – must
somehow be mapped into the process VAS.

As we saw earlier, on a 32-bit system, the total VAS available to a process is 4 GB. So
far, the implicit assumption is that the top of the process VAS on 32-bit is therefore 4
GB. That's right. As well, again, the implicit assumption is that the stack segment
(consisting of stack frames) lies here—at the 4 GB point at the top. Well, that's
incorrect (please refer to Fig 11).

The reality is this: the OS creates the process VAS, and arranges for the segments
within it; however, it reserves some amount of virtual memory at the top end for the
kernel or OS-mapping (meaning, the kernel code, data structures, stacks, and drivers).
By the way, this segment, which contains kernel code and data, is usually referred to
as the kernel segment.

How much VM is kept for the kernel segment? Ah, that's a tunable or a configurable
that is set by kernel developers (or the system administrator) at kernel-configuration
time; it's called VMSPLIT. This is the point in the VAS where we split the address
space between the OS kernel and user mode memory – the text, data, library, and
stack segments!

Virtual Memory Chapter 2

[86]

In fact, for clarity, let's reproduce Fig 11 (as Fig 14), but this time, explicitly reveal the
VM Split:

Figure 14: The process VM Split

Let's not get into the gory details here: suffice it to say that on an IA-32 (Intel x86 32-
bit), the splitting point is typically the 3 GB point. So, we have a ratio: userspace VAS :
kernel VAS :: 3 GB : 1 GB ; on the IA-32.

Remember, this is tunable. On other systems, such as a typical ARM-32 platform, the
split might be like this instead: userspace VAS : kernel VAS :: 2 GB : 2 GB ; on the
ARM-32.

Virtual Memory Chapter 2

[87]

On an x86_64 with a gargantuan 2^64 VAS (that's a mind-boggling 16 Exabytes!), it
would be: userspace VAS : kernel VAS :: 128 TB : 128 TB ; on the x86_64.

Now one can clearly see why we use the term monolithic to describe the Linux OS
architecture – each process is indeed like a single, large piece of stone!

Each process contains both of the following:

Userspace mappings

Text (code)
Data

Initialized data
Uninitialized data (BSS)
Heap

Library mappings
Other mappings
Stack

Kernel segments

Every process alive maps into the kernel VAS (or kernel segment, as it's usually
called), in its top end.

This is a crucial point. Let's look at a real-world case: on the Intel IA-32 running the
Linux OS, the default value of VMSPLIT is 3 GB (which is 0xc0000000). Thus, on this
processor, the VM layout for each process is as follows:

0x0 to 0xbfffffff : userspace mappings, that is, text, data, library and stack.
0xc0000000 to 0xffffffff : kernel space or the kernel segment.

Virtual Memory Chapter 2

[88]

This is made clear in the following diagram:

Fig 15: Full process VAS on the IA-32

Notice how the top gigabyte of VAS for every process is the same – the kernel
segment. Also keep in mind that this layout is not the same on all systems – the
VMSPLIT and the size of user and kernel segments varies with the CPU architecture.

Since Linux 3.3 and especially 3.10 (kernel versions, of course), Linux supports
the prctl(2) system call. Looking up its man page reveals all kinds of interesting,
though non-portable (Linux-only), things one could do. For example, prctl(2), used
with the PR_SET_MM parameter, lets a process (with root privileges) essentially
specify its VAS layout, its segments, in terms of start and end virtual addresses for
text, data, heap, and stack. This is certainly not required for normal applications.

Virtual Memory Chapter 2

[89]

Summary
This chapter delved into an explanation of VM concepts, why VM matters, and its
many benefits to modern operating systems and the applications running on them.
We then covered the layout of the process virtual address space on the Linux OS,
including some information on the text, (multiple) data, and stack segments. The true
reasons for the stack, and its layout, were covered as well.

In the next chapter, the reader will learn about per-process resource limits: why they
are required, how they work, and of course, the programmer interfaces required to
work with them.

3
Resource Limits

In this chapter, we will look at per-process resource limits—what they are, and why
we require them. We will go on to describe the granularity and the types of resource
limits, distinguishing between soft and hard limits. Details on how a user (or system
administrator) can query and set the per-process resource limits using appropriate
CLI frontends (ulimit, prlimit) will be covered.

The programming interfaces (APIs)—practically speaking, the key prlimit(2)
system call API—will be covered in detail. Two detailed code examples, querying the
limits and setting a limit on CPU usage, will give the reader hands-on experience of
working with resource limits.

In this chapter, with regard to resource limits, we will cover the following topics:

Necessity
Granularity
Types—soft and hard
The resource limits APIs, with example code

Resource limits
A common hack is the (Distributed) denial-of-service ((D)DoS) attack. Here, the
malicious attacker attempts to consume, indeed overload, resources on the target
system to such an extent that the system either crashes, or at the very least, becomes
completely unresponsive (hung).

Interestingly, on an untuned system, performing this type of attack is quite easy; as
an example, let's imagine we have shell access (not root, of course, but as a regular
user) on a server. We could attempt to have it run out of disk space (or at least run
short) quite easily by manipulating the ubiquitous dd(1) (disk dump) command.
One use of dd is to create files of arbitrary lengths.

Resource Limits Chapter 3

[91]

For example, to create a 1 GB file filled with random content, we could do the
following:

$ dd if=/dev/urandom of=tst count=1024 bs=1M
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 15.2602 s, 70.4 MB/s
$ ls -lh tst
-rw-rw-r-- 1 kai kai 1.0G Jan 4 12:19 tst
$

What if we bump the blocksize (bs) value to 1G, like this:

dd if=/dev/urandom of=tst count=1024 bs=1G

dd will now attempt to create a file that is 1,024 GB—a terabyte—in size! What if we
run this line (in a script) in a loop? You get the idea.

To control resource-usage, Unix (including Linux) has a resource limit, that is, an
artificial limit imposed upon a resource by the OS.

A point to be clear on from the very beginning: these resource limits are on a per-
process basis and not system-wide globals—more on this in the next section.

Before diving into more detail, let's continue with our hack example to eat up a
system's disk space, but this time with the resource limit for the maximum size of a
file set in place beforehand.

The frontend command to view and set resource limits is a built-in shell command
(these commands are called bash-builtins): ulimit. To query the maximum possible
size of files written to by the shell process (and its children), we set the -f option
switch to ulimit:

$ ulimit -f
unlimited
$

Okay, it's unlimited. Really? No, unlimited only implies that there is no particular
limit imposed by the OS. Of course it's finite, limited by the actual available disk
space on the box.

Resource Limits Chapter 3

[92]

Let's set a limit on the maximum file size, simply by passing the -f option switch and
the actual limit. But what's the unit of the size? bytes, KB, MB? Let's look up its man
page: by the way, the man page for ulimit is the man page for bash(1). This is
logical, as ulimit is a built-in shell command. Once in the bash(1) man page, search
for ulimit; the manual informs us that the unit (by default) is 1,024-byte increments.
Thus, 2 implies 1,024*2 = 2,048 bytes. Alternatively, to get some help on ulimit, just
type help ulimit on the shell.

So, let's try this: reduce the file size resource limit to just 2,048 bytes and then test
with dd:

Figure 1: A simple test case with ulimit -f

As can be seen from the preceding screenshot, we reduce the file size resource limit to
2, implying 2,048 bytes, and then test with dd. As long as we create a file at or below
2,048 bytes, it works; the moment we attempt to go beyond the limit, it fails.

As an aside, note that dd does not attempt to use some clever logic to
test the resource limit, displaying an error if it were to attempt to
create a file over this limit. No, it just fails. Recall from Chapter 1,
Linux System Architecture, the Unix philosophy principle: provide
mechanisms, not policies!

Granularity of resource limits
In the previous example with dd(1), we saw that we can indeed impose a limit upon
the maximum file size. An important question arises: what is the scope or granularity
of the resource limit? Is it system-wide?

Resource Limits Chapter 3

[93]

The short answer: no, it's not system-wide, it's process-wide, implying that the resource
limits apply at the granularity of a process and not the system. To clarify this,
consider two shells—nothing but the bash process—shell A and shell B. We modify
the maximum file-size resource limit for shell A (with the usual ulimit -f <new-
limit> command), but leave the resource limit for maximum file size for shell B
untouched. If now they both use dd (as we did), we would find that the dd process
invoked within shell A would likely die with the 'File size limit exceeded
(core dumped)' failure message, whereas the dd process invoked within shell B
would likely continue and succeed (provided, of course, there's sufficient disk space
available).

This simple experiment proves that the granularity of a resource limit is per process.

When we delve into the inner details of multithreading, we'll revisit
the granularity of resource limits and how they apply to individual
threads. For the impatient, all resource limits-except for the stack
size are shared by all threads within the process

Resource types
So far, we've only checked out the maximum file size resource limit; are there not
others? Yes, indeed, there are several others.

Available resource limits
The following table enumerates the available resource limits on a typical Linux
system (alphabetically ordered by the ulimit option switch column):

Resource limit
ulimit
option
switch

Default value Unit

max core file size -c unlimited KB
max data segment size -d unlimited KB
max scheduling priority (nice) -e 0 Unscaled
max file size -f unlimited KB
max (real-time) pending signals -i <varies> Unscaled
max locked memory -l <varies> KB
max memory size -m unlimited KB
max open files -n 1024 Unscaled

Resource Limits Chapter 3

[94]

max pipe size -p 8 512-byte
increments

max POSIX message queues -q <varies> Unscaled
max real-time scheduling priority -r 0 Unscaled
max stack segment size -s 8192 KB
max CPU time -t unlimited Seconds
max user processes -u <varies> Unscaled
address space limit or max virtual
memory

-v unlimited KB

max file locks held -x unlimited Unscaled

There are a few points to note:

At a glance, some of the resource limit meanings are quite obvious; several
may not be. Most of them are not explained here, some of them will be
touched upon in subsequent chapters.
The second column is the option switch to pass to ulimit to display the
current value for the particular resource limit in that row; for
example, ulimit -s to print out the current value of the stack size
resource limit (unit: KB).
The third column is Default value. This, of course, could vary across Linux
platforms. In particular, enterprise-class servers may tune their default
values to be much higher than, say, an embedded Linux system. Also, quite
often the default value is a calculation (based on, say, amount of RAM
installed on the box); hence, the entry <varies> in some cases. Also, as
mentioned earlier, unlimited does not mean infinite—it implies that no
artificial upper limit has been enforced.
Regarding the fourth column, Unit, the (bash(1)) man page
(source: https:/ /linux. die. net/ man/ 1/bash) states the following:

[...] If limit is given, it is the new value of the specified
resource (the -a option is display only). If no option is
given, then -f is assumed. Values are in 1024-byte increments,
except for -t, which is in seconds, -p, which is in units of
512-byte blocks, and -T, -b, -n, and -u, which are unscaled
values. The return status is 0 unless an invalid option or
argument is supplied, or an error occurs while setting a new
limit. [...]

https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash
https://linux.die.net/man/1/bash

Resource Limits Chapter 3

[95]

Also, unscaled implies it's just a number.

One can display all resource limits via the -a option switch; we leave it to you to try
out the ulimit -a command.

Note that ulimit -a orders the resource limits alphabetically by option switch, just
as we did in the table.

Also, it's really important to understand that these resource limits are with respect to
a single process—the shell process (Bash)—that invoked the ulimit command.

Hard and soft limits
Unixes make a further distinction: in reality (under the hood), the resource limit for a
given type is not one number—it's two:

A value for the hard limit
A value for the soft limit

The hard limit is the true maximum; as a regular user, it's impossible to exceed this
limit. What if a process attempts this? Simple: it gets killed by the OS.

The soft limit, on the other hand, can be breached: in the case of some resource limits,
the process (that exceeds the soft limit) will be sent a signal by the kernel. Think of
this as a warning: you're nearing the limit kind of thing. Again, don't worry, we take a
deep dive into signaling in Chapter 11, Signaling - Part I, and, Chapter 12, Signaling -
Part II. For example, if a process exceeds the soft limit for file size, the OS responds by
delivering the SIGXFSZ signal—SIGnal: eXceeding FileSiZe—to it! Overstep
the soft limit for CPU and guess what? You will be the proud recipient of the
SIGXCPU signal.

Well, there's more to it: the man page on prlimit(2) shows
how, on Linux, with regard to the CPU limit, SIGKILL is sent after
multiple warnings via SIGXCPU. The right behavior: the application
should clean up and terminate upon receiving the first SIGXCPU
signal. We will look at signal-handling in Chapter 11, Signaling –
Part I!

Resource Limits Chapter 3

[96]

It's instructive to think of the hard limit as a ceiling value for the soft limit; in effect,
the range of the soft limit for a given resource is [0, hard-limit].

To view both the hard and soft limits on your shell process, use the -S and -H option
switches on ulimit, respectively. Here's the output of ulimit -aS on our trusty
Fedora 28 desktop system:

$ ulimit -aS
core file size (blocks, -c) unlimited
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 63260
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 63260
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
$

When we run ulimit with both the following:

-aS: Display all Soft resource limit values
-aH: Display all Hard resource limit values

A question comes up: where exactly do the soft and hard limits (for the Bash process)
differ? Instead of trying to manually interpret it, let's use a super GUI frontend to
diff (well, it's more than just a diff frontend actually), called meld:

$ ps
 PID TTY TIME CMD
23843 pts/6 00:00:00 bash
29305 pts/6 00:00:00 ps
$

$ ulimit -aS > ulimit-aS.txt
$ ulimit -aH > ulimit-aH.txt
$ meld ulimit-aS.txt ulimit-aH.txt &

Resource Limits Chapter 3

[97]

Screenshot of meld comparing the soft and hard limit resource values shown as
follows:

Figure 2: Screenshot showing meld comparing the soft and hard limit resource values

Note that we run ps; this is to reiterate the fact that the resource limit values we're
seeing / are with respect to it (PID 23843). So, meld clearly shows us that, by default
on a typical Linux system, only two resource limits differ in their soft and hard
values: the max open files (soft=1024, hard=4096), and max stack size (soft=8192 KB =
8 MB, hard=unlimited).

meld is extremely valuable to developers; we often use it to (peer-)
review code and make changes (merges via the right- and left-
pointing arrows). In fact, the powerful Git SCM uses meld as one of
the available tools (with the git mergetool command). Install
meld on your Linux box using the appropriate package manager for
your distribution and try it out.

Resource Limits Chapter 3

[98]

Querying and changing resource limit values
We now understand that it's the kernel (the OS) that sets up resource limits per
process and tracks usage, even killing the process if necessary—if it attempts to
exceed a resource's hard limit. This raises the question: is there a way one can change
the soft and hard resource-limit values? We've already seen it in fact: ulimit. More
than that, though, the deeper question is: are we allowed to set any hard/soft limits?

The kernel has certain preset rules regarding the changing of a resource
limit. Querying or setting a process's resource limits can only be done by the calling
process upon itself or upon a process that it owns; more correctly, for any other
process besides itself, the process must have the CAP_SYS_RESOURCE capability bit set
(worry not, detailed coverage on process capabilities can be found in Chapter 8,
Process Capabilities):

Querying: Anyone can query the resource limits hard and soft (current)
values of the processes they own.
Setting:

A hard limit, once set, cannot be further increased (for that
session).
A soft limit can be increased up to the hard limit value only,
that is, soft limit range = [0, hard-limit].
When one sets the resource limit using ulimit, the system
internally sets both the hard and soft limits. This has important
consequences (see the preceding points).

Permissions for setting resource limits is given as follows:

A privileged process (such as superuser/root/sysadmin, or one with
the aforementioned CAP_SYS_RESOURCE capability) can increase or
decrease both hard and soft limits.
A non-privileged process (non-root):

Can set the soft limit of a resource in the range [0, hard-limit]
for that resource.
Can irreversibly decrease a resource's hard limit (once
reduced, it cannot ever increase it, but can only continue to
decrease it). More precisely, the hard limit can be decreased
to a value greater than or equal to the current soft limit.

Resource Limits Chapter 3

[99]

Every good rule has an exception: a non-privileged user can
decrease and/or increase the core file resource limit. This is usually to
allow developers to generate a core dump (which can be
subsequently analyzed via GDB).

A quick test case to demonstrate this is in order; let's manipulate the max open
files resource limit:

$ ulimit -n
1024
$ ulimit -aS |grep "open files"
open files (-n) 1024
$ ulimit -aH |grep "open files"
open files (-n) 4096
$
$ ulimit -n 3000
$ ulimit -aS |grep "open files"
open files (-n) 3000
$ ulimit -aH |grep "open files"
open files (-n) 3000
$ ulimit -n 3001
bash: ulimit: open files: cannot modify limit: Operation not permitted
$ ulimit -n 2000
$ ulimit -n
2000
$ ulimit -aS |grep "open files"
open files (-n) 2000
$ ulimit -aH |grep "open files"
open files (-n) 2000
$ ulimit -n 3000
bash: ulimit: open files: cannot modify limit: Operation not permitted
$

The preceding command are explained as follows:

The current soft limit is 1,024 (the default)
The soft limit is 1,024, the hard limit is 4,096
Using ulimit, we set the limit to 3,000; this, internally, has caused both the
soft and hard limits to be set to 3,000
Attempting to set the value higher (to 3,001) fails
Reducing the value (to 2,000) succeeds
Realize though, that again, both the soft and hard limits have been set to
2,000
Attempting to go back to a previously valid value fails (3,000); this is
because the valid range now is [0, 2,000]

Resource Limits Chapter 3

[100]

Testing this with root access is left as an exercise to the reader; see the Caveats section
that follows, though.

Caveats
Things to consider, and exceptions that apply:

Even if one can, increasing a resource limit may do more harm than good;
think through what you are trying to achieve here. Put yourself in the
malicious-hacker mindset (recall (DDoS attacks). On both server class, as
well as on highly resource-constrained systems (often an embedded one),
setting resource limits appropriately can help mitigate risk.
Setting a resource limit to a higher value requires root privilege. For
example: we wish to increase the max open files resource limit from 1,024
to 2,000. One would assume that using sudo should do the job. However,
at first surprisingly, something such as sudo ulimit -n 2000 will not
work! Why? Well, when you run it, sudo expects that ulimit is a binary
executable and thus searches for it in the PATH; but of course, that's not the
case: ulimit is a built-in shell command and thus fails to launch. So, try it
this way:

$ ulimit -n
1024
$ sudo bash -c "ulimit -n 2000 && exec ulimit -n"
[sudo] password for kai: xxx
2000
$

Don't worry, if you don't fully understand why we use the exec in the preceding
snippet; the precise details regarding exec semantics will be covered in Chapter 9,
Process Execution.

Exception—you cannot seem to change the max pipe size resource limit.

Advanced: The default maximum pipe size is actually in
/proc/sys/fs/pipe-max-size and defaults to 1 MB (from Linux
2.6.35). What if the programmer must change the pipe size? To do
so, one could use the fcntl(2)system call, via the F_GETPIPE_SZ
and F_SETPIPE_SZ parameters. Refer to the fcntl(2) man page for
details.

Resource Limits Chapter 3

[101]

A quick note on the prlimit utility
Besides using ulimit, another frontend to querying and displaying resource limits is
the prlimit utility. prlimit differs from ulimit in the following ways:

It's a newer, modern interface (Linux kernel version 2.6.36 onward)
It can be used to modify limits as required and launch another program that
will inherit the new limits (a useful feature; see the following examples)
It's a binary executable program in itself, not a built-in like ulimit is

Without any parameters, prlimit displays the resource limits of the calling process
(itself). One can optionally pass resource limit <name=value> pairs to set the same,
the PID of the process to query/set resource limits, or a command to be launched with
the newly set resource limits. Here is the synopsis from its man page:

prlimit [options] [--resource[=limits] [--pid PID]
prlimit [options] [--resource[=limits] command [argument...]

Note how the --pid and command options are mutually exclusive.

Using prlimit(1) – examples
Example 1—querying limits:

$ prlimit

Output for the preceding command is as follows:

$ ps
 PID TTY TIME CMD
 2917 pts/7 00:00:00 bash

Resource Limits Chapter 3

[102]

 3339 pts/7 00:00:00 ps
$ prlimit --pid=2917
RESOURCE DESCRIPTION SOFT HARD
UNITS
AS address space limit unlimited unlimited
bytes
CORE max core file size unlimited unlimited
bytes
CPU CPU time unlimited unlimited
seconds
[...]
$

Here, we have abbreviated the output for better readability.

Example 2—set the resource limits for max file size and max stack size for the
(preceding) shell process:

$ prlimit --pid=2917 --fsize=2048000 --stack=12582912
$ prlimit --pid=2917 | egrep -i "fsize|stack"
FSIZE max file size 2048000 2048000 bytes
STACK max stack size 12582912 12582912 bytes
$

Example 3—a program, rlimit_primes, that generates prime numbers; have it
generate a large number of primes but give it only two seconds of CPU time to do so.

Note that the rlimit_primes program, along with its source code,
is described in detail in the API interfaces section.

For now, we just run it within the scope of the built-in prlimit program, ensuring
that the rlimit_primes process only gets the CPU bandwidth (in seconds) that we
pass via the prlimit --cpu= option switch. In the example, we ensure the
following:

We give our prime number generator process two seconds (via prlimit)
We pass -2 as the second parameter; this will cause
the rlimit_primes program to skip setting the CPU resource limit itself

Resource Limits Chapter 3

[103]

We ask it to generate primes up to the number 8,000,000:

$./rlimit_primes
Usage: ./rlimit_primes limit-to-generate-primes-upto CPU-time-
limit
 arg1 : max is 10000000
 arg2 : CPU-time-limit:
 -2 = don't set
 -1 = unlimited
 0 = 1s
$ prlimit --cpu=2 ./rlimit_primes 8000000 -2
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131,

 [...]

 18353, 18367, 18371, 18379, 18397, 18401, 18413, 18427,
18433, 18439,
 18443, 18451, 18457, 18461, 18481, 18493, 18503, 18517,
18521, 18523,
 18539, 18541, 18553, 18583, 18587, 18593,
Killed
$

Note how, once it's out of its newly constrained CPU time resource (two seconds, in
the preceding example), it gets killed by the kernel! (Technically, by the
SIGKILL signal; a lot more on signals follows in Chapter 11, Signaling - Part I, and
Chapter 12, Signaling - Part II). Note how the word Killed appears, indicating that
the OS has killed the process.

Refer to the man page on prlimit(1) for further details.

A practical case: When running fairly heavy software such as Eclipse
and Dropbox, I have found it necessary to bump up the resource
limits for them (as advised); otherwise, they abort as they run out of
resources.

Advanced: From the Linux kernel version 2.6.24 onward, one can
look up the resource limits for a given process PID via the powerful
proc filesystem: /proc/<PID>/limits.

Resource Limits Chapter 3

[104]

API interfaces
Querying and/or setting resource limits programmatically can be achieved with the
following APIs—the system calls:

getrlimit

setrlimit

prlimit

Of these, we will only focus on prlimit(2); [get|set]rlimit(2) is an older
interface, has quite a few issues (bugs), and is generally considered outdated.

For prlimit(2) to work properly, one must be running on Linux
kernel version 2.6.36 or later.

How does one determine the Linux kernel version one is running
on?
Simple: use the uname utility to query the kernel version:

$ uname -r
4.14.11-300.fc27.x86_64
$

Let's get back to the prlimit(2) system call API:

#include <sys/time.h>
#include <sys/resource.h>

int prlimit(pid_t pid, int resource,
 const struct rlimit *new_limit, struct rlimit *old_limit);

The prlimit() system call can be used to both query and set a given resource
limit—only one resource limit per call—for or on a given process. It receives four
arguments; the first argument, pid, is the PID of the process to act upon. The
special 0 value implies that it acts upon the calling process itself. The second
argument, resource, is the name of the resource limit we wish to query or set (refer to
the following table for the full list). Both the third and fourth arguments are pointers
to struct rlimit; the third parameter, if non-NULL, is the new value we want to
set (which is why it is marked const); the fourth parameter, if non-NULL, is the
structure where we will receive the previous (or old) limit.

Resource Limits Chapter 3

[105]

Experienced C programmers will realize how easy it is to create
bugs. It's the programmer's responsibility to ensure that the memory
for the rlimit structures (third and fourth parameters), if used, must
be allocated; the OS certainly does not allocate memory for these
structures.

The rlimit structure contains two members, the soft and hard limits
(rlim_cur and rlim_max, respectively):

struct rlimit {
 rlim_t rlim_cur; /* Soft limit */
 rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */
};

Back to the second argument, resource, which is the programmatic name of the
resource limit we wish to query or set. The following table enumerates all of them:

Resource limit Programmatic
name (use in API)

Default value Unit

max core file size RLIMIT_CORE unlimited KB
max data segment size RLIMIT_DATA unlimited KB
max scheduling priority
(nice)

RLIMIT_NICE 0 unscaled

max file size RLIMIT_FSIZE unlimited KB
max (real-time) pending
signals

RLIMIT_SIGPENDING <varies> unscaled

max locked memory RLIMIT_MEMLOCK <varies> KB
max open files RLIMIT_NOFILE 1024 unscaled
max POSIX message queues RLIMIT_MSGQUEUE <varies> unscaled
max real-time priority RLIMIT_RTTIME 0 microseconds
max stack segment size RLIMIT_STACK 8192 KB
max CPU time RLIMIT_CPU unlimited seconds
max user processes RLIMIT_NPROC <varies> unscaled
address space limit or max
virtual memory

RLIMIT_AS
(AS = Address Space)

unlimited KB

max file locks held RLIMIT_LOCKS unlimited unscaled

Resource Limits Chapter 3

[106]

Points to note are given as follows:

The RLIM_INFINITY value for a resource value implies that there is no
limit.
Alert readers will notice that there is no entry for max pipe size (as there
was in the previous table); this is because this resource cannot be modified
via the prlimit(2) API.
Technically, to modify a resource limit value, a process requires the
CAP_SYS_RESOURCE capability (capabilities is explained in details in
Chapter 8, Process Capabilities). For now, let's just use the traditional
approach and say that in order to change a process's resource limit, one
needs to own the process (or be root; being root or superuser is pretty
much a shortcut to all the rules).

Code examples
The following two C programs are used to demonstrate the usage of the prlimit(2)
API:

The first program, rlimits_show.c, queries all resource limits for the
current or calling process and prints out their values.
The second, given a CPU resource limit (in seconds), runs a simple prime
number generator under the influence of that limit.

For readability, only the relevant parts of the code are displayed. To
view and run it, the entire source code is available at https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

Refer to the following code:

/* From ch3/rlimits_show.c */
#define ARRAY_LEN(arr) (sizeof((arr))/sizeof((arr)[0]))
static void query_rlimits(void)
{
 unsigned i;
 struct rlimit rlim;
 struct rlimpair {
 int rlim;
 char *name;
 };
 struct rlimpair rlimpair_arr[] = {
 {RLIMIT_CORE, "RLIMIT_CORE"},

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Resource Limits Chapter 3

[107]

 {RLIMIT_DATA, "RLIMIT_DATA"},
 {RLIMIT_NICE, "RLIMIT_NICE"},
 {RLIMIT_FSIZE, "RLIMIT_FSIZE"},
 {RLIMIT_SIGPENDING, "RLIMIT_SIGPENDING"},
 {RLIMIT_MEMLOCK, "RLIMIT_MEMLOCK"},
 {RLIMIT_NOFILE, "RLIMIT_NOFILE"},
 {RLIMIT_MSGQUEUE, "RLIMIT_MSGQUEUE"},
 {RLIMIT_RTTIME, "RLIMIT_RTTIME"},
 {RLIMIT_STACK, "RLIMIT_STACK"},
 {RLIMIT_CPU, "RLIMIT_CPU"},
 {RLIMIT_NPROC, "RLIMIT_NPROC"},
 {RLIMIT_AS, "RLIMIT_AS"},
 {RLIMIT_LOCKS, "RLIMIT_LOCKS"},
 };
 char tmp1[16], tmp2[16];

 printf("RESOURCE LIMIT SOFT HARD\n");
 for (i = 0; i < ARRAY_LEN(rlimpair_arr); i++) {
 if (prlimit(0, rlimpair_arr[i].rlim, 0, &rlim) == -1)
 handle_err(EXIT_FAILURE, "%s:%s:%d: prlimit[%d]
failed\n",
 __FILE__, __FUNCTION__, __LINE__, i);

 snprintf(tmp1, 16, "%ld", rlim.rlim_cur);
 snprintf(tmp2, 16, "%ld", rlim.rlim_max);
 printf("%-18s: %16s %16s\n",
 rlimpair_arr[i].name,
 (rlim.rlim_cur == -1 ? "unlimited" : tmp1),
 (rlim.rlim_max == -1 ? "unlimited" : tmp2)
);
 }
}

Let's try it out:

$ make rlimits_show
[...]
$./rlimits_show
RESOURCE LIMIT SOFT HARD
RLIMIT_CORE : unlimited unlimited
RLIMIT_DATA : unlimited unlimited
RLIMIT_NICE : 0 0
RLIMIT_FSIZE : unlimited unlimited
RLIMIT_SIGPENDING : 63229 63229
RLIMIT_MEMLOCK : 65536 65536
RLIMIT_NOFILE : 1024 4096
RLIMIT_MSGQUEUE : 819200 819200
RLIMIT_RTTIME : unlimited unlimited

Resource Limits Chapter 3

[108]

RLIMIT_STACK : 8388608 unlimited
RLIMIT_CPU : unlimited unlimited
RLIMIT_NPROC : 63229 63229
RLIMIT_AS : unlimited unlimited
RLIMIT_LOCKS : unlimited unlimited
$ ulimit -f
unlimited
$ ulimit -f 512000
$ ulimit -f
512000
$./rlimits_show | grep FSIZE
RLIMIT_FSIZE : 524288000 524288000
$

We first use the program to dump all the resource limits. Then, we query the file-size
resource limit, modify it (lower it from unlimited to about 512 KB using ulimit), and
run the program again, which reflects the change.

Now for the second program; given a CPU resource limit (in seconds), we run a
simple prime number generator under the influence of that CPU resource limit.

For readability, relevant parts of the source code (the relevant source file is
ch3/rlimit_primes.c) are shown.

Here is the simple prime number generator function:

#define MAX 10000000 // 10 million
static void simple_primegen(int limit)
{
 int i, j, num = 2, isprime;

 printf(" 2, 3, ");
 for (i = 4; i <= limit; i++) {
 isprime = 1;
 for (j = 2; j < limit / 2; j++) {
 if ((i != j) && (i % j == 0)) {
 isprime = 0;
 break;
 }
 }
 if (isprime) {
 num++;
 printf("%6d, ", i);
 /* Wrap after WRAP primes are printed on a line;
 * this is crude; in production code, one must query
 * the terminal window's width and calculate the column
 * to wrap at.

Resource Limits Chapter 3

[109]

 */
#define WRAP 16
 if (num % WRAP == 0)
 printf("\n");
 }
 }
 printf("\n");
}

Here is the function to set up the CPU resource limit to the parameter passed, which
is the time in seconds:

/*
 * Setup the CPU resource limit to 'cpulimit' seconds
 */
static void setup_cpu_rlimit(int cpulimit)
{
 struct rlimit rlim_new, rlim_old;

 if (cpulimit == -1)
 rlim_new.rlim_cur = rlim_new.rlim_max = RLIM_INFINITY;
 else
 rlim_new.rlim_cur = rlim_new.rlim_max = (rlim_t)cpulimit;

 if (prlimit(0, RLIMIT_CPU, &rlim_new, &rlim_old) == -1)
 FATAL("prlimit:cpu failed\n");
 printf
 ("CPU rlimit [soft,hard] new: [%ld:%ld]s : old [%ld:%ld]s (-1
= unlimited)\n",
 rlim_new.rlim_cur, rlim_new.rlim_max, rlim_old.rlim_cur,
 rlim_old.rlim_max);
}

Resource Limits Chapter 3

[110]

In the following code, we first just do a quick test run—we print the first 100 primes
and leave the CPU resource limit value untouched (it typically defaults to infinite).
Then we invoke it to print the first 90,000 primes with five seconds of CPU time
available to it. As expected (on modern hardware), both succeed:

$ prlimit | grep "CPU time"
CPU CPU time unlimited unlimited seconds
$./rlimit_primes
Usage: ./rlimit_primes limit-to-generate-primes-upto CPU-time-limit
 arg1 : max is 10000000
 arg2 : CPU-time-limit:
 -2 = don't set
 -1 = unlimited
 0 = 1s
$./rlimit_primes 100 -2
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
 59, 61, 67, 71, 73, 79, 83, 89, 97,
$
$./rlimit_primes 90000 5
CPU rlimit [soft,hard] new: [5:5]s : old [-1:-1]s (-1 = unlimited)
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,

[...]

89753, 89759, 89767, 89779, 89783, 89797, 89809, 89819, 89821, 89833,
89839, 89849, 89867, 89891, 89897, 89899, 89909, 89917, 89923, 89939,
89959, 89963, 89977, 89983, 89989,
$

Now for the fun part: we invoke rlimit_primes to print the first 200,000 primes
with only one second of CPU time available to it; this time it fails (note that we
redirect standard output to a temporary file, so that we are not distracted by all the
output):

$ prlimit | grep "CPU time"
CPU CPU time unlimited unlimited seconds
$./rlimit_primes 200000 1 > /tmp/prm
Killed
$ tail -n1 /tmp/prm
 54727, 54751, 54767, 54773, 54779, 54787, 54799, 54829, 54833, 54851,
54869, 54877, 54881, $

Resource Limits Chapter 3

[111]

Why did it fail? Obviously, the CPU resource limit—just one second—was too small a
time for it to complete the given task; when the process attempted to exceed this limit,
it was killed by the kernel.

A note to advanced readers: one can use the very powerful and
versatile perf(1) Linux utility to see this too:

$ sudo perf stat ./rlimit_primes 200000 1 >/tmp/prm
./rlimit_primes: Killed

Performance counter stats for './rlimit_primes 200000
1':

 1001.917484 task-clock (msec) # 0.999 CPUs
utilized
 17 context-switches # 0.017 K/sec
 1 cpu-migrations # 0.001 K/sec
 51 page-faults # 0.051 K/sec
3,018,577,481 cycles # 3.013 GHz
5,568,202,738 instructions # 1.84 insn per
cycle
 982,845,319 branches # 980.964 M/sec
 88,602 branch-misses # 0.01% of all
branches

1.002659905 seconds time elapsed

$

Permanence
We've demonstrated that, within its operational framework, one can indeed query
and set per-process resource limits using frontends, such as ulimit,
prlimit(1), as well as programmatically via library and system call APIs. However,
the changes we wrought are temporary—for that process's life or the session's life
only. How does one make a resource limit value change permanent?

The Unix way is to use (ASCII-text) configuration files that reside on the filesystem. In
particular, on most Linux distributions, editing the /etc/security/limits.conf
configuration file is the answer. We shall not delve further into the details here; if
interested, check out the man page on limits.conf(5).

Resource Limits Chapter 3

[112]

Summary
This chapter initially delved into the motivation behind per-process resource limits
and why we require them. We also explained the granularity and the types of
resource limits, distinguishing between soft and hard limits. Then we looked at how a
user (or system administrator) can query and set the per-process resource limits using
appropriate CLI frontends (ulimit(1), prlimit(1)).

Finally, we explored the programming interfaces (APIs)—practically speaking, the
prlimit(2) system call—in detail. Two detailed code examples, querying the limits
and setting a limit on CPU usage, rounded out the discussion.

In the next chapter, we will learn about the crucial, dynamic memory-management
APIs and their correct usage. We'll go well beyond the basics of using the typical
malloc() API, delving into a few subtle and important inner details.

4
Dynamic Memory Allocation

In this chapter, we will delve into a key aspect of system programming on a modern
OS—the management of dynamic (runtime) memory allocation and deallocation.
We'll first cover the basic glibc APIs used to allocate and free memory dynamically.
We'll then move beyond these basics, examining the program break within the VAS
and the behavior of malloc(3) under differing circumstances.

We will then immerse the reader in a few advanced discussions: demand-paging,
memory locking and protection, and the usage of the alloca API.

Code examples provide the reader with an opportunity to explore these topics in a
hands-on manner.

In this chapter, we will cover the following topics:

Basic glibc dynamic memory-management APIs and their correct usage in
code
The program break (and its management via the sbrk(3) API)
The internal behavior of malloc(3) when allocating differing amounts of
memory
Advanced features:

The demand-paging concept
Memory locking
Memory region protection
Using the alloca (3) API alternative

Dynamic Memory Allocation Chapter 4

[114]

The glibc malloc(3) API family
In Chapter 2, Virtual Memory, we learned that there are regions or segments meant
for the use of dynamic memory-allocation within the process of Virtual Address
Space (VAS). The heap segment is one such dynamic region—a free gift of memory
made available to the process for its runtime consumption.

How exactly does the developer exploit this gift of memory? Not just that, the
developer has to be extremely careful with matching memory allocations to
subsequent memory frees, otherwise the system isn't going to like it!

The GNU C library (glibc) provides a small but powerful set of APIs to enable the
developer to manage dynamic memory; the details of their usage is the content of this
section.

As you will come to see, the memory-management APIs are literally a handful:
malloc(3), calloc, realloc, and free. Still, using them correctly remains a
challenge! The subsequent sections (and chapters) will reveal why this is the case.
Read on!

The malloc(3) API
Perhaps one of the most common APIs used by application developers is the
renowned malloc(3).

The foo(3) syntax indicates that the foo function is in section 3 of
the manual (the man pages) – a library API, not a system call. We
recommend you develop the habit of reading the man pages. The
man pages are available online, and you can find them at https:/ /
linux. die. net/ man/ .

We use malloc(3) to dynamically allocate a chunk of memory at runtime. This is as
opposed to static—or compile-time – memory-allocation where we make a statement,
such as:

char buf[256];

In the preceding case, the memory has been statically allocated (at compile-time).

So, how exactly do you use malloc(3)? Let's check out its signature:

#include <stdlib.h>
void *malloc(size_t size);

https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/
https://linux.die.net/man/

Dynamic Memory Allocation Chapter 4

[115]

The parameter to malloc(3) is the number of bytes to allocate. But what is the
size_t data type? Obviously, it's not a C primitive data type; it's a typedef – long
unsigned int on your typical 64-bit platform (the exact data type does vary with
the platform; the important point is that it's always unsigned – it cannot be negative.
On a 32-bit Linux, it will be unsigned int). Ensuring that your code precisely
matches the function signature and data types is crucial in writing robust and correct
programs. While we're at it, ensure that you include the header file that the man page
displays with the API signature.

To print a variable of the size_t type within a printf, use the %zu
format specifier:
size_t sz = 4 * getpagesize();
[...]
printf("size = %zu bytes\n", sz);

In this book, we will not delve into the internal implementation details regarding how
malloc(3) and friends actually store, allocate, and free memory (refer the Further
reading section on the GitHub repository.) Suffice to say, the internal implementation
strives to be as efficient as can be; using these APIs is usually considered the right
way to perform memory-management.

The return value is a pointer to the zeroth byte of the newly-allocated memory region
on success, and NULL on failure.

You will come across, shall we say optimists, who say things such as,
"Don't bother checking malloc for failure, it never fails". Well, take
that sage advice with a grain of salt. While it's true that malloc
would rarely fail, the fact is (as you shall see), it could fail. Writing
defensive code – code that checks for the failure case immediately –
is a cornerstone of writing solid, robust programs.

So, using the API is very straightforward: as an example, allocate 256 bytes of
memory dynamically, and store the pointer to that newly allocated region in
the ptr variable:

void *ptr;
ptr = malloc(256);

Dynamic Memory Allocation Chapter 4

[116]

As another typical example, the programmer needs to allocate memory for a data
structure; let's call it struct sbar. You could do so like this:

 struct sbar {
 int a[10], b[10];
 char buf[512];
 } *psbar;

 psbar = malloc(sizeof(struct sbar));
 // initialize and work with it
 [...]
 free(psbar);

Hey, astute reader! What about checking the failure case? It's a key point, so we will
rewrite the preceding code like so (and of course it would be the case for the
malloc(256) code snippet too):

struct [...] *psbar;
sbar = malloc(sizeof(struct sbar));
if (!sbar) {
 <... handle the error ...>
}

Let's use one of the powerful tracing tools ltrace to check that this works as
expected; ltrace is used to display all library APIs in the process-execution path
(similarly, use strace to trace all system calls). Let's assume that we compile the
preceding code and the resulting binary executable file is called tst:

$ ltrace ./tst
malloc(592) = 0xd60260
free(0xd60260) = <void>
exit(0 <no return ...>
+++ exited (status 0) +++
$

We can clearly see malloc(3) (and the fact that the example structure we used took
up 592 bytes on an x86_64), and its return value (following the = sign). The free API
follows, and then it simply exits.

It's important to understand that the content of the memory chunk allocated by
malloc(3) is considered to be random. Thus, it's the programmer's responsibility to
initialize the memory before reading from it; if you fail to do so, it results in a bug
called Uninitialized Memory Read (UMR) (more on this in the next chapter).

Dynamic Memory Allocation Chapter 4

[117]

malloc(3) always returns a memory region that is aligned on an 8-
byte boundary. Need larger alignment values? Use the
posix_memalign(3) API. Deallocate its memory as usual with
free(3).
Details can be found on the man page at https:/ / linux. die. net/
man/ 3/ posix_ memalign.

Examples of using the posix_memalign(3) API can be found in
the Locking memory and Memory protection sections.

malloc(3) – some FAQs
The following are some FAQs that will help us to learn more about malloc(3):

FAQ 1 : How much memory can malloc(3) allocate with a single call?

A rather pointless question in practical terms, but one that is often
asked!

The parameter to malloc(3) is an integer value of the size_t data
type, so, logically, the maximum number we can pass as a parameter to
malloc(3) is the maximum value a size_t can take on the platform.
Practically speaking, on a 64-bit Linux, size_t will be 8 bytes, which
of course, in bits is 8*8 = 64. Therefore, the maximum amount of
memory that can be allocated in a single malloc(3) call is 2^64!

So, how much is it? Let's be empirical (it's important to read in Chapter
19, Troubleshooting and Best Practices, and the brief discussion there on
The empirical approach).and actually try it out (note that the following
code snippet has to be linked with the math library using the -lm
switch):

 int szt = sizeof(size_t);
 float max=0;
 max = pow(2, szt*8);
 printf("sizeof size_t = %u; "
 "max value of the param to malloc = %.0f\n",
 szt, max);

https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign
https://linux.die.net/man/3/posix_memalign

Dynamic Memory Allocation Chapter 4

[118]

The output, on an x86_64:

sizeof size_t = 8; max param to malloc = 18446744073709551616

Aha! That's a mighty large number; more readably, it's as follows:

2^64 = 18,446,744,073,709,551,616 = 0xffffffffffffffff

That's 16 EB (exabytes, which is 16,384 PB, which is 16 million TB)!

So, on a 64-bit OS, malloc(3) can allocate a maximum of 16 EB in a single call. In
theory.

As usual, there's more to it: please see FAQ 2; it will reveal that the
theoretical answer to this question is 8 exabytes (8 EB).

In practice, obviously, this would be impossible because, of course, that's
the entire usermode VAS of the process itself. In reality, the amount of
memory that can be allocated is limited by the amount of free memory
contiguously available on the heap. Actually, there's more to it. As we shall
soon learn (in the How malloc(3) really behaves section), memory
for malloc(3) can come from other regions of the VAS, too. Don't forget
there's a resource limit on data segment size; the default is usually
unlimited, which as we discussed in this chapter, really means that there's
no artificial limit imposed by the OS.

So, in practice, it's best to be sensible, not assume anything, and check the
return value for NULL.

As an aside, what's the maximum value a size_t can take on a 32-bit
OS? Accordingly, we compile on x86_64 for 32-bit by passing the -m32
switch to the compiler:

$ gcc -m32 mallocmax.c -o mallocmax32 -Wall -lm
$./mallocmax32
*** max_malloc() ***
sizeof size_t = 4; max value of the param to malloc =
4294967296
[...]
$

Dynamic Memory Allocation Chapter 4

[119]

Clearly, it's 4 GB (gigabytes) – again, the entire VAS of a 32-bit process.

FAQ 2: What if I pass malloc(3) a negative argument?

The data type of the parameter to malloc(3), size_t, is an unsigned
integer quantity – it cannot be negative. But, humans are imperfect,
and Integer OverFlow (IOF) bugs do exist! You can imagine a scenario
where a program attempts to calculate the number of bytes to allocate,
like this:

num = qa * qb;

What if num is declared as a signed integer variable and qa and qb are
large enough that the result of the multiplication operation causes an
overflow? The num result will then wrap around and become
negative! malloc(3) should fail, of course. But hang on: if
the num variable is declared as size_t (which should be the case), the
negative quantity will turn into some positive quantity!

The mallocmax program has a test case for this.

Here is the output when run on an x86_64 Linux box:

*** negative_malloc() ***
size_t max = 18446744073709551616
ld_num2alloc = -288225969623711744
szt_num2alloc = 18158518104085839872
1. long int used: malloc(-288225969623711744) returns
(nil)
2. size_t used: malloc(18158518104085839872) returns
(nil)
3. short int used: malloc(6144) returns 0x136b670
4. short int used: malloc(-4096) returns (nil)
5. size_t used: malloc(18446744073709547520) returns
(nil)

Dynamic Memory Allocation Chapter 4

[120]

Here are the relevant variable declarations:

const size_t onePB = 1125899907000000; /* 1 petabyte */
int qa = 28*1000000;
long int ld_num2alloc = qa * onePB;
size_t szt_num2alloc = qa * onePB;
short int sd_num2alloc;

Now, let's try it with a 32-bit version of the program.

Note that on a default-install Ubuntu Linux box, the 32-bit compile
may fail (with an error such as fatal error: bits/libc-
header-start.h: No such file or directory). Don't panic:
this usually implies that the compiler support for building 32-bit
binaries isn't present by default. To get it (as mentioned in
the Hardware-Software List document), install the multilib
compiler package: sudo apt-get install gcc-multilib.

Compile it for 32-bit and run it:

$./mallocmax32
*** max_malloc() ***
sizeof size_t = 4; max param to malloc = 4294967296
*** negative_malloc() ***
size_t max = 4294967296
ld_num2alloc = 0
szt_num2alloc = 1106247680
1. long int used: malloc(-108445696) returns (nil)
2. size_t used: malloc(4186521600) returns (nil)
3. short int used: malloc(6144) returns 0x85d1570
4. short int used: malloc(-4096) returns (nil)
5. size_t used: malloc(4294963200) returns (nil)
$

To be fair, the compiler does warn us:

gcc -Wall -c -o mallocmax.o mallocmax.c
mallocmax.c: In function ‘negative_malloc’:
mallocmax.c:87:6: warning: argument 1 value ‘18446744073709551615’
exceeds maximum object size 9223372036854775807 [-Walloc-size-larger-
than=]
 ptr = malloc(-1UL);
  ~~~~^~~~~~~~~~~~~~
In file included from mallocmax.c:18:0:
/usr/include/stdlib.h:424:14: note: in a call to allocation function
‘malloc’ declared here
 extern void *malloc (size_t __size) __THROW __attribute_malloc__



Dynamic Memory Allocation Chapter 4

[ 121 ]

__wur;
              ^~~~~~
[...]

Interesting! The compiler answers our FAQ 1 question now:

[...] warning: argument 1 value ‘18446744073709551615’ exceeds maximum
object size 9223372036854775807 [-Walloc-size-larger-than=] [...]

The maximum value you can allocate as per the compiler seems to
be 9223372036854775807.

Wow. A little calculator time reveals that this is 8192 PB = 8 EB! So, we
must conclude that  the correct answer to the previous question: How
much memory can malloc allocate with a single call? Answer: 8 exabytes.
Again, in theory.

FAQ 3: What if I use malloc(0)?

Not much; depending on the implementation, malloc(3) will return
NULL, or, a non-NULL pointer that can be passed to free. Of course,
even if the pointer is non-NULL, there is no memory, so don't attempt
to use it.

Let's try it out:

    void *ptr;
    ptr = malloc(0);
    free(ptr);

We compile and then run it via ltrace:

$ ltrace ./a.out
malloc(0)                                  = 0xf50260
free(0xf50260)                                = <void>
exit(0 <no return ...>
+++ exited (status 0) +++
$



Dynamic Memory Allocation Chapter 4

[ 122 ]

Here, malloc(0) did indeed return a non-NULL pointer.

FAQ 4: What if I use malloc(2048) and attempt to read/write beyond
2,048 bytes?

This is a bug of course – an out-of-bounds memory-access bug, further
defined as a read or write buffer overflow. Hang on please, the detailed
discussion of memory bugs (and subsequently, how to find and fix
them) is the subject of Chapter 5, Linux Memory Issues, and Chapter
6, Debugging Tools for Memory Issues.

malloc(3) – a quick summary
So, let's summarize the key points regarding usage of the malloc(3) API:

malloc(3) dynamically (at runtime) allocates memory from the process
heap

As we shall soon learn, this is not always the case
The single parameter to malloc(3) is an unsigned integer value—the
number of bytes to allocate
The return value is a pointer to the start of the newly allocated memory
chunk on success, or NULL on failure:

You must check for the failure case; don't just assume it will
succeed
malloc(3) always returns a memory region that is aligned
on an 8-byte boundary

The content of the newly allocated memory region is considered to be
random 

You must initialize it before reading from any part of it
You must free the memory you allocate

The free API
One of the golden rules of development in this ecosystem is that programmer-
allocated memory must be freed.



Dynamic Memory Allocation Chapter 4

[ 123 ]

Failure to do so leads to a bad situation – a bug, really – called memory leakage; this
is covered in some depth in the next chapter. Carefully matching your allocations and
frees is essential.

Then again, in smaller real-world projects (utils), you do come
across cases where memory is allocated exactly once; in such cases,
freeing the memory is pedantic as the entire virtual address space is
destroyed upon process-termination. Also, using the alloca(3) API
implies that you do not need to free the memory region (seen later
in, Advanced features section). Nevertheless, you are advised to err on
the side of caution!

Using the free(3) API is straightforward:

void free(void *ptr);

It accepts one parameter: the pointer to the memory chunk to be freed. ptr must be a
pointer returned by one of the malloc(3) family routines: malloc(3), calloc, or
realloc[array].

free does not return any value; don't even attempt to check whether it worked; if
you used it correctly, it worked. More on free is found in the Where does freed memory
go? section. Once a memory chunk is freed, you obviously cannot attempt to use any
part of that memory chunk again; doing so will result in a bug (or what's called UB –
undefined behavior).

A common misconception regarding free() sometimes leads to its being used in a
buggy fashion; take a look at this pseudocode snippet:

void *ptr = NULL;
[...]
while(<some-condition-is-true>) {
    if (!ptr)
        ptr = malloc(n);

    [...
    <use 'ptr' here>
    ...]

    free(ptr);
}



Dynamic Memory Allocation Chapter 4

[ 124 ]

This program will possibly crash in the loop (within the <use 'ptr' here> code) in
a few iterations. Why? Because the ptr memory pointer is freed and is attempting to
be reused. But how come? Ah, look carefully: the code snippet is only going to
malloc(3) the ptr pointer if it is currently NULL, that is, its programmer has
assumed that once we free() memory, the pointer we just freed gets set to NULL.
This is not the case!!

Be wary and be defensive in writing code. Don't assume anything; it's a rich source of
bugs. Importantly, our Chapter 19, Troubleshooting and Best Practices, covers such
points)

free – a quick summary
So, let's summarize the key points regarding the usage of the free API:

The parameter passed to free(3) must be a value returned by one of
the malloc(3) family APIs (malloc(3), calloc, or realloc[array]).
free has no return value.
Calling free(ptr) does not set ptr to NULL (that would be nice, though).
Once freed, do not attempt to use the freed memory.
Do not attempt to free the same memory chunk more than once (it's a bug –
UB).
For now, we will assume that freed memory goes back to the system.
For Heaven's sake, do not forget to free memory that was dynamically
allocated earlier. The forgotten memory is said to have leaked out and that's
a really hard bug to catch! Luckily, there are tools that help us catch these
bugs. More in Chapter 5, Linux Memory Issues, and Chapter 6, Debugging
Tools for Memory Issues.

The calloc API
The calloc(3) API is almost identical to malloc(3), differing in two main respects:

It initializes the memory chunk it allocates to the zero value (that is, ASCII
0 or NULL, not the number 0)
It accepts two parameters, not one



Dynamic Memory Allocation Chapter 4

[ 125 ]

The calloc(3) function signature is as follows:

 void *calloc(size_t nmemb, size_t size);

The first parameter, nmemb, is n members; the second parameter, size, is the size of
each member. In effect, calloc(3) allocates a memory chunk of (nmemb*size)
bytes. So, if you want to allocate memory for an array of, say, 1,000 integers, you can
do so like this:

    int *ptr;
    ptr = calloc(1000, sizeof(int));

Assuming the size of an integer is 4 bytes, we would have allocated a total of (1000*4)
= 4000 bytes.

Whenever one requires memory for an array of items (a frequent use case in
applications is an array of structures), calloc is a convenient way to both allocate
and simultaneously initialize the memory.

Demand paging (covered later in this chapter), is another reason
programmers use calloc rather than malloc(3) (in practice, this is
mostly useful for realtime applications). Read up on this in the up
coming section.

The realloc API
The realloc API is used to resize an existing memory chunk—to grow or shrink it.
This resizing can only be performed on a piece of memory previously allocated with
one of the malloc(3) family of APIs (the usual suspects: malloc(3), calloc, or
realloc[array]). Here is its signature:

 void *realloc(void *ptr, size_t size);

The first parameter, ptr, is a pointer to a chunk of memory previously allocated with
one of the malloc(3) family of APIs; the second parameter, size, is the new size of
the memory chunk—it can be larger or smaller than the original, thus growing or
shrinking the memory chunk.

A quick example code snippet will help us understand realloc:

void *ptr, *newptr;
ptr = calloc(100, sizeof(char)); // error checking code not shown here
newptr = realloc(ptr, 150);



Dynamic Memory Allocation Chapter 4

[ 126 ]

if (!newptr) {
    fprintf(stderr, "realloc failed!");
    free(ptr);
    exit(EXIT_FAILURE);
}
< do your stuff >
free(newptr);

The pointer returned by realloc is the pointer to the newly resized chunk of
memory; it may or may not be the same address as the original ptr. In effect, you
should now completely disregard the original pointer ptr  and regard the realloc-
returned newptr pointer as the one to work with. If it fails, the return value is NULL
(check it!) and the original memory chunk is left untouched.

A key point: the pointer returned by realloc(3), newptr, is the one that must be
subsequently freed, not the original pointer (ptr) to the (now resized) memory chunk.
Of course, do not attempt to free both pointers, as that to is a bug.

What about the contents of the memory chunk that just got resized? They remain
unchanged up to MIN(original_size, new_size). Thus, in the preceding
example, MIN(100, 150) = 100, the contents of memory up to 100 bytes will be
unchanged. What about the remainder (50 bytes)? It's considered to be random
content (just like malloc(3)).

The realloc(3) – corner cases
Consider the following code snippet:

void *ptr, *newptr;
ptr = calloc(100, sizeof(char)); // error checking code not shown here
newptr = realloc(NULL, 150);

The pointer passed to realloc is NULL? The library treats this as equivalent to a new
allocation – malloc(150); and all the implications of the malloc(3) That's it.

Now, consider the following code snippet:

void *ptr, *newptr;
ptr = calloc(100, sizeof(char)); // error checking code not shown here
newptr = realloc(ptr, 0);

The size parameter passed to realloc is 0? The library treats this as equivalent to
free(ptr). That's it.



Dynamic Memory Allocation Chapter 4

[ 127 ]

The reallocarray API
A scenario: you allocate memory for an array using calloc(3); later, you want to
resize it to be, say, a lot larger. We can do so with realloc(3); for example:

struct sbar *ptr, *newptr;
ptr = calloc(1000, sizeof(struct sbar)); // array of 1000 struct
sbar's
[...]
// now we want 500 more!
newptr = realloc(ptr, 500*sizeof(struct sbar));

Fine. There's an easier way, though—using the reallocarray(3) API. Its signature
is as follows:

 void *reallocarray(void *ptr, size_t nmemb, size_t size);

With it, the code becomes simpler:

[...]
// now we want 500 more!
newptr = reallocarray(ptr, 500, sizeof(struct sbar));

The return value of reallocarray is pretty identical to that of the realloc API: the
new pointer to the resized memory chunk on success (it may differ from the original),
NULL on failure. If it fails, the original memory chunk is left untouched.

reallocarray has one real advantage over realloc – safety. From the man page on
realloc(3), see this snippet:

... However, unlike that realloc() call, reallocarray() fails safely
in the case where the  multiplication  would  overflow.   If  such  an
overflow occurs, reallocarray() returns NULL, sets errno to ENOMEM,
and leaves the original block of memory unchanged.

Also realize that the reallocarray API is a GNU extension; it will work on modern
Linux but should not be considered portable to other OSes.



Dynamic Memory Allocation Chapter 4

[ 128 ]

Finally, consider this: some projects have strict alignment requirements for their data
objects; using calloc (or even allocating said objects via malloc(3)) can result in
subtle bugs! Later in this chapter, we'll use the posix_memalign(3) API—it
guarantees allocating memory to a given byte alignment (you specify the number of
bytes)! For example, requiring a memory-allocation to be aligned to a page
boundary is a fairly common occurrence (Recall, malloc always returns a memory
region that is aligned on an 8-byte boundary).

The bottom line: be careful. Read the documentation, think, and decide which API
would be appropriate given the circumstances. More on this in the Further
reading section on the GitHub repository.

Beyond the basics
In this section, we will dig a bit deeper into dynamic memory management with the
malloc(3) API family. Understanding these areas, and the content of Chapter
5, Linux Memory Issues, and  Chapter 6, Debugging Tools for Memory Issues, will go a
long way in helping developers effectively debug common memory bugs and issues.

The program break
When a process or thread wants memory, it invokes one of the dynamic memory
routines—usually malloc(3) or calloc(3); this memory (usually) comes from the
heap segment. As mentioned earlier, the heap is a dynamic segment – it can grow
(toward higher virtual addresses). Obviously though, at any given point in time, the
heap has an endpoint or top beyond which memory cannot be taken. This
endpoint—the last legally reference-able location on the heap – is called the program
break.

Using the sbrk() API
So, how do you know where the current program break is? That's easy – the sbrk(3)
API, when used with a parameter value of zero, returns the current program break!
Let's do a quick lookup:

#include <unistd.h>
[...]
    printf("Current program break: %p\n", sbrk(0));



Dynamic Memory Allocation Chapter 4

[ 129 ]

You will see some sample output as follows when the preceding line of code runs:

$ ./show_curbrk
Current program break: 0x1bb4000
$ ./show_curbrk
Current program break: 0x1e93000
$ ./show_curbrk
Current program break: 0x1677000
$

It works, but why does the program break value keep changing (seemingly
randomly)? Well, it really is random: for security reasons, Linux randomizes the
layout of a process's virtual address space (we covered the process VAS layout in
Chapter 2, Virtual Memory). This technique is called Address Space Layout
Randomization (ASLR).

Let's do a bit more: we will write a program that, if run without any parameters,
merely displays the current program break and exits (like the one we just saw); if
passed a parameter – the number of bytes of memory to dynamically allocate – it does
so (with malloc(3)), then prints the heap address returned as well as the original
and current program break. Here, you will only be allowed to request less than 128
KB, for reasons that will be made clear shortly.

Refer to the ch4/show_curbrk.c:

int main(int argc, char **argv)
{
    char *heap_ptr;
    size_t num = 2048;

    /* No params, just print the current break and exit */
    if (argc == 1) {
        printf("Current program break: %p\n", sbrk(0));
        exit(EXIT_SUCCESS);
    }

    /* If passed a param - the number of bytes of memory to
     * dynamically allocate - perform a dynamic alloc, then
     * print the heap address, the current break and exit.
     */
    num = strtoul(argv[1], 0, 10);
    if ((errno == ERANGE && num == ULONG_MAX)
         || (errno != 0 && num == 0))
         handle_err(EXIT_FAILURE, "strtoul(%s) failed!\n", argv[1]);
    if (num >= 128 * 1024)
         handle_err(EXIT_FAILURE, "%s: pl pass a value < 128 KB\n",



Dynamic Memory Allocation Chapter 4

[ 130 ]

         argv[0]);

    printf("Original program break: %p ; ", sbrk(0));
    heap_ptr = malloc(num);
    if (!heap_ptr)
        handle_err(EXIT_FAILURE, "malloc failed!");
    printf("malloc(%lu) = %16p ; curr break = %16p\n",
            num, heap_ptr, sbrk(0));
    free(heap_ptr);

    exit(EXIT_SUCCESS);
}

Let's try it out:

$ make show_curbrk && ./show_curbrk
[...]
Current program break: 0x1247000
$ ./show_curbrk 1024
Original program break: 0x1488000 ; malloc(1024) =        0x1488670 ;
curr break =        0x14a9000
$

Interesting (see the following diagram)! With an allocation of 1,024 bytes, the heap
pointer that's returned to the start of that memory chunk is 0x1488670; that's
0x1488670 - 0x1488000 = 0x670 = 1648 bytes from the original break.

Also, the new break value is 0x14a9000, which is (0x14a9000 - 0x1488670 =
133520), approximately 130 KB from the freshly allocated block. Why did the heap
grow by so much for a mere 1 KB allocation? Patience; this, and more, will be
examined in the next section, How malloc(3) really behaves. Meanwhile, refer to the
following diagram:



Dynamic Memory Allocation Chapter 4

[ 131 ]

Heap and the Program Break

With respect to the preceding diagram:
Original program break = 0x1488000
heap_ptr               = 0x1488670
New program break      = 0x14a9000

Note that sbrk(2) can be used to increment or decrement the program break (by
passing it an integer parameter). At first glance, this might seem like a good way to
allocate and deallocate dynamic memory; in reality, it's always better to use the well-
documented and portable glibc implementation, the malloc(3) family APIs.

sbrk is a convenient library wrapper over the brk(2) system call.



Dynamic Memory Allocation Chapter 4

[ 132 ]

How malloc(3) really behaves
The general consensus it that malloc(3) (and calloc(3) and
realloc[array](3)) obtains its memory from the heap segment. This is indeed the
case, but digging a bit deeper reveals that it's not always the case. The modern glibc
malloc(3) engine uses some subtle strategies to make the most optimal use of
available memory regions and the process VAS—which, especially on today's 32-bit
systems, is fast becoming a rather scarce resource.

So, how does it work? The library uses a predefined MMAP_THRESHOLD variable – its
value is 128 KB by default – to determine from where memory gets allocated. Let's
imagine we are allocating n bytes of memory with malloc(n):

If n < MMAP_THRESHOLD, use the heap segment to allocate the requested
n bytes

If n >= MMAP_THRESHOLD, and if n bytes are not available on the heap's
free list, use an arbitrary free region of virtual address space to satisfy the
requested n bytes allocation

How exactly is the memory allocated in the second case? Ah, malloc(3) internally
calls mmap(2) – the memory map system call. The mmap system call is very versatile.
In this case, it is made to reserve a free region of n bytes of the calling process's virtual
address space!

Why use mmap(2)? The key reason is that mmap-ed memory can
always be freed up (released back to the system) in an independent
fashion whenever required; this is certainly not always the case with
free(3).

Of course, there are some downsides: mmap allocations can be
expensive because, the memory is page-aligned (and could thus be
wasteful), and the kernel zeroes out the memory region (this hurts
performance).

The mallopt(3) man page (circa December 2016) also notes that
nowadays, glibc uses a dynamic mmap threshold; initially, the value
is the usual 128 KB, but if a large memory chunk between the
current threshold and DEFAULT_MMAP_THRESHOLD_MAX is freed, the
threshold is increased to become the size of the freed block.



Dynamic Memory Allocation Chapter 4

[ 133 ]

Code example – malloc(3) and the program break
Seeing for ourselves the effect of malloc(3) allocations on the heap and process
virtual address space is interesting and educational. Check out the output of the
following code example (the source is available in this book's Git repository):

$ ./malloc_brk_test -h
Usage: ./malloc_brk_test [option | --help]
 option = 0 : show only mem pointers [default]
 option = 1 : opt 0 + show malloc stats as well
 option = 2 : opt 1 + perform larger alloc's (over MMAP_THRESHOLD)
 option = 3 : test segfault 1
 option = 4 : test segfault 2
-h | --help : show this help screen
$

There are several scenarios running in this application; let's examine some of them
now.

Scenario 1 – default options
We run the malloc_brk_test program with no parameters, that is, using the
defaults:

$ ./malloc_brk_test
                              init_brk =        0x1c97000
 #: malloc(       n) =        heap_ptr           cur_brk   delta
                                                      [cur_brk-
init_brk]
 0: malloc(       8) =        0x1c97670         0x1cb8000 [135168]
 1: malloc(    4083) =        0x1c97690         0x1cb8000 [135168]
 2: malloc(       3) =        0x1c98690         0x1cb8000 [135168]
$

The process prints out its initial program break value: 0x1c97000. It then
allocates just 8 bytes (via the malloc(3) API); under the hood, the glibc allocation
engine invokes the sbrk(2) system call to grow the heap; the new break is
now 0x1cb8000, an increase of 135,168 bytes = 132 KB from the previous break
(clearly seen in the delta column in the preceding code)!



Dynamic Memory Allocation Chapter 4

[ 134 ]

Why? Optimization: glibc anticipates that, in the future, the process will require more
heap space; instead of the expense of invoking a system call (sbrk/brk) each time, it
performs one large-ish heap-growing operation. The next two malloc(3) APIs
(numbers 1 and 2 in the left-most column) prove this is the case: we allocate 4,083 and
3 bytes respectively, and what do you notice? The program break does not change –
the heap is already large enough to accommodate the requests.

Scenario 2 – showing malloc statistics
This time, we pass the 1 parameter, asking it to display malloc(3) statistics as well
(achieved using the malloc_stats(3) API):

$ ./malloc_brk_test 1
                              init_brk =   0x184e000
 #: malloc(       n) =        heap_ptr     cur_brk   delta
                                            [cur_brk-init_brk]
 0: malloc(       8) =        0x184e670    0x186f000 [135168]
Arena 0:
system bytes     =     135168
in use bytes     =       1664
Total (incl. mmap):
system bytes     =     135168
in use bytes     =       1664
max mmap regions =          0
max mmap bytes   =          0

 1: malloc(    4083) =        0x184e690    0x186f000 [135168]
Arena 0:
system bytes     =     135168
in use bytes     =       5760
Total (incl. mmap):
system bytes     =     135168
in use bytes     =       5760
max mmap regions =          0
max mmap bytes   =          0

 2: malloc(       3) =        0x184f690    0x186f000 [135168]
Arena 0:
system bytes     =     135168
in use bytes     =       5792
Total (incl. mmap):
system bytes     =     135168
in use bytes     =       5792
max mmap regions =          0
max mmap bytes   =          0



Dynamic Memory Allocation Chapter 4

[ 135 ]

The output is similar, except the program invokes the useful malloc_stats(3) API,
which queries and prints malloc(3) state information to stderr (by the way, an
arena is an allocation area that's internally maintained by the malloc(3) engine).
From this output, notice that:

The available free memory – system bytes – is 132 KB (after performing a
tiny 8 byte malloc(3))
In-use bytes increases with each allocation but system bytes remains the
same
mmap regions and mmap bytes is zero as no mmap-based allocations have
occurred.

Scenario 3 – large allocations option
This time, we pass the 2 parameter, asking the program to perform larger allocations
(greater than MMAP_THRESHOLD):

$ ./malloc_brk_test 2
                              init_brk =        0x2209000
 #: malloc(       n) =        heap_ptr           cur_brk   delta
                                                      [cur_brk-
init_brk]
[...]

 3: malloc(  136168) =   0x7f57288cd010         0x222a000 [135168]
Arena 0:
system bytes     =     135168
in use bytes     =       5792
Total (incl. mmap):
system bytes     =     274432
in use bytes     =     145056
max mmap regions =          1
max mmap bytes   =     139264

 4: malloc( 1048576) =   0x7f57287c7010         0x222a000 [135168]
Arena 0:
system bytes     =     135168
in use bytes     =       5792
Total (incl. mmap):
system bytes     =    1327104
in use bytes     =    1197728
max mmap regions =          2
max mmap bytes   =    1191936

$



Dynamic Memory Allocation Chapter 4

[ 136 ]

(Note that the preceding code we have clipped the output of the first two small
allocations and only show the relevant large ones).

Now, we allocate 132 KB (point 3 in the preceding output); some thing to take note of
are as follows:

The allocations (#3 and #4) are for 132 KB and 1 MB – both above the
MMAP_THRESHOLD (value of 128 KB)
The (arena 0) heap in-use bytes (5,792) has not changed at all across these
two allocations, indicating that heap memory has not been used
The max mmap regions and max mmap bytes numbers have changed to
positive values (from zero), indicating the use of mmap-ed memory

A couple of remaining scenarios will be examined later.

Where does freed memory go?
free(3), of course, is a library routine – so it stands to reason that when we free up
memory, previously allocated by one of the dynamic allocation routines, it does not
get freed back to the system, but rather to the process heap (which, of course, is
virtual memory).

However, there are at least two cases where this may not occur:

If the allocation was satisfied internally via mmap rather than via the heap
segment, it gets immediately freed back to the system
On modern glibc, if the amount of heap memory being freed is very large,
this triggers the return of at least some of the memory chunks back to the
OS.

Advanced features
A few advanced features will now be covered:

Demand paging
Locking memory in RAM
Memory protection
Allocation with the alloca(3)



Dynamic Memory Allocation Chapter 4

[ 137 ]

Demand-paging
Most of us know that if a process dynamically allocates memory, with malloc, say it
does ptr = malloc(8192) ;, then, assuming success, the process is now allocated
8 KB of physical RAM. It might come as a surprise, but, on modern OSes such as
Linux, this is actually not the case.

So, what is the case? (In this book, we do not delve into kernel-level details. Also, as
you might be aware, the granularity of memory at the level of the OS allocator is
a page, which is typically 4 KB.)

It's not a good idea to assume anything when writing robust
software. So, how can you correctly determine the page size on the
OS? Use the sysconf(3) API; for example, printf("page size =
%ld\n", sysconf(_SC_PAGESIZE));, which outputs page size
= 4096.

Alternatively, use the getpagesize(2) system call to retrieve the
system page size. (Importantly, see Chapter 19, Troubleshooting and
Best Practices, covering similar points in the section A Programmer’s
Checklist: 7 Rules).

Realistically, all malloc does is reserve virtual pages of memory from the process
VAS.

So, when does the process get the actual physical pages? Ah, as and when the process
actually peeks or pokes any byte in a page, in reality when it makes any kind of
access on any byte of the page (attempting to read/write/execute it), the process traps
into the OS – via a hardware exception called a page fault – and in the OS's fault
handler, if all's well, the OS allocates a physical page frame for the virtual page. This
highly optimized manner of handing out physical memory to processes is called
demand-paging – the pages are only physically allocated when they are actually
required, on-demand! This is closely related to what OS folks call the memory or VM
overcommit feature; yes, it's a feature, not a bug.



Dynamic Memory Allocation Chapter 4

[ 138 ]

If you want to guarantee that physical page frames are allocated
after a virtual allocation you can:

Do malloc(3) followed by memset(3) on all the bytes in
all pages
Just use the calloc(3); it will set the memory to zero,
thus faulting it in

On many implementations, the second method – using calloc(3) –
is faster than the first.

It's really because of demand-paging that we can write an application that malloc's
huge amounts of memory and never free's it; it will work as long as the process does
not attempt to read, write, or execute any byte in any (virtual) page of the allocated
region. Apparently, there are many real-world applications that are quite poorly
designed and do exactly this kind of thing – allocate huge amounts of memory via
malloc(3) just in case we need it. Demand-paging is an OS hedge against wastefully
eating up huge amounts of physical memory that hardly gets used in practice.

Of course, you, the astute reader, will realize that to every upside there's probably a
downside. In this scenario, this could conceivably happen with several processes
simultaneously performing large memory allocations. If all of them allocate large
portions of virtual memory and then want to actually claim those pages physically at
around the same time, this would put a tremendous amount of memory pressure on
the OS! And guess what, the OS makes absolutely no guarantee that it will succeed in
servicing everyone. In fact, in the worst case, the Linux OS will run short of physical
RAM to the extent that it must invoke a bit of a controversial component – the Out-of-
Memory (OOM) Killer – whose job is to identify the memory-hogging process and
kill it and its descendants, thus reclaiming memory and keeping the system alive.
Reminds you of the Mafia, huh.

Again, the man page on malloc(3) clearly notes the following:

By  default, Linux follows an optimistic memory allocation strategy.
This means that when malloc() returns non-NULL there is no guarantee
that the memory really is available.  In case it turns out that the
system is out of memory, one or more processes will be killed by the
OOM  killer.
[...]

If interested, dig deeper with the references in the Further reading section on the
GitHub repository.



Dynamic Memory Allocation Chapter 4

[ 139 ]

Resident or not?
Now that we clearly understand that the pages allocated by malloc and friends are
virtual and not guaranteed to be backed by physical frames (at least to start with),
imagine we have a pointer to a (virtual) memory region and we know its length. We
would now like to know whether the corresponding pages are in RAM, that is,
whether they are resident or not.

It turns out there's a system call available that gives precisely this information:
mincore(2).

The mincore(2) system call is pronounced m-in-core, not min-
core. Core is an old word used to describe physical memory.

Let's take a look at the following code:

#include <unistd.h>
#include <sys/mman.h>

int mincore(void *addr, size_t length, unsigned char *vec);

Given the starting virtual address and length, mincore(2) populates the third
parameter – a vector array. After the call successfully returns, for every byte of the
vector array, if the LSB (Least Significant Bit) is set, it implies that the corresponding
page is resident (in RAM), otherwise it's not (possibly not allocated or in swap).

Usage details are available via the mincore(2) man page: https:/ /linux. die. net/
man/2/mincore.

Of course, you should realize that the information returned on page residency is
merely a snapshot at that point in time of the state of the memory pages: it could
change under us, that is, it is (or could be) very transient in nature.

https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore
https://linux.die.net/man/2/mincore


Dynamic Memory Allocation Chapter 4

[ 140 ]

Locking memory
We understand that on a virtual memory-based OS, such as Linux, a usermode page
can be swapped at any point in time; the Linux kernel memory management code
makes these decisions. To the regular application process, this should not matter: any
time it attempts to access (read, write, or execute) the page content, the kernel will
page it back into RAM, and allow it to use it as though nothing had occurred. This
handling is generally called servicing a page fault (there is a lot more to it, but for the
purpose of this discussion, this is sufficient), and is completely transparent to the
usermode application process.

However, there are some situations where memory pages being paged – written from
RAM to swap and vice-versa – is undesirable:

Realtime applications
Cryptography (security) applications

In real-time applications, the key factor (at least within its critical code paths)
is determinism – the iron-clad guarantee that the work will take a certain worst-case
amount of time, and no more, no matter the load on the system.

Imagine that the real-time process is executing a critical code path and a data page
has to be paged in from the swap partition at that moment – the latency (delay)
introduced could ruin the application's characteristics, resulting in dismal failure (or
worse). In these cases, we, the developers, need a way to guarantee that said pages of
memory can guaranteed to be resident in RAM, thus avoiding any page faulting.

In some types of security applications, they would likely store some secrets in
memory (a password, a key); if the memory pages containing these are written out to
disk (swap), there is always the possibility that it remains on disk well after the
application exits – resulting in what's called information leakage, which is a bug
attackers are just waiting to pounce upon! Here, again, the need of the hour is to
guarantee that those pages cannot be swapped out.

Enter the mlock(2) (and friends: mlock2 and mlockall) system calls; the express
purpose of these APIs is to lock memory pages within the calling process's virtual
address space. Let's figure out how to use mlock(2). Here is its signature:

int mlock(const void *addr, size_t len);



Dynamic Memory Allocation Chapter 4

[ 141 ]

The first parameter, addr, is a pointer to the (virtual) memory region to lock; the
second parameter, len, is the number of bytes to lock into RAM. As a trivial example,
take look at the following code (here, to keep it easily readable, we don't show error-
checking code; in a real application, please do so!):

long pgsz = sysconf(_SC_PAGESIZE);
size_t len = 3*pgsz;

void *ptr = malloc(len);

[...]       // initialize the memory, etc

// Lock it!
if (mlock(ptr, len) != 0) {
     // mlock failed, handle it
     return ...;
}

[...]   /* use the memory, confident it is resident in RAM & will stay
           there until unlocked */

munlock(ptr, len);   // it's now unlocked, can be swapped

Limits and privileges
A privileged process, either by running as root, or, better yet, by having the
CAP_IPC_LOCK capability bit set in order to lock memory (we shall describe process
credentials and capabilities in detail in their own chapters - Chapter 7, Process
Credentials, and Chapter 8, Process Capabilities), can lock unlimited amounts of
memory.

From Linux 2.6.9 onward, for a non-privileged process, it is limited by
the RLIMIT_MEMLOCK soft resource limit (which, typically, is not set very high). Here
is an example on an x86_64 Fedora box (as well as Ubuntu):

$ prlimit | grep MEMLOCK
MEMLOCK   max locked-in-memory address space   65536   65536 bytes
$



Dynamic Memory Allocation Chapter 4

[ 142 ]

It's just 64 KB (ditto on an embedded ARM Linux, by default).

At the time of writing this book, on a recent Fedora 28 distro running
on x86_64, the resource limit for max locked memory seems to have
been amped up to 16 MB! The following prlimit(1) output shows just
this:  

$ prlimit | grep MEMLOCK
MEMLOCK     max locked-in-memory address space   
 16777216  16777216 bytes
$

Hang on a second, though; while using mlock(2), the POSIX standard requires that
addr is aligned to a page boundary (that is, if you take the memory start address and
divide it by the system page size, the remainder will be zero, that is, (addr %
pgsz) == 0. You can use the posix_memalign(3) API to guarantee this; so, we can
change our code slightly to accommodate this alignment requirement:

Refer to the following (ch4/mlock_try.c):

[...]
#define CMD_MAX  256
static void disp_locked_mem(void)
{
    char *cmd = malloc(CMD_MAX);
    if (!cmd)
        FATAL("malloc(%zu) failed\n", CMD_MAX);
    snprintf(cmd, CMD_MAX-1, "grep Lck /proc/%d/status", getpid());
    system(cmd);
    free(cmd);
}

static void try_mlock(const char *cpgs)
{
    size_t num_pg = atol(cpgs);
    const long pgsz = sysconf(_SC_PAGESIZE);
    void *ptr= NULL;
    size_t len;

    len = num_pg * pgsz;
    if (len >= LONG_MAX)
        FATAL("too many bytes to alloc (%zu), aborting now\n", len);

/* ptr = malloc(len); */
/* Don't use the malloc; POSIX wants page-aligned memory for mlock */
    posix_memalign(&ptr, pgsz, len);



Dynamic Memory Allocation Chapter 4

[ 143 ]

    if (!ptr)
        FATAL("posix_memalign(for %zu bytes) failed\n", len);

    /* Lock the memory region! */
    if (mlock(ptr, len)) {
        free(ptr);
        FATAL("mlock failed\n");
    }
    printf("Locked %zu bytes from address %p\n", len, ptr);
    memset(ptr, 'L', len);
    disp_locked_mem();
    sleep(1);

    /* Now unlock it.. */
    if (munlock(ptr, len)) {
        free(ptr);
        FATAL("munlock failed\n");
    }
    printf("unlocked..\n");
    free(ptr);
}

int main(int argc, char **argv)
{
    if (argc < 2) {
        fprintf(stderr, "Usage: %s pages-to-alloc\n", argv[0]);
        exit(EXIT_FAILURE);
    }
    disp_locked_mem();
    try_mlock(argv[1]);
    exit (EXIT_SUCCESS);
}



Dynamic Memory Allocation Chapter 4

[ 144 ]

Let's give it a spin:

$ ./mlock_try
Usage: ./mlock_try pages-to-alloc
$ ./mlock_try 1
VmLck:           0 kB
Locked 4096 bytes from address 0x1a6e000
VmLck:           4 kB
unlocked..
$ ./mlock_try 32
VmLck:           0 kB
mlock_try.c:try_mlock:79: mlock failed
perror says: Cannot allocate memory
$
$ ./mlock_try 15
VmLck:           0 kB
Locked 61440 bytes from address 0x842000
VmLck:          60 kB
unlocked..
$ sudo ./mlock_try 32
[sudo] password for <user>: xxx
VmLck:           0 kB
Locked 131072 bytes from address 0x7f6b478db000
VmLck:         128 kB
unlocked..
$ prlimit | grep MEMLOCK
MEMLOCK    max locked-in-memory address space     65536     65536
bytes
$

Notice, in the successful cases, the address returned by
posix_memalign(3); it's on a page boundary. We can quickly tell
by looking at the last three digits (from the right) of the address – if
they are all zeroes, it's cleanly divisible by page size and thus on a
page boundary. This is because the page size is usually 4,096 bytes,
and 4096 decimal = 0x1000 hex!

We request 32 pages; the allocation is successful, but mlock fails because 32 pages =
32*4K = 128 KB; the resource limit is just 64 KB for locked memory. However, when
we sudo it (thus running with root access), it works.



Dynamic Memory Allocation Chapter 4

[ 145 ]

Locking all pages
mlock basically allows us to tell the OS to lock a certain range of memory into RAM. In
some real-world cases, though, we cannot predict exactly which pages of memory we
will require resident in advance (a real-time application might require various, or all,
memory pages to always be resident).

To solve this tricky issue, another system call – mlockall(2) – exists; as you can guess, it
allows you to lock all process memory pages:

 int mlockall(int flags);

If successful (remember, the same privilege restrictions apply to mlockall as to mlock),
all the process's memory pages – such as text, data segments, library pages, stack, and
shared memory segments – are guaranteed to remain resident in RAM until
unlocked.

The flags argument provides further control to the application developer; it can be
bitwise OR of the following:

MCL_CURRENT

MCL_FUTURE

MCL_ONFAULT (Linux 4.4 onward)

Using MCL_CURRENT asks the OS to lock all current pages within the calling process's
VAS into memory.

But what if you issue the mlockall(2) system call at initialization time, but the real-time
process is going to perform an malloc of say, 200 kilobytes, 5 minutes from now? We
need to guarantee that those 200 KB of memory (which is 50 pages, given a 4 KB page
size) is always resident in RAM (otherwise, the real-time application will suffer too
great a latency from possible future page faulting). That is the purpose of the
MCL_FUTURE flag: it guarantees the memory pages that become part of the calling
process's VAS in the future will remain resident in memory until unlocked.

We learned in the Demand-paging section that performing malloc does nothing more
than reserve virtual memory, not physical. As an example, if an (non-real-time)
application performs a rather large allocation of a megabyte (that's 512 pages), we
understand that only 512 virtual pages are reserved and the physical page frames are
not actually allocated – they will get faulted in on-demand. A typical realtime
application will therefore need to somehow guarantee that, once faulted in, these 512
pages will remain locked (resident) in RAM. Use the MCL_ONFAULT flag to achieve
this.



Dynamic Memory Allocation Chapter 4

[ 146 ]

This flag must be used in conjunction with either the MCL_CURRENT or  MCL_FUTURE
flag, or both. The idea is that physical memory consumption remains extremely
efficient (as no physical allocation is done at the time of malloc), and yet, once the
application starts to touch the virtual pages (that is, read, write, or execute data or
code within the page), the physical page frames get faulted in and they will then be
locked. In other words, we do not pre-fault the memory, thus we get the best of both
worlds.

The other side of the coin is that, when done, the application can unlock all memory
pages by issuing the counterpart API: munlockall(2).

Memory protection
An application dynamically allocates, say, four pages of memory. By default, this
memory is both readable and writable; we refer to these as the memory protections on
the page.

Wouldn't it be nice if the application developer could dynamically modify memory
protections on a per-page basis? For example, keep the first page with default
protections, make the second page read-only, the third page read+execute, and on the
fourth page, not allow any kind of access (a guard page, perhaps?).

Well, this feature is precisely what the mprotect(2) system call is designed for. Let's
delve into how we can exploit it to do all that. Here is its signature:

#include <sys/mman.h>
int mprotect(void *addr, size_t len, int prot);

It's really quite straightforward: starting at the (virtual) address, addr, for len bytes
(that is, from addr up to addr+len-1 ), apply the memory protections specified by
the prot bitmask. As the granularity of mprotect is a page, the first parameter, addr, is
expected to be page-aligned (on a page boundary; recall that this is exactly what
mlock[all](2) expects too).

The third parameter, prot, is where you specify the actual protections; it is a bitmask
and can either be just the PROT_NONE bit or the bitwise OR of the remainder:

Protection bit Meaning of memory protection
PROT_NONE No access allowed on the page
PROT_READ Reads allowed on the page
PROT_WRITE Writes allowed on the page
PROT_EXEC Execute access allowed on the page



Dynamic Memory Allocation Chapter 4

[ 147 ]

Within the man page on mprotect(2), there are several other rather
arcane protection bits and useful information under the NOTES
section. If required (or just curious), read about it here: http:/ /
man7. org/ linux/ man- pages/ man2/ mprotect. 2.html.

Memory protection – a code example
Let's consider an example program where the process dynamically allocates four
pages of memory and wants to set them up so that the memory protections for each
page are as shown in the following table:

Page # Page 0 Page 1 Page 2 Page 3
Protection bits rw- r-- rwx ---

Relevant portions of the code are shown as follows:

First, the main function dynamically allocates page-aligned memory (four pages) with
the posix_memalign(3) API, and then invokes the memory protection and the
memory testing functions in turn:

[...]
    /* Don't use the malloc; POSIX wants page-aligned memory for
mprotect(2) */
    posix_memalign(&ptr, gPgsz, 4*gPgsz);
    if (!ptr)
        FATAL("posix_memalign(for %zu bytes) failed\n", 4*gPgsz);
    protect_mem(ptr);
    test_mem(ptr, atoi(argv[1]));
[...]

Here is the memory protection function:

int okornot[4];
static void protect_mem(void *ptr)
{
    int i;
    u64 start_off=0;
    char str_prots[][128] = {"PROT_READ|PROT_WRITE", "PROT_READ",
                             "PROT_WRITE|PROT_EXEC", "PROT_NONE"};
    int prots[4] = {PROT_READ|PROT_WRITE, PROT_READ,
                    PROT_WRITE|PROT_EXEC, PROT_NONE};

    printf("%s():\n", __FUNCTION__);
    memset(okornot, 0, sizeof(okornot));

    /* Loop over each page, setting protections as required */

http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html
http://man7.org/linux/man-pages/man2/mprotect.2.html


Dynamic Memory Allocation Chapter 4

[ 148 ]

    for (i=0; i<4; i++) {
        start_off = (u64)ptr+(i*gPgsz);
        printf("page %d: protections: %30s: "
               "range [0x%llx:0x%llx]\n",
               i, str_prots[i], start_off, start_off+gPgsz-1);

        if (mprotect((void *)start_off, gPgsz, prots[i]) == -1)
            WARN("mprotect(%s) failed\n", str_prots[i]);
        else
            okornot[i] = 1;
    }
}

After setting up the memory protections, we have the main() function invoke the
memory testing function, test_mem. The second parameter determines whether we
will attempt to write on read-only memory (we require this test case for page 1 as it's
read-only protected):

static void test_mem(void *ptr, int write_on_ro_mem)
{
    int byte = random() % gPgsz;
    char *start_off;

    printf("\n----- %s() -----\n", __FUNCTION__);

    /* Page 0 : rw [default] mem protection */
    if (okornot[0] == 1) {
        start_off = (char *)ptr + 0*gPgsz + byte;
        TEST_WRITE(0, start_off, 'a');
        TEST_READ(0, start_off);
    } else
        printf("*** Page 0 : skipping tests as memprot failed...\n");

    /* Page 1 : ro mem protection */
    if (okornot[1] == 1) {
        start_off = (char *)ptr + 1*gPgsz + byte;
        TEST_READ(1, start_off);
        if (write_on_ro_mem == 1) {
            TEST_WRITE(1, start_off, 'b');
        }
    } else
        printf("*** Page 1 : skipping tests as memprot failed...\n");

    /* Page 2 : RWX mem protection */
    if (okornot[2] == 1) {
        start_off = (char *)ptr + 2*gPgsz + byte;
        TEST_READ(2, start_off);
        TEST_WRITE(2, start_off, 'c');



Dynamic Memory Allocation Chapter 4

[ 149 ]

    } else
        printf("*** Page 2 : skipping tests as memprot failed...\n");

    /* Page 3 : 'NONE' mem protection */
    if (okornot[3] == 1) {
        start_off = (char *)ptr + 3*gPgsz + byte;
        TEST_READ(3, start_off);
        TEST_WRITE(3, start_off, 'd');
    } else
        printf("*** Page 3 : skipping tests as memprot failed...\n");
}

Prior to attempting to test it, we check that the page has indeed been protected by
the mprotect call (via our simple okornot[] array). Also, for readability, we build
the simple TEST_READ and TEST_WRITE macros:

#define TEST_READ(pgnum, addr) do { \
    printf("page %d: reading: byte @ 0x%llx is ", \
    pgnum, (u64)addr); \
    fflush(stdout); \
    printf(" %x", *addr); \
    printf(" [OK]\n"); \
} while (0)

#define TEST_WRITE(pgnum, addr, byte) do { \
    printf("page %d: writing: byte '%c' to address 0x%llx now ...", \
            pgnum, byte, (u64)addr); \
    fflush(stdout); \
    *addr = byte; \
    printf(" [OK]\n"); \
} while (0)

If the process violates any of the memory protections, the OS will summarily kill it via
the usual segfault mechanism (explained in detail within Chapter 12, Signaling Part
II).

Let's perform some test runs on the memprot program; first (for reasons that will
become clear soon) we'll try it out on a generic Ubuntu Linux box, then on a Fedora
system, and finally on an (emulated) ARM-32 platform!

Case #1.1: The memprot program on standard Ubuntu 18.04 LTS with parameter
0 (output reformatted for readability):

$ cat /etc/issue
Ubuntu 18.04 LTS \n \l

$ uname -r



Dynamic Memory Allocation Chapter 4

[ 150 ]

4.15.0-23-generic
$

$ ./memprot
Usage: ./memprot test-write-to-ro-mem [0|1]
$ ./memprot 0
----- protect_mem() -----
page 0: protections: PROT_READ|PROT_WRITE: range
[0x55796ccd5000:0x55796ccd5fff]
page 1: protections: PROT_READ: range [0x55796ccd6000:0x55796ccd6fff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range
[0x55796ccd7000:0x55796ccd7fff]
page 3: protections: PROT_NONE: range [0x55796ccd8000:0x55796ccd8fff]

----- test_mem() -----
page 0: writing: byte 'a' to address 0x55796ccd5567 now ... [OK]
page 0: reading: byte @ 0x55796ccd5567 is 61 [OK]
page 1: reading: byte @ 0x55796ccd6567 is 0 [OK]
page 2: reading: byte @ 0x55796ccd7567 is 0 [OK]
page 2: writing: byte 'c' to address 0x55796ccd7567 now ... [OK]
page 3: reading: byte @ 0x55796ccd8567 is Segmentation fault
$

Okay, so the parameter to memprot is 0 or 1; 0 implies that we do not perform a
write-to-read-only-memory test, whereas 1 implies we do. Here, we've run it with the
0 parameter.

Some things to notice within the preceding output are as follows:

The protect_mem() function sets up memory protections on a per-page
basis. We have allocated 4 pages, thus we loop 4 times, and on each loop
iteration i, perform mprotect(2) on the i-th memory page.
As you can clearly see in the code, it's been done in this fashion, on each
loop iteration

Page 0 : rw-: Set page protections to PROT_READ |
PROT_WRITE

Page 1 : r--: Set page protections to PROT_READ
Page 2 : rwx: Set page protections to
PROT_READ| PROT_WRITE | PROT_EXEC

Page 3 : ---: Set page protections to PROT_NONE, that is, 
make the page inaccessible



Dynamic Memory Allocation Chapter 4

[ 151 ]

In the preceding output, the output format displayed after mprotect is as
follows:

page <#>: protections: <PROT_xx|[...]> range
[<start_addr>:<end_addr>]

All goes well; the four pages get new protections as required.
Next, the test_mem() function is invoked, which tests each page's
protections (the memory protection of the page is shown within square
brackets in the usual [rwx] format):

On page 0 [default: rw-]: It writes and reads a random byte
within the page
On page 1 [r--]: It reads a random byte within the page,
and if the user passed the parameter as 1 (not the case here,
but it will be in the following case), it attempts to write to a
random byte within that page
On page 2 [rwx]: As expected, reading and writing a random
byte here succeeds
On page 3 [---]: It attempts to both read and write a random
byte within the page.

The very first access – a read – fails with a
segfault; this is expected of course – the page
has no permissions whatsoever (we reproduce
the output for this case): page 3: reading:
byte @ 0x55796ccd8567 is
Segmentation fault

To summarize, with the parameter as 0, test cases on pages 0, 1, and 2
succeed; as expected, any access on page 3 causes the OS to kill the process
(via the segmentation-violation signal).



Dynamic Memory Allocation Chapter 4

[ 152 ]

Case #1.2: The memprot program on standard Ubuntu 18.04 LTS with parameter
1 (output reformatted for readability).

Let's now re-run the program with the parameter set to 1, thus attempting to write to
the read-only page 1:

$ ./memprot 1
----- protect_mem() -----
page 0: protections: PROT_READ|PROT_WRITE: range
[0x564d74f2d000:0x564d74f2dfff]
page 1: protections: PROT_READ: range [0x564d74f2e000:0x564d74f2efff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range
[0x564d74f2f000:0x564d74f2ffff]
page 3: protections: PROT_NONE: range [0x564d74f30000:0x564d74f30fff]

----- test_mem() -----
page 0: writing: byte 'a' to address 0x564d74f2d567 now ... [OK]
page 0: reading: byte @ 0x564d74f2d567 is 61 [OK]
page 1: reading: byte @ 0x564d74f2e567 is 0 [OK]
page 1: writing: byte 'b' to address 0x564d74f2e567 now
...Segmentation fault
$

Indeed, as expected, it segfaults when it violates the read-only page permissions.

Case #2: The memprot program on a standard Fedora 28 system.

At the time of writing this book, the latest and greatest Fedora workstation
distribution is ver 28:

$ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch
Distributor ID: Fedora
Description: Fedora release 28 (Twenty Eight)
Release: 28
Codename: TwentyEight
$ uname -r
4.16.13-300.fc28.x86_64
$



Dynamic Memory Allocation Chapter 4

[ 153 ]

We build and run our memprot program on this standard Fedora 28 workstation
system (passing 0 as the parameter – implying that we do not attempt writing to the
read-only memory page):

$ ./memprot 0
----- protect_mem() -----
page 0: protections: PROT_READ|PROT_WRITE: range [0x15d8000:0x15d8fff]
page 1: protections: PROT_READ: range [0x15d9000:0x15d9fff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range
[0x15da000:0x15dafff]
!WARNING! memprot.c:protect_mem:112:
            mprotect(PROT_READ|PROT_WRITE|PROT_EXEC) failed
perror says: Permission denied
page 3: protections: PROT_NONE: range [0x15db000:0x15dbfff]

----- test_mem() -----
page 0: writing: byte 'a' to address 0x15d8567 now ... [OK]
page 0: reading: byte @ 0x15d8567 is 61 [OK]
page 1: reading: byte @ 0x15d9567 is 0 [OK]
*** Page 2 : skipping tests as memprot failed...
page 3: reading: byte @ 0x15db567 is Segmentation fault (core dumped)
$

How do we interpret the preceding output? The following is the explanation for the
same:

All goes well for pages 0, 1, and 3: the mprotect API succeeds in setting the
page's protections exactly as shown

However, we get a failure (and a Warning message) when we attempt the
mprotect(2) system call on page 2 with the PROT_READ | PROT_WRITE
| PROT_EXEC attributes.  Why? 

The usual OS security is the Discretionary Access
Control (DAC) layer. Many modern Linux distros, including
Fedora, come with a powerful security feature – an
additional layer of security within the OS – the Mandatory
Access Control (MAC) layer. These are implemented on
Linux as Linux Security Modules (LSMs). Popular LSMs
include the NSA's SELinux (Security-Enhanced Linux),
AppArmor, Smack, TOMOYO, and Yama.



Dynamic Memory Allocation Chapter 4

[ 154 ]

Fedora uses SELinux while Ubuntu variants tend to use
AppArmor. Whichever the case, it is often these LSMs that
can fail userland-issued system calls when they violate a
security policy. This is precisely what happened with
our mprotect(2) system call on the third page (when the page
protections were attempted to be set to [rwx])! 
As a quick proof-of-concept, and to just get it working for
now, we temporarily disable SELinux and retry:

$ getenforce
Enforcing
$ setenforce
usage: setenforce [ Enforcing | Permissive | 1 |
0 ]
$ sudo setenforce 0
[sudo] password for <username>: xxx
$ getenforce
Permissive
$

SELinux is now in permissive mode; retry the application:

$ ./memprot 0
----- protect_mem() -----
page 0: protections: PROT_READ|PROT_WRITE: range [0x118e000:0x118efff]
page 1: protections: PROT_READ: range [0x118f000:0x118ffff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range
[0x1190000:0x1190fff]
page 3: protections: PROT_NONE: range [0x1191000:0x1191fff]

----- test_mem() -----
page 0: writing: byte 'a' to address 0x118e567 now ... [OK]
page 0: reading: byte @ 0x118e567 is 61 [OK]
page 1: reading: byte @ 0x118f567 is 0 [OK]
page 2: reading: byte @ 0x1190567 is 0 [OK]
page 2: writing: byte 'c' to address 0x1190567 now ... [OK]
page 3: reading: byte @ 0x1191567 is Segmentation fault (core dumped)
$



Dynamic Memory Allocation Chapter 4

[ 155 ]

Now, it works as expected! Don't forget to re-enable the LSM:

$ sudo setenforce 1
$ getenforce
Enforcing
$

An Aside – LSM logs, Ftrace
(If you are not interested in this, feel free to skip over this section). The astute reader
might wonder: how does one realize that it's the OS security layer (the LSM) that
ultimately caused the system call to fail? Broadly, there are two ways: check the
given LSM logs, or use the kernel's Ftrace functionality. The first way is simpler, but
the second can give us insight at the level of the OS.

LSM logs
Modern Linux systems use the powerful systemd framework for process-
initialization, logging, and more. The logging facility is called the journal and is
accessed via the journalctl(1) utility. We use it to verify that it's indeed the
SELinux LSM that has caused the issue:

$ journalctl --boot | grep memprot
[...]
<timestamp> <host> python3[31861]: SELinux is preventing memprot from
using the execheap access on a process.
 If you do not think memprot should need to map heap memory that is
both writable and executable.
 If you believe that memprot should be allowed execheap access on
processes labeled unconfined_t by default.
 # ausearch -c 'memprot' --raw | audit2allow -M my-memprot
 # semodule -X 300 -i my-memprot.pp

It even shows us exactly how we can allow the access.



Dynamic Memory Allocation Chapter 4

[ 156 ]

Ftrace
The Linux kernel has a very powerful built-in tracing mechanism (well, it's one of
them) – Ftrace. Using ftrace, you can verify that it's indeed the LSM code that, while
honoring its security policy, caused the userspace-issued system call to return failure.
I ran a trace (with ftrace):

ftrace output snippet

The SyS_mprotect function is what the mprotect(2) system call becomes within the
kernel; security_file_mprotect is the LSM hook function that leads to the the
actual SELinux function: selinux_file_mprotect; apparently, it fails the access.

Interestingly, Ubuntu 18.04 LTS also uses an LSM – AppArmor. However, it seems
that it has not been configured to catch this kind of write+execute (heap) page-
protection case.

Of course, these topics (LSMs, ftrace) are beyond the scope of this book. To the
curious reader (the kind we love), please see more on LSMs and Ftrace in the Further
reading section on the GitHub repository.

An experiment – running the memprot program on an ARM-32
As an interesting experiment, we will cross-compile our preceding memprot program 
for an ARM system. I have used a convenient way to do this without real hardware:
using the powerful  Free and Open Source Software (FOSS) Quick
Emulator (QEMU) project, to emulate an ARM Versatile Express Cortex-A9 platform!



Dynamic Memory Allocation Chapter 4

[ 157 ]

Cross-compiling the code is indeed simple: notice that there is now a CROSS_COMPILE
variable in our Makefile; it's the cross-compiler prefix – the prefix string identifying
the toolchain (common to all tools). It's literally prefixed onto the CC (for gcc, or CL 
for clang) variable, which is the compiler used to build the target. Unfortunately,
going into more detail regarding cross-compiling and root-filesystem build is beyond
the scope of this book; for some help, see the Tip that follows this example's output.
Also, to keep things simple, we will use a direct approach – a separate target for the
ARM version within the Makefile. Let's check out the relevant portion of
the Makefile:

$ cat Makefile
[...]
CROSS_COMPILE=arm-linux-gnueabihf-
CC=gcc
CCARM=${CROSS_COMPILE}gcc
[...]
common_arm.o: ../common.c ../common.h
    ${CCARM} ${CFLAGS} -c ../common.c -o common_arm.o
memprot_arm: common_arm.o memprot_arm.o
    ${CCARM} ${CFLAGS} -o memprot_arm memprot_arm.c common_arm.o
[...]

So, as shown here, we cross-compile the memprot_arm program:

$ make clean
[...]
$ make memprot_arm
arm-linux-gnueabihf-gcc -Wall -c ../common.c -o common_arm.o
gcc -Wall -c -o memprot_arm.o memprot_arm.c
arm-linux-gnueabihf-gcc -Wall -o memprot_arm memprot_arm.c
common_arm.o
$ file ./memprot_arm
./memprot_arm: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for
GNU/Linux 3.2.0, BuildID[sha1]=3c720<...>, with debug_info, not
stripped
$

Aha, it's generated an ARM executable! We copy this over to our embedded root
filesystem, boot the (emulated) ARM board, and try it out:

$ qemu-system-arm -m 512 -M vexpress-a9 \
   -kernel <...>/images/zImage \
   -drive file=<...>/images/rfs.img,if=sd,format=raw \
   -append \
    "console=ttyAMA0 rootfstype=ext4 root=/dev/mmcblk0 init=/sbin/init



Dynamic Memory Allocation Chapter 4

[ 158 ]

" \
   -nographic -dtb <...>/images/vexpress-v2p-ca9.dtb

[...]
Booting Linux on physical CPU 0x0
Linux version 4.9.1-crk (xxx@yyy) (gcc version 4.8.3 20140320
(prerelease) (Sourcery CodeBench Lite 2014.05-29) ) #16 SMP Wed Jan 24
10:09:17 IST 2018
CPU: ARMv7 Processor [410fc090] revision 0 (ARMv7), cr=10c5387d
CPU: PIPT / VIPT nonaliasing data cache, VIPT nonaliasing instruction
cache

[...]

smsc911x 4e000000.ethernet eth0: SMSC911x/921x identified at
0xa1290000, IRQ: 31
/bin/sh: can't access tty; job control turned off
ARM / $

We're on the (emulated) ARM-32 system prompt; let's try running our program:

ARM # ./memprot_arm
Usage: ./memprot_arm test-write-to-ro-mem [0|1]
ARM # ./memprot_arm 0
----- protect_mem() -----
page 0: protections: PROT_READ|PROT_WRITE: range [0x24000, 0x24fff]
page 1: protections: PROT_READ: range [0x25000, 0x25fff]
page 2: protections: PROT_READ|PROT_WRITE|PROT_EXEC: range [0x26000,
0x26fff]
page 3: protections: PROT_NONE: range [0x27000, 0x27fff]

----- test_mem() -----
page 0: writing: byte 'a' to address 0x24567 now ... [OK]
page 0: reading: byte @ 0x24567 is 61 [OK]
page 1: reading: byte @ 0x25567 is 0 [OK]
page 2: reading: byte @ 0x26567 is 0 [OK]
page 2: writing: byte 'c' to address 0x26567 now ... [OK]
page 3: reading: byte @ 0x27567 is Segmentation fault (core dumped)
ARM #

The reader will notice that, unlike on the Fedora 28 distro on the x86_64 system we ran
this on earlier, the page 2 test case (highlighted in bold) where we attempt to set page
2's memory protections to [rwx] does succeed! Of course, there is no LSM installed.



Dynamic Memory Allocation Chapter 4

[ 159 ]

If you would like to try similar experiments, running code on an
emulated ARM-32, consider using the Simple Embedded ARM
Linux System (SEALS) project, again pure open source, to easily
build a very simple, yet working, ARM/Linux-embedded
system: https:/ / github. com/ kaiwan/ seals.

Similar memory-protection – setting protection attributes (rwx or none) on a range of
memory – can be achieved with the powerful mmap(2) system call (We cover
mmap(2) with respect to file I/O in Chapter 18, Advanced File I/O).

Memory protection keys – a brief note
Recent Intel 64-bit processors bring to the table a feature called Memory Protection
Keys (MPK). Very briefly, MPK (or pkeys, as it's called on Linux) allows userspace to
set permissions with page granularity, too. So, if it does the same thing as mprotect or
mmap, what benefit does it bring? See the following:

It's a hardware feature, so setting a huge range of pages (say, gigabytes of
memory) to some particular memory permissions will be much faster than
mprotect(2)  can manage; this is important for some types of applications
Applications (in-memory databases, perhaps) could benefit by turning off
writes on memory regions until absolutely required, reducing spurious
write bugs

How do you exploit MPK? First, be aware that it is currently only implemented on
recent Linux kernels and on the x86_64 processor architecture. To make use of it, read
up on the man page (section 7) on pkeys; it has explanatory notes as well as sample
code: http://man7. org/ linux/ man- pages/ man7/ pkeys. 7.html.

Using alloca to allocate automatic memory
The glibc library provides an alternate to dynamic memory-allocation with malloc
(and friends); the alloca(3) API.

alloca can be thought of as something of a convenience routine: it allocates memory
on the stack (of the function it is called within). The showcase feature is that free is
not required and, the memory is automatically deallocated once the function returns.
In fact, free(3) must not be called. This makes sense: memory allocated on the stack
is called automatic memory – it will be freed upon that function's return.

https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://man7.org/linux/man-pages/man7/pkeys.7.html


Dynamic Memory Allocation Chapter 4

[ 160 ]

As usual, there are upsides and downsides – tradeoffs – to using  alloca(3):

Here are the alloca(3) pros:

No free is required; this can make programming, readability, and
maintainability much simpler. Thus we can avoid the dangerous memory-
leakage bug – a significant gain!
It is considered very fast, with zero internal fragmentation (wastage).
The primary reason to use it: sometimes, programmers use non-local exits,
typically via the longjmp(3) and siglongjmp(3) APIs. If the
programmer uses malloc(3) to allocate a memory region and then
abruptly leaves the function via a non-local exit, a memory leak will occur.
Using alloca will prevent this, and the code is easy to implement and
understand.

And here are the alloca cons:

The primary downside of alloca is that there is no guarantee it returns
failure when passed a value large enough to cause stack overflow; thus, if
this actually does occur at runtime, the process is now in an undefined
behavior (UB) state and will (eventually) crash. In other words,
checking alloca for the NULL return, as you do with the malloc(3) family,
is of no use!
Portability is not a given.
Often, alloca is implemented as an inline function; this prevents it from
being overridden via a third-party library.

Take a look at the code as follows (ch4/alloca_try.c):

[...]
static void try_alloca(const char *csz, int do_the_memset)
{
    size_t sz = atol(csz);
    void *aptr;

    aptr = alloca(sz);
    if (!aptr)
        FATAL("alloca(%zu) failed\n", sz);
    if (1 == do_the_memset)
        memset(aptr, 'a', sz);

    /* Must _not_ call free(), just return;
     * the memory is auto-deallocated!
     */



Dynamic Memory Allocation Chapter 4

[ 161 ]

}

int main(int argc, char **argv)
{
  [...]
    if (atoi(argv[2]) == 1)
        try_alloca(argv[1], 1);
    else if (atoi(argv[2]) == 0)
        try_alloca(argv[1], 0);
    else {
        fprintf(stderr, "Usage: %s size-to-alloca
do_the_memset[1|0]\n",
                     argv[0]);
        exit(EXIT_FAILURE);
    }
    exit (EXIT_SUCCESS);
}

Let's build it and try it out:

$ ./alloca_try
Usage: ./alloca_try size-to-alloca do_the_memset[1|0]
$ ./alloca_try 50000 1
$ ./alloca_try 50000 0
$

The first parameter to alloca_try is the amount of memory to allocate (in bytes),
while the second parameter, if 1, has the memset process call on that memory region;
if 0, it does not.

In the preceding code snippet, we tried it with an allocation request of 50,000 bytes –
it succeeded for both the memset cases.

Now, we deliberately pass -1 as the first parameter, which will be treated as
an unsigned quantity (thus becoming the enormous value
of 0xffffffffffffffff on a 64-bit OS!), which of course should
cause alloca(3) to fail. Amazingly, it does not report failure; at least it thinks it's
okay:

$ ./alloca_try -1 0
$ echo $?
0
$ ./alloca_try -1 1
Segmentation fault (core dumped)
$



Dynamic Memory Allocation Chapter 4

[ 162 ]

But then, doing memset (by passing the second parameter as 1) causes the bug to
surface; without it, we'd never know.

To further verify this, try running the program under the control of the library call
tracer software, ltrace; we pass 1 as the first parameter, forcing the process to
invoke memset after alloca(3):

$ ltrace ./alloca_try -1 1
atoi(0x7ffcd6c3e0c9, 0x7ffcd6c3d868, 0x7ffcd6c3d888, 0)         =  1
atol(0x7ffcd6c3e0c6, 1, 0, 0x1999999999999999)                  = -1
memset(0x7ffcd6c3d730, 'a', -1 <no return ...>
--- SIGSEGV (Segmentation fault) ---
+++ killed by SIGSEGV +++
$

Aha! We can see that following memset, the process receives the fatal signal and dies.
But why doesn't the alloca(3) API show up in ltrace? Because it's an inlined
function – ahem, one of its downsides.

But watch this; here, we pass 0 as the first parameter, bypassing the call to
memset after alloca(3):

$ ltrace ./alloca_try -1 0
atoi(0x7fff9495b0c9, 0x7fff94959728, 0x7fff94959748, 0)     =  0
atoi(0x7fff9495b0c9, 0x7fff9495b0c9, 0, 0x1999999999999999) =  0
atol(0x7fff9495b0c6, 0, 0, 0x1999999999999999)              = -1
exit(0 <no return ...>
+++ exited (status 0) +++
$

It exits normally, as though there were no bug!

Further, you will recall  from Chapter 3, Resource Limits, we saw that the default stack
size for a process is 8 MB. We can test this fact via our alloca_try program:

$ ./alloca_try 8000000 1
$ ./alloca_try 8400000 1
Segmentation fault (core dumped)
$ ulimit -s
8192
$



Dynamic Memory Allocation Chapter 4

[ 163 ]

The moment we go beyond 8 MB, alloca(3) allocates too much space, but does not
trigger a crash; instead, memset(3) causes segfault to occur. Also, ulimit verifies that
the stack resource limit is 8,192 KB, that is, 8 MB.

To conclude, a really, really key point: you can often end up writing
software that seems to be correct but is, in fact, not. The only way to
gain confidence with the software is to take the trouble to perform
100% code coverage and run test cases against them! It's hard to do,
but quality matters. Just do it.

Summary
This chapter focused upon both the simple and more advanced aspects of dynamic
memory management for C application developers on the Linux OS. In the initial
section, the basic glibc dynamic memory-management APIs and their correct usage in
code was dealt with.

We then moved on to more advanced topics such as the program break (and the
sbrk(3) API), how malloc(3) behaves internally when allocating memory of
differing sizes, and the key concept of demand-paging. Then, we delved into the APIs
that perform memory locking and memory region protection, and reasons to use
them. Finally, we looked at alloca(3), the alternate API. Several code examples
were used to solidify the concepts that were learned. The next chapter will cover a
really important topic—the variety of memory issues (defects) that can arise on Linux
due to poor programming practices with the memory APIs



5
Linux Memory Issues

A simple truism: memory issues exist. The very fact that we program in languages
such as C (and C++) implicitly gives rise to literally infinite types of issues! At some
point, one realizes (perhaps a bit pessimistically) that programming with care in a
managed memory-safe language is ultimately the (only?) realistic way to avoid
memory issues altogether.

However, here we are, working with our power tool of choice: the eminent and
venerable C programming language! So, what we can do to mitigate, if not eliminate,
common memory issues, is the topic of this chapter. Ultimately, the goal is to be truly
memory-safe; well, that's easier said than done!

Nevertheless, we shall attempt to have the developer successfully undertake this task
by throwing light on the common memory issues they will likely face. In the chapter
that follows, we will look into how some powerful memory debug tools can help
immensely in this effort.

In this chapter, the developer will learn that although the dynamic memory
management APIs (covered in Chapter 4, Dynamic Memory Allocation) are few, they
can—when used carelessly—cause seemingly endless amounts of trouble and bugs!

Specifically, this chapter will throw light on the common memory issues that lead to
hard-to-detect bugs in fielded software:

Incorrect memory-access issues (within this, there are a few types)
Memory leakage
Undefined behavior



Linux Memory Issues Chapter 5

[ 165 ]

Common memory issues
If one were to categorize to fine-granularity memory errors (typically caused via
programming in C or C++), one would have a difficult time of it—hundreds of types
exist! Instead, let's keep the discussion manageable and check out what would be
considered the typical or common memory errors that befall us poor C programmers:

Incorrect memory accesses
Using uninitialized variables
Out-of-bounds memory accesses (read/write
underflow/overflow bugs)
Use-after-free/use-after-return (out-of-scope) bugs
Double-free

Leakage
Undefined behavior (UB)
Data Races
Fragmentation (internal implementation) issues

Internal
External

All these common memory issues (except fragmentation) are
classified as UB; still, we keep UB as a separate entry as we will
explore it more deeply. Also, though the word bug is colloquially
used, one should really (and more correctly) think of it as defect.

We do not cover Data Races in this chapter (please hang on until
Chapter 15, Multithreading with Pthreads Part II - Synchronization).

To help test these memory issues, the membugs program is a collection of small test
cases for each of them.

Sidebar :: The Clang compiler

LLVM/Clang is an open source compiler for C. We do use the Clang compiler,
notably in this and the next chapter, especially for the sanitizer compiler-
instrumentation toolset (covered in the next chapter). It remains useful throughout
the book (and indeed is used in many of our Makefiles), thus installing Clang on your
Linux development system would be a good idea! Again, it is not completely essential
and one can stick with the familiar GCC too—provided one is willing to edit the
Makefile(s) to switch back to GCC wherever required!



Linux Memory Issues Chapter 5

[ 166 ]

Installing Clang on the Ubuntu 18.04 LTS desktop is easy: sudo apt install
clang

The Clang documentation can be found at https:/ /clang. llvm. org/docs/ index.
html.

When the membugs program is compiled (using both GCC for the
normal case as well as the Clang compiler for the sanitizer variants),
you will see a lot of compiler warnings being emitted! This is
expected; after all, its code is filled with bugs. Relax, and continue
reading.

Also, we remind you that the purpose of this chapter is to
understand (and classify) typical Linux memory issues; identifying
and fixing them using powerful tools is the subject matter of the
next chapter. Both are required, so please read on.

Some sample output from the build is shown as follows (output clipped for
readability). Right now, we shall not attempt to analyze it; that will happen as we
wind through this chapter (remember, you will need to have Clang installed as well!):

$ make
gcc -Wall -c ../common.c -o common.o
gcc -Wall -c membugs.c -o membugs.o
membugs.c: In function ‘uar’:
membugs.c:143:9: warning: function returns address of local variable
[-Wreturn-local-addr]
 return name;
 ^~~~

[...]

gcc -Wall -o membugs membugs.o common.o

[...]
clang -g -ggdb -gdwarf-4 -O0 -Wall -Wextra -fsanitize=address -c
membugs.c -o membugs_dbg_asan.o
membugs.c:143:9: warning: address of stack memory associated with
local variable 'name' returned [-Wreturn-stack-address]
        return name;
               ^~~~

gcc -g -ggdb -gdwarf-4 -O0 -Wall -Wextra -o membugs_dbg membugs_dbg.o
common_dbg.o
[...]
$

https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html


Linux Memory Issues Chapter 5

[ 167 ]

We also highlight the fact that, in all the test cases we'll run, we use the GCC -
generated membugs binary executable (not Clang; we shall make use of Clang later
with the sanitizer tools).

During the build, one can capture all the output in to a file like so:
make >build.txt 2>&1

Run the membugs program with the --help switch to see all the available test cases:

$ ./membugs --help

Usage: ./membugs test_case [ -h | --help]
 test case  1 : uninitialized var test case
 test case  2 : out-of-bounds : write overflow [on compile-time
memory]
 test case  3 : out-of-bounds : write overflow [on dynamic memory]
 test case  4 : out-of-bounds : write underflow
 test case  5 : out-of-bounds : read overflow [on compile-time memory]
 test case  6 : out-of-bounds : read overflow [on dynamic memory]
 test case  7 : out-of-bounds : read underflow
 test case  8 : UAF (use-after-free) test case
 test case  9 : UAR (use-after-return) test case
 test case 10 : double-free test case
 test case 11 : memory leak test case 1: simple leak
 test case 12 : memory leak test case 2: leak more (in a loop)
 test case 13 : memory leak test case 3: "lib" API leak
-h | --help : show this help screen
$

You will notice that the write and read overflows have two test cases each: one on
compile-time memory, and one on dynamically allocated memory. It's important to
distinguish the cases, as tools differ in which types of defects they can detect.

Incorrect memory accesses
Often, bugs and issues in this class are so common as to be blithely overlooked!
Beware, they remain very dangerous; take care to find, understand, and fix them.



Linux Memory Issues Chapter 5

[ 168 ]

All classes of overflow and underflow bugs on memory buffers are
carefully documented and tracked via the Common Vulnerabilities
and Exposures (CVE) and the Common Weakness Enumeration
(CWE) websites. Relevant to what we are discussing, CWE-119 is the
Improper Restriction of Operations within the Bounds of a Memory
Buffer (https:/ / cwe. mitre. org/ data/ definitions/ 119. html).

Accessing and/or using uninitialized variables
To give the reader a sense of the seriousness of these memory issues, we have written
a test program, membugs.c. This test program allows the user to test various common
memory bugs, which will help them better understand the underlying issues.

Each memory bug test case is given a test case number. So that the reader can easily
follow the source code with the explanatory material, we also specify the test case as
follows.

Test case 1: Uninitialized memory access
These are also known as uninitialized memory reads (UMR) bugs. A classic case:
local (or automatic) variables are, by definition, uninitialized (unlike globals,
which are always preset to zero):

/* test case 1 : uninitialized var test case */
static void uninit_var()
{
    int x;   /* static mem */

    if (x)
        printf("true case: x=%d\n", x);
    else
        printf("false case\n");
}

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html


Linux Memory Issues Chapter 5

[ 169 ]

In the preceding code, it's undefined what will occur at runtime as x is uninitialized
and will thus have random content. Now, we run this test case as follows:

$ ./membugs 1
true case: x=32604
$ ./membugs 1
true case: x=32611
$ ./membugs 1
true case: x=32627
$ ./membugs 1
true case: x=32709
$

Thankfully, modern versions of the compiler (both gcc and clang) will emit a
warning about this issue:

$ make
[...]
gcc -Wall -c membugs.c -o membugs.o
[...]
membugs.c: In function ‘uninit_var’:
membugs.c:272:5: warning: ‘x’ is used uninitialized in this function [-
Wuninitialized]
  if (x)
     ^

[...]
clang -g -ggdb -gdwarf-4 -O0 -Wall -Wextra -fsanitize=address -c
membugs.c -o membugs_dbg_asan.o
[...]
membugs.c:272:6: warning: variable 'x' is uninitialized when used here
[-Wuninitialized]
        if (x)
            ^
membugs.c:270:7: note: initialize the variable 'x' to silence this
warning
        int x; /* static mem */
             ^
              = 0
[...]



Linux Memory Issues Chapter 5

[ 170 ]

Out-of-bounds memory accesses
This class is again among the more common—but deadly!—memory-access bugs.
They can be classified as different kinds of bugs:

Write overflow: A bug where a write is attempted into a memory buffer
after its last legally accessible location
Write underflow: A write is attempted into a memory buffer before its first
legally accessible location
Read underflow: A read is attempted on a memory buffer before its first
legally accessible location
Read overflow: A read is attempted on a memory buffer after its first
legally accessible location

Let's check these out via the source code of our membugs.c program.

Test case 2
Write or buffer overflow on compile-time allocated memory. See the code snippet as
follows:

/* test case 2 : out-of-bounds : write overflow [on compile-time
memory] */
static void write_overflow_compilemem(void)
{
    int i, arr[5], tmp[8];
    for (i=0; i<=5; i++) {
       arr[i] = 100;  /* Bug: 'arr' overflows on i==5,
                         overwriting part of the 'tmp' variable
                         - a stack overflow! */
    }
}

This has caused a stack overflow (also referred to as a stack smashing or buffer
overflow (BOF)) bug; it's a serious class of vulnerability that attackers have
successfully exploited many a time, starting with the Morris Worm virus back in
1988! Check out the resources in the Further reading section for more on this
vulnerability on the GitHub repository.



Linux Memory Issues Chapter 5

[ 171 ]

Very interestingly, compiling and running this portion of the code on our Fedora 28
workstation Linux box (by passing the appropriate parameter), shows that there is
neither compile-time nor runtime detection of this (and other similar) dangerous bugs
by default (more on this later!):

$ ./membugs 2
$ ./membugs_dbg 2
$

These bugs are also sometimes called off-by-one errors.

There's more, though (as usual); let's do a quick experiment. In
the membugs.c:write_overflow_compilemem() function, change the number of
times we loop from 5 to 50:

 for (i = 0; i <= 50; i++) {
    arr[i] = 100;
}

Rebuild and retry; look at the output now on an Ubuntu 18.04 LTS Desktop Linux
system (on Fedora too, but with a vanilla kernel):

$ ./membugs 2
*** stack smashing detected ***: <unknown> terminated
Aborted
$

The fact is, modern compilers use a stack-protector feature to detect stack-overflow
bugs and more importantly, attacks. With a large enough value, the overflow was
detected; but with the default value, the bug escaped undetected! We stress the
importance of using tools (which includes compilers) to detect these hidden bugs in
the next chapter.

Test case 3
Write or BOF on dynamically-allocated memory. See the code snippet as follows:

/* test case 3 : out-of-bounds : write overflow [on dynamic memory] */
static void write_overflow_dynmem(void)
{
    char *dest, src[] = "abcd56789";

    dest = malloc(8);
    if (!dest)

    FATAL("malloc failed\n");



Linux Memory Issues Chapter 5

[ 172 ]

    strcpy(dest, src); /* Bug: write overflow */
    free(dest);
}

Again, no compile or runtime detection of the bug occurs:

$ ./membugs 3
$ ./membugs 3           << try once more >>
$

Unfortunately, BOF-related bugs and vulnerabilities tend to be quite
common in the industry. The root cause is poorly understood, and
thus results in poorly written, code; this is where we, as developers,
must step up our game!

For real-world examples of security vulnerabilities, please see this
table of 52 documented security vulnerabilities (due to various kinds
of BOF bugs) on Linux in 2017: https:/ /www. cvedetails. com/
vulnerability- list/ vendor_ id- 33/ year- 2017/ opov- 1/Linux.
html.

Test case 4
Write Underflow. We dynamically allocate a buffer with malloc(3), decrement the
pointer, and then write into that memory location—a write or buffer underflow bug:

/* test case 4 : out-of-bounds : write underflow */
static void write_underflow(void)
{
    char *p = malloc(8);
    if (!p)
        FATAL("malloc failed\n");
    p--;
    strncpy(p, "abcd5678", 8); /* Bug: write underflow */
    free(++p);
}

In this test case, we don't want the free(3) to fail, so we ensure the pointer passed to
it is correct. The compiler does not detect any bug here; at runtime though, it does
indeed crash, with modern glibc detecting errors (in this case, memory corruption):

$ ./membugs 4
double free or corruption (out)
Aborted
$

https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/year-2017/opov-1/Linux.html


Linux Memory Issues Chapter 5

[ 173 ]

Test case 5
Read overflow, on compile-time allocated memory. We attempt a read on a compile-
time allocated memory buffer, after its last legally accessible location:

/* test case 5 : out-of-bounds : read overflow [on compile-time
memory] */
static void read_overflow_compilemem(void)
{
    char arr[5], tmp[8];

    memset(arr, 'a', 5);
    memset(tmp, 't', 8);
    tmp[7] = '\0';

    printf("arr = %s\n", arr); /* Bug: read buffer overflow */
}

The way this test case is designed, we have two buffers arranged sequentially in
memory. The bug: we deliberately do not null-terminate the first buffer (but do so on
the second one), so, the printf(3) that will emit on arr continues reading into the
second buffer, tmp. What if the tmp buffer contains secrets? 

The point, of course is that the compiler cannot catch this seemingly obvious bug.
Also, do realize that here we're writing small, simple, easy-to-read test cases; on a real
project with a few million lines of code, defects such as this are easy to miss.

Here is the sample output:

$ ./membugs 2>&1 | grep -w 5
 option =  5 : out-of-bounds : read overflow [on compile-time memory]
$ ./membugs 5
arr = aaaaattttttt
$

Hey, we got to read the secret memory of tmp.

In fact, tools such as ASan (Address Sanitizer, seen in the next chapter), classify this
bug as a stack buffer overflow.



Linux Memory Issues Chapter 5

[ 174 ]

As an aside, on our Fedora 28 workstation, we just get junk from the second buffer in
this test case:

$ ./membugs 5
arr = aaaaa0<5=�
$ ./membugs 5
arr = aaaaa�:��
$

This shows us that these bugs can reveal themselves differently, depending on the
compiler version, the glibc version, and the machine hardware. 

An always useful testing technique is to try to run your test cases on
as many hardware/software variants as possible. Hidden bugs may
be exposed! Think of instances such as endianness issues, compiler
optimization (padding, packing), and platform-specific alignments.

Test case 6
Read overflow, on dynamically allocated memory. Again, we attempt a read; this
time, on a dynamically allocated memory buffer, after its last legally accessible
location:

/* test case 6 : out-of-bounds : read overflow [on dynamic memory] */
static void read_overflow_dynmem(void)
{
    char *arr;

    arr = malloc(5);
    if (!arr)
        FATAL("malloc failed\n",);
    memset(arr, 'a', 5);

    /* Bug 1: Steal secrets via a buffer overread.
     * Ensure the next few bytes are _not_ NULL.
     * Ideally, this should be caught as a bug by the compiler,
     * but isn't! (Tools do; seen later).
     */
    arr[5] = 'S'; arr[6] = 'e'; arr[7] = 'c';
    arr[8] = 'r'; arr[9] = 'e'; arr[10] = 'T';
    printf("arr = %s\n", arr);

    /* Bug 2, 3: more read buffer overflows */
    printf("*(arr+100)=%d\n", *(arr+100));
    printf("*(arr+10000)=%d\n", *(arr+10000));



Linux Memory Issues Chapter 5

[ 175 ]

    free(arr);
}

The test case is pretty much the same as the preceding one (the read overflow on
compile-time memory), except that we dynamically allocate the memory buffers, and
insert a couple more bugs for fun:

$ ./membugs 2>&1 |grep -w 6
 option =  6 : out-of-bounds : read overflow [on dynamic memory]
$ ./membugs 6
arr = aaaaaSecreT
*(arr+100)=0
*(arr+10000)=0
$

Hey, Mom, look! We got the secret!

It does not even cause a crash. At first glance, bugs such as this might appear fairly
harmless—the truth, though, is that this is a really dangerous bug!

The well known OpenSSL Heartbleed security bug (CVE-2014-0160)
is a great example of exploiting a read overflow, or as it's often
called, a buffer over-read, vulnerability. 

In a nutshell, the bug allowed a rogue client process to make a
seemingly correct request to the OpenSSL server process; in reality,
it could request and receive much more memory than it should have
been allowed to, because of a buffer over-read vulnerability. In
effect, this bug made it possible for attackers to bypass security
easily and steal secrets [http:/ /heartbleed. com].

If interested, find more in the Further reading section on the GitHub
repository.

Test case 7
Read underflow. We attempt a read on a dynamically allocated memory buffer,
before its first legally accessible location:

/* test case 7 : out-of-bounds : read underflow */
static void read_underflow(int cond)
{
    char *dest, src[] = "abcd56789", *orig;

    printf("%s(): cond %d\n", __FUNCTION__, cond);

http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/


Linux Memory Issues Chapter 5

[ 176 ]

    dest = malloc(25);
    if (!dest)
        FATAL("malloc failed\n",);
    orig = dest;

    strncpy(dest, src, strlen(src));
    if (cond) {
        *(orig-1) = 'x';
        dest --;
    }
    printf(" dest: %s\n", dest);

    free(orig);
}

The test case is designed with a runtime condition; we test it both ways:

 case 7:
     read_underflow(0);
     read_underflow(1);
     break;

If the condition evaluates to true, the buffer pointer is decremented, thus causing a
read buffer underflow on the subsequent printf:

$ ./membugs 7
read_underflow(): cond 0
 dest: abcd56789
read_underflow(): cond 1
 dest: xabcd56789
double free or corruption (out)
Aborted (core dumped)
$

Again, glibc comes to our aid by showing us that a double free or corruption has
occurred—in this case, it's memory corruption. 

Use-after-free/Use-after-return bugs
Use-after-free (UAF) and use-after-return (UAR) are dangerous, difficult-to-spot
bugs. Check out the following test cases for each of them.



Linux Memory Issues Chapter 5

[ 177 ]

Test case 8
Use After Free (UAF). Operating upon a memory pointer after it has been freed up is
obviously a bug, causing UB. The pointer is sometimes called a dangling pointer.
Here is a quick test case:

/* test case 8 : UAF (use-after-free) test case */
static void uaf(void)
{
    char *arr, *next;
    char name[]="Hands-on Linux Sys Prg";
    int n=512;

    arr = malloc(n);
    if (!arr)
        FATAL("malloc failed\n");
    memset(arr, 'a', n);
    arr[n-1]='\0';
    printf("%s():%d: arr = %p:%.*s\n", __FUNCTION__, __LINE__, arr,
                32, arr);

    next = malloc(n);
    if (!next) {
        free(arr);
        FATAL("malloc failed\n");
    }
    free(arr);
    strncpy(arr, name, strlen(name));  /* Bug: UAF */

    printf("%s():%d: arr = %p:%.*s\n", __FUNCTION__, __LINE__, arr,
                32, arr);
    free(next);
}

Again, neither at compile-time nor at runtime is the UAF bug detected, nor does it
cause a crash:

$ ./membugs 2>&1 |grep -w 8
 option =  8 : UAF (use-after-free) test case
$ ./membugs 8
uaf():158: arr = 0x558012280260:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
uaf():166: arr = 0x558012280260:Hands-on Linux Sys Prgaaaaaaaaaa
$



Linux Memory Issues Chapter 5

[ 178 ]

Did you notice the neat printf(3) format specifier, %.*s, trick?
This format is used to print a string of a specific length (no
terminating null required!). First, specify the length in bytes to print,
and then the pointer to string.

Test case 9
Use After Return (UAR). Another classic bug, this one involves returning a storage
item (or pointer to it) to the calling function. The issue is that the storage is local or
automatic, thus implying that once the return is affected, the storage object is now out
of scope.

The classic example is shown here: we allocate 32 bytes to a local variable, initialize it,
and return it to the caller:

/* test case 9 : UAR (use-after-return) test case */
static void * uar(void)
{
    char name[32];
    memset(name, 0, 32);
    strncpy(name, "Hands-on Linux Sys Prg", 22);

    return name;
}

This is how the caller invokes the preceding buggy function:

[...]
    case 9:
            res = uar();
            printf("res: %s\n", (char *)res);
            break;
[...]

Of course, once the return statement in the uar() function takes effect, the name
variable is automatically out of scope! Therefore, the pointer to it is invalid, and when
run, it fails:

$ ./membugs 2>&1 |grep -w 9
 option = 9 : UAR (use-after-return) test case
$ ./membugs 9
res: (null)
$



Linux Memory Issues Chapter 5

[ 179 ]

Thankfully though, modern GCC (we're using GCC ver 7.3.0) warns us about this
common bug:

$ make membugs
gcc -Wall -c membugs.c -o membugs.o
membugs.c: In function ‘uar’:
membugs.c:143:9: warning: function returns address of local variable
[-Wreturn-local-addr]
  return name;
         ^~~~
[...]

As mentioned before (but it's always worth repeating), heed and fix all warnings!

Actually, there are times when this bug escapes notice—it looks like it works fine and
there's no bug. This is because there is no actual guarantee that the stack memory
frame is immediately destroyed upon function return—memory and compiler-
optimization might keep the frame around (typically for reuse). Nevertheless, it is a
dangerous bug and must be fixed!

In the next chapter, we'll cover some memory debug tools. As a
matter of fact, neither Valgrind nor the Sanitizer tools catch this
possibly deadly bug. But, using the ASan toolset
appropriately does catch the UAR! Read on.

Test case 10
Double-free. Once a malloc family buffer is freed, one is not allowed to use that
pointer at all. Attempting to free the same pointer again (without again allocating it
memory via one of the malloc family APIs) is a bug: double free. It results in heap
corruption; bugs like this are often exploited by attackers to cause denial-of-
service (DoS) attacks or worse (privilege escalation).

Here is a simple test case:

/* test case 10 : double-free test case */
static void doublefree(int cond)
{
    char *ptr;
    char name[]="Hands-on Linux Sys Prg";
    int n=512;

    printf("%s(): cond %d\n", __FUNCTION__, cond);
    ptr = malloc(n);
    if (!ptr)



Linux Memory Issues Chapter 5

[ 180 ]

        FATAL("malloc failed\n");
    strncpy(ptr, name, strlen(name));
    free(ptr);

    if (cond) {
        bogus = malloc(-1UL); /* will fail! */
        if (!bogus) {
            fprintf(stderr, "%s:%s:%d: malloc failed\n",
                       __FILE__, __FUNCTION__, __LINE__);
            free(ptr); /* Bug: double-free */
            exit(EXIT_FAILURE);
        }
    }
}

In the preceding test case, we simulate an interesting and quite realistic scenario: a
runtime condition (simulated via the cond parameter) causes the program to perform
a call that, let's say, fails—malloc(-1UL) pretty much guarantees that.

Why? Because, on a 64-bit OS, -1UL = 0xffffffffffffffff =
18446744073709551615 bytes = 16 EB. That's the entire extent of the virtual
address space on 64-bit.

Back to the point: within our malloc error-handling code, an erroneous double-
free—of the previously freed ptr pointer—occurs, resulting in a double free bug.

The real problem is that often, as developers, we do not write (negative) test cases for
error-handling code paths; a defect then escapes undetected into the field:

$ ./membugs 10
doublefree(): cond 0
doublefree(): cond 1
membugs.c:doublefree:56: malloc failed
$

Interestingly, the compiler does warn us regarding the faulty (read buggy) second
malloc (but not regarding the double free!); see the following:

$ make
[...]
membugs.c: In function ‘doublefree’:
membugs.c:125:9: warning: argument 1 value ‘18446744073709551615’
exceeds maximum object size 9223372036854775807 [-Walloc-size-larger-
than=]
   bogus = malloc(-1UL); /* will fail! */
   ~~~~~~^~~~~~~~~~~~~~
In file included from membugs.c:18:0:

Linux Memory Issues Chapter 5

[181]

/usr/include/stdlib.h:539:14: note: in a call to allocation function
‘malloc’ declared here
 extern void *malloc (size_t __size) __THROW __attribute_malloc__
__wur;
 ^~~~~~
[...]

To help emphasize the importance of detecting and fixing such
bugs—and remember, this is just one example— we show as follows
some information from the National Vulnerability
Database (NVD) on double free bugs within the last 3 years (at the
time of this writing): https:/ /nvd. nist. gov/ vuln/ search/
results? adv_ search= false form_ type= basic results_ type=
overview search_ type= last3years query= double+free

A partial screenshot of the search result performed on the National Vulnerability
Database (NVD) on double free bugs within the last 3 years (at the time of this writing)
follows:

https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=last3years&query=double+free

Linux Memory Issues Chapter 5

[182]

The complete screenshot has not been shown here.

Leakage
The golden rule for dynamic memory is to free the memory you allocate.

Memory leakage is the term used to describe the situation where one fails to do so.
The programmer thinks that the memory region has indeed been freed up. But it has
not—that's the bug. Therefore, this makes the thought-to-be-freed memory region
unavailable to the process and system; in effect, it is unusable, even though it should
have been usable.

The memory is said to have leaked out. So why can't the programmer just take care of
this elsewhere in the code by calling free upon this memory pointer? That's really the
crux of the issue: in the typical case, because of the way the code is implemented, it's
essentially impossible to regain access to that leaked memory pointer.

A quick test case will demonstrate this.

The amleaky function is deliberately written to leak mem bytes of memory—its
parameter—each time it's invoked.

Test case 11
Memory leakage - case 1: a (simple) memory leak test case. See the following code
snippet:

static const size_t BLK_1MB = 1024*1024;
[...]
static void amleaky(size_t mem)
{
 char *ptr;

 ptr = malloc(mem);
 if (!ptr)
 FATAL("malloc(%zu) failed\n", mem);

 /* Do something with the memory region; else, the compiler
 * might just optimize the whole thing away!
 * ... and we won't 'see' the leak.

Linux Memory Issues Chapter 5

[183]

 */
 memset(ptr, 0, mem);

 /* Bug: no free, leakage */
}

[...]
/* test case 11 : memory leak test case 1: simple leak */
static void leakage_case1(size_t size)
{
 printf("%s(): will now leak %zu bytes (%ld MB)\n",
 __FUNCTION__, size, size/(1024*1024));
 amleaky(size);
}

[...]

 case 11:
 leakage_case1(32);
 leakage_case1(BLK_1MB);
 break;
[...]

As one can clearly see, in the amleaky function, the ptr memory pointer is a local
variable and is thus lost once we return from the buggy function; this makes it
impossible to free it later. Also notice—the comment explains it—how we
require memset to force the compiler to generate code for and use the memory region.

A quick build and execution of the preceding test case will reveal that, again, no
obvious compile-time or runtime detection of the leakage occurs:

$./membugs 2>&1 | grep "memory leak"
 option = 11 : memory leak test case 1: simple leak
 option = 12 : memory leak test case 2: leak more (in a loop)
 option = 13 : memory leak test case 3: lib API leak
$./membugs 11
leakage_case1(): will now leak 32 bytes (0 MB)
leakage_case1(): will now leak 1048576 bytes (1 MB)
$

Linux Memory Issues Chapter 5

[184]

Test case 12
Memory leakage case 2 - leak more (in a loop). Quite often, the buggy leaking code
might only be leaking a small amount of memory, a few bytes, by itself. The problem
is, what if this leaky function is called in a loop hundreds, or perhaps, thousands of
times, during process execution? Now the leakage is significant, and unfortunately,
not immediately apparent.

To emulate precisely this and more, we execute two test cases (for Option 12):

We allocate, and leak, a tiny amount of memory (32 bytes) but in a loop
100,000 times (so, yes, we end up leaking over 3 MB)
We allocate, and leak, a large amount of memory (1 MB) in a loop 12 times
(so, we end up leaking 12 MB).

Here's the relevant code:

[...]

/* test case 12 : memory leak test case 2: leak in a loop */
static void leakage_case2(size_t size, unsigned int reps)
{
 unsigned int i, threshold = 3*BLK_1MB;
 double mem_leaked;

 if (reps == 0)
 reps = 1;
 mem_leaked = size * reps;
 printf("%s(): will now leak a total of %.0f bytes (%.2f MB)"
 " [%zu bytes * %u loops]\n",
 __FUNCTION__, mem_leaked, mem_leaked/(1024*1024),
 size, reps);

 if (mem_leaked >= threshold)
 system("free|grep \"^Mem:\"");

 for (i=0; i<reps; i++) {
 if (i%10000 == 0)
 printf("%s():%6d:malloc(%zu)\n", __FUNCTION__, i, size);
 amleaky(size);
 }

 if (mem_leaked >= threshold)
 system("free|grep \"^Mem:\"");
 printf("\n");
}

Linux Memory Issues Chapter 5

[185]

[...]

 case 12:
 leakage_case2(32, 100000);
 leakage_case2(BLK_1MB, 12);
 break;
[...]

The logic ensures that the printf(3) within the leaky loop is only displayed on
every 10,000 loop iterations.

Also, we would like to see whether memory has indeed leaked. To do so, albeit in an
approximate manner, we use the free utility:

$ free
 total used free shared buff/cache available
Mem: 16305508 5906672 348744 1171944 10050092 10248116
Swap: 8000508 0 8000508
$

The free(1) utility displays, in kilobytes, the current (approximate) amount of
memory used, free, and available on the system as a whole. It further divides the used
memory between shared, buffered/page-cached; it also displays Swap partition
statistics. We should also note that this approach of using free(1) to detect memory
leakage is not considered very accurate; a crude approach at best. The memory
reported as in use, free, cached, and so on by the OS can show variations. For our
purposes, it's okay.

Our point of interest is the intersection of the Mem row and the free column; thus, we
can see that out of a total available memory of 16 GB (RAM), the amount currently
free is approximately 348744 KB ~= 340 MB.

One can quickly try out a one-liner script to display just the region of interest—the
Mem line:

$ free | grep "^Mem:"
Mem: 16305508 5922772 336436 1165960 10046300 10237452
$

The third column after Mem is the free memory (interestingly, it's already reduced
from the previous output; that doesn't matter).

Linux Memory Issues Chapter 5

[186]

Back to the program; we use the system(3) library API to run the preceding pipe-
lined shell command within a C program (we'll build our own small emulation of
the system(3) API in Chapter 10, Process Creation):

if (mem_leaked >= threshold)
 system("free|grep \"^Mem:\");

The if statement ensures that this output only occurs if a threshold of >= 3 MB is
leaking.

Here is the output upon execution:

$./membugs 12
leakage_case2(): will now leak a total of 3200000 bytes (3.05 MB)
 [32 bytes * 100000 loops]
Mem: 16305508 5982408 297708 1149648 10025392 10194628
leakage_case2(): 0:malloc(32)
leakage_case2(): 10000:malloc(32)
leakage_case2(): 20000:malloc(32)
leakage_case2(): 30000:malloc(32)
leakage_case2(): 40000:malloc(32)
leakage_case2(): 50000:malloc(32)
leakage_case2(): 60000:malloc(32)
leakage_case2(): 70000:malloc(32)
leakage_case2(): 80000:malloc(32)
leakage_case2(): 90000:malloc(32)
Mem: 16305508 5986996 293120 1149648 10025392 10190040

leakage_case2(): will now leak a total of 12582912 bytes (12.00 MB)
 [1048576 bytes * 12 loops]
Mem: 16305508 5987500 292616 1149648 10025392 10189536
leakage_case2(): 0:malloc(1048576)
Mem: 16305508 5999124 280992 1149648 10025392 10177912
$

Linux Memory Issues Chapter 5

[187]

We see the two scenarios executing; check out the values of the free column. We
shall subtract them to see the memory that's been leaked:

We allocate, and leak, a tiny amount of memory (32 bytes) but in a loop
100,000 times: Leaked memory = 297708 - 293120 = 4588 KB ~=
4.5 MB

We allocate, and leak, a large amount of memory (1 MB) in a loop 12 times:
Leaked memory = 292616 - 280992 = 11624 KB ~= 11.4 MB

Of course, do realize that once the process dies, all its memory is freed back to the
system. That's why we performed the one-liner script within the process, while it was
alive.

Test case 13
Complex case—wrapper APIs. At times, one can be forgiven for thinking that all
programmers are taught: after calling malloc (or calloc, realloc), call free. malloc and
free go together! How hard can that be? Why are there are so many sneaky leakage
bugs if this is the case?

A key reason that leakage defects occur and are hard to pinpoint is because some
APIs—often, third-party library APIs—might internally perform dynamic memory
allocation and expect the caller to free the memory. The API will (hopefully)
document this important fact; but who (tongue in cheek) reads documentation?

That's really the crux of the issue in real-world software; it is complex and we work
on large, complex projects. It is indeed easy to miss the fact that an underlying API
allocates memory and the caller is responsible for freeing it. Precisely this occurs quite
often.

There's another case: on complex codebases (especially those with spaghetti code),
where a lot of deeply nested layers entangle the code, it can get especially hard to
perform the required cleanup—including memory-frees—on every possible error
case.

Linux Memory Issues Chapter 5

[188]

The Linux kernel community offers a clean, though fairly
controversial, way to keep cleanup code paths clean and working
well, that is, the use of the local go to perform centralized error-
handling! It helps indeed. Interested in learning more? Check
out section 7, Centralized exiting of functions at https:/ /www. kernel.
org/ doc/ Documentation/ process/ coding- style. rst.

Test case 13.1
Here is a simple example. Let's emulate this with the following test case code:

/*
 * A demo: this function allocates memory internally; the caller
 * is responsible for freeing it!
 */
static void silly_getpath(char **ptr)
{
#include <linux/limits.h>
 *ptr = malloc(PATH_MAX);
 if (!ptr)
 FATAL("malloc failed\n");

 strcpy(*ptr, getenv("PATH"));
 if (!*ptr)
 FATAL("getenv failed\n");
}

/* test case 13 : memory leak test case 3: "lib" API leak */
static void leakage_case3(int cond)
{
 char *mypath=NULL;

 printf("\n## Leakage test: case 3: \"lib\" API"
 ": runtime cond = %d\n", cond);

 /* Use C's illusory 'pass-by-reference' model */
 silly_getpath(&mypath);
 printf("mypath = %s\n", mypath);

 if (cond) /* Bug: if cond==0 then we have a leak! */
 free(mypath);
}

https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst
https://www.kernel.org/doc/Documentation/process/coding-style.rst

Linux Memory Issues Chapter 5

[189]

We invoke it as:

[...]
case 13:
 leakage_case3(0);
 leakage_case3(1);
 break;

As usual, no compiler or runtime warnings result. Here is the output (recognize that
the first invocation is the buggy case, as cond has the value of 0 and thus the
free(3) will not be called):

$./membugs 13

Leakage test: case 3: "lib" API: runtime cond = 0
mypath =
/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/sbin:/usr/sbin:/usr
/local/sbin:/home/kai/MentorGraphics/Sourcery_CodeBench_Lite_for_ARM_G
NU_Linux/bin/:/mnt/big/scratchpad/buildroot-2017.08.1/output/host/bin/
:/sbin:/usr/sbin:/usr/local/sbin

Leakage test: case 3: "lib" API: runtime cond = 1
mypath =
/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/sbin:/usr/sbin:/usr
/local/sbin:/home/kai/MentorGraphics/Sourcery_CodeBench_Lite_for_ARM_G
NU_Linux/bin/:/mnt/big/scratchpad/buildroot-2017.08.1/output/host/bin/
:/sbin:/usr/sbin:/usr/local/sbin
$

There is no bug apparent by looking at the output—and that is partly what makes
these bugs so dangerous!

This case is critical for developers and testers to understand; it warrants checking out
a couple of real-world examples.

Test case 13.2
Example—the Motif library. Motif is a legacy library, part of the X Window System; it
was used (and perhaps still is) to develop GUIs for Unix (and Unix-like) systems.

Linux Memory Issues Chapter 5

[190]

For the purpose of this example, we will focus on one of its
APIs: XmStringCreateLocalized(3). GUI developers use this function to create
what Motif calls a "compound string"—essentially, just a string that holds text in a
specific locale (for the purposes of I18N-internationalization). This is its signature:

#include <Xm/Xm.h>
XmString XmStringCreateLocalized(char *text);

So, let's imagine the developer uses it to generate compound strings (for various
purposes; very often, for the labels of a label or push button widget).

So, what's the problem?
Leakage! How? Read the documentation from the man page (https:/ /linux. die.
net/man/3/xmstringcreatelocalized) on XmStringCreateLocalized(3):

[...]

The function will allocate space to hold the returned compound string.
The application is responsible for managing the allocated space. The
application can recover the allocated space by calling XmStringFree.
[...]

Clearly, the developer must not only call XmStringCreateLocalized(3) but must
also remember to free up the memory internally allocated by it for the compound
string by calling XmStringFree(3)!

Failing to do so will result in a leak. I have personal experience with this scenario—a
buggy application invoked the XmStringCreateLocalized(3) and did not call its
counterpart, XmStringFree(3). Not only that, this code ran often as it was invoked
as part of the body of an outer loop! So, the leakage multiplied.

https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized
https://linux.die.net/man/3/xmstringcreatelocalized

Linux Memory Issues Chapter 5

[191]

Test case 13.3
Example—the Nortel Porting Project. There is a story (refer to the information box as
follows) about how developers at Nortel (a large telecom and network equipment
multinational corporation in Canada) had a very hard time debugging what turned
out to be a memory leakage issue. The crux of it is this: when porting a Unix
application to VxWorks, while testing it, they noticed a small 18-byte leak occurring,
which would eventually cause the application to crash. Finding the source of the leak
was a nightmare— reviewing the code endlessly provided no clues. Finally, the game
changer proved to be the use of a leak detection tool (we'll cover this in the coming
Chapter 6, Debugging Tools for Memory Issues). Within minutes, they uncovered the
root cause of the leak: an innocent-looking API, inet_ntoa(3) (refer to the
information box), which worked in the usual manner on Unix, and as well as in
VxWorks. The catch: in the VxWorks implementation, it was allocating memory
under the hood—which the caller was responsible for freeing! This fact was
documented, but it was a porting project! Once this fact was realized, it was quickly
fixed.

Article: The ten secrets of embedded debugging, Schneider and
Fraleigh: https:/ /www. embedded. com/ design/ prototyping- and-
development/ 4025015/ The-ten- secrets- of- embedded- debugging
The man page entry on inet_ntoa(3) states: The inet_ntoa()
function converts the Internet host address in, given in network byte
order, to a string in IPv4 dotted-decimal notation. The string is
returned in a statically allocated buffer, which subsequent calls will
overwrite.

Some observations on programs with leakage bugs:

The program behaves normally for a long, long while; suddenly, after, say,
a month of uptime, it abruptly crashes.
The root leakage could be very small—a few bytes at a time; but is probably
invoked often.
Attempting to find leakage bugs by carefully matching your instances
of malloc(3) and free(3) does not work; library API wrappers often
allocate memory under the hood and expect the caller to free it.
Leaks often escape unnoticed because they are inherently difficult to spot
in large codebases, and once the process dies, the leaked memory is freed
back to the system.

https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging
https://www.embedded.com/design/prototyping-and-development/4025015/The-ten-secrets-of-embedded-debugging

Linux Memory Issues Chapter 5

[192]

Bottom line:

Do not assume anything
Read the API documentation carefully
Use tools (covered in the coming Chapter 6, Debugging Tools for Memory
Issues)

One cannot overstate the importance of using tools to detect memory bugs!

Undefined behavior
We've covered quite a bit of ground and seen quite a few common memory bugs,
which include:

Incorrect memory accesses
Using uninitialized variables
Out-of-bounds memory accesses (read/write
underflow/overflow bugs)
Use-after-free / use-after-return (out-of-scope) bugs
Double-free

Leakage
Data Races (details follow in a later chapter)

As mentioned earlier, all of these fall into a general categorization—UB. As the phrase
implies, the behavior of the process (or thread) is undefined once any of these bugs are
hit. Even worse, many of them do not display any directly noticeable side effects; but
the process is unstable and will—eventually—crash. Leakage bugs, in particular, are
major spoilsports in this: the leakage may be around for a long while before a crash
actually occurs. Not only that, the trail left behind (that the developer will be
breathlessly chasing) might often be a red herring—matters of little consequence,
things that have no real bearing on the bug's root cause. All of this, of course, makes
debugging UB an experience most of us would prefer to avoid!

The good news is that UB is avoidable, as long as the developer understands the
underlying causes of UB (which we have covered in the previous sections), and of
course, the ability to use powerful tools to discover, and then fix, these bugs, which is
our next topic area.

Linux Memory Issues Chapter 5

[193]

For a deeper look at the many, many possible kinds of UB bugs,
please check out:Appendix J.2: Undefined behavior: a nonnormative,
non-exhaustive list of undefined behaviors in C: http:/ / www.open-
std. org/ jtc1/ sc22/ wg14/ www/ docs/ n1548. pdf#page= 571.

From the in-depth C Programming Language standards—the
ISO/IEC 9899:201x Committee Draft dated 02 Dec 2010.

Along similar lines, please see CWE VIEW: Weaknesses in Software
Written in C: https:/ /cwe.mitre. org/data/ definitions/ 658. html.

Fragmentation
Fragmentation issues usually refer to problems primarily faced by the internal
implementation of the memory allocation engine itself, and not so much by the
typical application developer. Fragmentation issues are usually of two types: internal
and external.

External fragmentation usually refers to the situation where, after several days of
uptime, even if the free memory on the system is, say, 100 MB, the physically
contiguous free memory might be less than a megabyte. Thus, with processes taking
and releasing various sized memory chunks, memory has become fragmented.

Internal fragmentation usually refers to the wastage of memory caused by using an
inefficient allocation strategy; often though, this cannot be helped, since wastage
tends to be a side effect of many heap-based allocators. The modern glibc engine uses
memory pools, which greatly reduce internal fragmentation.

We shall not attempt to delve into fragmentation issues in this book.

Suffice it to say that, if in a large project you suspect fragmentation
issues, you should try using a tool that displays your process
runtime memory map (on Linux, check out /proc/<PID>/maps as a
starting point). Interpreting it, you could possibly look at
redesigning your application to avoid said fragmentation.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf#page=571
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html

Linux Memory Issues Chapter 5

[194]

Miscellaneous
Also, do realize that it's a bug to attempt to use just a pointer to access memory unless
the memory has already been allocated. Remember that pointers have no memory;
they have to be allocated memory (either statically at compile time or dynamically at
runtime).

For example, one writes a C function that uses the parameter as a return value—a
common C programming trick (these are often called value-result or in-out
parameters):

unsigned long *uptr;
[...]
 my_awesome_func(uptr); // bug! value to be returned in 'uptr'
[...]

This is a bug; the uptr variable is just a pointer—it has no memory. One way to fix
this is as follows:

unsigned long *uptr;
[...]
 uptr = malloc(sizeof(unsigned long));
 if (!uptr) {
 [...handle the error...]
 }
 my_awesome_func(uptr); // value returned in 'uptr'
 [...]
 free(uptr);

Or, even simpler, why not just use compile-time memory for cases such as this:

unsigned long uptr; // compile-time allocated memory
[...]
 my_awesome_func(&uptr); // value returned in 'uptr'
[...]

Linux Memory Issues Chapter 5

[195]

Summary
In this chapter, we delved into a critical area: the fact that the seemingly simple,
dynamic memory management APIs can cause deep and difficult-to-detect bugs in
real-world fielded systems.

The common classes of memory bugs, such as uninitialized memory usage (UMR),
out-of-bounds accesses (read|write underflow|overflow bugs), and the double free,
were covered. Memory leakage is a common and dangerous memory bug—we
looked at three different cases of it.

The supplied membugs program helps the reader actually see and try out the various
memory bugs covered via small test cases. In the next chapter we shall dive into using
tools to help identify these dangerous defects.

6
Debugging Tools for Memory

Issues
We humans (we assume a human is reading this book and not some form of AI,
though, who knows nowadays) are good at many intricate, complex tasks; but, we're
also terrible at many mundane ones. That's why we invented computers—with the
software to drive them!

Well. We're not really great at spotting details buried deep inside C (or assembly)
code—memory bugs are a prime example of cases where we humans can use help.
So, guess what: we've invented software tools to help us—they do the mundane,
boring job of instrumenting and checking millions and billions of lines of our code
and binaries, and are getting really effective at catching our bugs. Of course, when all
is said and done, the best tool is still your brain, but nevertheless one might well ask:
Who and what will debug the tools that one uses for debugging? The answer, of
course, is more tools, and you, the human programmer.

In this chapter, the reader will learn to use two of the best-in-class memory debug
tools:

Valgrind's Memcheck
Sanitizer tools (ASan)

Useful tables summarizing and comparing their features are provided. Also, glibc's
malloc tuning via mallopt(3) is seen.

Debugging Tools for Memory Issues Chapter 6

[197]

This particular chapter has no source code of it's own; instead, we
use the source code from the preceding chapter, Chapter 5, Linux
Memory Issues. Our membugs program test cases will be tried and
tested under both Valgrind and ASan to see if they can catch the
memory bugs that our memugs program's test cases work hard to
provide. Thus, we definitely suggest you look over the previous
chapter, and the membugs.c source code, to regain familiarity with
the test cases we will be running.

Tool types
Broadly speaking, within the scope of these areas, there are two kinds of tools:

Dynamic analysis tools
Static analysis tools

Dynamic analysis tools work essentially by instrumenting the runtime process. Thus,
to gain the most out of them, a lot of attention must be devoted to ensuring that the
tools actually run over all possible code paths; done by carefully and painstakingly
writing test cases to ensure complete code coverage. This is a key point and will be
mentioned again (Importantly, Chapter 19, Troubleshooting and Best Practices, covers
such points). While very powerful, dynamic analysis tools usually result in a
significant runtime performance hit and more memory usage.

Static analysis tools, on the other hand, work upon source code; in this sense, they are
similar to the compiler. They often go well beyond the typical compiler, aiding the
developer in uncovering all kinds of potential bugs. Perhaps the original Unix lint
program could be considered the precursor to today's powerful static analyzers.
Nowadays, very powerful commercial static analyzers (with fancy GUI frontends)
exist, and are worth the money and time one spends on them. The downside is that
these tools might raise a lot of false positives; the better ones let the programmer
perform useful filtering. We won't cover static analyzers in this text (see the Further
reading section on the GitHub repository, for a list of static analyzers for C/C++).

Now, let's check out some modern-day memory debug tools; they all fall into
the dynamic analysis tools class. Do learn how to use them effectively—they're a
necessary weapon against all kinds of Undefined Behavior (UB).

Debugging Tools for Memory Issues Chapter 6

[198]

Valgrind
Valgrind (pronounced as val-grinned) is an instrumentation framework for a suite of
powerful tools. It is open source software (OSS), released under the terms of the
GNU GPL ver. 2; it was originally developed by Julian Seward. Valgrind is an award-
winning suite of tools for memory debugging and profiling. It has evolved to become
a framework for creating dynamic analysis tools. In fact, it's really a virtual machine;
Valgrind uses a technology called dynamic binary instrumentation (DBI) to
instrument code. Read more on its homepage: http:/ /valgrind. org/.

The tremendous upside of Valgrind is its tool suite—primarily the Memory Checker
tool (Memcheck). There are several other checker and profiling tools as well,
enumerated in the following table (in alphabetical order):

Valgrind tool
name Purpose

cachegrind CPU cache profiler.

callgrind Extension to cachegrind; provides more callgraph info.
KCachegrind is a good GUI visualizer for cachegrind/callgrind.

drd Pthreads bug detector.

helgrind Data Race detector for multithreaded applications (mostly
Pthreads).

massif Heap profiler (heap usage graphing, max allocations tracking).

Memcheck

Memory bugs detector; includes out-of-bounds (OOB) accesses
(read|write under|overflow), uninitialized data accesses, UAF,
UAR, memory leakage, double free, and overlapping memory
region bugs. This is the default tool.

Note that some of the lesser used tools (such as lackey, nulgrind, none), and some of
the experimental tools (exp-bbv, exp-dhat, exp-sgcheck) have not been shown in the
table.

Select a tool for Valgrind to run via the --tool= option (giving any of the preceding
as the parameter). In this book, we focus on Valgrind's Memcheck tool only.

Using Valgrind's Memcheck tool
Memcheck is Valgrind's default tool; you do not need to pass it explicitly, but can do
so with the valgrind --tool=memcheck <program-to-execute with params>
syntax.

http://valgrind.org/
http://valgrind.org/
http://valgrind.org/
http://valgrind.org/
http://valgrind.org/
http://valgrind.org/
http://valgrind.org/
http://valgrind.org/

Debugging Tools for Memory Issues Chapter 6

[199]

As a trivial example, let's run Valgrind on the df(1) utility (on an Ubuntu box):

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 17.10
Release: 17.10
Codename: artful
$ df --version |head -n1
df (GNU coreutils) 8.26
$ valgrind df
==1577== Memcheck, a memory error detector
==1577== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==1577== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright
info
==1577== Command: df
==1577==
Filesystem 1K-blocks Used Available Use% Mounted on
udev 479724 0 479724 0% /dev
tmpfs 100940 10776 90164 11% /run
/dev/sda1 31863632 8535972 21686036 29% /
tmpfs 504692 0 504692 0% /dev/shm
tmpfs 5120 0 5120 0% /run/lock
tmpfs 504692 0 504692 0% /sys/fs/cgroup
tmpfs 100936 0 100936 0% /run/user/1000
==1577==
==1577== HEAP SUMMARY:
==1577== in use at exit: 3,577 bytes in 213 blocks
==1577== total heap usage: 447 allocs, 234 frees, 25,483 bytes
allocated
==1577==
==1577== LEAK SUMMARY:
==1577== definitely lost: 0 bytes in 0 blocks
==1577== indirectly lost: 0 bytes in 0 blocks
==1577== possibly lost: 0 bytes in 0 blocks
==1577== still reachable: 3,577 bytes in 213 blocks
==1577== suppressed: 0 bytes in 0 blocks
==1577== Rerun with --leak-check=full to see details of leaked memory
==1577==
==1577== For counts of detected and suppressed errors, rerun with: -v
==1577== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from
0)
$

Valgrind literally takes over and runs the df process within it, instrumenting all
dynamic memory accesses. It then prints its report. In the preceding code, the lines
are prefixed with ==1577==; that's just the PID of the df process.

Debugging Tools for Memory Issues Chapter 6

[200]

As no runtime memory bugs were found, no output appears (you will see the
difference soon when we run our membugs program under Valgrind's control). In
terms of memory leakage, the report states:

definitely lost: 0 bytes in 0 blocks

All these are zero values, so it's fine. If the values under definitely lost were
positive, then this would indeed indicate a memory leakage bug that must be further
investigated and fixed. The other labels—indirectly/possibly lost, still
reachable—are often due to complex or indirect memory handling within the code
base (in effect, they are usually false positives one can ignore).

The still reachable usually signifies that, at process exit, some memory blocks
were not explicitly freed by the application (but got implicitly freed when the process
died). The following statements show this:

In use at exit: 3,577 bytes in 213 blocks
Total heap usage: 447 allocs, 234 frees, 25,483 bytes

Out of a total of 447 allocs, only 234 frees were done, leaving 447 - 234 = 213 blocks left
unfreed.

Okay, now for the interesting bit: let's run our membugs program test cases (from the
preceding Chapter 5, Linux Memory Issues) under Valgrind and see if it catches the
memory bugs that the test cases work hard to provide.

We definitely suggest you look over the previous chapter, and the membugs.c source
code, to regain familiarity with the test cases we will be running.

The membugs program has a total of 13 test cases; we shall not
attempt to display the output of all of them within the book; we
leave it as an exercise to the reader to try running the program with
all test cases under Valgrind and deciphering its output report.

It would be of interest to most readers to see the summary table at
the end of this section, showing the result of running Valgrind on
each of the test cases.

Test case #1: Uninitialized memory access

$./membugs 1
true: x=32568
$

Debugging Tools for Memory Issues Chapter 6

[201]

For readability, we remove parts of the output shown as follows and
truncate the program pathname.

Now under Valgrind's control:

$ valgrind ./membugs 1
==19549== Memcheck, a memory error detector
==19549== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==19549== Using Valgrind-3.13.0 and LibVEX; rerun with -h for
copyright info
==19549== Command: ./membugs 1
==19549==
==19549== Conditional jump or move depends on uninitialised value(s)
==19549== at 0x40132C: uninit_var (in <...>/ch3/membugs)
==19549== by 0x401451: process_args (in <...>/ch3/membugs)
==19549== by 0x401574: main (in <...>/ch3/membugs)
==19549==

[...]

==19549== Conditional jump or move depends on uninitialised value(s)
==19549== at 0x4E9101C: vfprintf (in /usr/lib64/libc-2.26.so)
==19549== by 0x4E99255: printf (in /usr/lib64/libc-2.26.so)
==19549== by 0x401357: uninit_var (in <...>/ch3/membugs)
==19549== by 0x401451: process_args (in <...>/ch3/membugs)
==19549== by 0x401574: main (in <...>/ch3/membugs)
==19549==
false: x=0
==19549==
==19549== HEAP SUMMARY:
==19549== in use at exit: 0 bytes in 0 blocks
==19549== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==19549==
==19549== All heap blocks were freed -- no leaks are possible
==19549==
==19549== For counts of detected and suppressed errors, rerun with: -v
==19549== Use --track-origins=yes to see where uninitialised values
come from
==19549== ERROR SUMMARY: 6 errors from 6 contexts (suppressed: 0 from
0)
$

Debugging Tools for Memory Issues Chapter 6

[202]

Clearly, Valgrind has caught the uninitialized memory access bug! The text
highlighted in bold clearly reveals the case.

However, notice that though Valgrind can show us the call stack—including the
process pathname—it seems to be unable to show us the line number in the source
code where the offending bug is present. Hang on, though. We can achieve precisely
this by running Valgrind with the debug-enabled version of the program:

$ make membugs_dbg
gcc -g -ggdb -gdwarf-4 -O0 -Wall -Wextra -c membugs.c -o membugs_dbg.o

[...]

membugs.c: In function ‘uninit_var’:
membugs.c:283:5: warning: ‘x’ is used uninitialized in this function [-
Wuninitialized]
 if (x > MAXVAL)
 ^

[...]

gcc -g -ggdb -gdwarf-4 -O0 -Wall -Wextra -c ../common.c -o
common_dbg.o
gcc -o membugs_dbg membugs_dbg.o common_dbg.o

[...]

Common GCC flags used for debugging

See the gcc(1) man page for details. Briefly:
-g: Produce sufficient debugging information such that a tool such
as the GNU Debugger (GDB) has to debug symbolic information to
work with (modern Linux would typically use the DWARF format).
-ggdb: Use the most expressive format possible for the OS.
-gdwarf-4: Debug info is in the DWARF-<version> format (ver. 4 is
appropriate).
-O0 : Optimization level 0; good for debugging.

In the following code, we retry running Valgrind with the debug-enabled version of
our binary executable, membugs_dbg:

$ valgrind --tool=memcheck ./membugs_dbg 1
==20079== Memcheck, a memory error detector
==20079== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.

Debugging Tools for Memory Issues Chapter 6

[203]

==20079== Using Valgrind-3.13.0 and LibVEX; rerun with -h for
copyright info
==20079== Command: ./membugs_dbg 1
==20079==
==20079== Conditional jump or move depends on uninitialised value(s)
==20079== at 0x40132C: uninit_var (membugs.c:283)
==20079== by 0x401451: process_args (membugs.c:326)
==20079== by 0x401574: main (membugs.c:379)
==20079==
==20079== Conditional jump or move depends on uninitialised value(s)
==20079== at 0x4E90DAA: vfprintf (in /usr/lib64/libc-2.26.so)
==20079== by 0x4E99255: printf (in /usr/lib64/libc-2.26.so)
==20079== by 0x401357: uninit_var (membugs.c:286)
==20079== by 0x401451: process_args (membugs.c:326)
==20079== by 0x401574: main (membugs.c:379)
==20079==
==20079== Use of uninitialised value of size 8
==20079== at 0x4E8CD7B: _itoa_word (in /usr/lib64/libc-2.26.so)
==20079== by 0x4E9043D: vfprintf (in /usr/lib64/libc-2.26.so)
==20079== by 0x4E99255: printf (in /usr/lib64/libc-2.26.so)
==20079== by 0x401357: uninit_var (membugs.c:286)
==20079== by 0x401451: process_args (membugs.c:326)
==20079== by 0x401574: main (membugs.c:379)

[...]

==20079==
false: x=0
==20079==
==20079== HEAP SUMMARY:
==20079== in use at exit: 0 bytes in 0 blocks
==20079== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==20079==
==20079== All heap blocks were freed -- no leaks are possible
==20079==
==20079== For counts of detected and suppressed errors, rerun with: -v
==20079== Use --track-origins=yes to see where uninitialised values
come from
==20079== ERROR SUMMARY: 6 errors from 6 contexts (suppressed: 0 from
0)
$

As usual, read the call stack in a bottom-up fashion and it will make sense!

Important: Please note that, unfortunately, it's quite possible that
the precise line numbers shown in the output as follows may not
precisely match the line number in the latest version of the source
file in the book's GitHub repository.

Debugging Tools for Memory Issues Chapter 6

[204]

Here is the the source code (the nl utility is used here to show the code with all lines
numbered):

$ nl --body-numbering=a membugs.c

[...]

 278 /* option = 1 : uninitialized var test case */
 279 static void uninit_var()
 280 {
 281 int x;
 282
 283 if (x)
 284 printf("true case: x=%d\n", x);
 285 else
 286 printf("false case\n");
 287 }

[...]

 325 case 1:
 326 uninit_var();
 327 break;

[...]

 377 int main(int argc, char **argv)
 378 {
 379 process_args(argc, argv);
 380 exit(EXIT_SUCCESS);
 381 }

We can now see that Valgrind has indeed perfectly captured the buggy case.

Test case #5: read overflow on compile-time memory:

$ valgrind ./membugs_dbg 5
==23024== Memcheck, a memory error detector
==23024== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==23024== Using Valgrind-3.13.0 and LibVEX; rerun with -h for
copyright info
==23024== Command: ./membugs_dbg 5
==23024==
arr = aaaaa����
==23024==
==23024== HEAP SUMMARY:
==23024== in use at exit: 0 bytes in 0 blocks

Debugging Tools for Memory Issues Chapter 6

[205]

==23024== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==23024==
==23024== All heap blocks were freed -- no leaks are possible
==23024==
==23024== For counts of detected and suppressed errors, rerun with: -v
==23024== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from
0)
$

Would you look at that!? Valgrind fails to catch the read overflow memory bug.
Why? It's a limitation: Valgrind can only instrument, and therefore catch, UB (bugs)
on dynamically allocated memory. The preceding test case used static compile-time
allocated memory.

So, let's try the same test, but this time using dynamically allocated memory; that's
precisely what test case #6 is designed to do.

Test case #6: read overflow on dynamic memory (for readability, we truncated some
of the output):

$./membugs_dbg 2>&1 |grep 6
 option = 6 : out-of-bounds : read overflow [on dynamic memory]
$ valgrind ./membugs_dbg 6
[...]
==23274== Command: ./membugs_dbg 6
==23274==
==23274== Invalid write of size 1
==23274== at 0x401127: read_overflow_dynmem (membugs.c:215)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
==23274== Address 0x521f045 is 0 bytes after a block of size 5
alloc'd
==23274== at 0x4C2FB6B: malloc (vg_replace_malloc.c:299)
==23274== by 0x4010D9: read_overflow_dynmem (membugs.c:205)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
[...]
==23274== Invalid write of size 1
==23274== at 0x40115E: read_overflow_dynmem (membugs.c:216)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
==23274== Address 0x521f04a is 5 bytes after a block of size 5
alloc'd
==23274== at 0x4C2FB6B: malloc (vg_replace_malloc.c:299)
==23274== by 0x4010D9: read_overflow_dynmem (membugs.c:205)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)

Debugging Tools for Memory Issues Chapter 6

[206]

==23274==
==23274== Invalid read of size 1
==23274== at 0x4C32B94: strlen (vg_replace_strmem.c:458)
==23274== by 0x4E91955: vfprintf (in /usr/lib64/libc-2.26.so)
==23274== by 0x4E99255: printf (in /usr/lib64/libc-2.26.so)
==23274== by 0x401176: read_overflow_dynmem (membugs.c:217)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
==23274== Address 0x521f045 is 0 bytes after a block of size 5
alloc'd
==23274== at 0x4C2FB6B: malloc (vg_replace_malloc.c:299)
==23274== by 0x4010D9: read_overflow_dynmem (membugs.c:205)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
[...]
arr = aaaaaSecreT
==23274== Conditional jump or move depends on uninitialised value(s)
==23274== at 0x4E90DAA: vfprintf (in /usr/lib64/libc-2.26.so)
==23274== by 0x4E99255: printf (in /usr/lib64/libc-2.26.so)
==23274== by 0x401195: read_overflow_dynmem (membugs.c:220)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
==23274==
==23274== Use of uninitialised value of size 8
==23274== at 0x4E8CD7B: _itoa_word (in /usr/lib64/libc-2.26.so)
==23274== by 0x4E9043D: vfprintf (in /usr/lib64/libc-2.26.so)
==23274== by 0x4E99255: printf (in /usr/lib64/libc-2.26.so)
==23274== by 0x401195: read_overflow_dynmem (membugs.c:220)
==23274== by 0x401483: process_args (membugs.c:341)
==23274== by 0x401574: main (membugs.c:379)
[...]
==23274== ERROR SUMMARY: 31 errors from 17 contexts (suppressed: 0
from 0)
$

Well, this time, plenty of errors were caught with precise call stack locations revealing
the exact point in the source (as we have compiled with -g).

Debugging Tools for Memory Issues Chapter 6

[207]

Test case #8: UAF (use-after-free):

$./membugs_dbg 2>&1 |grep 8
 option = 8 : UAF (use-after-free) test case
$

A (partial) screenshot of the action when Valgrind catches the UAF bugs

Debugging Tools for Memory Issues Chapter 6

[208]

Valgrind does catch the UAF!

Test case #8: UAR (use-after-return):

$./membugs_dbg 9
res: (null)
$ valgrind ./membugs_dbg 9
==7594== Memcheck, a memory error detector
==7594== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==7594== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright
info
==7594== Command: ./membugs_dbg 9
==7594==
res: (null)
==7594==
==7594== HEAP SUMMARY:
==7594== in use at exit: 0 bytes in 0 blocks
==7594== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==7594==
==7594== All heap blocks were freed -- no leaks are possible
==7594==
==7594== For counts of detected and suppressed errors, rerun with: -v
==7594== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from
0)
$

Whoops! Valgrind does not catch the UAR bug!

Test Case #13: Memory leak case #3—lib API leak. We run the memory leak test
case #3 by selecting 13 as the parameter to membugs. It's useful to note that only when
run with the --leak-check=full option does Valgrind display the origin of the leak
(via the displayed call stack):

$ valgrind --leak-resolution=high --num-callers=50
--leak-check=full ./membugs_dbg 13
==22849== Memcheck, a memory error detector
==22849== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==22849== Using Valgrind-3.13.0 and LibVEX; rerun with -h for
copyright info
==22849== Command: ./membugs_dbg 13
==22849==

Leakage test: case 3: "lib" API: runtime cond = 0
mypath =
/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/sbin:/usr/sbin:/usr
/local/sbin:/home/kai/MentorGraphics/Sourcery_CodeBench_Lite_for_ARM_G

Debugging Tools for Memory Issues Chapter 6

[209]

NU_Linux/bin/:/mnt/big/scratchpad/buildroot-2017.08.1/output/host/bin/
:/sbin:/usr/sbin:/usr/local/sbin

Leakage test: case 3: "lib" API: runtime cond = 1
mypath =
/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/sbin:/usr/sbin:/usr
/local/sbin:/home/kai/MentorGraphics/Sourcery_CodeBench_Lite_for_ARM_G
NU_Linux/bin/:/mnt/big/scratchpad/buildroot-2017.08.1/output/host/bin/
:/sbin:/usr/sbin:/usr/local/sbin
==22849==
==22849== HEAP SUMMARY:
==22849== in use at exit: 4,096 bytes in 1 blocks
==22849== total heap usage: 3 allocs, 2 frees, 9,216 bytes allocated
==22849==
==22849== 4,096 bytes in 1 blocks are definitely lost in loss record 1
of 1
==22849== at 0x4C2FB6B: malloc (vg_replace_malloc.c:299)
==22849== by 0x400A0C: silly_getpath (membugs.c:38)
==22849== by 0x400AC6: leakage_case3 (membugs.c:59)
==22849== by 0x40152B: process_args (membugs.c:367)
==22849== by 0x401574: main (membugs.c:379)
==22849==
==22849== LEAK SUMMARY:
==22849== definitely lost: 4,096 bytes in 1 blocks
==22849== indirectly lost: 0 bytes in 0 blocks
==22849== possibly lost: 0 bytes in 0 blocks
==22849== still reachable: 0 bytes in 0 blocks
==22849== suppressed: 0 bytes in 0 blocks
==22849==
==22849== For counts of detected and suppressed errors, rerun with: -v
==22849== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from
0)
$

The Valgrind man page recommends setting --leak-resolution=high and --
num-callers= to 40 or higher.

The man page on valgrind(1) covers the many options it provides (such as logging
and tool (Memcheck) options); take a look to gain a deeper understanding of this
tool's usage.

Debugging Tools for Memory Issues Chapter 6

[210]

Valgrind summary table
With respect to our test cases (incorporated into our membugs program), here is
Valgrind's report card and memory bugs given as follows:

Test case # Test case Detected by Valgrind?
1 Uninitialized memory read (UMR) Yes

2 Out-of-bounds (OOB): write overflow
[on compile-time memory] No

3 OOB: write overflow
[on dynamic memory] Yes

4 OOB: write underflow
[on dynamic memory] Yes

5 OOB: read overflow
[on compile-time memory] No

6 OOB: read overflow
[on dynamic memory] Yes

7 OOB: read underflow
[on dynamic memory] Yes

8 UAF, also known as dangling pointer Yes
9 UAR, also known as use-after-scope (UAS) No
10 Double free Yes
11 Memory leak test case 1: simple leak Yes
12 Memory leak test case 1: leak more (in a loop) Yes
13 Memory leak test case 1: lib API leak Yes

Valgrind pros and cons : a quick summary
Valgrind pros:

Catches common memory bugs (UB) on dynamically allocated memory
regions

Using uninitialized variables
Out-of-bounds memory accesses (read/write
underflow/overflow bugs)
Use-after-free / use-after-return (out-of-scope) bugs
Double free
Leakage

Debugging Tools for Memory Issues Chapter 6

[211]

No modification to source code required
No recompile required
No special compiler flags required

Valgrind cons:

Performance: target software may run up to 10 to 30 times slower when run
under Valgrind.
Memory footprint: each allocation within the target program requires
Valgrind to make a memory allocation as well (making running Valgrind
on highly-resource-constrained embedded Linux systems difficult).
Cannot catch bugs on statically (compile-time) allocated memory regions.
In order to see the call stack with line-number information, a
recompile/build with the -g flag is required.

The fact is, Valgrind remains a powerful weapon in one's armory against bugs. There
are many real-world projects that use Valgrind; check out the long list at http:/ /
valgrind.org/gallery/ users. html.

There is always more to learn and explore: Valgrind provides a
GDB monitor mode allowing you to do advanced debugging on
your program via the GNU debugger (GDB). This is particularly
useful for using Valgrind on programs that never terminate
(daemons being the classic case).

The third chapter of Valgrind's manual is very helpful in this
regard: http:/ /valgrind. org/ docs/ manual/ manual- core- adv. html

Sanitizer tools
Sanitizers are a suite of open source tools from Google; like other memory debug
tools, they tackle the usual common memory bugs and UB issues, including OOB
(out-of-bounds accesses: read/write under/over-flow), UAF, UAR, double free, and
memory leakage. One of the tools also handles data races in C/C++ code.

A key difference is that the sanitizer tools introduce instrumentation into the code via
the compiler. They use a technology called Compile-time instrumentation (CTI) as
well as shadow memory techniques. As of this writing, ASan is a part of and supports
GCC ver 4.8 and LLVM (Clang) ver. 3.1 and above.

http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/gallery/users.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html
http://valgrind.org/docs/manual/manual-core-adv.html

Debugging Tools for Memory Issues Chapter 6

[212]

Sanitizer toolset
 To use a given tool, compile the program with the flag(s) shown in the
Usage column:

Sanitizer tool (short name) Purpose Usage (compiler flags)
Linux
platforms
[+comments]

AddressSanitizer (ASan)

Detecting generic
memory errors
[heap|stack|global
buffer over|under-
flow, UAF, UAR,
init order bugs]

-fsanitize=address

x86, x86_64,
ARM,
Aarch64,
MIPS,
MIPS64,
PPC64.
[Cannot
combine
with TSan]

Kernel AddressSanitizer
(KASAN)

ASan for Linux
kernel-space -fsanitize=kernel-address

x86_64
[kernel ver
>=4.0],
Aarch64
[kernel ver
>= 4.4]

MemorySanitizer (MSan) UMR detector
-fsanitize=memory -fPIE -
pie [-fno-omit-frame-
pointer]

Linux
x86_64 only

ThreadSanitizer (TSan) Data Races
detector -fsanitize=thread

Linux
x86_64 only.
[Cannot
combine
with ASan
or LSan
flags]

LeakSanitizer (LSan)
(a subset of ASan)

Memory leakage
detector -fsanitize=leak

Linux x86_64
and OS X
[cannot
combine with
TSan]

UndefinedBehaviorSanitizer
(UBSan) UB detector -fsanitize=undefined

x86, x86_64,
ARM,
Aarch64,
PPC64, MIPS,
MIPS64

Debugging Tools for Memory Issues Chapter 6

[213]

Additional Documentation

Google maintains a GitHub page with documentation for the
sanitizer tools:

https:/ / github. com/ google/ sanitizers

https:/ / github. com/ google/ sanitizers/ wiki

https:/ / github. com/ google/ sanitizers/ wiki/
SanitizerCommonFlags

There are links leading to each of the tool's individual wiki
(documentation) pages. It's recommended you read them in detail
when using a tool (for example, each tool might have specific flags
and/or environment variables that the user can make use of).

The man page on gcc(1) is a rich source of information on the
intricacies of the -fsanitize= sanitizer tool gcc options.
Interestingly, most of the sanitizer tools are supported on the
Android (>=4.1) platform as well.

The Clang documentation also documents the use of the sanitizer
tools: https:/ / clang. llvm. org/ docs/ index. html.

In this chapter, we focus on using the ASan tool.

Building programs for use with ASan
As the preceding table shows, we need to compile our target application
membugs with the appropriate compiler flag(s). Also, instead of using gcc as the
compiler, it's recommended we use clang.

clang is considered a compiler frontend for several programming
languages, including C and C++; the backend is the LLVM compiler
infrastructure project. More information on Clang is available on its
Wikipedia page.

You will need to ensure that the Clang package is installed on your
Linux box; using your distribution's package manager (apt-get,
dnf, rpm) would be the easiest way.

https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html
https://clang.llvm.org/docs/index.html

Debugging Tools for Memory Issues Chapter 6

[214]

This snippet from our Makefile shows how we use clang to compile the membugs
sanitizer targets:

CC=${CROSS_COMPILE}gcc
CL=${CROSS_COMPILE}clang

CFLAGS=-Wall -UDEBUG
CFLAGS_DBG=-g -ggdb -gdwarf-4 -O0 -Wall -Wextra -DDEBUG
CFLAGS_DBG_ASAN=${CFLAGS_DBG} -fsanitize=address
CFLAGS_DBG_MSAN=${CFLAGS_DBG} -fsanitize=memory
CFLAGS_DBG_UB=${CFLAGS_DBG} -fsanitize=undefined

[...]

#--- Sanitizers (use clang): <foo>_dbg_[asan|ub|msan]
membugs_dbg_asan.o: membugs.c
 ${CL} ${CFLAGS_DBG_ASAN} -c membugs.c -o membugs_dbg_asan.o
membugs_dbg_asan: membugs_dbg_asan.o common_dbg_asan.o
 ${CL} ${CFLAGS_DBG_ASAN} -o membugs_dbg_asan membugs_dbg_asan.o
common_dbg_asan.o

membugs_dbg_ub.o: membugs.c
 ${CL} ${CFLAGS_DBG_UB} -c membugs.c -o membugs_dbg_ub.o
membugs_dbg_ub: membugs_dbg_ub.o common_dbg_ub.o
 ${CL} ${CFLAGS_DBG_UB} -o membugs_dbg_ub membugs_dbg_ub.o
common_dbg_ub.o

membugs_dbg_msan.o: membugs.c
 ${CL} ${CFLAGS_DBG_MSAN} -c membugs.c -o membugs_dbg_msan.o
membugs_dbg_msan: membugs_dbg_msan.o common_dbg_msan.o
 ${CL} ${CFLAGS_DBG_MSAN} -o membugs_dbg_msan membugs_dbg_msan.o
common_dbg_msan.o
[...]

Running the test cases with ASan
To refresh our memory, here is the help screen from our membugs program:

$./membugs_dbg_asan
Usage: ./membugs_dbg_asan option [-h | --help]
 option = 1 : uninitialized var test case
 option = 2 : out-of-bounds : write overflow [on compile-time memory]
 option = 3 : out-of-bounds : write overflow [on dynamic memory]
 option = 4 : out-of-bounds : write underflow
 option = 5 : out-of-bounds : read overflow [on compile-time memory]
 option = 6 : out-of-bounds : read overflow [on dynamic memory]
 option = 7 : out-of-bounds : read underflow

Debugging Tools for Memory Issues Chapter 6

[215]

 option = 8 : UAF (use-after-free) test case
 option = 9 : UAR (use-after-return) test case
 option = 10 : double-free test case
 option = 11 : memory leak test case 1: simple leak
 option = 12 : memory leak test case 2: leak more (in a loop)
 option = 13 : memory leak test case 3: "lib" API leak
-h | --help : show this help screen
$

The membugs program has a total of 13 test cases; we shall not
attempt to display the output of all of them in this book; we leave it
as an exercise to the reader to try out building and running the
program with all test cases under ASan and deciphering its output
report. It would be of interest to readers to see the summary table at
the end of this section, showing the result of running ASan on each
of the test cases.

Test case #1: UMR

Let's try the very first one—the uninitialized variable read test case:

$./membugs_dbg_asan 1
false case
$

It did not catch the bug! Yes, we have hit upon ASan's limitation: AddressSanitizer
cannot catch UMR on statically (compile-time) allocated memory. Valgrind did.

Well, that's taken care of by the MSan tool; its specific job is to catch UMR bugs. The
documentation states that MSan can only catch UMR on dynamically allocated
memory. We found that it even caught a UMR bug on statically allocated memory,
which our simple test case uses:

$./membugs_dbg_msan 1
==3095==WARNING: MemorySanitizer: use-of-uninitialized-value
 #0 0x496eb8 (<...>/ch5/membugs_dbg_msan+0x496eb8)
 #1 0x494425 (<...>/ch5/membugs_dbg_msan+0x494425)
 #2 0x493f2b (<...>/ch5/membugs_dbg_msan+0x493f2b)
 #3 0x7fc32f17ab96 (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
 #4 0x41a8c9 (<...>/ch5/membugs_dbg_msan+0x41a8c9)

SUMMARY: MemorySanitizer: use-of-uninitialized-value
(<...>/ch5/membugs_dbg_msan+0x496eb8)
Exiting
$

Debugging Tools for Memory Issues Chapter 6

[216]

It has caught the bug; however, this time, though we have used a debug binary
executable, built with the -g -ggdb flags, the usual filename:line_number
information is missing in the stack trace. Actually, a method to obtain this is
demonstrated in the next test case.

For now, no matter: this gives us a chance to learn another useful debug technique:
objdump(1) is one of the toolchain utilities that can greatly help here (we can achieve
similar results with tools such as readelf(1) or gdb(1)). We'll disassemble the
binary executable with objdump(1) (-d switch, and, with source via the -S switch),
and look within its output for the address where the UMR occurs:

SUMMARY: MemorySanitizer: use-of-uninitialized-value
(<...>/ch5/membugs_dbg_msan+0x496eb8)

As the output of objdump is quite large, we truncate it showing only the relevant
portion:

$ objdump -d -S ./membugs_dbg_msan > tmp

<< Now examine the tmp file >>

$ cat tmp

./membugs_dbg_msan: file format elf64-x86-64

Disassembly of section .init:

000000000041a5b0 <_init>:
 41a5b0: 48 83 ec 08 sub $0x8,%rsp
 41a5b4: 48 8b 05 ad a9 2a 00 mov 0x2aa9ad(%rip),%rax # 6c4f68
<__gmon_start__>
 41a5bb: 48 85 c0 test %rax,%rax
 41a5be: 74 02 je 41a5c2 <_init+0x12>

[...]

0000000000496e60 <uninit_var>:
{
 496e60: 55 push %rbp
 496e61: 48 89 e5 mov %rsp,%rbp
 int x; /* static mem */
 496e64: 48 83 ec 10 sub $0x10,%rsp
 [...]
 if (x)
 496e7f: 8b 55 fc mov -0x4(%rbp),%edx
 496e82: 8b 31 mov (%rcx),%esi
 496e84: 89 f7 mov %esi,%edi

Debugging Tools for Memory Issues Chapter 6

[217]

 [...]
 496eaf: e9 00 00 00 00 jmpq 496eb4 <uninit_var+0x54>
 496eb4: e8 a7 56 f8 ff callq 41c560 <__msan_warning_noreturn>
 496eb9: 8a 45 fb mov -0x5(%rbp),%al
 496ebc: a8 01 test $0x1,%al
[...]

The closest match in the objdump output to the address provided by MSan as
the 0x496eb8 error point is 0x496eb4. That's fine: just look at the preceding for the
first source line of code; it's the following line:

 if (x)

Perfect. That's exactly where the UMR occurred!

Test Case #2: write overflow [on compile-time memory]

We run the membugs program, both under Valgrind and ASan, only invoking
the write_overflow_compilemem() function to test the out-of-bounds write
overflow memory errors on a compile-time allocated piece of memory.

Case 1: Using Valgrind
Notice how Valgrind does not catch the out-of-bounds memory bug:

$ valgrind ./membugs_dbg 2
==8959== Memcheck, a memory error detector
==8959== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==8959== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright
info
==8959== Command: ./membugs_dbg 2
==8959==
==8959==
==8959== HEAP SUMMARY:
==8959== in use at exit: 0 bytes in 0 blocks
==8959== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==8959==
==8959== All heap blocks were freed -- no leaks are possible
==8959==
==8959== For counts of detected and suppressed errors, rerun with: -v
==8959== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from
0)
$

Debugging Tools for Memory Issues Chapter 6

[218]

This is because Valgrind is limited to working with only dynamically allocated
memory; it cannot instrument and work with compile time allocated memory.

Case 2: Address Sanitizer

ASan does catch the bug:

AddressSanitizer (ASan) catches the OOB write-overflow bug

A similar textual version is shown as follows:

$./membugs_dbg_asan 2
===
==25662==ERROR: AddressSanitizer: stack-buffer-overflow on address
0x7fff17e789f4 at pc 0x00000051271d bp 0x7fff17e789b0 sp
0x7fff17e789a8
WRITE of size 4 at 0x7fff17e789f4 thread T0
 #0 0x51271c (<...>/membugs_dbg_asan+0x51271c)
 #1 0x51244e (<...>/membugs_dbg_asan+0x51244e)
 #2 0x512291 (<...>/membugs_dbg_asan+0x512291)
 #3 0x7f7e19b2db96 (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
 #4 0x419ea9 (<...>/membugs_dbg_asan+0x419ea9)

Address 0x7fff17e789f4 is located in stack of thread T0 at offset 52
in frame
 #0 0x5125ef (/home/seawolf/0tmp/membugs_dbg_asan+0x5125ef)

Debugging Tools for Memory Issues Chapter 6

[219]

[...]
SUMMARY: AddressSanitizer: stack-buffer-overflow
(/home/seawolf/0tmp/membugs_dbg_asan+0x51271c)
[...]
==25662==ABORTING
$

Notice, however, that within the stack backtrace, there is no filename:line#
information. That's disappointing. Can we obtain it?

Yes indeed—the trick lies in ensuring a few things:

Compile the application with the -g switch (to include debug symbolic
info; we do this for all the *_dbg versions).
Besides the Clang compiler, a tool called llvm-symbolizer must be
installed as well. Once installed, you must figure out its exact location on
the disk and add that directory to the path.
At runtime, the ASAN_OPTIONS environment variable must be set to
the symbolize=1 value.

Here, we rerun the buggy case with llvm-symbolizer in play:

$ export PATH=$PATH:/usr/lib/llvm-6.0/bin/
$ ASAN_OPTIONS=symbolize=1 ./membugs_dbg_asan 2
===
==25807==ERROR: AddressSanitizer: stack-buffer-overflow on address
0x7ffd63e80cf4 at pc 0x00000051271d bp 0x7ffd63e80cb0 sp
0x7ffd63e80ca8
WRITE of size 4 at 0x7ffd63e80cf4 thread T0
 #0 0x51271c in write_overflow_compilemem
<...>/ch5/membugs.c:268:10
 #1 0x51244e in process_args <...>/ch5/membugs.c:325:4
 #2 0x512291 in main <...>/ch5/membugs.c:375:2
 #3 0x7f9823642b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
 #4 0x419ea9 in _start (<...>/membugs_dbg_asan+0x419ea9)
[...]
$

Now the filename:line# information shows up!

Clearly, ASan can and does instrument compile-time allocated as well as dynamically
allocated memory regions, and thus catches both memory-type bugs.

Debugging Tools for Memory Issues Chapter 6

[220]

Also, as we saw, it displays a call stack (read it from bottom to top of course). We can
see the call chain is:

_start --> __libc_start_main --> main --> process_args -->
 write_overflow_compilemem

The AddressSanitizer also displays, "Shadow bytes around the buggy address:"; here,
we do not attempt to explain the memory-shadowing technique used to catch such
bugs; if interested, please see the Further reading section on the GitHub repository.

Test case #3: write overflow (on dynamic memory)

As expected, ASan catches the bug:

$./membugs_dbg_asan 3
===
==25848==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x602000000018 at pc 0x0000004aaedc bp 0x7ffe64dd2cd0 sp
0x7ffe64dd2480
WRITE of size 10 at 0x602000000018 thread T0
 #0 0x4aaedb in __interceptor_strcpy.part.245
(<...>/membugs_dbg_asan+0x4aaedb)
 #1 0x5128fd in write_overflow_dynmem <...>/ch5/membugs.c:258:2
 #2 0x512458 in process_args <...>/ch5/membugs.c:328:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7f93abb88b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
 #5 0x419ea9 in _start (<...>/membugs_dbg_asan+0x419ea9)

0x602000000018 is located 0 bytes to the right of 8-byte region
[0x602000000010,0x602000000018) allocated by thread T0 here:
 #0 0x4d9d60 in malloc (<...>/membugs_dbg_asan+0x4d9d60)
 #1 0x512896 in write_overflow_dynmem <...>/ch5/membugs.c:254:9
 #2 0x512458 in process_args <...>/ch5/membugs.c:328:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7f93abb88b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
[...]

With llvm-symbolizer in the path, the filename:line# information again
shows up.

Debugging Tools for Memory Issues Chapter 6

[221]

Attempting to compile for sanitizer instrumentation (via the -fsanitize= GCC
switches) and trying to run the binary executable over Valgrind is not supported;
when we try this, Valgrind reports the following:

$ valgrind ./membugs_dbg 3
==8917== Memcheck, a memory error detector
==8917== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et
al.
==8917== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright
info
==8917== Command: ./membugs_dbg 3
==8917==
==8917==ASan runtime does not come first in initial library list; you
should either link runtime to your application or manually preload it
with LD_PRELOAD.
[...]

Test Case #8: UAF (use-after-free). Take a look at the following code:

$./membugs_dbg_asan 8
uaf():162: arr = 0x615000000080:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
===
==25883==ERROR: AddressSanitizer: heap-use-after-free on address
0x615000000080 at pc 0x000000444b14 bp 0x7ffde4315390 sp
0x7ffde4314b40
WRITE of size 22 at 0x615000000080 thread T0
 #0 0x444b13 in strncpy (<...>/membugs_dbg_asan+0x444b13)
 #1 0x513529 in uaf <...>/ch5/membugs.c:172:2
 #2 0x512496 in process_args <...>/ch5/membugs.c:344:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7f4ceea9fb96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
 #5 0x419ea9 in _start (<...>/membugs_dbg_asan+0x419ea9)

0x615000000080 is located 0 bytes inside of 512-byte region
[0x615000000080,0x615000000280)
freed by thread T0 here:
 #0 0x4d9b90 in __interceptor_free.localalias.0
(<...>/membugs_dbg_asan+0x4d9b90)
 #1 0x513502 in uaf <...>/ch5/membugs.c:171:2
 #2 0x512496 in process_args <...>/ch5/membugs.c:344:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7f4ceea9fb96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310

previously allocated by thread T0 here:
 #0 0x4d9d60 in malloc (<...>/membugs_dbg_asan+0x4d9d60)
 #1 0x513336 in uaf <...>/ch5/membugs.c:157:8

Debugging Tools for Memory Issues Chapter 6

[222]

 #2 0x512496 in process_args <...>/ch5/membugs.c:344:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7f4ceea9fb96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310

SUMMARY: AddressSanitizer: heap-use-after-free
(<...>/membugs_dbg_asan+0x444b13) in strncpy
[...]

Super. ASan not only reports the UAF bug, it even reports exactly where the buffer
was allocated and freed! Powerful stuff.

Test case #9: UAR

For the purpose of this example, let's say we compile the membugs program in the
usual manner, using gcc. Run the test case:

$./membugs_dbg 2>&1 | grep -w 9
 option = 9 : UAR (use-after-return) test case
$./membugs_dbg_asan 9
res: (null)
$

ASan, as such, does not catch this dangerous UAR bug! As we saw earlier, neither
does Valgrind. But, the compiler does emit a warning!

Hang on, though: the Sanitizers documentation mentions that ASan can indeed catch
this UAR bug, if:

clang (ver r191186 onward) is used to compile the code (not gcc)
A special flag, detect_stack_use_after_return is set to 1

So, we recompile the executable via Clang (again, we assume the Clang package is
installed). In reality, our Makefile does make use of clang for all the membugs_dbg_*
builds. So, ensure we rebuild with Clang as the compiler and retry:

$ ASAN_OPTIONS=detect_stack_use_after_return=1 ./membugs_dbg_asan 9
===
==25925==ERROR: AddressSanitizer: stack-use-after-return on address
0x7f7721a00020 at pc 0x000000445b17 bp 0x7ffdb7c3ba10 sp
0x7ffdb7c3b1c0
READ of size 23 at 0x7f7721a00020 thread T0
 #0 0x445b16 in printf_common(void*, char const*, __va_list_tag*)
(<...>/membugs_dbg_asan+0x445b16)
 #1 0x4465db in vprintf (<...>/membugs_dbg_asan+0x4465db)
 #2 0x4466ae in __interceptor_printf
(<...>/membugs_dbg_asan+0x4466ae)

Debugging Tools for Memory Issues Chapter 6

[223]

 #3 0x5124b9 in process_args <...>/ch5/membugs.c:348:4
 #4 0x512291 in main <...>/ch5/membugs.c:375:2
 #5 0x7f7724e80b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
 #6 0x419ea9 in _start
(/home/seawolf/0tmp/membugs_dbg_asan+0x419ea9)

Address 0x7f7721a00020 is located in stack of thread T0 at offset 32
in frame
 #0 0x5135ef in uar <...>/ch5/membugs.c:141

 This frame has 1 object(s):
 [32, 64) 'name' (line 142) <== Memory access at offset 32 is
inside this variable
[...]

It does work. As we showed in Test case #1: UMR, one can further make use
of objdump(1) to tease out the exact place where the bug hits. We leave this as an
exercise for the reader.

More information on how ASan detects stack UAR can be found at https:/ /github.
com/google/sanitizers/ wiki/ AddressSanitizerUseAfterReturn.

Test case #10: double free

The test case for this bug is kind of interesting (refer to the membugs.c source); we
perform malloc, free the pointer, then perform another malloc with such a large
value (-1UL, which becomes unsigned and thus too big) that it's guaranteed to fail. In
the error-handling code, we (deliberately) free the pointer we already freed earlier,
thus generating the double free test case. In simpler pseudocode:

ptr = malloc(n);
strncpy(...);
free(ptr);

bogus = malloc(-1UL); /* will fail */
if (!bogus) {
 free(ptr); /* the Bug! */
 exit(1);
}

Importantly, this kind of coding reveals another really crucial lesson: developers
often do not pay sufficient attention to error-handling code paths; they may or may
not write negative test cases to test them thoroughly. This could result in serious
bugs!

https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn

Debugging Tools for Memory Issues Chapter 6

[224]

Running this via ASan instrumentation does not, at first, have the desired effect: you
will see that because of the glaringly enormous malloc failure, ASan actually aborts
process-execution; hence, it does not detect the real bug we're after—the double free:

$./membugs_dbg_asan 10
doublefree(): cond 0
doublefree(): cond 1
==25959==WARNING: AddressSanitizer failed to allocate
0xffffffffffffffff bytes
==25959==AddressSanitizer's allocator is terminating the process
instead of returning 0
==25959==If you don't like this behavior set
allocator_may_return_null=1
==25959==AddressSanitizer CHECK failed: /build/llvm-toolchain-6.0-
QjOn7h/llvm-toolchain-6.0-6.0/projects/compiler-
rt/lib/sanitizer_common/sanitizer_allocator.cc:225 "((0)) != (0)"
(0x0, 0x0)
 #0 0x4e2eb5 in __asan::AsanCheckFailed(char const*, int, char
const*, unsigned long long, unsigned long long)
(<...>/membugs_dbg_asan+0x4e2eb5)
 #1 0x500765 in __sanitizer::CheckFailed(char const*, int, char
const*, unsigned long long, unsigned long long)
(<...>/membugs_dbg_asan+0x500765)
 #2 0x4e92a6 in __sanitizer::ReportAllocatorCannotReturnNull()
(<...>/membugs_dbg_asan+0x4e92a6)
 #3 0x4e92e6 in
__sanitizer::ReturnNullOrDieOnFailure::OnBadRequest()
(<...>/membugs_dbg_asan+0x4e92e6)
 #4 0x424e66 in __asan::asan_malloc(unsigned long,
__sanitizer::BufferedStackTrace*) (<...>/membugs_dbg_asan+0x424e66)
 #5 0x4d9d3b in malloc (<...>/membugs_dbg_asan+0x4d9d3b)
 #6 0x513938 in doublefree <...>/ch5/membugs.c:129:11
 #7 0x5124d2 in process_args <...>/ch5/membugs.c:352:4
 #8 0x512291 in main <...>/ch5/membugs.c:375:2
 #9 0x7f8a7deccb96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
 #10 0x419ea9 in _start
(/home/seawolf/0tmp/membugs_dbg_asan+0x419ea9)

$

Yes, but, notice the preceding line of output that says:

[...] If you don't like this behavior set allocator_may_return_null=1
[...]

Debugging Tools for Memory Issues Chapter 6

[225]

How do we tell ASan this? An environment variable, ASAN_OPTIONS, makes it
possible to pass runtime options; looking them up (recall we have provided the
documentation links to the sanitizer toolset), we use it like so (one can pass more than
one option simultaneously, separating options with a :; for fun, we also turn on the
verbosity option, but trim the output):

$ ASAN_OPTIONS=verbosity=1:allocator_may_return_null=1
./membugs_dbg_asan 10
==26026==AddressSanitizer: libc interceptors initialized
[...]
SHADOW_OFFSET: 0x7fff8000
==26026==Installed the sigaction for signal 11
==26026==Installed the sigaction for signal 7
==26026==Installed the sigaction for signal 8
==26026==T0: stack [0x7fffdf206000,0x7fffdfa06000) size 0x800000;
local=0x7fffdfa039a8
==26026==AddressSanitizer Init done
doublefree(): cond 0
doublefree(): cond 1
==26026==WARNING: AddressSanitizer failed to allocate
0xffffffffffffffff bytes
membugs.c:doublefree:132: malloc failed
===
==26026==ERROR: AddressSanitizer: attempting double-free on
0x615000000300 in thread T0:
 #0 0x4d9b90 in __interceptor_free.localalias.0
(<...>/membugs_dbg_asan+0x4d9b90)
 #1 0x5139b0 in doublefree <...>/membugs.c:133:4
 #2 0x5124d2 in process_args <...>/ch5/membugs.c:352:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7fd41e565b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310
 #5 0x419ea9 in _start
(/home/seawolf/0tmp/membugs_dbg_asan+0x419ea9)

0x615000000300 is located 0 bytes inside of 512-byte region
[0x615000000300,0x615000000500) freed by thread T0 here:
 #0 0x4d9b90 in __interceptor_free.localalias.0
(<...>/membugs_dbg_asan+0x4d9b90)
 #1 0x51391f in doublefree <...>/ch5/membugs.c:126:2
 #2 0x5124d2 in process_args <...>/ch5/membugs.c:352:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7fd41e565b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310

previously allocated by thread T0 here:
 #0 0x4d9d60 in malloc (<...>/membugs_dbg_asan+0x4d9d60)

Debugging Tools for Memory Issues Chapter 6

[226]

 #1 0x51389d in doublefree <...>/ch5/membugs.c:122:8
 #2 0x5124d2 in process_args <...>/ch5/membugs.c:352:4
 #3 0x512291 in main <...>/ch5/membugs.c:375:2
 #4 0x7fd41e565b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310

SUMMARY: AddressSanitizer: double-free
(<...>/membugs_dbg_asan+0x4d9b90) in __interceptor_free.localalias.0
==26026==ABORTING
$

This time, ASan continues even though it hits an allocation failure, and thus finds the
real bug—the double free.

Test case #11: memory leak test case 1—simple leak. Refer to the following code:

$./membugs_dbg_asan 11
leakage_case1(): will now leak 32 bytes (0 MB)
leakage_case1(): will now leak 1048576 bytes (1 MB)

===
==26054==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 1048576 byte(s) in 1 object(s) allocated from:
 #0 0x4d9d60 in malloc (<...>/membugs_dbg_asan+0x4d9d60)
 #1 0x513e34 in amleaky <...>/ch5/membugs.c:66:8
 #2 0x513a79 in leakage_case1 <...>/ch5/membugs.c:111:2
 #3 0x5124ef in process_args <...>/ch5/membugs.c:356:4
 #4 0x512291 in main <...>/ch5/membugs.c:375:2
 #5 0x7f2dd5884b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310

Direct leak of 32 byte(s) in 1 object(s) allocated from:
 #0 0x4d9d60 in malloc (<...>/membugs_dbg_asan+0x4d9d60)
 #1 0x513e34 in amleaky <...>/ch5/membugs.c:66:8
 #2 0x513a79 in leakage_case1 <...>/ch5/membugs.c:111:2
 #3 0x5124e3 in process_args <...>/ch5/membugs.c:355:4
 #4 0x512291 in main <...>/ch5/membugs.c:375:2
 #5 0x7f2dd5884b96 in __libc_start_main /build/glibc-
OTsEL5/glibc-2.27/csu/../csu/libc-start.c:310

SUMMARY: AddressSanitizer: 1048608 byte(s) leaked in 2 allocation(s).
$

It does find the leak, and pinpoints it. Also notice that LeakSanitizer (LSan) is
effectively a subset of ASan.

Debugging Tools for Memory Issues Chapter 6

[227]

Test case #13: memory leak test case 3—libAPI leak

Here is a screenshot showcasing the action when ASan (under the hood, LSan)
catches the leak:

Well caught!

AddressSanitizer (ASan) summary table
With respect to our test cases (incorporated into our membugs program), here is
ASan's report card:

Test case # Test case Detected by Address
Sanitizer?

1 UMR No[1]

2 OOB (out-of-bounds): write overflow
[on compile-time memory] Yes

3 OOB (out-of-bounds): write overflow
[on dynamic memory] Yes

4 OOB (out-of-bounds): write underflow
[on dynamic memory] Yes

Debugging Tools for Memory Issues Chapter 6

[228]

5 OOB (out-of-bounds): read overflow
[on compile-time memory] Yes

6 OOB (out-of-bounds): read overflow
[on dynamic memory] Yes

7 OOB (out-of-bounds): read underflow
[on dynamic memory] Yes

8 UAF (use-after-free) also known as dangling pointer Yes
9 UAR also known as UAS (use-after-scope) Yes[2]
10 Double free Yes
11 Memory leak test case 1: simple leak Yes
12 Memory leak test case 1: leak more (in a loop) Yes
13 Memory leak test case 1: lib API leak Yes

Table 4: AddressSanitizer and Memory Bugs

[1]The MemorySanitizer (MSan) fulfills exactly this purpose - it does detect UMR.
However, there are two things to notice:

UMR is detected by MSan only on dynamically allocated memory
Using MSan successfully necessitates using the Clang compiler (it did not
work with GCC)

 [2]This works with the caveat that the code is compiled with Clang and the
detect_stack_use_after_return=1 flag is passed via ASAN_OPTIONS.

AddressSanitizer pros and cons – a quick summary
ASan pros:

Catches common memory bugs (UB) on both statically (compile-time) and
dynamically allocated memory regions

Out-of-bounds (OOB) memory accesses (read/write
underflow/overflow bugs)
Use-after-free (UAF) bugs
Use-after-return (UAR) bugs
Double free
Leakage

Debugging Tools for Memory Issues Chapter 6

[229]

Performance is far superior to other tools (such as Valgrind); the worst case
performance drop seems to be a factor 2x
No modification to source code required
Fully supports multithreaded applications

ASan cons:

ASan cannot detect some types of bugs:
UMR (as mentioned earlier, with some caveats, MSan can)
Does not detect all UAF bugs
IOF (Integer Underflow/Overflow) bugs

Using a certain tool at a time; cannot always combine multiple sanitizer
tools (see the preceding table); this implies that often, separate test cases
must be written for ASan, TSan, LSan
Compiler:

Often, the program is required to be recompiled with the
LLVM frontend Clang and appropriate compiler flags.
In order to see the call stack with line number information, a
recompile/build with the -g flag is required.

Here, we've combined the preceding two tables. Refer to the following table, memory
bugs - a quick comparison between Valgrind and Address Sanitizer:

Test
case # Test case Detected by

Valgrind?

Detected by
Address

Sanitizer?
1 UMR Yes No[1]

2 OOB (out-of-bounds): write overflow
[on compile-time memory] No Yes

3 OOB (out-of-bounds): write overflow
[on dynamic memory] Yes Yes

4 OOB (out-of-bounds): write underflow
[on dynamic memory] Yes Yes

5 OOB (out-of-bounds): read overflow
[on compile-time memory] No Yes

6 OOB (out-of-bounds): read overflow
[on dynamic memory] Yes Yes

7 OOB (out-of-bounds): read underflow
[on dynamic memory] Yes Yes

8 UAF (use-after-free) also known as dangling pointer Yes Yes

Debugging Tools for Memory Issues Chapter 6

[230]

9 UAR (use-after-return) also known as UAS (use-after-
scope) No Yes[2]

10 Double free Yes Yes
11 Memory leak test case 1: simple leak Yes Yes
12 Memory leak test case 1: leak more (in a loop) Yes Yes
13 Memory leak test case 1: lib API leak Yes Yes

[1]MSan fulfills exactly this purpose—it does detect UMR (also see caveats).

It works with the caveats that the code is compiled with Clang and
the detect_stack_use_after_return=1 flag is passed via ASAN_OPTIONS.

Glibc mallopt
Sometimes useful to programmers, glibc provides a means to change the malloc
engine's defaults thanks to its ability to pass some specific parameters. The API is
mallopt(3) :

#include <malloc.h>
int mallopt(int param, int value);

Please refer to the man page on mallopt(3) for all the gory details
(available at http:/ / man7.org/ linux/ man- pages/ man3/ mallopt. 3.
html).

As an interesting example, one of the parameters that can be tweaked is
M_MMAP_THRESHOLD; recall, in the earlier Chapter 5, Linux Memory Issues, we covered
the fact that on modern glibc, malloc does not always get memory blocks from the
heap segment. If the size of the allocation request is above or equal to
MMAP_THRESHOLD, the request is serviced under the hood via the powerful mmap(2)
system call (which sets up an arbitrary region of virtual address space of the size
requested). The default value of MMAP_THRESHOLD is 128 KB; this can be changed via
the M_MMAP_THRESHOLD parameter using mallopt(3)!

Again, this does not imply you should change it; only that you could. The default
value is carefully arrived at and probably best suited to most application workloads.

Another useful parameter is M_CHECK_ACTION; this parameter determines how glibc
reacts when memory errors are detected (say, a write overflow or a double free). Also
note that the implementation does not detect all types of memory errors (leakage goes
unnoticed, for example).

http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html

Debugging Tools for Memory Issues Chapter 6

[231]

At runtime, glibc interprets these three least significant bits (LSB) of the parameter's
value to determine how to react:

Bit 0: If set, print a one-line error message to stderr providing detailed
information regarding the cause; the error-line format is:

*** glibc detected *** <program-name>: <function where error was
detected> : <error description> : <address>

Bit 1: If set, after printing the error message, abort(3) is invoked causing
the process to terminate. Depending on the version of the library, the stack
trace and the relevant portion of the process memory map (via proc) may
also be printed.
Bit 2: If set, and if bit 0 set, simplify the error message format.

From glibc ver. 2.3.4, the M_CHECK_ACTION default value is 3 (implying binary 011;
earlier it was 1).

Setting M_CHECK_ACTION to a nonzero value can be very useful as it
will cause a buggy process to crash at the point the bug is hit, and
display useful diagnostics. If it were zero, the process would
probably enter an undefined state (UB) and crash at some arbitrary
point in the future, making debugging a lot harder.

As a quick reckoner, here are some useful values for M_CHECK_ACTION and their
meaning:

1 (001b): Print a detailed error message but continue execution (process is
now in UB!).
3 (011b): Print a detailed error message, call stack, memory mappings, and
abort execution [default].
5 (101b): Print a simple error message and continue execution (process is
now in UB!).
7 (111b): Print a simple error message, call stack, memory mappings, and
abort execution.

The man page on mallopt(3) helpfully provides a C program example of using
M_CHECK_ACTION.

Debugging Tools for Memory Issues Chapter 6

[232]

Malloc options via the environment
A useful feature: instead of programmatically using the mallopt(3) API, the system
allows us to tune some allocation parameters conveniently via environment variables.
Most useful, perhaps, from the viewpoint of debug and testing, the MALLOC_CHECK_
variable is the environment variable corresponding to the M_CHECK_ACTION
parameter described earlier; thus, we can just set the value, run our application, and
see the result for ourselves!

A few examples follow, using our usual membugs application to check out some test
cases:

Test case # 10: double free with MALLOC_CHECK_ set:

$ MALLOC_CHECK_=1 ./membugs_dbg 10
doublefree(): cond 0
doublefree(): cond 1
membugs.c:doublefree:134: malloc failed
*** Error in `./membugs_dbg': free(): invalid pointer:
0x00005565f9f6b420 ***
$ MALLOC_CHECK_=3 ./membugs_dbg 10
doublefree(): cond 0
doublefree(): cond 1
membugs.c:doublefree:134: malloc failed
*** Error in `./membugs_dbg': free(): invalid pointer:
0x0000562f5da95420 ***
Aborted
$ MALLOC_CHECK_=5 ./membugs_dbg 10
doublefree(): cond 0
doublefree(): cond 1
membugs.c:doublefree:134: malloc failed
$ MALLOC_CHECK_=7 ./membugs_dbg 10
doublefree(): cond 0
doublefree(): cond 1
membugs.c:doublefree:134: malloc failed
$

Notice how, with the value of MALLOC_CHECK_ being 1, the error message, is printed
but the process is not aborted; this is what happens when the value of the
environment variable is set to 3.

Test case # 7: out-of-bounds (read underflow) with MALLOC_CHECK_ set:

$ MALLOC_CHECK_=3 ./membugs_dbg 7
read_underflow(): cond 0
 dest: abcd56789

Debugging Tools for Memory Issues Chapter 6

[233]

read_underflow(): cond 1
 dest: xabcd56789
*** Error in `./membugs_dbg': free(): invalid pointer:
0x0000562ce36d9420 ***
Aborted
$

Test case # 11: memory leak test case 1—simple leak with MALLOC_CHECK_ set:

$ MALLOC_CHECK_=3 ./membugs_dbg 11
leakage_case1(): will now leak 32 bytes (0 MB)
leakage_case1(): will now leak 1048576 bytes (1 MB)
$

Notice how a leakage bug test case is not detected.

The preceding examples were executed on an Ubuntu 17.10 x86_64
box; for some reason, interpretation of MALLOC_CHECK_ on a Fedora
27 box did not seem to work as advertised.

Some key points
We've covered some powerful memory debug tools and techniques, but at the end of
the day, by itself these tools are not enough. Today's developer must keep
alert—there are some remaining key points to mention briefly, which will serve to
round off this chapter.

Code coverage while testing
A key point to remember using dynamic analysis tools (we covered using Valgrind's
Memcheck tool and ASan/MSan) is that it only really helps the effort if complete code
coverage is achieved when running the tool(s) over the test cases!

This point cannot be stressed enough. What use is running a fantastic tool or compiler
instrumentation, such as the Sanitizers, over your program if the buggy part of the
code does not actually run! The bugs remain dormant, uncaught. As developers and
testers, we have to discipline ourselves to write rigorous test cases that actually
perform complete code coverage, such that all code—including project code in
libraries—is actually tested via these powerful tools.

This is not easy: remember, anything worth doing is worth doing well.

Debugging Tools for Memory Issues Chapter 6

[234]

What is the modern C/C++ developer to do?
In the face of so much UB potential in complex software projects written on C/C++,
the concerned developer might well ask, What are we to do?

Source: https:/ / blog. regehr. org/ archives/ 1520. Here is a
snippet from the excellent blog article, Undefined Behavior in 2017,
by Cuoq and Regehr.

What is the modern C or C++ developer to do?

Be comfortable with the easy UB tools—the ones that can
usually be enabled just by adjusting a makefile, such as
compiler warnings and ASan and UBSan. Use these early
and often, and (crucially) act upon their findings.
Be familiar with the hard UB tools—those such as TIS
Interpreter that typically require more effort to run—and
use them when appropriate.
Invest in broad-based testing (track code coverage, use
fuzzers) in order to get maximum benefit out of dynamic
UB detection tools.
Perform UB-aware code reviews: build a culture where
we collectively diagnose potentially dangerous patches
and get them fixed before they land.
Be knowledgeable about what’s actually in the C and C++
standards since these are what compiler writers are going
by. Avoid repeating tired maxims such as C is a portable
assembly language and trust the programmer.

A mention of the malloc API helpers
There are plenty of malloc API helper routines. These can be useful when
debugging a difficult scenario; it's a good idea to be aware of what's available.

https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520

Debugging Tools for Memory Issues Chapter 6

[235]

On an Ubuntu Linux system, we check with man for a match to the keyword malloc:

$ man -k malloc
__after_morecore_hook (3) - malloc debugging variables
__free_hook (3) - malloc debugging variables
__malloc_hook (3) - malloc debugging variables
__malloc_initialize_hook (3) - malloc debugging variables
__memalign_hook (3) - malloc debugging variables
__realloc_hook (3) - malloc debugging variables
malloc (3) - allocate and free dynamic memory
malloc_get_state (3) - record and restore state of malloc
implementation
malloc_hook (3) - malloc debugging variables
malloc_info (3) - export malloc state to a stream
malloc_set_state (3) - record and restore state of malloc
implementation
malloc_stats (3) - print memory allocation statistics
malloc_trim (3) - release free memory from the top of the heap
malloc_usable_size (3) - obtain size of block of memory allocated from
heap
mtrace (1) - interpret the malloc trace log
mtrace (3) - malloc tracing
muntrace (3) - malloc tracing
$

Quite a few of these malloc APIs (reminder: the number three within parentheses,(3),
implies it's a library routine) deal with the concept of malloc hooks. The essential
idea: one can replace the library malloc(3), realloc(3), memalign(3) and
free(3) APIs with one's own hook function, which will be invoked when the
application calls the API.

However, we will not be delving further into this area; why not? Recent versions of
glibc document the fact that these hook functions are:

Not MT-Safe (covered in Chapter 16, Multithreading with Pthreads Part III)
Deprecated from glibc ver. 2.24 onward

Finally, it might be obvious, but we would prefer to call this out explicitly: one must
realize that using these tools serves a purpose only in testing environments; they are
not meant to be used in production! Some studies have revealed security
vulnerabilities that can be exploited when running ASan in production; see
the Further reading section on the GitHub repository.

Debugging Tools for Memory Issues Chapter 6

[236]

Summary
In this chapter, we have attempted to show the reader several key points, tools and
techniques; among them:

Humans will make mistakes; this is especially true with memory
unmanaged languages (C, C++).
There is a real need for powerful memory debug tools on nontrivial
codebases.
We covered two of these best in class dynamic analysis tools in detail:

Valgrind's Memcheck
Sanitizers (primarily ASan)

Glibc allows some tuning of malloc via the mallopt(3) API, as well as via
environment variables.
Ensuring complete code coverage when building test cases is absolutely
crucial to the success of a project.

The next chapter is related to the essentials aspects of file I/O which
is essential for a component reader to know. It introduces you to
performing efficient file I/O on the Linux platform. We would
request the readers to go through this chapter which is available
here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/ File_ IO_ Essentials. pdf. We highly recoomend the
readers to read Open at the system call layer, The file descriptor
and I/O – the read/write system calls which can help in easy
understanding the next chapter that is, Chapter 7, Process
Credentials.

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

7
Process Credentials

In this chapter, and the following one, the reader will learn concepts and practices
regarding process credentials and capabilities. Besides being of practical importance
to application development in Linux, this chapter, by its very nature, delves deeper
into an often overlooked but extremely key aspect: security. The content of this and
the following chapter is very much inter-related.

We divide the coverage of this key area into two major parts, each of which is a
chapter in this book:

In this chapter, the traditional-style Unix permissions model is discussed in
some detail, and techniques to run programs with root privileges without
requiring the root password are shown.
In Chapter 8, Process Capabilities, the modern approach, the POSIX
capabilities model, is discussed in some detail.

We will attempt to clearly show the reader that, while it is important to learn about
the traditional mechanisms and how they operate, it is also important to learn about
modern approaches to security. However you look at it, security is of paramount
importance, especially these days. The advent of Linux running on all sorts of
devices—from tiny IoT and embedded devices to mobile devices, desktops, servers,
and super-computing platforms—makes security a key concern for all stakeholders.
Hence, the modern capabilities approach should be used when developing software.

In this chapter, we will broadly cover the traditional Unix permissions model, what
exactly it is, and how it works to provide security and robustness. A bit of hacking is
always fun too!

You will learn about the following:

The Unix permission model in action
Real and effective IDs
Powerful system calls to query and set process credentials

Process Credentials Chapter 7

[238]

Hacking attempts (a little bit)
How sudo(8) actually works
Saved-set IDs
Important thoughts on security

Along the way, several examples allow you to try out concepts in a hands-on way, to
really understand them.

The traditional Unix permissions model
Right from the early 1970, the Unix OS had, as usual, an elegant and powerful system
in place for managing the security of shared objects on the system. These objects
included files and directories—perhaps the most commonly thought of ones. Files,
directories, and symbolic links are filesystem objects; there are several others,
including memory objects (tasks, pipes, shared memory regions, message queues,
semaphores, keys, sockets) and pseudo filesystems (proc, sysfs, debugfs, cgroupfs,
and so on) and their objects. The point is all these objects are shared in some manner
or other, and thus they require a protection mechanism of some sort, to protect them
from abuse; this mechanism is called the Unix permission model.

You probably don't want others to read, write, and delete your files; the
Unix permission model makes this possible at various granularity levels; again,
taking files and directories as a common target, you can set permissions at the level of
a directory, or indeed on each file (and directory) within that directory.

To make this clear, let's consider a typical shared object—a file on a disk. Let's create
one called myfile:

$ cat > myfile
This is my file.
It has a few lines of not
terribly exciting content.

A blank line too! WOW.

You get it...
Ok fine, a useful line: we shall keep this file in the book's git
repo.
Bye.
$ ls -l myfile
-rw-rw-r-- 1 seawolf seawolf 186 Feb 17 13:15 myfile
$

Process Credentials Chapter 7

[239]

All output displayed is from an Ubuntu 17.10 x86_64 Linux system; the user is logged
in as seawolf.

Permissions at the user level
Earlier we did a quick ls -l on the previous myfile file; the very first character -
 reveals, of course, that it's a regular file; the next nine characters rw-rw-r--are the
file permissions. If you remember, these are grouped into three groups—the Owner
(U), Group (G), and Others (O) (or Public) permissions, each of which contains three
permission bits: r, w, and x (read, write and execute access). This table summarizes
this information:

Interpreting it, we can see that the owner of the file can read and write to it, and so
can the group members, but others (those who are not the owner and do not belong
to the group the file belongs to) can only perform a read operation on myfile. That's
security!

So, let's take an example: we attempt to write to the file myfile, using the echo
command:

echo "I can append this string" >> myfile

Will it work? Well, the answer is, it depends: if the owner or group member of the file
(in this example, seawolf) is running the echo(1) process, then the access category will
be accordingly set to U or G, and, yes, it will succeed (as U|G does have write access
to the file). But if the process's access category is Others or Public, it will fail.

How the Unix permission model works
A really important point to understand regarding this topic is this: both the shared
object that is being worked upon (here, the myfile file) and the process that is
performing some access (rwx) on the object (here, the echo process) matter. To be
more correct, their attributes with respect to permissions matter. The next discussion
will help make this clear.

Process Credentials Chapter 7

[240]

Let's consider this step by step:

A user with the login name seawolf logs in to the system.1.
On success, the system spawns a shell; the user is now at the shell prompt.2.
(Here, we consider the traditional case of logging into a command-line
interface (CLI) console, not a GUI environment.)

Every user has a record; it's stored in the /etc/passwd file. Let's grep the file for this
user:

$ grep seawolf /etc/passwd
seawolf:x:1000:1000:Seawolf,,,:/home/seawolf:/bin/bash
$

Generically, just do this: grep $LOGNAME /etc/passwd

The passwd entry is a row with seven columns that are colon-delimited fields; they
are as follows:

username:<passwd>:UID:GID:descriptive_name:home_dir:program

A few fields require some explanation:

The second field, <passwd>, always shows up as just x on modern Linux
systems; this is for security. Even the encrypted password is never
displayed (hackers can very possibly break it via a brute-force algorithm;
it's in a root-only file called /etc/shadow).
The third and fourth fields are the User IDentifier (UID) and Group
IDentifier (GID) of the user.
The seventh field is the program to run on successful login; it's usually the
shell (as preceding), but it could be anything.

To programmatically query /etc/passwd, check out the
getpwnam[_r](3), getpwent[_r](3) library layer APIs.

The last point is a key one: the system spawns a shell for the user who logged in. A
shell is the user interface (UI) between the human user and the system on the CLI
environment. After all, it's a process; on Linux, bash is usually the shell we use. The
shell you receive when you login is called your login shell. It's important, because its
privileges determine the privileges of all processes it launches—in effect, the
privileges you have when working on the system are derived from your login shell.

Process Credentials Chapter 7

[241]

Let's look up our shell process:

$ ps
 PID TTY TIME CMD
13833 pts/5 00:00:00 bash
30500 pts/5 00:00:00 ps
$

There it is; our bash process has a Process Identifier (PID—a unique integer
identifying a process) of 13833. Now, the process has other attributes associated with
it; for our current purposes, the key ones are the process User Identifier (UID) and
the process Group Identifier (GID).

Can one lookup these UID, GID values for a process? Let's try it out with the id(1)
command:

$ id
uid=1000(seawolf) gid=1000(seawolf)
groups=1000(seawolf),4(adm),24(cdrom),27(sudo),[...]
$

The id(1) command shows us that the process UID is 1000 and the process GID also
happens to be 1000. (The username is seawolf and this user belongs to several
groups.) In the previous example, we have logged in as the user seawolf; this fact is
reflected by the id command. Note that every process we now run from this shell will
inherit the privileges of this user account, that is, it will run with the same UID and
GID as the login shell!

You might reasonably ask: where does the process get its UID and GID values from?
Well, think about it: we logged in as the user seawolf, and this account's
/etc/passwd entry's third and fourth fields are where the process UID and GID
come from.

So, every time we run a process from this shell, that process will run with UID 1000
and GID 1000.

We want to understand how exactly the OS checks whether we can perform an
operation such as the following:

echo "I can append this string" >> myfile

Process Credentials Chapter 7

[242]

So, the key question here is: how exactly, at runtime, when the preceding echo
process is attempting to write to the myfile file, does the kernel determine whether
the write access is allowed. To do this, the OS must determine the following:

What is the ownership and group membership of the file in question?
In what access category is the process attempting the access running under
(for example, is it U|G|O)?
For that access category, does the permission bitmask allow access?

To answer the first question: the file's ownership and group membership information
(and a lot more regarding the file) is carried as attributes of the key data structure of
the filesystem—the information node (inode). The inode data structure is a per-file
structure and lives within the kernel (filesystem; it's read into memory when the file
is first accessed). User space can of course access this information via system calls. So,
the file owner ID is stored in the inode—let's just call it file_UID. Similarly, the
file_GID will also be present in the inode object.

For the curious reader: you can yourself query any file object's inode
by using the powerful stat(2) system call. (As usual, look up its
man page). In fact, we have used stat(2) in Appendix A, File I/O
Essentials.

Determining the access category
The second question posed previously: what access category will it run under? is
important to answer.

The access category will be either Owner (U), Group (G), or Other (O); they are
mutually exclusive. The algorithm used by the OS to determine the access category is
something like this:

if process_UID == file_UID
then
 access_category = U
else if process_GID == file_GID
then
 access_category = G
else
 access_category = O
fi

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Process Credentials Chapter 7

[243]

Actually, it's a bit more complex: a process can belong to several groups
simultaneously. So, at permission checking time, the kernel checks all groups; if the
process belongs to any one of them, the access category is set to G.

Finally, for that access category, check the permission bitmask (rwx); if the relevant
bit is set, the process will be allowed the operation; if not, it won't be.

Let's take a look at the following command:

$ ls -l myfile
-rw-rw-r-- 1 seawolf seawolf 186 Feb 17 13:15 myfile
$

Another way to clarify—the stat(1) command (which of course is a wrapper over
the stat(2) system call) show us the inode content of the file myfile, like this:

$ stat myfile
 File: myfile
 Size: 186 Blocks: 8 IO Block: 4096 regular file
Device: 801h/2049d Inode: 1182119 Links: 1
Access: (0664/-rw-rw-r--) Uid: (1000/ seawolf) Gid: (1000/
seawolf)
Access: 2018-02-17 13:15:52.818556856 +0530
Modify: 2018-02-17 13:15:52.818556856 +0530
Change: 2018-02-17 13:15:52.974558288 +0530
 Birth: -
$

Clearly, we are highlighting the file_UID == 1000 and file_GID == 1000.

In our echo example, we find that a few scenarios can play out, depending on who
logs in, the group membership(s), and the file's permissions.

So, to understand this properly, let's plant a few scenarios (from now on, we shall just
refer to the process UID as the UID and the process GID value as the GID, as opposed
to process_UID|GID):

User logs in as seawolf: [UID 1000, GID 1000]
User logs in as mewolf: [UID 2000, GID 1000]
User logs in as cato: [UID 3000, GID 3000]
User logs in as groupy: [UID 4000, GID 3000, GID 2000, GID 1000]

Once logged in, the user attempts this:

echo "I can append this string" >> <path/to/>myfile

Process Credentials Chapter 7

[244]

What happens? Which will work (permission allowed) and which won't? Run
through the previous scenarios with the previous algorithm, to determine the crucial
access category, and you will see; the following table summarizes the cases:

Case # Login as (Process)
UID

(Process)
GID

Access category
(U|G|O)

Perm
bitmask Write allowed?

1 seawolf 1000 1000 U rw- Y
2 mewolf 2000 1000 G rw- Y
3 cato 3000 3000 O r-- N

4 groupy 4000 4000,3000,
2000,1000 G rw- Y

The preceding description is still a bit too simplistic, but is a good starting point. In
reality, there's a lot more happening under the hood; the following sections shed light
on this.

Prior to this, we will take a slight detour: the chmod(1) command (which of course
becomes the chmod(2) system call) is used to set permissions on an object. So, if we
do this: chmod g-w myfile to remove write permissions from the group category,
then the previous table will change (the rows that get G access will now not be
allowed to write).

Here is an interesting observation: processes with the craved-
for root access are those that have their UID = 0; it's a special
value!

Next, to be pedantic, actually the echo command can run in two
distinct ways: one, as a process when the binary executable (usually
/bin/echo) runs, and two, as a built in shell command; in other
words, there is no new process, the shell process itself—typically
bash —runs it.

Real and effective IDs
We understand from the preceding section that both the shared object that is being
worked upon (here, the file myfile) and the process that is performing some access
(rwx) on the object (here, the echo process) matter in terms of permissions.

Process Credentials Chapter 7

[245]

Let's zoom deeper into the process attributes with respect to the permissions model.
So far, we have learned that each process is associated with a UID and a GID, thereby
allowing the kernel to run its internal algorithms and determine whether access to a
resource (or object) should be allowed.

If we look deeper, we find that each process UID is actually not a single integer value,
but two values:

The Real User ID (RUID)
The Effective User ID (EUID)

Similarly, the group information is not one integer GID value, rather it's two integers:

The Real Group ID (RGID)
The Effective Group ID (EGID)

So, with respect to privileges, each process has four integer values associated with it:
{RUID, EUID, RGID, EGID}; these are called the process credentials.

Pedantically speaking, process credentials also encompass several
other process attributes—the process PID, the PPID, PGID, session
ID, and the real and effective user and group IDs. In our discussions,
for clarity, we restrict their meaning to the last of these—real and
effective user and group IDs.

But what exactly do they mean?

Every process has to run under the ownership and group membership of somebody;
this somebody is of course the user and group IDs of the person who logs in.

The real IDs are the original values associated with the user who logged in; in effect,
they are nothing but the UID:GID pair from the /etc/passwd record for that user.
Recall that the id(1) command reveals precisely this information:

$ id
uid=1000(seawolf) gid=1000(seawolf) groups=1000(seawolf),4(adm), [...]
$

The uid and gid values displayed are obtained from the /etc/passwd record
for seawolf. In reality, the uid/gid values become the running process's RUID/RGID
values respectively!

Process Credentials Chapter 7

[246]

The real numbers reflect who you originally are—your login account information in
the form of integer identifiers. Another way to put it: the real numbers reflect who
owns the process.

What about the effective values?

The effective values are to inform the OS as to effectively (at this moment) what
privileges (user and group) the process is running under. Here are a couple of key
points:

When performing permission checks, the OS uses the process's effective
values, not the real (original) values.
EUID = 0 is what the OS actually checks for to determine whether the
process has root privilege.

By default it is as follows:

The EUID = RUID
The EGID = RGID

This implies that, for the preceding example, the following is true:

{RUID, EUID, RGID, EGID} = {1000, 1000, 1000, 1000}

Yes. This brings up a question (don't you think?): if the real and effective IDs are the
same, then why do we require four numbers at all? Two will do, right?

Well, here's the thing: they usually (by default) are the same, but they can change.
Let's see how this can happen.

Again, here is a pedantic note: on Linux, the permission checking on
filesystem operations is predicated on yet another process
credential—the filesystem UID (or fsuid; and, analogously, the
fsgid). However, it's always the case that the fsuid/fsgid pair
shadow the EUID/EGID pair of credentials—thereby, effectively
rendering them the same. That's why in our discussion we ignore
the fs[u|g]id and focus on the usual real and effective user and
group IDs.

Before that, though, think about this scenario: a user is logged in, and is on the shell;
what are their privileges? Well, just run the id(1) program; the output will display
the UID and GID, which we now know is actually {RUID, EUID} and the {RGID,
EGID} pair with the same values.

Process Credentials Chapter 7

[247]

For the sake of an easier-to-read example, let's take the liberty of changing the GID
value from 1000, to, say, 2000. So, now, if the values are UID=1000 and GID=2000, and
the user now runs, shall we say, the vi editor, now the situation is like this, refer to the
given table, process credentials - normal case:

Process credentials
/ process RUID EUID RGID EGID

bash 1000 1000 2000 2000
vi 1000 1000 2000 2000

A puzzle – how can a regular user change their
password?
Let's say you're logged in as seawolf. For security reasons, you want to update your
weak password (hello123, whoops!) to a strong secure one. We know that the
password is stored in the /etc/passwd file. Well, we also saw that on modern
Unixes (including Linux of course), for better security it's shadowed: it's actually stored
in a file called /etc/shadow. Let's check it out:

$ ls -l /etc/shadow
-rw-r----- 1 root shadow 891 Jun 1 2017 /etc/shadow
$

(Remember that we're on an Ubuntu 17.10 x86_64 system; we often point this out, as
the exact output might vary on different distributions, and if kernel security
mechanisms, such as SELinux, are installed.)

As highlighted, you can see that the file owner is root, the group membership is
shadow, and the permission bitmask for UGO is [rw-][r--][---]. This means the
following:

The owner (root) can perform read/write operations
The group (shadow) can perform read-only operations
The others cannot do anything to the file

You probably also know that the utility you use to change your password is called
passwd(1) (of course, it's a binary executable program, and is not to be confused
with the /etc/passwd(5) database).

Process Credentials Chapter 7

[248]

So, think about it, we have a bit of a puzzle here: to change your password, you need
write access to /etc/shadow, but, clearly, only root has write access to
/etc/shadow. So, how does it work? (We know it works. You logged in as a regular
user, not root. You can change your password using the passwd(1) utility—try it out
and see.) So, that's a good question.

The clue lies in the binary executable utility itself—passwd. Let's check it out; firstly,
where's the utility on disk? Refer to the following code:

$ which passwd
/usr/bin/passwd
$

Let's dig deeper—quote the preceding command and long list it:

Can you spot anything unusual?

It's the owner execute bit: it's not an x as you might expect, but an s ! (Really, this is
the reason behind the pretty red coloring of the executable name in preceding the
long listing.)

It's a special permission bit: for a binary executable file, when there's an s in the
owner's execute bit, it's referred to as a setuid binary. This means whenever a
setuid program is executed, the resultant process's Effective Userid (EUID) changes
(from the default: the original RUID value) to become equal to the owner of the
binary executable file; in the previous example, the EUID will become root (as the
/usr/bin/passwd file is owned by root).

Now we redraw the previous table (Process Credentials - Normal Case) with this new
information in hand, with respect to the setuid passwd executable:

Process credentials
/ process RUID EUID RGID EGID

bash 1000 1000 2000 2000
vi 1000 1000 2000 2000
/usr/bin/passwd 1000 0 2000 2000

Table: process credentials - setuid-root case (third row)

Process Credentials Chapter 7

[249]

So, this answers how it works: the EUID being the special value 0 (root), the OS now
sees the process as being a root process and allows it to write into the /etc/shadow
database.

A program such as /usr/bin/passwd, inherits root access by virtue of the setuid bit
and the fact that the file owner is root: these kinds of programs are called setuid root
binaries (they're also called set-user-ID-root programs).

To quote a frustrated developer's reaction to testers everywhere: it's not a bug; it's a
feature! Well, it is: the setuid feature is pretty amazing: with no programming
whatsoever, you are able to raise the privilege level of a process for a temporary
duration.

Think about this. Without this feature, it would be impossible for non-root users (the
majority) to change their password. Requesting the system administrator to do this
(picture a large organization with a few thousand employees with Linux accounts)
would not only have the sysadcontemplate suicide, you would have to provide the
sysad with your new password, perhaps not exactly a brilliant security practice.

The setuid and setgid special permission bits
We can see that setuid program binaries are an important takeaway from the
preceding discussion; let's summarize it once more:

A binary executable file with the owner execute bit set to s is called a
setuid binary.
If the owner of said executable file is root, then it's called a setuid-root
binary.
When you execute a setuid program, the key point is that the EUID is set to
the owner of the binary executable file:

Thus, with setuid-root binaries, the process will run as root!
Of course, once the process dies, you are back to your shell with your
regular (default) set of process credentials or privileges.

Process Credentials Chapter 7

[250]

Conceptually similar to setuid is the notion of the setgid special permission bit:

A binary executable file with the group execute bit set to s is called a setgid
binary.
When you execute a setgid program, the key point is that the EGID is set to
the group membership of the binary executable file.
Of course, once the process dies, you are back to your shell with your
regular (default) set of process credentials or privileges.

As mentioned, remember that the set[u|g]id special permission bits only have
significance on binary executable files, nothing else. For example, attempting to set
these bits on a script (bash, Perl, and so on) will have absolutely no effect.

Setting the setuid and setgid bits with chmod
You have perhaps, by now, thought okay, but how exactly do I set these special
permission bits?

This is simple: you use the chmod(1) command (or system call); this table shows how
chmod can be used to set the setuid/setgid permission bits:

chmod via: Notation for setuid Notation for setgid
symbolic notation u+s g+s

octal notation 4<octal #> (eg. 4755) 2<octal #> (eg. 2755)

As a trivial example, take a simple Hello, world C program and compile it:

gcc hello.c -o hello

Now we set the setuid bit, then remove it, and set the setgid bit instead (in one
operation: via the u-s,g+s parameter to chmod), then remove the setgid bit, all the
while long-listing the binary executable so that the permissions can be seen:

$ ls -l hello
-rwxrwxr-x 1 seawolf seawolf 8336 Feb 17 19:02 hello
$ chmod u+s hello ; ls -l hello
-rwsrwxr-x 1 seawolf seawolf 8336 Feb 17 19:02 hello
$ chmod u-s,g+s hello ; ls -l hello
-rwxrwsr-x 1 seawolf seawolf 8336 Feb 17 19:02 hello
$ chmod g-s hello ; ls -l hello
-rwxrwxr-x 1 seawolf seawolf 8336 Feb 17 19:02 hello
$

Process Credentials Chapter 7

[251]

(As this Hello, world program just trivially prints to stdout and nothing more, the
setuid/setgid bits have no perceived effect.)

Hacking attempt 1
Well, well, wasn't that discussion on setuid root interesting! For you, the reader,
who's thinking like a hacker (good for you!), why not do this to gain the ultimate
prize, a root shell!

Write a C program to spawn a shell (the system(3) library API makes this
trivial); we call the code rootsh_hack1.c. We want a root shell as the
outcome!
Compile it, get a.out. If we run a.out now, no big deal; we'll get a shell
with the same privileges that we already have. So instead try this:

Change permissions with chmod(1) to set the setuid bit.
Change ownership with chown(1) of a.out to root.
Run it: we should now get a root shell.

Wow! Let's try this out!

The code is simple (we don't show the header inclusion here):

$ cat rootsh_hack1.c
[...]
int main(int argc, char **argv)
{
 /* Just spawn a shell.
 * If this process runs as root,
 * then, <i>Evil Laugh</i>, we're now root!
 */
 system("/bin/bash");
 exit (EXIT_SUCCESS);
}

Now compile and run:

$ gcc rootsh_hack1.c -Wall
$ ls -l a.out
-rwxrwxr-x 1 seawolf seawolf 8344 Feb 20 10:15 a.out
$./a.out
seawolf@seawolf-mindev:~/book_src/ch7$ id -u
1000
seawolf@seawolf-mindev:~/book_src/ch7$ exit
exit
$

Process Credentials Chapter 7

[252]

As expected, when run with no special set[u|g]id permission bits, the a.out process
runs with normal privileges, spawning a shell under the same ownership
(seawolf)—exactly what the id -u command proves.

Now, we attempt our hack:

$ chmod u+s a.out
$ ls -l a.out
-rwsrwxr-x 1 seawolf seawolf 8344 Feb 20 10:15 a.out
$

It worked! Well, don't get too excited: we got it to become a setuid binary, but the
owner is still seawolf; so it won't make any difference at runtime: the process EUID
will become that of the owner of the binary executable—seawolf itself:

$./a.out
seawolf@seawolf-mindev:~/book_src/ch7$ id -u
1000
seawolf@seawolf-mindev:~/book_src/ch7$ exit
exit
$

Hmm. Yes, so what we need to do now is make the owner root:

$ chown root a.out
chown: changing ownership of 'a.out': Operation not permitted
$

Sorry to burst your bubble, budding hacker: it won't work. This is the security; with
chown(1), you can only change ownership of the files (or objects) you own, and,
guess what? To your own account only! Only root can use chown to set an object's
ownership to anyone else.

This makes sense security-wise. It goes even further; watch this: we'll become root
and run chown (by just sudoing it of course):

$ sudo chown root a.out
[sudo] password for seawolf: xxx
$ ls -l a.out
-rwxrwxr-x 1 root seawolf 8344 Feb 20 10:15 a.out*
$

Did you notice? Even though the chown succeeded, the setuid bit got wiped
out! That's security.

Process Credentials Chapter 7

[253]

Okay, let's subvert even that by setting the setuid bit manually on the root-owned
a.out (note that this isn't even possible unless we already have root access or the
password):

$ sudo chmod u+s a.out
$ ls -l a.out
-rwsrwxr-x 1 root seawolf 8344 Feb 20 10:15 a.out
$

Ah! Now it is a setuid-root binary executable (indeed, you can't see it here but the
color of a.out changed to red). No one's going to stop us! Take a look at this:

$./a.out
seawolf@seawolf-mindev:~/book_src/ch7$ id -u
1000
seawolf@seawolf-mindev:~/book_src/ch7$ exit
exit
$

The spawned shell has a (R)UID of 1000, not 0 What happened?

That's a surprise! Even with root ownership and the setuid bit we do not get a root
shell. How come? Because of the security, of course: when run via system(3),
modern versions of bash refuse to run as root on startup. This screenshot shows the
relevant part of the man page on system(3)—showing the caveat that we're
discussing (http:/ / man7. org/ linux/ man- pages/ man3/ system. 3. html):

http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html
http://man7.org/linux/man-pages/man3/system.3.html

Process Credentials Chapter 7

[254]

The second paragraph sums it up:

... as a security measure, bash 2 drops privileges on startup.

System calls
We understand from our previous discussions that every process alive has a set of
four integer values that effectively determine its privileges, the real and effective user
and group IDs; they are called the process credentials.

As mentioned earlier, we refer to them as the {RUID, EUID, RGID, EGID}.

The effective IDs are in bold font, to reiterate the fact that while the real IDs identify
the original owner and group, when it comes to actually checking permissions, the
kernel uses the effective IDs.

Where are the process credentials stored? The OS keeps this information as part of a
rather large process attributes data structure (which is per-process of course); it is in
kernel memory space.

On Unix, this per-process data structure is called the Process
Control Block (PCB); on Linux, it's called the process descriptor or,
simply, the task structure.

The point is this: if the data is in kernel address space, the only way to get at it (query
or set) is via system calls, of course.

Querying the process credentials
How do you programmatically (in a C program) query the real and effective UIDs
/GIDs? Here are the system calls to do so:

#include <unistd.h>
#include <sys/types.h>

uid_t getuid(void);
uid_t geteuid(void);

gid_t getgid(void);
gid_t getegid(void);

Process Credentials Chapter 7

[255]

This is pretty straightforward:

getuid(2) returns the real UID; geteuid(2) returns the effective UID
getgid(2) returns the real GID; getegid(2) returns the effective GID
uid_t and gid_t are glibc typedefs for an unsigned integer

Here is a neat tip to figure out the typedef for any given data type:
you will need to know the header file that contains the definition.
Just do this:

$ echo | gcc -E -xc -include 'sys/types.h' - | grep
uid_t
typedef unsigned int __uid_t;
typedef __uid_t uid_t;
$

Credit: https:/ /stackoverflow. com/ questions/ 2550774/ what- is-
size- t-in- c.

A question comes up: the preceding system calls do not take any parameters; they
return the real or effective [U|G]IDs, yes, but for which process? The answer, of
course, is the calling process, the process that issues the system calls.

Code example
We write a simple C program (ch7/query_creds.c); when run, it prints to stdout its
process credentials (we show the relevant code):

#define SHOW_CREDS() do { \
 printf("RUID=%d EUID=%d\n" \
 "RGID=%d EGID=%d\n", \
 getuid(), geteuid(), \
 getgid(), getegid()); \
} while (0)

int main(int argc, char **argv)
{
 SHOW_CREDS();
 if (geteuid() == 0) {
 printf("%s now effectively running as root! ...\n", argv[0]);
 sleep(1);
 }
 exit (EXIT_SUCCESS);
}

https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c
https://stackoverflow.com/questions/2550774/what-is-size-t-in-c

Process Credentials Chapter 7

[256]

Build it and try it out:

$./query_creds
RUID=1000 EUID=1000
RGID=1000 EGID=1000
$ sudo ./query_creds
[sudo] password for seawolf: xxx
RUID=0 EUID=0
RGID=0 EGID=0
./query_creds now effectively running as root! ...
$

Note the following:

On the first run, the four process credential values are the usual ones (1000,
in our example). Also, note how by default the EUID = RUID and the EGID
= RGID.
But on the second run we sudo it: once we get the password right, the
process runs as root, which of course can be literally seen here: the four
process credential values are now all zeros reflecting root authority.

Sudo – how it works
The sudo(8) utility lets you run a program as another user; without further
qualification, that other user is root. Of course, for security, you must correctly enter
the root password (or as several distributions allow for desktop computing, the
user's own password, if he belongs to a group called sudo).

This brings up a very interesting point: how exactly does the can-do-anything
sudo(8) program work? It's simpler than you think! Refer to the following code:

$ which sudo
/usr/bin/sudo
$ ls -l $(which sudo)
-rwsr-xr-x 1 root root 145040 Jun 13 2017 /usr/bin/sudo
$

We note that the binary executable sudo is really a setuid-root program! So think
about it: whenever you run a program with sudo, the sudo process runs with a root
privilege straight away—no password, no fuss. But, of course, for security, the user
must enter the password; once they enter it correctly, sudo continues execution and
executes the command you want it to—as root. If the user fails to enter the password
correctly (within three attempts typically), sudo aborts execution.

Process Credentials Chapter 7

[257]

What is a saved-set ID?
The so-called saved-set IDs are a convenience feature; the OS is able to save the
process's initial effective user id (EUID) value. How does it help? This allows us to
switch from the original EUID value the process starts with to, say, an unprivileged
normal value (we'll cover how exactly in a moment), and then from the current
privileged state back to that saved EUID value (via the seteuid(2) system call);
thus, the initially saved EUID is called the saved-set ID.

In effect, we can on demand switch back and forth between a privileged and
unprivileged state for our process!

After we cover a bit more material, an example will help make things clear.

Setting the process credentials
We know that, from the shell, a convenient way of looking up who we are currently
running as is to run the simple id(1) command; it displays the real UID and real
GID (as well as all supplementary groups we belong to). As we have done earlier,
let's try it out while logged in as the user seawolf:

$ id
uid=1000(seawolf) gid=1000(seawolf)
groups=1000(seawolf),4(adm),24(cdrom),27(sudo), [...]
$

Consider again the sudo(8) utility; to run a program as another user, not as root, we
can use the -u or --user= switch to sudo. For example, let's run the id(1) program
as the user mail:

$ sudo -u mail id
[sudo] password for seawolf: xxx
uid=8(mail) gid=8(mail) groups=8(mail)
$

As expected, once we provide the correct password, sudo runs the id program as the
mail user, and the output of id now shows us that the (real) user and group IDs are
now that of the mail user account! (not seawolf), precisely the effect expected.

But how did sudo(8) do this? We understood from the previous section that, when
you run sudo (with whatever parameters), it, initially at least, always runs as root.
Now the question is, how does it run with the credentials of another user account?

Process Credentials Chapter 7

[258]

The answer: several system calls exist that let you change the process privileges (the
RUID, EUID, RGID, EGID): setuid(2), seteuid(2), setreuid(2), setresuid(2)
and all their analogs for the GID.

Let's take a quick look at the API signatures:

#include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);
int setgid(gid_t gid);

int seteuid(uid_t euid);
int setegid(gid_t egid);

int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);

The setuid(2) system call allows a process to set its EUID to the value passed. If the
process has root privileges (later in the next chapter, we shall qualify statements such
as this a lot better, when we learn about the POSIX capabilities model), then the RUID
and saved-setuid (explained shortly) are also set to this value.

All the set*gid() calls are analogous to their UID counterparts.

On the Linux OS, the seteuid and setegid APIs, though documented
as system calls, are actually wrappers over the setreuid(2) and
setregid(2) system calls.

Hacking attempt 2
Ah, hacking! Well, let's at least attempt to.

We know that EUID 0 is a special value—it means we have root privilege. Think
about it—we have a setuid(2) system call. So, even if we're unprivileged, why not just
do a quick

setuid(0); become privileged, and hack away as root!

Process Credentials Chapter 7

[259]

Hmm, Linux wouldn't be a very powerful and popular OS if the above hack were to
actually work. It won't work, folks: the above system call invocation would fail
returning -1; errno would be set to EPERM and the error message (from perror(3)
or strerror(3)) would be this: Operation not permitted.

Why is this? There's a simple rule within the kernel: an unprivileged process can set
its effective IDs to its real IDs—no other value is allowed. In other words, an
unprivileged process can set the following:

Its EUID to its RUID
Its EGID to its RGID

That's it.

Of course, a (root) privileged process can set its four credentials to any value it
chooses. There is no surprise there—this is part and parcel of the power of being root.

The seteuid(2) sets the process effective userid to the value
passed; for an unprivileged process, it can only set its EUID to its
RUID, the EUID, or the saved setuid.

The setreuid(2) sets the real and effective UIDs to the values
passed respectively; if -1 is passed, the corresponding value is left
untouched. (This can indirectly affect the saved-set value.) The
set[r]egid(2) calls are identical with respect to the group IDs.

Let's be empirical and try out what we just talked about:

$ cat rootsh_hack2.c
[...]
int main(int argc, char **argv)
{
 /* Become root */
 if (setuid(0) == -1)
 WARN("setuid(0) failed!\n");

 /* Now just spawn a shell;
 * <i>Evil Laugh</i>, we're now root!
 */
 system("/bin/bash");
 exit (EXIT_SUCCESS);
}

Process Credentials Chapter 7

[260]

Build and run it. This screenshot shows us a virtual machine seawolf, along with an
ssh-connected Terminal window in the lower right (where we're logged in as the
user seawolf); see the rootsh_hack2 program running there:

Studying the output of the ssh terminal window in the preceding screenshot, we can
see the following:

The original bash process (the shell) has the PID 6012.
The id command shows that we're running as (a real) UID = 1000 (which is
the seawolf user).
We run rootsh_hack2; clearly, the setuid(0) fails; the error message is
displayed: operation not permitted.
Nevertheless, it's just a warning message; execution continues, and the
process spawns another bash process, in effect, another shell.
Its PID is 6726 (proving it's unique from the original shell.)

Process Credentials Chapter 7

[261]

The id(1) is still 1000, proving we have not really achieved anything
significant.
We exit and are back to our original shell.

But what if we (or worse, a hacker) could trick this process into running as root!?
How? By making it a setuid-root executable of course; then we're in trouble:

$ ls -l rootsh_hack2
-rwxrwxr-x 1 seawolf seawolf 8864 Feb 19 18:03 rootsh_hack2
$ sudo chown root rootsh_hack2
[sudo] password for seawolf:
$ sudo chmod u+s rootsh_hack2
$ ls -l rootsh_hack2
-rwsrwxr-x 1 root seawolf 8864 Feb 19 18:03 rootsh_hack2
$./rootsh_hack2
root@seawolf-mindev:~/book_src/ch7# id -u
0
root@seawolf-mindev:~/book_src/ch7# ps
 PID TTY TIME CMD
 7049 pts/0 00:00:00 rootsh_hack2
 7050 pts/0 00:00:00 sh
 7051 pts/0 00:00:00 bash
 7080 pts/0 00:00:00 ps
root@seawolf-mindev:~/book_src/ch7# exit
exit
$

So, we just simulate being tricked: here we use sudo(8); we enter the password and
thus change the binary executable to a setuid-root, a truly dangerous, one. It runs,
and it spawns what now turns out to be a root shell (notice, the id(1) command
proves this fact); we do a ps and then exit.

It also dawns on us that our previous hacking attempt failed to deliver—the system(3)
API refused to elevate privileges when a shell was the parameter to run—which is
great security-wise. But, this hacking attempt (#2) proves that you can easily subvert
that: just issue a call to setuid(0) prior to invoking system (/bin/bash), and it
succeeds in delivering a root shell—of course, if and only if the process runs as root in
the first place: either via the setuid-root approach or by just using sudo(8).

Process Credentials Chapter 7

[262]

An aside – a script to identify setuid-root and
setgid installed programs
We now begin to understand that setuid/setgid programs might be convenient,
but from a security viewpoint, they can be potentially dangerous and must be
carefully audited. The first step in such an audit is finding out whether and where
exactly these binaries exist on the Linux system.

To do so, we write a small shell (bash) script; it will identify and show us the installed
setuid-root and setgid programs on the system (as usual, you can download and
try the script from the book's Git repository).

The script performs its work essentially, as shown next (it actually loops over an array
of directories; for simplicity, we show a direct example of scanning the /bin
directory):

 echo "Scanning /bin ..."
 ls -l /bin/ | grep "^-..s" | awk '$3=="root" {print $0}'

The output of ls -l is piped to grep(1), which uses a regular expression designed
to match a string if the first character is a - (a regular file) and if the owner execute bit
is s—in other words, a setuid file; the awk(1) filter ensures that only if the owner is
root do we print the resultant string to stdout.

We run the bash script on two Linux distributions.

On an Ubuntu 17.10 on x86_64:

$./show_setuidgid.sh
--
System Information (LSB):
--
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 17.10
Release: 17.10
Codename: artful
kernel: 4.13.0-32-generic
--
Scanning various directories for (traditional) SETUID-ROOT binaries
...
--
Scanning /bin ...
-rwsr-xr-x 1 root root 30800 Aug 11 2016 fusermount
-rwsr-xr-x 1 root root 34888 Aug 14 2017 mount

Process Credentials Chapter 7

[263]

-rwsr-xr-x 1 root root 146128 Jun 23 2017 ntfs-3g
-rwsr-xr-x 1 root root 64424 Mar 10 2017 ping
-rwsr-xr-x 1 root root 40168 Aug 21 2017 su
-rwsr-xr-x 1 root root 26696 Aug 14 2017 umount
--
Scanning /usr/bin ...
-rwsr-xr-x 1 root root 71792 Aug 21 2017 chfn
-rwsr-xr-x 1 root root 40400 Aug 21 2017 chsh
-rwsr-xr-x 1 root root 75344 Aug 21 2017 gpasswd
-rwsr-xr-x 1 root root 39944 Aug 21 2017 newgrp
-rwsr-xr-x 1 root root 54224 Aug 21 2017 passwd
-rwsr-xr-x 1 root root 145040 Jun 13 2017 sudo
-rwsr-xr-x 1 root root 18448 Mar 10 2017 traceroute6.iputils
--
Scanning /sbin ...
--
Scanning /usr/sbin ...
--
Scanning /usr/local/bin ...
--
Scanning /usr/local/sbin ...
--

Scanning various directories for (traditional) SETGID binaries ...
--
Scanning /bin ...
--
Scanning /usr/bin ...
-rwxr-sr-x 1 root tty 14400 Jul 27 2017 bsd-write
-rwxr-sr-x 1 root shadow 62304 Aug 21 2017 chage
-rwxr-sr-x 1 root crontab 39352 Aug 21 2017 crontab
-rwxr-sr-x 1 root shadow 22808 Aug 21 2017 expiry
-rwxr-sr-x 1 root mlocate 38992 Apr 28 2017 mlocate
-rwxr-sr-x 1 root ssh 362640 Jan 16 18:58 ssh-agent
-rwxr-sr-x 1 root tty 30792 Aug 14 2017 wall
--
Scanning /sbin ...
-rwxr-sr-x 1 root shadow 34816 Apr 22 2017 pam_extrausers_chkpwd
-rwxr-sr-x 1 root shadow 34816 Apr 22 2017 unix_chkpwd
--
Scanning /usr/sbin ...
--
Scanning /usr/local/bin ...
--
Scanning /usr/local/sbin ...
--
$

Process Credentials Chapter 7

[264]

A system information banner is displayed (so that we can glean system details,
mostly obtained using the lsb_release utility). Then, the script scans through
various system directories printing out all setuid-root and setgid binaries it finds.
Familiar examples, passwd and sudo are highlighted.

setgid example – wall
As a great example of setgid binaries, take a look at the wall(1) utility, reproduced
from the script's output for convenience:

-rwxr-sr-x 1 root tty 30792 Aug 14 2017 wall

The wall(1) program is used to broadcast any message to all users console (tty)
devices (typically the sysad will do this). Now, to write to a tty device (recall, folks,
Chapter 1, Linux System Architecture, and the if it's not a process, it's a file
Unix philosophy), what permissions do we require? Let's take the second terminal
tty2 device as an example:

$ ls -l /dev/tty2
crw--w---- 1 root tty 4, 2 Feb 19 18:04 /dev/tty2
$

We can see that to write to the preceding device we either require root or we must be
a member of the tty group. Peek again at the wall(1) utility long listing; it's a setgid
binary-executable file and the group membership is tty; so, when anyone runs it, the
wall process runs with an effective group ID (EGID) of tty ! That solves the
problem—no code. No fuss.

Process Credentials Chapter 7

[265]

Here is a screenshot where wall is used:

In the foreground, there is an ssh connected (to an Ubuntu VM; you can see it in the
background) terminal window. It issues the wall command as a regular user:
because of the setgid tty, it works!

Now you can run the earlier script on a Fedora 27 on x86_64:

$./show_setuidgid.sh 1
--
System Information (LSB):
--
LSB Version: :core-4.1-amd64:core-4.1-noarch
Distributor ID: Fedora
Description: Fedora release 27 (Twenty Seven)
Release: 27

Process Credentials Chapter 7

[266]

Codename: TwentySeven
kernel: 4.14.18-300.fc27.x86_64
--
Scanning various directories for (traditional) SETUID-ROOT binaries
...
--
Scanning /bin ...
--
Scanning /usr/bin ...
-rwsr-xr-x. 1 root root 52984 Aug 2 2017 at
-rwsr-xr-x. 1 root root 73864 Aug 14 2017 chage
-rws--x--x. 1 root root 27992 Sep 22 14:07 chfn
-rws--x--x. 1 root root 23736 Sep 22 14:07 chsh
-rwsr-xr-x. 1 root root 57608 Aug 3 2017 crontab
-rwsr-xr-x. 1 root root 32040 Aug 7 2017 fusermount
-rwsr-xr-x. 1 root root 31984 Jan 12 20:36 fusermount-
glusterfs
-rwsr-xr-x. 1 root root 78432 Aug 14 2017 gpasswd
-rwsr-xr-x. 1 root root 36056 Sep 22 14:07 mount
-rwsr-xr-x. 1 root root 39000 Aug 14 2017 newgidmap
-rwsr-xr-x. 1 root root 41920 Aug 14 2017 newgrp
-rwsr-xr-x. 1 root root 39000 Aug 14 2017 newuidmap
-rwsr-xr-x. 1 root root 27880 Aug 4 2017 passwd
-rwsr-xr-x. 1 root root 27688 Aug 4 2017 pkexec
-rwsr-xr-x. 1 root root 32136 Sep 22 14:07 su
---s--x--x. 1 root root 151416 Oct 4 18:55 sudo
-rwsr-xr-x. 1 root root 27880 Sep 22 14:07 umount
--
Scanning /sbin ...
--
Scanning /usr/sbin ...
-rwsr-xr-x. 1 root root 114840 Jan 19 23:25 mount.nfs
-rwsr-xr-x. 1 root root 89600 Aug 4 2017 mtr
-rwsr-xr-x. 1 root root 11256 Aug 21 2017 pam_timestamp_check
-rwsr-xr-x. 1 root root 36280 Aug 21 2017 unix_chkpwd
-rws--x--x. 1 root root 40352 Aug 5 2017 userhelper
-rwsr-xr-x. 1 root root 11312 Jan 2 21:06 usernetctl
--
Scanning /usr/local/bin ...
--
Scanning /usr/local/sbin ...
--

Scanning various directories for (traditional) SETGID binaries ...
--
Scanning /bin ...
--
Scanning /usr/bin ...

Process Credentials Chapter 7

[267]

-rwxr-sr-x. 1 root cgred 15640 Aug 3 2017 cgclassify
-rwxr-sr-x. 1 root cgred 15600 Aug 3 2017 cgexec
-rwx--s--x. 1 root slocate 40528 Aug 4 2017 locate
-rwxr-sr-x. 1 root tty 19584 Sep 22 14:07 write
--
Scanning /sbin ...
--
Scanning /usr/sbin ...
-rwx--s--x. 1 root lock 15544 Aug 4 2017 lockdev
-rwxr-sr-x. 1 root root 7144 Jan 2 21:06 netreport
--
Scanning /usr/local/bin ...
--
Scanning /usr/local/sbin ...
--
$

More setuid-root binaries seem to show up; also, write(1) is the equivalent (to
wall(1)) setgid tty utility on Fedora.

Giving up privileges
From the previous discussion, it seems as if the set*id() system calls (setuid(2),
seteuid(2), setreuid(2), setresuid(2)) are only useful to root, as only with
root privileges can we use the system calls to change the process credentials. Well,
that's not really the full truth; there's another important case, for non-privileged
processes.

Consider this scenario: our program specification requires the initialization code to
run with root privileges; the rest of the code does not. Obviously, we don't want to
give the end user root access just to run our program. How do we solve this?

Making the program setuid-root would nicely do the trick. As we've seen, a setuid-
root process will always run as root; but after the initialization work is done, we can
switch back to the unprivileged normal state. How do we do this? Via the
setuid(2): recall that setuid for a privileged process sets both the EUID and RUID
to the value passed; so we pass it the process's RUID, which we obtain via the getuid:

setuid(getuid()); // make process unprivileged

This is a useful semantic (often, the seteuid(getuid()) is all we require). We use
this semantic to become our true selves again—quite philosophical, no?

Process Credentials Chapter 7

[268]

In information security (infosec) circles, there is an important
principle followed: reduction of the attack surface. Converting a root
privileged process to become non-privileged (once its work as root
is done) helps toward this goal (to some extent at least).

Saved-set UID – a quick demo
In the previous section, we've just seen how the useful seteuid(getuid()) semantic
can be used to switch a setuid privileged process to a regular unprivileged state
(that's good design and safer). But what if we have this requirement:

Time t0: initialization code: must run as root
Time t1: func1(): must *not* run as root
Time t2: func2(): must run as root
Time t3: func3(): must *not* run as root
[...]

To achieve the must-run-as-root semantic initially, we can of course create the
program to be a setuid-root program. Then, at time t1, we issue the
setuid(getuid()) giving up root privileges.

But how do we regain root privileges at time t2? Ah, that's where the saved-setuid
feature becomes precious. What's more, it's easy to do; here is the pseudo-code to
achieve this scenario:

t0: we are running with root privilege due to setuid-root binary
 executable being run
 saved_setuid = geteuid() // save it
t1: seteuid(getuid()) // must *not* run as root
t2: seteuid(saved_setuid) // switch back to the saved-set, root
t3: seteuid(getuid()) // must *not* run as root

We demonstrate the same with an actual C code next. Note that for the demo to work
as expected, the user must make the binary executable file into a setuid-root binary by
doing this:

make savedset_demo
sudo chown root savedset_demo
sudo chmod u+s savedset_demo

Process Credentials Chapter 7

[269]

The following code checks that, at the beginning, the process is indeed running as
root; if not, it aborts with a message asking the user to make the binary a setuid-root
binary:

int main(int argc, char **argv)
{
 uid_t saved_setuid;

 printf("t0: Init:\n");
 SHOW_CREDS();
 if (0 != geteuid())
 FATAL("Not a setuid-root executable,"
 " aborting now ...\n"
 "[TIP: do: sudo chown root %s ;"
 " sudo chmod u+s %s\n"
 " and rerun].\n"
 , argv[0], argv[0], argv[0]);
 printf(" Ok, we're effectively running as root! (EUID==0)\n");

 /* Save the EUID, in effect the "saved set UID", so that
 * we can switch back and forth
 */
 saved_setuid = geteuid();

 printf("t1: Becoming my original self!\n");
 if (seteuid(getuid()) == -1)
 FATAL("seteuid() step 2 failed!\n");
 SHOW_CREDS();

 printf("t2: Switching to privileged state now...\n");
 if (seteuid(saved_setuid) == -1)
 FATAL("seteuid() step 3 failed!\n");
 SHOW_CREDS();
 if (0 == geteuid())
 printf(" Yup, we're root again!\n");

 printf("t3: Switching back to unprivileged state now ...\n");
 if (seteuid(getuid()) == -1)
 FATAL("seteuid() step 4 failed!\n");
 SHOW_CREDS();

 exit (EXIT_SUCCESS);
}

Process Credentials Chapter 7

[270]

Here is a sample run:

$ make savedset_demo
gcc -Wall -o savedset_demo savedset_demo.c common.o
#sudo chown root savedset_demo
#sudo chmod u+s savedset_demo
$ ls -l savedset_demo
-rwxrwxr-x 1 seawolf seawolf 13144 Feb 20 09:22 savedset_demo*
$./savedset_demo
t0: Init:
RUID=1000 EUID=1000
RGID=1000 EGID=1000
FATAL:savedset_demo.c:main:48: Not a setuid-root executable, aborting
now ...
[TIP: do: sudo chown root ./savedset_demo ; sudo chmod u+s
./savedset_demo
 and rerun].
$

The program fails as it detects that it's not running effectively as root in the
beginning, implying that it's not a setuid-root binary executable in the first place. So,
of course, we must make it a setuid-root binary executable by doing the sudo chown
... followed by the sudo chmod (Notice how we've kept the code to do so in
the Makefile but have commented it out, so that you, the reader, can get some
practice).

This screenshot shows that once we do this, it runs as expected, switching back and
forth between the privileged and unprivileged states:

Process Credentials Chapter 7

[271]

Notice how the really crucial system call to switch back and forth is, after all,
the setuid(2); also notice how the EUID changes at different points in time (from 0 at
t0, to 1000 at t1, again to 0 at t2 and finally back to 1000 at t3).

Also note that, to provide interesting examples, we have been
mostly using setuid-root binaries. You need not: making the file
owner someone else (such as the mail user) would then in effect
make it a setuid-mail binary executable, meaning that, when run,
the process RUID would be the usual 1000 (seawolf), but the EUID
would be that of the mail user's RUID.

The setres[u|g]id(2) system calls
Here are a couple of wrapper calls—the setresuid(2) and the setresgid(2); their
signatures:

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int setresuid(uid_t ruid, uid_t euid, uid_t suid);
int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

This pair of system calls is like a superset of the earlier set*id() APIs. With the
setresuid(2) system call, a process can set the RUID, EUID, and saved-set-id all at
once, with a single system call (the res in the system call name stands for real,
effective, and saved-set-ID, respectively).

A non-privileged (meaning, non-root) process can only use this system call to set the
three IDs to one of the current RUID, the current EUID, or the current saved-set UID,
nothing else (the usual security principle at work). Passing -1 implies to leave the
corresponding value unchanged. A privileged (root) process can use the call to set the
three IDs to any values, of course. (As usual, the setresgid(2) system call is
identical except that it sets group credentials).

Some real-world OSS projects indeed use this system call; good examples are the
OpenSSH project (the Linux port is called OpenSSH-portable) and the well-
known sudo(8) utility.

Process Credentials Chapter 7

[272]

OpenSSH: from its git repository here: https:/ / github. com/ openssh/ openssh-
portable/ :

uidswap.c: permanently_drop_suid():

void permanently_drop_suid(uid_t uid)
[...]
debug("permanently_drop_suid: %u", (u_int)uid);
if (setresuid(uid, uid, uid) < 0)
 fatal("setresuid %u: %.100s", (u_int)uid, strerror(errno));

[...]

/* Verify UID drop was successful */
 if (getuid() != uid || geteuid() != uid) {
 fatal("%s: euid incorrect uid:%u euid:%u (should be %u)",
 __func__, (u_int)getuid(), (u_int)geteuid(), (u_int)uid);
}

It's interesting to notice the effort taken to ensure that the UID drop was
successful—more on this next!

Performing an strace(1) on sudo(8) (notice we have to trace it as root, as
attempting to strace a setuid program as a regular user does not work as, while
tracing, the setuid bit is deliberately ignored; this output is from an Ubuntu Linux
system):

$ id mail
uid=8(mail) gid=8(mail) groups=8(mail)
$ sudo strace -e trace=setuid,setreuid,setresuid sudo -u mail id
[...]
setresuid(-1, 0, -1) = 0
setresuid(-1, -1, -1) = 0
setresuid(-1, 8, -1) = 0
setresuid(-1, 0, -1) = 0
[...]

Clearly, sudo uses the setresuid(2) system call to set permissions, credentials,
really, as appropriate (in the preceding example, the process EUID is being set to that
of the mail user, the RUID and saved-set-id are being left unchanged).

https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/
https://github.com/openssh/openssh-portable/

Process Credentials Chapter 7

[273]

Important security notes
Here are a few key points to keep in mind, with regard to security:

The use of setuid binaries, if poorly designed, is a security risk. Particularly
and especially for setuid-root programs, they should be designed and
tested to ensure that, while the process is in an elevated privileged state, it
never spawns a shell or blindly accepts user commands (which are then
internally executed).
You must check the failure case of any of the set*id() system calls
(setuid(2), seteuid(2), setreuid(2), setresuid(2)).

Consider this pseudo-code:

run setuid-root program; EUID = 0
 do required work as root
switch to 'normal' privileges: setuid(getuid())
 do remaining work as non-root
 [...]

Think about this: what if the preceding setuid(getuid()) call failed (for whatever
reason) and we did not check? The remaining work would continue to run with root
access, very possibly courting disaster! (See the sample code from the OpenSSH-
portable Git repo for a real-world example of careful checking.) Let's take a look at the
following points:

The setuid(2) system call is deficient in a sense: if the real UID is root,
then the saved-set UID is also root; hence, you cannot drop privileges!
Obviously, this can be dangerous for setuid-root applications and the like.
As an alternative, use the setreuid(2) API to have a root process
temporarily drop privileges and regain them later (by swapping their
RUID and EUID values).
Even if you have system administrator (root) access, you should never log
in as root! You could be (quite easily) tricked into running dangerous
programs as root (hackers routinely use this technique to install rootkits
onto a system; once successful, do consider your system compromised).
When a process creates a shared object (say a file), who will own it and
what will the group be? In other words, what values will the kernel set in
the file's inode metadata structure for UID and GID? The answer is this: the
file UID will be the creator process's EUID, and the file GID (group
membership) will be the creator process's EGID. This will have a
subsequent effect on permissions.

Process Credentials Chapter 7

[274]

We recommend that you, the reader, definitely read Chapter 9,
Process Execution, as well! In it, we show how the traditional
permissions model is flawed in many respects, and why and how
you should use the superior Linux Capabilities model.

Summary
In this chapter, the reader has been taken through many important ideas on the
design and implementation of the traditional Unix security model. Among other
things, we have covered the traditional Unix permission model, the concepts of
process real and effective IDs, APIs to query and set them, sudo(8), saved-set IDs.

Again, it bears repeating: we definitely recommend you also read the following
Chapter 8, Process Capabilities! In it, we show how the traditional permissions model
is flawed, and how you should use the superior, modern Linux Capabilities model.

8
Process Capabilities

In two chapter, you will learn concepts and practices regarding process credentials
and capabilities. Besides being of practical importance to application development in
Linux, this chapter, by its very nature, delves deeper into an often overlooked but
extremely important aspect: security.

We have divided the coverage of this key area into two major parts, each of which is a
chapter in this book:

In Chapter 7, Process Credentials, the traditional-style Unix permissions
model is discussed in some detail, and techniques to run programs with
root privileges but without requiring the root password were shown.
In this Chapter 8, Process Capabilities, the modern approach, the POSIX
capabilities model, is discussed in some detail.

We will attempt to clearly show the reader that, while it is important to learn about
the traditional mechanisms and how they operate, this becomes a classic weak link as
far as security is concerned. However you look at it, security is of paramount
importance, especially these days; the advent of Linux running on all sorts of
devices—tiny IoT and embedded devices to mobile devices, desktops, servers, and
super-computing platforms—makes security a key concern for all stakeholders.
Hence, the modern capabilities approach should be used when developing software.

In this chapter, we will cover the modern approach—the POSIX capabilities model—in
some detail. We will discuss what exactly it is, and how it provides security and
robustness. The reader will learn about the following:

What exactly the modern POSIX Capabilities model is
Why it is superior to the older (traditional) Unix permissions model
How to work with capabilities on Linux
Embedding capabilities into a process or binary executable
Security tips

Process Capabilities Chapter 8

[276]

Along the way, we will use code examples, which will allow you to try out some of
these facilities so that you can gain a better understanding of them.

The modern POSIX capabilities model
Consider this (fictional) scenario: Vidya is on a project developing a Linux application
for Alan and his team. She is working on a component that captures network packets
and saves them to a file (for later analysis). The program is called packcap. However,
to successfully capture the network packets, packcap must run with root privileges.
Now, Vidya understands that running applications as root is not a good security
practice; not only that, she knows the customer will not accept the statement: Oh, it
didn't work? You must run it logged in as a root or via sudo. Running it via sudo(8)
might sound reasonable, but, when you stop to think about it, that implies that every
member of Alan's team must be given the root password, and this is simply not
acceptable.

So, how does she solve the problem? The answer suddenly jumps out at her: Make
the packcap binary executable a setuid-root file; this way, when it's launched, the
process will be running with root privileges, so there will be no need for a root
login/password or sudo. Sounds fantastic.

Motivation
This—the setuid—root approach—is exactly the traditional manner in which
problems like the one briefly described above were solved. So, what's changed today
(well, over several years now)? In a nutshell: security concerns over hacking. The reality
is this: All real-world non-trivial programs do have defects (bugs)—hidden, lurking,
undiscovered, perhaps, but very much there. The vast scope and complexity of
modern real-world software projects make this an unfortunate reality. Certain bugs
result in vulnerabilities "leaking" into the software product; this is precisely what
hackers look to exploit. The well-known, yet dreaded, Buffer Overflow (BoF) attacks
are based on software vulnerabilities within several heavily used library APIs! (We
highly recommend reading David Wheeler's book Secure Programming HOWTO -
Creating Secure Software—see the Further reading section on the GitHub repository.)

At the code level, security issues are bugs; once fixed, the issue
disappears. (See a link to Linux's comments on this in the Further
reading section on the GitHub repository.)

Process Capabilities Chapter 8

[277]

So what's the point? Simply put the point is this: It's entirely possible that the setuid-
root program you deliver to your customer (packcap) has unfortunate and unknown-
as-of-now software vulnerabilities embedded within it, which hackers could discover
and exploit (yes, there's a whole job description for this—white-hat hacking or
pentesting.)

If the process hacked into runs with normal privileges—non-root—at least then the
damage is limited to that user account, and it goes no further. But if the process is
running with root privilege and the attack succeeds, the hacker might well end up
with a root shell on the system. The system is now compromised—anything can happen
(secrets can be stolen, backdoors and rootkits installed, DoS attacks become trivial.)

It's not only about security, though: by limiting privileges, you gain damage-control
benefits as well; bugs and crashes are going to cause limited damage—the situation is
far better contained than earlier.

POSIX capabilities
So, going back to our fictional packcap example application, how do we run the
process—which requires root, it seems—without root privileges (no root login,
setuid-root, or sudo(8) allowed) and yet have it perform its tasks correctly?

Enter the POSIX Capabilities model: In this model, instead of giving a process blanket
access as a root (or other) user, there is a way to embed particular capabilities into both the
process and/or binary file. The Linux kernel supports the POSIX capabilities model from
very early on—the 2.2 Linux kernels (at the time of writing, we are now in the 4.x
kernel series). From a practical viewpoint, the features we describe as follows are
available from Linux kernel version 2.6.24 (released January 2008) onward.

This is how it works in a nutshell: Every process—in fact, every thread—as part of its
OS metadata, contains a bitmask. These are called the capability bits or the capability
set, because each bit represents a capability. By carefully setting and clearing bits, the
kernel (as well as the user space, if it has the capability) can therefore set fine
granularity permissions on a per-thread basis (we will cover multithreading in detail in
later Chapter 14, Multithreading with Pthreads Part I - Essentials, for now, treat the term
thread as interchangeable with process).

More realistically, and as we shall see next, the kernel maintains
several capability sets (capsets) per thread alive; each capset consists of
an array of two 32-bit unsigned values.

Process Capabilities Chapter 8

[278]

For example, there is a capability bit called CAP_DAC_OVERRIDE; it would normally
be cleared (0). If set, then the process will bypass all the kernel's file permission
checks—for anything: reading, writing, and executing! (This is known as DAC:
Discretionary Access Control.)

Looking at a few more examples of capability bits would be useful at this point (the
full list is available at the man page on capabilities(7) here: https:/ /linux. die.net/
man/7/capabilities). Some snippets follow:

[...]
CAP_CHOWN
 Make arbitrary changes to file UIDs and GIDs (see
chown(2)).

CAP_DAC_OVERRIDE
 Bypass file read, write, and execute permission checks.
(DAC is an abbreviation of "discretionary access control".)
[...]

CAP_NET_ADMIN
 Perform various network-related operations:
 * interface configuration;
 * administration of IP firewall, masquerading, and
accounting;
 * modify routing tables;
[...]

CAP_NET_RAW
 * Use RAW and PACKET sockets;
 * bind to any address for transparent proxying.
[...]

CAP_SETUID
 * Make arbitrary manipulations of process UIDs
(setuid(2),
 setreuid(2), setresuid(2), setfsuid(2));

[...]

 CAP_SYS_ADMIN
 Note: this capability is overloaded; see Notes to kernel
 developers, below.

 * Perform a range of system administration operations
 including: quotactl(2), mount(2), umount(2),
swapon(2),
 setdomainname(2);

https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
http://man7.org/linux/man-pages/man2/chown.2.html
http://man7.org/linux/man-pages/man2/setuid.2.html
http://man7.org/linux/man-pages/man2/setreuid.2.html
http://man7.org/linux/man-pages/man2/setresuid.2.html
http://man7.org/linux/man-pages/man2/setfsuid.2.html
http://man7.org/linux/man-pages/man2/quotactl.2.html
http://man7.org/linux/man-pages/man2/mount.2.html
http://man7.org/linux/man-pages/man2/umount.2.html
http://man7.org/linux/man-pages/man2/swapon.2.html

Process Capabilities Chapter 8

[279]

 * perform privileged syslog(2) operations (since Linux
2.6.37,
 CAP_SYSLOG should be used to permit such operations);
 * perform VM86_REQUEST_IRQ vm86(2) command;
 * perform IPC_SET and IPC_RMID operations on arbitrary
 System V IPC objects;
 * override RLIMIT_NPROC resource limit;
 * perform operations on trusted and security Extended
 Attributes (see xattr(7));
 * use lookup_dcookie(2);
<< a lot more follows >>
[...]

In effect, the capabilities model provides fine-grained permissions; a way to slice up the
(overly) enormous power of the root user into distinct manageable pieces.

So, to understand the significant benefit in the context of our fictional packcap
example, consider this: With the traditional Unix permissions model, at best, the
release binary would be a setuid-root binary executable file; the process would run
with root privileges. In the best case, there's no bug, no security issues (or, if there are,
they aren't discovered), and all goes well—luckily. But, we don't believe in luck,
right?"(In the words of Jack Reacher, Lee Child's protagonist, "Hope for the best,
prepare for the worst")." In the worst case, there are exploitable vulnerabilities lurking
in the code and there are hackers who will work tirelessly until they find and exploit
them. The entire system could be compromised.

On the other hand, with the modern POSIX capabilities model, the packcap binary
executable file will not require to be setuid at all, never mind setuid-root; the process
would run with normal privileges. The work still gets done because we embed the
capability for precisely that work (in this example, network packet capture) and
absolutely nothing else. Even if there are exploitable vulnerabilities lurking in the
code, hackers would probably not be as motivated to find and exploit them; the
simple reason for this is this is that even if they do manage to gain access (say, an
arbitrary code execution bounty), all that can be exploited is the account of the non-
privileged users running the process. It's demotivating to the hacker (well, that's a
joke, but with truth ingrained within).

Think about it: the Linux capabilities model is one way to
implement a well-accepted security practice: the Principle of Least
Privilege (PoLP): Each module in a product (or project) must have
access only to the information and resources necessary for its
legitimate work, and nothing more.

http://man7.org/linux/man-pages/man2/syslog.2.html
http://man7.org/linux/man-pages/man7/xattr.7.html

Process Capabilities Chapter 8

[280]

Capabilities – some gory details
Linux capabilities are a fairly complex topic. For the purposes of this book, we delve
into the subject to the depth necessary for the systems application developer to profit
from the discussion. To get the complete details, please check out the man page on
capabilities (7) here: http:/ / man7. org/ linux/ man- pages/ man7/ capabilities. 7.html
as well as the kernel documentation on credentials here: https:/ /github. com/
torvalds/linux/ blob/ master/ Documentation/ security/ credentials. rst

OS support
Capability bitmask(s) are often referred to as capability sets—we abbreviate this
term to capset.

To work with the power of the POSIX capabilities model, in the first place, the OS
itself must provide "life support" for it; full support implies the following:

Whenever a process or thread attempts to perform some operation, the
kernel is able to check whether the thread is allowed to do so (by checking
for the appropriate bit being set in the thread's effective capset—see the
next section).
System calls (and usually wrapper library APIs) must be provided such
that a thread can query and set its capsets.
Linux kernel filesystem code must have a facility such that capabilities can
be embedded (or attached) into a binary-executable file (so that when the
file "runs", the process acquires those capabilities).

Modern Linux (particularly Kernel Version 2.6.24 onward) supports all three, and
thus fully supports the capabilities model.

Viewing process capabilities via procfs
To understand more details, we need a quick way to "look into" the kernel and
retrieve information; the Linux kernel's proc filesystem (often abbreviated to procfs)
provides just this feature (along with more).

Procfs is a pseudo-filesystem typically mounted on /proc. Exploring
procfs to learn more about Linux is a great idea; do check out some
links in the Further reading section on the GitHub repository.

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst
https://github.com/torvalds/linux/blob/master/Documentation/security/credentials.rst

Process Capabilities Chapter 8

[281]

Here, we shall just focus on the task at hand: to get to the details, procfs exposes a
directory called /proc/self (which refers to the current process's context, somewhat
analogous to the this pointer in OOP); under it, a pseudo file named status reveals
interesting details about the process (or thread) in question. The process's capsets are
seen as "Cap*" so we just grep for this pattern. In the next code, we perform this on a
regular non-privileged process (grep itself via the self directory), as well as with a
privileged (root) process (systemd/init PID 1), to see the differences:

Process/thread capsets: regular process (such as grep):

$ grep -i cap /proc/self/status
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000

Process/thread capsets: privileged (root) process (such as systemd/init PID 1):

$ grep -i cap /proc/1/status
CapInh: 0000000000000000
CapPrm: 0000003fffffffff
CapEff: 0000003fffffffff
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000
$

Enumerated in a table:

Thread Capability
Set (capset) Typical Value for Non-Privileged Task Typical Value for Privileged Task

CapInh (Inherited) 0x0000000000000000 0x0000000000000000

CapPrm (Permitted) 0x0000000000000000 0x0000003fffffffff

CapEff (Effective) 0x0000000000000000 0x0000003fffffffff

CapBnd (Bounded) 0x0000003fffffffff 0x0000003fffffffff

CapAmb (Ambient) 0x0000000000000000 0x0000000000000000

(This table describes the output from a Fedora 27/Ubuntu 17.10 Linux on x86_64).

Broadly, there are two types of capability sets:

Thread capability sets
File capability sets

Process Capabilities Chapter 8

[282]

Thread capability sets
Within thread capsets, there are actually several types per thread.

Linux per-thread capability sets:

Permitted (Prm): The overall limiting superset of effective capabilities for
the thread. If a capability is dropped, it can never be reacquired.
Inheritable (Inh): Inheritance here refers to the absorption of capset
attributes across an exec. What happens to the capsets when a process
executes another process? (Details on the exec are dealt with in a later
chapter. For now, suffice it to say that if bash execs vi, then we call bash the
predecessor and vi the successor).
Will the successor process inherit the capsets of the predecessor? Well, yes
the inheritable capset, that is. From the previous table, we can see that for a
non-privileged process, the inherited capset is all zeros, implying that no
capabilities are inherited across the exec operation. So, if a process wants to
execute another process and that (successor) process must run with
elevated privileges, it should use ambient capabilities.
Effective (Eff): These are the capabilities that the kernel actually uses when
checking permissions for the given thread.
Ambient (Amb): (From Linux 4.3 onward). These are the capabilities that
are inherited across an exec operation. The bits must be present (set to 1) in
both the permitted and inheritable capsets—only then can it be "ambient".
In other words, if a capability is cleared from either a Prm or an Inh, it is
also cleared in an Amb.
If a set[u|g]id program or a program with file capabilities (as we will see) is
executed, the ambient set is cleared. Normally, upon exec, the ambient
capset is added to Prm and assigned to Eff (of the successor process).
Bounding (Bnd): This capset is a way to limit the capabilities bestowed
upon a process during an exec. Its effect:

When the process executes another process, the permitted set
is the ANDing of the original permitted and bounded
capsets: Prm = Prm AND Bnd. This way, you can limit the
successor process's permitted capset.
Only if a capability is in the bounding set, can it be added to
the inheritable capset.
Also, from Linux 2.6.25 onward, the capability bounding set
is a per-thread attribute.

Process Capabilities Chapter 8

[283]

Executing a program will have no impact on the capsets unless either of the following
is true:

The successor is a setuid-root or a setgid program
File capabilities are set on the binary executable that is execed

How can these thread capsets be programmatically queried and changed? Indeed,
that's what the capget(2) and capset(2) system calls are for. However, we would
suggest one uses the library-level wrapper APIs cap_get_proc(3) and cap_set_proc(3)
instead.

File capability sets
At times, we require the ability to "embed" capabilities into a binary-executable file
(the discussion regarding the reasons for this is covered in the following section). This
will obviously require kernel filesystem support. In early Linux, this system was a
kernel-configurable option; from Linux kernel 2.6.33, file capabilities are always
compiled into the kernel, and are therefore always present.

File capsets are a powerful security feature—you could say they are the modern
equivalent of the older set[u|g]id features. To use them in the first place, the OS must
support them, and the process (or thread) requires the CAP_FSETCAP capability. Here
is the key point: The (previous) thread capsets along with the (coming) file capsets
ultimately determine thread capabilities following an exec operation.

Here are the Linux file capability sets:

Permitted (Prm): auto-permitted capabilities
Inheritable (Inh)
Effective (Eff): This is a single bit: if set, the new Prm capset gets raised in
the Eff set; otherwise, it does not.

Once again, understand the caveat under which the above information has been
provided: it's not the complete details. To get them, please check out the man page on
capabilities(7) here: https:/ /linux. die. net/man/ 7/ capabilities.

https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities
https://linux.die.net/man/7/capabilities

Process Capabilities Chapter 8

[284]

Here is a screenshot snippet from this man page, showing the algorithm used to
determine capabilities during the exec operation:

Embedding capabilities into a program binary
We have understood that the fine granularity of the capabilities model is a major
security advantage over the old-style root only or setuid-root approach. So, back to
our fictional packcap program: We would like to use capabilities, and not the setuid-
root. So, lets say that, upon careful study of the available capabilities, we conclude
that we would like the following capabilities to be endowed into our program:

CAP_NET_ADMIN

CAP_NET_RAW

Looking up the man page on credentials(7) reveals that the first of them gives a
process the ability to perform all required network administrative asks; the second,
the ability to use "raw" sockets.

But how exactly does the developer embed these required capabilities into the
compiled binary executable file? Ah, that's easily achieved with the getcap(8) and
setcap(8) utilities. Obviously, you use getcap(8) to query a given file's
capabilities and setcap (8) to set them upon a given file.

Process Capabilities Chapter 8

[285]

"If not already installed, please do install the getcap(8) and setcap(8)
utilities on your system (the book's GitHub repo provides a list of
madatory and optional software packages)"

The alert reader will notice something fishy here: If you are able to arbitrarily set
capabilities upon a binary executable file, then where is the security? (We could just
set CAP_SYS_ADMIN on the file /bin/bash, and it would now run as the root.) So, the
reality is that you can only set capabilities on a file if you already have the
CAP_FSETCAP capability; from the manual:

CAP_SETFCAP (since Linux 2.6.24)
 Set file capabilities.

In effect, practically speaking, you would thus perform the setcap(8) as root via
sudo(8); this is because we only get the CAP_SETFCAP capability when running with
root privilege.

So, let's do an experiment: We build a simple hello world program
(ch8/hello_pause.c); the only difference is this: We call the pause(2) system call
after the printf; the pause has process sleep (forever):

int main(void)
{
 printf("Hello, Linux System Programming, World!\n");
 pause();
 exit(EXIT_SUCCESS);
}

We then write another C program to query the capabilities on any given process; the
code of ch8/query_pcap.c:

[...]
#include <sys/capability.h>

int main(int argc, char **argv)
{
 pid_t pid;
 cap_t pcaps;
 char *caps_text=NULL;

 if (argc < 2) {
 fprintf(stderr, "Usage: %s PID\n"
 " PID: process to query capabilities of\n"
 , argv[0]);
 exit(EXIT_FAILURE);

Process Capabilities Chapter 8

[286]

 }
 pid = atoi(argv[1]);

 [...]
 pcaps = cap_get_pid(pid);
 if (!pcaps)
 FATAL("cap_get_pid failed; is process %d valid?\n", pid);

 caps_text = cap_to_text(pcaps, NULL);
 if (!caps_text)
 FATAL("caps_to_text failed\n", argv[1]);

 printf("\nProcess %6d : capabilities are: %s\n", pid, caps_text);
 cap_free(caps_text);
 exit (EXIT_SUCCESS);
}

It's simple: the cap_get_pid(3) API returns the capability state, essentially the
capsets of the target process. The only hassle is it's represented via an internal data
type called cap_t; to read it, we'd have to convert it to human-readable ASCII text;
you guessed it, the cap_to_text (3). API has precisely that function. We use it and
print the result. (Hey, notice how we must cap_free(3) the variable after use; the
manual informs us about this.)

Several of these APIs to do with capabilities (broadly the cap_* ones), require the
libcap library to be installed on the system. If not already installed, use your
package manager to do so (the correct package is usually called libcap-dev[el*]).
Obviously, you must link with the libcap library (we use the -lcap to do so in the
Makefile).

Let's try it out:

$./query_pcap
Usage: ./query_pcap PID
 PID: process to query capabilities of
$./query_pcap 1
Process 1 : capabilities are: =
cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,c
ap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_
bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,
cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptra
ce,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resou
rce,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_writ
e,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_sys
log,cap_wake_alarm,cap_block_suspend,cap_audit_read+ep
$

Process Capabilities Chapter 8

[287]

Process PID 1, traditionally (Sys V) init, but nowadays systemd, runs with root
privileges; thus, when we use our program to query its capsets (in reality, we get the
effective capset returned), we get quite a long capability list! (as expected.)

Next, we build and run the hello_pause process in the background; then we query
its capabilities:

$ make hello_pause
gcc -Wall -c -o hello_pause.o hello_pause.c
gcc -Wall -o hello_pause hello_pause.c common.o
$./hello_pause &
[1] 14303
Hello, Linux System Programming, World!
$./query_pcap 14303
Process 14303 : capabilities are: =
$

Our hello_pause process is of course unprivileged, nor does it have any capabilities
embedded within it; thus, as expected, we see it has no capabilities.

Now for the interesting part: Firstly, we embed capabilities into our hello_pause
binary executable file using the setcap(8) utility:

$ setcap cap_net_admin,cap_net_raw+ep ./hello_pause
unable to set CAP_SETFCAP effective capability: Operation not
permitted
$ sudo setcap cap_net_admin,cap_net_raw+ep ./hello_pause
[sudo] password for <xyz>: xxx
$

This makes sense: as root (technically, now we understand, with CAP_SYS_ADMIN
capability), we of course have the CAP_SETFCAP capability, and thus succeed in using
setcap(8). Syntactically, we need to specify to setcap(8) a capability list followed
by an action list; previously, we've specified the cap_net_admin,cap_net_raw
capabilities, and the add to effective and permitted as the action list (with the +ep
syntax).

Now, we retry our little experiment:

$./hello_pause &
[2] 14821
Hello, Linux System Programming, World!
$./query_pcap 14821
Process 14821 : capabilities are: = cap_net_admin,cap_net_raw+ep
$

Process Capabilities Chapter 8

[288]

Yes! The new hello_pause process indeed has the capabilities we wanted it to have.

What happens if both the traditional setuid-root and the modern
(file) capabilities are embedded in a binary executable? Well, in that
case, when run, only the capabilities embedded into the file take effect;
the process would have an EUID of 0, but would not have full root
capabilities.

Capability-dumb binaries
Notice something, though: the hello_pause program above really has no idea that it
actually has these capabilities; in other words, it programmatically has done nothing
to query or set POSIX capabilities on itself. Yet, via the file capabilities model (and the
setcap(8) utility) we have "injected" capabilities into it. This type of binary is therefore
called a capability-dumb binary.

It's still vastly superior to doing a clumsy setuid-root security-wise, but it could get
even "smarter" if the application itself—programmatically—used APIs to query and
set capabilities upon itself at runtime. We can think of this kind of app as a
capability-smart binary.

Often, when porting a legacy setuid-root (or worse, just a root) type of application,
developers will strip it of the setuid-root bit, knock off root ownership from the binary
and then convert it into a capability-dumb binary by running setcap(8) on it. This is a
good first step towards better security (or "hardening").

Getcap and similar utilities
The getcap(8) utility can be used to look up the capabilities embedded in a (binary)
file. As a quick example lets run getcap on the shell program and the ping utility:

$ getcap /bin/bash
$ getcap /usr/bin/ping
/usr/bin/ping = cap_net_admin,cap_net_raw+p
$

It's clear that bash does not have any file capsets—that's exactly what we expect. Ping,
on the other hand, does, so that it can carry out its duties without requiring root
privilege.

Process Capabilities Chapter 8

[289]

The getcap utility usage is amply demonstrated via a bash script (similar to the one
we saw in the previous chapter): ch8/show_caps.sh. Run it to see various file
capability embedded programs installed on the system (left as a simple exercise for
the reader to try out).

Similar in some respects to getcap(8), though a superset of it, is the
capsh(1) utility—a capability shell wrapper; check out its man pages for details.

Also similar to the query_pcap program we wrote, is the getpcaps(1) utility.

Wireshark – a case in point
So: the story we cooked up at the beginning of this topic is not entirely
fictitious—well, it is, but it has a remarkable real-world parallel: the well known
Wireshark (previously called Ethereal) network packet sniffer and protocol analyzer
application.

On older versions, Wireshark used to run as a setuid-root process, to perform
packet capture.

Modern versions of Wireshark separate out the packet capture into a program called
dumpcap1. It does not run as a setuid-root process, it runs with required capability
bits embedded into it, giving it just the privileges it requires to do its job—packet
capture.

The potential payoff to a hacker now performing a successful attack on it is thus
dramatically reduced— instead of gaining root, the hacker at best gains the privileges
(EUID, EGID) of the user who is running Wireshark and the wireshark group; he
does not get root! We use ls(1) and getcap(1) to see this as follows:

$ ls -l /bin/dumpcap
-rwxr-x---. 1 root wireshark 107K Jan 19 19:45 /bin/dumpcap
$ getcap /bin/dumpcap
/bin/dumpcap = cap_net_admin,cap_net_raw+ep
$

Notice, in the long listing above, the others (O) access category has no permissions;
only a root user and members of Wireshark can execute dumpcap(1). (Do not execute
it as a root; you will then defeat the whole point: security).

Process Capabilities Chapter 8

[290]

FYI, the actual packet-capture code is in a library called pcap—packet capture:

ldd /bin/dumpcap | grep pcap
 libpcap.so.1 => /lib64/libpcap.so.1 (0x00007f9723c66000)
#

For your information: A security advisory from Red Hat detailing security issues with
wireshark: https:/ / access. redhat. com/errata/ RHSA- 2012:0509. A snippet from the
following proves an important point:

... Several flaws were found in Wireshark. If Wireshark read a malformed packet off
a network or opened a malicious dump file, it could crash or, possibly, execute
arbitrary code as the user running Wireshark. (CVE-2011-1590,
CVE-2011-4102, CVE-2012-1595) ...

The highlighted text is key: Even if a hacker manages the feat of arbitrary code
execution, it will execute with the privileges of the user running Wireshark—not root!

The details on how exactly to set up Wireshark with POSIX
capabilities is covered here (under the section entitled GNU/Linux
distributions: https:/ / wiki. wireshark. org/ CaptureSetup/
CapturePrivileges .

It should now be amply clear: dumpcap is a capability-dumb binary; the Wireshark
process (or file) itself is not privileged in any manner. Security wins, both ways.

Setting capabilities programmatically
We've seen how to build a capability-dumb binary; now let's figure out how to add or
drop process (thread) capabilities at runtime within the program itself.

The other side of the coin from getcap is the setcap of course—we have already
worked with the utility on the command line. Now lets work with the relevant APIs.

The thing to understand is this: To work with the process capsets, we require what is
called a "capability state" in memory. To get this capability state, we use the
cap_get_proc(3) API (of course, as mentioned earlier, all these APIs are from the
libcap library, which we will link into). Once we have a working context, the
capability state, we will use the cap_set_flag(3) API to set up the transaction:

 #include <sys/capability.h>
 int cap_set_flag(cap_t cap_p, cap_flag_t flag, int ncap,
 const cap_value_t *caps, cap_flag_value_t
value);

https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://access.redhat.com/errata/RHSA-2012:0509
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://wiki.wireshark.org/CaptureSetup/CapturePrivileges

Process Capabilities Chapter 8

[291]

The first parameter is the capability state we received from the cap_get_proc(); the
second parameter is the capability set we wish to affect—one of effective, permitted
or inherited. The third parameter is the number of capabilities we are manipulating
with this one API call. The fourth parameter—this is where we identify the
capabilities that we wish to add or drop, but how? We pass a pointer to an array of
cap_value_t . Of course, we must initialize the array; each element holds a
capability. The final, fifth parameter value can be one of two values: CAP_SET to set
the capability, CAP_CLEAR to drop it.

Until now, all the work has been within a memory context—the capability state
variable; it's not really taken effect upon the process (or thread) capsets. To actually
set the capsets upon the process, we use the cap_set_proc(3) API:

int cap_set_proc(cap_t cap_p);

The parameter to it is the capability state variable that we carefully set up. Now the
capabilities will be set.

Also realize, unless we run it as root (which of course we don't—that's really the
whole point), we cannot just raise our capabilities. Hence, within the Makefile itself,
once the program binary file is built, we perform a sudo setcap upon the binary
executable file itself (set_pcap) enhancing its capabilities; we bestow the
CAP_SETUID and the CAP_SYS_ADMIN capability bits into its permitted and effective
capsets.

The next program briefly demonstrates how a process can add or drop capabilities
(that are of course within it's permitted capset). When run with option 1, it adds the
CAP_SETUID capability and "proves" it via a simple test function (test_setuid()).
Here is an interesting bit: Since the binary file already has two capabilities embedded
within it (we do a setcap(8) in the Makefile), we actually need to drop the
CAP_SYS_ADMIN capability (from its effective set).

When run with option 2, we want two capabilities—CAP_SETUID and
CAP_SYS_ADMIN; it will work, as these are embedded into the effective and permitted
capsets.

Here is the relevant code of ch8/set_pcap.c:

int main(int argc, char **argv)
{
 int opt, ncap;
 cap_t mycaps;
 cap_value_t caps2set[2];

Process Capabilities Chapter 8

[292]

 if (argc < 2)
 usage(argv, EXIT_FAILURE);

 opt = atoi(argv[1]);
 if (opt != 1 && opt != 2)
 usage(argv, EXIT_FAILURE);

 /* Simple signal handling for the pause... */
 [...]

 //--- Set the required capabilities in the Thread Eff capset
 mycaps = cap_get_proc();
 if (!mycaps)
 FATAL("cap_get_proc() for CAP_SETUID failed, aborting...\n");

 if (opt == 1) {
 ncap = 1;
 caps2set[0] = CAP_SETUID;
 } else if (opt == 2) {
 ncap = 2;
 caps2set[1] = CAP_SYS_ADMIN;
 }
 if (cap_set_flag(mycaps, CAP_EFFECTIVE, ncap, caps2set,
 CAP_SET) == -1) {
 cap_free(mycaps);
 FATAL("cap_set_flag() failed, aborting...\n");
 }

/* For option 1, we need to explicitly CLEAR the CAP_SYS_ADMIN
capability; this is because, if we don't, it's still there as it's a
file capability embedded into the binary, thus becoming part of the
process Eff+Prm capsets. Once cleared, it only shows up in the Prm Not
in the Eff capset! */
 if (opt == 1) {
 caps2set[0] = CAP_SYS_ADMIN;
 if (cap_set_flag(mycaps, CAP_EFFECTIVE, 1, caps2set,
 CAP_CLEAR) == -1) {
 cap_free(mycaps);
 FATAL("cap_set_flag(clear CAP_SYS_ADMIN) failed,
aborting...\n");
 }
 }

 /* Have the caps take effect on the process.
 * Without sudo(8) or file capabilities, it fails - as expected.
 * But, we have set the file caps to CAP_SETUID (in the Makefile),
 * thus the process gets that capability in it's effective and
 * permitted capsets (as we do a '+ep'; see below):"

Process Capabilities Chapter 8

[293]

 * sudo setcap cap_setuid,cap_sys_admin+ep ./set_pcap
 */
 if (cap_set_proc(mycaps) == -1) {
 cap_free(mycaps);
 FATAL("cap_set_proc(CAP_SETUID/CAP_SYS_ADMIN) failed,
aborting...\n",
 (opt==1?"CAP_SETUID":"CAP_SETUID,CAP_SYS_ADMIN"));
 }
 [...]

 printf("Pausing #1 ...\n");
 pause();
 test_setuid();
 cap_free(mycaps);

 printf("Now dropping all capabilities and reverting to original
self...\n");
 drop_caps_be_normal();
 test_setuid();

 printf("Pausing #2 ...\n");
 pause();
 printf(".. done, exiting.\n");
 exit (EXIT_SUCCESS);
}

Let's build it:

$ make set_pcap
gcc -Wall -o set_pcap set_pcap.c common.o -lcap
sudo setcap cap_setuid,cap_sys_admin+ep ./set_pcap
$ getcap ./set_pcap
./set_pcap = cap_setuid,cap_sys_admin+ep
$

Notice the setcap(8) has embedded file capabilities into the binary executable
set_pcap (which getcap(8) verifies).

Try it out; we'll first run it with option 2:

$./set_pcap 2 &
[1] 3981
PID 3981 now has CAP_SETUID,CAP_SYS_ADMIN capability.
Pausing #1 ...
$

Process Capabilities Chapter 8

[294]

The pause(2) system call has put the process to sleep; this is deliberately done so
that we can try things out (see the next code). As an aside, to work with this, the
program has set up some minimal signal handling; however, this topic will be
discussed in detail in subsequent chapters. For now, just understand that the pause
(and associated signal handling) allows us to literally "pause" the process, inspect
stuff, and once done, send it a signal to continue it:

$./query_pcap 3981
Process 3981 : capabilities are: = cap_setuid,cap_sys_admin+ep
$ grep -i cap /proc/3981/status
Name: set_pcap
CapInh: 0000000000000000
CapPrm: 0000000000200080
CapEff: 0000000000200080
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000
$

Above, we inspect the process via both our own query_pcap program and the proc
filesystem. Both the CAP_SETUID and CAP_SYS_ADMIN capabilities are present in both
the Permitted and Effective capsets.

To continue the process, we send it a signal; a simple way—via the kill(1)
command (details in a later Chapter 11, Signaling - Part I). There's quite a bit to see
now:

$ kill %1
(boing!)
test_setuid:
RUID = 1000 EUID = 1000
RUID = 1000 EUID = 0
Now dropping all capabilities and reverting to original self...
test_setuid:
RUID = 1000 EUID = 1000
!WARNING! set_pcap.c:test_setuid:55: seteuid(0) failed...
perror says: Operation not permitted
RUID = 1000 EUID = 1000
Pausing #2 ...
$

The funny *(boing!)* is just the process informing us that signal handling has
occurred. (Ignore it.) We invoke the test_setuid() function, the function code:

static void test_setuid(void)
{
 printf("%s:\nRUID = %d EUID = %d\n", __FUNCTION__,

Process Capabilities Chapter 8

[295]

 getuid(), geteuid());
 if (seteuid(0) == -1)
 WARN("seteuid(0) failed...\n");
 printf("RUID = %d EUID = %d\n", getuid(), geteuid());
}

We attempt to become root (effectively) with the seteuid(0) line of code. The output
shows us that we have succeeded in doing so as the EUID becomes 0. After this, we
call the drop_caps_be_normal() function, which "drops" all capabilities and reverts
us to "our original self", using the earlier-seen setuid(getuid()) semantic; the
function code:

static void drop_caps_be_normal(void)
{
 cap_t none;

 /* cap_init() guarantees all caps are cleared */
 if ((none = cap_init()) == NULL)
 FATAL("cap_init() failed, aborting...\n");
 if (cap_set_proc(none) == -1) {
 cap_free(none);
 FATAL("cap_set_proc('none') failed, aborting...\n");
 }
 cap_free(none);

 /* Become your normal true self again! */
 if (setuid(getuid()) < 0)
 FATAL("setuid to lower privileges failed, aborting..\n");
}

The program output indeed shows us that the EUID now reverts to non-zero (the
RUID of 1000) and the seteuid(0) fails, as expected (now that we've dropped
capabilities and root privileges.)

The process then invokes pause(2) once more (the "Pausing #2 ..." statement in
the output), so that the process remains alive; now we can see this:

$./query_pcap 3981
Process 3981 : capabilities are: =
$ grep -i cap /proc/3981/status
Name: set_pcap
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000
$

Process Capabilities Chapter 8

[296]

Indeed, all capabilities have been dropped. (We leave the test case of running the
program with option 1 to the reader.)

Here is an interesting point: You might come across the statement CAP_SYS_ADMIN is
the new root. Really? Let's test it: What if we embed only the CAP_SYS_ADMIN
capability into the binary file and modify the code to not drop it when running under
option 1? At first glance, it would seem that it should not matter—we should still be
able to successfully perform the seteuid(0) as we're effectively running as root with
this capability. But guess what? It doesn't work! Here's the bottom line: This teaches
us that while the statement sounds good, it's really not completely true! We still
require the CAP_SETUID capability to carry out arbitrary usage of the set*id()
system calls.

We leave it to the reader to write the code for this case and test it as an exercise.

Miscellaneous
A few remaining miscellaneous, but nevertheless useful, points and tips follow:

How ls displays different binaries
A screenshot of Fedora 27 (x86_64) showing the pretty colors ls -l displays when
displaying different binary executable types:

What exactly are these binaries? Let's list just that, in the order they're displayed
above:

dumpcap: a file capabilities binary executable
passwd: a setuid-root binary executable
ping: a file capabilities binary executable
write: a setgid-tty binary executable

Process Capabilities Chapter 8

[297]

Note: The precise meaning and coloring can certainly vary across Linux distributions;
the output shown is from a Fedora 27 x86_64 system.

Permission models layering
Now that we have seen details on both models—the traditional UNIX permissions in
the previous chapter and the modern POSIX capabilities one in this one, we take a
bird's-eye view of the same. The reality of a modern Linux kernel is that the legacy
model is actually layered on top of the newer capabilities model; the following table
shows this "layering":

Pros and Cons Model/Attributes
Simpler,
less secure

UNIX Permissions
Process and File with UID, GID values embedded
Process credentials: {RUID, RGID, EUID, EGID}

More complex,
more secure POSIX Capabilities

Thread Capsets, File Capsets
Per Thread: {Inherited, Permitted, Effective, Bounded, Ambient} capsets
Binary File: {Inherited, Permitted, Effective} capsets

A few observations to note due to this layering, as follows:

At the upper layer: What appears as a single integer, the process UID and
GID, is actually two integers under the hood—the real and effective user |
group IDs.
Mid layer: Giving rise to the four process credentials: {RUID, EUID, RGID,
EGID}.
Bottom layer: Which in turn is integrated on modern Linux kernels into the
POSIX capabilities model:

All kernel subsystems and code now use the capabilities
model to control and determine access to an object.
Now root - the "new" root, really—is predicated on the
(overloaded) capability bit CAP_SYS_ADMIN being set.
the set*id() system calls can be arbitrarily used to set
real/effective IDs once the CAP_SETUID capability is present:

thus, you can make EUID = 0, and so on.

Process Capabilities Chapter 8

[298]

Security tips
A quick summation of key points regarding security as follows:

Obviously, with all our discussion, as far as is possible, do not use the now-
outdated root mode any longer; this includes the (non) usage of setuid-root
programs. Rather, you should use capabilities and assign only the required
capabilities to the process:

directly or programmatically via the libcap(3) APIs
("capability-smart" binaries), or
indirectly via the setcap(8) file capabilities on the binary
("capability-dumb" binaries).

If the above has been done via the API route, you should consider
dropping capabilities immediately once the need for that capability is done
(and raising it only as and when required).
Containers: a "hot" fairly recent technology (essentially, containers are
lightweight virtual machines in a sense), they are quoted as "safe" as they
help isolate running code. However, the reality is not so rosy: Container
deployment is often done with little or no thought toward security,
resulting in highly insecure environments. You can greatly benefit security-
wise from the wise use of the POSIX capabilities model. An interesting
RHEL blog on how you can ask Docker (a popular container technology
product) to drop capabilities and thus greatly increase security is detailed
here: https:/ / rhelblog. redhat. com/ 2016/ 10/ 17/secure- your-
containers- with- this- one- weird- trick/ .

FYI – under the hood, at the level of the Kernel
(The paragraph that follows is just FYI and optional; if interested in deeper details
then take a look, or feel free to skip it.)

Within the Linux kernel, all task (process and thread) metadata is kept within a data
structure called the task_struct (also known as the process descriptor). The information
on what Linux calls the security context of a task is kept within this task structure,
embedded inside another data structure called cred (short for credentials). This
structure, cred, contains everything we've discussed: The modern POSIX capabilities
bitmasks (or capability sets) as well as the traditional-style process privileges: the
RUID, EUID, RGID, EGID (as well as the set[u|g]id and fs[u|g]id bits).

https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/
https://rhelblog.redhat.com/2016/10/17/secure-your-containers-with-this-one-weird-trick/

Process Capabilities Chapter 8

[299]

The procfs method we saw earlier actually looks up the credential information from
here. Hackers are obviously interested in accessing the cred structure and being able
to modify it on the fly: filling it with zeros in the appropriate places gets them root!
Does this sound far-fetched? Check out the (Some) Linux Kernel Exploits in the Further
reading section on the GitHub repository. Unfortunately, it happens more often than
anyone would like.

Summary
In this chapter, the reader has been taken through important ideas on the design and
implementation of the modern POSIX capabilities model (on the Linux OS). Among
other things, we have covered what POSIX capabilities are, and, crucially, why they
are important, especially from the viewpoint of security. The embedding of
capabilities into a runtime process or binary executable was also covered.

The whole intent of the discussion, which started in the previous chapter, is to open
the application developer's eyes to key security issues that arise when developing
code. We hope we have left you, the reader, with a feeling of urgency, and of course
the knowledge and tools to deal with security in a modern manner. Today's
applications have to not just work; they have to be written with security in mind! or
else...

9
Process Execution

Imagine this scenario: while working on a project as a systems programmer (using C
on Linux), there is a requirement that, from within the graphical user interface (GUI)
frontend application, when the end user clicks a certain button, the application must
display the content of a system-generated PDF document. We can assume a PDF
reader software application is available to us. But, how exactly, will you run it from
within your C code?

This chapter will teach you how to perform this important task. Here, we will learn
some core Unix/Linux systems programming concepts: How the Unix exec model
works, the predecessor/successor terminology, and how to use up to seven exec
family APIs to make the whole thing actually work in code. Along the way, of course,
code examples are used to clearly illustrate the concepts.

Briefly, the reader will learn about the following key areas:

The meaning of the exec operation and its semantics
Testing the exec operation
Using the exec—the wrong and right ways to do so

Error handling with the exec
the seven exec family APIs and how to use them in code.

Technical requirements
One of the exercises in this chapter requires the Poppler package (PDF utils) to be
installed; it can be installed as follows:

On Ubuntu: sudo apt install poppler-utils

On Fedora: sudo dnf install poppler-utils-<version#>

Process Execution Chapter 9

[301]

Regarding the Fedora case: to get the version number, just type the
above command, and after typing poppler-utils- press the Tab
key twice; it will autocomplete providing a list of choices. Choose
the latest version and press Enter.

Process execution
Here, we study how the Unix/Linux OS, at the level of the system
programmer, executes programs. First, we will teach you to understand the important
exec semantics; once this is clear, you can program it, using the exec family of APIs.

Converting a program to a process
As has been mentioned before, a program is a binary file on a storage medium; by
itself, it is a dead object. To run it and thus make it come alive, into a process, we have
to execute it. When you run a program from, say, the shell, it does indeed come alive
and become a process.

Here is a quick example:

$ ps
 PID TTY TIME CMD
 3396 pts/3 00:00:00 bash
21272 pts/3 00:00:00 ps
$

Looking at the previous code, from the shell (itself a process: bash), we run or execute
the ps(1) program; ps does run; it is now a process; it does its job (here printing out
the processes currently alive in this terminal's session), and then politely dies, leaving
us back on the shell's prompt.

A moment's reflection will reveal that to have the ps(1) program become the ps
process, some work probably had to be done by the operating system (OS). Indeed,
that is the case: The OS executes a program and makes it a running process ultimately
via an API, a system call, called the execve(2). For now, though, let's leave the APIs
aside and focus on the concept.

Process Execution Chapter 9

[302]

The exec Unix axiom
We learned in Chapter 2, Virtual Memory, which covered virtual memory, that a
process can be visualized as a box (a rectangle), having a virtual address space
(VAS); the VAS consists of homogeneous regions (technically, mappings) called
segments. Essentially, a process's VAS is thus made up of several segments—text
(code), data segments, library (and other) mappings, and a stack. For your
convenience, the diagram representing a process's VAS is reproduced here:

Fig 1 : The process virtual address space (VAS)

The lower end has a virtual address of 0, and addresses increase as
we go up; we have an upward-growing heap and a downward-
growing stack.

Every process alive on the machine will have just such a process VAS; thus, it stands
to reason, the shell in our preceding small example, bash, has such a process VAS
(along with all its other attributes such as process identifier (PID), open files, and so
on).

Process Execution Chapter 9

[303]

So, let's imagine that the shell process bash has a PID of 3,396. Now, when we run ps
from the shell, what actually happens?

Well, obviously, as a first step, the shell checks whether ps is a built-in command; if
so, it runs it; if not, which is the case, it continues on to the second step. Now, the
shell parses the PATH environment variable, and, say, locates ps in /bin . The third
step, the interesting one!, is where the shell process now executes /bin/ps via an
API. We shall leave the discussion of the exact API(s) until later; for now, we shall just
refer to the possible APIs as the exec APIs.

Don't lose the forest for the trees; a key point we now come to is this: The exec, when
it occurs, causes the calling process (bash) to execute the called process (ps) by having
(among other setups), ps overwrite it's Virtual Address Space (VAS). Yes, you read
that right—process execution on Unix, and thus Linux, is effected by having one
process—the caller—get overwritten by the process to execute— the callee.

Terminology

Here is some important terminology to help us: The process that is calling the exec
(bash, in our example), is called the predecessor; the process that gets called and
executed (ps in our example), is called the successor.

Key points during an exec operation
The following sums up important points to note when a predecessor process execs a
successor:

The successor process overwrites (or overlays) the predecessor's virtual
address space.

In effect, the predecessor's text, data, library, and stack
segments are now replaced by that of the successor's.
The OS will take care of the size adjustments.

No new process has been created—the successor now runs in the context of
the old predecessor.

Several predecessor attributes (including but not limited to
the PID and open files) thus get auto-inherited by the
successor.
(The astute reader could then question why, in our previous
example, the PID of ps is not 3,396 ? Patience, please, we
shall have the precise answer on the GitHub repository).

Process Execution Chapter 9

[304]

On a successful exec, there is no possibility of returning to the predecessor;
it's gone. Colloquially, performing an exec is like committing suicide for the
predecessor: After successful execution, the successor is all that's left;
returning to the predecessor is out of the question:

Fig 2: The exec operation

Testing the exec axiom
Can you test this exec axiom described above? Sure. Let's try this in three different
ways.

Process Execution Chapter 9

[305]

Experiment 1 – on the CLI, no frills
Follow the simple steps here:

Fire up a shell (a Terminal window, typically, on a GUI-based Linux)1.
In the window, or more precisely, at the shell prompt, type this:2.

 $ exec ps

What do you notice? Can you explain it?

Hey, come on, please try it out first, and then read on.

Yes, the terminal window process is the predecessor here; upon an
exec it's overwritten by the successor process ps, which does its
work and exits (you probably did not see the output as it
disappeared too quickly). ps is the successor process, and, of
course, we cannot return to the predecessor (the Terminal
window)—ps has literally replaced its VAS. Thus, the Terminal
window effectively disappears.

Experiment 2 – on the CLI, again
This time, we'll make it easier on you! Follow the given steps:

Fire up a shell (a Terminal window, typically, on a GUI-based Linux).1.
In the window, or more precisely, at the shell prompt, run ps followed by2.
bash —yes, we're spawning a subshell here, followed by ps once more.
(Check out the next screenshot; notice the PIDs of the original and sub-shell
Bash processes - 3,396 and 13,040.).
On the sub-shell, exec the ps command; this ps successor process3.
overwrites (or overlays) the process image of the predecessor process—the
bash sub-shell.
Observe the output: In the exec ps command output, the PID of ps is the4.
PID of the bash subshell process: 13,040! This suggests that it's running in
the context of that process.
Also notice we're back to the original bash shell process PID 3,396 now, as,5.
of course, we cannot return to the predecessor:

Process Execution Chapter 9

[306]

A third experimental run will follow shortly, once we've got some exec APIs to play
with.

The point of no return
It's important for the systems programmer to understand that, once an exec
operation is successful, there is no return to the predecessor process. To illustrate this,
consider the rough call graph here:

main()
 foo()
 exec(something)
 bar()

main() calls foo(), which calls exec(something); once the exec is successful,
bar() will never run!

Why not? We cannot reach it in the predecessor's execution path as the entire
execution context has now changed—to the context of the successor process
(something). The PID remains intact though.

Only if the exec fails will the function bar() get control (as, of course, we would still
be in the context of the predecessor).

Process Execution Chapter 9

[307]

As a further fine point, note that it's possible that the exec() operation itself
succeeds, but the process being executed, something, fails. That's OK; it does not
change the semantics; bar() will still not execute, as the successor has taken over.

Family time – the exec family APIs
Now that we have understood the exec semantics, it's time we saw how to perform
the exec operation programmatically. Unix and Linux provide several C APIs, seven
in fact, that all ultimately do the same job: They have the predecessor process exec
the successor.

So, there are seven APIs that all do the same thing? Mostly, yes; hence they are called
the exec family of APIs.

Lets take a look at them:

#include <unistd.h>
extern char **environ;

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ...,
 char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],
 char *const envp[]);
 execvpe(): _GNU_SOURCE

Hang on, though we said seven APIs, but the list above has six; indeed: the seventh is
special in a sense and not shown above. As usual, have a bit of patience; we will cover
it!

The reality is that though each API will ultimately perform the same job, using a
particular one helps based on the situation you are in (convenience-wise). Lets not
nitpick, and, for now, at least, disregard their differences; instead, let's focus on
understanding the first one; the rest will automatically and easily follow.

Take the first API, the execl(3):

int execl(const char *path, const char *arg, ...);

Process Execution Chapter 9

[308]

Does it take two, three, or more parameters? Well, in case you are new to it, the
ellipse— ... — represents a variable argument list or varargs, a feature supported
by the compiler.

The first parameter is the path name to the application you would like to execute.

From the second parameter onward, the varargs , the argument(s) to pass to the
successor process are inclusive of argv[0]. Think about it, in the simple experiments
above, we passed along parameters on the command line via the shell process; in
reality, it was really the shell process, the predecessor, that passed arguments
required by the successor process. This makes sense: Who else but the predecessor
would pass arguments to the successor?

How will the compiler know that you are done passing along arguments? Simple:
you must null terminate the argument list: execl(const char
*pathname_to_successor_program, const char *argv0, const char
*argv1, ..., const char *argvn, (char *)0);

Now you can see why it's named the way it is: the execl API, of course, performs an
exec; the last letter l implies long format; each argument of the successor process is
passed to it.

To clarify this, let's write a simple example C program; its job is to invoke the uname
process:

For readability, only the relevant parts of the code are displayed
here; to view and run it, the entire source code is available here:
https:/ / github. com/ PacktPublishing/ Hands- on- System-
Programming- with- Linux.

int main(int argc, char **argv)
{
 if (argc < 2) {
 [...]
 }
 /* Have us, the predecessor, exec the successor! */
 if (execl("/bin/uname", "uname", argv[1], (char *)0) == -1)
 FATAL("execl failed\n");
 printf("This should never get executed!\n");
 exit (EXIT_SUCCESS);
}

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Process Execution Chapter 9

[309]

Here are a few points to note:

The first argument to the execl API is the path name of the successor.
The second parameter is the name of the program. Be careful: a fairly
typical newbie mistake is to leave it out!
In this simple case, we only then pass along whatever the user sends as the
argument argv[1]: -a or -r ; we don't even perform robust error checking
to ensure the correct parameter is passed by the user (we leave it as an
exercise for you).
If we just attempt to null-terminate with a single 0, the compiler complains,
with a warning such as this (this could differ depending on the gcc
compiler version you use):
warning: missing sentinel in function call [-Wformat=].
To eliminate the warning, you must typecast the 0 with (char *) as
shown in the code.
Finally, we use a printf() to demonstrate that control will never reach it.
Why is this? Well, think about it:

Either the execl succeeds; thus the successor process
(uname) takes over.
Or the execl fails; the FATAL macro performs error
reporting and terminates the predecessor.

Let's build and try it out:

$./execl_eg
Usage: ./execl_eg {-a|-r}
 -a : display all uname info
 -r : display only kernel version
$

Pass an argument; we show a few examples here:

$./execl_eg -r
4.13.0-36-generic
$./execl_eg -a
Linux seawolf-mindev 4.13.0-36-generic #40-Ubuntu SMP Fri Feb 16
20:07:48 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
$./execl_eg -eww
uname: invalid option -- 'e'
Try 'uname --help' for more information.
$

Process Execution Chapter 9

[310]

It does work (though, as can be seen from the last case, the execl_eg program's
argument the error checking isn't great).

We encourage you to try this simple program out yourself; in fact,
experiment a bit: for example, change the first parameter to some
unknown (for example, /bin/oname) and see what happens.

The wrong way
Sometimes, to show the right way to do something, it's useful to first see it done the
wrong way!

Error handling and the exec
Some programmer's show off: They don't use an if condition to check whether the
exec API failed; they just write the line of code after an exec to be the failure case!

As an example, take the previous program, but change the code to this, the
wrong way to do it:

execl("/bin/uname", "uname", argv[1], (char *)0);
FATAL("execl failed\n");

It works, yes: The only reason control will ever reach the 'FATAL()' line is if the exec
operation failed. This sounds cool, but please, do not code like that. Be professional,
follow the rules and good coding style guidelines; you'll be a better programmer and
glad for it! (An innocent freshly minted programmer might not even realize that what
follows the execl above is actually error handling; who could blame him? And he
might attempt to put some business logic there!)

Passing a zero as an argument
Let's say we have a (fictional) requirement: From within our C code, we must execute
the program /projectx/do_this_now passing along three parameters: -1, 0 and
55. Like so:

/projectx/do_this_now -1 0 55

Process Execution Chapter 9

[311]

Recall the syntax of the exec API:

execl(const char *pathname_to_successor_program, const char
*argv0, const char *argv1, ..., const char *argvn, (char *)0);

So, it seems quite trivial; let's do it:

execl("/projectx/do_this_now", "do_this_now", -1, 0, 55, (char
*)0);

Whoops! The compiler will, or could, interpret the second argument to the successor 0
(after the -1) as the NULL terminator, and would therefore not see the following
argument 55.

Fixing this is easy; we just have to remember that each argument to the successor process
is of data type character pointer, not integer; the NULL terminator itself is an integer
(though to keep the compiler happy we typecast it to (char *)), like so:

execl("/projectx/do_this_now", "do_this_now", "-1", "0", "55",
(char *)0);

Specifying the name of the successor
No, we are not debating how to hack who will succeed Queen Elizabeth II to the
throne here, sorry. What we are referring to is this: How can you correctly specify the
name of the successor process; that is, can we programmatically change it to whatever
we like?

At first glance, it looks trivial indeed: The second parameter to the execl is the
argv[0] argument to pass to the successor; in effect, it appears, its name! So, let's try
it out: We write a couple of C programs; the first one, the predecessor
(ch9/predcs_name.c) is passed a name parameter from the user. It then execs
another program of ours, successor_setnm via the execl passing along the user-
supplied name as the first parameter (within the API, it sets the successor argv[0]
parameter to the predecessor's argv[1]), like so: execl("./successor_setnm",
argv[1], argv[1], (char *)0);

Recall the execl syntax: execl(pathname_to_successor_program, argv0,
argv1, ..., argvn, 0);

Process Execution Chapter 9

[312]

So, the thinking here is: The predecessor has set the successor's argv[0] value to
argv[1], and thus the successor's name should be the predecessor's argv[1].
However, it does not work out; see the output from a sample run:

$./predcs_name
Usage: ./predcs_name {successor_name} [do-it-right]
$./predcs_name UseThisAsName &
[1] 12571
UseThisAsName:parameters received:
argv[0]=UseThisAsName
argv[1]=UseThisAsName
UseThisAsName: attempt to set name to 1st param "UseThisAsName"
[Wrong]
UseThisAsName: pausing now...
$
$ ps
 PID TTY TIME CMD
 1392 pts/0 00:00:01 Bash
12571 pts/0 00:00:00 successor_setnm
12576 pts/0 00:00:00 ps
$

We deliberately have the successor process invoke the pause(2) system call (it
simply causes it to sleep until it receives a signal). This way, we can run it in the
background, and then run ps to lookup the successor PID and name!

Interesting: We find that, though the name is not what we want in ps output (above),
it is correct in the printf; implying that argv[0] has been correctly received and set
to the successor.

OK, we must clean up; lets kill off the background process now:

$ jobs
[1]+ Running ./predcs_name UseThisAsName &
$ kill %1
[1]+ Terminated ./predcs_name UseThisAsName
$

Process Execution Chapter 9

[313]

So, as is now apparent, what we've done preceding is not enough: To reflect the name
we want at the level of the OS, we need an alternate API; one such API is the
prctl(2) system call (or even the pthread_setname_np(3) pthreads API).
Without getting into too much detail here, we use it with the PR_SET_NAME
parameter (as usual, please see the man page on prctl(2) for full details). Hence,
the correct code using the prctl(2) system call (only the relevant code snippet from
successor_setnm.c is displayed here):

[...]
 if (argc == 3) { /* the "do-it-right" case! */
 printf("%s: setting name to \"%s\" via prctl(2)"
 " [Right]\n", argv[0], argv[2]);
 if (prctl(PR_SET_NAME, argv[2], 0, 0, 0) < 0)
 FATAL("prctl failed\n");
 } else { /* wrong way... */
 printf("%s: attempt to implicitly set name to \"%s\""
 " via the argv[0] passed to execl [Wrong]\n",
 argv[0], argv[1]);
 }
[...]

$./predcs_name
Usage: ./predcs_name {successor_name} [do-it-right]
$

So, we now run it the right way (the logic involves passing along an optional second
parameter which will be used to _correctly_ set the successor process name):

$./predcs_name NotThis ThisNameIsRight &
[1] 12621
ThisNameIsRight:parameters received:
argv[0]=ThisNameIsRight
argv[1]=NotThis
argv[2]=ThisNameIsRight
ThisNameIsRight: setting name to "ThisNameIsRight" via prctl(2)
[Right]
ThisNameIsRight: pausing now...
$ ps
 PID TTY TIME CMD
 1392 pts/0 00:00:01 Bash
12621 pts/0 00:00:00 ThisNameIsRight
12626 pts/0 00:00:00 ps
$ kill %1
[1]+ Terminated ./predcs_name NotThis ThisNameIsRight
$

This time it works exactly as expected.

Process Execution Chapter 9

[314]

The remaining exec family APIs
Great, we've covered in detail how to and how not to use the first of the exec family
of APIs—the execl(3). What about the remainder? Let's check them out;
reproduced for the reader's convenience is the list:

#include <unistd.h>
extern char **environ;

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ...,
 char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],
 char *const envp[]);
 execvpe(): _GNU_SOURCE

As mentioned several times, the execl syntax is this: execl(const char
*pathname_to_successor_program, const char *argv0, const char
*argv1, ..., const char *argvn, (char *)0);

Recall, it's named execl; the l implies a long format variable argument list: each
argument of the successor process is passed to it in turn.

Now let's look at the other APIs in the family.

The execlp API
The execlp is a slight variation on the execl:

int execlp(const char *file, const char *arg, ...);

As before, the l in execlp implies a long format variable argument list; the p implies
that the environment variable PATH is searched for the program to execute. As you
are probably aware, the PATH environment variable consists of a set of colon-
delimited (:) directories to search for the program file to run; the first match is the
program that is executed.

For example, on our Ubuntu VM (where we are logged in as the user seawolf):

$ echo $PATH
/home/seawolf/bin:/home/seawolf/.local/bin:/usr/local/sbin:/usr/local/
bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games
$

Process Execution Chapter 9

[315]

Thus, if you execute a process via the execlp, you need not give the absolute or full
path name as the first parameter, but just the program name; see how the following
two examples differ:

execl("/bin/uname", "uname", argv[1], (char *)0);

execlp("uname", "uname", argv[1], (char *)0);

With the execl, you have to specify the full path name to uname; with the execlp,
you need not; the library routine will perform the work of looking up the PATH and
figuring out the match to uname! (It would find the first match in /bin).

Use the which utility to locate a program, in effect finding it's first
match in the path. For example:

$ which uname
/bin/uname
$

This, the fact the execlp automatically searches the path, indeed is convenient; note
though, this is at the possible cost of security!

Hackers write programs called Trojans - essentially, programs that
pretend to be something they're not; these are obviously dangerous.
If a hacker can place a Trojan version of uname in your, say, home
directory, and modify the PATH environment variable to search
your home directory first, then they could take control when you
(think) you are running uname.

For security reasons, it's always better to specify the full pathname
when executing a program (hence, avoid using the execlp, execvp,
and the execvpe APIs).

What if the PATH environment variable is undefined? In this case, the APIs default to
searching the current working directory (the cwd) of the process as well as something
called the confstr path, which usually defaults to the directory /bin followed
by /usr/bin.

Process Execution Chapter 9

[316]

The execle API
Now for the execle(3) API; its signature is:

int execle(const char *path, const char *arg, ...,char * const
envp[]);

As before, the l in execle implies a long format variable argument list; the e implies
that we can pass along an array of environment variables to the successor process.

The process environment consists of a set of <name>=<value>
variable pairs. The environment is actually unique to each process
and is stored within the process stack segment. You can see the
entire list via either the printenv, env, or set commands (set is a
shell built-in). Programmatically, use the extern char **environ
to gain access to the process's environment.

By default, the successor will inherit the environment of the predecessor process.
What if this is not what is required; for example, we would like to execute a process
but change the value of, say, the PATH (or perhaps introduce a new environment
variable into the mix). To do so, we would have the predecessor process make a copy
of the environment, modify it as required (perhaps adding, editing, deleting variables
as required), and then pass along the pointer to the new environment to the successor
process. That's precisely what the last parameter char * const envp[] is meant
for.

Old Unix programs used to accept a third argument to main():
char **arge, which represented the process environment. This is
now considered deprecated; use the extern environ instead.

There is no mechanism to pass just a few environment variables to
the successor process; the whole bunch—in the form of a two-
dimensional array of strings (which is itself NULL-terminated) must
be passed.

The execv API
The execv(3) API's signature is:

int execv(const char *path, char *const argv[]);

Process Execution Chapter 9

[317]

As can be seen, the first parameter is the pathname of the successor process. The
second parameter is, similar to the environment list above, a two-dimensional array
of strings (each of them NULL-terminated) holding all the arguments to pass to the
successor, starting from argv[0]. Think about it, it's identical to what we, C
programmers, are so used to; this is the signature of the main() function in C:

int main(int argc, char *argv[]);

argc, of course, is the number of parameters received, including the program name
itself (held in argv[0]), and argv is a pointer to a two-dimensional array of strings
(each of them NULL-terminated) holding all the arguments starting from argv[0].

Hence, we colloquially call this the short format (as opposed to the long format we
used earlier - the l style). When you see the v (short for argv), it represents the short
format argument-passing style.

Now, the remaining two APIs are simple:

The execvp(3): short format arguments, and path being searched.
The execvpe(3): short format arguments, path being searched, and
environment list being explicitly passed to the successor. Additionally, this
API requires the feature test macro _GNU_SOURCE to be defined (which,
incidentally, we do in all this book's source code).

The exec functions with the p in them—the ones that search the PATH—the execlp,
execvp, and execvpe, have an additional feature: If the file they are searching for is
found but permission to open it is lacking, they will not fail immediately (like the
other exec APIs that would fail and set errno to EACCESS); instead, they will
continue searching the remainder of the PATH for the file.

Exec at the OS level
Up until now, we have covered six of the seven exec family APIs. Finally, the seventh
one is the execve(2). Did you notice? The 2 in brackets conveys that it's a system
call (recall the details covered regarding system calls in Chapter 1, Linux System
Architecture).

Process Execution Chapter 9

[318]

The fact is, all the preceding six exec APIs are within glibc—the library layer; only
the execve(2) is a system call. You will realize that, ultimately, to have a process be
able to execute another program—thus launching or running a successor—will
require OS-level support. So, yes, the reality is that all the above six exec APIs are
merely wrappers; they transform their arguments and invoke the execve system call.

This is the signature of the execve(2):

int execve(const char *filename, char *const argv[], char *const
envp[]);

Take a look at the exec family APIs summary table.

Summary table – exec family of APIs
Here is a table to summarize all seven of the exec family APIs:

Exec API Arguments: long
format (l)

Arguments: short
format (v)

PATH
searched? (p)

Environment
passed? (e) API layer

execl Y N N N Lib
execlp Y N Y N Lib
execle Y N N Y Lib
execv N Y N N Lib
execvp N Y Y N Lib
execvpe N Y Y Y Lib
execve N Y N Y SysCall

The exec APIs format: exec<foo>, where <foo> is differing combinations of
{l,v,p,e}.

All the listed APIs, on success, as we have learned, do not return at all. Only upon
failure, would you see a return value; as per the usual norms, the global variable
errno will get set to reflect the cause of the error, which can be conveniently looked
up via the perror(3) or strerror(3) APIs (as an example, within the book's
provided source code, check out the FATAL macro within the common.h header file).

Process Execution Chapter 9

[319]

Code example
In the introduction to this chapter, we mentioned a requirement: from within a GUI
frontend, to display the content of a system-generated PDF document. Lets do this
here.

To do so, we would require a PDF reader application; we can assume we have one.
Indeed, on many Linux distributions, the evince application is a good PDF reader
application, usually preinstalled (true on Ubuntu and Fedora, among others).

Well, here, we shall not bother with a GUI frontend application, we shall use plain
old C to write a CLI app that, given a PDF document pathname, executes the evince
PDF reader application. What PDF document do we display? Ah, that's a surprise!
(take a look):

For readability, only the relevant parts of the code are displayed as
follows; to view and run it, the entire source code is available here:
https:/ / github. com/ PacktPublishing/ Hands- on- System-
Programming- with- Linux.

const char *pdf_reader_app="/usr/bin/evince";
static int exec_pdf_reader_app(char *pdfdoc)
{
 char * const pdf_argv[] = {"evince", pdfdoc, 0};

 if (execv(pdf_reader_app, pdf_argv) < 0) {
 WARN("execv failed");
 return -1;
 }
 return 0; /* never reached */
}

We invoke the preceding function from main() as follows:

 if (exec_pdf_reader_app(argv[1]) < 0)
 FATAL("exec pdf function failed\n");

We build it, then perform a sample run:

$./pdfrdr_exec
Usage: ./pdfrdr_exec {pathname_of_doc.pdf}
$./pdfrdr_exec The_C_Programming_Language_K\&R_2ed.pdf 2>/dev/null
$

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Process Execution Chapter 9

[320]

Here is a screenshot of the action!

What if we are running Linux on the console only (no GUI)? Then, of course, the
preceding app will not work (and evince is unlikely to even be installed). Here is an
example of this case:

$./pdfrdr_exec ~/Seawolf_MinDev_User_Guide.pdf
!WARNING! pdfrdr_exec.c:exec_pdf_reader_app:33: execv failed
perror says: No such file or directory
FATAL:pdfrdr_exec.c:main:48: exec pdf function failed
perror says: No such file or directory
$

In this case, why not try modifying the above app to use a CLI PDF toolset instead;
one such toolset is from the Poppler project (see the following note). Within it, one of
the interesting utilities it provides is pdftohtml. Why not use it to generate HTML
from a PDF document? We leave it as an exercise for the reader (see the Questions
section on the GitHub repository).

Process Execution Chapter 9

[321]

These useful PDF utilities are provided by an open source project
called Poppler. You can easily install these PDF utilities, on an
Ubuntu box: sudo apt install poppler-utils

We can quite easily trace what happens in the pdfrdr_exec program; here, we use
the ltrace(1) to see the library calls issued:

$ ltrace ./pdfrdr_exec The_C_Programming_Language_K\&R_2ed.pdf
execv("/usr/bin/evince", 0x7ffcd861fc00 <no return ...>
--- Called exec() ---
g_static_resource_init(0x5575a5aff400, 0x7ffc5970f888, 0x7ffc5970f8a0,
32) = 0
ev_get_locale_dir(2, 0x7ffc5970f888, 0x7ffc5970f8a0, 32)
= 0x7fe1ad083ab9
[...]

The key call: the execv of course is seen; interestingly, ltrace then helpfully tells us
that there's no return ... from it. We then see the library APIs of the evince software
itself.

What if we use strace(1) to see the system calls issued?

$ strace ./pdfrdr_exec The_C_Programming_Language_K\&R_2ed.pdf
execve("./pdfrdr_exec", ["./pdfrdr_exec",
"The_C_Programming_Language_K&R_2"...], 0x7fff7f7720f8 /* 56 vars */)
= 0
brk(NULL) = 0x16c0000
access("/etc/ld.so.preload", R_OK) = 0
openat(AT_FDCWD, "/etc/ld.so.preload", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0
[...]

Yes, the very first one is the execve(2), proving that the execv(3) library API
invokes the execve(2) system call. The rest of the output, of course, is the system
calls issued by the evince process as it executes.

Process Execution Chapter 9

[322]

Summary
This chapter covered the Unix/Linux exec programming model; the key concept of
the predecessor and successor processes, and, importantly, how the successor (more-
or-less completely) overlays the predecessor. The seven exec family APIs were
covered, along with several code examples. Error handling, successor name
specification, and so on, were covered as well. The systems programmer will now
have sufficient knowledge to write C code that correctly executes a given program
from within a process.

10
Process Creation

In the previous chapter, we learned how to handle a (fictional) application design and
implementation requirement: getting our C program to execute (exec) another
program altogether. However, the reality is that the discussion remains incomplete;
this chapter on process creation will fill in several gaps, and much more.

In this chapter, you will learn about some core Unix/Linux systems programming
concepts: the gory details required to correctly program the critical fork(2) system
call to create a process. Along the journey, Unix aficionado terms such as blocking
calls, orphans, and zombies are made clear as well. The material carefully brings out
subtle points, turning the average developer into a proficient one. The reader will, in
parallel, learn to write C code to implement the preceding key concepts in a Linux
systems application. As usual, several code examples are used to clearly illustrate and
harden the concepts taught.

The purpose of this chapter is to guide the Linux systems developer into the core
system programming worlds of the Unix fork-exec-wait semantics and related
areas. Briefly, we will focus upon the following areas, helping the reader learn:

The Unix process creation model
The whys and the hows of it
Deeper details, including:

How the fork affects memory allocations, open files and so
on, and security implications
The several forms of the wait APIs
How these APIs are made use of practically
The rules of fork
Orphan and zombie processes

Process Creation Chapter 10

[324]

Process creation
Unless a Unix/Linux systems programmer has been living under a rock somewhere,
they've certainly heard of, if not directly worked with, the fork(2) system call. Why
is it so well known and important? The reason is simple: Unix is a multitasking OS;
programmers must exploit the OS's capabilities. To have an application multitask, we
need to create multiple tasks or processes; the fork is the Unix way to create a process.
In fact, to the typical systems programmer, fork is the only way available to create a
process.

There is another system call to create a process or
thread: clone(2). It also creates, well, a custom process. It's not
typically used by Linux application developers; library (typically the
thread library) developers use it more. In this book, we do not
explore clone; for one thing, it's very Linux-specific and non-
portable; for another, it's more of a hidden API.

The other way to multitask is by multithreading of course, which
will be covered in detail in later chapters.

How fork works
In theory, the job description of the fork(2) system call can be crystallized down to
one simple statement: create an identical copy of the calling process. The terminology we
shall repeatedly encounter is as follows: the process-calling fork is called
the parent and the newly created, newborn process is called the child.

Please note that, to begin with at least, we shall keep the discussion
on how fork works purely conceptual and simple; later, we shall
delve deeper and clarify how the OS performs several necessary
optimizations.

Fork is a system call; thus, the real work of process creation is carried out by the OS
under the hood. Recall from Chapter 2, Virtual Memory, that the virtual address
space (VAS) of a process is built out of homogeneous regions called segments (or
mappings). Thus, when a child process is created, the OS will copy the parent's text,
data (three of them), library (and other mappings), plus the stack segment to the
child.

Process Creation Chapter 10

[325]

Hang on though; it does not stop there: There is more, much more, to a process than
just its VAS. This includes open files, process credentials, scheduling information,
filesystem structures, paging tables, namespaces (PIDs, and so on), audit information,
locks, signal handling information, timers, alarms, resource limits, IPC structures,
profiling (perf) information, security (LSM) pointers, seccomp, thread stacks and TLS,
hardware context (CPU and other registers), and so on.

Many of the attributes mentioned earlier are well beyond the scope
of this book, and we shall not attempt to delve into them. The idea is
to show that there is much more to a process than just VAS.

Phew! So, performing a fork involves the kernel copying several things from the
parent to the child process. But, think about it: not all attributes are directly inherited
by the child from the parent (many are, but certainly not all are). For example, the
process PID and PPID (parent PID) is not inherited (can you figure out why?).

As a first-level enumeration, the following process attributes are inherited by the
child process upon fork (meaning, it-the new born child-gets a copy of the parent's
attributes with the same content):

The VAS:
Text
Data:

Initialized
Uninitialized (bss)
Heap

Library segments
Other mappings (for example, shared memory regions,
mmap regions, and so on)
Stack

Open files
Process credentials
Scheduling information
Filesystem (VFS) structures
Paging tables
Namespaces
Signal dispositions
Resource limits

Process Creation Chapter 10

[326]

IPC structures
Profiling (perf) information
Security information:

Security (LSM) pointers
Seccomp

Thread stacks and TLS
Hardware context

The following attributes of the parent process are not inherited by the child process
upon forking:

PID, PPID
Locks
Pending and blocked signals (cleared for child)
Timers, alarms (cleared for child)
Audit information (CPU/time counters are reset for child)
Semaphore adjustments made via semop(2)
Asynchronous IO (AIO) ops and contexts

It's useful to see this in the form of a diagram:

Process Creation Chapter 10

[327]

As can be seen, fork(2) is indeed a heavyweight operation!

If interested, you can find more detail on the inheritance/non-inheritance
characteristics within the man page on fork(2).

Using the fork system call
The signature of the fork is simplicity itself:

pid_t fork(void);

This looks trivial, but you know the saying the devil lies in the details! Indeed, we shall
bring out several subtle, and not-so-subtle, pointers regarding the correct usage of
this system call.

To begin to understand how fork works, lets write a simple C program
(ch10/fork1.c):

int main(int argc, char **argv)
{
 fork();
 printf("Hello, fork.\n");
 exit (EXIT_SUCCESS);
}

Build and run it:

$ make fork1
gcc -Wall -c ../../common.c -o common.o
gcc -Wall -c -o fork1.o fork1.c
gcc -Wall -o fork1 fork1.c common.o
$./fork1
Hello, fork.
Hello, fork.
$

The fork will, on success, have created a new child process.

A key programming rule: never assume an API succeeds, always
check for the failure case !!!

Process Creation Chapter 10

[328]

This cannot be overstressed.

OK, let's modify the code to check for the failure case; any and every system call (with
perhaps just two exceptions out of around 380 syscalls) return -1 on failure. Check
for it; here is the relevant code snippet (ch10/fork1.c):

 if (fork() == -1)
 FATAL("fork failed!\n");
 printf("Hello, fork.\n");
 exit(EXIT_SUCCESS);

The output is identical to what we saw previously (of course, since the fork did not
fail). So, the printf seems to have been executed twice. Indeed it was: once by the
parent process, and once by the new child process. This immediately teaches us
something about the way fork works; here, we will attempt to codify these things as
the rules of fork. In this book, we shall end up codifying seven rules of fork(2).

Fork rule #1
Fork rule #1: After a successful fork, execution in both the parent and child process continues
at the instruction following the fork.

Why does it happen this way? Well, think about it: the job of fork is to make a (pretty
much) identical copy of the parent in the child; this includes the hardware context
(mentioned earlier), which of course includes the Instruction Pointer (IP)
register (sometimes called the Program Counter (PC)) itself! Hence, the child process
too will execute the user mode code at the same location as the parent. As the fork is
successful, control will not go the error handling code (the FATAL() macro); instead,
it will go to the printf . The key point is this: this will happen in both the (original) parent
and the (new) child process. Hence the output.

To reinforce the point, we write a third version of this same simple C program
(ch10/fork3.c). Here, we just show the printf statement as it's the only line of
code that changes (from the ch10/fork3.c):

 printf("PID %d: Hello, fork.\n", getpid());

Build and run it:

$./fork3
PID 25496: Hello, fork.
PID 25497: Hello, fork.
$

Process Creation Chapter 10

[329]

Ah! Now we can actually see that two processes have run the printf! Probably (but
not for sure), PID 25496 is the parent process, the other of course is the child. After
this, both processes execute the exit(3) API, and thus both die.

Fork rule #2 – the return
Let's take a look at the code we've used so far:

 if (fork() == -1)
 FATAL("fork failed!\n");
 printf("PID %d: Hello, fork.\n", getpid());
 exit(EXIT_SUCCESS);

OK, we now understand from the first rule that the printf will be run twice and in
parallel—once by the parent, and once by the child process.

But, think about it: is this really useful? Can a real-world application benefit from
this? No. What we are really after, what would be useful, is a division of labor, that is
to say, have the child perform some task or tasks, and the parent perform some other
task(s), in parallel. That makes the fork attractive and useful.

For example, after the fork, have the child run the code of some function foo and the
parent run the code of some other function bar (of course, these functions can
internally invoke any number of other functions as well). Now that would be
interesting and useful.

To arrange for this, we would require some means of distinguishing between the parent
and child after the fork. Again, at first glance, it might appear that querying their PIDs
(via the getpid(2)) would be the way to do this. Well, you could, but that's a crude
way to do so. The proper way to distinguish between the processes is built into the
framework itself: It's—guess what—based on the value returned by the fork.

In general, you might quite correctly state that if a function is called once, it returns
once. Well, fork is special—when you call a fork(3), it returns twice. How? Think
about it, the job of the fork is to create a copy of the parent, the child; once done, both
processes must now return to user space from kernel mode; thus fork is called once
but returns twice; once in the parent and once in the child process context.

Process Creation Chapter 10

[330]

The key though, is that the kernel guarantees that the return values in parent and
child differ; here are the rules regarding the return value of fork:

On success:
The return value in the child process is zero (0)
The return value in the parent process is a positive integer,
the PID of the new child

On failure, -1 is returned and errno is set accordingly (do check!)

So, here we go:

Fork rule #2: To determine whether you are running in the parent or child process, use the
fork return value: it's always 0 in the child, and the PID of the child in the parent.

Here's another detail: look for a moment at the fork's signature:

pid_t fork(void);

The return value's data type is a pid_t, certainly a typedef. What is it? Lets find out:

$ echo | gcc -E -xc -include 'unistd.h' - | grep "typedef.*pid_t"
typedef int __pid_t;
typedef __pid_t pid_t;
$

There we are: it's just an integer, after all. But that's not the point. The point here is
that when writing code, do not assume it's integer; just declare the data type as per
what the man page specifies; in the case of fork, as pid_t. This way, even if in
future the library developers change pid_t to, say, long, our code will just require a
re-compile. We future-proof our code, keeping it portable.

Now that we understand three fork rules, let's write a small, but better, fork-
based application to demonstrate the same. In our demo program, we will write two
simple functions foo and bar; their code is identical, they will emit a print and have
the process sleep for the number of seconds passed to them as a parameter. The sleep
is to mimic the working of a real program (of course, we can do better, but for now
we'll just keep it simple).

Process Creation Chapter 10

[331]

The main function is as follows (as usual, find the full source code on the GitHub
repository, ch10/fork4.c):

int main(int argc, char **argv)
{
 pid_t ret;

 if (argc != 3) {
 fprintf(stderr,
 "Usage: %s {child-alive-sec} {parent-alive-sec}\n",
 argv[0]);
 exit(EXIT_FAILURE);
 }
 /* We leave the validation of the two parameters as a small
 * exercise to the reader :-)
 */

 switch((ret = fork())) {
 case -1 : FATAL("fork failed, aborting!\n");
 case 0 : /* Child */
 printf("Child process, PID %d:\n"
 " return %d from fork()\n"
 , getpid(), ret);
 foo(atoi(argv[1]));
 printf("Child process (%d) done, exiting ...\n",
 getpid());
 exit(EXIT_SUCCESS);
 default : /* Parent */
 printf("Parent process, PID %d:\n"
 " return %d from fork()\n"
 , getpid(), ret);
 bar(atoi(argv[2]));
 }
 printf("Parent (%d) will exit now...\n", getpid());
 exit(EXIT_SUCCESS);
}

First, here is a number of points to note:

The return variable has been declared as pid_t.
Rule #1—execution in both the parent and child process continues at the
instruction following the fork. Here, the instruction following the
fork is not the switch (as is commonly mistaken), but rather
the initialization of the variable ret! Think about it: it will guarantee
that ret is initialized twice: once in the parent and once in the child, but to
different values.

Process Creation Chapter 10

[332]

Rule #2—to determine whether you are running in the parent or child
process, use the fork return value: it's always 0 in the child, and the PID of
the child in the parent. Ah, thus we see that the effect of both rules is to
make sure that ret gets correctly initialized and, therefore, we
can switch correctly
A bit of an aside—the need for input validation. Have a look at the
parameters we pass to the fork4 program as follows:

$./fork4 -1 -2
Parent process, PID 6797 :: calling bar()...
 fork4.c:bar :: will take a nap for 4294967294s ...
Child process, PID 6798 :: calling foo()...
 fork4.c:foo :: will take a nap for 4294967295s ...
[...]

Need we say more (see the output)? This is a defect (a bug). As mentioned in the
source code comment, we leave the validation of the two parameters as a small
exercise to the reader.

Instead of an if condition, we would prefer to use the switch-case syntax;
in your author's opinion, it makes the code more readable and thus better
maintainable.
As we learned in rule 2, fork returns 0 in the child and the PID of the child
in the parent; we use this knowledge in the switch-case and we thus
effectively, and very readably, distinguish between the child and parent in
the code.
When the child process ID is done, we do not have it call break; instead, we
have it exit. The reason should be obvious: clarity. Have the child do
whatever it requires within its business logic (foo()), and then simply
have it go away. No fuss; clean code. (If we did use a break, we would
require another if condition after the switch statement; this would be
ugly and harder to understand.)
The parent process falls though the switch-case, it just emits a print, and
exits.

Because the functions foo and bar are identical, we show the code for foo only here:

static void foo(unsigned int nsec)
{
 printf(" %s:%s :: will take a nap for %us ...\n",
 __FILE__, __FUNCTION__, nsec);
 sleep(nsec);
}

Process Creation Chapter 10

[333]

OK, let's run it:

$./fork4
Usage: ./fork4 {child-alive-sec} {parent-alive-sec}
$./fork4 3 7
Parent process, PID 8228:
 return 8229 from fork()
 fork4.c:bar :: will take a nap for 7s ...
Child process, PID 8229:
 return 0 from fork()
 fork4.c:foo :: will take a nap for 3s ...
Child process (8229) done, exiting ...
Parent (8228) will exit now...
$

As you can see, we chose to keep the child alive for three seconds and the parent alive
for seven seconds respectively. Study the output: the return values from fork are as
expected.

Now let's run it again but in the background (Also, we give more sleep time, 10
seconds and 20 seconds to the child and parent respectively.) Back on the shell, we
shall use ps(1) to see the parent and child processes:

$./fork4 10 20 &
[1] 308
Parent process, PID 308:
 return 312 from fork()
 fork4.c:bar :: will take a nap for 20s ...
Child process, PID 312:
 return 0 from fork()
 fork4.c:foo :: will take a nap for 10s ...
$ ps
 PID TTY TIME CMD
 308 pts/0 00:00:00 fork4
 312 pts/0 00:00:00 fork4
 314 pts/0 00:00:00 ps
32106 pts/0 00:00:00 bash
$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 1000 308 32106 0 80 0 - 1111 hrtime pts/0 00:00:00
fork4
1 S 1000 312 308 0 80 0 - 1111 hrtime pts/0 00:00:00
fork4
0 R 1000 319 32106 0 80 0 - 8370 - pts/0 00:00:00 ps
0 S 1000 32106 32104 0 80 0 - 6003 wait pts/0 00:00:00 bash
$
$ Child process (312) done, exiting ... << after 10s >>

Process Creation Chapter 10

[334]

Parent (308) will exit now... << after 20s >>
<Enter>
[1]+ Done ./fork4 10 20
$

The ps -l (l: long listing) reveals more details about each process. (For example, we
can see both the PID as well as the PPID.)

In the preceding output, did you notice how the PPID (parent process ID) of
the fork4 parent happens to be the value 32106 and the PID is 308 . Isn't this odd?
You usually expect the PPID to be a smaller number than the PID. This is often true,
but not always! The reality is that the kernel recycles PIDs from the earliest available
value.

An experiment to simulate work in the child and parent processes.

Let's do this: We create a copy of the fork4.c program, calling it
ch10/fork4_prnum.c. Then, we modify the code slightly: We eliminate the
functions foo and bar, and, instead of just sleeping, we have the processes simulate
some real work by invoking a simple macro DELAY_LOOP. (The code is in the header
file common.h .) The macro prints a given character a given number of times, which
we pass as input parameters to fork4_prnum. Here is a sample run:

$./fork4_prnum
Usage: ./fork4_prnum {child-numbytes-to-write} {parent-numbytes-to-
write}
$./fork4_prnum 20 100
Parent process, PID 24243:
 return 24244 from fork()
pChild process, PID 24244:
 return 0 from fork()
ccpcpcpcpcpcpcpcpcpcpcpcpcpcpcpcpcpcpcpChild process (24244) done,
exiting ...
pp
ppppppppppParent (24243) will exit now...
$

The DELAY_LOOP macro is coded to print the character p (for parent) and c (for child);
the number of times it's printed is passed along as parameters. You can quite literally
see the scheduler context switching between the parent and child process! (the
interleaved p's and c's demonstrate when each of them has the CPU).

Process Creation Chapter 10

[335]

To be pedantic, we should ensure both processes run on exactly one CPU; this can be
easily achieved with the taskset(1) utility on Linux. We run taskset specifying a
CPU mask of 0 implying that the job(s) should run only on the CPU 0 . (Again, we
leave it as a simple look-up exercise for the reader: check out the man page
on taskset(1), and learn how to use it:

$ taskset -c 0 ./fork4_prnum 20 100
Parent process, PID 24555:
 return 24556 from fork()
pChild process, PID 24556:
 return 0 from fork()
ccppccpcppcpcpccpcpcppcpccpcppcpccppccppChild process (24556) done,
exiting ...
pp
pppppppppParent (24555) will exit now...
$

We recommend that you actually try out these programs on their system to get a feel
for how they work.

Fork rule #3
Fork rule #3: After a successful fork, both the parent and child process execute code in
parallel.

At first glance, this rule looks pretty much the same as the first rule. But no, what's
being stressed here is parallelism. The parent's and child's execution paths run in
parallel with each other.

You might wonder how on a single (uni) processor system, this can be? Well, that's
right: a fundamental attribute of a modern processor is that exactly one machine
instruction can run at any given point in time. So, if we're on a uniprocessor box, it
just means that the processes will be time-slicing (or timesharing) on the CPU. So, it's
pseudo-parallel; however, the speed of a modern CPU being what it is, a human user
will perceive the execution as being in parallel. On a multicore (SMP) system, they
would, or could, run truly in parallel. So, the detail regarding a uni-processor is just
that: a detail. The key point is that we should visualize both the parent and child as
executing code in parallel.

Process Creation Chapter 10

[336]

So, in the previous code example, this rule tells us that the entire code paths of the
parent and child processes will run in parallel; visualizing this parallelism is really
the initial difficulty of the fork for folks new to it! To help with precisely that, see the
following figures (though we only show the code of the switch-case for brevity): the
parent's code path is highlighted in one color (red), and the child's code path in
another color (blue):

This is the key point: the code in blue and the code in red, the child and parent
processes, run in parallel!

Process Creation Chapter 10

[337]

In the second diagram, the blue and red timeline arrows are used to again depict this
parallelism.

Atomic execution?
While seeing the preceding code flow diagrams, you can be misled into believing that
once the process starts executing its code, it continues undisturbed until it finishes.
This is certainly not necessarily going to happen; in reality, the process will often
get context switched out of and back into the CPU as they run.

This leads us to an important point: atomic execution. A piece of code is considered to
be atomic IFF (if and only if) it always runs to completion without interruption.
Atomicity, especially in userspace, is not guaranteed: often, the process (or thread)
execution is interrupted or preempted (sources of interruption/preemption include
hardware interrupts, faults, or exceptions, and scheduler context switching). Keeping
a code section atomic within the kernel can be arranged, though.

Fork rule #4 – data
When a parent process forks, we understand that the child is created; it is a copy of
the parent. This will include the VAS, and, thus, the data and stack segments.
Keeping this fact in mind, check out the following code snippet (ch10/fork5.c):

static int g=7;
[...]
int main(int argc, char **argv)
 [...]
 int loc=8;
 switch((ret = fork())) {
 case -1 : FATAL("fork failed, aborting!\n");
 case 0 : /* Child */
 printf("Child process, PID %d:\n", getpid());
 loc ++;
 g --;
 printf(" loc=%d g=%d\n", loc, g);
 printf("Child (%d) done, exiting ...\n", getpid());
 exit(EXIT_SUCCESS);
 default : /* Parent */
 #if 1
 sleep(2); /* let the child run first */
 #endif
 printf("Parent process, PID %d:\n", getpid());
 loc --;
 g ++;

Process Creation Chapter 10

[338]

 printf(" loc=%d g=%d\n", loc, g);
 }
 printf("Parent (%d) will exit now...\n", getpid());
 exit(EXIT_SUCCESS);

The preceding program (ch10/fork5) has an initialized global variable g and an
initialized local variable loc. The parent process, after fork, sleeps for two seconds
thus more-or-less guaranteeing that the child process runs first (this kind of
synchronization is incorrect in production quality code; we shall address this point in
detail later in this chapter). Both the child and parent processes work on the global
and local variables; the key question here is this: will the data get corrupted?

Let's just run it and see:

$./fork5
Child process, PID 17271:
 loc=9 g=6
Child (17271) done, exiting ...
Parent process, PID 17270: << after 2 sec >>
 loc=7 g=8
Parent (17270) will exit now...
$

Well, the data variables are not corrupted. Again, the key point here is this: as the
child has a copy of the parent's variables, all goes well. They change independently of
one another; they do not step on each other's toes. So, consider this:

Fork rule #4: Data is copied across the fork, not shared.

Fork rule #5 – racing
Notice the #if 1 and #endif surrounding the sleep(2); statement in the previous
code (ch10/fork5.c)? It of course implies that the code will be compiled and thus
run.

What if we change the #if 1 to #if 0 ? It's obvious, the sleep(2); statement is
effectively compiled out. Let's do this: rebuild and re-run the fork5 program. What
will now happen?

Think about this: fork rule #4 tells us the story. After the fork, we will still have the
child and parent processes working on separate copies of the data variables; hence,
the values we saw earlier will not change.

Process Creation Chapter 10

[339]

However, this time, there is no sleep to crudely synchronize the parent and child;
thus, the question arises, will the printf for the child or parent code (displaying the
variable values) run first? In other words, the question we are really asking is this: in
the absence of any kind of synchronization primitive, after the fork(2), which
process will get the processor first: parent or child? The short answer is the next rule:

Fork rule #5: After the fork, the order of execution between the parent and child process is
indeterminate.

Indeterminate? Well, this is a fancy way to say we really have no idea or it's
unpredictable. So that is the deal: the systems developer should not try to predict the
order of execution. Running the modified fork5 (no sleep(2) statement) now:

$./fork5
Parent process, PID 18620:
 loc=7 g=8
Parent (18620) will exit now...
Child process, PID 18621:
 loc=9 g=6
Child (18621) done, exiting ...
$

Ah, the parent ran first. That does not really mean anything! The parent might run
first the next 50,000 times you try it out, but on the 50,001st trial run, the child process
may run first. Leave it alone: it's unpredictable.

This leads us to another key point (common in software): We have what's called
a race condition here. A race is literally what it says: we cannot predict with certainty
who will be the winner. In the previous program, we really don't care whether the
parent or child process wins the race (runs first): this is called a benign race condition.
But often in software design we do actually care; in such cases, we need a way to
guarantee the winner. In other words, to defeat the race. This is
called synchronization. (As mentioned earlier, we shall address this point in detail
later in this chapter.)

The process and open files
To clearly understand the effect of fork on open files, we need to slightly digress and
briefly understand some background information.

Process Creation Chapter 10

[340]

In fact, for those readers very new to performing I/O on files within
the Unix paradigm, it will be beneficial to first read through the
Appendix A, File I/O Essentials, before tackling this section.

A Unix/Linux process, upon startup, will by default be assigned three open files;
we've discussed these basic points earlier in the book. For convenience, the three open
files are called the stdin, stdout, and stderr of the process; they auto-default to
the keyboard, the monitor, and, again, the monitor for stdin,
stdout, and stderr respectively. Not only that, real applications will certainly open
other files as they perform their tasks. Recall the layered system architecture; if a
Linux application opens a file using the fopen(3) library API, it will ultimately boil
down to the open(2) system call, which returns a handle to the open file, called a file
descriptor. (Think about it: consider a Java app running on Linux that opens a file:
Ultimately, this time, via the JVM, the work will be done via the
same open(2) system call!)

The point here is this: the kernel stores every process's open files within a data
structure (in classic Unix terminology, it's called the Open File Descriptor
Table (OFDT). We saw earlier in the section that talked about characteristics
inherited by the child process upon fork, that open files are indeed inherited by the
child. To facilitate this discussion, consider the following pseudo-code snippet:

main
...
 foo
 fd = open("myfile", O_RDWR);
 ...
 fork()
 // Child code
 ... work_on_file(fd) ...
 // Parent code
 ... work_on_file(fd) ...
 ...

Here, the file myfile is now available to both processes and can be worked upon via
the file descriptor fd! But hang on: it should be clear that working on the same file
simultaneously by both child and parent processes could certainly corrupt the file; or
if not the file content, at least the application. To perceive this, consider the
function work_on_file (pseudo-code):

work_on_file(int fd)
{ /* perform I/O */
 lseek(fd, 0, SEEK_SET);

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Process Creation Chapter 10

[341]

 read(fd, buf, n);
 lseek(...);
 write(fd, buf2, x);
 ...
}

Fork rule #6 – open files
You can see that without any synchronization, havoc would result! Hence the
next fork rule:

Fork rule #6: Open files are (loosely) shared across the fork.

The upshot of all that is this: the systems programmer must understand that, if the
parent process has opened a file (or files), naively working on the file simultaneously
(remember fork rule #3!) will likely cause bugs. A key reason is this: although the
processes are distinct, the object they work upon, the open file, and, more precisely,
its inode, is one distinct object and thus shared. In fact, the file's seek position is an
attribute of the inode; blindly re-positioning the seek pointer in parent and child
without synchronization will pretty much guarantee problems.

There are broadly two choices to keep things running smoothly:

Have one of the process's close the file
Synchronize access to the open file

The first of them keeps things simple but is of limited use in real-world applications;
they would usually require that the file remains open. Thus, the second choice: how
exactly do you synchronize access to the open file?

Again, the details are not covered in this book, but, very briefly, you can synchronize
file I/O between processes like so:

Via the SysV IPC or POSIX semaphore
Via file locking

The first one works, but crudely. It's not considered the right way. The second
solution, using file locking, is definitely the preferred one. (File locking is not covered
in detail here, please refer the Further reading section for a link to an excellent tutorial
on the same on the GitHub repository.)

Process Creation Chapter 10

[342]

It's also important to realize that when either the parent or child process closes the
open file, its access to the open file is closed; the file is still open in the other process.
This is really what is meant by the phrase "loosely shared".

As a quick way to demo this issue, we write a simple program ch10/fork_r6_of.c
(here, of stands for open file). We leave it to the reader to go through the source code;
an explanation and sample output follows.

First, we have the process open a regular file tst; then, we have the child process do
this: seek to offset 10, and write numlines (equal to 100) lines of c's. In parallel, we
have the parent process do this: seek to offset 10+(80*100), and write numlines lines of
p's. So when we have finished and we examine the file, we expect that we have 100
lines of cs and 100 lines of ps. But, hey, it does not actually happen that way. Here's
the actual run:

$./fork_r6_of
Parent process, PID 5696:
 in fork_r6_of.c:work_on_file now...
 context: parent process
Child process, PID 5697:
 in fork_r6_of.c:work_on_file now...
 context: child process
Parent (5696) will exit now...
Child (5697) done, exiting ...
$

This is the test file's content after the run:

$ vi tst
^@^@^@^@^@^@^@^@^@^@pp
ppppppppppppppppppppppppppppp
cc
ccccccccc
pp
ppppppppp
cc
ccccccccc
pp
ppppppppp
cc
ccccccccc
[...]
:q
$

Process Creation Chapter 10

[343]

The ps and cs interleave! Yes, indeed, because the processes ran in parallel without
any form of synchronization. (By examining the file content, we can literally see how
the kernel CPU scheduler context-switched between the parent and the child
processes). By not using synchronization, we have set up a race. So how do we set
this right? It was mentioned earlier: file locking is really the answer (Note: do not
attempt to synchronize with the silly sleep(2) in the parent kind of code we've
used; that's just for demonstration; Also, we shall cover the proper way to
synchronize the child and parent shortly.)

Open files and security
A key point again regarding security, for both the exec and fork scenarios.

When you perform an exec operation, the predecessor process's VAS is essentially
overwritten by that of the successor process. However, realize that the predecessor
process's open files (held within the OS in a per-process structure called the OFDT,
mentioned earlier) remain intact and are, in effect, inherited by the successor process.
This could pose a serious security threat. Think about it: what if a security-sensitive
file being used by the predecessor is not closed and an exec performed? The successor
now has access to it via its file descriptor, whether it exploits that knowledge or not.

The same argument holds true for the fork; if a parent process has a security-sensitive
file open and then forks, the child too has access to the file (fork rule #6).

To counter exactly this issue, from the Linux 2.6.23 kernel, the open(2) system call,
includes a new flag: O_CLOEXEC. When this flag is specified within the open(2), the
corresponding file will be closed upon any future exec operation performed by that
process. (In earlier kernels, developers had to perform an
explicit F_SETFD via fcntl(2) to set the FD_CLOEXEC bit).

When working with fork, the programmer must include logic to close any security-
sensitive files in the parent prior to the fork.

Process Creation Chapter 10

[344]

Malloc and the fork
A common mistake that programmers might stumble upon or make, is this: consider
a successful memory allocation done in a process, with say, p = malloc(2048).
Assume that the variable p is global. Some time later, the process forks. The developer
now wants the parent process to communicate some information to the child; so, she
says, lets just write into the shared buffer p, and the job will be done. No, it does not
work! Let's elaborate: the malloced buffer is visible to both processes, but not in the
way they think. The mistaken assumption is that the malloced buffer
is shared between the parent and child process; it is not shared, it's copied to the
child's VAS. Please recall fork rule #4: Data is not shared; it's copied across the fork.

We must test this case; have a look at the following code snippet (source
file: ch10/fork_malloc_test.c):

For readability, only the relevant parts of the code are displayed
here; to view and run it, the entire source code is available
here: https:/ /github. com/PacktPublishing/ Hands- on-System-
Programming- with- Linux.

const int memsz=2048;
static char *gptr;
[...]
main(int argc, char **argv)
{
 gptr = malloc(memsz);
 [...]
 printf("Init: malloc gptr=%p\n", gptr);
 [...]
 switch ((ret = fork())) {
 case -1: [...]
 case 0: /* Child */
 printf("\nChild process, PID %d:\n", getpid());
 memset(gptr, 'c', memsz);
 disp_few(gptr);
 [...]
 printf("Child (%d) done, exiting ...\n", getpid());
 exit(EXIT_SUCCESS);
 default: /* Parent */
#if 1
 sleep(2); /* let the child run first */
#endif
 printf("\nParent process, PID %d:\n", getpid());
 memset(gptr, 'p', memsz);
 disp_few(gptr);
 [...]

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Process Creation Chapter 10

[345]

 }
 free(gptr);
[...]

The disp_few function to display a few (16) bytes of the memory buffer is simple:

static inline void disp_few(char *p)
{
 int i;
 printf(" malloc gptr=%p\n ", p);
 for (i=0; i<16; i++)
 printf("%c", *(p+i));
 printf("\n");
}

We build and run it:

$./fork_malloc_test
Init: malloc gptr=0x1802260

Child process, PID 13782:
 malloc gptr=0x1802260
 cccccccccccccccc
Child (13782) done, exiting ...

Parent process, PID 13781:
 malloc gptr=0x1802260
 pppppppppppppppp
Parent (13781) will exit now...
$

Immediately, the first thing to notice is this: the pointer to the memory buffer
(0x1802260) in both the parent and child process is the same leading one to the
conclusion that it's the same memory buffer being pointed at. Well, it's not; it's an
easy mistake to make. Check out the content of the malloced buffer in the parent and
child; it's ps in the parent and cs in the child; if it were really the very same buffer, the
content would be identical. So, then, what is going on?

As mentioned several times now, data is copied across the fork, not shared (our fork
rule #4). OK, but then how come the address is the same? There are two reasons:

 The address is a virtual address (not a physical address, as we should well
know from the discussions in Chapter 2, Virtual Memory)
It is actually the same virtual address; modern OSes such as Linux
do not, immediately on fork, make a copy of the data and stack segments;
they use an optimized semantic called copy-on-write (COW).

Process Creation Chapter 10

[346]

COW in a nutshell
This requires a bit of explanation. Until now, to keep the discussion conceptually
simple, we have said that upon fork, the kernel copies all the parent's VAS segments
(plus all the other inherited process attributes) to the new child process. This is an
exaggeration; the reality is, attempting to do this would make the fork(2) untenable
in practice as it would require too much RAM and too much time. (As it is, even with
several optimizations, the fork is still considered heavyweight.)

Let's digress: one of the optimizations, upon fork is that the kernel does not copy the
text (code) segment into the child; it merely shares the parent's text segment (virtual)
pages with the child process. This works well, as text is in any case only readable and
executable (r-x); thus, as it can never change, why make a copy?

But what about the data and stack segments? Their pages are read-write (rw-) after all
so how can the OS just share them with the child? Ah, that's where
the COW semantics come in handy. To understand COW, consider a single virtual
page that has been marked as COW by the OS. It essentially means this: As long as
both processes (parent and child) treat the page as read-only, they can share it; no
copy is necessary. But the moment one of them modifies (even a byte in) the page, the
OS intervenes and creates a copy of the page, which is then handed off to the process
that performed the write.

So, if we have a global variable g=5 and fork(2), the page containing g is marked
COW by the OS; the parent and child share it, until either writes to g. At that point,
the OS creates a copy of the page containing the (updated) variable and hands it to
the writer. Thus, the granularity of COW is a page.

As a matter of fact, COW is aggressively enforced by Linux to optimize to the
maximum extent possible. Its not just the data and stack segments, most of the other
inheritable process attributes we discussed earlier are actually not copied to the child,
they are COW-shared, effectively making Linux's fork extremely efficient.

Additional insight into these important points can be gained by noticing the same
effect, the COW optimization, carried out on the data variables (globals and locals) as
well; just run our test case program with any parameter and it internally runs a small
test case on two variables: a global and a local:

$./fork_malloc_test anyparameter
Init: malloc gptr=0xabb260
Init: loc=8, g=5

Child process, PID 17285:
 malloc gptr=0xabb260

Process Creation Chapter 10

[347]

 cccccccccccccccc
 loc=9, g=4
 &loc=0x7ffc8f324014, &g=0x602084
Child (17285) done, exiting ...

Parent process, PID 17284:
 malloc gptr=0xabb260
 pppppppppppppppp
 loc=7, g=6
 &loc=0x7ffc8f324014, &g=0x602084
Parent (17284) will exit now...
$

Notice the addresses of the global g and the local loc are the same in the parent and
child processes. But why? COW will have been performed as they have been written.
Yes, but think: it's all virtual addressing; the physical addresses will actually differ
under the hood.

You sometimes gets the feeling that modern OSes go out of their way to confuse and
confound the poor systems programmer! The two important points we made earlier
seem to contradict each other:

Fork rule #4: Data is copied across the fork, not shared
Data/stack (and a lot else) is not actually copied upon fork, but
rather COW-shared

How do we resolve this situation? It's easy, actually: The first (our fork rule #4) is the
correct way to think when working with the fork; the second statement is what really
happens under the hood at the OS layer. It's about optimization, that is all.

Here is a suggestion: When wearing the hat of an application developer, do not get
overly concerned with the underlying OS's COW optimization details; it's more
important to understand the intention rather than the optimization. Thus, as far as the
Linux application developer using fork(2) is concerned, the key conceptual point
that remains is fork rule #4: data is copied across the fork, not shared.

Waiting and our simpsh project
Lets set ourselves an interesting learning exercise: a small project. We want to
implement, using C on the Linux OS of course, a very simple shell of our own. Lets
call it our simpsh—simple shell—project.

Process Creation Chapter 10

[348]

Note: simpsh is a very small, minimally functioning shell. It works
with only single-word commands. It does not support features such
as redirection, piping, shell built-ins, and so on. It's meant to be a
learning exercise.

The specification, for now at least is this: Display a prompt (say >>), accept a user
command at the prompt, and execute it. This is the stopping condition: if the user
enters quit, terminate (similar to typing logout, exit, or Ctrl + D on an actual
shell process).

It seems pretty straightforward: In our C program you get into a loop, display the
required prompt, accept the user input (let's use the fgets(3) to do this) into
a cmd variable, and then use one of the exec family APIs (a simple execl(3) sounds
promising) to execute it.

Well, yes, except, how could you forget, the predecessor process is effectively lost
after the exec operation succeeds! Our shell will be lost once we exec anything (just
like our earlier experiment 1: on the CLI and experiment 2—demonstrated).

For example, if with the previous naive approach, we attempt to execute ps(1) with
our shell simpsh, it would look like this:

The Unix fork-exec semantic
So, that does not work. What we need, really, is a way for our simple shell simpsh to
remain alive and well after the exec operation, but how can we achieve that?

The fork is the answer! Here's what we'll do: after the user supplies input (a
command), we have our shell fork. We now have two identical shells alive: the
original parent (let's say it has PID x) and the brand new child shell (PID y). The child
shell is used as the sacrificial lamb: We have it exec the user command. So, yes, the
child is the predecessor process that is impossible to return to; but that's OK as we
have the parent shell process alive and well!

Process Creation Chapter 10

[349]

This well-known technique is called the fork-exec semantic. It combines what several
other OSes call a spawn into two discrete operations: a process creation (fork), and a
process execution (exec). Once again, the brilliant Unix design is shown off:

In the preceding diagram, visualize the timeline as the (horizontal) x-axis. Also, we
use the color blue to show the child's execution path.

Once the parent shell detects that the execed child has completed, it displays the shell
prompt again.

The need to wait
The fork-exec is really interesting, but hang on a second: While the child process
performs an exec on the user command, and the successor is running (indicated by
the dot-dash blue line in the preceding diagram), what should the parent process do?
Obviously, it should wait, but for how long? Should we have it sleep? Well, no,
as sleep takes the number of seconds to sleep as its argument. We do not know in
advance how long the successor will take (it could be milliseconds, it could be
months). The correct thing to do is this: have the parent process wait until the child
(now the successor) dies.

This is precisely what the wait(2) API is designed to do. When the parent process
issues the wait(2) API, it is put to sleep; the moment its child dies, it's woken up!

Process Creation Chapter 10

[350]

Performing the wait
The wait(2) API is a classic example of a blocking call: The calling process is put
into a sleep state until the event it is waiting (or blocking) upon occurs. When the
event does occur, it is woken up and continues to run.

So, think about it: a process forks; the parent process then issues the wait (2)API,
and the event it is blocking upon is the death of the child! The child continues to run,
of course; when the child does die, the kernel wakes up, or unblocks, the parent; it
now continues to execute its code. Here is the signature of wait(2):

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *wstatus);

For now, we shall ignore the to wait(2); we shall just pass NULL (or 0) (of course,
we shall cover it shortly).

Defeating the race after fork
Recall the example code we saw earlier in chapter ch10/fork5.c. In this program,
we artificially, and crudely, waited for the child process by introducing
a sleep(2); statement in the parent's code:

[...]
 default: /* Parent */
#if 1
 sleep(2); /* let the child run first */
#endif
 printf("Parent process, PID %d:\n", getpid());
[...]

This is not good enough: What if the child process takes longer than two seconds to
complete its work? If it takes just a few milliseconds, then we unnecessarily waste
time.

This is how we resolve the race: Who will run first, the parent or the child?
Clearly, fork rule #5 tells us that it's indeterminate. But, in real-world code, we need a
way to guarantee that one of them indeed runs first—say, the child process. With
the wait API, we now we have a proper solution! We change the preceding code
snippet to this:

[...]
 default: /* Parent */
 wait(0); /* ensure the child runs first */

Process Creation Chapter 10

[351]

 printf("Parent process, PID %d:\n", getpid());
[...]

Think about how this works: After the fork, it's a race: If the child process does run
first, then no harm is done. However, at some point in the near future, the parent
process will get the CPU; that's fine as all it does is block upon the child by
calling wait. If the parent does run first after the fork, the same thing occurs: it blocks
upon the child by calling wait. We have effectively defeated the race! By issuing the
wait as the first thing done in the parent process after fork, we effectively guarantee
that the child runs first.

Putting it together – our simpsh project
So, now that we have all the bits and pieces in place—namely, the fork-exec semantic
and the wait API—we can see how our simple shell should be designed.

In the C program, get into a loop, display the required prompt, accept user input (let's
use the fgets(3) to do this—why? Please read the upcoming tip) into a cmd variable,
and then fork. In the child code (use fork rule #2 to distinguish between the parent
and child), use one of the many exec family APIs (a simple execlp(3) sounds
promising here) to execute the user supplied command. In parallel (recall fork rule
#3), have the parent process invoke the wait API; the parent now sleeps until the child
dies. Now loop around again and repeat the whole thing until the user
types 'quit' to quit. Everyone's happy!

In effect, we now have a fork-exec-wait semantic that is exploited!

Process Creation Chapter 10

[352]

fgets(3): For security reasons, do not use the traditionally taught
APIs such as gets(3) or scanf(3) to receive user input; they are
poorly implemented, and they do not provide any bounds-checking
capabilities. The fgets(3) does; thus, using it, or getline(3), is
far superior security-wise. (Again, as mentioned earlier in this book,
hackers exploit these vulnerabilities in commonly used APIs to
perform stack-smashing, or other types of attacks.)

Of course, our simpsh shell is rather limited in scope: it only works with single-word
commands (such as ps, ls, vi, w, and so on). Read the code and think about why this
is the case.

Here we go (source code: ch10/simpsh_v1.c):

For readability, only the relevant parts of the code are displayed
here; to view and run it, the entire source code is available
here: https:/ /github. com/PacktPublishing/ Hands- on-System-
Programming- with- Linux.

static void do_simpsh(void)
{
[...]
 while (1) {
 if (!getcmd(cmd)) {
 free(cmd);
 FATAL("getcmd() failed\n");
 }
 /* Stopping condition */
 if(!strncmp(cmd, "quit", 4))
 break;
[...]

As you can see, we enter the loop, accept the user's command via the getcmd function
we wrote (the fgets is issued within it), and then check whether the user has
typed quit, in which case we exit.

The real work, the fork-exec-wait semantic, happens here, within the loop:

[...]
 /* Wield the powerful fork-exec-wait semantic ! */
 switch ((ret = fork())) {
 case -1:
 free(cmd);
 FATAL("fork failed, aborting!\n");
 case 0: /* Child */

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Process Creation Chapter 10

[353]

 VPRINT
 (" Child process (%7d) exec-ing cmd \"%s\" now..\n",
 getpid(), cmd);
 if (execlp(cmd, cmd, (char *)0) == -1) {
 WARN("child: execlp failed\n");
 free(cmd);
 exit(EXIT_FAILURE);
 }
 /* should never reach here */
 exit(EXIT_FAILURE); // just to avoid gcc warnings
 default: /* Parent */
 VPRINT("Parent process (%7d) issuing the wait...\n",
 getpid());
 /* sync: child runs first, parent waits for child's death */
 if (wait(0) < 0)
 FATAL("wait failed, aborting..\n");
 } // switch
 } // while(1)

(The logic pertaining to argument passing—displaying the help screen, verbose
switch, the actual fgets, the calloc/free, and so on, is not explicitly shown; please
refer to the source file simpsh_v1.c).

Let's give it a try:

$./simpsh_v1 --help
Usage: ./simpsh_v1 [-v]|[--help]
 -v : verbose mode
 --help : display this help screen.
$./simpsh_v1 -v
>> ps
 Parent process (1637) issuing the wait...
 Child process (1638) exec-ing cmd "ps" now..
 PID TTY TIME CMD
 1078 pts/0 00:00:00 bash
 1637 pts/0 00:00:00 simpsh_v1
 1638 pts/0 00:00:00 ps
>> uname
 Parent process (1637) issuing the wait...
 Child process (1639) exec-ing cmd "uname" now..
Linux
>> uname -a
 Parent process (1637) issuing the wait...
 Child process (1640) exec-ing cmd "uname -a" now..
!WARNING! simpsh_v1.c:do_simpsh:90: child: execlp failed
perror says: No such file or directory
>> www
 Parent process (1648) issuing the wait...

Process Creation Chapter 10

[354]

 Child process (1650) exec-ing cmd "www" now..
!WARNING! simpsh_v1.c:do_simpsh:90: child: execlp failed
perror says: No such file or directory
>> quit
 Parent process (1637) exiting...
$

We run the program in verbose mode; you can see the shell prompt string >> as well
as every verbose print; they are prefixed with [v]:. Notice how it works for single
word commands; the moment we pass something unknown or with more than one
word (for example www and uname -a), the execlp(3) fails; we catch the failure and
emit a warning message; the program continues until the user quits.

Here is another quick experiment: We can use our simpsh_v1 program to spawn
another shell (/bin/sh):

$./simpsh_v1 -v
>> sh
[v]: Parent process (12945) issuing the wait...
[v]: Child process (12950) exec-ing cmd "sh" now..
$ ps
 PID TTY TIME CMD
 576 pts/3 00:00:00 git-credential-
 3127 pts/3 00:00:01 bash
12945 pts/3 00:00:00 simpsh_v1
12950 pts/3 00:00:00 sh << the newly spawned sh
>>
12954 pts/3 00:00:00 ps
31896 pts/3 00:00:40 gitg
$ exit
exit
>> ps
[v]: Parent process (12945) issuing the wait...
[v]: Child process (12960) exec-ing cmd "ps" now..
 PID TTY TIME CMD
 576 pts/3 00:00:00 git-credential-
 3127 pts/3 00:00:01 bash
12945 pts/3 00:00:00 simpsh_v1
12960 pts/3 00:00:00 ps
31896 pts/3 00:00:40 gitg
>>

It works as expected (hey, you could even experiment with spawning the same
process simpsh_v1). So, there we are, a first very simple but functioning shell.

Process Creation Chapter 10

[355]

Why exactly do commands that are more than one word long fail? The answer lies in
how we're executing the successor, using the execlp(3) API. Recall, for execlp, we
are to pass the program name (the PATH will be auto-searched of course) and all
arguments, starting with argv[0]. Well, in our simple implementation, we just don't
pass anything more than the first argument argv[0]; that's why.

So, how do we make it work with commands with any number of arguments? Well, it
really involves some amount of string-processing work: We will have to tokenize the
arguments into individual strings, initializing an argv array of pointers to them, and
using that argv via the execv[pe] API. We leave it as a slightly more challenging
exercise to the reader! (Tip: the C library provides APIs for tokenizing
strings; strtok(3), strtok_r(3); look them up).

In effect, our simpsh project is a simplistic implementation of
the system(3) library API. Note that from a security viewpoint, it's
always recommended to use field-proven and tested APIs
like system(3) rather than a home-grown fork-exec-wait piece
of code. Here, of course, we code it for learning purposes.

The wait API – details
In our simpsh program, we did use the wait(2) API, but have not really delved into
details:

pid_t wait(int *wstatus);

The thing to understand is this: wait(2) is a blocking call; it causes the calling
process to block until a child process dies.

To be technically correct, the wait(2) (and associated APIs that we shall see later)
actually block upon the child process(es) undergoing a state change; well, the state
change is the child's death, right? Yes, but it's really important to understand that it's
not just that: the possible state changes are as follows:

The child process terminates as follows:
Normally (by falling off main, or calling [_]exit())
Abnormally (killed by a signal).

The child was sent a signal that stopped it (usually SIGSTOP or SIGTSTP).
Having been stopped, it was delivered a signal that continued (resumed) it
(usually SIGCONT; we shall cover signaling in detail in the next chapter).

Process Creation Chapter 10

[356]

The generic wait(2) system call, though, blocks upon the death (termination) of the
child, not any of the other signal-related state changes mentioned earlier. (Can that be
done? Yes, indeed, we cover the waitpid(2) system call later in this chapter).

The parameter to wait, is a pointer to an integer wstatus. In reality, it is treated as
more of a return rather than a parameter to pass along; this is a pretty common C
programming technique: Treat a parameter as a return value. System calls on Linux
often use it; this technique is often referred to as a value-result or an in-
out parameter. Think about this: We pass the address of the variable; the API
internally, having the address, can update it (poke it).

The next thing regarding the parameter wstatus is this: The integer is treated as
a bitmask, not as an absolute value. This, again, is a common C optimization trick that
programmers employ: We can fit several pieces of information into an integer by
treating it as a bitmask. So, how do you interpret this returned bitmask? For
portability reasons, the C library provides predefined macros that help us interpret
the bitmask (these are in <sys/wait.h> usually). The macros work in pairs: The first
macro returns a Boolean value; if it returns true, look up the second macro's result; if
it returns false, disregard the second macro completely.

A digression: a process can die in one of two ways: normally or abnormally. Normal
termination implies that the process died voluntarily; it just fell off
main() or called exit(3) or _exit(2) passing the exit status as an argument (the
convention for exit status: zero implies success, non-zero implies failure and is
treated as the failure code). On the other hand, abnormal termination implies that the
process died involuntarily—it was killed, typically via a signal.

Here are the wait macro pairs and their meaning:

First macro Second macro Meaning

WIFEXITED WEXITSTATUS
Child died normally: WIFEXITED is true;
then, WEXITSTATUS—exit status of child.
Child died abnormally: WIFEXITED is false

WIFSIGNALED WTERMSIG
Child died due to signal: WIFSIGNALED is true; then,
WTERMSIG is the signal that killed it.

WCOREDUMP True if, upon death, the child produced a core dump.

WIFSTOPPED WSTOPSIG
True if child was stopped by signal; then, WSTOPSIG is the
signal that stopped it.

WIFCONTINUED - True if child was stopped and later resumed (continued) by a
signal (SIGCONT).

Process Creation Chapter 10

[357]

(In the row containing WCOREDUMP, the indentation is intended to mean that you can
tell that WCOREDUMP is only meaningful if WIFSIGNALED is true).

What about the actual return value itself of wait(2)? Clearly, -1 indicates failure
(and of course the kernel will set errno to reflect the cause of the failure); else, on
success, it's the PID of the process that died, thus unblocking the parent's wait.

To try out the things we have just learned, we make a copy of
the simpsh_v1 program and call it ch10/simpsh_v2.c. Again, we only show the
relevant snippets here; the complete source code files are on the
book's GitHub repository:

[...]
 default: /* Parent */
 VPRINT("Parent process (%7d) issuing the wait...\n",
 getpid());
 /* sync: child runs first, parent waits for child's death */
 if ((cpid = wait(&wstat)) < 0) {
 free(cmd);
 FATAL("wait failed, aborting..\n");
 }
 if (gVerbose)
 interpret_wait(cpid, wstat);
 } // switch
} // while(1)
[...]

As you can see, we now capture the return value of wait (2)(the PID of the child
that changed state), and if we are running in verbose mode, we call our own
function interpret_wait; it will provide output detailing what status change
exactly occurred; here it is:

static void interpret_wait(pid_t child, int wstatus)
{
 VPRINT("Child (%7d) status changed:\n", child);
 if (WIFEXITED(wstatus))
 VPRINT(" normal termination: exit status: %d\n",
 WEXITSTATUS(wstatus));
 if (WIFSIGNALED(wstatus)) {
 VPRINT(" abnormal termination: killer signal: %d",
 WTERMSIG(wstatus));
 if (WCOREDUMP(wstatus))
 VPRINT(" : core dumped\n");
 else
 VPRINT("\n");
 }

Process Creation Chapter 10

[358]

 if (WIFSTOPPED(wstatus))
 VPRINT(" stopped: stop signal: %d\n",
 WSTOPSIG(wstatus));
 if (WIFCONTINUED(wstatus))
 VPRINT(" (was stopped), resumed (SIGCONT)\n");
}

The VPRINT macro is simple; it results in a printf(3) if the process is in verbose
mode. We try the program (version 2) out:

$./simpsh_v2 -v
>> ps
 Parent process (2095) issuing the wait...
 Child process (2096) exec-ing cmd "ps" now..
 PID TTY TIME CMD
 1078 pts/0 00:00:00 bash
 2095 pts/0 00:00:00 simpsh_v2
 2096 pts/0 00:00:00 ps
 Child (2096) status changed:
 normal termination: exit status: 0
>> quit
 Parent process (2095) exiting...
$

As you can see, we run it in verbose mode; we can see that the child
process ps(1) had a status change: It died normally, with an exit status of zero,
indicating success.

Interesting: this is how bash knows whether the process that just ran
succeeded or not; it plugs in the exit status—fetched via an API
similar to wait—into the variable ? (which you can access using $?
.)

The scenarios of wait
Until now, we've covered the generic wait(2) API; however, we have only really
discussed one possible scenario regarding the wait; there are several more. Let's
check them out.

Process Creation Chapter 10

[359]

Wait scenario #1
It's the simple case (one we've already come across): a process forks, creating one
child process. The parent subsequently issues the wait API; it now blocks on a status
change in it's child process; recall, the possible status changes the child can possibly
go through are these:

State transition from running (R): dead; that is to say, the child terminates
(normally/abnormally)
State transition from running/asleep (R|S|D) to stopped state (T); that is to
say, it receives a signal causing it be stopped
State transition from stopped state (T) to ready-to-run (R); that is to
say, from a stopped state to a ready-to-run state

(The state transitions and the letters representing the process state are covered in
Chapter 17, CPU Scheduling on Linux, on scheduling). Whichever may occur, the fact
is that the parent is unblocked and continues to execute its code path;
the wait(2) API returns (along with which we receive the PID of the child that died
or was signaled), as well as the detailed status bitmask.

Wait scenario #2
Consider this scenario: A process forks (creates) two children; let's call the parent
process P and the children C1 and C2. Recall fork rule #3—the parent and the children
processes will all continue to run in parallel. Now, P calls wait; what will happen?

This is the answer: process P will remain blocked until one of the children dies (or
stops), but which one? Any one; whichever one changes state first. So how will the
systems programmer know which process dies or stopped? That's easy: The return
value is the PID of the process that died or stopped.

In other words, we devise a corollary: a wait blocks on a single child process; to block
on n children requires n waits.

An interesting exercise would be to construct the preceding scenario in code; ensure
that the parent process indeed waits upon both children (this very exercise is
mentioned as fork2c on the GitHub repository).

Process Creation Chapter 10

[360]

To have a parent wait upon all possible children, invoke
the wait API as the condition of a while loop; as long as
waitable children exist, it will block and return positive; the moment
there are no waitable children, the wait returns -1; check for that as
the condition to break out of the loop. Note though, that there are
scenarios requiring a non-blocking wait to be set up; we shall cover
these as well.

Fork bombs and creating more than one child
Say we want to write code to create three children; would this, the code shown as
follows, do it?

main()
{
 [...]
 fork();
 fork();
 fork();
 [...]
}

Of course not! (try it and see).

Recall fork rule #1: Execution in both the parent and child process continues at
the instruction following the fork. Thus, as you can see, after the first fork, both the
parent and child run the second fork (so we'll now have a total of four processes), and
then all four will run the third fork (giving us a total of eight processes), and so on
(havoc!).

If fork is called in this uncontrolled manner—it ends up creating 2^3 = 8 children! In
other words, it's exponential; n forks implies 2^n children will be created in a
runaway sprint.

Imagine what damage can be done with this code:

int main(void)
{
 while(1)
 fork();
}

It's quite rightly called a fork bomb!—a type of denial-of-service (DoS) attack.

Process Creation Chapter 10

[361]

Interestingly, because of modern Unixes (including Linux of course) having COW-
based copying semantics, the memory overhead incurred may not be that large. Of
course, it still consumes huge amounts of CPU; also, a simple calloc within the while
loop would cause memory to be eaten up as well.

By the way, carefully tuned resource limits (we studied this in an
earlier chapter in detail) can help mitigate the fork bomb (and
similar) DoS attack risks. Even better, would be careful tuning via
cgroups for resource bandwidth control. Here is the fork bomb
wikipedia link: https:/ /en. wikipedia. org/wiki/ Fork_ bomb.

OK, so, fork(); fork(); is not the way to create two children. (Try out the exercise
Smallbomb on the GitHub repository.)

How do you do so correctly? It's straightforward: take into account the parent and
child's execution paths, distinguish between them (fork rule #2), and just have the
parent create a second child process. This code snippet demonstrates the same:

static void createChild(int sleep_time)
{
 pid_t n;
 switch (n = fork()) {
 case -1:
 perror("fork");
 exit(1);
 case 0: // Child
 printf("Child 2 PID %d sleeping for %ds...\n", getpid(),
 sleep_time);
 sleep(sleep_time);
 exit(0);
 default: ; // Parent returns..
 }
}
int main(void)
{
[...]
switch (n = fork()) { // create first child
 case -1:
 perror("fork");
 exit(1);
 case 0: // Child
 printf("Child 1 PID %d sleeping for %ds...\n", getpid(),
 c1_slptm);
 sleep(c1_slptm);
 exit(0);
 default: // Parent

https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb
https://en.wikipedia.org/wiki/Fork_bomb

Process Creation Chapter 10

[362]

 createChild(c2_slptm); // create second child
 /* Wait until all children die (typically) */
 while ((cpid = wait(&stat)) != -1) {
 printf("Child %d changed state\n", cpid);
 }
 }

Wait scenario #3
What if a process has no children, never had any children (a bachelor chap),
and it issues the wait(2) API? At first glance, this seems to be a problem case, as
perhaps it could cause deadlock; but, no, the kernel is smarter than that. The kernel
code of wait checks, and upon finding that the calling process has no children (dead
or alive or stopped or whatever), it simply fails the wait. (FYI, errno gets set
to ECHILD implying the process had no unwaited-for children).

Again, recall one of our golden rules: never assume anything; always check for the failure
case. Importantly, our Chapter 19, Troubleshooting and Best Practices, covers such
points.

There is one more wait scenario; however, we need to cover more information first.

Variations on the wait – APIs
There are a couple of additional system calls to perform the job of waiting upon the
child(ren) process(es); we cover them next.

The waitpid(2)
Consider that we have a process with three children; it is required that the parent
waits (blocks) upon the termination of a particular child process. If we use the
generic wait API, we have seen that it will get unblocked upon the state change
of any of the children. The answer to this conundrum: the waitpid(2) system call:

pid_t waitpid(pid_t pid, int *wstatus, int options);

The first parameter pid is set to the PID of the child to wait upon. However, other
values are possible; if -1 is passed, it generically waits for any waitable child
process. (There are other more arcane cases; we refer you to the man page for them).
In other words, issuing this is equivalent to a generic wait(&stat); API call:

waitpid(-1, &stat, 0);

Process Creation Chapter 10

[363]

The second parameter is the usual status integer bitmask that we saw in detail with
the wait API.

The third parameter is called options; previously, we set it to zero, implying no
special behavior. What other values can it take? Well, you can pass just zero or the
bitwise OR of the following (it's also a bitmask):

Options parameter value Meaning
0 Default, same as wait(2)
WNOHANG Only block upon live children; if there are none, return immediately

WUNTRACED Also unblock when a child process stops (and does not necessarily
terminate)

WCONTINUED
Also unblock when a stopped child process is resumed (via the
SIGCONT signal being delivered to it)

At first, the WNOHANG option might sound strange; how can you block upon anything
but a live child? Well, with a little patience, we shall soon resolve this peculiarity.

To test the waitpid(2), we again make a copy of our simpsh_v2.c and call it
ch10/simpsh_v3.c; the only meaningful difference in the code is that we now use
the waitpid(2) instead of the generic wait API, passing along options as required;
from ch10/simpsh_v3.c:

[...]
 default: /* Parent */
 VPRINT("Parent process (%7d) issuing the waitpid...\n",
 getpid());
 /* sync: child runs first, parent waits
 * for child's death.
 * This time we use waitpid(2), and will therefore also get
 * unblocked on a child stopping or resuming!
 */
 if ((cpid = waitpid(-1, &wstat,
 WUNTRACED|WCONTINUED)) < 0) {
 free(cmd);
 FATAL("wait failed, aborting..\n");
 }
 if (gVerbose)
 interpret_wait(cpid, wstat);
[...]

Process Creation Chapter 10

[364]

Now we run it:

$./simpsh_v3 -v
 >> read
 Parent process (15040) issuing the waitpid...
 Child process (15058) exec-ing cmd "read" now..

We issue the read (a bash built-in) command, as it itself is a blocking call, so we
know that the child process read will be alive and asleep. In another terminal
window, we look up the PIDs of our simpsh_v3 process and of the command we ran
from within it (the read):

$ pgrep simpsh
 15040
$ pstree -A -h 15040 -p
 simpsh_v3(15040)---read(15058)
$

(The useful pstree(1) utility shows us the process tree's parent-child hierarchy.
Look up it's man page for details).

Now we send SIGTSTP (the terminal stop signal) to the read process; it gets stopped:

$ kill -SIGTSTP 15058

Getting stopped is a status change that we are looking for! Recall, our waiting code
now is this:

waitpid(-1, &wstat, WUNTRACED|WCONTINUED))

Thus, the moment the child stops the WUNTRACED option takes effect, and in the
original terminal window we see this:

 Child (15058) status changed:
 stopped: stop signal: 20
>>

We now continue the child by sending it the signal SIGCONT:

$ kill -SIGCONT 15058
$

Process Creation Chapter 10

[365]

As our (parent) waitpid(2) is also using the WIFCONTINUED option, in the original
Terminal window, we see this (though it does require the user to press the Enter key it
seems):

 Child (15058) status changed:
 (was stopped), resumed (SIGCONT)

We have so much more control over the child(ren). (Young parents, please note!)

The fork-exec-wait Unix framework is powerful indeed.

The waitid (2)
For further fine tuning and control, there is the waitid(2) system call as well (from
Linux 2.6.9):

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int
options);

The first two parameters will in effect specify the children to wait upon:

waitid(2): 1st parameter:
idtype Second parameter: id

P_PID Set to the PID of the child to wait (block) upon

P_PGID Wait upon any child whose process group ID (PGID) matches this
number

P_ALL Wait upon any child (this parameter is ignored)

The fourth options parameter is similar to how it was used with
the waitpid(2), but not identical; there are some additional options that can be
passed along; again, it's a bitmask, not an absolute value:
the WNOHANG and WCONTINUED options have the same meaning as with
the waitpid(2) system call.

Additionally, the following options can be bitwise-ORed:

WEXITED: Block upon children that have (already) terminated (again, we
shall soon make clear why this even exists)
WSTOPPED: Block upon children that will enter the stopped state (similar to
the WUNTRACED option)
WNOWAIT: Block upon children, but once unblocked, leave them in a
waitable state so that they can be waited-upon again with a later wait* API.

Process Creation Chapter 10

[366]

The third parameter is a (large) data structure of type siginfo_t; (we shall cover
details in Chapter 11, Signaling - Part I). On return of waitid(2), this will get
populated by the kernel. Various fields get set by the OS, among them, the PID of the
child that changed state (si_pid), si_signo set to SIGCHLD, si_status, si_code.
We intend to cover these in a later chapter (for now, please refer to the man page).

There are BSD variations of wait APIs too: the wait3 and
the wait4. However, these are nowadays considered outdated; use
the waitpid(2) or waitid(2) APIs instead.

The actual system call
We have seen several APIs that perform the work of having the parent
process wait until the child changes state (dies, or stops, or resumes after stop):

wait

waitpid

waitid

wait3

wait4

Interestingly, and similar to the situation with the exec family APIs, the Linux
implementation is such that most of the preceding APIs are library (glibc) wrappers:
The fact is that, on the Linux OS, of all the preceding APIs, wait4(2) is the actual
system call API.

Performing an strace(1) on a program that uses one of the wait APIs proves the
point (we strace our simpsh_v1 program, which calls wait):

$ strace -e trace=process -o strc.txt ./simpsh_v1
>> ps
 PID TTY TIME CMD
14874 pts/6 00:00:00 bash
27248 pts/6 00:00:00 strace
27250 pts/6 00:00:00 simpsh_v1
27251 pts/6 00:00:00 ps
>> quit
$

Process Creation Chapter 10

[367]

This is the output of strace:

execve("./simpsh_v1", ["./simpsh_v1"], 0x7fff79a424e0 /* 56 vars */) =
0
arch_prctl(ARCH_SET_FS, 0x7f47641fa4c0) = 0
clone(child_stack=NULL,
 flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
 child_tidptr=0x7f47641fa790) = 27251
wait4(-1, NULL, 0, NULL) = 27251
[...]

While discussing performing an strace, another interesting question does arise: if
you strace an application that calls fork(2), after the fork API, will strace trace
the execution path of the child process as well? By default, no, but just pass along
the -f option, and it will!

The man page on strace(1) says this:

-f Trace child processes as they are created by currently
traced processes as a result of the fork(2), vfork(2) and clone(2)
system calls. ...

In a similar vein, systems programmers are probably aware of the tremendously
powerful GNU debugger—GDB. If one is debugging a multiprocess application with
gdb(1), how can one request GDB which process's execution path to follow after
encountering a fork in the instruction stream? The setting is called follow-fork-
mode: in gdb; here, we show an example of setting the mode to child:

(gdb) show follow-fork-mode
Debugger response to a program call of fork or vfork is "parent".
(gdb) set follow-fork-mode child
(gdb)

With respect to GDB: Debugging multi-process applications with
GDB: Using the GDB attach <PID> command is useful to
attach to another process (say, the child). GDB also provides a
powerful catch command; see help catch in GDB for more
details.

Process Creation Chapter 10

[368]

A note on the vfork
Decades ago, the BSD Unix developers came up with an efficient special case system
call— the vfork(2). The idea at the time, was to perform some optimizations where
you performed a fork and almost immediately an exec in the child (the fork-exec, in
other words). As we know, using the fork-exec is quite a common and useful
semantic (the shell and network servers use it heavily). When the vfork is called
instead of the fork, the kernel does not go through the heavy copying operations
usually required; it optimizes things.

The bottom line is this: At the time, vfork(2) was useful on Unix; but today's
Linux fork(2) is as optimized as can be, rendering the vfork to the back door. It's
still there, for perhaps two reasons:

Compatibility—to aid the porting of BSD apps to Linux
It is apparently useful on some arcane special Linuxes that run on MMU-
less processors (like uClinux)

On today's regular Linux platforms, it is not recommended to use the vfork(2); just
stick to the fork(2).

More Unix weirdness
From fork rule #3, we understand that the parent and child processes run in parallel.
What if one of them terminate? Will the other die too? Well, no, of course not; they are
independent entities. However, there are side effects.

Orphans
Consider this scenario: A process forks, the parent and child are alive and running
their individual code paths in parallel. Let's say the parent's PID is 100 and the child's
is 102, implying the child's PPID is 100 of course.

The parent process, for whatever reason, dies. The child continues on without any
trouble, except for a side effect: The moment the parent (PID 100) dies, the child's
PPID (100) is now invalid! Thus, the kernel intervenes, setting the child's PPID to the
overall mothership—the ancestor of all user space tasks, the root of the process
tree—the init, or on recent Linux, the systemd, process! It's PID is, by venerable Unix
convention, always the number 1.

Process Creation Chapter 10

[369]

Terminology: the child that lost its immediate parent is now said to be re-parented
by systemd (or init), and its PPID will thus be 1; this child is now an orphan.

There is a possibility that the overall ancestor process (init or
systemd) does not have PID 1, and thus the orphan's PPID may not
be 1; this can occur, for example, on Linux containers or custom
namespaces.

We notice that the child's PPID value abruptly changed; thus, the systems
programmer must ensure that they do not depend on the PPID value being the same
(which can always be queried via the getppid(2) system call) for any reason!

Zombies
The orphaned process does not pose any problem; there is another scenario with the
distinct possibility of a nasty problem arising out of it.

Consider this scenario: a process forks, the parent and child are alive and running
their individual code paths in parallel. Let's say the parent's PID is 100 and the child's
is 102, implying the child's PPID is 100 of course.

Now we delve into a further level of detail: the parent process is supposed to wait
upon the termination of its children (via any of the available wait*(2) APIs of
course); what if it does not? Ah, this is really the bad case.

Imagine this scenario: the child process terminates, but the parent is not waiting
(blocking) upon it; thus it continues to execute its code. The kernel, however, is not
pleased: The Unix rule is that the parent process must block upon its children! As the
parent isn't, the kernel cannot afford to completely clean up the just-dead child; it
does release the entire VAS freeing up all the memory, it does flush and close all open
files, as well as other data structures, but it does not clear the child's entry in the
kernel's process table. Thus, the dead child still has a perfectly valid PID and some
miscellaneous information (it's exit status, exit bitmask, and so on). The kernel keeps
these details as this is the Unix way: the parent must wait upon its children and reap
them, that is, fetch their termination status information, when they die. How does the
parent process reap the child(ren)? Simple: by performing the wait!

So, think about it: The child has died; the parent has not bothered to wait for it; the
kernel has cleaned up, to some extent, the child process. But it technically exists, as it's
half dead and half alive; it's what we call a zombie process. In fact, this is a process
state on Unix: Z for zombie (you can see this in the output of ps -l; additionally, the
process is marked as defunct).

Process Creation Chapter 10

[370]

So why not just kill off the zombie(s)? Well, they're already dead; we cannot kill them.
The reader might then query, well, so what? let them be. OK, there are two reasons
that zombies cause real headaches on production systems:

They take up a precious PID
The amount of kernel memory taken up by the zombie is not insignificant
(and essentially is a waste)

So, the bottom line is this: a couple of zombies might be OK, but dozens and
hundreds, and more, are certainly not. You could reach a point where the system is so
clogged with zombies that no other process can run—the fork(2)
fails with errno set to EAGAIN (try again later) as no PIDs are available! It's a
dangerous situation.

The Linux kernel developers had the insight to provide a quick fix: if you notice
zombies on the system, you can, at least temporarily, get rid of them by killing their
parent process! (Once the parent is dead, of what use is it to have the zombies? The
point was, they remained so that the parent could reap them by doing a wait). Note
that this is merely a bandage, not a solution; the solution is to fix the code (see the
following rule).

This is a key point; in fact, what we call the wait scenario #4: the wait gets unblocked
with children that already terminated, in effect, the zombies. In other words, you not
only should, you must, wait upon all children; otherwise, zombies will occur (Note
that the zombie is a valid process state on the Unix/Linux OS; every process, on the
'way' to death will pass through the zombie (Z) state. For most it's transient; it
should not remain in this state for any significant length of time).

Fork rule #7
All of this neatly brings us to our next rule of fork.

Fork rule #7: The parent process must wait (block) upon the termination (death) of every
child, directly or indirectly.

The fact is that, just like the malloc-free, the fork-wait go together. There will be
situations in real-world projects where it might look impossible for us to force the
parent process to block on the wait after the fork; we shall address how these
seemingly difficult situations can be easily addressed (that's why we refer to
an indirect method as well; hint: it's to do with signaling, the topic of the next
chapter).

Process Creation Chapter 10

[371]

The rules of fork – a summary
For your convenience, this table summarizes the fork rules we have encoded in this
chapter:

Rule The rule of fork

1 After a successful fork, execution in both the parent and child process continues at the
instruction following the fork

2 To determine whether you are running in the parent or child process, use the fork return
value: it's always 0 in the child, and the PID of the child in the parent

3 After a successful fork, both the parent and child process execute code in parallel
4 Data is copied across the fork, not shared
5 After the fork, the order of execution between the parent and child process is indeterminate
6 Open files are (loosely) shared across the fork

7 The parent process must wait (block) upon the termination (death) of every child, directly or
indirectly

Summary
A core area of Unix/Linux systems programming is learning how to correctly handle
the all-important fork(2) system call, to create a new process on the system. Using
the fork(2) correctly takes a lot of deep insights. This chapter helped the systems
developer by providing several key rules of fork. The concepts learned—the rules,
working with data, open files, security issues, and so on—were revealed via several
code examples. A lot of details on how to wait for your children processes correctly
were discussed. What exactly are orphans and zombie processes, and why and how
we should avoid zombies was dealt with too.

11
Signaling - Part I

Signals are a crucial mechanism for the Linux system developer to understand and
exploit. We cover this rather large topic over two chapters in this book, this chapter
and the next one.

In this chapter, the reader is introduced to what signals are, why they are useful to the
systems developer, and, most importantly of course, how exactly the developer is to
handle and thus exploit the signalling mechanism.

We will continue this exploration in the next chapter.

In this chapter, the reader will learn the following:

What exactly signals are.
Why they are useful.
The available signals.
How exactly you can handle signals in an application, which really
involves many things—blocking or unblocking signals, writing safe
handlers, getting rid of pesky zombies once and for all, working with apps
where the signal volume is high, and more.

Signaling - Part I Chapter 11

[373]

Why signals?
At times, the systems programmer requires the OS to provide an asynchronous
facility—some way of letting you know that a certain event or condition has
occurred. Signals provide that very feature on the Unix/Linux OSes. A process can
trap or subscribe to a signal; when this occurs, the process will asynchronously be
notified of the fact by the OS, and will then run the code of a function in response:
a signal handler.

Take the following example cases:

A CPU-intensive process is busy working on a scientific or mathematical
calculation (for easy understanding, let's say it's generating primes); recall
(from Chapter 3, Resource Limits) that there is an upper limit on CPU usage
and that it's been set to a particular value. What if it's breached? The
process will be killed by default. Can we prevent this?
The developer wants to perform a common task: set up a timer and have it
expire in, say, 1.5 seconds from now. How will the OS inform the process
that the timer has expired?
On some Sys V Unixes (typically running on enterprise-class servers), what
if a sudden power failure occurs? An event is broadcast to all processes
(that have expressed an interest in, or subscribed to the event) informing
them of the same: they could flush their buffers, and save their data.
A process has an inadvertent defect (a bug); it makes an invalid memory
access. The memory subsystem (well, technically, the MMU and the OS)
determines it must be killed. How exactly will it be killed?
Linux's asynchronous IO (AIO) framework, and many other such scenarios.

All of these example scenarios are serviced by the same mechanism: signals.

The signal mechanism in brief
A signal can be defined as an asynchronous event that is delivered to a target
process. Signals are delivered to the target process either by another process or the OS
(the kernel) itself.

At the code level, a signal is merely an integer value; more correctly, it is a bit in a
bitmask. It's important to understand that, although the signal may seem like an
interrupt, it is not an interrupt. An interrupt is a hardware feature; a signal is purely a
software mechanism.

Signaling - Part I Chapter 11

[374]

OK, let's try a simple exercise: run a process, putting it in an infinite loop, and then
manually send it a signal via the keyboard. Find the code in (ch11/sig1.c):

int main(void)
{
 unsigned long int i=1;
 while(1) {
 printf("Looping, iteration #%02ld ...\n", i++);
 (void)sleep(1);
 }
 exit (EXIT_SUCCESS);
}

Why is the sleep(1); code typecast to (void)? This is our way of
informing the compiler (and possibly any static analysis tool) that
we are not concerned about its return value. Well, the fact is we
should be; there will be more on this later.

It's working is quite obvious: let's build and run it, and, after the third loop iteration,
we press the Ctrl + C key combination on the keyboard.

$./sig1
Looping, iteration #01 ...
Looping, iteration #02 ...
Looping, iteration #03 ...
^C
$

Yes, as expected, the process terminates. But how exactly did this happen?

Here is the answer in brief: signalling. More verbosely, this is what occurs (it's still
kept simple, though): when the user presses the Ctrl + C key combination (shown as
^C in the output), the kernel's tty layer code processes this input, cooks the input key
combination into, and delivers a signal to the foreground process on the shell.

But, hang on a second. Remember, a signal is just an integer value. So, which integer?
Which signal? The Ctrl + C key combination is mapped to the the SIGINT signal,
integer value 2, thus causing it to be delivered to the process. (The next section begins
to explain the different signals; for now, let's not get too stressed out about it).

Signaling - Part I Chapter 11

[375]

So, OK, the SIGINT signal, value 2, was delivered to our sig1 process. But then
what? Here, again, is a key point: every signal is associated with a function to run
when it is delivered; this function is called the signal handler. If we do not change it,
the default signal function runs. Well, that brings up the question: Since we have not
written any default (or other) signal-handling code, then who has provided this
default signal handler function? The short answer is this: the OS (the kernel) handles
all cases in which a process receives a signal for which the app has not installed any
handler; in other words, for the default case.

The action performed by the signal handler function or the underlying kernel code
determines what will happen to the target process when the signal arrives. So, now
we can understand better: the action carried out by the default signal handler (kernel
code, really) for the SIGINT signal is to terminate the process, in effect, causing the
receiving process to die.

We show this in the form of a diagram as follows:

Signal delivered via keyboard, default handler causes process to die

From this diagram, we can see the following steps:

A process, P comes alive and runs its code.1.
The user presses ^C, in effect causing the SIGINT signal to be sent to the2.
process.

Signaling - Part I Chapter 11

[376]

As we have not set up any signal handler, the default signal handling3.
action for this signal, which is part of the OS, is invoked.
This default signal handling code within the OS causes the process to die.4.

FYI, for the default case—that is, all cases where the application developer has not
installed a specific signal-handling routine (we will learn how exactly to install our
own signal handlers shortly)—what exactly does the OS code that handles these cases
do? Depending on the signal being processed, the OS will perform one of these five
possible actions (see the following table for details):

Ignore the signal
Stop the process
Continue the (previously stopped) process
Terminate the process
Terminate the process and emit a core dump

The really interesting and powerful thing is this: the programmer has the ability to
change–to re-vector the signal handling to their own function(s)! In effect, we can trap
or catch signals by using certain APIs. Once we do so, when the signal occurs, control
will not go to the default signal- handling (OS) code, but, rather, to the function we
want it to. In this manner, the programmer can take charge and work with the
powerful signalling mechanism.

Of course, there is much more to it: the devil does indeed lie in the details! Read on.

Available signals
The Unix/Linux OS provides a set of 64 signals in total. They are broadly divided into
two types: the standard or Unix signals and the real-time signals. We shall find that
while they do share common attributes, there are some important differences as well;
here, we shall investigate the Unix (or standard) signals and later, the latter.

The generic communication interface for signalling from userspace, besides the
keyboard key combinations (such as Ctrl + C), is the kill(1) utility (and,
consequently, the kill(2) system call).

Besides the kill, there are several other APIs that deliver a signal; we
shall flesh out more on this in a later section of this chapter.

Signaling - Part I Chapter 11

[377]

Running the kill(1) utility with the -l or list option lists the available signals on
the platform:

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37)
SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42)
SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59)
SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1
64) SIGRTMAX
$

Perhaps the moniker kill(1) is a misnomer: the kill utility just sends a signal to a
given process (or job). Thus (per your author at least), the name sendsig might have
been a better choice for the utility.

An FAQ: where are the signals numbered 32 and 33?
They are internally used by the Linux Pthreads implementation
(called NPTL), and are hence unavailable to app developers.

The standard or Unix signals
As can be seen from the output of kill, all supported signals on the platform are
shown; the first 31 of these (on your typical Linux box) are called the standard or
Unix signals. Unlike the real-time signals that follow, each standard/Unix signal has a
very specific name, and, as you might guess, purpose.

(Worry not; we shall discuss the real-time signals, numbers 34 to 64, in the next
chapter).

Signaling - Part I Chapter 11

[378]

The table you will see shortly, essentially reproduced from the man page on signal(7),
summarizes the standard (Unix) signals in the following column order: the signal's
symbolic name, integer value(s), the default action taken upon delivery to a process,
and a comment describing the signal.

The default action column has the following types: the default action of the signal
handler is to:

Terminate: Terminate the process.
Term&Core: Terminate the process and emit a core dump. (A core dump
is, essentially, a snapshot of the process's dynamic segments, the data and
stack segments, at the time when the (fatal) signal was delivered). This
terminate and core dump action occurs when the kernel sends a fatal signal
to a process. The implication is that the process has done something illegal
(buggy); an exception is the SIGQUIT signal: we get a core dump when
SIGQUIT is delivered to a process.
Ignore: Ignore the signal.
Stop: Process enters the stopped (frozen/suspended) state (represented by
T in the output of ps -l).
Continue: Continue execution of a previously stopped process.

Refer to the table Standard or Unix signals:

Signal Integer
value

Default
action Comment

SIGHUP 1 Terminate Hang up detected on controlling terminal or death of controlling
process

SIGINT 2 Terminate Interrupt from keyboard : ^C
SIGQUIT 3 Term&Core Quit from keyboard : ^\
SIGILL 4 Term&Core Illegal Instruction
SIGABRT 6 Term&Core Abort signal from abort(3)
SIGFPE 8 Term&Core Floating-point exception
SIGKILL 9 Terminate (Hard) kill signal
SIGSEGV 11 Term&Core Invalid memory reference
SIGPIPE 13 Terminate Broken pipe: write to pipe with no readers; see pipe(7)
SIGALRM 14 Terminate Timer signal from alarm(2)
SIGTERM 15 Terminate Termination signal (soft kill)
SIGUSR1 30,10,16 Terminate User-defined signal 1
SIGUSR2 31,12,17 Terminate User-defined signal 2
SIGCHLD 20,17,18 Ignore Child stopped or terminated
SIGCONT 19,18,25 Continue Continue if stopped
SIGSTOP 17,19,23 Stop Stop process
SIGTSTP 18,20,24 Stop Stop typed at terminal : ^Z

Signaling - Part I Chapter 11

[379]

SIGTTIN 21,21,26 Stop Terminal input for background process
SIGTTOU 22,22,27 Stop Terminal output for background process

At times, the second column, the signal's integer value, has three
numbers. Well, it's like this: the numbers are architecture-(meaning
CPU) dependent; the middle column represents the value for the
x86 architecture.

Always use the symbolic name of the signal in code (such
as SIGSEGV), including scripts, and never the number (such as 11).
You can see that the numeric value changes with the CPU, which
could lead to non-portable buggy code!

What if the system admin needs to urgently kill a process? Yes, its
quite possible that, while logged into an interactive shell, time is
very precious and an extra couple of seconds may make a difference.
In such cases, typing kill -9 is better than kill -SIGKILL, or even kill
-KILL. (The previous point is with regard to writing source code).

Passing the signal number to kill -l causes it to print the signal's
symbolic name (albeit in a shorthand notation). For example:
$ kill -l 11
SEGV
$

The preceding table (and, as a matter of fact the following table as well) reveal that,
with two exceptions, all the signals have a special purpose. Scanning the comment
column reveals it. The exceptions are SIGUSR1 and SIGUSR2 these are general
purpose signals; their use is left entirely to the imagination of the application
designers.

Further, the man page informs us that the following signals (shown in this table) are
newer and included in the SUSv2 and POSIX.1-2001 standards:

Signal Integer
Value

Default
Action Comment

SIGBUS 10,7,10 Term&Core Bus error (bad memory access)
SIGPOLL Terminate Pollable event (Sys V). Synonym for SIGIO
SIGPROF 27,27,29 Terminate Profiling timer expired
SIGSYS 12,31,12 Term&Core Bad system call (SVr4); see also seccomp(2)
SIGTRAP 5 Term&Core Trace/breakpoint trap
SIGURG 16,23,21 Ignore Urgent condition on socket (4.2BSD)

Signaling - Part I Chapter 11

[380]

SIGVTALRM 26,26,28 Terminate Virtual alarm clock (4.2BSD)
SIGXCPU 24,24,30 Term&Core CPU time limit exceeded (4.2BSD); see prlimit(2)
SIGXFSZ 25,25,31 Term&Core File size limit exceeded (4.2BSD); see prlimit(2)

 Newer standard or Unix signals

A few remaining (not so common) signals are further mentioned by the same man
page (signal(7)). Take a look if you are interested.

It's important to note that, out of all the signals mentioned, only two of them cannot
be caught, ignored or blocked: the SIGKILL and the SIGSTOP. This is because the OS
must guarantee a way to kill and/or stop a process.

Handling signals
In this section, we shall discuss in detail how exactly signals are handled by the
application developer programmatically (using C code, of course).

Glance back at Figure 1.You can see how the OS performs default signal handling,
which runs when an uncaught signal is delivered to the process. This seems good,
until we realize that, pretty often, the default action is to simply kill (or terminate) the
process. What if the application demands we do something else? Or, what if,
realistically, the application does crash, instead of just abruptly dying (and perhaps
leaving important files and other metadata in an inconsistent state). Perhaps we can
put the program into a sane state by performing some required cleanup, flushing
buffers, closing open files, logging the state/debug information, and so on, informing
the user of the sorry state of affairs (with a nice dialog box perhaps), and then have the
process die, gracefully and peacefully, if you will.

The ability to catch or trap a signal is the key to achieving these goals. As mentioned
earlier, to re-vector the flow of control such that it's not the default signal-handling
kernel code, but our custom signal handling code that executes when the signal
arrives.

Signaling - Part I Chapter 11

[381]

So, how do we achieve this? By using APIs to register interest in and thus handle
signals. Broadly, there are three available APIs to catch or trap a signal:

sigaction(2) system call
signal(2) system call
sigvec(3) library API

Well, of these three APIs, the sigvec is nowadays considered deprecated. Also,
unless the work is really simplistic, you are urged to forgo the signal(2) API in
favor of the sigaction API. Effectively, the powerful way to handle signals is via the
sigaction(2) system call; it is the one we shall discuss in depth.

Using the sigaction system call to trap signals
The sigaction(2) system call is the right way to trap or catch signals; it's powerful,
POSIX compliant, and can be used to hone your application's signal-handling
superbly.

At a high level, the sigaction system call is used to register a signal handler for a
given signal. If the signal's handler function was foo, we can use sigaction to
change its signal handler to bar. As usual, there is a lot more we can specify as well,
which has a powerful impact upon signal handling, and we shall come to all that
shortly. Here is the signature:

#include <signal.h>
int sigaction(int signum, const struct sigaction *act,
 struct sigaction *oldact);

Feature Test Macro Requirements for glibc (see
feature_test_macros(7)): sigaction(): _POSIX_C_SOURCE
siginfo_t: _POSIX_C_SOURCE >= 199309L

The man page on sigaction(2) informs us (via the Feature Test Macro
Requirements section; see further on for a few details) that using sigaction requires
the definition of the _POSIX_C_SOURCE macro; this is almost always the case with
modern code on Linux. Further, usage of the siginfo_t data structure (explained
later in this chapter) requires you to have POSIX version 199309L or later. (The
format is YYYYMM; hence, that's the POSIX standard draft as of September 1993; again,
this would certainly be the case on any reasonably modern Linux platform).

Signaling - Part I Chapter 11

[382]

Sidebar – the feature test macros
A quick digression: feature test macros are a glibc feature; they allow a developer to
specify, at compile time, the exact feature set by defining these macros in the source.
The manual (man) pages always specify (as required), the feature test
macros required to be present to support a certain API or feature.

With regard to these feature test macros, on both the Ubuntu (17.10) and Fedora (27)
Linux distributions, we have tested the source code of this book upon, the value
of _POSIX_C_SOURCE is 200809L. The macro is defined in the header file
<features.h>, which is itself included in the header <unistd.h>.

A simple test program to print a few feature test macros is provided within the book's
GitHub source tree here: https:/ / github. com/ PacktPublishing/ Hands- on-System-
Programming-with- Linux/ tree/ master/ misc. Why not give it a try on your Linux
platform?

More on feature test macros from the glibc documentation: http:/
/www. gnu. org/ software/ libc/ manual/ html_ node/ Feature- Test-
Macros. html.

The sigaction structure
The sigaction(2) system call takes three parameters, of which the second and third
are of the same data type.

The first parameter int signum is the signal to trap. This straight away reveals an
important point: signals are meant to be trapped one at a time—you can only trap one
signal with a single call to sigaction. Do not attempt to be overly clever and do
things such as pass a bitmask of signals (bitwise-ORed) together; that's a bug. Of
course, you can always call sigaction multiple times or in a loop.

The data type of the second and third parameters is a pointer to a structure called,
again, sigaction. The sigaction structure definition is as follows (from the header
/usr/include/bits/sigaction.h):

/* Structure describing the action to be taken when a signal arrives.
*/
struct sigaction
 {
 /* Signal handler. */
#ifdef __USE_POSIX199309

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/tree/master/misc
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html
http://www.gnu.org/software/libc/manual/html_node/Feature-Test-Macros.html

Signaling - Part I Chapter 11

[383]

 union
 {
 /* Used if SA_SIGINFO is not set. */
 __sighandler_t sa_handler;
 /* Used if SA_SIGINFO is set. */
 void (*sa_sigaction) (int, siginfo_t *, void *);
 }
 __sigaction_handler;
define sa_handler __sigaction_handler.sa_handler
define sa_sigaction __sigaction_handler.sa_sigaction
#else
 __sighandler_t sa_handler;
#endif

 /* Additional set of signals to be blocked. */
 __sigset_t sa_mask;

 /* Special flags. */
 int sa_flags;

 /* Restore handler. */
 void (*sa_restorer) (void);
 };

The first member, a function pointer, refers to the signal handler function itself. On
modern Linux distributions, the __USE_POSIX199309 macro will indeed be defined;
hence, as can be seen, the signal handler value is a union of two elements, implying
that at runtime, exactly one of them will be used. The previous comments make it
clear: by default, the sa_handler prototype function is used; however, if the flag
SA_SIGINFO is passed along (in the third member sa_flags), then the
sa_sigaction styled function is used. We shall make this clear with sample code
soon.

The C library specifies __sighandler_t as: typedef void (*__sighandler_t)
(int);

As mentioned previously, it's a pointer to a function that will receive one parameter:
an integer value (yes, you guessed it: the signal that is delivered).

Before going deeper into the data structure, it would be instructive to write and try
out a simple C program that handles a couple of signals, using defaults for most of
the previously mentioned sigaction structure members.

Signaling - Part I Chapter 11

[384]

The source code of the main() function of ch11/sig2.c :

int main(void)
{
 unsigned long int i = 1;
 struct sigaction act;

 /* Init sigaction to defaults via the memset,
 * setup 'siggy' as the signal handler function,
 * trap just the SIGINT and SIGQUIT signals.
 */
 memset(&act, 0, sizeof(act));
 act.sa_handler = siggy;
 if (sigaction(SIGINT, &act, 0) < 0)
 FATAL("sigaction on SIGINT failed");
 if (sigaction(SIGQUIT, &act, 0) < 0)
 FATAL("sigaction on SIGQUIT failed");

 while (1) {
 printf("Looping, iteration #%02ld ...\n", i++);
 (void)sleep(1);
 } [...]

We deliberately memset(3) the sigaction structure to all zeros, to initialize it
(initializing is always good coding practice in any case!). Then, we initialize the signal
handler to our own signal-handling function siggy.

Notice how, to trap two signals, we require two sigaction(2) system calls. The
second parameter, the pointer to struct sigaction, is to be populated by the
programmer and is considered to be the new settings for the signal. The third
parameter is, again, a pointer to struct sigaction; it, however, is a value-result type:
if non-NULL and allocated, the kernel will populate it with the previous settings of
the signal. This is a useful feature: what if the design requires you to perform a save
and restore of some signal dispositions. Here, as a simple case, we just set the third
parameter to NULL, implying that we are not interested in the previous signal state.

We then enter the same (as sig1.c) infinite loop... Our simple signal handler
function siggy is shown here:

static void siggy(int signum)
{
 const char *str1 = "*** siggy: handled SIGINT ***\n";
 const char *str2 = "*** siggy: handled SIGQUIT ***\n";

 switch (signum) {
 case SIGINT:

Signaling - Part I Chapter 11

[385]

 if (write(STDOUT_FILENO, str1, strlen(str1)) < 0)
 WARN("write str1 failed!");
 return;
 case SIGQUIT:
 if (write(STDOUT_FILENO, str2, strlen(str2)) < 0)
 WARN("write str2 failed!");
 return;
 }
}

The signal handler receives one integer value as its parameter: the signal that caused
control to reach here. Hence, we can multiplex on multiple signals: set up a common
signal handler and perform a simple switch-case to handle each specific signal.

The signal handling function's return type is void, of course. Ask yourself: Where
will it return? It's an unknown. Remember, signals can arrive asynchronously; we
have no idea when exactly the handler will run.

Let's try it out:

$ make sig2
gcc -Wall -c ../common.c -o common.o
gcc -Wall -c -o sig2.o sig2.c
gcc -Wall -o sig2 sig2.c common.o
$./sig2
Looping, iteration #01 ...
Looping, iteration #02 ...
Looping, iteration #03 ...
^C*** siggy: handled SIGINT ***
Looping, iteration #04 ...
Looping, iteration #05 ...
^*** siggy: handled SIGQUIT ***
Looping, iteration #06 ...
Looping, iteration #07 ...
^C*** siggy: handled SIGINT ***
Looping, iteration #08 ...
Looping, iteration #09 ...
^*** siggy: handled SIGQUIT ***
Looping, iteration #10 ...
Looping, iteration #11 ...
^Z
[1]+ Stopped ./sig2
$ kill %1
[1]+ Terminated ./sig2
$

Signaling - Part I Chapter 11

[386]

You can see that this time, the SIGINT (via keyboard ^C) and the SIGQUIT (via
keyboard ^\ key combination) signals are being handled by the application.

So, how do we terminate the app? Well, one way is to open another terminal window
and kill the app via the kill utility. For now, though, we use another method: we
send the SIGTSTP signal to the process (via keyboard ^Z key combination) to put it
into the stopped state; we get back the shell. Now, we simply kill it via kill(1). ([1]
is the process's job number; you can use the jobs command to see all current jobs on
the session).

We show this in the form of a diagram as follows:

Figure 2: Handling a Signal

Clearly, as demonstrated by our simple sig2 application and Figure 2, once a signal is
trapped (via the sigaction(2) (or the signal) system call), when it is delivered to the
process, control is now re-vectored to the new application-specific signal handler
function, and not to the default OS signal-handling code.

In the program sig2, all looks good, except that you, the careful reader, may have
noticed a bit of a puzzle: in the siggy signal handler function's code, why not just use
a simple printf(3) to emit a message. Why the write(2) system call? Actually,
there's a really good reason behind this. This, and more, is coming up.

Signaling - Part I Chapter 11

[387]

Trap all required signals as early as possible, in the application's
initialization. This is because signals can arrive at any moment; the
sooner we are ready to handle them, the better.

Masking signals
While a process is running, what if it wants to block (or mask) certain signals? This is
indeed possible via the API interface; in fact, the second member of
the sigaction(2) structure is the signal mask, the mask of signals to block from
delivery to the process while the signal handler function is running. A mask typically
implies a bitwise-or of signals:

...
/* Additional set of signals to be blocked. */
 __sigset_t sa_mask;
...

Do notice the previous comment; it implies some signal is already being blocked. Yes,
indeed; let's say a process traps a signal n via the sigaction system call. At some
later point that signal n is delivered to it; while our process handles the signal—that
is, runs the code of its signal handler—that signal n is blocked from delivery to the
process. For how long is it blocked? Until we return from the signal handler. In other
words, the OS auto-blocks the signal currently being handled. This usually is
precisely what we want, and it works to our advantage.

Signal masking with the sigprocmask API
What if we want to block (or mask) some other signals during execution. For
example, while processing a critical region of code? The system
call sigprocmask(2) is designed for this purpose: int sigprocmask(int how,
const sigset_t *set, sigset_t *oldset);

The signal sets are essentially bitmasks of the signals in question. The set is the new
set of signals to mask, while oldset is actually a return value (the value-result type
of parameter), or the previous (or current) value of the signal mask.
The how parameter determines the behavior and can take these values:

SIG_BLOCK : Additionally, block (mask) the signals specified in the signal
set set (along with the signals already masked)
SIG_UNBLOCK : Unblock (unmask) the signals specified in the signal set set

Signaling - Part I Chapter 11

[388]

SIG_SETMASK : The signals specified in the signal set set are masked,
overwriting the previous values

Querying the signal mask
So, we understand that you can set the process's signal mask at the time
of sigaction(2) (via the sa_mask member), or via the sigprocmask(2) system
call (as mentioned previously). But how exactly can you query the state of the process
signal mask at any arbitrary point in time?

Well, again, via the sigprocmask(2) system call. But, logically, this API sets a mask,
right? This is the trick: if the first parameter set is set to NULL, then the second
parameter is effectively ignored, while in the third parameter oldset, the current
signal mask value is populated, and thus we can query the signal mask without
altering it.

The ch11/query_mask program demonstrates this, the code is built upon our
previous example sig2.c. Hence, we do not need to show the entire source; we just
show the relevant code, in main():

[...]
/* Init sigaction:
 * setup 'my_handler' as the signal handler function,
 * trap just the SIGINT and SIGQUIT signals.
 */
 memset(&act, 0, sizeof(act));
 act.sa_handler = my_handler;
 /* This is interesting: we fill the signal mask, implying that
 * _all_ signals are masked (blocked) while the signal handler
 * runs! */
 sigfillset(&act.sa_mask);

 if (sigaction(SIGINT, &act, 0) < 0)
 FATAL("sigaction on SIGINT failed");
 if (sigaction(SIGQUIT, &act, 0) < 0)
 FATAL("sigaction on SIGQUIT failed");
[...]

As you can see, this time we use the sigfillset(3) (one of the useful POSIX signal
set operations or sigsetops(3) operators) to populate the signal mask with all 1's,
implying that, while the signal handler code is running, all signals will be masked
(blocked).

Signaling - Part I Chapter 11

[389]

Here is the relevant portion of the signal handler code:

static void my_handler(int signum)
{
 const char *str1 = "*** my_handler: handled SIGINT ***\n";
 const char *str2 = "*** my_handler: handled SIGQUIT ***\n";
 show_blocked_signals();
 switch (signum) {
 [...]

Ah! Here, the intelligence is within the show_blocked_signals function; we have
this function in our common code source file: ../common.c. Here's the function:

/*
 * Signaling: Prints (to stdout) all signal integer values that are
 * currently in the Blocked (masked) state.
 */
int show_blocked_signals(void)
{
 sigset_t oldset;
 int i, none=1;

 /* sigprocmask:
 * int sigprocmask(int how, const sigset_t *set, sigset_t
*oldset);
 * if 'set' is NULL, the 'how' is ignored, but the
 * 'oldset' sigmask value is populated; thus we can query the
 * signal mask without altering it.
 */
 sigemptyset(&oldset);
 if (sigprocmask(SIG_UNBLOCK, 0, &oldset) < 0)
 return -1;

 printf("\n[SigBlk: ");
 for (i=1; i<=64; i++) {
 if (sigismember(&oldset, i)) {
 none=0;
 printf("%d ", i);
 }
 }
 if (none)
 printf("-none-]\n");
 else
 printf("]\n");
 fflush(stdout);
 return 0;
}

Signaling - Part I Chapter 11

[390]

The key here is this: the sigprocmask(2) is used with a NULL second parameter
(the mask to set); hence, as stated earlier, the how parameter is ignored and the value-
result third parameter oldset will hold the current process signal mask.

We can query each signal bit in the bitmask using, again,
the sigsetops: sigismember(3) convenience method. Now all that's left to do is
iterate over each bit in the mask and print the signal number, if the bit is set, or ignore
it if it is cleared.

Here's the output of a test run:

$ make query_mask
gcc -Wall -c ../common.c -o common.o
gcc -Wall -c -o query_mask.o query_mask.c
gcc -Wall -o query_mask query_mask.c common.o
$./query_mask
Looping, iteration #01 ...
Looping, iteration #02 ...
Looping, iteration #03 ...
^C
[SigBlk: 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25
26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64]
*** my_handler: handled SIGINT ***
Looping, iteration #04 ...
Looping, iteration #05 ...
^\
[SigBlk: 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25
26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64]
*** my_handler: handled SIGQUIT ***
Looping, iteration #06 ...
Looping, iteration #07 ...
^Z
[2]+ Stopped ./query_mask
$ kill %2
[2]+ Terminated ./query_mask
$

Notice how the blocked signals are printed out. Hey, can you spot
the missing signals?

SIGKILL(#9) and SIGSTOP(#19) cannot be masked; also, signals
32 and 33 are internally reserved for and used by the Pthreads
implementation.

Signaling - Part I Chapter 11

[391]

Sidebar – signal handling within the OS – polling not
interrupts
Here, we do not intend to delve deep into the Linux kernel internal details of signal
handling; rather, we'd like to make clear a common misconception hinted at earlier:
handling signals is not at all like hardware interrupt handling. Signals are not
interrupts, nor faults or exceptions; all of these— interrupts, traps, exceptions,
faults—are raised by the PIC/MMU/CPU hardware on a computer. Signals are purely
a software feature.

Delivering a signal to a process implies setting some members in the task structure of
the task (in kernel memory), the so-called TIF_SIGPENDING bit, and the particular
bit(s) representing the signal(s) in the task's sigpending set; this way, the kernel
knows whether, and which, signals are pending delivery to the process.

The reality is that at opportune points in time (which occur regularly), the kernel code
checks whether a signal(s) is pending delivery, and, if so, delivers it, running or
consuming the signal handler(s) of the process (in userland context). Signal handling
is thus considered to be more of a polling mechanism rather than an interrupt one.

Reentrant safety and signalling
There is an important-to-understand issue during signal handling, when working
with reentrant-unsafe (also called async-signal-unsafe) functions within a signal
handler.

Of course, to understand this issue, you must first understand what exactly
a reentrant function is, and, subsequently, what is meant by reentrant-safe or async-
signal-safe functions.

Reentrant functions
A reentrant function is one that can be reentered while an ongoing invocation is still
running. It's simpler than it sounds; check out this pseudo-code snippet:

signal_handler(sig)
{
 my_foo();
 < ... >
}

Signaling - Part I Chapter 11

[392]

my_foo()
{
 char mybuf[MAX];
 <...>
}

do_the_work_mate()
{
 my_foo();
 <...>
}

Now imagine this sequence of activity:

The function my_foo() is invoked by the business logic function
do_the_work_mate(); it operates on the local buffer mybuf

While this is still running, a signal is dispatched to this process

The signal handler code preempts whatever was executing at the moment
it occurred and runs

It reinvokes the function my_foo()

So, there we see it: the function my_foo() is reentered. By itself, that's OK; the
important question here is: is it safe?

Recall (from our coverage in Chapter 2, Virtual Memory) that the process stack is used
to hold function call frames and, hence, any local variables. Here, the reentrant
function my_foo() only uses a local variable. It's been invoked twice; each invocation
will be a separate call frame on the process stack. The key point: each invocation of
my_foo() works on a copy of the local variable mybuf; thus, it is safe. Hence, it's
documented as being reentrant-safe. In the signal-handling context, it's called
being async-signal-safe: invoking the function from within a signal handler
while a previous invocation is still running is safe.

OK, let's add a twist to the previous pseudo-code: change the function my_foo()'s
local variable mybuf to become a global (or static) variable. Now think about what
happens when it's reentered; this time, distinct stack call frames cannot save us. As
mybuf is global, there exists only one copy of it, which will be in an inconsistent state
from the first function invocation (by do_the_work_mate()). When the second
invocation of my_foo() occurs, we will work on this inconsistent global mybuf, thus
corrupting it. Hence, clearly, this is unsafe.

Signaling - Part I Chapter 11

[393]

Async-signal-safe functions
As a general rule, functions that use only local variables are reentrant-safe; any usage
of a global or a static data renders them unsafe. This is a key point: you can only call
those functions in a signal handler that are documented as being reentrant-safe
or signal-async-safe.

The man page on signal-safety(7) http:// man7. org/linux/ man-pages/ man7/
signal-safety. 7. html provides details for this.

On Ubuntu, the man page with this name (signal-safety(7))
was installed in recent versions only; it does work on Ubuntu 18.04.

Among them, it publishes a list of (alphabetically ordered) functions that the
POSIX.1 standard requires an implementation to guarantee are implemented as
being async-signal-safe, (See man page version 4.12, dated 2017-03-13)

So the bottom line is this: from within a signal handler, you can only invoke the
following:

C library functions or system calls that are in the signal-safety(7) man page
(do look it up)
Within a third-party library, functions explicitly documented as
being async-signal-safe
Your own library or other functions that have been explicitly written to
be async-signal-safe

Also, don't forget that your signal handler function itself must be reentrant-safe. Do
not access application global or static variables within it.

Alternate ways to be safe within a signal handler
What if we must access some global state within our signal handler routine? There do
exist some alternate ways of making it signal-safe:

At the point you must access these variables, ensure that all signals are
blocked (or masked), and, once done, restore the signal state (unmask).

http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html

Signaling - Part I Chapter 11

[394]

Perform some kind of locking on shared data while accessing it.
In multiprocess applications (the case we are talking about
here), (binary) semaphores can be used as a locking
mechanism to protect shared data across processes.
In multithreaded applications, the use of an appropriate
locking mechanism (mutex locks, perhaps; we shall, of
course, cover this in a later chapter in detail).

If your requirement is to just operate upon global integers (a common case
for signal handling!), use a special data type (the sig_atomic_t). Seen
later on.

The reality is that the first approach, blocking signals when required, is difficult to
achieve in practice on complex projects (although you certainly can arrange
for all signals to be masked while handling a signal by setting the signal mask to all
1s, as demonstrated in the previous section, Querying the signal mask).

The second approach, locking, is realistic though performance-sensitive for
multiprocess and multithreaded applications.

Here and now, while discussing signalling, we shall cover the third approach.
Another reason for this is because working on (querying and/or setting) an integer
within a signal handler is a very common case.

Within the code we show in this book, there is the occasional use of
async-signal- unsafe functions being used within a signal handler
(usually one of the [f|s|v]printf(3) family). We stress that this
has been done purely for demonstration purposes only; please do
not give into temptation and use async-signal-unsafe functions in
production code!

Signal-safe atomic integers
Visualize a multiprocess application. A process, A, must complete a certain quantum
of work (let's say it must complete running a function foo()) and let another process,
B, know that it has done so (in other words, we want synchronization between the
two processes; see the next info box as well).

Signaling - Part I Chapter 11

[395]

A simple way to achieve this is as follows: have process A send a signal (say
SIGUSR1) to process B when it has reached the required point. In turn, process B
traps SIGUSR1, and when it does arrive, in its signal handler, it sets a global buffer to
an appropriate message string to let the rest of the application know that we have
reached this point.

In the following tables, visualize the timeline going vertically (y axis) downward.

Pseudo-code—the wrong way:

Process A Process B
Do work Set up signal handler for SIGUSR1

Work on foo() char gMsg[32]; // global
Do work

foo() done; send SIGUSR1 to process
B

signal_handler() function entered asynchronously
strncpy(gMsg, "chkpointA", 32);

[...] [...]

This looks fine, except that, please notice that, this global update on the message
buffer gMsg is not guaranteed to be atomic. It's entirely possible that attempting to do
so will result in a race—a condition in which we cannot predict with any certainty
what the final result of the global variable will be. It's exactly this kind of data race
that is the perfect breeding ground for a class of difficult-to-see-and-solve racy
bugs. You must avoid them by using proper programming practices.

The solution: Switch from using a global buffer to a global integer-like variable of
data type sig_atomic_t, and, importantly, mark it as volatile (so that the
compiler disables optimizations around it).

Signaling - Part I Chapter 11

[396]

Pseudo-code – the right way:

Process A Process B
Do work Set up signal handler for SIGUSR1

Work on foo() volatile sig_atomic_t gFlag=0;
Do work

foo() done; send SIGUSR1 to process
B

signal_handler() function entered asynchronously
gFlag = 1;

[...] [...]

This time it will work just fine, without any race. (Writing the complete working code
of the previous program is suggested as an exercise to readers).

It's important to realize that the usage of sig_atomic_t makes an
(integer) variable only async-signal safe, not thread-safe. (Thread
safety will be covered in detail in later Chapter 14, Multithreading
with Pthreads Part I - Essentials).

True process synchronization should be performed using an IPC
mechanism appropriate for the purpose. Signals do serve as a
primitive IPC mechanism; depending on your project, other IPC
mechanisms (sockets, message queues, shared memory, pipes, and
semaphores) might well be a better way to do so, though.

According to Carnegie Mellon University's Software Engineering Institute (CMU SEI)
CERT C Coding Standard:

SIG31-C: Do not access shared objects in signal handlers (https:/ / wiki. sei.cmu.
edu/confluence/ display/ c/ SIG31- C.
+Do+not+access+shared+objects+in+signal+handlers)

The type sig_atomic_t is the integer type of an object that can be accessed as an
atomic entity even in the presence of asynchronous interrupts.

https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers
https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers

Signaling - Part I Chapter 11

[397]

Additional note:

It's worth checking out the code examples provided within the last link as well. Also,
within the same context, the CMU SEI's CERT C Coding Standard, the following
points are noted, regarding the correct way to perform signal handling:

SIG30-C. Call only asynchronous-safe functions within signal handlers.
SIG31-C: Do not access shared objects in signal handlers.
SIG34-C. Do not call signal() from within interruptible signal handlers.
SIG35-C. Do not return from a computational exception signal handler.

The last bullet point is perhaps better phrased by the POSIX.1 committee:

The behavior of a process is undefined after it returns normally from a signal-
catching function for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not
generated by kill(2), sigqueue(3), or raise(2).

In other words, once your process receives any of the previously mentioned fatal
signals from the OS, it can perform cleanup within it's signal handler, but then it must
terminate. (Allow us this joke: the hero exclaiming "Not today, Death!" , is all well
and good in the movies, but when SIGBUS, SIGFPE, SIGILL, or SIGSEGV come
calling, it's time to clean up and gracefully die!). As a matter of fact, we delve into this
aspect in a lot of detail within the next chapter.

Powerful sigaction flags
From the previous section The sigaction structure, recall that one of the members of
the sigaction structure is as follows:

/* Special flags. */
 int sa_flags;

These special flags are very powerful. With them, the developer can precisely specify
signal semantics that would otherwise be hard or impossible to obtain. The default
value of zero implies no special behavior.

Signaling - Part I Chapter 11

[398]

We shall first enumerate the sa_flags possible values in this table and then proceed
to work with them:

sa_flag Behavior or semantic it provides (from the man page on sigaction(2)).

SA_NOCLDSTOP
If signum is SIGCHLD, do not generate SIGCHLD when children stop
or stopped children continue.

SA_NOCLDWAIT
(Linux 2.6 and later) If signum is SIGCHLD, do not transform children into
zombies when they terminate.

SA_RESTART Provide behavior compatible with BSD signal semantics by making certain
system calls restartable across signals.

SA_RESETHAND Restore the signal action to the default upon entry to the signal handler.

SA_NODEFER Do not prevent the signal from being received from within its own signal
handler.

SA_ONSTACK
Call the signal handler on an alternate signal stack provided by
sigaltstack(2). If an alternate stack is not available, the default (process)
stack will be used.

SA_SIGINFO
The signal handler takes three arguments, not one. In this case,
sa_sigaction should be set instead of sa_handler.

Keep in mind that sa_flags is an integer value interpreted by the OS as
a bitmask; bitwise-ORing several flags together to imply their combined behavior is
indeed common practice.

Zombies not invited
Let's get started with the flag SA_NOCLDWAIT. First, a quick digression:

As we learned in Chapter 10, Process Creation, a process can fork, resulting in an act
of creation: a new child process is born! From that chapter, it is now relevant to recall
our Fork Rule #7: The parent process must wait (block) upon the termination (death)
of every child, directly or indirectly.

The parent process can wait (block) upon the child's termination via the wait system
call API set. As we learned earlier, this is essential: if the child dies and the parent has
not waited upon it, the child becomes a zombie—an undesirable state to be in, at best.
At worst, it can terribly clog system resources.

Signaling - Part I Chapter 11

[399]

However, blocking upon the death of the child (or children) via the wait API(s) causes
the parent to become synchronous; it blocks, and thus, in a sense, it defeats the whole
purpose of multiprocessing, to be parallelized. Can we not
be asynchronously notified when our children die? This way, the parent can continue
to perform processing, running in parallel with its children.

Ah! Signals to the rescue: the OS will deliver the SIGCHLD signal to the parent
process whenever any of its children terminate or enter the stopped state.

Pay attention to the last detail: the SIGCHLD will be delivered even if a child
process stops (and is thus not dead). What if we do not want that? In other words, we
only want the signal sent to us when our children die. That is precisely what the
SA_NOCLDSTOP flag performs: no child death on stop. So, if you do not want to get
spoofed by the stopping of the children into thinking they're dead, use this flag. (This
also applies when a stopped child is subsequently continued, via the SIGCONT).

No zombies! – the classic way
The previous discussion should also make you realize that, hey, we now have a
neat asynchronous way in which to get rid of any pesky zombies: trap the SIGCHLD,
and in its signal handler, issue the wait call (using any of the wait APIs covered in
Chapter 9, Process Execution), preferably with the WNOHANG option parameter such
that we perform a non-blocking wait; thus, we do not block upon any live children
and just succeed in clearing any zombies.

Here is the classic Unix way to clear zombies:

static void child_dies(int signum)
{
 while((pid = wait3(0, WNOHANG, 0)) != -1);
}

Delving into depth here would be of academic interest only on modern Linux
(modern Linux, in your author's opinion, being the 2.6.0 Linux kernel and beyond,
which, by the way, was released on December 18, 2003).

Signaling - Part I Chapter 11

[400]

No zombies! – the modern way
So, with modern Linux, avoiding zombies became vastly easier: just trap the SIGCHLD
signal using sigaction(2), specifying the SA_NOCLDWAIT bit in the signal flags
bitmask. That's it: zombie worries banished forever! On the Linux platform, the
SIGCHLD signal is still delivered to the parent process—you can use it to keep track of
children, or whatever accounting purposes you may dream up.

By the way, the POSIX.1 standard also specifies another way to get rid of the pesky
zombie: just ignore the SIGCHLD signal (with the SIG_IGN). Well, you can use this
approach, with the caveat that then you will never know when a child does indeed
die (or stop).

So, useful stuff: let's put our new knowledge to the test: we rig up
a small multiprocess application that generates zombies, but also clears them in the
modern way as follows (ch11/zombies_clear_linux26.c):

For readability, only the relevant parts of the code are displayed;
to view and run it, the entire source code is available here: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

int main(int argc, char **argv)
{
 struct sigaction act;
 int opt=0;

 if (argc != 2)
 usage(argv[0]);

 opt = atoi(argv[1]);
 if (opt != 1 && opt != 2)
 usage(argv[0]);

 memset(&act, 0, sizeof(act));
 if (opt == 1) {
 act.sa_handler = child_dies;
 /* 2.6 Linux: prevent zombie on termination of child(ren)! */
 act.sa_flags = SA_NOCLDWAIT;
 }
 if (opt == 2)
 act.sa_handler = SIG_IGN;
 act.sa_flags |= SA_RESTART | SA_NOCLDSTOP; /* no SIGCHLD on stop of
child(ren) */

 if (sigaction(SIGCHLD, &act, 0) == -1)

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Signaling - Part I Chapter 11

[401]

 FATAL("sigaction failed");
 printf("parent: %d\n", getpid());
 switch (fork()) {
 case -1:
 FATAL("fork failed");
 case 0: // Child
 printf("child: %d\n", getpid());
 DELAY_LOOP('c', 25);
 exit(0);
 default: // Parent
 while (1)
 pause();
 }
 exit(0);
}

(For now, ignore the SA_RESTART flag in the code; we shall explain it shortly). Here is
the signal handler for SIGCHLD:

#define DEBUG
//#undef DEBUG
/* SIGCHLD handler */
static void child_dies(int signum)
{
#ifdef DEBUG
 printf("\n*** Child dies! ***\n");
#endif
}

Notice how we only emit a printf(3) within the signal handler when in debug
mode (as it's async-signal unsafe).

Let's try it out:

$./zombies_clear_linux26
Usage: ./zombies_clear_linux26 {option-to-prevent-zombies}
 1 : (2.6 Linux) using the SA_NOCLDWAIT flag with sigaction(2)
 2 : just ignore the signal SIGCHLD
$

OK, first we try it with option 1; that is, using the SA_NOCLDWAIT flag:

$./zombies_clear_linux26 1 &
[1] 10239
parent: 10239
child: 10241
c $ cccccccccccccccccccccccc
*** Child dies! ***

Signaling - Part I Chapter 11

[402]

$ ps
 PID TTY TIME CMD
 9490 pts/1 00:00:00 bash
10239 pts/1 00:00:00 zombies_clear_l
10249 pts/1 00:00:00 ps
$

Importantly, checking with ps(1) reveals there is no zombie.
Now run it with option 2:

$./zombies_clear_linux26 2
parent: 10354
child: 10355
ccccccccccccccccccccccccc
^C
$

Notice that the *** Child dies! *** message (that we did get in the previous run)
does not appear, proving that we never enter the signal handler for SIGCHLD. Of
course not; we ignored the signal. While that does prevent the zombie, it also
prevents us from knowing that a child has died.

The SA_NOCLDSTOP flag
Regarding the SIGCHLD signal, there is an important point to realize: The default
behavior is that, whether a process dies or stops, or a stopped child continues
execution (typically via the SIGCONT signal being sent to it), the kernel posts the
SIGCHLD signal to its parent.

Perhaps this is useful. The parent is informed of all these events—the child's death,
stop-page, or continuation. On the other hand, perhaps we do not want to be spoofed
into thinking that our child process has died, when in reality it has just been stopped
(or continued).

For such cases, use the SA_NOCLDSTOP flag; it literally means no SIGCHLD on child
stop (or resume). Now you will only get the SIGCHLD upon child death.

Interrupted system calls and how to fix them with
the SA_RESTART
Traditional (older) Unix OSes suffered from an issue regarding the handling of
signals while processing blocking system calls.

Signaling - Part I Chapter 11

[403]

Blocking APIs

An API is said to be blocking when, on issuing the API, the calling
process (or thread) is put into a sleep state. Why is this? This is
because the underlying OS or device driver understands that the
event that the caller needs to wait upon has not yet occurred; thus, it
must wait for it. Once the event (or condition) arises, the OS or
driver wakes up the process; the process now continues to execute
its code path.

Examples of blocking APIs are common: read, write, select,
wait (and its variants), accept, and so on.

Take a moment to visualize this scenario:

A process traps a signal (say, SIGCHLD).
The process, at some later point, issues a blocking system call (say, the
accept(2) system call).
While it's in the sleep state, the signal is delivered to it.

The following pseudo code illustrates the same:

[...]
sigaction(SIGCHLD, &sigact, 0);
[...]
sd = accept(<...>);
[...]

By the way, the accept(2) system call is how a network server
process blocks (waits) upon a client connecting to it.

What should happen, now that the signal is delivered? The correct behavior is this:
the process should wake up, handle the signal (run the code of its signal handler),
and go to sleep once again, continuing to block upon the event it was waiting upon.

On older Unixes (your author has come across this on an old SunOS 4.x), the signal is
delivered, the signal handler code runs, but after that the blocking system call fails,
returning -1. The errno variable is set to EINTR , which translates to an
interrupted system call.

Signaling - Part I Chapter 11

[404]

This is considered a bug, of course. The poor Unix application developer had to resort
to some temporary fixes, often resorting to wrapping each and every system call
(foo in this example) in a loop, like so:

while ((foo() == -1) && (errno == EINTR));

This is not easily maintainable.

The POSIX committee subsequently fixed this, requiring an implementation to
provide a signal flag SA_RESTART. When this flag is used, the kernel will auto-restart
any blocking system calls that happen to get interrupted by a signal or signals.

So, just use the useful SA_RESTART flag within your sigaction(2) when registering
your signal handler(s), and this issue will disappear.

In general, using the SA_RESTART flag when programming
the sigaction(2) would be a good idea. Not always, though; the
Chapter 13, Timers, shows us use cases in which we deliberately
keep away from this flag.

The once only SA_RESETHAND flag
The SA_RESETHAND signal flag is a bit peculiar. On older Unix platforms, there
existed a bug that went like this: a signal is trapped (via the signal(2) function), the
signal is dispatched, and then the process handles the signal. But, immediately on
entering the signal handler, the kernel now resets the signal action to the original OS
default handling code. So, the second time the signal arrives, the default handler code
runs, often killing the process in the bargain. (Again, Unix developers sometimes had
to resort to some bad racy code to try to fix this).

Thus, the signal would effectively be delivered only once. On today's modern Linux
systems, a signal handler remains as it is; it is not reset by default to the original
handler. Unless, of course, you want this once-only behavior, in this case, use
the SA_RESETHAND flag (you would imagine that it's not terribly popular). Also,
SA_ONESHOT is an older deprecated name for the same flag.

Signaling - Part I Chapter 11

[405]

To defer or not? Working with SA_NODEFER
Lets recall how signals are handled by default:

A process traps a signal n.
Signal n is delivered to the process (either by another process or the OS).
The signal handler is dispatched; that is, it runs in response to the signal.

Signal n is now auto-masked; that is, blocked from delivery
to the process.
Signal handling is completed.
Signal n is now auto-unmasked, that is, enabled for delivery
to the process.

This is reasonable: while handling a particular signal, that signal is masked. This is
the default behavior.

However, what if you are writing, say, an embedded real-time application, where the
signal delivery implies some real-world event has occurred and the
application must respond to this immediately (as soon as possible). In cases such as
this, we would perhaps want to disable the auto-masking of signals, thus allowing the
signal handler to be reentered the moment it arrives. Precisely this can be achieved by
using the SA_NODEFER signal flag.

The English word defer means to delay or postpone; to put off until
later.

This is the default behavior, which you can change when the flag is specified.

Signal behavior when masked
To understand this better, let's take a fictional example: say we trap a signal n, and
the execution time for our signal handler for signal n is 55 ms (milliseconds). Also,
visualize a scenario in which, via a timer (for a while at least), signal n is delivered to
the process continually at 10-ms intervals. Now let's examine what would happen in
the default case and the case in which we use the SA_NODEFER flag.

Signaling - Part I Chapter 11

[406]

Case 1 : Default : SA_NODEFER bit cleared
Here, we are not using the SA_NODEFER signal flag. So, when the first instance of
signal n arrives, our process jumps into the signal-handling code (which will take 55
ms to complete). However, the second signal will arrive just 10 ms into the signal
handling code. But, hang on, it's auto-masked! Hence, we will not process it. In fact, a
simple calculation will show that up to five instances of signal n will reach our
process in the 55-ms signal handling time frame:

Figure 3: Default behavior: SA_NODEFER bit cleared: no queue, one signal instance pending delivery, no real impact on stack

So, what exactly happens? Will these five signals be queued up for delivery once the
handler completes? Ah! This is an important point: standard or Unix signals are not
queued. However, the kernel does understand that one or more signals are pending
delivery to the process; hence, once signal handling is done, exactly one instance of
the pending signal is delivered (and the pending signal mask is subsequently
cleared).

Signaling - Part I Chapter 11

[407]

Thus, in our example, even though five signals were pending delivery, the signal
handler will get invoked only once. In other words, no signals were queued, but one
signal instance was served. This is how signalling works by default.

Figure 3 shows this situation: the dashed signal arrows represent signals that were
delivered after entering the signal handler; hence, just one instance is kept pending.
Notice the process stack: the signal instance #1 of signal n (obviously) gets a call frame
on the stack when the signal handler is invoked, nothing more.

Question: What if the situation is as shown, but another signal, signal m, is delivered?

Answer: If signal m has been caught and is currently unmasked, it will be processed
immediately; in other words, it will preempt everything, and its handler will run. Of
course, the context is saved by the OS such that whatever got preempted can be later
continued once context is restored. This has us conclude the following:

Signals are peers; they have no priority associated with them.

For standard signals, if several instances of the same integer value are
delivered, and that signal is currently masked (blocked), then only one
instance is kept pending; there is no queuing.

Case 2 : SA_NODEFER bit set
Now let's reconsider the very same scenario, only this time we use the SA_NODEFER
signal flag. So, when the first instance of signal n arrives, our process jumps into the
signal-handling code (which will take 55 ms to complete). As before, the second
signal will arrive just 10 ms into the signal-handling code, but hang on, this time it is
not masked; it is not deferred. Thus, we will reenter the signal handler function
immediately. Then, 20 ms later (after the signal handler was first entered by signal n
instance #1), the third signal instance arrives. Again, we will reenter the signal
handler function. Yes, this will happen five times.

Signaling - Part I Chapter 11

[408]

Figure 4 shows us this scenario:

Figure 4: SA_NODEFER bit set: no queue; all signal instances processed upon delivery, stack intensive

This looks good, but please realize the following:

The signal handler code itself must be written to be reentrant-safe (no
global or static variable usage; only call async-signal safe functions within
it), as it is being continually reentered in this scenario.
Stack usage: every time the signal handler is reentered, do realize that an
additional call frame has been allocated (pushed) on to the process stack.

The second point bears thinking about: what if so many signals arrive (while
handling previous invocations) that we overload and, indeed, overflow the stack?
Well, disaster. Stack overflow is a bad bug; no exception handling is practically
possible (we cannot, with any degree of confidence, catch or trap into a stack
overflow issue).

Signaling - Part I Chapter 11

[409]

A interesting code example ch11/defer_or_not.c follows to demonstrate both of
these cases:

For readability, only key parts of the code are displayed; to view the
complete source code, build and run it; the entire tree is available for
cloning from the book's GitHub repo here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux

static volatile sig_atomic_t s=0, t=0;
[...]
int main(int argc, char **argv)
{
 int flags=0;
 struct sigaction act;
[...]
 flags = SA_RESTART;
 if (atoi(argv[1]) == 2) {
 flags |= SA_NODEFER;
 printf("Running with the SA_NODEFER signal flag Set\n");
 } else {
 printf("Running with the SA_NODEFER signal flag Cleared
[default]\n");
 }

 memset(&act, 0, sizeof(act));
 act.sa_handler = sighdlr;
 act.sa_flags = flags;
 if (sigaction(SIGUSR1, &act, 0) == -1)
 FATAL("sigaction failed\n");
 fprintf(stderr, "\nProcess awaiting signals ...\n");

 while (1)
 (void)pause();
 exit(EXIT_SUCCESS);
}

Here is the signal handler function:

/*
 * Strictly speaking, should not use fprintf here as it's not
 * async-signal safe; indeed, it sometimes does not work well!
 */
static void sighdlr(int signum)
{
 int saved;
 fprintf(stderr, "\nsighdlr: signal %d,", signum);
 switch (signum) {

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Signaling - Part I Chapter 11

[410]

 case SIGUSR1:
 s ++; t ++;
 if (s >= MAX)
 s = 1;
 saved = s;
 fprintf(stderr, " s=%d ; total=%d; stack %p :", s, t, stack());
 DELAY_LOOP(saved+48, 5); /* +48 to get the equivalent ASCII value
*/
 fprintf(stderr, "*");
 break;
 default:;
 }
}

We deliberately let the signal-handling code take a fairly long time (via our use of the
DELAY_LOOP macro) so that we can simulate the case in which the same signal is
delivered multiple times while it is being handled. In a real-world application, always
strive to keep your signal handling as brief as is possible.

The inline-assembly stack() function is an interesting way to get a register's value.
Read the following comment to see how it works:

/*
 * stack(): return the current value of the stack pointer register.
 * The trick/hack: on x86 CPU's, the ABI tells us that the return
 * value is always in the accumulator (EAX/RAX); so we just initialize
 * it to the stack pointer (using inline assembly)!
 */
void *stack(void)
{
 if (__WORDSIZE == 32) {
 __asm__("movl %esp, %eax");
 } else if (__WORDSIZE == 64) {
 __asm__("movq %rsp, %rax");
 }
/* Accumulator holds the return value */
}

The processor ABI - Application Binary Interface—documentation is
an important area for the serious systems developer to be
conversant with; check out more on this in the Further
reading section on the GitHub repository.

Signaling - Part I Chapter 11

[411]

To properly test this application, we write a small shell script bombard_sig.sh,
which literally bombards the given process with the (same) signal (we use SIGUSR1
here). The user is expected to pass the process PID and the number of signal instances
to send as parameters; if the second parameter is given as -1, the script continually
bombards the process. Here is the key code of the script:

SIG=SIGUSR1
[...]
NUMSIGS=$2
n=1
if [${NUMSIGS} -eq -1] ; then
 echo "Sending signal ${SIG} continually to process ${1} ..."
 while [true] ; do
 kill -${SIG} $1
 sleep 10e-03 # 10 ms
 done
else
 echo "Sending ${NUMSIGS} instances of signal ${SIG} to process ${1}
..."
 while [${n} -le ${NUMSIGS}] ; do
 kill -${SIG} $1
 sleep 10e-03 # 10 ms
 let n=n+1
 done
fi

Running of case 1 – SA_NODEFER bit cleared [default]
Next, we execute the test case wherein the SA_NODEFER flag is cleared; this is the
default behavior:

$./defer_or_not
Usage: ./defer_or_not {option}
option=1 : don't use (clear) SA_NODEFER flag (default sigaction style)
option=2 : use (set) SA_NODEFER flag (will process signal immd)
$./defer_or_not 1
PID 3016: running with the SA_NODEFER signal flag Cleared [default]
Process awaiting signals ...

Now, in another terminal window, we run the shell script:

$./bombard_sig.sh $(pgrep defer_or_not) 12

Signaling - Part I Chapter 11

[412]

The pgrep figures out the PID of the defer_or_not process:
useful! Just ensure the following:
(a) Only one instance of the process you are sending signals to is
alive, or pgrep returns multiple PIDs and the script fails.
(b) The name passed to pgrep is 15 characters or less.

As soon as the script runs, firing off (12) signals to the process, this output appears:

sighdlr: signal 10, s=1 ; total=1; stack 0x7ffc8d021a70 :11111*
sighdlr: signal 10, s=2 ; total=2; stack 0x7ffc8d021a70 :22222*

Studying the preceding output, we notice as follows:

SIGUSR1 is caught and its signal handler runs; it emits a stream of numbers
(incremented on each signal instance).

To do so correctly, we use a couple of volatile
sig_atomic_t globals (one for the value to print in the
DELAY_LOOP macro and one to keep track of the total
number of signals delivered to the process).

The asterisk character * at the end of the digits implies that, by the time
you see it, the signal handler has completed execution.
Though 12 instances of the SIGUSR1 signal were delivered, the process was
handling the first signal instance when the remaining 11 signals arrived;
hence, only one was kept pending and processed after the handler
completed. Of course, on different systems, it can always happen that you
see more than one signal instance being handled.
Finally, notice that we print the stack pointer value at every signal handler
invocation; it's a user-space virtual address, of course (recall our
discussions in Chapter 2, Virtual Memory); more importantly, it's identical,
implying that the very same stack frame was reused for the signal handler
function (this often happens).

Running of case 2 – SA_NODEFER bit set
Next, we execute the test case, wherein the SA_NODEFER flag is set (first ensure you
have killed off any old instances of the defer_or_not process):

$./defer_or_not 2
PID 3215: running with the SA_NODEFER signal flag Set
Process awaiting signals ...

Signaling - Part I Chapter 11

[413]

Now, in another Terminal window, we run the shell script:

$./bombard_sig.sh $(pgrep defer_or_not) 12

As soon as the script runs, firing off (12) signals to the process, the output is as
follows:

sighdlr: signal 10, s=1 ; total=1; stack 0x7ffe9e17a0b0 :
sighdlr: signal 10, s=2 ; total=2; stack 0x7ffe9e1799b0 :2
sighdlr: signal 10, s=3 ; total=3; stack 0x7ffe9e1792b0 :3
sighdlr: signal 10, s=4 ; total=4; stack 0x7ffe9e178bb0 :4
sighdlr: signal 10, s=5 ; total=5; stack 0x7ffe9e1784b0 :5
sighdlr: signal 10, s=6 ; total=6; stack 0x7ffe9e177db0 :6
sighdlr: signal 10, s=7 ; total=7; stack 0x7ffe9e1776b0 :7
sighdlr: signal 10, s=8 ; total=8; stack 0x7ffe9e176fb0 :8
sighdlr: signal 10, s=9 ; total=9; stack 0x7ffe9e1768b0 :9
sighdlr: signal 10, s=1 ; total=10; stack 0x7ffe9e1761b0 :1
sighdlr: signal 10, s=2 ; total=11; stack 0x7ffe9e175ab0
:22222*1111*9999*8888*7777*6666*5555*4444*3333*2222*11111*
sighdlr: signal 10, s=3 ; total=12; stack 0x7ffe9e17adb0 :33333*

This time, notice these things:

SIGUSR1 is caught and its signal handler runs; it emits a stream of numbers
(incremented on each signal instance).

To do so correctly, we use a volatile
sig_atomic_t global (one for the value to print in
the DELAY_LOOP and one to keep track of the total number of
signals delivered to the process).

The asterisk character *at the end of the digits implies that, by the time you
see it, the signal handler has completed execution; notice that this time, the
* does not appear until much later.
Twelve instances of the signal SIGUSR1 are delivered one after the other:
this time, each instance preempts the previous one (setting up a new call
frame on the process stack; notice the unique stack pointer addresses).
Notice how, after all signal instances have been handled, control is restored
to the original context; we literally can see the stack unwind.
Finally, look carefully at the stack pointer values; they are
progressively decreasing. This, of course, is because on the x86[_64] CPU
(as is the case on most modern CPUs), a downward-growing stack is the
way it works.

Do try out the program for yourself and see. It is interesting and powerful, but,
remember, this is at the cost of being very stack intensive!

Signaling - Part I Chapter 11

[414]

How expensive is it (in terms of stack memory usage)? We can actually calculate the
size of each stack (call) frame; take any two differing instances and subtract the lower
from the higher. For example, let's take the preceding case s=6 and s=5 : s=5:
0x7ffe9e1784b0 s=6: 0x7ffe9e177db0

So, call frame size = 0x7ffe9e1784b0 - 0x7ffe9e177db0 = 0x700 = 1792
bytes.

Here, for this particular application use case, each signal-handling call frame takes up
to 1,792 bytes of memory.

Let's consider a worst-case scenario now: With an embedded real-time application,
what if we receive, say, 5,000 signals very rapidly, while a previous instance is
running (and of course the SA_NODEFER flag is set): We shall then end up creating
5,000 additional call frames on the process stack, which will cost approximately 5,000
x 1,792 = 8,960,000 = ~ 8.5 MB!

Why not actually test this case? (The value of being empirical - trying things out
rather than just assuming them, is critical. See Chapter 19, Troubleshooting and Best
Practices, as well). We do so as follows:

$./defer_or_not 2
PID 7815: running with the SA_NODEFER signal flag Set
Process awaiting signals ...

In another Terminal window, run the bombard_sig.sh script, asking it to generate
5,000 signal instances. Refer to the following command:

$./bombard_sig.sh $(pgrep defer_or_not) 5000
Sending 5000 instances of signal SIGUSR1 to process 7815 ...

This is the output in the first Terminal window:

<...>
sighdlr: signal 10, s=1 ; total=1; stack 0x7ffe519b3130 :1
sighdlr: signal 10, s=2 ; total=2; stack 0x7ffe519b2a30 :2
sighdlr: signal 10, s=3 ; total=3; stack 0x7ffe519b2330 :3
sighdlr: signal 10, s=4 ; total=4; stack 0x7ffe519b1c30 :4
sighdlr: signal 10, s=5 ; total=5; stack 0x7ffe519b1530 :5
sighdlr: signal 10, s=6 ; total=6; stack 0x7ffe519b0e30 :6
sighdlr: signal 10, s=7 ; total=7; stack 0x7ffe519b0730 :7
sighdlr: signal 10, s=8 ; total=8; stack 0x7ffe519b0030 :8
sighdlr: signal 10, s=9 ; total=9; stack 0x7ffe519af930 :9
sighdlr: signal 10, s=1 ; total=10; stack 0x7ffe519af230 :1
sighdlr: signal 10, s=2 ; total=11; stack 0x7ffe519aeb30 :2

Signaling - Part I Chapter 11

[415]

--snip--

sighdlr: signal 10, s=8 ; total=2933; stack 0x7ffe513a2d30 :8
sighdlr: signal 10, s=9 ; total=2934; stack 0x7ffe513a2630 :9
sighdlr: signal 10, s=1 ; total=2935; stack 0x7ffe513a1f30 :1
sighdlr: signal 10, s=2 ; total=2936; stack 0x7ffe513a1830 :2
sighdlr: signal 10, s=3 ; total=2937; stack 0x7ffe513a1130
:Segmentation fault
$

It crashes, of course, when it runs out of stack space.(Again, the results may vary on
different systems; if you do not experience a crash, via stack overflow, with these
numbers, try increasing the number of signals sent via the script and see...).

As we learned in Chapter 3, Resource Limits, the typical process stack resource limit is
8 MB; thus, here we are in real danger of overflowing the stack, which will result in a
fatal and sudden crash, of course. So, be careful! If you intend to use the SA_NODEFER
flag, take the trouble to stress test your application under heavy workloads and see if
more of the stack is being used than is safe.

Using an alternate signal stack
Notice how our previous test case, sending 5,000 SIGUSR1 signals to
the defer_or_not application running with SA_NODEFER set, caused it to crash with
a segmentation fault (often abbreviated as segfault). The OS sent the signal SIGSEGV
(segmentation violation) to the process when it made an invalid memory reference; in
other words, a bug related to a memory access. Trapping the SIGSEGV could be very
valuable; we can gain information concerning how and why the application crashed
(in fact, we shall do precisely this in the next chapter).

However, think carefully: in the last test case (the 5,000 signals... one), the reason the
process crashed is that its stack overflowed. Thus, the OS delivered the signal
SIGSEGV; we want to trap this signal and handle it. But there's no space on the stack,
so how can the signal handler function itself get invoked? This is a problem.

An interesting solution exists: we can allocate (virtual) memory space for, and set up
a separate alternate stack to be used for signal handling only. How? Via
the sigaltstack(2) system call. It's used for these kind of circumstances: you need
to handle a SIGSEGV, but you're out of stack space. Think about our previous real-
time high-volume signal-handling application: we could perhaps redesign it such that
we allocate a lot more space for a separate signal stack, so that it works in practice.

Signaling - Part I Chapter 11

[416]

Implementation to handle high-volume signals with an alternate signal
stack
Here's an attempt at precisely that: the code for ch11/altstack.c and a run-time
test. Also, we have added a neat feature (to the previous version: the defer_or_not
program): sending the process SIGUSR2 signal will have it print out the first and the
most recent stack pointer address. It will also calculate and display the delta—in
effect, the amount of stack memory used so far by the application.

Changes from ch11/defer_or_not.c:

We also trap the signals.
SIGUSR2: to display the first and the most-recent stack
pointer addresses and the delta between them.
SIGSEGV : this is important in real-world applications.
Trapping the segfault allows us to take control if the
process crashes (here, probably due to stack overflow here)
and perhaps display (or in real apps, write to a log) relevant
information, perform cleanup, and then call abort(3) to
exit. Realize that, after all, we must exit: the process is in
an undefined state once this signal arrives from the OS. (Note
that more detail on handling the SIGSEGV is covered in the
next chapter).

To avoid too much noise in the output, we replace the DELAY_LOOP macro
with a silent version of the same.

For readability, only key parts of the code are displayed; to view the
complete source code, build, and then run it, the entire tree is
available for cloning from GitHub here: https:/ / github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

In ch11/altstack.c:main():

<...>
altstacksz = atoi(argv[1])*1024;
setup_altsigstack(altstacksz);
<...>

The setup_altsigstack() functions code is as follows :

static void setup_altsigstack(size_t stack_sz)
{
 stack_t ss;

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Signaling - Part I Chapter 11

[417]

 printf("Alt signal stack size = %zu\n", stack_sz);
 ss.ss_sp = malloc(stack_sz);
 if (!ss.ss_sp)
 FATAL("malloc(%zu) for alt sig stack failed\n", stack_sz);
 ss.ss_size = stack_sz;
 ss.ss_flags = 0;
 if (sigaltstack(&ss, NULL) == -1)
 FATAL("sigaltstack for size %zu failed!\n", stack_sz);
}

The signal handling code is as follows:

static volatile sig_atomic_t s=0, t=0;
static volatile unsigned long stk_start=0, stk=0;

static void sighdlr(int signum)
{
 if (t == 0)
 stk_start = (unsigned long)stack();
 switch (signum) {
 case SIGUSR1:
 stk = (unsigned long)stack();
 s ++; t ++;
 if (s >= MAX)
 s = 1;
 fprintf(stderr, " s=%d ; total=%d; stack %p\n", s, t,
stack());
 /* Spend some time inside the signal handler ... */
 DELAY_LOOP_SILENT(5);
 break;
 case SIGUSR2:
 fprintf(stderr, "*** signal %d:: stack@: t0=%lx last=%lx :
delta=%ld ***\n", signum, stk_start, stk, (stk_start-stk));
 break;
 case SIGSEGV:
 fprintf(stderr, "*** signal %d:: stack@: t0=%lx last=%lx :
 delta=%ld ***\n", signum, stk_start, stk, (stk_start-stk));
 abort();
 }
}

Let's perform some tests and run them considering the following cases.

Signaling - Part I Chapter 11

[418]

Case 1 – very small (100 KB) alternate signal stack
We deliberately allocate a very small amount of space for the alternate signal
stack—just 100 kilobytes. Needless to say, it overflows quickly and segfaults; our
handler for SIGSEGV runs, printing out some stats:

$./altstack 100
Alt signal stack size = 102400
Running: signal SIGUSR1 flags: SA_NODEFER | SA_ONSTACK | SA_RESTART
Process awaiting signals ...

In another Terminal window, run the shell script:

$./bombard_sig.sh $(pgrep altstack) 120
Sending 120 instances of signal SIGUSR1 to process 12811 ...

Now, the output in the original window:

<...>
 s=1 ; total=1; stack 0xa20ff0
 s=2 ; total=2; stack 0xa208f0
 s=3 ; total=3; stack 0xa201f0

--snip--

 s=1 ; total=49; stack 0xa0bff0
 s=2 ; total=50; stack 0xa0b8f0
 s=3 ; total=51; stack 0xa0b1f0
*** signal 11:: stack@: t0=a20ff0 last=a0aaf0 : delta=91392 ***
Aborted
$

As can be seen, according to our metrics, the total alternate signal stack usage was
91,392 bytes, close to 100 KB, at the time it was overflowed.

The shell script terminates with the expected:

<...>
./bombard_sig.sh: line 30: kill: (12811) - No such process
bombard_sig.sh: kill failed, loop count=53
$

Signaling - Part I Chapter 11

[419]

Case 2 : A large (16 MB) alternate signal stack
This time, we deliberately allocate a generous amount of space for the alternate signal
stack—16 megabytes. It can now handle a few thousand continuous signals. But, of
course, at some point it will also overflow:

$./altstack 16384
Alt signal stack size = 16777216
Running: signal SIGUSR1 flags: SA_NODEFER | SA_ONSTACK | SA_RESTART
Process awaiting signals ...

In another Terminal window, run the shell script:

$./bombard_sig.sh $(pgrep altstack) 12000
Sending 12000 instances of signal SIGUSR1 to process 13325 ...

Now the output in the original window:

<...>
 s=1 ; total=1; stack 0x7fd7339239b0
 s=2 ; total=2; stack 0x7fd7339232b0
 s=3 ; total=3; stack 0x7fd733922bb0

--snip--

 s=2 ; total=9354; stack 0x7fd732927ab0
 s=3 ; total=9355; stack 0x7fd7329273b0
*** signal 11:: stack@: t0=7fd7339239b0 last=7fd732926cb0 :
delta=16764160 ***
Aborted
$

The shell script terminates with the expected:

./bombard_sig.sh: line 30: kill: (13325) - No such process
bombard_sig.sh: kill failed, loop count=9357
$

This time, it managed to process around nine thousand signals before it ran out of
stack. The total alternate signal stack usage was a huge 16,764,160 bytes, or close to 16
MB, at the time it was overflowed.

Signaling - Part I Chapter 11

[420]

Different approaches to handling signals at high
volume
In conclusion, if you have a scenario in which a high volume of multiple signals of the
same type (as well as other signals) are delivered at a rapid pace to the process, we
run the risk of losing (or dropping) signals if we use the usual methods. As we have
seen, we can successfully handle all signals in several ways, each with their own
approaches to signal-handling at high volume—pros and cons as shown in the
following table:

Method Pros Cons/Limitations
Use sigfillset(3) just prior to
calling sigaction(2) to ensure that
while the signal is being handled, all
other signals are blocked.

Simple and
straightforward
approach.

Can lead to significant
(unacceptable) delays in
handling and/or dropping of
signals.

Setting the SA_NODEFER signal flag
and handling all signals as they
arrive.

Simple and
straightforward
approach.

On load, heavy stack usage,
danger of stack overflow.

Use an alternate signal stack, set
the SA_NODEFER signal flag, and handle
all signals as they arrive.

Can specify alternate
stack size as required.

More work to setup; must
carefully test under load to
determine (max) stack size to
use.

Use real-time signals
(covered in the following chapter).

The OS queues pending
signals automatically,
low stack usage, signal
prioritization possible.

System-wide limit on the
maximum number that can be
queued (can be tuned as
root).

Summary
In this chapter, the reader has initially been introduced to the notion of signalling on
the Linux OS, what signals are, why they are useful, and, then, in a lot of detail, how
to effectively handle signals within your application.

Of course, there being even more to it, the following chapter continues this important
discussion. See you there.

12
Signaling - Part II

As mentioned in the previous chapter, signals are a crucial mechanism for the Linux
system developer to understand and exploit. The previous chapter covered several
areas: an introduction, why signaling is useful to the systems developer, and, most
importantly, how exactly the developer is to handle and thus exploit the signaling
mechanism.

This chapter continues this exploration. Here, we will drill down into the inner details
of process crash handling with signaling, how to recognize and avoid common issues
when dealing with signals, working with real-time signals, sending signals, and
finally, alternative means of performing signal handling.

In this chapter, the reader will learn the following:

Gracefully handling process crashes, and collecting valuable diagnostics at
that point
Handling common gotchas to do with signaling—errno races, the correct
way to sleep (yes, you read that right!)
Handling powerful real-time signals
Sending signals to other processes, and performing IPC via signals
Alternative signal-handling techniques

Signaling - Part II Chapter 12

[422]

Gracefully handling process crashes
A bug in the application that caused a crash at runtime? My God, how is this
possible?

Unfortunately, to the well-heeled software veteran, though, this is not a big surprise.
Bugs exist; they can hide really well, for years, sometimes; one day, they come out
and—bang!—the process crashes.

Here, our intention is not to discuss debugging techniques or tools (let's save that for
another book perhaps, shall we?); instead, it's this key point: if our application
process does crash, can we do something? Certainly: in the previous chapter, we have
learned in detail how we can trap signals. Why not design our application such that
we trap the typical fatal signals—the SIGBUS, SIGFPE, SIGILL, and SIGSEGV—and,
in their signal handler(s), perform useful tasks such as these:

Perform critical application cleanup—for example, free up memory
regions, flush and close open files, and so on
Write relevant details to a log file (the signal that caused the crash, the
signal's origin, reason, CPU register values, and so on)
Inform the end user that, hey, too bad, we crashed
Kindly allow us to collect crash details, and we'll do better next time, we
promise!

This not only gives us valuable information that can help you debug the root cause of
the crash, but also has the application die gracefully.

Detailing information with the SA_SIGINFO
Let's recall the very first member of the sigaction structure we saw in the
previous, Chapter 11, Signaling - Part I, The sigaction structure section; it's a function
pointer, and it specifies the signal handler:

struct sigaction
 {
 /* Signal handler. */
#ifdef __USE_POSIX199309
 union
 {
 /* Used if SA_SIGINFO is not set. */
 __sighandler_t sa_handler;
 /* Used if SA_SIGINFO is set. */

Signaling - Part II Chapter 12

[423]

 void (*sa_sigaction) (int, siginfo_t *, void *);
 }
 __sigaction_handler;
define sa_handler __sigaction_handler.sa_handler
define sa_sigaction __sigaction_handler.sa_sigaction
#else
 __sighandler_t sa_handler;
#endif

--snip--
 };

The preceding highlighted code highlights the fact that as it's in a union, the signal
handler can be either one of the following:

sa_handler : when the SA_SIGINFO flag is cleared
sa_sigaction : when the SA_SIGINFO flag is set

So far, we have used the sa_handler style prototype for the signal handler:

void (*sa_handler)(int);

It receives just one parameter: the integer value of the signal that occurred.

If you set the SA_SIGINFO flag (while issuing the sigaction(2) system call of
course), the signal handler function prototype now becomes this: void
(*sa_sigaction)(int, siginfo_t *, void *);

The parameters are as follows:

The integer value of the signal that occurred
A pointer to a structure of type siginfo_t (a typedef, obviously)
An internal-use-only (undocumented) pointer called the ucontext

The second parameter is where the power lies!

The siginfo_t structure
When you use the SA_SIGINFO signal flag and a trapped signal occurs, the kernel
populates a data structure: the siginfo_t structure.

Signaling - Part II Chapter 12

[424]

The siginfo_t structure definition (slightly simplified; there is some #if wrapping
around the first few members which we need not worry about here) is shown next(It's
in the header /usr/include/x86_64-linux-gnu/bits/types/siginfo_t.h on
Ubuntu and /usr/include/bits/types/siginfo_t.h on a Fedora box):

typedef struct {
 int si_signo; /* Signal number. */
 int si_code;
 int si_errno; /* If non-zero, an errno value associated with
 this signal, as defined in <errno.h>. */

 union
 {
 int _pad[__SI_PAD_SIZE];
 /* kill(). */
 struct
 {
 __pid_t si_pid; /* Sending process ID. */
 __uid_t si_uid; /* Real user ID of sending process. */
 } _kill;

 /* POSIX.1b timers. */
 struct
 {
 int si_tid; /* Timer ID. */
 int si_overrun; /* Overrun count. */
 __sigval_t si_sigval; /* Signal value. */
 } _timer;

 /* POSIX.1b signals. */
 struct
 {
 __pid_t si_pid; /* Sending process ID. */
 __uid_t si_uid; /* Real user ID of sending process. */
 __sigval_t si_sigval; /* Signal value. */
 } _rt;

 /* SIGCHLD. */
 struct
 {
 __pid_t si_pid; /* Which child. */
 __uid_t si_uid; /* Real user ID of sending process. */
 int si_status; /* Exit value or signal. */
 __SI_CLOCK_T si_utime;
 __SI_CLOCK_T si_stime;
 } _sigchld;

Signaling - Part II Chapter 12

[425]

 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS. */
 struct
 {
 void *si_addr; /* Faulting insn/memory ref. */
 __SI_SIGFAULT_ADDL
 short int si_addr_lsb; /* Valid LSB of the reported
address. */
 union
 {
 /* used when si_code=SEGV_BNDERR */
 struct
 {
 void *_lower;
 void *_upper;
 } _addr_bnd;
 /* used when si_code=SEGV_PKUERR */
 __uint32_t _pkey;
 } _bounds;
 } _sigfault;

 /* SIGPOLL. */
 struct
 {
 long int si_band; /* Band event for SIGPOLL. */
 int si_fd;
 } _sigpoll;

 /* SIGSYS. */
#if __SI_HAVE_SIGSYS
 struct
 {
 void *_call_addr; /* Calling user insn. */
 int _syscall; /* Triggering system call number. */
 unsigned int _arch; /* AUDIT_ARCH_* of syscall. */
 } _sigsys;
#endif
 } _sifields;
} siginfo_t ;

Signaling - Part II Chapter 12

[426]

The first three members are integers:

si_signo : signal number—the signal that was delivered to the process
si_code : signal origin; an enum; typical values are as follows:
 SI_QUEUE : Sent by sigqueue(3)
 SI_USER : Sent by kill(2)
 SI_KERNEL : Sent by kernel
 SI_SIGIO : Sent by queued SIGIO
 SI_ASYNCIO : Sent by AIO completion
 SI_MESGQ : Sent by real time message queue state change
 SI_TIMER : Sent by timer expiration
si_errno : (if non-zero) the errno value

Here's the really interesting part: the fourth member of the structure is a union
(_sifields) of seven structures. We understand that a union implies that any one
member will be instantiated at runtime: it will be one of the seven structures
depending on which signal is received!

Take a look at the union within the siginfo_t structure previously shown; the
comments within the union quite clearly point out which signal(s) will cause which
data structure to be instantiated at runtime.

For example, we see within the union that this structure will be populated when the
SIGCHLD signal is received (that is, when a child process dies, stops, or continues):

 /* SIGCHLD. */
 struct
 {
 __pid_t si_pid; /* Which child. */
 __uid_t si_uid; /* Real user ID of sending process. */
 int si_status; /* Exit value or signal. */
 __SI_CLOCK_T si_utime;
 __SI_CLOCK_T si_stime;
 } _sigchld;

The information is with respect to the child process; hence, we receive the PID and
real UID of the process that died (or was stopped or continued, unless
the SA_NOCLDWAIT flag was used, of course). Further, we receive the integer bitmask
si_status telling us how exactly the child died (and so on). Also, some audit
information, si_utime and si_stime, the time spent by the child process in user
and kernel space respectively.

Signaling - Part II Chapter 12

[427]

Recall from our detailed discussion in Chapter 10, Process Creation, The wait API -
Details section, that we could obtain the child termination status information via (any
of) the wait APIs. Well, here, we can see, it's simpler: use the SA_SIGINFO flag, trap
the SIGCHLD signal, and, in the handler function, just look up the relevant values
from the union!

The man page on sigaction(2) describes the siginfo_t structure
members in depth, providing detailed information. Do read through
it.

Getting system-level details when a process
crashes
A wealth of information can be gleaned from the kernel when a process dies via the
SIGSEGV: memory bugs or defects, a common case, as we have discussed in the
Chapters 4, Dynamic Memory Allocation, Chapter 5, Linux Memory Issues,
and Chapter 6, Debugging Tools for Memory Issues. (This section also applies to the
fatal signals SIGBUS, SIGILL, and SIGFPE. Incidentally, SIGFPE occurs not just upon
a divide-by-zero error but in any kind of arithmetic-related exception).

The man page on sigaction(2) reveals the following:

...
The following values can be placed in si_code for a SIGSEGV signal:

SEGV_MAPERR
 Address not mapped to object.
SEGV_ACCERR
 Invalid permissions for mapped object.
SEGV_BNDERR (since Linux 3.19)
 Failed address bound checks.
SEGV_PKUERR (since Linux 4.6)
 Access was denied by memory protection keys. See pkeys(7). The
 protection key which applied to this access is available via
si_pkey.
...

The SEGV_MAPERR means that the address the process is attempting to access (for
read, write, or execute) is invalid; there is either no Page Table Entry (PTE) entry
available for it, or it refuses to map to any valid address.

Signaling - Part II Chapter 12

[428]

The SEGV_ACCERR is easy to understand: the attempted access (read, write, or
execute) cannot be performed, as permission is lacking (for example, attempting to
write to a read-only memory page).

Peculiarly, the SEGV_BNDERR and SEGV_PKUERR macros fail to compile; we shall not
attempt to use them here.

The glibc library provides the helper routines psignal(3) and
psiginfo(3); passed an informational string, they print it,
appending a : and then the actual signal that occurred and
information on the cause of the signal being delivered and the
faulting address (looked up from the siginfo_t structure)
respectively. We use the psiginfo(3) in our example code as
follows.

Trapping and extracting information from a crash
Next, we will see a test program ch12/handle_segv.c, with deliberate bugs, to help
us understand the use cases possible. All this will result in the SIGSEGV signal being
generated by the OS. How the application developer handles this signal is important:
we demonstrate how you can use it to gather important details, such as the address of
the memory location upon whose access the crash took place and the value of all
registers at that point in time. These details often provide useful clues into the root
cause of the memory bug.

To help understand how we are constructing this program, run it without any
parameters:

$./handle_segv
Usage: ./handle_segv u|k r|w
u => user mode
k => kernel mode
 r => read attempt
 w => write attempt
$

As can be seen, we can thus perform four kinds of invalid memory accesses: in effect,
four bug cases:

Invalid user [u] mode read [r]
Invalid user [u] mode write [w]
Invalid kernel [k] mode read [r]
Invalid kernel [k] mode write [w]

Signaling - Part II Chapter 12

[429]

Some typedefs and macros we use are as follows:

typedef unsigned int u32;
typedef long unsigned int u64;

#define ADDR_FMT "%lx"
#if __x86_64__ /* 64-bit; __x86_64__ works for gcc */
 #define ADDR_TYPE u64
 static u64 invalid_uaddr = 0xdeadfaceL;
 static u64 invalid_kaddr = 0xffff0b9ffacedeadL;
#else
 #define ADDR_TYPE u32
 static u32 invalid_uaddr = 0xfacedeadL;
 static u32 invalid_kaddr = 0xdeadfaceL;
#endif

The main function is shown as follows:

int main(int argc, char **argv)
{
 struct sigaction act;
 if (argc != 3) {
 usage(argv[0]);
 exit(1);
 }

 memset(&act, 0, sizeof(act));
 act.sa_sigaction = myfault;
 act.sa_flags = SA_RESTART | SA_SIGINFO;
 sigemptyset(&act.sa_mask);
 if (sigaction(SIGSEGV, &act, 0) == -1)
 FATAL("sigaction SIGSEGV failed\n");

if ((tolower(argv[1][0]) == 'u') && tolower(argv[2][0] == 'r')) {
 ADDR_TYPE *uptr = (ADDR_TYPE *) invalid_uaddr;
 printf("Attempting to read contents of arbitrary usermode va uptr =
0x"
 ADDR_FMT ":\n", (ADDR_TYPE) uptr);
 printf("*uptr = 0x" ADDR_FMT "\n", *uptr); // just reading

 } else if ((tolower(argv[1][0]) == 'u') && tolower(argv[2][0] ==
'w')) {
 ADDR_TYPE *uptr = (ADDR_TYPE *) & main;
 printf
 ("Attempting to write into arbitrary usermode va uptr (&main
actually) = 0x" ADDR_FMT ":\n", (ADDR_TYPE) uptr);
 *uptr = 0x2A; // writing

Signaling - Part II Chapter 12

[430]

 } else if ((tolower(argv[1][0]) == 'k') && tolower(argv[2][0] ==
'r')) {
 ADDR_TYPE *kptr = (ADDR_TYPE *) invalid_kaddr;
 printf
 ("Attempting to read contents of arbitrary kernel va kptr = 0x"
ADDR_FMT ":\n", (ADDR_TYPE) kptr);
 printf("*kptr = 0x" ADDR_FMT "\n", *kptr); // just reading

 } else if ((tolower(argv[1][0]) == 'k') && tolower(argv[2][0] ==
'w')) {
 ADDR_TYPE *kptr = (ADDR_TYPE *) invalid_kaddr;
 printf
 ("Attempting to write into arbitrary kernel va kptr = 0x" ADDR_FMT
":\n",
 (ADDR_TYPE) kptr);
 *kptr = 0x2A; // writing
 } else
 usage(argv[0]);
 exit(0);
}

va = virtual address.

Here is the key part: the signal handler for the SIGSEGV:

static void myfault(int signum, siginfo_t * si, void *ucontext)
{
 fprintf(stderr,
 "%s:\n------------------- FATAL signal ---------------------------
\n",
 APPNAME);
 fprintf(stderr," %s: received signal %d. errno=%d\n"
 " Cause/Origin: (si_code=%d): ",
 __func__, signum, si->si_errno, si->si_code);

 switch (si->si_code) {
 /* Possible values si_code can have for SIGSEGV */
 case SEGV_MAPERR:
 fprintf(stderr,"SEGV_MAPERR: address not mapped to object\n");
 break;
 case SEGV_ACCERR:
 fprintf(stderr,"SEGV_ACCERR: invalid permissions for mapped
object\n");
 break;
 /* SEGV_BNDERR and SEGV_PKUERR result in compile failure? */

 /* Other possibilities for si_code; here just to show them... */
 case SI_USER:

Signaling - Part II Chapter 12

[431]

 fprintf(stderr,"user\n");
 break;
 case SI_KERNEL:
 fprintf(stderr,"kernel\n");
 break;

--snip--

 default:
 fprintf(stderr,"-none-\n");
 }
<...>
 /*
 * Placeholders for real-world apps:
 * crashed_write_to_log();
 * crashed_perform_cleanup();
 * crashed_inform_enduser();
 *
 * Now have the kernel generate the core dump by:
 * Reset the SIGSEGV to (kernel) default, and,
 * Re-raise it!
 */
 signal(SIGSEGV, SIG_DFL);
 raise(SIGSEGV);
}

There is much to observe here:

We print out the signal number and origin value

We interpret the signal origin value (via the switch-case)

Particularly for SIGSEGV, the SEGV_MAPERR, and
SEGV_ACCERR

Here comes the interesting bit: the following code prints out the faulting instruction
or address! Not only that, we devise a means by which we can print out most of the
CPU registers as well via our dump_regs function. As mentioned earlier, we also
make use of the helper routine psiginfo(3) as follows:

fprintf(stderr," Faulting instr or address = 0x" ADDR_FMT "\n",
 (ADDR_TYPE) si->si_addr);
fprintf(stderr, "--- Register Dump [x86_64] ---\n");
dump_regs(ucontext);
fprintf(stderr,
 "--

Signaling - Part II Chapter 12

[432]

\n");
psiginfo(si, "psiginfo helper");
fprintf(stderr,
 "--
\n");

We then just keep some dummy stubs for the functionality you probably want in a
real-world application, when handling a fatal signal such as this (here, we do not
actually write any code, as it's of course very application-specific):

/*
 * Placeholders for real-world apps:
 * crashed_write_to_log();
 * crashed_perform_cleanup();
 * crashed_inform_enduser();
 */

Finally, calling abort(3) so that the process terminates (as it's now in an undefined
state and cannot continue) is one way to finish. However, think for a second: if
we abort() now, the process dies without the kernel getting a chance to generate a
core dump. (As mentioned, a core dump is essentially a snapshot of the process's
dynamic memory segments at the time of the crash; it's very useful for developers to
debug and determine the root cause of the crash). So, having the kernel generate a
core dump would indeed be useful. How can we arrange for this? Its quite simple
really: we need to do the following:

Reset the SIGSEGV signal's handler to the (kernel) default
Have the signal (re)raised on the process

This code fragment achieves just this:

[...]
 * Now have the kernel generate the core dump by:
 * Reset the SIGSEGV to glibc default, and,
 * Re-raise it!
 */
 signal(SIGSEGV, SIG_DFL);
 raise(SIGSEGV);

As it's a simple case, we just use the simpler signal(2) API to revert the signal's
action to the default. Then, again, we use the library API raise(3) to raise a given
signal on the calling process. (The error-checking code has been left out for easy
readability.)

Signaling - Part II Chapter 12

[433]

Register dumping
As mentioned, the dump_regs function prints out CPU register values; here are a few
things to note regarding this:

It's very CPU-specific (the example case shown as follows works only for
the x86_64 CPUs).
To actually gain access to the CPU registers, we make use of the
undocumented third parameter to the signal handler function (note: when
used with SA_SIGINFO), the so-called user context pointer. It is possible to
interpret it (as we demonstrate here), but, of course, as it's not officially
visible via the glibc system call (or other) interfaces, you cannot rely on this
functionality. Use with caution (and a lot of testing).

Having said that, let's check out the code:

/* arch - x86[_64] - specific! */
static inline void dump_regs(void *ucontext)
{
#define FMT "%016llx"
ucontext_t *uctx = (ucontext_t *)ucontext;

 fprintf(stderr,
 " RAX = 0x" FMT " RBX = 0x" FMT " RCX = 0x" FMT "\n"
 " RDX = 0x" FMT " RSI = 0x" FMT " RDI = 0x" FMT "\n"
 " RBP = 0x" FMT " R8 = 0x" FMT " R9 = 0x" FMT "\n"

 " R10 = 0x" FMT " R11 = 0x" FMT " R12 = 0x" FMT "\n"
 " R13 = 0x" FMT " R14 = 0x" FMT " R15 = 0x" FMT "\n"
 " RSP = 0x" FMT "\n"

 "\n RIP = 0x" FMT " EFLAGS = 0x" FMT "\n"
 " TRAP# = %02lld ERROR = %02lld\n"
 /* CR[0,1,3,4] unavailable */
 " CR2 = 0x" FMT "\n"
 , uctx->uc_mcontext.gregs[REG_RAX]
 , uctx->uc_mcontext.gregs[REG_RBX]
 , uctx->uc_mcontext.gregs[REG_RCX]
 , uctx->uc_mcontext.gregs[REG_RDX]
 , uctx->uc_mcontext.gregs[REG_RSI]
 , uctx->uc_mcontext.gregs[REG_RDI]
 , uctx->uc_mcontext.gregs[REG_RBP]
 , uctx->uc_mcontext.gregs[REG_R8]
 , uctx->uc_mcontext.gregs[REG_R9]
 , uctx->uc_mcontext.gregs[REG_R10]
 , uctx->uc_mcontext.gregs[REG_R11]
 , uctx->uc_mcontext.gregs[REG_R12]

Signaling - Part II Chapter 12

[434]

 , uctx->uc_mcontext.gregs[REG_R13]
 , uctx->uc_mcontext.gregs[REG_R14]
 , uctx->uc_mcontext.gregs[REG_R15]
 , uctx->uc_mcontext.gregs[REG_RSP]
 , uctx->uc_mcontext.gregs[REG_RIP]
 , uctx->uc_mcontext.gregs[REG_EFL]
 , uctx->uc_mcontext.gregs[REG_TRAPNO]
 , uctx->uc_mcontext.gregs[REG_ERR]
 , uctx->uc_mcontext.gregs[REG_CR2]
);
}

Now, let's run two of the test cases:

Test Case: Userspace, Invalid Read
$./handle_segv u r
Attempting to read contents of arbitrary usermode va uptr =
0xdeadface:
handle_segv:
------------------- FATAL signal ---------------------------
 myfault: received signal 11. errno=0
 Cause/Origin: (si_code=1): SEGV_MAPERR: address not mapped to object
 Faulting instr or address = 0xdeadface
 --- Register Dump [x86_64] ---
RAX = 0x00000000deadface RBX = 0x0000000000000000 RCX =
0x0000000000000000
RDX = 0x0000000000000000 RSI = 0x0000000001e7b260 RDI =
0x0000000000000000
RBP = 0x00007ffc8d842110 R8 = 0x0000000000000008 R9 =
0x0000000000000000
R10 = 0x0000000000000000 R11 = 0x0000000000000246 R12 =
0x0000000000400850
R13 = 0x00007ffc8d8421f0 R14 = 0x0000000000000000 R15 =
0x0000000000000000
RSP = 0x00007ffc8d842040
RIP = 0x0000000000400e84 EFLAGS = 0x0000000000010202
TRAP# = 14 ERROR = 04
CR2 = 0x00000000deadface
--
psiginfo helper: Segmentation fault (Address not mapped to object
[0xdeadface])
--
Segmentation fault (core dumped)
$

Signaling - Part II Chapter 12

[435]

Here are some things to note:

The origin value is SEGV_MAPERR: yes, the arbitrary userspace virtual
address we attempted to read (0xdeadface) is not present (or mapped),
hence the segfault!
The faulting address is revealed as the invalid arbitrary userspace virtual
address we attempted to read (0xdeadface):

An aside: an important value—the faulting instruction or
address—is actually the value saved in the x86's control
register 2 (CR2), as can be seen.
The TRAP number shows up as 14; trap 14 on an x86[_64] is
the Page Fault. The reality is: when the process attempted to
read the invalid virtual address (0xdeadface), the bad
access resulted in the x86[_64] MMU raising a bad page fault
exception, which in turn led to the OS fault handler code
running and killing the process via the SIGSEGV.

The CPU registers are dumped as well.

The curious reader will perhaps wonder what exactly each register
is used for. This is an area beyond this book's scope; nevertheless,
the reader can find useful information by seeking out the CPU
OEM's Application Binary Interface (ABI) documentation; among
many things, it specifies register usage for function calling, return,
parameter passing, and so on. Check out the Further reading section
on the GitHub repository for more on ABI docs.

The psiginfo(3) takes effect as well, printing out the cause of the signal
and the faulting address
The message Segmentation fault (core dumped) tells us that our
strategy worked: we reset the signal handling for the SIGSEGV to the
default one and re-raised the signal, causing the OS (kernel) to generate a
core dump. The resulting core file (generated on a Fedora 28 x86_64 box)
shows up as shown below:

$ ls -l corefile*
-rw-------. 1 kai kai 389120 Jun 24 14:23
'corefile:host=<hostname>:gPID=2413:gTID=2413:ruid=1000:sig=11:exe=<!<
path>!<to>!<executable>!ch13!handle_segv.2413'
$

Signaling - Part II Chapter 12

[436]

Here are a couple of points to mention:

The detailed analysis and interpretation of a core dump is beyond the
scope of this book. Using GDB to analyze a core dump is easy; a little
googling will yield results.
The name given to the core file varies; modern Fedora distribution set the
name to be very descriptive (as you can see); in reality, the core filename is
controlled via a kernel tunable in the proc filesystem. See the man page
on core(5) for details.

We run the kernel-space, invalid write test case for our handle_segv program as
follows:

Test Case: Kernel-space, Invalid Write
$./handle_segv k w
Attempting to write into arbitrary kernel va kptr =
0xffff0b9ffacedead:
handle_segv:
------------------- FATAL signal ---------------------------
 myfault: received signal 11. errno=0
 Cause/Origin: (si_code=128): kernel
 Faulting instr or address = 0x0
 --- Register Dump [x86_64] ---
RAX = 0xffff0b9ffacedead RBX = 0x0000000000000000 RCX =
0x0000000000000000
RDX = 0x0000000000000000 RSI = 0x00000000023be260 RDI =
0x0000000000000000
RBP = 0x00007ffcb5b5ff60 R8 = 0x0000000000000010 R9 =
0x0000000000000000
R10 = 0x0000000000000000 R11 = 0x0000000000000246 R12 =
0x0000000000400850
R13 = 0x00007ffcb5b60040 R14 = 0x0000000000000000 R15 =
0x0000000000000000
RSP = 0x00007ffcb5b5fe90

RIP = 0x0000000000400ffc EFLAGS = 0x0000000000010206
TRAP# = 13 ERROR = 00
CR2 = 0x0000000000000000
--
psiginfo helper: Segmentation fault (Signal sent by the kernel
[(nil)])
--
Segmentation fault (core dumped)
$

Signaling - Part II Chapter 12

[437]

Note that, this time, the trap value is 13; on the x86[_64] MMU, that's the General
Protection Fault (GPF). Again, this bad access resulted in the x86[_64] MMU raising a
GPF exception, which in turn led to the OS fault handler code running and killing the
process via the SIGSEGV. The trap being a GPF is a clue: we have violated a
protection rule; recall from Chapter 1, Linux System Architecture: a process (or thread)
running in a higher, more privileged level can always access memory at a lower
privilege level but not vice versa of course. Here, the process at ring three attempted
to access memory at ring zero; hence, the MMU raised the GPF exception and the OS
killed it (via the SIGSEGV).

This time, unfortunately, the CR2 value and thus the faulting address is 0x0 (in the
case where the crash occurs in kernel-space). However, we still get valuable details in
other registers (the instruction and stack pointer values, and so on, as we shall see
next).

Finding the crash location in source code
The RIP (Instruction Pointer; EIP on IA-32, PC on the ARM) is useful: using its value
and some utilities, we can pretty much pinpoint the location in code when the process
crashed. How? There are several ways; some of them are as follows:

Use the toolchain utility objdump (with the -d -S switches)
An easier way is to use gdb(1) (see the following)
With the addr2line(1) utility

With GDB:

Load up gdb(1) with the debug version (compiled with the -g switch) of the
program, and then use the list command as shown here:

$ gdb -q ./handle_segv_dbg
Reading symbols from ./handle_segv_dbg...done.
(gdb) list *0x0000000000400ffc
<< 0x0000000000400ffc is the RIP value >>
0x400ffc is in main (handle_segv.c:212).
207 } else if ((tolower(argv[1][0]) == 'k') && tolower(argv[2][0] ==
'w')) {
208 ADDR_TYPE *kptr = (ADDR_TYPE *) invalid_kaddr; // arbitrary kernel
virtual addr
209 printf
210 ("Attempting to write into arbitrary kernel va kptr = 0x" ADDR_FMT
":\n",
211 (ADDR_TYPE) kptr);
212 *kptr = 0x2A; // writing

Signaling - Part II Chapter 12

[438]

213 } else
214 usage(argv[0]);
215 exit(0);
216 }
(gdb)

The list * <address> command literally pinpoints the code that caused the crash,
reproduced here for clarity:

(gdb) l *0x0000000000400ffc
0x400ffc is in main (handle_segv.c:212).

Line 212 is as follows:

212: *kptr = 0x2A; // writing

This is exactly right.

With addr2line:

The addr2line(1) utility provides a similar feature; again, run it against the built-
for-debug (compiled with -g) version of the binary executable file via it's -e switch:

$ addr2line -e ./handle_segv_dbg 0x0000000000400ffc
<...>/handle_segv.c:212
$

Also, think about it: our previous ch12/altstack.c program can, and will, suffer a
segmentation fault when its alternate signal stack is overflowed; we leave it as an
exercise to the reader to write a SIGSEGV handler similar to the one shown here to
properly handle the case.

Finally, though, we have shown that handling the segfault, the
SIGSEGV, can be very beneficial to figuring out the cause of a crash;
the simple fact remains that once this signal is generated upon a
process, the process is considered to be in an undefined, in effect,
unstable, state. Thus, there is no guarantee that whatever work we
perform in its signal handler will actually go through as intended.
Thus, keeping the signal handling code to a minimum would be
recommended.

Signaling - Part II Chapter 12

[439]

Signaling – caveats and gotchas
Signals, being asynchronous events, can cause errors and bugs in subtle ways that are
not immediately apparent to the casual reviewer (or programmer, for that matter).
Some kinds of functionality or behavior are directly or indirectly affected by the
arrival of one or more signal; you need to be alert to possible subtle races and similar
conditions.

One important area in this that we have already covered is as follows: inside a signal
handler, you can only invoke functions that are documented as being (or have been
designed to be) async-signal safe. Other areas too deserve some contemplation; read
on.

Handling errno gracefully
A race with the uninitialized global integer errno can occur in programs using
system calls and signals.

What does errno do?
Remember the errno global; it's an uninitialized global integer in the
process's uninitialized data segment (process layout was covered in Chapter
2, Virtual Memory).

What is errno for? Whenever a system call fails, it returns -1 to userspace.
But why did it fail? Ah, the error diagnostic, the reason it failed, is returned to
userspace like this: glibc, in conjunction with the kernel, pokes the global errno with a
positive integer value. This value is actually an index into a two-dimensional array of
English error messages (which is NULL-terminated); it's called _sys_errlist. So,
looking up _sys_errlist[errno] reveals the English error message: the reason the
system call failed.

Instead of the developer performing all the work, convenience routines such
as perror(3), strerror(3), and error(3) are designed to emit error messages by
looking up _sys_errlist[errno]. Programmers very often use routines such as
this in the system call error- handling code (in fact, we do: check out our code for the
macros WARN and FATAL—they call the handle_err function, which in turn
invokes perror(3) as part of its processing).

Signaling - Part II Chapter 12

[440]

Here is a useful-to-look-up item—the list of all
possible errno values resides in the header
file /usr/include/asm-generic/errno-base.h.

The errno race
Consider this situation:

A process sets up a signal handler for several signals:1.
Let's say the signal handler for SIGUSR1 is
called handle_sigusr.

Now the process is running a part of its code, a function foo:2.
foo issues a system call, say the open(2)
The system call fails returning -1

errno gets set to the positive integer 13 reflecting
the error permission denied (errno macro
EACCES).

The system call's error-handling code calls perror(3) to emit
the English error message.

All this seems innocent enough, yes. However, now let's consider signals in the mix;
check out the following scenario:

<...>
foo issues a system call, say the open(2).
The system call fails returning -1.

errno gets set to the positive
integer 13 reflecting the error permission
denied (errno macro EACCES).

 The signal SIGUSR1 is delivered at this instant to the process.
Control is switched to the signal handler
routine, handle_sigusr.

The code here issues another system call,
say, stat(2).

Signaling - Part II Chapter 12

[441]

The stat(2) system call fails returning -1.
errno now gets set to the
positive integer 9 reflecting the
error bad file number (errno
macro EBADF).

The signal handler returns.

The system call's error-handling code calls perror(3) to emit the English
error message.

As can be seen, the value of errno gets overwritten from the value 13 to the value
9 because of the sequence of events. The result is that the application developer (along
with everyone else on the project) is now confounded by the weird error reporting
(the error bad file number is possibly reported twice!). Races—the bane of
programmers!

Fixing the errno race
The fix for the previous race is actually quite simple.

Whenever you have a signal handler with code within it that could possibly cause
the errno value to change, save errno upon function entry and restore it just before
returning from the handler.

Gain access to the errno variable simply by including its header file. Here is a quick
example code snippet of a signal handler that does this:

<...>
include <errno.h>
<...>

static void handle_sigusr(int signum)
{
 int myerrno = errno;
 <... do the handling ...>
 <... syscalls, etc ...>
 errno = myerror;
}

Signaling - Part II Chapter 12

[442]

Sleeping correctly
Yes, even sleeping requires sufficient knowledge to perform correctly!
Often, your process has to enter a sleep state. We have all probably learned to use
the sleep(3) API to do so:

#include <unistd.h>
unsigned int sleep(unsigned int seconds);

As a simple example, let's say that the process must work this way (pseudo code
follows):

<...>
func_a();
sleep(10);
func_b();
<...>

It's quite clear: the process must sleep for 10 seconds; the code shown should work. Is
there a problem?

Well, yes, signals: what if the process enters the sleep, but three seconds into the sleep
a signal arrives? The default behavior (meaning, unless signals are masked) is to
handle the signal, and you would imagine, go back to sleep for the remaining time
(seven seconds). But, no, that's not what happens: the sleep is aborted! The astute
reader might argue that it's possible to fix this behavior (a blocking system call
interrupted by signals) by using the SA_RESTART flag; indeed, it sounds reasonable,
but the reality is that even using the flag does not help (the sleep has to be manually
restarted).

Further, it's important to realize that the sleep(3) API documents that its return
value is the amount of time remaining to sleep; so unless sleep(3) returns 0, the
sleep is not done! The developer is actually expected to invoke sleep(3) in a loop,
until the return value is 0.

What does making a process (or thread) "go to sleep" really mean?
The key point is this: a process (or thread) that's asleep cannot
run on the CPU while in that state; it is not even a candidate for the
OS scheduler (technically, the transition from state
Running->sleeping is a dequeue from a run queue and an enqueue
on to a wait queue within the OS, and vice versa). More on this in
Chapter 17, CPU Scheduling on Linux.

Signaling - Part II Chapter 12

[443]

So, we conclude that just using a sleep(3) in the code is not that great an idea
because of the following:

The sleep, once interrupted by signal delivery, must be manually restarted.
The granularity of sleep(3) is very coarse: a second. (A second is a very,
very long time for a modern microprocessor! Many real-world applications
rely on at least millisecond-to-microsecond-level granularity.)

So, what is the solution?

The nanosleep system call
Linux provides a system call, nanosleep(2), that in theory can provide nanosecond-
level granularity, that is, a sleep of a single nanosecond. (Well, in practice, the
granularity will also depend on the resolution of the hardware timer chip on the
board.) This is the prototype of this API:

#include <time.h>
int nanosleep(const struct timespec *req, struct timespec *rem);

The system call has two parameters both are pointers to structure of data type struct
timespec; this structure definition is as follows:

struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
};

Obviously, this allows you to specify the sleep time in seconds and nanoseconds; the
first parameter req is the required time (s.ns), the second parameter rem is
the remaining time to sleep. See, the OS helps us out here: if the sleep is interrupted
by a signal (any signal that is non-fatal), the nanosleep system call fails
returning -1 , and errno is set to the value EINTR (Interrupted system call). Not only
that, the OS calculates and returns (into this second pointer, a value-result type of
parameter), the amount of time remaining to sleep accurate to the nanosecond. This
way, we detect the case, set req to rem, and manually reissue the nanosleep(2) to
have the sleep continue until it's fully done.

Signaling - Part II Chapter 12

[444]

To demonstrate, we show a small application next (source code:
ch12/sleeping_beauty.c); the user can invoke either the usual sleep(3) method
of sleeping, or use the highly superior nanosleep(2) API such that the sleep time is
accurate:

static void sig_handler(int signum)
{
 fprintf(stderr, "**Signal %d interruption!**\n", signum);
}

int main(int argc, char **argv)
{
 struct sigaction act;
 int nsec = 10, ret;
 struct timespec req, rem;

 if (argc == 1) {
 fprintf(stderr, "Usage: %s option=[0|1]\n"
 "0 : uses the sleep(3) function\n"
 "1 : uses the nanosleep(2) syscall\n", argv[0]);
 exit(EXIT_FAILURE);
 }
 /* setup signals: trap SIGINT and SIGQUIT */
 memset(&act, 0, sizeof(act));
 act.sa_handler = sig_handler;
 sigemptyset(&act.sa_mask);
 act.sa_flags = SA_RESTART;
 if (sigaction(SIGINT, &act, 0) || sigaction(SIGQUIT, &act, 0))
 FATAL("sigaction failure\n");

 if (atoi(argv[1]) == 0) { /* sleep */
 printf("sleep for %d s now...\n", nsec);
 ret = sleep(nsec);
 printf("sleep returned %u\n", ret);
 } else if (atoi(argv[1]) == 1) { /* nanosleep */
 req.tv_sec = nsec;
 req.tv_nsec = 0;
 while ((nanosleep(&req, &rem) == -1) && (errno == EINTR)) {
 printf("nanosleep interrupted: rem time: %07lu.%07lu\n",
 rem.tv_sec, rem.tv_nsec);
 req = rem;
 }
 }
 exit(EXIT_SUCCESS);
}

Signaling - Part II Chapter 12

[445]

Note the following from the previous code:

Passing 0 as the parameter has us invoke the usual sleep(3).
We deliberately code without using a loop here, as this is
how most programmers call sleep(3) (and thus we can see
the pitfalls).

Passing 1 as the parameter has us invoke the powerful nanosleep(2) API;
we initialize the required time to be 10 seconds (same as in the previous
case).

But, this time, we call the nanosleep(2) in a loop, checking
for the signal interruption case errno == EINTR, and if so,
We set req to rem and call it again!
(For fun, we print the time remaining s.ns):

$./sleeping_beauty
Usage: ./sleeping_beauty option=[0|1]
0 : uses the sleep(3) function
1 : uses the nanosleep(2) syscall
$

Let's try both cases: first, the usual sleep(3) method:

$./sleeping_beauty 0
sleep for 10 s now...
^C**Signal 2 interruption!**
sleep returned 7
$

A few seconds into the sleep, we press ^C; the signal arrives, but the sleep is aborted
(as shown, an additional seven seconds of the sleep remain, which the code here
simply ignores)!

Now for the good case: sleeping via the nanosleep(2):

$./sleeping_beauty 1
^C**Signal 2 interruption!**
nanosleep interrupted: rem time: 0000007.249192148
^**Signal 3 interruption!**
nanosleep interrupted: rem time: 0000006.301391001
^C**Signal 2 interruption!**
nanosleep interrupted: rem time: 0000004.993030983
^**Signal 3 interruption!**
nanosleep interrupted: rem time: 0000004.283608684
^C**Signal 2 interruption!**
nanosleep interrupted: rem time: 0000003.23244174

Signaling - Part II Chapter 12

[446]

^**Signal 3 interruption!**
nanosleep interrupted: rem time: 0000001.525725162
^C**Signal 2 interruption!**
nanosleep interrupted: rem time: 0000000.906662154
^**Signal 3 interruption!**
nanosleep interrupted: rem time: 0000000.192637791
$

This time, our dear sleeping_beauty runs (sleeps?) to completion even in the
presence of continuous interruption via multiple signals. You should notice, though,
this fact: there is going to be some overhead, yes. The only guarantee made by the OS
is that the sleep continues for at least as long as required, possibly a bit longer.

Note: although using the nanosleep(2) results in a highly superior implementation
to the usual sleep(3) API, the fact is that even the nanosleep is subject to (what
could become significant) time overruns when the code is within a loop and a
sufficiently large number of signals interrupts our loop many, many times (as could
occur in our previous example). In cases such as this, we can end
up oversleeping quite a bit. To fix this, the POSIX standard, and Linux, provide an
even better clock_nanosleep(2) system call: using it with a real-time clock and a
flag value of TIMER_ABSTIME takes care of the oversleeping issue. Also note that
though Linux's sleep(3) API is internally implemented via nanosleep(2), the
sleep semantics remain as described; it's the app developer's responsibility to call the
sleep code in a loop, checking for return value and the failure case.

Real-time signals
Recall the output of the kill -l (l for list) command; the platform's supported
signals are displayed—numeric integer and symbolic name, both. The first 31 signals
are the standard or Unix signals (seen in Chapter 11, Signaling - Part I, The standard or
Unix signals section); we have been working with them quite a bit now.

Signal numbers 34 to 64 all start with SIGRT—SIGRTMIN to SIGRTMAX—they are
called the real time signals:

$ kill -l |grep "SIGRT"
31)SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37)
SIGRTMIN+3
38)SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42)
SIGRTMIN+8
43)SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47)
SIGRTMIN+13
48)SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52)

Signaling - Part II Chapter 12

[447]

SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57)
SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62)
SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX
$

(The first one, SIGSYS seen here is not a real time signal; it shows up because it's in
the same line as the other SIGRT's and so grep(1) prints it.)

Differences from standard signals
So, how do the so-called real time signals differ from the regular standard signals; the
following table reveals this:

Characteristic Standard signals Real time signals
Numbering 1 - 31 1 34 - 64 2

Standard first
defined in POSIX.1-1990 (it's old)

POSIX 1003.1b : real time
Extensions
to POSIX (2001)

Meaning assigned

Individual signals have a
particular meaning (and
are named accordingly); the
exception is SIGUSR[1|2]

Individual RT signals
have no particular meaning; their
meaning is app-defined

Behavior when blocked and
multiple instances of same
signal continuously
delivered

Out of n instances of the same
signal, n-1 are lost; only 1 instance
is kept pending and delivered to
the target process when
unblocked

All instances of RT signals
are queued and delivered to the
target process by the OS when
unblocked (there is a system-wide
upper limit 3)

Signal priority The same: all standard signals
are peers

FCFS unless pending; if pending,
then signals delivered from lowest
to highest numbered realtime
signal 4

Inter Process
Communication (IPC)

Crude IPC; you can
use SIGUSR[1|2] to
communicate, but no data can be
passed

Better: via the sigqueue(3), a
single data item, an integer or
pointer value, can be sent to a peer
process (which can retrieve it)

Differences between standard and realtime signals

Signaling - Part II Chapter 12

[448]

1 Signal number 0? Does not exist, used to check for process existence (seen later).

2 An FAQ: whatever happened to realtime signal numbers 32 and 33? The answer:
they are reserved for use by the pthreads implementation, and thus unavailable to the
application developer.
3 The system-wide upper limit is a resource limit and can thus be queried or set via
the prlimit(1) utility (or the prlimit(2) system call):

$ prlimit |grep SIGPENDING
SIGPENDING max number of pending signals 63229 63229 signals
$

(Recall from Chapter 3, Resource Limits, that the first number is the soft limit, the
second is the hard limit).
4 RT signal priority: multiple instances of realtime signals are processed in exactly the
order they were delivered (in other words, First Come First Served (FCFC).
However, if these multiple real time signals are pending delivery to the process, that
is, they are currently blocked, then they are processed in priority order, rather non-
intuitively, SIGRTMIN being the highest priority signal and SIGRTMAX being the
lowest.

Real time signals and priority
The POSIX standard, and the Linux documentation, states that when multiple real
time signals of different types are pending delivery to a process (that is the process is
blocking them); then, at some point, when the process's signal mask
is unblocked (thereby allowing the signals to be delivered), the signals are indeed
delivered in priority order: lowest signal number to highest signal number.

Let's test this: we write a program that traps and blocks upon the delivery of three
real time signals: {SIGRTMAX-5, SIGRTMAX, SIGRTMIN+5}. (Have a look at the output
of kill -l; their integer values are {59, 64, 39} respectively.)

Importantly, our program will, at the time of sigaction(2), use
the sigfillset(3) convenience method to populate the signal mask member of
struct sigaction with all 1s, thereby ensuring that all signals are blocked (masked)
while the signal handler code is running.

Signaling - Part II Chapter 12

[449]

Consider the following:

The process (code: ch12/rtsigs_waiter.c) traps the RT signals
(with sigaction)
{SIGRTMAX-5, SIGRTMAX, SIGRTMIN+5} : integer values {59, 64, 39}
respectively.
Then, we have a shell script (bombard_sigrt.sh) send these three real
time signals continually (or for the number requested) in batches of three,
in the following order:
{SIGRTMAX-5, SIGRTMAX, SIGRTMIN+5} : integer values {59, 64, 39}
respectively.
The first of the RT signals (# 59) causes the process to enter the signal
handler routine; recall, we have specified (at the time of
sigaction(2)) that all signals are blocked (masked) while the signal
handler code runs.

We deliberately use our DELAY_LOOP_SILENT macro to keep
the signal handler running for a while.

Accordingly, the RT signals delivered by the script cannot interrupt the
handler (they are blocked), so the OS queues them up.
Once the signal handler completes and returns, the next RT signal in the
queue is delivered to the process.

In priority order, they are delivered least to highest, like so:
{SIGRTMIN+5, SIGRTMAX-5, SIGRTMAX} : integer values {39,
59, 64}.

The next run verifies this behavior on Linux:

We do not show the source code here; to view the complete source
code, build it, and run it, the entire tree is available for cloning from
GitHub here: https:/ /github. com/ PacktPublishing/ Hands- on-
System- Programming- with- Linux/ blob/ master/ ch12/ rtsigs_
waiter. c and https:/ /github. com/PacktPublishing/ Hands- on-
System- Programming- with- Linux/ blob/ master/ ch12/ bombard_
sigrt. sh.

$./rtsigs_waiter
Trapping the three realtime signals
Process awaiting signals ...

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/rtsigs_waiter.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/ch12/bombard_sigrt.sh

Signaling - Part II Chapter 12

[450]

In another Terminal window we run the bombard script:

$./bombard_sigrt.sh
Usage: bombard_sigrt.sh PID-of-process num-RT-signals-batches-to-send
 (-1 to continously bombard the process with signals).
$
$./bombard_sigrt.sh $(pgrep rtsigs_waiter) 3
Sending 3 instances each of RT signal batch
 {SIGRTMAX-5, SIGRTMAX, SIGRTMIN+5} to process 3642 ...
 i.e. signal #s {59, 64, 39}
SIGRTMAX-5 SIGRTMAX SIGRTMIN+5 SIGRTMAX-5 SIGRTMAX SIGRTMIN+5
SIGRTMAX-5 SIGRTMAX SIGRTMIN+5
$

In the original Terminal window where the rtsigs_waiter process is running, we
now see this:

sighdlr: signal 59, s=1 ; total=1; stack 0x7ffd2f9c6100 :*
sighdlr: signal 39, s=2 ; total=2; stack 0x7ffd2f9c6100 :*
sighdlr: signal 39, s=3 ; total=3; stack 0x7ffd2f9c6100 :*
sighdlr: signal 39, s=4 ; total=4; stack 0x7ffd2f9c6100 :*
sighdlr: signal 59, s=5 ; total=5; stack 0x7ffd2f9c6100 :*
sighdlr: signal 59, s=6 ; total=6; stack 0x7ffd2f9c6100 :*
sighdlr: signal 64, s=7 ; total=7; stack 0x7ffd2f9c6100 :*
sighdlr: signal 64, s=8 ; total=8; stack 0x7ffd2f9c6100 :*
sighdlr: signal 64, s=9 ; total=9; stack 0x7ffd2f9c6100 :*

Note the following:

The first RT signal sent by the script is the SIGRTMAX-5 (value 59); hence, it
enters the signal handler and is processed.

While the signal handler is running, all signals are blocked.
The script continues to pump out the remaining RT signals (see its output),
while they are masked.
Thus, they are queued by the OS and delivered once the handler completes
in priority order: lowest to highest numbered RT signal, that is, the
priority order is from SIGRTMIN (highest) to SIGRTMAX (lowest).
As they are queued, no signals are lost.

Signaling - Part II Chapter 12

[451]

Here is a screenshot demonstrating the same, for a larger number of RT signals:

Passing 10 to the script (see the right hand window) has it deliver 3x10: 30 RT signals
in 10 batches of {SIGRTMIN+5, SIGRTMAX-5, SIGRTMAX}). Note, in the left hand
window, how (except for the first instance of course) they are (queued and)
processed in priority order, lowest to highest—first, all the 39s {SIGRTMIN+5}, then all
the 59s {SIGRTMAX-5}, and finally the lowest priority 64s {SIGRTMAX} RT signals.

The script sends signals to the process by issuing the kill(1) command; it will be
explained in detail later in this chapter.

To conclude, real time signals are processed as follows:

If unblocked, they are processed one after the other in FCFS order.
If blocked, they are queued and delivered in priority order—the lowest RT
signal being the highest priority and the the highest RT signal being the
lowest priority.

As always, you, the reader, are strongly encouraged to check out the code and try out
these experiments yourself.

Signaling - Part II Chapter 12

[452]

Sending signals
We have typically seen cases where the kernel sends signals to a process; there is no
reason a process cannot send a signal (or several) to another process. In this section,
we delve into the details of sending signals to processes from a process, and ideas
related to the same.

You might wonder, even if you could send a signal to another process, how would it
be useful? Well, think about it: signal-sending could be used as an interprocess
communication (IPC) mechanism, for one. Also, it's a way of checking for a process's
existence! There are other useful cases, such as sending yourself a signal. Let's explore
these further.

Just kill 'em
How do we send a signal to another process: the short answer, via
the kill(2) system call. The kill API can deliver a signal, any signal, to a process
given its PID; the function signature from the man page on kill(2):

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

Note it's very generic—you can send pretty much any signal to any process (it might
perhaps have been better named as sendsig, but, of course, that's not as exciting a
name as kill).

The user command kill(1) is, of course, a wrapper over the kill(2) system call.

Quite obviously, from the previous API, you can infer that the signal sig is sent to
the process that has the PID value pid. Hang on, though, there are several special
cases to consider as well; see the following table:

kill PID
value Meaning

> 0 The signal is sent to the process with numeric PID equal to this value (the usual case).
0 The signal is sent to all processes within the process group 1 of the caller.

-1 The signal is sent to all processes for which the caller has permission to send (see next), except the
overall ancestor process, PID 1 (traditionally init, nowadays systemd). 2

< -1 The signal is sent to all processes within the process group one having ID, pid.

Signaling - Part II Chapter 12

[453]

1 Process group: Every process will be a member of a process group (each pgrp will
have its own unique ID, equal to the PID of the first member, called the process group
leader. Use ps j to look up process group details; also, the system calls
get|set]pgid(2), [get|set]pgrp(2), are available.

If you run a chain of processes via pipes (for example, ps aux |tail |sort -k6n)
and, once it's running, type ^C on the keyboard, then we understand the signal
SIGINT is generated via the kernel's tty layer; but to which process? All the processes
currently running as part of the preceding pipeline form the foreground process
group. The significance with regard to signaling: any signals generated via the
keyboard (such as ^C, ^\, ^Z), is delivered to all processes belonging in the
foreground process group. (Thus all three will receive the signal. Check the Further
reading section for a link to more information on process groups on the GitHub
repository.)
2 On Linux, kill(-1, sig) does not send sig to the calling process itself.

Killing yourself with a raise
Dramatic as it sounds, here we point out a simple wrapper API: the raise(3) library
call. Here is its signature:

include <signal.h>
int raise(int sig);

It's really very simple: given a signal number, the raise API raises, sends, the given
signal to the calling process (or thread). If the signal in question is caught,
the raise will return only once the signal handler has completed.

Recall that we have used this API in our handle_segv.c program earlier in this
chapter: we used it to ensure that, for the signal SIGSEGV, after our own handling is
done, we re-raise the same signal on ourselves, thereby ensuring that the core dump
occurs.

(Well, philosophically, though, there's only so much that getting that raise will do for
your happiness quotient.)

Agent 00 – permission to kill
In Ian Fleming's books, James Bond is a double-oh agent (007): a secret agent with
permission to kill!

Signaling - Part II Chapter 12

[454]

Well, like Bond, we too can kill; um, a process, of course, that is, send it a signal. It's
nowhere as dramatic and exciting as Bond, but, hey, we can! Well, IFF (if and only if)
we have the permission to do so.

The required permission: the sending process must either:

Have root privileges—Under the modern capabilities model (recall Chapter
8, Process Capabilities), the requirement becomes that a process has the
CAP_KILL capability bit set; from the man page
on capabilities(7): CAP_KILL : Bypass permission checks for sending
signals (see kill(2)).
Own the target process, which implies that the sender's EUID (effective
UID) or RUID (real UID) and the target's EUID or RUID, respectively,
should match.

The man page on kill(2) specifies in more detail some corner cases on Linux
regarding permissions to send signals; take a look if interested.

So, tempting as it sounds, just performing a loop like (pseudo-code follows) will not
necessarily work for all processes alive, mostly because of a lack of permissions of
course:

for i from 1 to PID_MAX
 kill(i, SIGKILL)

Even if you were to run code such as the one shown previously as root, the system
will disallow abruptly terminating key processes such as systemd (or init). (Why not
try it—it's a suggested exercise anyway. Of course, trying stuff like this is asking for
trouble; we suggest you try this a test VM.)

Are you there?
Checking for a process's very existence, is it alive now?, can be crucial to an
application. For example, an application function receives the PID of a process as a
parameter. Before it actually does something with the process via the provided PID
(perhaps send it a signal), it would be a good idea to verify that the process is indeed
valid (what if it's dead or the PID invalid?).

The kill(2) system call helps us in this regard: the second parameter to kill is the
signal to send; using the value 0 (recall there is no signal numbered 0) validates the
first parameter: the PID. How exactly? If the kill(2) returns failure, either the PID is
invalid or we do not have permission to send the process (or process group) a signal.

Signaling - Part II Chapter 12

[455]

The following pseudo-code demonstrates this:

static int app_func_A(int work, pid_t target)
{
 [...]
 if (kill(target, 0) < 0)
 <handle it>
 return -1;
 [...it's fine; do the work on 'target'...]
}

Signaling as IPC
We learned that a fundamental side effect of the virtual memory architecture that
modern OSes (such as Linux) use is that a process can only access memory within its
own virtual address space (VAS); and that too only the valid mapped memory.

Practically speaking, this implies a process cannot read from or write into the VAS of
any other process. Yes; but then, how do you communicate with other processes? This
scenario is critical in many multi-process applications.

The short answer: IPC mechanisms. The Linux OS has several; here, we make use of
one of them: signaling.

Crude IPC
Think about it, it's quite simple: processes A and B are part of a multi-process
application. Now process A wants to inform process B that it has completed some
work; upon receiving this information, we expect process B to acknowledge the same.

We can devise a simple IPC scheme via signaling as follows:

Process A is performing its work.
Process B is performing its work (they run in parallel of course).
Process A reaches a milestone; it informs process B of this by sending it
SIGUSR1 (via the kill(2)).
Having trapped the signal, process B enters its signal handler and verifies
things as required.

Signaling - Part II Chapter 12

[456]

It acknowledges the message by sending process A, say, SIGUSR2 (via
the kill(2)).
Having trapped the signal, process A enters its signal handler, understands
that the ack has been received from B, and life continues.

(The reader can try this as a small exercise.)

However, we should realize an important detail: IPC implies the ability to send data
to another process. Above, however, we have not been able to transmit or receive any
data; just the fact that we can communicate via signals (well, you could argue that the
signal number itself is data; true, in a limited sense). So we think of this as
a crude IPC mechanism.

Better IPC – sending a data item
This leads us to the next interesting fact: it is possible to send a data quantum—a
piece of data—via signals. To see how, let's revisit the powerful struct siginfo_t we
studied earlier in this chapter. To have the signal handler receive the pointer to it,
recall that we use the SA_SIGINFO flag when calling sigaction(2).

Recall the fact that, within struct siginfo_t, the first three members are simple
integers, the fourth member is a union of structures, there are seven of them—only
one of which will get instantiated at runtime; the one that does depends on which
signal is being handled!

To help us recall, here's the initial portion of struct siginfo_t:

typedef struct {
 int si_signo; /* Signal number. */
 int si_code;
 int si_errno; /* If non-zero, an errno value associated with
 this signal, as defined in <errno.h>. */
 union
 {
 int _pad[__SI_PAD_SIZE];
 /* kill(). */
 struct
 {
 __pid_t si_pid; /* Sending process ID. */
 __uid_t si_uid; /* Real user ID of sending process. */
 } _kill;

 [...]

Signaling - Part II Chapter 12

[457]

Within the union of structures, the structure of interest to us right now is the one that
deals with real time signals—this one:

[...]
 /* POSIX.1b signals. */
 struct
 {
 __pid_t si_pid; /* Sending process ID. */
 __uid_t si_uid; /* Real user ID of sending process. */
 __sigval_t si_sigval; /* Signal value. */
 } _rt;
[...]

So, it's quite straightforward: if we trap some real time signals and use SA_SIGINFO,
we shall be able to retrieve the pointer to this structure; the first two members reveal
the PID and RUID of the sending process. That itself is valuable information!

The third member though, the sigval_t, is the key (in /usr/include/asm-
generic/siginfo.h on Ubuntu and in
/usr/include/bits/types/__sigval_t.h on Fedora):

union __sigval
{
 int __sival_int;
 void *__sival_ptr;
};
typedef union __sigval __sigval_t;

Note that the sigval_t is itself a union of two members: an integer and a pointer!
We know that a union can only have one of its members instantiated at runtime; so
the deal here is: the sender process populates one of the preceding members with
data and then sends a real time signal to the receiver process. The receiver can extract
the data quantum sent by appropriately de-referencing the preceding union. This
way, one is able to send data across processes; the data is effectively piggy-backed on
a real time signal! Quite cool.

But think: we can use only one of the members to piggy-back our data, either the
integer int sival_int or the void * sival_ptr pointer. Which should one use?
It's instructive to recall what we learned in Chapter 10, Process Creation on process
creation: every address within a process is a virtual address; that is, my virtual
address X is likely not pointing to the same physical memory as your virtual address
X. In other words, attempting to communicate data via a pointer, which is after all
nothing but a virtual address, might now work as well as expected. (If you are unsure
about this, might we suggest rereading the malloc and The fork sections in Chapter 10,
Process Creation.)

Signaling - Part II Chapter 12

[458]

In conclusion, using an integer to hold and communicate data to our peer process
would usually be a better idea. In fact, C programmers know how to extract, literally,
every last bit from memory; you can always treat the integer as a bitmask and
communicate even more information!

Additionally, the C library provides a helper routine to quite easily send a signal with
data embedded within, the sigqueue(3) API. Its signature:

#include <signal.h>
int sigqueue(pid_t pid, int sig, const union sigval value);

The first two parameters are obvious: the process to send the signal sig to; the third
parameter value is the union discussed.

Lets try this out; we write a small producer-consumer type of application. We run the
consumer process in the background; it polls, waiting for the producer to send it
some data. (As you might guess, polling is not ideal; in the multithreading topics, we
shall cover superior methods; for now, we shall just simplistically poll.) When the
receiver detects data has been sent to it, it displays all relevant details.

First, a sample run: to begin, we run the consumer (receiver)
process (ch12/sigq_ipc/sigq_recv.c) in the background:

$./sigq_recv &
[1] 13818
./sigq_recv: Hey, consumer here [13818]! Awaiting data from producer
(will poll every 3s ...)
$

Next, we run the producer (ch12/sigq_ipc/sigq_sender.c) , sending a data item
to the consumer:

$./sigq_sender
Usage: ./sigq_sender pid-to-send-to value-to-send[int]
$./sigq_sender $(pgrep sigq_recv) 42
Producer [13823]: sent signal 34 to PID 13818 with data item 42
$ nanosleep interrupted: rem time: 0000002.705461411

The consumer processes the signal, understands that data has arrived, and in the next
polling cycle prints out the details:

Consumer [13818] received data @ Tue Jun 5 10:20:33 2018
:
signal # : 34
Producer: PID : 1000
 UID : 1000 data item : 42

Signaling - Part II Chapter 12

[459]

For readability, only key parts of the source code are displayed next;
to view the complete source code, build it and run it, the entire tree
is available for cloning from GitHub here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

Here's the receiver: ch12/sigq_ipc/sigq_recv.c: main() function:

#define SIG_COMM SIGRTMIN
#define SLP_SEC 3

[...]
static volatile sig_atomic_t data_recvd=0;
[...]
int main(int argc, char **argv)
{
 struct sigaction act;

 act.sa_sigaction = read_msg;
 sigfillset(&act.sa_mask); /* disallow all while handling */
 act.sa_flags = SA_SIGINFO | SA_RESTART;
 if (sigaction(SIG_COMM, &act, 0) == -1)
 FATAL("sigaction failure");

 printf("%s: Hey, consumer here [%d]! Awaiting data from producer\n"
 "(will poll every %ds ...)\n",
 argv[0], getpid(), SLP_SEC);

/* Poll ... not the best way, but just for this demo... */
 while(1) {
 r_sleep(SLP_SEC);
 if (data_recvd) {
 display_recv_data();
 data_recvd = 0;
 }
 }
 exit(EXIT_SUCCESS);
}

We poll upon the arrival of the real time signal, sleeping in a loop for three seconds
on each loop iteration; polling is really not the best way to code; for now, we just keep
things simple and do so (in the Chapters 14, Multithreading with Pthreads Part I -
Essentials and Chapter 15, Multithreading with Pthreads Part II - Synchronization, we
shall cover other efficient means of synchronizing on a data value).

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Signaling - Part II Chapter 12

[460]

As explained in the section Sleeping correctly, we prefer to use our own wrapper over
nanosleep(2), our r_sleep() function, keeping the sleep safe.

In the meantime, a part of the sender code:
ch12/sigq_ipc/sigq_sender.c: send_peer():

static int send_peer(pid_t target, int sig, int val)
{
 union sigval sv;

 if (kill(target, 0) < 0)
 return -1;

 sv.sival_int = val;
 if (sigqueue(target, sig, sv) == -1)
 return -2;
 return 0;
}

This function performs the work of checking that the target process is indeed alive,
and if so, sending it the real time signal via the useful sigqueue(3) library API. A
key point: we wrap or embed the data to be sent inside the sigval union, as an
integer value.

Back to the receiver: when it does receive the real time signal, its designated signal
handler code, read_msg(), runs:

[...]
typedef struct {
 time_t timestamp;
 int signum;
 pid_t sender_pid;
 uid_t sender_uid;
 int data;
} rcv_data_t;
static rcv_data_t recv_data;

[...]

/*
 * read_msg
 * Signal handler for SIG_COMM.
 * The signal's receipt implies a producer has sent us data;
 * read and place the details in the rcv_data_t structure.
 * For reentrant-safety, all signals are masked while this handler
runs.

Signaling - Part II Chapter 12

[461]

 */
static void read_msg(int signum, siginfo_t *si, void *ctx)
{
 time_t tm;

 if (time(&tm) < 0)
 WARN("time(2) failed\n");

 recv_data.timestamp = tm;
 recv_data.signum = signum;
 recv_data.sender_pid = si->si_pid;
 recv_data.sender_uid = si->si_uid;
 recv_data.data = si->si_value.sival_int;

 data_recvd = 1;
}

We update a structure to hold the data (and metadata), allowing us to conveniently
print it whenever required.

Sidebar – LTTng
As a very interesting aside, wouldn't it be wonderful if one could actually trace the
flow of the sender and receiver processes as they execute? Well, Linux provides
several tools to do precisely this. Among the more sophisticated ones is a software
called Linux Tracing Toolkit next generation (LTTng).

LTTng is really powerful; once set up, it has the ability to trace both kernel and user
space (although tracing user space involves the application developers explicitly
instrumenting their code). Well, your author used LTTng to perform a trace of the
system (kernel-space) while the previous processes ran; LTTng did its job, capturing
trace data (in a format called CTF).

Then, the superb Trace Compass GUI application was used to display and interpret the
trace session in a meaningful manner; the following screenshot shows an example;
you can see the point at which the sender sent the signal to the receiver process via
the sigqueue(3) library API, which, as you can see, translated to
the rt_sigqueueinfo(2) system call (its entry point inside the kernel shows up as
the syscall_entry_rt_sigqueueinfo event as follows).

Signaling - Part II Chapter 12

[462]

Next, the receiver process (sigq_trc_recv here) received (and then processed) the
signal:

(As a fun thing to do: calculate the time delta between the real time signal being sent
and the signal being received, bookmarked in purple and red color, respectively. It's
approximately 300 ms (microseconds).)

The details of LTTng is not within the scope of this book's coverage; please see
the Further reading section on the GitHub repository.

For completeness, we note the following APIs to send signals as well:

pthread_kill(3) : an API to send a signal to a particular thread within
the same process
tgkill(2) : an API to send a signal to a particular thread within a given
thread group
tkill(2) : a deprecated predecessor to tgkill

Let's ignore these for now; these APIs become more relevant in the context of
multithreading in later Chapter 14, Multithreading with Pthreads Part I - Essentials, in
the book.

Signaling - Part II Chapter 12

[463]

Alternative signal-handling techniques
So far, in the previous chapter as well as this one on signaling, we have seen and
learned to use several techniques with regard to asynchronously trapping and
working with signals. The essential idea is this: the process is busy performing its
work, running its business logic; a signal suddenly arrives; nevertheless, the process
must handle it. We saw in quite some detail how one leverages the
powerful sigaction(2) system call to do so.

Now, we look at signal handling in a different manner: synchronously handling
signals, that is, how to have the process (or thread) wait for (block upon) signals and
handle them as they arrive.

The chapters to come on multithreading will provide some use cases of the same.

Synchronously waiting for signals
At first glance, and the traditional manner in which signaling is taught, it appears that
as signals are asynchronous in nature, why would one ever attempt to synchronously
block upon signals delivered? Well, the reality is: performing robust signal handling
in large projects is a difficult thing to do correctly and consistently. A lot of the
complexity stems from the issue of signal-async safety; we are not allowed to use just
any API within a signal handler; only a relatively small subset of APIs is
considered async-signal-safe and is viable to use. This raises significant hurdles in
large programs, and of course, at times, programmers inadvertently cause defects
(bugs) (that too, ones that are difficult to catch during testing).

These signal-handling difficulties pretty much vanish when one eliminates the whole
asynchronous signal handler with signal-safety requirements design. How?
By synchronously blocking upon signals and, when the signal(s) arrive, handling
them then and there.

Thus, the goal in this section is to teach the budding systems programmer these
important concepts (and their APIs); learning to use these can significantly decrease
oddities and bugs.

A number of useful mechanisms exist on the Linux OS to perform synchronous signal
handling; let's start with the simple yet useful pause(2) system call.

Signaling - Part II Chapter 12

[464]

Pause, please
The pause is a very good example of a blocking call; when a process calls this API,
it blocks, that is, it goes to sleep waiting for an event; the event: the arrival of any
signal to it. The moment a signal arrives, the pause is unblocked and execution
continues. Of course, delivery of a fatal signal will cause the unsuspecting process to
die:

include <unistd.h>
 int pause(void);

Throughout, we have said that checking system calls for their failure case -1 is
considered very important: a best practice to always follow. The pause(2) throws up
an interesting exception case: it seems to be the one system call that always returns
-1 and errno is set to the value EINTR Interrupted system call (the interruption being
the signal of course).

For this reason, we often code the pause as follows:

(void)pause();

The typecast to void is to inform tools such as the compiler and static analyzers that
we don't really care about the return value from pause.

Waiting forever or until a signal arrives
Often, one would like to wait forever, or until a signal arrives. One way to do so is the
very simple, but very bad, terribly expensive spin on the CPU code such as this:

while (1);

Ugh! That's just ugly: please do not write code like that!

Slightly better, but still quite off, is this:

while (1)
 sleep(1);

The pause can be used to effectively and efficiently set up a useful wait forever or
until I receive any signal semantic, as follows:

while (1)
 (void)pause();

Signaling - Part II Chapter 12

[465]

This semantic is very useful for this wait forever or until I receive any signal situation,
as it's inexpensive (hardly any CPU usage as the pause(2) has the caller immediately
go to sleep), and get unblocked only when a signal arrives. Then, the whole scenario
repeats (due to the infinite loop of course).

Synchronously blocking for signals via
the sigwait* APIs
Next, we briefly visit a set of related functions, the sigwait* APIs; they are as follows:

sigwait(3)

sigwaitinfo(2)

sigtimedwait(2)

All of these APIs allow a process (or thread) to block (wait) upon the delivery of one
or more signal.

The sigwait library API
Let's start with the sigwait(3):

include <signal.h>
 int sigwait(const sigset_t *set, int *sig);

The sigwait(3) library API allows a process (or thread) to block, wait, until any
signal in the signal-set set is pending delivery to it. The moment a signal arrives,
the sigwait is unblocked; the particular signal that arrived, its integer value, is
placed in the value-result second parameter sig. Under the hood,
the sigwait removes the signal just delivered from the process (or thread) pending
mask.

Thus, the sigwait(3) is advantageous to the pause(2) by virtue of the following:

You can wait upon the delivery of particular signals to the process
When one of those signals is delivered, its value is known

The return value from sigwait(3) is 0 on success and a positive value on error (note
that it being a library API, errno remains unaffected). (Internally, the sigwait(3) is
implemented via the sigtimedwait(2) API.)

Signaling - Part II Chapter 12

[466]

However, things are not always as simple as they appear at first glance. The reality is
that there are a couple of important points to consider:

A risky situation called a race can be set up if the signals one intends
waiting upon are not first blocked by the calling process. (Technically, this
is as there is a window of opportunity between a signal being delivered to
the process and the sigwait call initializing). Once running,
though, the sigwait will atomically unblock the signals, allowing them to be
delivered upon the caller process.
What if a signal (one within the signal set we define), is also trapped
(caught) via either the sigaction(2) or signal(2) API, AND via the
sigwait(3) API? In such a scenario, the POSIX standard states that it is
up to the implementation to decide how to handle the delivered signal;
Linux seems to favor handling the signal via the sigwait(3). (This makes
sense: if a process issues the sigwait API, the process blocks on signals. If
a signal does become pending (meaning, it has just been delivered) on the
process, then the sigwait API sucks in or consumes the signal: it is now no
longer pending delivery on the process, and thus cannot be caught via
signal handlers set up via the sigaction(2) or signal(3) APIs.)

To test this, we write a small application ch12/sigwt/sigwt.c as well as a shell
script ch12/sigwt/bombard.sh to shower all signals upon it. (The reader will find
the code within the book's GitHub repository, as always; this time, we leave it as an
exercise to the reader to study the source, and experiment with it.) A couple of sample
runs follow:

In one Terminal window, we run our sigwt program as follows:

$./sigwt
Usage: ./sigwt 0|1
 0 => block All signals and sigwait for them
 1 => block all signals except the SIGFPE and SIGSEGV and sigwait
 (further, we setup an async handler for the SIGFPE, not the SIGSEGV)
$./sigwt 0
./sigwt: All signals blocked (and only SIGFPE caught w/ sigaction)
[SigBlk: 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25
26 27 28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64]
./sigwt: waiting upon signals now ...

Signaling - Part II Chapter 12

[467]

Note how we have first blocked all signals (via the sigprocmask(2); we invoke our
generic common.c:show_blocked_signals() function to display all currently
blocked signals in the process signal mask; as expected, all are blocked, with the
obvious exception of signal numbers 9, 19, 32, and 33 (why?)). Recall that, once
running, the sigwait(3) will atomically unblock the signals, allowing them to be
delivered upon the caller.

In another Terminal window, run the shell script; the script's job is simple: it sends
(via kill(1)) every signal—from 1 to 64, except for SIGKILL (9), SIGSTOP (19),
32, and 33—the two RT signals reserved for use by the pthreads framework:

$./bombard.sh $(pgrep sigwt) 1
Sending 1 instances each of ALL signals to process 2705
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28
29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63 64
$

In the original window, we observe the output:

Received signal# 1
Received signal# 2
Received signal# 3
Received signal# 4
Received signal# 5
Received signal# 6
Received signal# 7
Received signal# 8
Received signal# 10
Received signal# 11
[...]
Received signal# 17
Received signal# 18
Received signal# 20
Received signal# 21
[...]
Received signal# 31
Received signal# 34
Received signal# 35
Received signal# 36
Received signal# 37
[...]
Received signal# 64

Signaling - Part II Chapter 12

[468]

All delivered signals were processed via the sigwait! Including the SIGFPE (# 8) and
the SIGSEGV (# 11). This is as they were synchronously sent by another process (the
shell script) and not by the kernel.

A quick pkill(1) kills off the sigwt process (as if one needs reminding: SIGKILL
and SIGSTOP cannot be masked):

pkill -SIGKILL sigwt

Now for the next test case, running it with option 1:

$./sigwt
Usage: ./sigwt 0|1
 0 => block All signals and sigwait for them
 1 => block all signals except the SIGFPE and SIGSEGV and sigwait
 (further, we setup an async handler for the SIGFPE, not the SIGSEGV)
$./sigwt 1
./sigwt: removing SIGFPE and SIGSEGV from the signal mask...
./sigwt: all signals except SIGFPE and SIGSEGV blocked
[SigBlk: 1 2 3 4 5 6 7 10 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27
28 29 30 31 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64]
./sigwt: waiting upon signals now ...

Note how signal numbers 8 (SIGFPE) and 11 (SIGSEGV) are not among the rest that
are now blocked (besides the usual suspects, 9, 19, 32, 33). Recall that, once
running, the sigwait(3) will atomically unblock the signals, allowing them to be
delivered upon the caller.

In another Terminal window, run the shell script:

$./bombard.sh $(pgrep sigwt) 1
Sending 1 instances each of ALL signals to process 13759
1 2 3 4 5 6 7 8 10 11 ./bombard.sh: line 16: kill: (13759) - No such
process
bombard.sh: "kill -12 13759" failed, loop count=1
$

In the original window, we observe the output:

Received signal# 1
Received signal# 2
Received signal# 3
Received signal# 4
Received signal# 5
Received signal# 6
Received signal# 7

Signaling - Part II Chapter 12

[469]

*** siggy: handled SIGFPE (8) ***
Received signal# 10
Segmentation fault (core dumped)
$

As we trapped the SIGFPE (via sigaction(2)), it was handled; however, the
uncaught SIGSEGV of course causes the process to die abnormally. Not very pleasant
at all.

A little tinkering with the code reveals an interesting aspect; the original code snippet
is this:

[...]
if (atoi(argv[1]) == 1) {
 /* IMP: unblocking signals here removes them from the influence of
 * the sigwait* APIs; this is *required* for correctly handling
 * fatal signals from the kernel.
 */
 printf("%s: removing SIGFPE and SIGSEGV from the signal
mask...\n", argv[0]);
 sigdelset(&set, SIGFPE);
#if 1
 sigdelset(&set, SIGSEGV);
#endif
[...]

What if we effectively block the SIGSEGV by changing the preceding #if 1 to #if 0?
Let's do so, rebuild, and retry:

[...]
Received signal# 1
Received signal# 2
Received signal# 3
Received signal# 4
Received signal# 5
Received signal# 6
Received signal# 7
*** siggy: handled SIGFPE (8) ***
Received signal# 10
Received signal# 11
Received signal# 12
[...]

This time the SIGSEGV is processed via the sigwait! Yes, indeed; but only because it
was artificially generated by a process, and not sent by the OS.

Signaling - Part II Chapter 12

[470]

So, as usual, there's more to it: how exactly signal handling happens is determined by
the following:

Whether or not the process blocks the signal prior to calling sigmask (or
variants)
With regard to fatal signals (such as SIGILL, SIGFPE, SIGSEGV, SIGBUS,
and so on), how the signal is generated matters: artificially, via just a
process (kill(2)) or actually generated via the kernel (due to a bug of
some sort)
We find the following:

If the signal is blocked by the process before invoking
the sigwait, then, if the signal is delivered artificially
via kill(2) (or variants), the sigwait will get unblocked
upon delivery of the signal and the application developer can
handle the signal.
However, if the fatal signal is delivered via the OS due to a
bug, then, whether or not the process blocks it, the default
action takes place, abruptly (and disgracefully) killing the
process! This is probably not what one wants; thus, we
conclude that it's better to trap fatal signals like the preceding
via the usual asynchronous sigaction(2) style and not via
the sigwait (or variants thereof).

The sigwaitinfo and the sigtimedwait system calls
The sigwaitinfo(2) system call is similar to sigwait: provided with a set of signals
to watch out for, the function puts the caller to sleep until any one of those signals
(in set) are pending. Here are their prototypes:

#include <signal.h>
int sigwaitinfo(const sigset_t *set, siginfo_t *info);
int sigtimedwait(const sigset_t *set, siginfo_t *info,
 const struct timespec *timeout);

In terms of a return, the sigwait API was able to provide us with the signal number of
the signal that got delivered to the calling process. However, recall that there is a
much more powerful feature of the sigaction(2) API—the ability to return
valuable diagnostic and other information within the siginfo_t data structure.
Well, that's precisely what the sigwaitinfo(2) system call provides! (We covered
the siginfo_t structure and what you can interpret from it earlier in the section
detailing information with the SA_SIGINFO.)

Signaling - Part II Chapter 12

[471]

And the sigtimedwait(2)? Well, it's quite apparent; it's identical to
the sigwaitinfo(2) API, except that there is an additional parameter—a timeout
value. Hence, the function will block the caller either until one of the signals in set is
pending, or the timeout expires (whichever occurs first). The timeout is specified via a
simple timespec structure, which allows one to provide the time in seconds and
nanoseconds:

struct timespec {
 long tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
}

If the structure is memset to zero, the sigtimedwait(2) returns immediately, either
with information returned about a signal that was pending, or an error value. Both
the sigwaitinfo(2) and the sigtimedwait(2) APIs return the actual signal
number on success and -1 on failure, with errno set appropriately.

An important point to note (it has been mentioned previously, but
it's key): neither the sigwait, sigwaitinfo,
or sigtimedwait APIs can wait for synchronously generated
signals from the kernel; typically the ones that indicate a failure of
some sort, like the SIGFPE and the SIGSEGV. These can only be
caught in the normal asynchronous
fashion—via signal(2) or sigaction(2). For such cases, as we
have repeatedly shown, the sigaction(2) system call would be
the superior choice.

The signalfd(2) API
The reader will recall that, in Chapter 1, Linux System Architecture, in the section
entitled, The Unix philosophy in a nutshell, we drove home the point that a cornerstone
of the Unix philosophy is this:

On Unix, everything is a process; if it's not a process, it's a file.

Experienced Unix and Linux developers are very used to the idea (abstraction, really)
of treating stuff as if it were a file; this includes devices, pipes, and sockets. Why not
signals?

Signaling - Part II Chapter 12

[472]

That's precisely the idea behind the signalfd(2) system call; with signalfd, you
can create a file descriptor and associate it with a signal set. Now, the application
programmer is free to monitor signals using a variety of familiar file-based
APIs—among them the read(2), select(2) and poll(2) (and its variations), and
the close(2).

Also, similar to the sigwait* family of APIs we covered, signalfd is another way
to have a process (or thread) synchronously block upon signals.

How do you make use of the signalfd(2) API? Its signature is as follows:

#include <sys/signalfd.h>
int signalfd(int fd, const sigset_t *mask, int flags);

The first parameter, fd, is either an existing signal descriptor, or the value -1. When -1
is passed, the system call creates a new signal file descriptor (we should obviously
call it in this manner at first). The second parameter mask is the signal mask—the set
of signals that this signal descriptor will be associated with. As before with
the sigwait* APIs, one is expected to block these signals (via the sigprocmask(2)).

It's important to understand that the signalfd(2) system call, by itself, is not a
blocking call. The blocking behavior comes into play only on invocation of a file-
related API, such as read(2), select(2), or poll(2). Only then is the caller put
into a sleep state. The moment one of the signals in the set is delivered to the calling
process (or is already pending on it), the file-related API returns.

The third parameter to signalfd(2) is a flags value—a means to change the
default behavior. It's only from Linux kernel version 2.6.27 onwards that
the flags work well; the possible values are as follows:

SFD_NONBLOCK : use non-blocking I/O semantics on the signal descriptor
(equivalent to the fcntl(2) O_NONBLOCK).
SFD_CLOEXEC : if the process ever execs another process (via
the exec family APIs), ensure that the signal descriptor is closed (this is
good for security as otherwise, all the predecessor process' open files
are inherited across the exec operation to the successor; equivalent to
the open(2) FD_CLOEXEC).

Signaling - Part II Chapter 12

[473]

In terms of return value, the signalfd(2) API returns the newly created signal
descriptor on success; of course, this is if the first parameter was -1. If not, then it
should be an already existing signal descriptor; then, this value is returned on
success. On failure, as usual, -1 is returned and the errno variable reflects the
diagnostic.

Here, we shall limit the discussion of using the signalfd(2) to reading signal
information via the familiar read(2) system call; this time, on the signal descriptor
returned by the signalfd API.

The way the read(2) works in a nutshell (read(2) was covered in detail in
Appendix A, File I/O Essentials): we specify a file (in this case, signal) descriptor to read
from as the first parameter, the buffer to place the just-read data as the second
parameter, and the maximum number of bytes to read as the third parameter:

ssize_t read(int fd, void *buf, size_t count);

These are the common typdefs:
size_t is essentially an unsigned long (integer)
ssize_t is essentially a signed long (integer)

The second parameter here is special: a pointer to (one or more) structures of type
signalfd_siginfo. The struct signalfd_siginfo is quite analogous to the
siginfo_t we saw in some detail in the earlier section, The siginfo_t structure.
Detailed information regarding the signal that arrived will be populated here.

We leave it to the interested reader to glean the details of the
signalfd_siginfo data structure from the man page on
signalfd(2) here: https:/ /linux. die. net/ man/ 2/signalfd. The
page also contains a small example program.

The third parameter to read, the size, must in this case be at
least sizeof(signalfd_siginfo) bytes.

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd
https://linux.die.net/man/2/signalfd

Signaling - Part II Chapter 12

[474]

Summary
In this chapter, the reader has been taken through some advanced details with regard
to signaling: how to handle crashing processes via appropriate fatal signal trapping,
and once in the handler, getting key details including CPU registers, and so on. This
was done by learning to interpret the powerful siginfo_t data structure. Further,
handling races when working with the errno variable, and learning how to sleep
correctly was covered.

Real time signals and their differences from regular Unix signals was covered; then,
there was a section regarding the different means of sending signals to other
processes. Finally, we looked at signal handling by synchronously blocking upon a
given set of signals (using various APIs).

In the next Chapter 13, Timers, we shall make use of the knowledge we gained here
(and in the preceding) Chapter 11, Signaling - Part I, and learn how to set up and use
timers effectively.

13
Timers

Timers give us the ability to set up an artifact where the OS lets us know once the
specified time has expired—is a ubiquitous application (and, indeed, kernel) feature.
Of course, the timer is usually only useful if it is running in parallel with the
application logic; this asynchronous notification behavior is achieved by different
means, very often by having the kernel send the relevant process a signal.

In this chapter, we shall explore the available interfaces on Linux for setting up and
working with timers. These interfaces fall into two broad categories—the older APIs
(alarm(2), [get|set]itimer(2)), and the shiny, newer POSIX APIs
(timer_create(2), timer_[set|get]time(2), and so on). Of course, as signals
are quite heavily employed along with timers, we make use of the signal interfaces as
well.

We would also like to point out that, due to the intrinsic dynamic nature of timers,
statically seeing the output of our sample programs in the book will not suffice; as
usual, we definitely urge the reader to clone the book's GitHub repository and try out
the code themselves.

In this chapter, the reader will learn to use the various timer interfaces (APIs) exposed
by the Linux kernel. We begin with the older ones, which, though they have
limitations are still very much used in system software, as the need arises. A simple
command-line interface (CLI)- only digital clock program is written and analyzed
using these APIs. Then we move the reader on to the more recent and powerful
POSIX Timer API set. Two very interesting sample programs—a "how quickly can
you react" game and a run-walk interval timer application—are shown and studied.
We close with a brief mention of using timer APIs via the file abstraction, and what a
watchdog timer is.

Timers Chapter 13

[476]

Older interfaces
As previously mentioned, the older interfaces include the following:

The alarm(2) system call
The interval timer [get|set]itimer(2) system call APIs

Let's begin with the first of them.

The good ol' alarm clock
The alarm(2) system call allows a process to set up a simple timeout mechanism; its
signature is as follows:

#include <unistd.h>
unsigned int alarm(unsigned int seconds);

It is, indeed, quite self-explanatory. Let's take a simple example: A process wants to
set up a timer that will expire in three seconds from now, so alarm(3) is essentially
the code to use to do this.

What exactly happens in the aforementioned code? Three seconds after the
alarm system call is issued—that is, after the timer has been armed—the kernel will
send the signal SIGALRM to the process.

The default action of SIGALRM (signal # 14 on x86) is to terminate the
process.

Thus, we expect the developer to catch the signal (via the sigaction(2) system
call would be best, as discussed in depth in the preceding Chapter 11, Signaling - Part
I, and Chapter 12, Signaling - II).

If the parameter input to alarm is 0, any pending alarm(2) will be canceled
(Actually, this will happen in any case when the alarm API is invoked.)

Timers Chapter 13

[477]

Notice that the alarm API, unusually for a system call, returns an unsigned integer
(thus -1 cannot be returned, which is the usual failure case). Instead, it returns the
number of seconds to any previous programmed timeout, or zero if none was
pending.

A simple program (ch13/alarm1.c) demonstrating the basic usage of
alarm(2) follows; the parameter specifies the number of seconds to time out in.

For readability, only the key parts of the source code are displayed
in the following; to view the complete source code, build it, and run
it, the entire tree is available for cloning from GitHub here: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

The signal trapping and timer arming code is shown as follows:

[...]
/* Init sigaction to defaults via the memset,
 * setup 'sig_handler' as the signal handler function,
 * trap just the SIGALRM signal.
 */
 memset(&act, 0, sizeof(act));
 act.sa_handler = sig_handler;
 if (sigaction(SIGALRM, &act, 0) < 0)
 FATAL("sigaction on SIGALRM failed");

 alarm(n);
 printf("A timeout for %ds has been armed...\n", n);
 pause(); /* wait for the signal ... */

What happens once the SIGALRM signal is dispatched to the process by the kernel;
that is, once the timer times out? The signal handler runs, of course. Here it is:

static void sig_handler(int signum)
{
 const char *str = " *** Timeout! [SIGALRM received] ***\n";
 if (signum != SIGALRM)
 return;
 if (write(STDOUT_FILENO, str, strlen(str)) < 0)
 WARN("write str failed!");
}

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Timers Chapter 13

[478]

Here's a quick build and test run:

$ make alarm1
gcc -Wall -UDEBUG -c ../common.c -o common.o
gcc -Wall -UDEBUG -c alarm1.c -o alarm1.o
gcc -Wall -UDEBUG -o alarm1 alarm1.o common.o
$./alarm1
Usage: ./alarm1 seconds-to-timeout(>0)
$./alarm1 3
A timeout for 3s has been armed...
 *** Timeout! [SIGALRM received] *** << 3 seconds later!
>>
$

We now enhance the previous code (ch13/alarm1.c) to have the timeout
continually repeat (the source file is ch13/alarm2_rep.c); the relevant code snippet
(which has changed from the previous code) is as follows:

[...]
alarm(n);
printf("A timeout for %ds has been armed...\n", n);
/* (Manually) re-invoke the alarm every 'n' seconds */
while (1) {
 pause(); /* wait for the signal ... */
 alarm(n);
 printf(" Timeout for %ds has been (re)armed...\n", n);
}
[...]

Though it does not apply here, realize that calling alarm(2) automatically cancels
any previously pending timeout. A quick trial run is as follows:

$./alarm2_rep 1
A timeout for 1s has been armed...
 *** Timeout! [SIGALRM received] ***
 Timeout for 1s has been (re)armed...
 *** Timeout! [SIGALRM received] ***
 Timeout for 1s has been (re)armed...
 *** Timeout! [SIGALRM received] ***
 Timeout for 1s has been (re)armed...
 *** Timeout! [SIGALRM received] ***
 Timeout for 1s has been (re)armed...
^C
$

Timers Chapter 13

[479]

The alarm now repeats (every second in the above example run). Also notice how we
just kill the process with a keyboard Ctrl + C (delivering the SIGINT, which, as we
haven't trapped it, just terminates the foreground process.

Alarm API – the downer
Now that we have looked at using the (simplistic) alarm(2) API, it's important to
realize that it has several downsides:

A very coarse granularity timeout (a minimum of one second, which is a
very long time on a modern processor!)
Running more than a single timeout in parallel is not possible
It's not possible to query or modify the timeout value at a later
point—attempting to do so will cancel it
Mixing the following APIs can result in problems/conflicts (in the
following, the latter API may be internally implemented using the former)

alarm(2) and setitimer(2)
alarm(2) and sleep(3)

It's always possible that the timeout occurs later than expected (overrun)

As we progress through this chapter, we will find more powerful functions that can
overcome most of these issues. (Well, to be fair, the poor alarm(2) does have an
upside: for simplistic purposes, it's really quick and easy to use!)

Interval timers
The interval timer APIs allow a process to set up and query a timer that can be
programmed to auto-recur at a fixed time interval. The relevant system calls are these:

#include <sys/time.h>
int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *new_value,
 struct itimerval *old_value);

Quite obviously, the setitimer(2) is used to set up a new timer;
the getitimer(2) can be used to query it, and returns the time remaining.

Timers Chapter 13

[480]

The first parameter to both is which—it specifies the type of timer to use. Linux
allows us to use three types of interval timer:

ITIMER_REAL: Use this timer type to count down in real-time, which is also
called wall clock time. Upon timer expiry, the kernel sends the signal
SIGALRM to the calling process.
ITIMER_VIRTUAL: Use this timer type to count down in virtual time; that
is, the timer only counts down when the calling process (all threads) is
running in user space on the CPU. Upon timer expiry, the kernel sends the
signal SIGVTALRM to the calling process.
ITIMER_PROF: Use this timer type to count down in virtual time too; this
time, the timer counts down when the calling process (all threads) is
running in both user-space and/or kernel space on the CPU. Upon timer
expiry, the kernel sends the signal SIGPROF to the calling process.

Thus, to have a timer that should expire when a certain amount of time has expired,
use the first one; one can use the remaining two types to profile a process's CPU
usage. Only one timer of each of the preceding types can be used at a time (more on
this is to follow).

The next parameter to examine is the itimerval data structure (and its
internal timeval structure members; both are defined in the time.h header):

struct itimerval {
 struct timeval it_interval; /* Interval for periodic timer */
 struct timeval it_value; /* Time until next expiration */
};

struct timeval {
 time_t tv_sec; /* seconds */
 suseconds_t tv_usec; /* microseconds */
};

(FYI, both the internal time_t and the suseconds_t typedefs translate to a
long (integer) value.)

Timers Chapter 13

[481]

As we can see, this—the second parameter to setitimer(2), which is a pointer to
struct itimerval called new_value—is where we specify the new timer's expiration
times, such as:

In the it_value structure member, place the initial timeout value. This
value decreases as the timer runs down, and, at some point, will hit zero; at
this point, the appropriate signal corresponding to the timer type will be
delivered to the calling process.
Subsequent to the previous step, the it_interval structure member is
checked. If it is non-zero, this value will be copied into
the it_value structure, causing the timer to effectively auto-reset and run
again for that amount of time; in other words, this is how the API fulfills
the interval timer role.

Also, clearly, the time expiry is expressed in seconds:microseconds.

For example, if we wanted a repeating (interval) timeout every second, we need to
initialize the structures as follows:

struct itimerval mytimer;
memset(&mytimer, 0, sizeof(struct itimerval));
mytimer.it_value.tv_sec = 1;
mytimer.it_interval.tv_sec = 1;
setitimer(ITIMER_REAL, &mytimer, 0);

(Error checking code is not shown in the previous code for clarity.) Precisely this is
done in the simple digital clock demo program that follows.

A few special cases exist:

To cancel (or disarm) a timer, set both fields of the it_timer structure to
zero and invoke the setitimer(2) API.
To create a single-shot timer—that is, one that expires exactly
once—initialize both fields of the it_interval structure to zero, and then
invoke the setitimer(2) API.
If the third parameter to setitimer(2) is non-NULL, the previous timer
value is returned here (as if the getitmer(2) API were invoked).

As is usual, the pair of system calls returns 0 on success and -1 on failure
(with errno set appropriately).

Timers Chapter 13

[482]

As there is one signal generated upon expiry of each type of timer, one can only have
one instance of each timer type running concurrently within a given process. If we try
and set up multiple timers of the same type (for example, ITIMER_REAL), it's always
possible that multiple instances of the same signal (in this example, SIGALRM) will be
delivered to the process—and to the same handler routine—simultaneously. As we
learned in Chapter 11, Signaling - Part I, and Chapter 12, Signaling - Part II , regular
Unix signals cannot be queued, and signal instances might thus be dropped. In effect,
it is best (and safest) to work concurrently with one of each type of timer in a given
process.

The following table contrasts the simple alarm(2) system call API that we saw
earlier with the more powerful [set|get]itimer(2) interval timer APIs that we
have just seen:

Feature Simple timer [alarm(2)] Interval timers [setitimer(2),
getitimer(2)]

Granularity
(resolution) Very coarse; 1 second

Fine granularity; in theory, 1 microsecond
(in practice, typically milliseconds prior to
2.6.16 HRT[1])

Query time
remaining Not possible Yes, with getitimer(2)

Modify timeout Not possible Yes
Cancel timeout Yes Yes

Auto-repeating No, but it can be set
up manually Yes

Multiple timers Not possible
Yes, but at most three—one of each type
(real, virtual, and profiling)—per process

Table 1 : A quick comparison of the simple alarm(2) API and interval timers

[1] High-resolution timers (HRT); implemented in Linux 2.6.16 onward. See a link to
a detailed paper on this in the Further reading section on the GitHub repository.

What is knowledge without application? Let's try out the interval timer API.

Timers Chapter 13

[483]

A simple CLI digital clock
We humans are quite used to seeing a clock tick away, one second at a time. Why not
write a quick C program that mimics a (very simplistic command-line) digital clock
that must show us the correct date and time every single second! (Well, personally, I
prefer seeing the old-fashioned analog clocks, but, hey, this book does not go into the
closely held secret mantras to perform graphical drawing with X11.)

How we achieve this is quite simple, really: we set up an interval timer that times out
every one second. The program (ch13/intv_clksimple.c) which demonstrates the
basic usage of the quite powerful setitimer(2) API follows.

For readability, only key parts of the source code are displayed in
the following; to view the complete source code, build it, and run it,
the entire tree is available for cloning from GitHub here: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

The signal trapping and set up of the single-second interval timer is shown as follows:

static volatile sig_atomic_t opt;
[...]
int main(int argc, char **argv)
{
 struct sigaction act;
 struct itimerval mytimer;
[...]
 memset(&act, 0, sizeof(act));
 act.sa_handler = ticktock;
 sigfillset(&act.sa_mask); /* disallow all signals while handling
*/
 /*
 * We deliberately do *not* use the SA_RESTART flag;
 * if we do so, it's possible that any blocking syscall gets
 * auto-restarted. In a timeout context, we don't want that
 * to happen - we *expect* a signal to interrupt our blocking
 * syscall (in this case, the pause(2)).
 * act.sa_flags = SA_RESTART;
 */
 if (sigaction(SIGALRM, &act, 0) < 0)
 FATAL("sigaction on SIGALRM failed");
 /* Setup a single second (repeating) interval timer */
 memset(&mytimer, 0, sizeof(struct itimerval));
 mytimer.it_value.tv_sec = 1;
 mytimer.it_interval.tv_sec = 1;
 if (setitimer(ITIMER_REAL, &mytimer, 0) < 0)

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Timers Chapter 13

[484]

 FATAL("setitimer failed\n");
 while (1)
 (void)pause();

Notice the self-explanatory comment on why we typically do not use the
SA_RESTART flag when working with signals that deliver timeouts.

Setting up the interval timer is easy: we initialize the itimerval structure such that
we set the seconds members—of the internal timeval structures—to 1 (we just leave
the microseconds as zero), and issue the setitimer(2) system call. The timer
is armed—it starts counting down. When a second has elapsed, the kernel will deliver
the signal SIGALRM to the process (as the timer type is ITIMER_REAL). The signal
handler routine ticktock will perform the task of obtaining and printing out the
current timestamp (see its code as follows). The interval component being set to 1, the
timer will automatically and repeatedly fire every single second.

static void ticktock(int signum)
{
 char tmstamp[128];
 struct timespec tm;
 int myerrno = errno;

 /* Query the timestamp ; both clock_gettime(2) and
 * ctime_r(3) are reentrant-and-signal-safe */
 if (clock_gettime(CLOCK_REALTIME, &tm) < 0)
 FATAL("clock_gettime failed\n");
 if (ctime_r(&tm.tv_sec, &tmstamp[0]) == NULL)
 FATAL("ctime_r failed\n");

 if (opt == 0) {
 if (write(STDOUT_FILENO, tmstamp, strlen(tmstamp)) < 0)
 FATAL("write failed\n");
 } else if (opt == 1) {
 /* WARNING! Using the printf / fflush here in a signal handler
is
 * unsafe! We do so for the purposes of this demo app only; do
not
 * use in production.
 */
 tmstamp[strlen(tmstamp) - 1] = '\0';
 printf("\r%s", tmstamp);
 fflush(stdout);
 }
 errno = myerrno;
}

Timers Chapter 13

[485]

The previous signal handler routine gets invoked once a second, every second (as, of
course, the kernel delivers the signal SIGALRM to the process upon timer expiry). The
job of this routine is clear: it must query and print the current date-time; that is, the
timestamp.

Obtaining the current time
Querying the current time is, at first glance, straightforward. Many programmers use
the following API sequence to achieve it:

time(2)
localtime(3)
strftime(3)

We do not. Why is this? Recall our discussion on the async-signal-safe (reentrant)
functions in the first of Chapters 11, Signaling - Part I, (within the section Reentrant
Safety and Signaling). Of the aforementioned three APIs, only the time(2) API is
considered signal-safe; the other two are not (that is, they should not be used within a
signal handler). The relevant man page (signal-safety(7)) confirms this.

Hence, we use documented async-signal-safe APIs-the time(2), clock_gettime(2)
and ctime_r(3)—to perform the role of obtaining the timestamp safely. A quick
peek at them follows.

The clock_gettime(2) system call's signature is this:

int clock_gettime(clockid_t clk_id, struct timespec *tp);

The first parameter is the clock source or clock type to use; the fact is that the Linux
OS (and glibc) supports many different built-in types of clocks; among them are the
following:

CLOCK_REALTIME: A system-wide wall-clock clock (in real-time); use this
to query the timestamp.
CLOCK_MONOTONIC: Monotonic clocks count in one direction (up,
obviously; travelling backwards through time is a feature still being
worked upon by mad (or are they?) scientists). It usually counts the time
elapsed since the system boot.
CLOCK_BOOTTIME (from Linux 2.6.39): This is pretty much the same
as CLOCK_MONOTONIC, except that it takes into account time the system
has been suspended.

Timers Chapter 13

[486]

CLOCK_PROCESS_CPUTIME_ID: A measure of CPU time spent on CPU by
all threads of a given process (via PID; use the clock_getcpuclockid(3)
API to query it).
CLOCK_THREAD_CPUTIME_ID: A measure of CPU time spent on CPU by a
specific thread (use the pthread_getcpuclockid(3) API to query it).

There are more; please refer the man page on clock_gettime(2) for details. For our
current purposes, CLOCK_REALTIME is the one we will go with.

The second parameter to clock_gettime(2) is a value-result style one; in effect, this
is a return value. Upon a successful return, it will hold the timestamp in
the timeval structure; the structure is defined in the time.h header, and holds the
current timestamp in seconds and nanoseconds:

struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

We shall be quite satisfied with the value in seconds.

But how exactly is this value in seconds and nanoseconds interpreted? It's actually
very common in the Unix universe: Unix systems store time as the number of seconds
elapsed since January 1, 1970 midnight (00:00)—think of it as Unix's birth! This time
value is called time since the Epoch or Unix time. Okay, so it's going to be a rather
large number of seconds today, right? So how does one express it in a human-
readable format? We're glad you asked, as that's precisely the job of
the ctime_r(3) API:

char *ctime_r(const time_t *timep, char *buf);

The first parameter will be (a pointer to) the time_t member we got returned from
the clock_gettime(2) API; again, the second parameter is a value result-style
return—on successful completion, it will hold the human-readable timestamp! Note
that it's the application programmer's job to allocate memory for the buffer buf (and
subsequently free it as required). In our code, we just use a statically allocated local
buffer. (Of course, we perform error checking on all APIs.)

Finally, depending on the opt value (passed by the user), we either use the
(safe) write(2) system call or the (unsafe!) printf(3)/fflush(3) APIs to print out
the current time.

Timers Chapter 13

[487]

The code printf("\r%s", tmstamp); has the printf(3) using
the \r format—this is the carriage return, which effectively brings
the cursor back to the beginning of the same line. This gives the
appearance of a clock constantly updating. This is nice, except for
the fact that using printf(3) itself is signal-unsafe!

Trial runs
Here is a trial run, first with the signal-safe write(2) method:

$./intv_clksimple
Usage: ./intv_clksimple {0|1}
 0 : the Correct way (using write(2) in the signal handler)
 1 : the *Wrong* way (using printf(3) in the signal handler) *@your
risk*
$./intv_clksimple 0
Thu Jun 28 17:52:38 2018
Thu Jun 28 17:52:39 2018
Thu Jun 28 17:52:40 2018
Thu Jun 28 17:52:41 2018
Thu Jun 28 17:52:42 2018
^C
$

And now, here's one with the signal-unsafe printf(3)/fflush(3) method:

$./intv_clksimple 1
 WARNING [Using printf in signal handler]
Thu Jun 28 17:54:53 2018^C
$

It looks nicer, what with the timestamp being continually refreshed on the same line,
but is unsafe. This book cannot show you, dear reader, the pleasant effect of the
carriage return- style printf("\r..."). Do try it out on your Linux system to see
this for yourself.

Timers Chapter 13

[488]

We understand that using the printf(3) and fflush(3) APIs
within a signal handler is bad programming practice—they are not
async-signal safe.

But what if the low-level design specification demands that we use
exactly these APIs? Well, there's always a way: why not redesign the
program to use one of the synchronous blocking APIs to wait upon
and catch signal(s) wherever appropriate (Remember, when
trapping fatal signals such as SIGILL, SIGFPE, SIGSEGV, and
SIGBUS, it's recommended to use the usual async sigaction(2)
API): the sigwait(3), sigwaitinfo(2), sigtimedwait(2) or
even the signalfd(2) API (that we covered in Chapter
12, Signaling - Part II, section Synchronously blocking for signals via the
sigwait* APIs). We leave this as an exercise for the reader.

A word on using the profiling timers
We have explored, in some detail, the usage of the ITIMER_REAL timer type—which
counts down in real-time. What about using the other two—the ITIMER_VIRTUAL
and ITIMER_PROF—timers? Well, the code styling is very similar; there's nothing new
there. The catch that a developer who is new to this faces is this: the signal(s) may
never seem to arrive at all!

Let's take a simple code snippet using the ITIMER_VIRTUAL timer:

static void profalrm(int signum)
{
 /* In production, do Not use signal-unsafe APIs like this! */
 printf("In %s:%d sig=%d\n", __func__, __LINE__, signum);
}

[...]

// in main() ...

struct sigaction act;
struct itimerval t1;

memset(&act, 0, sizeof(act));
act.sa_handler = profalrm;
sigfillset(&act.sa_mask); /* disallow all signals while handling */
if (sigaction(SIGPROF, &act, 0) < 0)
 FATAL("sigaction on SIGALRM failed");

Timers Chapter 13

[489]

[...]

memset(&t1, 0, sizeof(struct itimerval));
t1.it_value.tv_sec = 1;
t1.it_interval.tv_sec = 1;
if (setitimer(ITIMER_PROF, &t1, 0) < 0)
 FATAL("setitimer failed\n");

while (1)
 (void)pause();

When run, no output appears—the timer is seemingly not working.

That's really not the case—it is working, but the catch is this: the process merely
sleeps via the pause(2). While sleeping, its not running on CPU; hence, the kernel
has hardly decremented the (aforementioned, second-by-second) interval timer at all!
Remember, both the ITIMER_VIRTUAL and ITIMER_PROF timers only decrement (or
count down), when the process is on CPU. Thus, the one-second timer never actually
expires, and the SIGPROF signal is never sent.

So, now, the way to solve the previous issue becomes obvious: let's introduce some
CPU processing into the program and reduce the timeout value. Our
trusty DELAY_LOOP_SILENT macro (see source file common.h) has the process spin
over some silly logic—the point being that it becomes CPU-intensive. Also, we have
reduced the timer expiry to be expire for every 10 ms the process spends on the CPU:

[...]
memset(&t1, 0, sizeof(struct itimerval));
t1.it_value.tv_sec = 0;
t1.it_value.tv_usec = 10000; // 10,000 us = 10 ms
t1.it_interval.tv_sec = 0;
t1.it_interval.tv_usec = 10000; // 10,000 us = 10 ms
if (setitimer(ITIMER_PROF, &t1, 0) < 0)
 FATAL("setitimer failed\n");

while (1) {
 DELAY_LOOP_SILENT(20);
 (void)pause();
}

Timers Chapter 13

[490]

This time, upon running, we see this:

In profalrm:34 sig=27
In profalrm:34 sig=27
In profalrm:34 sig=27
In profalrm:34 sig=27
In profalrm:34 sig=27
...

The profiling timer is indeed working.

The newer POSIX (interval) timers
mechanism
Earlier in this chapter, we saw in Table 1 : A quick comparison of the simple alarm(2) API
and interval timers, that, although the interval timer [get|set]itimer(2) APIs are
superior to the simplistic alarm(2) API, they still lack important modern features.
The modern POSIX (interval) timer mechanism addresses several shortcomings, some
of which are as follows:

The resolution is improved a thousand-fold with the addition
of nanosecond granularity timers (with the addition of an arch-
independent HRT mechanism, which is integrated into 2.6.16 Linux kernel
onward).
A generic sigevent(7) mechanism—which is a way to handle
asynchronous events such as timer expiry (our use case), AIO request
completion, delivery of a message, and so on—to handle timer expiry. We
are now not forced to tie timer expiry to the signaling mechanism.
Importantly, a process (or thread) can now set up and manage any number
of timers.
Well, ultimately, there's always an upper limit: in this case, it's the resource
limit RLIMIT_SIGPENDING. (More technically, the fact is that the OS
allocates a queued real-time signal for every timer created, which is thus
the limit.)

These points are fleshed out as follows, so read on.

Timers Chapter 13

[491]

Typical application workflow
The design approach (and APIs used) to set up and use a modern POSIX timer
follows; the sequence is typically in the order shown here:

Signal(s) setup.
Assuming the notification mechanism being used is a signal,
first trap the signal(s) via sigaction(2).

Create and initialize the timer(s).
Decide on the clock type (or source) to use to measure the
elapsed time.
Decide on the timer-expiry event-notification mechanism to
be used by your application—typically, whether to use (the
usual) signals or a (newly spawned) thread.
The aforementioned decisions are implemented via
the timer_create(2) system call; thereby it allows one to
create a timer, and, of course, we can create multiple timers
by invoking it multiple times.

Arm (or disarm) a particular timer using timer_settime(2). To arm a
timer means to effectively start it running—counting down; disarming a
timer is the opposite—stopping it in its tracks.
To query the time remaining (to expiration) in a particular timer (and its
interval setting) use timer_gettime(2).
Check the overrun count of a given timer using timer_getoverrun(2).
Delete (and obviously disarm) a timer using timer_delete(2).

Creating and using a POSIX (interval) timer
As seen previously, we use the powerful timer_create(2) system call to create a
timer for the calling process (or thread, for that matter):

#include <signal.h>
#include <time.h>
int timer_create(clockid_t clockid, struct sigevent *sevp,
 timer_t *timerid);
Link with -lrt.

Timers Chapter 13

[492]

We have to link with the real time (rt) library to make use of this
API. The librt library implements the POSIX.1b Realtime
Extensions to POSIX interfaces. Find a link to the librt man page
in the Further Reading section on the GitHub repository.

The first parameter passed to timer_create(2) informs the OS of the clock
source to be used; we avoid repetition of the matter and refer the reader to the section
Obtaining the current time covered earlier in the chapter, in which we enumerated
several of the commonly used clock sources in Linux. (Also, as noted there, one
can refer to the man page on clock_gettime(2) for additional details.)

The second parameter passed to timer_create(2) is interesting: it provides a
generic way to specify the timer-expiry event-notification mechanism to be used by
your application! To understand this, let's take a look at the sigevent structure:

#include <signal.h>

union sigval { /* Data passed with notification */
 int sival_int; /* Integer value */
 void *sival_ptr; /* Pointer value */
 };

struct sigevent {
 int sigev_notify; /* Notification method */
 int sigev_signo; /* Notification signal */
 union sigval sigev_value; /* Data passed with notification */
 void (*sigev_notify_function) (union sigval);
 /* Function used for thread notification (SIGEV_THREAD) */
 void *sigev_notify_attributes; /* Attributes for notification
 thread(SIGEV_THREAD) */
 pid_t sigev_notify_thread_id;
 /* ID of thread to signal (SIGEV_THREAD_ID) */
 };

(Recall that we have already come across and used the union sigval mechanism to
pass along a value to a signal handler in Chapter 11, Signaling - Part I, and Chapter
12, Signaling - Part II.)

Timers Chapter 13

[493]

 Valid values for the sigev_notify member are enumerated in the following:

Notification method
: sigevent.sigev_notify Meaning

SIGEV_NONE Nothing done upon event arrival—a null notification

SIGEV_SIGNAL
Notification by sending the process the signal
specified in the sigev_signo member

SIGEV_THREAD

Notification by invoking (actually, spawning) a
(new) thread whose function
is sigev_notify_function, the parameter
passed to it is sigev_value, and if
sigev_notify_attributes is non-NULL it
should be a pthread_attr_t structure for the
new thread. (Readers, note that we shall cover
multithreading in detail in subsequent chapters.)

SIGEV_THREAD_ID

Linux-specific and used to specify a kernel
thread that will run upon timer expiry; realistically,
only threading libraries make use of this
functionality.

Table 2 : Using the sigevent(7) mechanism

In the first case, SIGEV_NONE, the timer can always be manually checked for expiry
via the timer_gettime(2) API.

The more interesting and common case is the second one, SIGEV_SIGNAL. Here, a
signal is delivered to the process whose timer has expired; the process's
sigaction(2) handler's siginfo_t data structure is populated appropriately; for
our use case—that of using a POSIX timer—this is as follows:

si_code (or signal origin field) is set to the value SI_TIMER to denote that
a POSIX timer has expired (look up the other possibilities within the man
page on sigaction)
si_signo is set to the signal number (sigev_signo)
si_value will be the value set in the union sigev_value

For our purposes (in this chapter, at least), we shall only consider the case of setting
the sigevent notification type to the value SIGEV_SIGNAL (and thus setting the
signal to deliver in the sigev_signo member).

Timers Chapter 13

[494]

The third parameter passed to timer_create(2), timer_t *timerid, is a (now
common) value result-style one; it is, in effect, the return ID of the newly created
POSIX timer! Of course, the system call returns -1 on failure (and errno is set
accordingly), and 0 on success. The timerid is the handle to the timer—we shall
typically pass it as a parameter in the subsequent POSIX timer APIs to specify a
particular timer to act upon.

The arms race – arming and disarming a POSIX timer
As mentioned previously, we use the timer_settime(2) system call to either arm
(start) or disarm (stop) a timer:

#include <time.h>
int timer_settime(timer_t timerid, int flags,
 const struct itimerspec *new_value,
 struct itimerspec *old_value);
Link with -lrt.

As one can have multiple concurrent POSIX timers running simultaneously, thus we
need to specify exactly which timer we are referring to; this is done via the first
parameter timer_id, which is the timer's ID, and the effective return of the
previously seen timer_create(2) system call.

The important data structure employed here is the itimerspec; its definition is as
follows:

struct timespec {
 time_t tv_sec; /* Seconds */
 long tv_nsec; /* Nanoseconds */
};

struct itimerspec {
 struct timespec it_interval; /* Timer interval */
 struct timespec it_value; /* Initial expiration */
};

Timers Chapter 13

[495]

So, it should be quite clear: within the third parameter, a pointer to
the itimerspec structure called, new_value:

We can specify the time to the (theoretical) resolution to a single
nanosecond! Note that the time is measured with respect to the clock
source that was specified by the timer_create(2) API.

This reminds us, one can always query the clock resolution
with the clock_getres(2) API.

With respect to initializing the it_value (timespec structure):
Set it to a non-zero value to specify the initial timer-expiry
value.
Set it to zero to specify that we are disarming (stopping) the
timer.
What if this structure is holding a positive value already?
Then it's overwritten, and the timer is re-armed with the new
values.

Not only that, but, by initializing the it_interval (timespec structure) to
a non-zero value, we will set up a repeating - interval - timer (hence the
name POSIX interval timer); the time interval being the value it is
initialized to. The timer will continue to fire indefinitely, or until it's
disarmed or deleted. If, instead, this structure is zeroed out, the timer
becomes a one-shot timer (firing just once when the time specified in the
it_value member elapses).

In general, set the flags value to 0—the man page on timer_settime(2) specifies
an additional flag that could be used. Finally, the fourth
parameter old_value (again, a pointer to struct itimerspec) works as follows:

If 0, it is simply ignored.
If non-zero, it is a means to query the time remaining to the expiry of the
given timer.
The time to expiry will be returned in the old_value->it_value member
(in seconds and nanoseconds), and the interval it was set will be returned
in the old_value->it_interval member.

As expected, the return value on success is 0 and is -1 on failure (with errno being
set appropriately).

Timers Chapter 13

[496]

Querying the timer
A given POSIX timer can be queried at any point to fetch the time remaining to timer
expiry via the timer_gettime(2) system call API; its signature is as follows:

#include <time.h>
int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

Quite obviously, the first parameter passed to timer_gettime(2) is the ID of the
particular timer to query, and the second parameter passed is the value result-style
return—the time to expiry is returned in it (within the structure of type itimerspec).

As we know from preceding, the struct itimerval itself consists of two data
structures of type timespec; the time remaining to timer expiry will be placed in
the curr_value->it_value member. If this value is 0, it implies that the timer has
been stopped (disarmed). If the value placed in the
curr_value->it_interval member is positive, it indicates the interval at which
the timer will repeatedly fire (after the first timeout); if 0, it implies the timer is
a single-shot one (with no repeating timeouts).

Example code snippet showing the workflow
In the following, we display code snippets from our sample program ch13/react.c
(see more on this rather interesting reaction time game app in the following section),
which clearly illustrates the sequence of steps previously described.

Signal(s) set up:
Assuming the notification mechanism being used is a signal,
first trap the signal(s) via sigaction(2) as follows:

struct sigaction act;
[...]
// Trap SIGRTMIN : delivered on (interval) timer expiry
memset(&act, 0, sizeof(act));
act.sa_flags = SA_SIGINFO | SA_RESTART;
act.sa_sigaction = timer_handler;
if (sigaction(SIGRTMIN, &act, NULL) == -1)
 FATAL("sigaction SIGRTMIN failed\n");

Timers Chapter 13

[497]

Create and initialize the timer(s):
Decide on the clock type (or source) to use to measure the
elapsed time:

We use the real-time clock CLOCK_REALTIME
the system-wide wall clock time, as our timer
source.

Decide on the timer-expiry event-notification mechanism to
be used by your application—typically, whether to use (the
usual) signals or a (newly spawned) thread.

We use signaling as the timer-expiry event-
notification mechanism.

The aforementioned decisions are implemented via
the timer_create(2) system call, which allows one to
create a timer; of course, we can create multiple timers by
invoking it multiple times:

struct sigevent sev;
[...]
/* Create and init the timer */
sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIGRTMIN;
sev.sigev_value.sival_ptr = &timerid;
if (timer_create(CLOCK_REALTIME, &sev, &timerid) == -1)
 FATAL("timer_create failed\n");

Arm (or disarm) a particular timer using the timer_settime(2) API. To
arm a timer means to effectively start it running, or counting down;
disarming a timer is the opposite—stopping it in its tracks:

static struct itimerspec itv; // global
[...]
static void arm_timer(timer_t tmrid, struct itimerspec *itmspec)
{
 VPRINT("Arming timer now\n");
 if (timer_settime(tmrid, 0, itmspec, NULL) == -1)
 FATAL("timer_settime failed\n");
 jumped_the_gun = 0;
}
[...]
printf("Initializing timer to generate SIGRTMIN every %ld ms\n",
 freq_ms);
memset(&itv, 0, sizeof(struct itimerspec));
itv.it_value.tv_sec = (freq_ms * 1000000) / 1000000000;

Timers Chapter 13

[498]

itv.it_value.tv_nsec = (freq_ms * 1000000) % 1000000000;
itv.it_interval.tv_sec = (freq_ms * 1000000) / 1000000000;
itv.it_interval.tv_nsec = (freq_ms * 1000000) % 1000000000;
[...]
arm_timer(timerid, &itv);

To query the time remaining (to expiration) in a particular timer (and its
interval setting), use timer_gettime(2)

This is not performed in this particular application.

Check the overrun count of a given timer using timer_getoverrun(2)

An explanation of what this API does, and why we might need it, is provided in the
following section, Figuring the overrun.

/*
 * The realtime signal (SIGRTMIN) - timer expiry - handler.
 * WARNING! Using the printf in a signal handler is unsafe!
 * We do so for the purposes of this demo app only; do Not
 * use in production.
 */
static void timer_handler(int sig, siginfo_t * si, void *uc)
{
 char buf[] = ".";

 c++;
 if (verbose) {
 write(2, buf, 1);
#define SHOW_OVERRUN 1
#if (SHOW_OVERRUN == 1)
 {
 int ovrun = timer_getoverrun(timerid);
 if (ovrun == -1)
 WARN("timer_getoverrun");
 else {
 if (ovrun)
 printf(" overrun=%d [@count=%d]\n", ovrun, c);
 }
 }
#endif
 }
}

Timers Chapter 13

[499]

Delete (and obviously disarm) a timer using timer_delete(2)

This is not performed in this particular application (as the process exit will, of course,
delete all timers associated with the process.)

As the man page on timer_create(2) informs us, a few more points to note on
POSIX (interval) timers are as follows:

Upon fork(2), all timers get auto-disarmed; in other words, timers are not
going to continue towards expiry in the child process.
Upon execve(2), all timers are deleted and will thus not be visible in the
successor process.
Something useful of note is that (from the Linux 3.10 kernel onward)
the proc filesystem can be used to query the timer(s) a process owns; just
lookup cat the pseudo-file /proc/<pid>/timers to see them (if they
exist).
From the Linux 4.10 kernel onward, POSIX timers are a kernel-configurable
option (at kernel build time, they are enabled by default).

As we have repeatedly mentioned, the man pages are a very precious and useful
resource that is available to developers; again, the man page
on timer_create(2) (https:/ /linux. die. net/man/ 2/ timer_ create) provides
a nice example program; we urge the reader to refer to the man page, read it, build it
and try the program out.

Figuring the overrun
Let's say we use signaling as the event-notification mechanism to tell us that a POSIX
timer has expired, and let's say that the timer-expiry period is a very small amount of
time (say, a few tens of microseconds); for example, 100 microseconds. This implies
that every 100 microseconds the signal will be delivered to the target process!

In these circumstances, it's quite reasonable to expect that the process, being delivered
the same ever-repeating signal at such a high rate, cannot possibly handle it. We also
know from our knowledge on signaling that, in cases precisely like this, using a real-
time signal would be far superior to using a regular Unix signal, as the OS has the
ability to queue real-time signals but not regular signals—they (regular signals) will
be dropped and only a single instance preserved.

https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create
https://linux.die.net/man/2/timer_create

Timers Chapter 13

[500]

So, we shall use a real-time signal (say, SIGRTMIN) to denote timer expiry; however,
with a really tiny timer expiry (for example, as we said, 100 microseconds), even this
technique will not suffice! The process will certainly be overrun by the rapid delivery
of the same signal. For precisely these situations, one can retrieve the actual number
of overruns that occurred between the timer expiry and the actual signal processing.
How do we do this? There are two ways:

One is via the signal handler's siginfo_t->_timer->si_overrun
member (implying we specified the SA_SIGINFO flag when trapping the
signal with sigaction)—this is the overrun count.
However, this method is Linux-specific (and non-portable). A simpler,
portable method of obtaining the overrun count is by using
the timer_getoverrun(2) system call. The downside here being that
system calls have far more overhead than a memory lookup; as in life,
when there's an upside, there's also a downside.

POSIX interval timers – example programs
Programming is ultimately learned and understanding is deeply internalized by
doing, not simply seeing or reading. Let's take our own advice and cut a couple of
decent code examples, to illustrate using the POSIX (interval) timer APIs. (Of course,
dear reader, it implies you do the same!)

The first sample program is a small CLI game of "how quickly can you react"? The
second sample program is a simple implementation of a run-walk timer. Read on for
the gory details.

The reaction – time game
We all understand that modern computers are fast! Of course, that's a very relative
statement. How fast, exactly? That's an interesting question.

How fast is fast?
In Chapter 2, Virtual Memory, in the section on the memory pyramid, we saw Table 2:
Memory Hierarchy Numbers. Here, a representative look at the numbers was done—the
typical access speeds for different kinds of memory technologies (for both the
embedded and server space) are enumerated in the table.

Timers Chapter 13

[501]

A quick recap gives us the following in terms of typical memory (and network) access
speeds. Of course, these numbers are only indicative, and the very latest hardware
might well have superior performance characteristics; here, the concept is what's
being focused upon:

CPU registers CPU caches RAM Flash Disk Network roundtrip
300 - 500 ps 0.5 ns (L1) to 20 ns (L3) 50–100 ns 25–50 us 5–10 ms >= 100s of ms

Table 3 : Hardware memory speed summary table

Most of these latency values are so tiny that we, as humans, cannot actually visualize
them (see the information box on average human reaction times further on). So, that
brings up the question. What minimally tiny numbers can we humans even hope to
quite correctly visualize and relate to? The short answer is a few hundred
milliseconds.

Why do we make such a statement? Well, if a computer program told you to react
quick as you can and press a certain keyboard key combination immediately upon
seeing a message, how long would it take? So, what we're really attempting to test
here is the human reaction time to a visual stimulus. Ah, that's what we can
empirically answer by writing this precise program: a reaction timer!

Do note that this simple visual stimulus reaction test is not
considered to be scientific; we completely ignore important delay-
inducing mechanisms such as the computer-system hardware and
software itself. So don't beat yourself up on the results you get when
you try it out!

Our react game – how it works
So, at a high level, here's the step-by-step plan for the program (the actual code is
shown in the following section; we suggest you first read this and then check out the
code):

Create and initialize a simple alarm; program it to expire at a random
time—anywhere between 1 and 5 seconds from the program's start
The moment the alarm expires, do the following:

Arm a POSIX (interval) timer (to the frequency specified in
the first parameter).
Display a message requesting the user to press Ctrl + C on
the keyboard
Take a timestamp (let's call it tm_start).

Timers Chapter 13

[502]

When the user actually presses ^C (Ctrl + C; which we will know, simply,
by trapping SIGINT via sigaction(2)), again, take a timestamp (let's call
it tm_end.
Calculate the user's reaction time (as tm_end - tm_start) and display it.

(Notice how the previous steps follow the Typical application workflow we described
earlier in this chapter.)

Additionally, we ask the user to specify the interval timer's interval in milliseconds
(the first parameter), and an optional verbose option as the second parameter.

Breaking it down further (in more detail), the initialization code performs the
following:

Traps signals via sigaction(2):
SIGRTMIN: We shall use signal notification to specify the
timer expiration; this is the signal generated upon our POSIX
interval timer's expiry.
SIGINT: The signal generated when the user reacts by
pressing the ^C keyboard key combination.
SIGALRM: The signal generated when our initial
random alarm expires

Set up the POSIX interval timer:
Initialize the sigevent structure.
Create the timer (with a real-time clock source)
with timer_create(2).
Initialize the itimerspec structure to the frequency
value specified by the user (in ms)

Then:

Displays a message to the user:

We shall start a timer anywhere between 1 and 5 seconds of
starting this app.

GET READY ...
 [when the "QUICK! Press ^C" message appears, press ^C
quickly as you can]

Timers Chapter 13

[503]

At any random time between 1 and 5 seconds the alarm expires
We enter the SIGALRM handler function

It displays the *** QUICK! Press ^C !!! *** message
It calls timer_settime(2) to arm the timer
It takes the tm_start timestamp (with
the clock_gettime(2) API)
The POSIX interval timer now runs; it expires
every freq_ms milliseconds (the value provided by the
user); when running in verbose mode, we display a . for
each timer expiry

The user, at some point, near or far, reacts and presses Ctrl + C(^C); in the
code for the signal handler for SIGINT, we do the following:

Take the tm_end timestamp (with
the clock_gettime(2) API)
Calculate the delta (the reaction time!) via tm_end -
tm_start, and display it

Exit.

React – trial runs
It is best to see the program in action; of course, the reader would do well (and enjoy
this exercise a whole lot more!) to actually build and try it out for himself/herself:

$./react
Usage: ./react <freq-in-millisec> [verbose-mode:[0]|1]
 default: verbosity is off
 f.e.: ./react 100 => timeout every 100 ms, verbosity Off
 : ./react 5 1 => timeout every 5 ms, verbosity On

How fast can you react!?
Once you run this app with the freq-in-millisec parameter,
we shall start a timer anywhere between 1 and 5 seconds of
your starting it. Watch the screen carefully; the moment
the message "QUICK! Press ^C" appears, press ^C (Ctrl+c
simultaneously)!
Your reaction time is displayed... Have fun!

$

Timers Chapter 13

[504]

We first run it with a 10 millisecond frequency and without verbosity:

$./react 10
Initializing timer to generate SIGRTMIN every 10 ms
[Verbose: N]
We shall start a timer anytime between 1 and 5 seconds from now...

GET READY ...
 [when the "QUICK! Press ^C" message appears, press ^C quickly as you
can]

After a random interval of between 1 and 5 seconds, this message appears and the
user must react:

*** QUICK! Press ^C !!! ***
^C
*** PRESSED ***
 Your reaction time is precisely 0.404794198 s.ns [~= 405 ms,
count=40]
$

Next, with a 10 millisecond frequency and verbose mode on:

$./react 10 1
Initializing timer to generate SIGRTMIN every 10 ms
timer struct ::
 it_value.tv_sec = 0 it_value.tv_nsec = 10000000
 it_interval.tv_sec = 0 it_interval.tv_nsec = 10000000
[SigBlk: -none-]
[Verbose: Y]
We shall start a timer anytime between 1 and 5 seconds from now...

GET READY ...
 [when the "QUICK! Press ^C" message appears, press ^C quickly as you
can]

After a random interval of between 1 and 5 seconds, this message appears and the
user must react:

react.c:arm_timer:161: Arming timer now

*** QUICK! Press ^C !!! *

Timers Chapter 13

[505]

Now the period character,.,appears rapidly, appearing once for every single expiry of
our POSIX interval timer; that is, once every 10 ms in this run.

.....................................^C
*** PRESSED ***
 Your reaction time is precisely 0.379339662 s.ns [~= 379 ms,
count=37]
$

In our previous sample runs, the user took 405 ms and 379 ms to react; as we
mentioned, it's in the hundreds of milliseconds range. Take the challenge—how much
better can you do?

Research findings indicate the following numbers for average
human reaction times:

Stimulus Visual Auditory Touch
Average human reaction time 250 ms 170 ms 150 ms

Source: https://backyardbrains.com/experiments/reactiontime.

We have become used to using phrases such as "in the blink of an
eye" to mean really quickly. Interestingly, how long does it actually
take to blink an eye? Research indicates that it takes an average of
300 to 400 ms!

The react game – code view
Some key functionality aspects are shown as follows; first is the code that sets up the
signal handler for SIGRTMIN and creates the POSIX interval (ch13/react.c):

For readability, only key parts of the source code are displayed in
the following; to view the complete source code, build it, and run it,
the entire tree is available for cloning from GitHub, here: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

static int init(void)
{
 struct sigevent sev;
 struct rlimit rlim;
 struct sigaction act;

https://backyardbrains.com/experiments/reactiontime
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Timers Chapter 13

[506]

 // Trap SIGRTMIN : delivered on (interval) timer expiry
 memset(&act, 0, sizeof(act));
 act.sa_flags = SA_SIGINFO | SA_RESTART;
 act.sa_sigaction = timer_handler;
 if (sigaction(SIGRTMIN, &act, NULL) == -1)
 FATAL("sigaction SIGRTMIN failed\n");

[...]

/* Create and init the timer */
 sev.sigev_notify = SIGEV_SIGNAL;
 sev.sigev_signo = SIGRTMIN;
 sev.sigev_value.sival_ptr = &timerid;
 if (timer_create(CLOCK_REALTIME, &sev, &timerid) == -1)
 FATAL("timer_create failed\n");

 printf("Initializing timer to generate SIGRTMIN every %ld ms\n",
 freq_ms);
 memset(&itv, 0, sizeof(struct itimerspec));
 itv.it_value.tv_sec = (freq_ms * 1000000) / 1000000000;
 itv.it_value.tv_nsec = (freq_ms * 1000000) % 1000000000;
 itv.it_interval.tv_sec = (freq_ms * 1000000) / 1000000000;
 itv.it_interval.tv_nsec = (freq_ms * 1000000) % 1000000000;
[...]

The surprise start is implemented as follows:

/* random_start
 * The element of surprise: fire off an 'alarm' - resulting in SIGALRM
being
 * delivered to us - in a random number between [min..max] seconds.
 */
static void random_start(int min, int max)
{
 unsigned int nr;

 alarm(0);
 srandom(time(0));
 nr = (random() % max) + min;

#define CHEAT_MODE 0
#if (CHEAT_MODE == 1)
 printf("Ok Cheater :-) get ready; press ^C in %ds ...\n", nr);
#endif
 alarm(nr);
}

Timers Chapter 13

[507]

It's invoked as follows:

#define MIN_START_SEC 1
#define MAX_START_SEC 5
[...]
random_start(MIN_START_SEC, MAX_START_SEC);

The signal handler (the function startoff) and associated logic for the alarm (for
SIGALRM) is as follows:

static void arm_timer(timer_t tmrid, struct itimerspec *itmspec)
{
 VPRINT("Arming timer now\n");
 if (timer_settime(tmrid, 0, itmspec, NULL) == -1)
 FATAL("timer_settime failed\n");
 jumped_the_gun = 0;
}

/*
 * startoff
 * The signal handler for SIGALRM; arrival here implies the app has
 * "started" - we shall arm the interval timer here, it will start
 * running immediately. Take a timestamp now.
 */
static void startoff(int sig)
{
 char press_msg[] = "\n*** QUICK! Press ^C !!! ***\n";

 arm_timer(timerid, &itv);
 write(STDERR_FILENO, press_msg, strlen(press_msg));

 //—- timestamp it: start time
 if (clock_gettime(CLOCK_REALTIME, &tm_start) < 0)
 FATAL("clock_gettime (tm_start) failed\n");
}

Timers Chapter 13

[508]

Remember, while the user is lolling around, our POSIX interval timer continues to set
and reset itself at the frequency specified by the user (as the first parameter passed,
which we save in the variable freq_ms); so, every freq_ms milliseconds, our process
will receive the signal SIGRTMIN. Here's its signal handler routine:

static volatile sig_atomic_t gTimerRepeats = 0, c = 0, first_time = 1,
 jumped_the_gun = 1;
[...]
static void timer_handler(int sig, siginfo_t * si, void *uc)
{
 char buf[] = ".";

 c++;
 if (verbose) {
 write(2, buf, 1);
#define SHOW_OVERRUN 1
#if (SHOW_OVERRUN == 1)
 {
 int ovrun = timer_getoverrun(timerid);
 if (ovrun == -1)
 WARN("timer_getoverrun");
 else {
 if (ovrun)
 printf(" overrun=%d [@count=%d]\n", ovrun, c);
 }
 }
#endif
 }
}

When the user does (finally!) press ^C, the signal handler for SIGINT (the
function userpress) is invoked:

static void userpress(int sig)
{
 struct timespec res;

 // timestamp it: end time
 if (clock_gettime(CLOCK_REALTIME, &tm_end) < 0)
 FATAL("clock_gettime (tm_end) failed\n");

 [...]
 printf("\n*** PRESSED ***\n");
 /* Calculate the delta; subtracting one struct timespec
 * from another takes a little work. A retrofit ver of
 * the 'timerspecsub' macro has been incorporated into
 * our ../common.h header to do this.

Timers Chapter 13

[509]

 */
 timerspecsub(&tm_end, &tm_start, &res);
 printf
 (" Your reaction time is precisely %ld.%ld s.ns"
 " [~= %3.0f ms, count=%d]\n",
 res.tv_sec, res.tv_nsec,
 res.tv_sec * 1000 +
 round((double)res.tv_nsec / 1000000), c);
 }
 [...]
 c = 0;
 if (!gTimerRepeats)
 exit(EXIT_SUCCESS);
}

The run:walk interval timer application
This book's author is a self-confessed recreational runner. In my humble opinion,
runners/joggers, especially when starting out (and frequently, even experienced
ones), can benefit from a consistently followed run:walk pattern (the unit is minutes,
typically).

The idea behind this is that running continuously is hard, especially for beginners.
Often, coaches have the newbie runner follow a useful run:walk strategy; run for
some given amount of time, then take a walk break for a given time period,
then repeat—run again, walk again—indefinitely, or until your target distance (or
time) goal is met.

For example, when a beginner runs distances of, say, 5 km or 10 km, (s)he might
follow a consistent 5:2 run:walk pattern; that is, run for 5 minutes, walk for 2 minutes,
keep repeating this, until the run is done. (Ultra-runners, on the other hand, might
prefer something akin to a 25:5 strategy.)

Why not write a run:walk timer application to help out both our budding and serious
runners.

We shall do just that. First, though, from the viewpoint of understanding this
program better, let's imagine the program is written and working—we shall give it a
spin.

Timers Chapter 13

[510]

A few trial runs
When we simply run the program without passing any parameters, the help screen is
displayed:

$./runwalk_timer
Usage: ./runwalk_timer Run-for[sec] Walk-for[sec] [verbosity-
level=0|[1]|2]
 Verbosity Level :: 0 = OFF [1 = LOW] 2 = HIGH
$

As can be seen, the program expects a minimum of two parameters:

The time to run (in seconds) [required]
 The time to walk (in seconds) [required]
 The verbosity level [optional]

The optional third parameter, the verbosity level, allows the user to request more or
less information as the program executes (always a useful way to instrument, and
thus help debug, programs). We provide three possible verbosity levels:

OFF: Nothing besides the required matter is displayed (pass the third
parameter 0)
LOW: The same as for level OFF, plus we use the period character . to show
the elapse of time—every second, a . is printed to stdout [default]
HIGH: The same as for level OFF, plus we show the internal data structure
values, time to timer expiry, and so on (pass the third parameter 2)

Let's first try running at the default verbosity level (LOW), with the following spec:

Run for 5 seconds
Walk for 2 seconds

Okay, okay, we know, you're fitter than that—you can run:walk for longer than 5s:2s.
Forgive us, but here's the thing: for the purpose of the demo, we do not really want to
wait until 5 minutes and then another 2 minutes have elapsed, just to see if it works,
right? (When you're using this app on your run, then please convert minutes to
seconds and go for it!).

Enough said; let's fire up the run:walk POSIX timer for a 5:2 run:walk interval:

$./runwalk_timer 5 2
************* Run Walk Timer *************
 Ver 1.0

Timers Chapter 13

[511]

Get moving... Run for 5 seconds
..... << each "." represents 1 second of elapsed time >>
*** Bzzzz!!! WALK! *** for 2 seconds
..
*** Bzzzz!!! RUN! *** for 5 seconds
.....
*** Bzzzz!!! WALK! *** for 2 seconds
..
*** Bzzzz!!! RUN! *** for 5 seconds
....^C
+++ Good job, bye! +++
$

Yes, it works; we break it off by typing ^C (Ctrl + C).

The preceding trial run was at the default verbosity level of LOW; now let's rerun it
with the same 5:2 run:walk interval, but with the verbosity level set to HIGH by
passing 2 as the third parameter:

$./runwalk_timer 5 2 2
************* Run Walk Timer *************
 Ver 1.0

Get moving... Run for 5 seconds
trun= 5 twalk= 2; app ctx ptr = 0x7ffce9c55270
runwalk: 4.999s << query on time remaining >>
runwalk: 3.999s
runwalk: 2.999s
runwalk: 1.999s
runwalk: 0.999s
its_time: signal 34. runwalk ptr: 0x7ffce9c55270 Type: Run. Overrun: 0

*** Bzzzz!!! WALK! *** for 2 seconds
runwalk: 1.999s
runwalk: 0.999s
its_time: signal 34. runwalk ptr: 0x7ffce9c55270 Type: Walk. Overrun:
0

*** Bzzzz!!! RUN! *** for 5 seconds
runwalk: 4.999s
runwalk: 3.999s
runwalk: 2.999s
runwalk: 1.999s
runwalk: 0.999s
its_time: signal 34. runwalk ptr: 0x7ffce9c55270 Type: Run. Overrun: 0

*** Bzzzz!!! WALK! *** for 2 seconds
runwalk: 1.999s

Timers Chapter 13

[512]

runwalk: 0.999s
its_time: signal 34. runwalk ptr: 0x7ffce9c55270 Type: Walk. Overrun:
0

*** Bzzzz!!! RUN! *** for 5 seconds
runwalk: 4.999s
runwalk: 3.999s
runwalk: 2.999s
^C
+++ Good job, bye! +++
$

The details are revealed; every second, the time remaining on our POSIX timer's
expiry is shown (to the resolution of a millisecond). When the timer does expire, the
OS delivers the real-time signal SIGRTMIN to the process; we enter the signal
handler its_time, then we print out the signal information obtained from the struct
siginfo_t pointer. We receive the signal number (34) and the pointer within the
union si->si_value, which is the pointer to our application context data structure,
so that we can access it without the use of globals (more on this later). (Of course, as
noted several times, it's unsafe to use printf(3) and variants in a signal handler as
they are signal-async-unsafe. We have done it here just as a demo; do not code like
this for production use. A Bzzzz!!! message represents the buzz of the timer going
off, of course; the program instructs the user to proceed with RUN! or
WALK!, accordingly, and the number of seconds to do it for. The whole process
repeats indefinitely.

The low – level design and code
This simple program will allow you to set up the number of seconds to run and to
walk. It will time out accordingly.

In this application, we use a simple one-shot POSIX timer to do the job. We set the
timer to use signal notification as the timer expiry notification mechanism. We set up
a signal handler for a RT signal (SIGRTMIN). Next, we initially set the POSIX timer
to expire after the run period, then, when the signal does arrive in the signal handler,
we reset (re-arm) the timer to expire after the walk period seconds. This
essentially repeats forever, or until the user aborts the program by pressing ^C.

Timers Chapter 13

[513]

For readability, only key parts of the source code are displayed in
the following; to view the complete source code, build it, and run it,
the entire tree is available for cloning from GitHub, here: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

Many real-world applications (indeed, any software) often requires several pieces of
information—the state or application context—to be available to all functions at any
given point in time; in other words, to be global. Ordinarily, one would just declare
them as global (static) variables and proceed. We have a suggestion: why not
encapsulate all of them into a single data structure? In fact, why not make it our own
by typedef-ing a structure. Then we can allocate memory to it, initialize it, and just
pass around its pointer in a manner that does not require it to be global. That would
be efficient and elegant.

// Our app context data structure
typedef struct {
 int trun, twalk;
 int type;
 struct itimerspec *itmrspec;
 timer_t timerid;
} sRunWalk;

In our app, to keep things simple, we just statically allocate memory to (further,
notice that it's a local variable, not global):

int main(int argc, char **argv)
{
 struct sigaction act;
 sRunWalk runwalk;
 struct itimerspec runwalk_curval;
[...]

The initialization work is carried out here:

/*————————— Our POSIX Timer setup
 * Setup a 'one-shot' POSIX Timer; initially set it to expire upon
 * 'run time' seconds elapsing.
 */
static void runwalk_timer_init_and_arm(sRunWalk * ps)
{
 struct sigaction act;
 struct sigevent runwalk_evp;

 assert(ps);

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Timers Chapter 13

[514]

 act.sa_sigaction = its_time;
 act.sa_flags = SA_SIGINFO;
 sigfillset(&act.sa_mask);
 if (sigaction(SIGRTMIN, &act, 0) < 0)
 FATAL("sigaction: SIGRTMIN");
 memset(ps->itmrspec, 0, sizeof(sRunWalk));
 ps->type = RUN;
 ps->itmrspec->it_value.tv_sec = ps->trun;

 runwalk_evp.sigev_notify = SIGEV_SIGNAL;
 runwalk_evp.sigev_signo = SIGRTMIN;
 // Pass along the app context structure pointer
 runwalk_evp.sigev_value.sival_ptr = ps;

 // Create the runwalk 'one-shot' timer
 if (timer_create(CLOCK_REALTIME, &runwalk_evp, &ps->timerid) < 0)
 FATAL("timer_create");

 // Arm timer; will exire in ps->trun seconds, triggering the RT
signal
 if (timer_settime(ps->timerid, 0, ps->itmrspec, NULL) < 0)
 FATAL("timer_settime failed");
}
[...]
runwalk_timer_init_and_arm(&runwalk);
[...]

In the preceding code, we do the following:

Trap the real-time signal (SIGRTMIN) (delivered upon timer expiry).
Initialize our app context run:walk data structure:

In particular, we set the type to run and the timeout value
(seconds) to the time passed by the user in the first
parameter.

The timer-expiry event-notification mechanism is selected as signaling via
the sigev_notify member of our sigevent structure.

It is useful to set the data passed along via
the sigev_value.sival_ptr member as the pointer to our
app context; this way, we can always gain access to it within
the signal handler (eliminating the need to keep it global).

Create the POSIX timer with the real-time clock source, and set it's ID to
the timerid member of our app context runwalk structure

Arm—or start—the timer. (Recall, it's been initialized to
expire in run seconds.)

Timers Chapter 13

[515]

In our preceding trial run, the run is set for 5 seconds, so, 5 seconds from the start, we
shall asynchronously enter the signal handler for SIGRTMIN, its_time, as shown
here:

static void its_time(int signum, siginfo_t *si, void *uctx)
{
 // Gain access to our app context
 volatile sRunWalk *ps = (sRunWalk *)si->si_value.sival_ptr;

 assert(ps);
 if (verbose == HIGH)
 printf("%s: signal %d. runwalk ptr: %p"
 " Type: %s. Overrun: %d\n",
 __func__, signum,
 ps,
 ps->type == WALK ? "Walk" : "Run",
 timer_getoverrun(ps->timerid)
);

 memset(ps->itmrspec, 0, sizeof(sRunWalk));
 if (ps->type == WALK) {
 BUZZ(" RUN!");
 ps->itmrspec->it_value.tv_sec = ps->trun;
 printf(" for %4d seconds\n", ps->trun);
 }
 else {
 BUZZ(" WALK!");
 ps->itmrspec->it_value.tv_sec = ps->twalk;
 printf(" for %4d seconds\n", ps->twalk);
 }
 ps->type = !ps->type; // toggle the type

 // Reset: re-arm the one-shot timer
 if (timer_settime(ps->timerid, 0, ps->itmrspec, NULL) < 0)
 FATAL("timer_settime failed");
}

In the signal handling code, we do the following:

(As mentioned previously) gain access to our app context data structure
(by typecasting the si->si_value.sival_ptr to our (sRunWalk *) data
type).
In HIGH verbose mode, we display more details (again, do not
use printf(3) in production).

Timers Chapter 13

[516]

Then, if the just-expired timer was the RUN one, we call our buzzer
function BUZZ with the WALK message parameter, and, importantly:

Re-initialize the timeout value (seconds) to the duration for
WALK (the second parameter passed by the user).
Toggle the type from RUN to WALK.
Re-arm the timer via the timer_settime(2) API.

And vice versa when transiting from the just-expired WALK to RUN mode.

This way, the process runs forever (or until the user terminates it via ^C), continually
timing out for the next run:walk interval.

Timer lookup via proc
One more thing: interestingly, the Linux kernel allows us to peek deep inside the OS;
this is (typically) achieved via the powerful Linux proc filesystem. In our current
context, proc allows us to look up all the timers that a given process has. How is this
done? By reading the pseudo-file /proc/<PID>/timers. Check it out. The
screenshot below illustrates this being performed on the runwalk_timer process:

Timers Chapter 13

[517]

The terminal window on the left is where the runwalk_timer application runs;
while it's running, in the terminal window on the right, we lookup the proc
filesystem's pseudo-file /proc/<PID>/timers. The output clearly reveals the
following:

There's just one (POSIX) timer within the process (ID 0).
The timer-expiry event-notification mechanism is signaling, because we can
see that notify:signal/pid.<PID> and signal: 34 are associated with
this timer (signal: 34 is SIGRTMIN; use kill -l 34 to verify this).
The clock source associated with this timer is ClockID 0; that is, the real-
time clock.

A quick mention
To round off this chapter, we present a quick look at two interesting technologies:
timers via the file abstraction model and watchdog timers. These sections are not
covered in detail; we leave it to the interested reader to dig further.

Timers via file descriptors
Do you recall a key philosophy of the Unix (and, thus, Linux) design that we covered
in Chapter 1, Linux System Architecture, of this book? That is, everything is a process;
if it's not a process, it's a file. The file abstraction is heavily used on Linux; here, too,
with timers, we find that there is a way to represent and use timers via the file
abstraction.

How is this done? The timerfd_* APIs provide the required abstraction. In this
book, we shall not attempt to delve into the intricate details; rather, we would like the
reader to become aware that one can use the file abstraction—reading a timer via
the read(2) system call—if required.

Timers Chapter 13

[518]

The following table quickly outlines the timerfd_* API set:

API Purpose Equivalent to the POSIX timer
API

timerfd_create(2)
Create a POSIX timer; the return
value on success is the file descriptor
associated with this timer.

timer_create(2)

timerfd_settime(2)
(Dis)arm a timer referred to by the
first parameter fd. timer_settime(2)

timerfd_gettime(2)

On successful completion, returns
both the time to expiry and interval
of the timer referred to by the first
parameter fd.

timer_gettime(2)

Table 4 : The timerfd_* APIs

include <sys/timerfd.h>

int timerfd_create(int clockid, int flags);

int timerfd_settime(int fd, int flags,
 const struct itimerspec *new_value, struct itimerspec *old_value);

int timerfd_gettime(int fd, struct itimerspec *curr_value);

The real advantage to using file descriptors to represent various objects is that one can
use a uniform, powerful set of APIs to operate upon them. In this particular case, we
can monitor our file-based timer(s) via the read(2), poll(2), select(2),
epoll(7), and similar APIs.

What if the process that created the fd-based timer forks or execs? Upon a fork(2),
the child process will inherit a copy of the file descriptor pertaining to any timer
created in the parent via the timerfd_create(2) API. Effectively, it shares the
same timer as the parent process.

Upon an execve(2), the timer(s) remain valid in the successor process and will
continue expiring upon timeout; unless, upon creation, the TFD_CLOEXEC flag was
specified.

More detail (along with an example) can be found in the man page here: https:/ /
linux.die.net/ man/ 2/ timerfd_ create.

https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create
https://linux.die.net/man/2/timerfd_create

Timers Chapter 13

[519]

A quick note on watchdog timers
A watchdog is essentially a timer-based mechanism that is used to periodically detect
if the system is in a healthy state, and if it is deemed not to be, to reboot it.

This is achieved by setting up a (kernel) timer (with, say, a 60-second timeout). If all is
well, a watchdog daemon process will consistently disarm the timer before it expires,
and subsequently re-enable (arm) it; this is known as petting the dog. If the daemon
does not disarm the watchdog timer (due to something having gone badly wrong),
the watchdog is annoyed and reboots the system.

A daemon is a system background process; more on daemons in
Appendix B, Daemon Processes.

A pure software watchdog implementation will not be protected against kernel bugs
and faults; a hardware watchdog (which latches into the board-reset circuitry) will
always be able to reboot the system as and when required.

Watchdog timers are very often used in embedded systems, especially deeply
embedded ones (or those unreachable by a human for whatever reason); in a worst-
case scenario, it can reboot, and hopefully move along with its designated tasks again.
A famous example of a watchdog timer causing reboots is the Pathfinder robot,
NASA sent to the Martian surface back in 1997 (yes, the one that encountered
the priority inversion concurrency bug while on Mars. We shall explore this a little in
Chapter 15, Multithreading with Pthreads Part II - Synchronization, on multithreading
and concurrency). And, yes, that's the very same Pathfinder robot that is given a role
in the superb movie The Martian! More on this in the Further reading section on the
GitHub repository.

https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Timers Chapter 13

[520]

Summary
In this chapter, the reader has been taken through the various interfaces exposed by
Linux with regard to creating and using timers. Setting up and managing timeouts is
an essential component of many, if not most, systems applications. The older
interfaces—the venerable alarm(2) API, followed by
the [s|g]etitimer(2) system calls—were shown with example code. Then, we
delved into the newer and better POSIX timers, including the advantages provided by
them, and how to use them in a practical fashion. This was greatly aided with the
help of two fairly elaborate sample programs—the react game and the run:walk timer
application. Finally, the reader was introduced to the notion of using timers via file
abstractions, and to the watchdog timer.

The next chapter is where we begin our long three-chapter journey on understanding
and using the powerful multithreading framework on Linux.

14
Multithreading with Pthreads

Part I - Essentials
Have you downloaded a large file using a download-accelerator type of application?
Have you played an online game? A flight simulator program? Used word
processing, web browsers, Java apps, and so on? (The temptation to put in a smiley
emoji here is high!)

It's quite likely that you have used at least some of these; so what? All of these
disparate applications have something in common: it's highly likely that they are all
designed for multithreading, meaning that their implementation uses multiple
threads that run in parallel with each other. Multithreading has indeed become
almost a way of life for the modern programmer.

Explaining a topic as large as multithreading is itself a big task; hence we are dividing
the coverage into three separate chapters. This one is the first of them.

This chapter is itself logically divided into two broad parts: in the first, we carefully
consider and understand the concepts behind the threading model—the what and
why of multithreading. What exactly is a thread, why do we want threads, and a
quick take on how multithreading has evolved on the Linux platform.

In the second part, we focus on the thread management APIs—the how (to some
extent) of multithreading on Linux. The API set required to create and manage
threads is discussed, with, of course, a lot of practical code to be seen and tried out.

Multithreading with Pthreads Part I - Essentials Chapter 14

[522]

At the outset of this topic, we must also clearly point out the fact that in this book we
are only concerned with multithreading in the context of software programming;
particularly, the POSIX threads (pthreads) implementation and specifically, pthreads
on the Linux platform. We do not attempt to deal with various other multithreaded
frameworks and implementations that have sprung up (such as MPI, OpenMP,
OpenCL, and so on) or hardware threading (hyperthreading, GPUs with CUDA, and
so on).

In this chapter, you will learn about programming with multiple threads on the Linux
platform, specifically, getting started with the pthreads programming model or
framework. This chapter is broadly divided into two parts:

In the first, key multithreading concepts—the what and the why of
multithreading —are covered, laying the groundwork for the second part
(and indeed the two subsequent chapters on multithreading).
The second part covers the essential pthreads APIs required to build a
functional multithreaded application on Linux (it deliberately does not
cover all aspects, through; the next two chapters will build on this one).

Multithreading concepts
In this section, we'll learn about the what and why of multithreading on the Linux
platform. We will begin by answering the FAQ, "what exactly is a thread?".

What exactly is a thread?
In the good (or bad?) old days, Unix programmers had a straightforward software
model (which got inherited pretty much exactly by other OSes and vendors): there is
a process that lives in a virtual address space (VAS); the VAS essentially consists of
homogeneous regions (essentially collections of virtual pages) called segments: text,
data, other mappings (libraries), and stack. The text is really the executable—in fact,
the machine—code that is fed to the processor. We have certainly covered all of this
earlier in this book (you can brush up on these basics in Chapter 2, Virtual Memory).

Multithreading with Pthreads Part I - Essentials Chapter 14

[523]

A thread is an independent execution (or flow) path within a process. The life and
scope of a thread, in the familiar procedural programming paradigm we typically
work with, is simply a function.

So, in the traditional model we mentioned previously, we have a single thread of
execution; that thread, in the C programming paradigm, is the main() function!
Think about it: the main() thread is where execution begins (well, at least from the
app developer's viewpoint) and ends. This model is (now) called the single
threaded software model. As opposed to what? The multithreaded one, of course. So,
there we have it: it is possible to have more than one thread alive and executing
concurrently (in parallel) with other independent threads within the same process.

But, hang on, can't processes generate parallelism too and have multiple copies of
themselves working on different aspects of the application? Yes, of course: we have
covered the fork(2) system call in all its considerable glory (and implications)
in Chapter 10, Process Creation. This is known as the multiprocessing model. So, if we
have multiprocessing – where several processes run in parallel and, hey, they get the
work done—the million dollar question becomes: "why multithreading at all?"
(Kindly deposit a million dollars and we shall provide the answer.) There are several
good reasons; check out the upcoming sections (especially Motivation – why threads?;
we do suggest that first-time readers follow the sequence as laid out in this book) for
more detail.

Resource sharing
In Chapter 10, Process Creation, we repeatedly pointed out that although the fork(2)
system call is very powerful and useful, it's considered to be a heavyweight
operation; performing the fork takes a lot of CPU cycles (and thus time) and is
expensive in terms of memory (RAM), too. Computer scientists were looking for a
way to lighten this; the result, as you have guessed, is the thread.

Multithreading with Pthreads Part I - Essentials Chapter 14

[524]

Hang on, though: for the convenience of the reader, we reproduce a diagram—The
Linux process – inheritance and non-inheritance across the fork()—from Chapter 10,
Process Creation:

Figure 1: The Linux process – inheritance and non-inheritance across the fork()

Multithreading with Pthreads Part I - Essentials Chapter 14

[525]

This diagram is important because it shows us why the fork is a heavy weight
operation: every time you invoke the fork(2) system call,, the complete VAS of the
parent process and all the data structures on the right inherited across fork side of the
diagram have to be copied into the newly born child process. That is indeed a lot of
work and memory usage! (Okay, we're exaggerating a bit: as mentioned in Chapter
10, Process Creation, modern OSes, especially Linux, do take a lot of pains to optimize
the fork. Nevertheless, it's heavy. Check out our example 1 demo program that
follows—the creation and destruction of a process is much slower (and takes much
more RAM) than the creation and destruction of a thread.

The reality is this: when a process creates a thread, the thread shares (almost)
everything with all other threads of the same process—all of the preceding VAS, thus
the segments, and all the data structures—except for a stack.

Every thread has its own private stack segment. Where does it reside? Obviously,
within the VAS of the creating process; where exactly it resides is really
inconsequential to us (recall that it's all virtual memory, in any case, not physical).
The question that's a lot more relevant and important to the app developer is how
large the thread stack will be. The short answer: the same as usual (typically 8 MB on
the Linux platform), but we shall get to the nitty-gritty details later in this chapter.
Just think of it this way: the stack of main() always resides at the very top of the
(user mode) virtual address space; the stacks of the remaining threads in the process
can reside anywhere in this space. Realistically, they typically reside in the virtual
memory space between the heap and the stack (of main).

Multithreading with Pthreads Part I - Essentials Chapter 14

[526]

The following diagram helps us understand the memory layout of a multithreaded
process on Linux; in the upper portion of the diagram is the
process before pthread_create(3); the lower portion shows the process after the
thread has been successfully created:

Fig 2 : The thread – everything except the stack is shared across pthread_create()

Multithreading with Pthreads Part I - Essentials Chapter 14

[527]

The blue squiggle in the process text segment represents the main() thread; its stack
is also clearly seen. We use the dashed lines to indicate that all these memory objects
(both user and kernel space) are shared across pthread_create(3). As can clearly
be seen, the only new objects after pthread_create(3) are the new thread itself
(thrd2; shown as a red squiggle in the process text segment) and a new stack for the
just born thread thrd2 (in red). Contrast this diagram with Fig 1; when we fork(2),
pretty much everything has to be copied into the newly born child process.

From what we have described so far, the only difference between a
process and a thread is that of resource sharing—processes do not
share, they copy; threads do share everything, except for the stack.
Dig a little deeper and you will realize that both software and
hardware state have to be maintained on a per thread basis. The
Linux OS does exactly that: it maintains a per-thread task
structure within the OS; the task structure contains all the
process/thread attributes, including software and hardware context
(CPU register values and so on) information.

Again, digging a little deeper, we realize that the OS does maintain
a distinct copy of the following attributes per thread: the stack
segment (and thus the stack pointer), possible alternate signal stack
(covered in the Chapter 11, Signaling - Part I), both regular signal
and real-time signal masks, thread ID, scheduling policy and
priority, capability bits, CPU affinity mask, and the errno value
(don't worry—several of these will be explained along the way).

Multiprocess versus multithreaded
To help clearly understand why and how threads can provide a performance benefit,
let's perform a few experiments! (the importance of being empirical - experimenting,
trying things out - is a critical feature; our Chapter 19, Troubleshooting and Best
Practices, covers more on such points). First, we take two simple example programs:
one, a program that compares the creation and destruction of processes versus
threads, and two, a program that performs matrix multiplication in two ways—one
via the traditional single threaded process model, and two, via the multithreaded
model.

Multithreading with Pthreads Part I - Essentials Chapter 14

[528]

So, what we are really comparing here is the performance in terms of execution time
between using the multiprocess versus multithreaded model. We will have the reader
note that, right here and now, we will not be taking pains to detail and explain the
thread code right now for two reasons; one, it's besides the point, and two, until we
have covered the thread APIs in some detail, it will not really make sense to do so. (So
in effect, dear reader, we ask that you ignore the thread code for now; just follow
along, and build and reproduce what we do here; the code and APIs will become
clear to you as you learn more.)

Example 1 – creation/destruction – process/thread
The process model: Here's what we do: in a loop (that executes a total of 60,000
times!), create and destroy a process by calling fork(2) and subsequently exiting.
(We take care of details such as clearing any possible zombie by waiting in the parent
for the child to die before proceeding in the loop.) The relevant code is as
follows (ch14/speed_multiprcs_vs_multithrd_simple/create_destroy/for
k_test.c):

For readability, only the relevant parts of the code are displayed in
the following code; to view and run it, the entire source code can be
found here: https:/ / github. com/ PacktPublishing/ Hands- on-
System- Programming- with- Linux.

...
#define NFORKS 60000
void do_nothing()
{
 unsigned long f = 0xb00da;
}
int main(void)
{
 int pid, j, status;

 for (j = 0; j < NFORKS; j++) {
 switch (pid = fork()) {
 case -1:
 FATAL("fork failed! [%d]\n", pid);
 case 0: // Child process
 do_nothing();
 exit(EXIT_SUCCESS);
 default: // Parent process
 waitpid(pid, &status, 0);
 }
 }

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part I - Essentials Chapter 14

[529]

 exit(EXIT_SUCCESS);
}

We run it prefixed with the time(1) utility, which gives us a rough idea of the time
taken by the program on the processor; the time spent shows up as three
components: real (total wall-clock time spent), user (time spent in user space),
and sys (time spent in kernel space):

$ time ./fork_test

real 0m10.993s
user 0m7.436s
sys 0m2.969s
$

Obviously, the precise values you get on your Linux box can, and likely will, vary.
And, no, user + sys does not add up exactly to real, either.

The multithreading model
Again, here's what we do: it's key to understand that the code used here
(ch14/speed_multiprcs_vs_multithrd_simple/create_destroy/pthread_te
st.c), is equivalent in all respects to the previous code except that here we work with
threads and not processes: in a loop (that executes a total of 60,000 times!), create and
destroy a thread by calling pthread_create(3) and subsequently
pthread_exit(3). (We take care of details such as waiting in the calling thread for
the sibling thread to terminate by invoking pthread_join(3).) As mentioned
earlier, let's skip the code/API details for now and just see the execution:

$ time ./pthread_test

real 0m3.584s
user 0m0.379s
sys 0m2.704s
$

Wow, the threaded code has run approximately 3x faster than the process model
code! The conclusion is obvious: creating and destroying a thread is much faster
than creating and destroying a process.

Multithreading with Pthreads Part I - Essentials Chapter 14

[530]

A technical side note: For the more curious geeks: why exactly is
the fork(2) so much slower than pthread_create(3)? Those
familiar with OS development will understand that Linux makes
heavy use of the performance-enhancing copy-on-write(COW)
memory techniques within its internal implementation of fork(2).
Thus, it begs the question, if COW is heavily used, then what is
slowing the fork down? The short answer: page table creation and
setup cannot be COW-ed; it takes a while to do. When creating
threads of the same process, this work (page table setup) is
completely skipped.

Even so, Linux's fork is pretty much considered to be the fastest of
any comparable OS today.

As an aside, a far more accurate way to measure the time spent—and performance
characteristics in general—is by using the well-known perf(1) utility (note that in
this book, we do not intend to cover perf in any detail whatsoever; if interested,
please look up the Further reading section on the GitHub repository for some links
to perf-related materials):

$ perf stat ./fork_test

 Performance counter stats for './fork_test':

 9054.969497 task-clock (msec) # 0.773 CPUs utilized
 61,245 context-switches # 0.007 M/sec
 202 cpu-migrations # 0.022 K/sec
 15,00,063 page-faults # 0.166 M/sec
 <not supported> cycles
 <not supported> instructions
 <not supported> branches
 <not supported> branch-misses

 11.714134973 seconds time elapsed
$

As can be seen in the preceding code, on a virtual machine, current versions
of perf cannot show all the counters; this does not impede us in any way here as all
we're really after is the final time it took to execute—which is shown in the last line of
perf output.

Multithreading with Pthreads Part I - Essentials Chapter 14

[531]

The following code shows perf(1) for the multithreaded app:

$ perf stat ./pthread_test

 Performance counter stats for './pthread_test':

 2377.866371 task-clock (msec) # 0.587 CPUs utilized
 60,887 context-switches # 0.026 M/sec
 117 cpu-migrations # 0.049 K/sec
 69 page-faults # 0.029 K/sec
 <not supported> cycles
 <not supported> instructions
 <not supported> branches
 <not supported> branch-misses

 4.052964938 seconds time elapsed
$

For interested readers, we have also provided a wrapper script
(ch14/speed_multiprcs_vs_multithrd_simple/create_dest
roy/perf_runs.sh), allowing the user to perform a record and
report session with perf(1).

Example 2 – matrix multiplication – process/thread
A well-known exercise is to write a program to compute the (dot) product of two
given matrices. Essentially, we would like to perform the following:

matrix C = matrix A * matrix B

Again, we emphasize the fact that here, we are not really concerned with the details
of the algorithm (and code); what concerns us here is how, at a design level the matrix
multiplication is performed. We propose (and write the corresponding code for) two
ways:

Sequentially, via the single threaded model
In parallel, via the multithreaded model

Note: None of this—the algorithm or code—is purported to be
original or ground-breaking in any manner; these are well-known
programs.

Multithreading with Pthreads Part I - Essentials Chapter 14

[532]

In the first model, one thread—main(), of course—will run and perform the
computation; the program can be found
here: ch14/speed_multiprcs_vs_multithrd_simple/matrixmul/prcs_matrix
mul.c.

In the second, we will create at least as many threads as there are CPU cores on the
target system to take full advantage of the hardware (this aspect is dealt with in a
later section of this chapter called How many threads can you create?); each thread will
perform a part of the computation, in parallel with the other threads. The program
can be found
here: ch14/speed_multiprcs_vs_multithrd_simple/matrixmul/thrd_matrix
mul.c.

In the multithreaded version, for now, we just hardcode the number of CPU cores in
our code to four as it matches one of our native Linux test systems.

To truly appreciate how the process(es) and/or threads of our applications actually
consume CPU bandwidth, let's use the interesting gnome-system-monitor GUI
application to see resource consumption graphically! (To run it, assuming it's
installed, just type $ gnome-system-monitor & on the shell).

We remind you that all software and hardware requirements have
been enumerated in some detail in the software-hardware
list material available on this book's GitHub repository.

We will perform the experiment as follows:

 Run the apps on a native Linux box with four CPU cores:1.

Multithreading with Pthreads Part I - Essentials Chapter 14

[533]

Look carefully at the preceding (annotated) screenshot (zoom in if you are reading the
electronic version); we will notice several items of interest:

In the foreground is the terminal window app where we run
the prcs_matrixmul and the thrd_matrixmul applications:

We use perf(1) to accurately measure the time taken and
deliberately filter out all output except for the final number
of seconds elapsed during execution.

In the background, you can see the gnome-system-monitor GUI app
running.
The (native Linux) system—the particular one that we have tested this
on—has four CPU cores:
 One way to find the number of CPU cores on your system is by using the
following code: getconf -a | grep _NPROCESSORS_ONLN | awk
'{print $2}'

 (you can update the NCORES macro in the source
code thrd_matrixmul.c to reflect this value)
The prcs_matrixmul app runs first; while it runs, it consumes 100% CPU
bandwidth on exactly one CPU core out of the four available (it happens to
be CPU core #2)
Notice how, on the middle-to-left of the CPU History meter, the red line
representing CPU2 shoots up to a 100% (highlighted with a purple ellipse
and labeled Process)!

Multithreading with Pthreads Part I - Essentials Chapter 14

[534]

At the time the screenshot was actually taken (OS on the X-axis timeline; it
moves from right to left), the CPUs are back to normal levels.
Next (after a gap of 10 seconds in this particular run),
the thrd_matrixmul app runs; and herein lies the key point: While it runs,
it consumes 100% CPU bandwidth on all four CPU cores!
Notice at how, approximately just after the 15s marking (read it from right-
to-left) on the X-axis timeline, all four CPU cores shoot to 100% – that's
during the execution of thrd_matrixmul (highlighted with a red ellipsis
and labeled Threads).

What does this tell us? Something really important: the underlying Linux OS CPU
scheduler will try and take advantage of the hardware and, if possible, schedule our
four application threads to run in parallel on the four CPUs available! Hence, we get
higher throughput, higher performance, and more bang for our buck.

Understandably, you might at this point wonder about and have a
lot of questions on how Linux performs CPU (thread) scheduling;
worry not, but please have some patience—we shall explore CPU
scheduling in some detail in Chapter 17, CPU Scheduling on Linux.

Restricted to exactly one CPU:2.

The taskset(1) utility allows one to run a process on a specified set of processor
core(s). (This ability to associate a process with a given CPU(s) is called CPU affinity.
We shall come back to this in the chapter on scheduling.) Using taskset in its basic
form is easy: taskset -c <cpu-mask> <app-to-run-on-given-cpus>

As you can see from the following screenshot, we contrast performing a run of
the thrd_matrixmul app on all four CPU cores on the system (in the usual way)
with running it on exactly one CPU by specifying the CPU mask via taskset(1); the
screenshot again clearly reveals how, on the former run, all four CPUs are pressed
into action by the OS (and it takes a total of 8.084s), whereas on the latter run only a
single CPU (it shows up as CPU3 in green) is employed to execute its code (resulting
in a total time of 11.189s):

Multithreading with Pthreads Part I - Essentials Chapter 14

[535]

Seeing what we have just learned in this section, you might leap to the
conclusion,"hey, we've found the answer: let's just always use multithreading." But, of
course, experience tells us that there is no silver bullet. The reality is that although
threading does indeed offer some real advantages, as with everything in life, there are
also downsides to it. We shall postpone more discussion on the pros and cons in
Chapter 16, Multithreading with Pthreads Part III; do keep this in mind, though.

For now, let's do one more experiment to clearly illustrate the fact that not just
multithreading, but multiprocessing—the use of fork to spawn multiple processes—is
very helpful as well to gain higher throughput.

Multithreading with Pthreads Part I - Essentials Chapter 14

[536]

Example 3 – kernel build
So, one last experiment (for this section): we will build (cross-compile) a Linux kernel
ver. 4.17 for the ARM Versatile Express platform (with its default configuration). The
details of the kernel build and so on are out of scope of this book, but that's all right:
the key point here is that the kernel build is definitely a CPU and RAM intensive
operation. Not only that, the modern make(1) utility is multiprocess capable! One
can tell make the number of jobs—processes, really—to internally spawn (fork) via its
-jn option switch, where n is the number of jobs (threads). We use a heuristic (a rule
of thumb) to determine this:

n = number-of-CPU-cores * 2

(multiply by 1.5 on very high-end systems with a lot of cores.)

Knowing this, check out the experiments that follow.

On a VM with 1 GB RAM, two CPU cores and parallelized make -j4
We configure the guest VM to have two processors, and proceed with the parallelized
build (by specifying make -j4):

$ cd <linux-4.17-kernel-src-dir>
$ perf stat make V=0 -j4 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
all
scripts/kconfig/conf --syncconfig Kconfig
 CHK include/config/kernel.release
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-oabi.h
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-common.h
 WRAP arch/arm/include/generated/uapi/asm/bitsperlong.h
 WRAP arch/arm/include/generated/uapi/asm/bpf_perf_event.h
 WRAP arch/arm/include/generated/uapi/asm/errno.h

[...] << lots of output >>

 CC arch/arm/boot/compressed/string.o
 AS arch/arm/boot/compressed/hyp-stub.o
 AS arch/arm/boot/compressed/lib1funcs.o
 AS arch/arm/boot/compressed/ashldi3.o
 AS arch/arm/boot/compressed/bswapsdi2.o
 AS arch/arm/boot/compressed/piggy.o
 LD arch/arm/boot/compressed/vmlinux
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready

 Performance counter stats for 'make V=0 -j4 ARCH=arm

Multithreading with Pthreads Part I - Essentials Chapter 14

[537]

CROSS_COMPILE=arm-linux-gnueabihf- all':

 1174027.949123 task-clock (msec) # 1.717 CPUs utilized
 3,80,189 context-switches # 0.324 K/sec
 7,921 cpu-migrations # 0.007 K/sec
 2,13,51,434 page-faults # 0.018 M/sec
 <not supported> cycles
 <not supported> instructions
 <not supported> branches
 <not supported> branch-misses

 683.798578130 seconds time elapsed
$ ls -lh <...>/linux-4.17/arch/arm/boot/zImage
-rwxr-xr-x 1 seawolf seawolf 4.0M Aug 13 13:10 <...>/zImage*
$ ls -lh <...>/linux-4.17/vmlinux
-rwxr-xr-x 1 seawolf seawolf 103M Aug 13 13:10 <...>/vmlinux*
$

The build took a total time of approximately 684 seconds (11.5 min). Just so you
know, the compressed kernel image for ARM—the one we boot with—is the file
called zImage; the uncompressed kernel image (used only for debug purposes) is
the vmlinux file.

While it was running, doing a quick ps -LA during the build indeed reveals its
multiprocess—not multithreaded—nature:

$ ps -LA
[...]
11204 11204 pts/0 00:00:00 make
11227 11227 pts/0 00:00:00 sh
11228 11228 pts/0 00:00:00 arm-linux-gnuea
11229 11229 pts/0 00:00:01 cc1
11242 11242 pts/0 00:00:00 sh
11243 11243 pts/0 00:00:00 arm-linux-gnuea
11244 11244 pts/0 00:00:00 cc1
11249 11249 pts/0 00:00:00 sh
11250 11250 pts/0 00:00:00 arm-linux-gnuea
11251 11251 pts/0 00:00:00 cc1
11255 11255 pts/0 00:00:00 sh
11256 11256 pts/0 00:00:00 arm-linux-gnuea
11257 11257 pts/0 00:00:00 cc1
[...]
$

Multithreading with Pthreads Part I - Essentials Chapter 14

[538]

On a VM with 1 GB RAM, one CPU core and sequential make -j1
We configure the guest VM to have only one processor, clean up the build directory,
and proceed once more, but this time with a sequential build (by specifying make -
j1):

$ cd <linux-4.17-kernel-src-dir>
$ perf stat make V=0 -j1 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
all
scripts/kconfig/conf --syncconfig Kconfig
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-common.h
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-oabi.h
 SYSHDR arch/arm/include/generated/uapi/asm/unistd-eabi.h
 CHK include/config/kernel.release
 UPD include/config/kernel.release
 WRAP arch/arm/include/generated/uapi/asm/bitsperlong.h

[...] << lots of output >>

 CC crypto/hmac.mod.o
 LD [M] crypto/hmac.ko
 CC crypto/jitterentropy_rng.mod.o
 LD [M] crypto/jitterentropy_rng.ko
 CC crypto/sha256_generic.mod.o
 LD [M] crypto/sha256_generic.ko
 CC drivers/video/backlight/lcd.mod.o
 LD [M] drivers/video/backlight/lcd.ko

 Performance counter stats for 'make V=0 -j1 ARCH=arm
CROSS_COMPILE=arm-linux-gnueabihf- all':

 1031535.713905 task-clock (msec) # 0.837 CPUs utilized
 1,78,172 context-switches # 0.173 K/sec
 0 cpu-migrations # 0.000 K/sec
 2,13,29,573 page-faults # 0.021 M/sec
 <not supported> cycles
 <not supported> instructions
 <not supported> branches
 <not supported> branch-misses

 1232.146348757 seconds time elapsed
$

The build took a total time of approximately 1232 seconds (20.5 min), which is nearly
twice as long as the previous build!

Multithreading with Pthreads Part I - Essentials Chapter 14

[539]

You might be asking this question: so, if the build with one process took around 20
minutes and the same build with multiple processes took approximately half the
time, why use multithreading at all? Multiprocessing seems to be as good!

No, please think: our very first example regarding process versus thread
creation/destruction taught us that spawning (and terminating) processes is much
slower than doing the same with threads. That is still a key advantage that many
applications exploit. After all, threads are far more efficient than processes in terms of
creation and destruction.

In a dynamic, unpredictable environment, where we do not know in advance how
much work will be required, the use of multithreading to be able to quickly create
worker threads (and quickly have them terminated) is very important. Think of the
famous Apache web server: it's multithreaded by default (via its mpm_worker
module in order to quickly serve client requests). In a similar fashion, the
modern NGINX web server uses thread pools (more on this for those interested can
be found in the Further reading section on the GitHub repository).

Motivation – why threads?
Threading does indeed offer a number of useful advantages; here, we attempt to
enumerate some of the more important ones. We think of this in terms of motivation
for the application architect to make use of multithreading because of potential
advantages to be gained. We divide this discussion into two
areas: design and performance.

Design motivation
In terms of design, we take into account the following:

Taking advantage of potential parallelism
Many real-world applications will benefit from designing them in such a manner that
the work can be split into distinct units, and these units or work parcels can run in
parallel—concurrently—with each other. At the implementation level, we can
use threads to implement the work parcels.

Multithreading with Pthreads Part I - Essentials Chapter 14

[540]

As an example, a download accelerator program exploits the network by having
several threads perform network I/O. Each thread is assigned work to download only
a portion of the file; they all run in parallel, effectively gaining more network
bandwidth than a single thread could, and when done, the destination file is stitched
together.

Many such examples abound; recognizing the potential for parallelism is an
important part of the architect's job.

Logical separation
The threading model intuitively lends itself to letting the designer logically separate
work. For example, a GUI frontend application might have a few threads managing
the GUI state, waiting for and reacting to user input, and so on. Other threads could
be used to handle the app's business logic. Not mixing the user interface (UI) with
the business logic is a key element of good design.

Overlapping CPU with I/O
This point is similar in fashion to the previous one—the logical separation of tasks. In
the context of what we're discussing, CPU refers to software that is CPU-intensive
or CPU-bound (the canonical example being the while (1); piece of C code); I/O
refers to software that is in a blocked state—we say that it is waiting on I/O, meaning
that it is waiting on some other operation to complete (perhaps a file or network read,
or any blocking API, in fact) before it can move forward; this is referred to as I/O
bound.

So, think of it this way: let's say we have a series of tasks to perform (with no
dependencies between them): task A, task B, task C, and task D.

Let's also say that task A and task C are highly CPU-bound, whereas task B and task
D are more I/O-bound. If we use the traditional single threaded approach, then of
course each task has to be carried out in sequence; so, the process ends up
waiting—for perhaps a long while—for tasks B and D, thus delaying task C. If, on the
other hand, we use a multithreaded approach, we can separate the tasks as individual
threads. Thus, even while the threads for tasks B and D are blocked on I/O, the
threads for task A and C continue to make progress.

This is called overlapping CPU with I/O. Decoupling (and separating out) tasks when
there is no dependency between them, by using threads, is a design approach that is
usually worth pursuing. It leads to better application responsiveness.

Multithreading with Pthreads Part I - Essentials Chapter 14

[541]

Manager-worker model
Threads quite easily lend themselves to the familiar manager-worker model; a
manager thread (often main()) creates worker threads on demand (or pools them);
when work arises, a worker thread handles it. Think of busy web servers.

IPC becoming simple(r)
Performing IPC between processes takes a learning curve, experience, and just a lot
of work. With threads belonging to a process, IPC—communication—between them
is as simple as writing and reading global memory (well, to be honest, it's
not that simple, as we shall learn when we reach the topics on concurrency and
synchronization in the next chapter; it's still less work conceptually and literally than
processing IPC).

Performance motivation
As the two examples in the previous section quite clearly showed us, using
multithreading can raise application performance significantly; some of the reasons
for this are mentioned here.

Creation and destruction
Preceding example 1 clearly showed us that the time taken for the creation and
destruction of a thread is far less than that of a process. Many applications require
that you do this almost constantly. (We shall see that creating and destroying threads
is programmatically much simpler to do than doing the same with processes.)

Automatically taking advantage of modern hardware
Preceding example 2 clearly illustrated this point: when running a multithreaded app
on modern multicore hardware (high-end enterprise class servers can have in excess
of 700 CPU cores!), the underlying OS will take care of optimally scheduling threads
onto available CPU cores; the app developers need not concern themselves with this.
Effectively, the Linux kernel will try and ensure perfect SMP scalability whenever
possible, which will result in higher throughput and, ultimately, speed gains. (Again,
dear reader, we're being optimistic here: the reality is that with heavy parallelism and
CPU cores also comes the heavy downsides of concurrency concerns; we shall discuss
all of this in more detail in upcoming chapters.)

Multithreading with Pthreads Part I - Essentials Chapter 14

[542]

Resource sharing
We have already covered this very point in the Resource sharing section earlier in the
beginning portion of this chapter (re-read it, if required). The bottom line is this:
thread creation is comparatively cheap as opposed to process creation (the same goes
for destruction). Also, the memory footprint of a thread as opposed to a process
is much lower. Thus, resource sharing, and the associated performance advantages,
are obtained.

Context switching
Context switching is an unfortunate reality on the OS—it's meta-work that must be
done every time the OS switches from running one process to running another
process (we have voluntary and involuntary context switches). The actual amount of
time it takes to context switch is highly dependent on the hardware system and the
software quality of the OS; typically, though, it's in the region of tens of microseconds
for x86-based hardware systems. That sounds quite tiny: to get an idea of why this is
considered important (and indeed wasteful), look at the output of running vmstat
3 on an average Linux desktop computer (vmstat(1) is a famous utility; used this
way, it gives us a nice 10,000-foot view of system activity; hey, also try out its modern
successor, dstat(1)):

$ vmstat 3
procs --------memory----------- --swap-- --io-- -system-- ------cpu---
--
 r b swpd free buff cache si so bi bo in cs us sy id wa
st
 0 0 287332 664156 719032 6168428 1 2 231 141 73 22 23 16 60 1
0
 0 0 287332 659440 719056 6170132 0 0 0 124 2878 2353 5 5 89 1
0
 1 0 287332 660388 719064 6168484 0 0 0 104 2862 2224 4 5 90 0
0
 0 0 287332 662116 719072 6170276 0 0 0 427 2922 2257 4 6 90 1
0
 0 0 287332 662056 719080 6170220 0 0 0 12 2358 1984 4 5 91 0
0
 0 0 287332 660876 719096 6170544 0 0 0 88 2971 2293 5 6 89 1
0
 0 0 287332 660908 719104 6170520 0 0 0 24 2982 2530 5 6 89 0
0
[...]

Multithreading with Pthreads Part I - Essentials Chapter 14

[543]

(Please look up the man page on vmstat(1) for a detailed explanation of all fields).
Preceding under the system heading, we have two columns: in and cs
(hardware) interrupts and context switches, respectively, that have occurred in the
last one second. Just look at the numbers (ignore the first output line, though)! It's
fairly high. This is why it really does matter to system designers.

Context switching between the threads of the same process takes a lot less work (and
thus time) than between processes (or threads belonging to different processes). This
makes sense: a good amount of the kernel code can be effectively short-circuited
when the overall process remains the same. Thus, this becomes another advantage of
using threads.

A brief history of threading
Threads—a sequential flow of control—have been around for a long while now; only,
they went under the name of processes (reports put this at the time of the Berkeley
Timesharing System, 1965). Then, by the early 1970s, along came Unix, which
cemented the process as the combination of a VAS and a sequential flow of control.
As mentioned earlier, this is now called the single threaded model, as of course only a
single thread of control—the main function—existed.

Then, in May 1993, Sun Solaris 2.2 came out with UI threads, and a thread library
called libthread, which exposed the UI API set; in effect, modern threads. Competing
Unix vendors quickly came up with their own proprietary multithreaded solutions
(with runtime libraries exposing APIs)—Digital with DECthreads (which was later
absorbed by Compaq Tru64 Unix and subsequently HP-UX), IBM with AIX, Silicon
Graphics with IRIX, and so on—each with their own proprietary solution.

POSIX threads
Proprietary solutions poses a major problem to the big customer who owns
heterogeneous hardware and software from several of these vendors; being
proprietary, it is difficult to get the differing libraries and API sets to talk to each
other. It's the usual problem—a lack of interoperability. The good news: in 1995, the
IEEE formed a separate POSIX committee—IEEE 1003.1c—the POSIX
threads (pthreads) committee, to evolve a standardized solution for an API for
multithreading.

Multithreading with Pthreads Part I - Essentials Chapter 14

[544]

POSIX: Apparently, the original name of the IEEE body is Portable
Operating System Interface for Computing Environments
(POSICE). Richard M. Stallman (RMS) suggested shortening the
name to Portable Operating System Interface for uniX (POSIX),
and that name has stuck.

So, the bottom line is that pthreads is an API standard; formally, IEEE 1003.1c-1995.
The upshot of all of this is that all Unix and Unix-like OS vendors gradually built
implementations supporting pthreads; so, today (in theory, at least), you can write a
pthreads multithreaded application and it will run unmodified on any pthreads-
compliant platform (in practice, expect a bit of porting effort).

Pthreads and Linux
Of course, Linux wanted to be compliant with the POSIX threads standard; but who
would actually build an implementation (remember, the standard is merely a draft
specification document; it's not code)? Back in 1996, Xavier Leroy stepped up and
built Linux's first pthreads implementation—a threading library called Linux threads.
All considered, it was a good effort, but was not fully compatible with the (then brand
new) pthreads standard.

An early effort at resolving problems was called Next Generation Posix
Threads (NGPT). At around the same time, Red Hat threw in a team to work on this
area as well; they called the project Native Posix Threading Library (NPTL). In the
best traditions of open source culture, the NGPT developers worked together with
their counterparts at NPTL and began merging the best features of NGPT into NPTL.
NGPT development was abandoned sometime in 2003; by then, the realistic
implementation of pthreads on Linux—which remains to this day—is NPTL.

More technically: NPTL was entrenched as the superior threading
API interface, even as features were integrated into the 2.6 Linux
kernel (December 2003 onward), which helped greatly improve
threading performance.

NPTL implements the 1:1 threading model; this model provides true
multithreading (user and kernel state) and is also known as the
native threads model. Here, we do not intend to delve into these
internal details; a link has been provided for interested readers in
the Further reading section on the GitHub repository.

Multithreading with Pthreads Part I - Essentials Chapter 14

[545]

One can look up the threading implementation (since glibc 2.3.2) with the following
code (on a Fedora 28 system):

$ getconf GNU_LIBPTHREAD_VERSION
NPTL 2.27
$

Clearly, it's NPTL.

Thread management – the essential
pthread APIs
In this—the second major portion of this first chapter on multithreading—we shall
now focus on the mechanics: using the pthreads API, how exactly does the
programmer create and manage threads in an effective fashion? We will explore the
essential pthreads API interfaces to fulfill this key purpose; this knowledge is the
building block for writing functional and performance-friendly pthreads applications.

We will take you through the thread life cycle in terms of API sets—creating,
terminating, joining upon (waiting for), and in general, managing the threads of a
process. We will also cover thread stack management.

This, of course, implies that we have a pthreads runtime library installed on the Linux
system. On modern Linux distributions, this will certainly be the case; it's only if you
are using a rather exotic embedded Linux that you will have to verify this. The name
of the pthreads library on the Linux platform is libpthread.

A couple of key points regarding the pthread APIs are as follows:

All pthread APIs require the <pthread.h> header file to be included in
the source.
The API often uses the object-oriented concepts of data hiding and data
abstraction; many data types are internal typedefs; this design is deliberate:
we want portable code. Thus, the programmer must not assume types and
must work with the provided helper methods where applicable to access
and/or query data types. (Of course, the code itself is the usual procedural
C; nevertheless, many concepts are modeled around object orientation.
Interestingly, the Linux kernel also follows this approach.)

Multithreading with Pthreads Part I - Essentials Chapter 14

[546]

Thread creation
The pthreads API for creating a thread is pthread_create(3); its signature is as
follows:

#include <pthread.h>
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
 void *(*start_routine) (void *), void *arg);

When compiling pthread applications, it's very important to specify the -pthread
gcc option switch (it enables required macros for using the libpthread library(more
on this to follow).

pthread_create is the API to invoke to create a new thread within the calling
process. On success, the new thread will be running concurrently (in parallel) with
other threads that may be alive in that process at that point in time; but what
code will it be running? It will start by running the code of the start_routine
function (the third parameter to this API: a pointer to the function). Of course,
this thread function can subsequently make any number of function calls.

The new thread's thread ID will be stored in the opaque data item thread—the first
parameter (it's a value-result style parameter). Its data type, pthread_t is
deliberately opaque; we must not assume that it's an integer (or any such thing). We
shall soon come across when and how we use the thread ID.

Notice that the third parameter, the function pointer—the routine run by the new
thread—itself receives a void* parameter—a generic pointer. This is a common and
helpful programming technique, enabling us to pass absolutely any value(s) to the
newly created thread. (This kind of parameter is often referred to as client data or tag
in the literature.) How do we pass it? Via the fourth parameter
to pthread_create(3), arg.

The second parameter to pthread_create(3) is a thread attribute structure; here,
the programmer should pass the attributes of the thread being created (we shall
discuss some of them shortly). There is a shortcut: passing NULL here implies that the
library should use the default attributes when creating a thread. However, the
defaults on a certain Unix might differ substantially from those on a different Unix or
Linux; writing portable code implies one does not assume any defaults, but rather
explicitly initializes a thread with attributes that are correct for the application. Thus,
our recommendation would definitely be to not pass NULL, but to explicitly initialize
a pthread_attr_t structure and pass it along (the code examples that follow will
illustrate this).

Multithreading with Pthreads Part I - Essentials Chapter 14

[547]

Finally, the return value to pthread_create(3) is 0 on success and non-zero on
failure; errno is set to a few values as appropriate (we refer you to the man page
on pthread_create(3) for these details).

When a new thread is created, it inherits certain attributes from its creating thread;
these include the following:

The creating thread's capability sets (recall our discussion in Chapter 8,
Process Capabilities); this is Linux-specific
The creating thread's CPU affinity mask; this is Linux-specific
The signal mask

Any pending signals and pending timers (alarms) in the new thread are cleared. CPU
execution times will be reset as well for the new thread.

Just so you know, on the Linux libpthreads implementation,
pthread_create(3) calls the clone(2) system call, which, within
the kernel, actually creates the thread.
Interestingly, modern glibc's fork implementation also invokes
the clone(2) system call. Flags passed to clone(2) determine how
resource sharing is done.

It's about time that we did some coding! We will write a really simple (and actually
quite buggy!) hello, world. for pthreads application (ch14/pthreads1.c):

[...]
#include <pthread.h>
#include "../common.h"
#define NTHREADS 3

void * worker(void *data)
{
 long datum = (long)data;
 printf("Worker thread #%ld says: hello, world.\n", datum);
 printf(" #%ld: work done, exiting now\n", datum);
}

int main(void)
{
 long i;
 int ret;
 pthread_t tid;

 for (i = 0; i < NTHREADS; i++) {
 ret = pthread_create(&tid, NULL, worker, (void *)i);

Multithreading with Pthreads Part I - Essentials Chapter 14

[548]

 if (ret)
 FATAL("pthread_create() failed! [%d]\n", ret);
 }
 exit(EXIT_SUCCESS);
}

As you can see, we loop three times, and on each loop iteration we create a thread.
Notice the third parameter to the pthread_create(3)—a function pointer (just
providing the name of the function is sufficient; the compiler will figure the rest); this
is the the thread's work routine. Here, it's the function worker. We also pass the
fourth parameter to pthread_create—recall that's it's the client data, any data you
would like to pass to the newly created thread; here, we pass the loop index i (of
course, we appropriately typecast it so that the compiler won't complain).

In the worker function, worker, we gain access to the client data (received as the
formal parameter data) by again type-casting the void * back to its original type,
long:

long datum = (long)data;

We then merely emit a couple of printf's to show that, yes, we are here indeed. Notice
how all the worker threads run the same code—the worker function. This is entirely
acceptable; recall that code (text) is read-execute in terms of page permissions;
running text in parallel is not only all right, but it's often desirable (providing high
throughput).

To build it, we have provided the Makefile; note, though, that all the pthreads APIs
aren't linked in by default, like glibc. No, they are, of course, in libpthread, which we
shall have to both explicitly compile (to our source files) and link in to our binary
executable via the -pthread directive. The following snippet from
the Makefile shows this being done:

CC := gcc
CFLAGS=-O2 -Wall -UDEBUG -pthread
LINKIN := -pthread

#--- Target :: pthreads1
pthreads1.o: pthreads1.c
 ${CC} ${CFLAGS} -c pthreads1.c -o pthreads1.o
pthreads1: common.o pthreads1.o
 ${CC} -o pthreads1 pthreads1.o common.o ${LINKIN}

Multithreading with Pthreads Part I - Essentials Chapter 14

[549]

Building it now works, but—and please note this carefully—the program
does not work well at all! In the following code, we perform some test runs by
looping around ./pthreads1:

$ for i in $(seq 1 5); do echo "trial run #$i:" ; ./pthreads1; done
trial run #1:
Worker thread #0 says: hello, world.
Worker thread #0 says: hello, world.
trial run #2:
Worker thread #0 says: hello, world.
Worker thread #0 says: hello, world.
 #0: work done, exiting now
trial run #3:
Worker thread #1 says: hello, world.
Worker thread #1 says: hello, world.
 #1: work done, exiting now
trial run #4:
trial run #5:
$

As you can see the hello, world. message only appears intermittently and not at
all in trial runs 4 and 5 (of course, the output you see when you try this out can
certainly vary due to timing issues).

Why is it like this? Simple: we have inadvertently set up a buggy situation—a race!
Where exactly? Look at the code again, carefully: what does the main() function do
once the loop is done? It calls exit(3); thus the entire process terminates, not just the
main thread! And who is to say that the worker threads completed their work before
this occurred? Ah—that, ladies and gentlemen, is your classic race.

So, how do we fix it? For now, we shall just perform a couple of quick fixes; the
proper way to avoid racy code is via synchronization; this is a big topic and deserves
a chapter by itself (as you shall see). Okay, first, let's fix the problem of
the main thread prematurely exiting.

Termination
The exit(3) library API causes the calling process—along with all of its threads – to
terminate. If you would like a single thread to terminate, have it invoke
the pthread_exit(3) API instead:

#include <pthread.h>
 void pthread_exit(void *retval);

Multithreading with Pthreads Part I - Essentials Chapter 14

[550]

This parameter specifies the exit status of the calling thread; for the time being, we
ignore it and just pass NULL (we shall examine using this parameter shortly).

So, back to our racy app (ch14/pthreads1.c); let's make a second, better version
(ch14/pthreads2.c). The problem, really, with our first version was
the race—the main thread calls exit(3), causing the entire process to die, probably
before the worker threads got a chance to complete their work. So, let's fix this by
having main() call pthread_exit(3)! Also, why not have our thread worker
function terminate properly by explicitly invoking the pthread_exit(3) as well?

The following are the modified code snippets for the worker() and main() functions
(ch14/pthreads2.c):

void * worker(void *data)
{
 long datum = (long)data;
 printf("Worker thread #%ld running ...\n", datum);
 printf("#%ld: work done, exiting now\n", datum);
 pthread_exit(NULL);
}
[...]
 for (i = 0; i < NTHREADS; i++) {
 ret = pthread_create(&tid, NULL, worker, (void *)i);
 if (ret)
 FATAL("pthread_create() failed! [%d]\n", ret);
 }
#if 1
 pthread_exit(NULL);
#else
 exit(EXIT_SUCCESS);
#endif
[...]

Let's try out the preceding program:

$./pthreads2
Worker thread #0 running ...
#0: work done, exiting now
Worker thread #1 running ...
#1: work done, exiting now
Worker thread #2 running ...
#2: work done, exiting now
$

That's much better!

Multithreading with Pthreads Part I - Essentials Chapter 14

[551]

The return of the ghost
There is still a hidden problem. Let's do some more experimentation: let's write a
third version of this program (let's call it ch14/pthreads3.c). In it, we say, what if
the worker threads take longer to perform their work (than they are currently
taking)? We can easily simulate this with a simple sleep(3) function, which is going
to be introduced into the worker routine:

[...]
void * worker(void *data)
{
 long datum = (long)data;
 printf("Worker thread #%ld running ...\n", datum);
 sleep(3);
 printf("#%ld: work done, exiting now\n", datum);
 pthread_exit(NULL);
}
[...]

Let's try it out:

$./pthreads3
Worker thread #0 running ...
Worker thread #1 running ...
Worker thread #2 running ...

[... All three threads sleep for 3s ...]

#1: work done, exiting now
#0: work done, exiting now
#2: work done, exiting now
$

Multithreading with Pthreads Part I - Essentials Chapter 14

[552]

Well? It looks just fine. Is it really? There's just one more quick and minor
modification that has to be done; increase the sleep time from 3 seconds to, say, 30
seconds, and rebuild and retry (the only reason we do this is to give the end user a
chance to type a ps(1) command, as shown in the following screenshot, before the
app dies). Now, run it in the background , and take a closer look!

Check out the preceding screenshot: we run the pthreads3 app in the background;
the app (well, the main thread of the app) creates an additional three threads. The
threads merely block by going to sleep for thirty seconds each. As we ran the process
in the background, we get control on the shell process; now we run ps(1) with the -
LA option switches. From the man page on ps(1):

-A: Select all processes; identical to -e
-L: Show threads, possibly with LWP and NLWP columns

Multithreading with Pthreads Part I - Essentials Chapter 14

[553]

All right! (GNU) ps(1) can even show us every thread alive by making use of the -L
option switch (try out ps H too). With the -L switch, the first column in the output
of ps is the PID of the process (quite familiar to us); the second column is the thread
Light Weight Process (LWP); in effect, this is the PID of the individual thread as seen
by the kernel. Interesting. Not just that, look at the numbers carefully: where the PID
and LWP match, it's the main() thread of the process; where the PID and LWP differ,
it tells us that this is a child, or more correctly just a peer thread, belonging to the
process; the LWP is the thread PID as seen by the OS. So, in our sample run, we have
the process PID of 3906, along with four threads: the first one is the main() thread (as
its PID == its LWP value), while the remaining three have the same PID—proving
they belong to the same overall process, but their individual thread PIDs (their LWPs)
are unique – 3907, 3908, and 3909!

The problem we have been referring to, though, is that in the first line—which
represents the main thread—of the ps output is that the process name is followed by
the phrase
<defunct> (on the extreme right). The alert reader will remember that defunct is
another term for zombie! Yes indeed, the infamous zombie has returned to haunt us.

The main thread, by invoking pthread_exit(3) (recall the code of main in
ch14/pthreads3.c), has exited before the other threads in the process; the Linux
kernel thus marks it as a zombie. As we learned in Chapter 10, Process Creation,
zombies are undesirable entities; we really do not want a zombie hanging around
(wasting resources). So, the question, of course, is how do we prevent the main
thread from becoming a zombie? The answer is straightforward: do not allow
the main thread to terminate before the other threads in the application; in other
words, the recommendation is to always keep main() alive, waiting for all the other
threads to die, before it itself terminates (and thus the process terminates). How?
Read on.

Again, it goes without saying (but we shall say it!): the process remains alive as long
as at least one thread within it remains alive.

As a quick aside, when will the worker threads run with respect to each other
and main? In other words, is it guaranteed that the first thread created will run first,
followed by the second thread, then the third, and so on?

Multithreading with Pthreads Part I - Essentials Chapter 14

[554]

The short answer: no, there is no such guarantee. Especially on modern Symmetric
Multiprocessor (SMP) hardware and a modern multiprocess-and-multithreaded-
capable OS such as Linux, the actual order at runtime is indeterminate (which is a
fancy way of saying it can't be known). In reality, it's up to the OS scheduler to make
these decisions (that is, in the absence of real-time scheduling policies and thread
priorities; we shall tackle these topics later in this book).

Another trial run of our ./pthreads2 sample program reveals this very case:

$./pthreads2
Worker thread #0 running ...
#0: work done, exiting now
Worker thread #2 running ...
#2: work done, exiting now
Worker thread #1 running ...
#1: work done, exiting now
$

Can you see what happened? The order shown in the preceding code is: thread #0,
followed by thread #2, followed by thread #1! It's unpredictable. Do not assume
any specific order of execution when designing your multithreaded applications. (We
shall cover synchronization in a later chapter, which teaches us how to achieve the
order we require.)

So many ways to die
How can a thread terminate? It turns out there are several ways:

Explicitly, by invoking pthread_exit(3).
Implicitly, by returning from the thread function; the return value is
implicitly passed (as though via pthread_exit parameter).
Implicitly, by falling off the thread function; that is, hitting the close brace
}; note however that this is not recommended (a later discussion will show
you why)
Any thread invoking the exit(3) API will, of course, cause the entire
process, along with all threads in it, to die.
The thread gets canceled (which we will cover later).

Multithreading with Pthreads Part I - Essentials Chapter 14

[555]

How many threads is too many?
So, by now, we know how to create an application process with a few threads
executing within it. We will repeat a code snippet from our very first demo program,
ch14/pthreads1.c, as follows:

#include <pthread.h>
#define NTHREADS 3
[...]

int main(void)
{
 [...]
 for (i = 0; i < NTHREADS; i++) {
 ret = pthread_create(&tid, NULL, worker, (void *)i);
 if (ret)
 FATAL("pthread_create() failed! [%d]\n", ret);
 }
[...]

Clearly, the process—well, we really mean the main thread of the process (or
application)—goes in a loop, and each loop iteration creates a thread. So, when it's
done, we will have three threads in addition to the main thread, which is a total of
four threads, alive in the process.

This is obvious. The point here is this: creating threads is so much simpler than
creating (child) processes with the fork(2); with fork, we had to carefully code it,
getting the child to run its code while the parent continues with its code path (recall
the switch-case construct; take another quick look at our ch10/fork4.c code
example, if you wish to). With pthread_create(3), things have become easy for the
application programmer – just call the API in a loop—and voila! You get as many
threads as you like! In the preceding code snippet, imagine tweaking it, changing the
value of NTHREADS from 3 to 300; and just like that, the process will produce 300
threads. What if we made NTHREADS 3,000? Or 30,000!?

Thinking about this brings up a couple of pertinent questions: one, how many threads
can you actually create? And two, how many threads should you create? Please, read
on.

Multithreading with Pthreads Part I - Essentials Chapter 14

[556]

How many threads can you create?
If you think about it, there must be some artificial constraint upon the number of
threads that the underlying OS will allow an application to create; otherwise, system
resources would get exhausted pretty quickly. In fact, this is not really something
new; our whole discussion in Chapter 3, Resource Limits, was really about similar
things.

With regard to threads (and processes), there are two (direct) limits that impact the
number of threads that can exist at any given point in time:

Per process resource limits: You will recall from our Chapter 3, Resource
Limits, that there are two utilities to look up the currently defined resource
limits: ulimit(1) and prlimit(1), the latter being the modern interface.
Let's take a quick look at the resource limit for max user processes; also
realize that although the word processes is used, you should actually think
of these as threads:

$ ulimit -u
63223
$

Similarly, prlimit() shows us the following:

$ prlimit --nproc
RESOURCE DESCRIPTION SOFT HARD UNITS
NPROC max number of processes 63223 63223 processes
$

Here, we have shown you how to query the limit via the CLI; to see
how to change it—both interactively and programmatically with
API interfaces – refer to Chapter 3, Resource Limits.

System-wide limits: The Linux OS maintains a system-wide (not per-
process) limit on the total number of threads that can be alive at any given
point in time. This value is exposed to the user space via the proc
filesystem:

$ cat /proc/sys/kernel/threads-max
126446
$

Multithreading with Pthreads Part I - Essentials Chapter 14

[557]

So, the thing to understand is that if either of the preceding two limits are
breached, pthread_create(3) (and similarly, the fork(2)) will fail (typically
setting errno to the value EAGAIN try again; the OS saying, in effect, "I cannot do this
for you right now, please try again later").

Can you change these values? Yes, of course, but with the usual caveat—you
require root (super user) access to do so. (Again, we have discussed these points in
detail with respect to in Chapter 3, Resource Limits) Regarding the system-wide limit,
you can indeed change it as the root. But, hang on, blindly changing system
parameters like this without an understanding of the impact is a sure way to lose grip
on a system! So, let's start by asking ourselves this: the OS sets the threads-max limit
at boot time; what does it base the value on?

The short answer: it's directly proportional to the amount of RAM on the system. This
makes sense: ultimately, memory is the key limiting resource with regard to creating
threads and processes.

In more detail for our dear OS-level geek readers: kernel code at
boot time sets the /proc/sys/kernel/threads-max value so that
thread (task) structures within the OS can take a maximum of one-
eighth of available RAM. (The threads-max minimum value is 20;
the maximum value is the constant FUTEX_TID_MASK
0x3fffffff.)
Also, by default, the per-process resource limit for the maximum
number of threads is half of the system limit.

As seen from the preceding code, the value we obtained was 126,446; this was done
on a native Linux laptop with 16 GB of RAM. Running the same commands on a
guest VM with 1 GB of RAM yields the following results:

$ cat /proc/sys/kernel/threads-max
7420
$ prlimit --nproc
RESOURCE DESCRIPTION SOFT HARD UNITS
NPROC max number of processes 3710 3710 processes
$

Setting the threads-max kernel tunable to too high a value – beyond
FUTEX_TID_MASK – will cause it to be brought down to that value (but, of course, that
is almost certainly too large in any case). But even within limits, you can stray too far,
causing the system to become vulnerable (to denial-of-service (DoS) attacks,
perhaps!). On an embedded Linux system, lowering the limit might actually help by
constraining the system.

Multithreading with Pthreads Part I - Essentials Chapter 14

[558]

Code example – creating any number of threads
So, let's put it to the test: we will write a simple extension of our previous program,
this time allowing the user to specify the number of threads to attempt to create
within the process as the parameter (ch14/cr8_so_many_threads.c). The
main function is as follows:

int main(int argc, char **argv)
{
 long i;
 int ret;
 pthread_t tid;
 long numthrds=0;

 if (argc != 2) {
 fprintf(stderr, "Usage: %s number-of-threads-to-create\n",
argv[0]);
 exit(EXIT_FAILURE);
 }
 numthrds = atol(argv[1]);
 if (numthrds <= 0) {
 fprintf(stderr, "Usage: %s number-of-threads-to-create\n",
argv[0]);
 exit(EXIT_FAILURE);
 }

 for (i = 0; i < numthrds; i++) {
 ret = pthread_create(&tid, NULL, worker, (void *)i);
 if (ret)
 FATAL("pthread_create() failed! [%d]\n", ret);
 }
 pthread_exit(NULL);
}

It's quite simple: we convert the string value the user passed as the first parameter to
a numeric one with numthrds; we then have main loop numthrds times,
invoking pthread_create(3) and thus creating a brand new thread upon each loop
iteration! Once created, what do the new threads do? It's clear – they execute the code
of the worker function. Let's take a look:

void * worker(void *data)
{
 long datum = (long)data;
 printf("Worker thread #%5ld: pausing now...\n", datum);
 (void)pause();

Multithreading with Pthreads Part I - Essentials Chapter 14

[559]

 printf(" #%5ld: work done, exiting now\n", datum);
 pthread_exit(NULL);
}

Again, this is very simple: the worker threads just emit a printf(3)—which is useful
because they print out their thread number—it's just the loop index of course. Then,
they go to sleep via the pause(2) system call. (This system call is useful: it's a
perfect blocking call; it puts the calling thread to sleep until a signal arrives.)

All right, let's try it out:

$./cr8_so_many_threads
Usage: ./cr8_so_many_threads number-of-threads-to-create
$./cr8_so_many_threads 300
Worker thread # 0: pausing now...
Worker thread # 1: pausing now...
Worker thread # 2: pausing now...
Worker thread # 3: pausing now...
Worker thread # 5: pausing now...
Worker thread # 6: pausing now...
Worker thread # 4: pausing now...
Worker thread # 7: pausing now...
Worker thread # 10: pausing now...
Worker thread # 11: pausing now...
Worker thread # 9: pausing now...
Worker thread # 8: pausing now...

[...]

Worker thread # 271: pausing now...
Worker thread # 299: pausing now...
Worker thread # 285: pausing now...
Worker thread # 284: pausing now...
Worker thread # 273: pausing now...
Worker thread # 287: pausing now...
[...]
^C
$

It works (notice that we've truncated the output as there would be far too much to
show in this book). Notice how the order in which the threads come alive and execute
(emitting their printf) is random. We can see that the last thread we created is the
one highlighted in bold—thread # 299 (0 to 299 is 300 threads).

Multithreading with Pthreads Part I - Essentials Chapter 14

[560]

Now, let's run it again, but this time ask it to create an impossibly large number of
threads (we are currently trying this out on a guest VM with 1 GB of RAM):

$ prlimit --nproc ; ulimit -u
RESOURCE DESCRIPTION SOFT HARD UNITS
NPROC max number of processes 3710 3710 processes
3710
$./cr8_so_many_threads 40000
Worker thread # 0: pausing now...
Worker thread # 1: pausing now...
Worker thread # 2: pausing now...
Worker thread # 4: pausing now...

[...]

Worker thread # 2139: pausing now...
Worker thread # 2113: pausing now...
Worker thread # 2112: pausing now...
FATAL:cr8_so_many_threads.c:main:52: pthread_create() #2204 failed !
[11]
 kernel says: Resource temporarily unavailable
$

Obviously, again, the results that you will see will depend on your
system; we encourage the reader to try it out on different systems.
Also, it's possible that the actual failure message may have appeared
somewhere higher up in your Terminal window; scroll up to find it!

The name of the thread, as shown by ps(1), and so on, can be set
via the pthread_setname_np(3) API; note that the np suffix
implies that the API is non-portable (Linux-only).

How many threads should one create?
The number of threads you create really does depend on the nature of the
application. For our discussion here, we will consider which the application tends to
be – CPU versus IO bound.

Multithreading with Pthreads Part I - Essentials Chapter 14

[561]

Earlier in this chapter (specifically within the sections on Design Motivation
and Overlapping CPU with I/O), we mentioned the fact that a thread, in terms of its
execution behavior, falls somewhere on a continuum, somewhere between two
extremes: one extreme being a completely CPU-bound task and the other extreme
being a completely I/O-bound task. The continuum may be visualized like this:

Fig 3: The CPU-bound/IO-bound continuum

A thread that is a 100% CPU-bound will be continually hammering away on the CPU;
a 100% I/O-bound thread is one that is always in a blocking (or wait) state, never
executing on CPU. Both extremes are unrealistic in real applications; however, it's
quite easy to visualize the domains where they tend to have one of these. For
example, domains that involve heavy mathematical processing (scientific models,
vector graphics such as flash animations in a web browser, matrix multiplication, and
so on), (un)compression utilities, multimedia codecs, and so on will certainly tend to
be more CPU-bound. On the other hand, many (but not all) applications that us
humans interact with on a daily basis (think of your email client, web browser, word
processing, and so on) tend to wait for the human to do something; in effect, they
tend to be I/O-bound.

Therefore—a bit simplistically, but nevertheless—this serves as a useful design rule of
thumb: if the application being designed is I/O-bound in nature, then creating even a
large-ish number of threads that just wait for work is all right; this is because they
will be asleep the majority of the time, thus not placing any strain on the CPU(s) (of
course, create too many threads and they do strain memory.)

On the other hand, if the application is determined to be highly CPU-bound, then
creating a large number of threads will stress the system (and end up causing
thrashing – a phenomenon wherein the meta-work takes longer than the actual
work!). Thus, for CPU-bound workloads, the thumb rule is this:

max number of threads = number of CPU cores * factor;
 where factor = 1.5 or 2.

Note, though, that there do exist CPU cores that do not provide any
hyperthreading (HT) features; on cores like this, factor should just
remain 1.

Multithreading with Pthreads Part I - Essentials Chapter 14

[562]

Actually, our discussion has been quite simplistic: many real-world applications
(think of powerful web servers such as Apache and NGINX) will dynamically create
and adjust the number of threads required based on the exact circumstances,
configuration presets, and present workload. Nevertheless, the preceding discussion
serves as a starting point so that you can start thinking about design for
multithreaded applications.

Thread attributes
In our initial discussion on Thread Creation earlier in this chapter, we saw
the pthread_create(3) API; the second parameter is a pointer to the thread
attribute structure: const pthread_attr_t *attr. We mentioned there that
passing NULL here, in effect, has the library create a thread with default attributes.
While that is indeed the case, the problem is that, for truly portable applications, this
is not good enough. Why? Because the default thread attributes actually differ quite
widely from implementation to implementation. The right way-specify the thread
attributes explicitly at thread creation time.

Firstly, of course, we need to learn what attributes a pthread has. The following table
enumerates this:

Attribute Meaning APIs:
pthread_attr_[...](3)

Values Possible Linux Default

Detach state
Create threads
as joinable or
detached

pthread_attr_
[get|set]detachstate

PTHREAD_CREATE_JOINABLE
PTHREAD_CREATE_DETACHED PTHREAD_CREATE_JOINABLE

Scheduling/contention
scope

Set of threads
against which
we compete for
resources (CPU)

pthread_attr_
[get|set]scope

PTHREAD_SCOPE_SYSTEM
PTHREAD_SCOPE_PROCESS PTHREAD_SCOPE_SYSTEM

Scheduling/inheritance

Determines
whether
scheduling
attributes are
inherited
implicitly from
calling a thread
or explicitly
from
the attr structure

pthread_attr_
[get|set]inheritsched

PTHREAD_INHERIT_SCHED
PTHREAD_EXPLICIT_SCHED PTHREAD_INHERIT_SCHED

Scheduling/policy

Determines
the scheduling
policy of the
thread being
created

pthread_attr_
[get|set]schedpolicy

SCHED_FIFO
SCHED_RR
SCHED_OTHER

SCHED_OTHER

Scheduling/priority

Determines
the scheduling
priority of the
thread
being created

pthread_attr_
[get|set]schedparam

struct sched_param holds
 int sched_priority 0 (non real-time)

Multithreading with Pthreads Part I - Essentials Chapter 14

[563]

Stack/guard region
A guard region
for the thread's
stack

pthread_attr_
[get|set]guardsize

Stack guard region size in bytes 1 page

Stack/location, size
Query or set the
thread's stack
location and size

pthread_attr_
[get|set]stack
pthread_attr_
[get|set]stackaddr
pthread_attr_
[get|set]stacksize

Stack address and/or stack size, in
bytes

Thread Stack Location: left to the
OS
Thread Stack Size: 8 MB

As you can see, clearly understanding what exactly many of these attributes signify
requires further information. Please be patient as we proceed through this chapter
(and, in fact, this book), as several of these attributes and their meanings will become
abundantly clear (details on scheduling will be shown in Chapter 17, CPU Scheduling
on Linux).

Code example – querying the default thread
attributes
For now, a useful experiment would be to query the default attributes of a newly born
thread whose attribute structure is specified as NULL (default).
How? pthread_default_getattr_np(3) will do the trick (note though, that again,
the _np suffix implies that it's a Linux-only, non-portable API):

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>
int pthread_getattr_default_np(pthread_attr_t *attr);

Interestingly, as this function depends on the _GNU_SOURCE macro being defined, we
must first define the macro (early in the source); otherwise, the compile triggers
warnings and possibly fails. (In our code, we thus use #include "../common.h"
first as our common.h header defines the _GNU_SOURCE macro.)

Our code example can be found here, within this book's GitHub repository:
ch14/disp_defattr_pthread.c .

In the following code, we display a trial run on a Fedora x86_64 box running the
4.17.12 Linux kernel:

$./disp_defattr_pthread
Linux Default Thread Attributes:
Detach State : PTHREAD_CREATE_JOINABLE
Scheduling
 Scope : PTHREAD_SCOPE_SYSTEM
 Inheritance : PTHREAD_INHERIT_SCHED

Multithreading with Pthreads Part I - Essentials Chapter 14

[564]

 Policy : SCHED_OTHER
 Priority : 0
Thread Stack
 Guard Size : 4096 bytes
 Stack Size : 8388608 bytes
$

For readability, only key parts of the source code are displayed;
to view the complete source code, build and run it, the entire tree is
available for cloning from GitHub here: https:/ / github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

The key function here is shown in the following code
(ch14/disp_defattr_pthread.c); we first query and display the thread attribute
structure's "detached state" (these terms will be explained in detail shortly):

static void display_thrd_attr(pthread_attr_t *attr)
{
 int detachst=0;
 int sched_scope=0, sched_inh=0, sched_policy=0;
 struct sched_param sch_param;
 size_t guardsz=0, stacksz=0;
 void *stackaddr;

 // Query and display the 'Detached State'
 if (pthread_attr_getdetachstate(attr, &detachst))
 WARN("pthread_attr_getdetachstate() failed.\n");
 printf("Detach State : %s\n",
 (detachst == PTHREAD_CREATE_JOINABLE) ? "PTHREAD_CREATE_JOINABLE"
:
 (detachst == PTHREAD_CREATE_DETACHED) ? "PTHREAD_CREATE_DETACHED"
:
 "<unknown>");

Next, various scheduling attributes are queried and displayed (some details covered
later in Chapter 17, CPU Scheduling on Linux):

//--- Scheduling Attributes
 printf("Scheduling \n");
 // Query and display the 'Scheduling Scope'
 if (pthread_attr_getscope(attr, &sched_scope))
 WARN("pthread_attr_getscope() failed.\n");
 printf(" Scope : %s\n",
 (sched_scope == PTHREAD_SCOPE_SYSTEM) ? "PTHREAD_SCOPE_SYSTEM" :
 (sched_scope == PTHREAD_SCOPE_PROCESS) ? "PTHREAD_SCOPE_PROCESS" :
 "<unknown>");

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part I - Essentials Chapter 14

[565]

 // Query and display the 'Scheduling Inheritance'
 if (pthread_attr_getinheritsched(attr, &sched_inh))
 WARN("pthread_attr_getinheritsched() failed.\n");
 printf(" Inheritance : %s\n",
 (sched_inh == PTHREAD_INHERIT_SCHED) ? "PTHREAD_INHERIT_SCHED" :
 (sched_inh == PTHREAD_EXPLICIT_SCHED) ? "PTHREAD_EXPLICIT_SCHED" :
 "<unknown>");

 // Query and display the 'Scheduling Policy'
 if (pthread_attr_getschedpolicy(attr, &sched_policy))
 WARN("pthread_attr_getschedpolicy() failed.\n");
 printf(" Policy : %s\n",
 (sched_policy == SCHED_FIFO) ? "SCHED_FIFO" :
 (sched_policy == SCHED_RR) ? "SCHED_RR" :
 (sched_policy == SCHED_OTHER) ? "SCHED_OTHER" :
 "<unknown>");

 // Query and display the 'Scheduling Priority'
 if (pthread_attr_getschedparam(attr, &sch_param))
 WARN("pthread_attr_getschedparam() failed.\n");
 printf(" Priority : %d\n", sch_param.sched_priority);

Finally, the thread stack attributes are queried and displayed:

//--- Thread Stack Attributes
 printf("Thread Stack \n");
 // Query and display the 'Guard Size'
 if (pthread_attr_getguardsize(attr, &guardsz))
 WARN("pthread_attr_getguardsize() failed.\n");
 printf(" Guard Size : %9zu bytes\n", guardsz);

 /* Query and display the 'Stack Size':
 * 'stack location' will be meaningless now as there is no
 * actual thread created yet!
 */
 if (pthread_attr_getstack(attr, &stackaddr, &stacksz))
 WARN("pthread_attr_getstack() failed.\n");
 printf(" Stack Size : %9zu bytes\n", stacksz);
}

Multithreading with Pthreads Part I - Essentials Chapter 14

[566]

In the preceding code, we put in
the pthread_getattr_default_np(3) API to query the default
thread attributes. Its counterpart,
the pthread_setattr_default_np(3) API, allows you to specify
what exactly the default thread attributes should be when creating a
thread, and the second parameter to pthread_create(3) is passed
as NULL. Do see its man page for details.

There is an alternate way to write a similar program: why not create a thread with a
NULL attribute structure—thus making it default attributes—and then issue
the pthread_getattr_np(3) API to query and display the actual thread attributes?
We leave this as an exercise to the reader (in fact, the man page
on pthread_attr_init(3) supplies just such a program).

Joining
Imagine an application where a thread (typically, main) has spawned off several
other worker threads. Each worker thread has a specific job to do; once done, it
terminates (via pthread_exit(3)). How will the creator thread know when a
worker thread is done (terminated)? Ah, that is precisely where joining comes in.
With the join, the creator thread can wait for, or block upon, the death (termination)
of another thread within the process!

Does this not sound very much like the wait(2) system call that a parent process
issues to wait for the death of a child? True, but as we shall see shortly, it's certainly
not identical.

Also, importantly, the return value from the thread that terminated is passed along to
the thread that issued the join upon it. This way, it comes to know whether the
worker succeeded in its task or not (and if not, the failure value can be examined to
pinpoint the cause of failure):

#include <pthread.h>
int pthread_join(pthread_t thread, void **retval);

Multithreading with Pthreads Part I - Essentials Chapter 14

[567]

The first parameter to pthread_join(3), thread, is the ID of the thread to wait for.
The moment it terminates, the calling thread will receive, in the second parameter
(yes, it's a value-result style parameter), the return value from the thread that
terminated—which, of course is the value passed via its pthread_exit(3) call.

Thus, the join is very helpful; using this construct, you can ensure that a thread can
block upon the termination of any given thread. Specifically, in the case of
the main thread, we often use this mechanism to ensure that main waits for all other
application threads to terminate before it itself terminates (thus preventing the
zombie we saw earlier). This is considered the right approach.

Recall that in the earlier section, The return of the ghost, we clearly saw how
the main thread, dying before its counterparts, becomes an inadvertent zombie
(the ch14/pthreads3.c program). A quick example, built upon this previous code,
will help clarify things. So, let's enhance that program – we shall now call
it ch14/pthreads_joiner1.c – so that we have the main thread wait for all other
threads to die by invoking the pthread_join(3) API on each of the worker threads,
and only then itself terminate:

int main(void)
{
 long i;
 int ret, stat=0;
 pthread_t tid[NTHREADS];
 pthread_attr_t attr;

 /* Init the thread attribute structure to defaults */
 pthread_attr_init(&attr);
 /* Create all threads as joinable */
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 // Thread creation loop
 for (i = 0; i < NTHREADS; i++) {
 printf("main: creating thread #%ld ...\n", i);
 ret = pthread_create(&tid[i], &attr, worker, (void *)i);
 if (ret)
 FATAL("pthread_create() failed! [%d]\n", ret);
 }
 pthread_attr_destroy(&attr);

Multithreading with Pthreads Part I - Essentials Chapter 14

[568]

There are a few things to notice here:

To perform the join subsequently, we require each thread's ID; hence, we
declare an array of pthread_t (the tid variable). Each element will store
the corresponding thread's ID value.
Thread attributes:

Until now, we have not explicitly initialized and made use of
a thread attribute structure when creating threads. Here, we
rectify this shortcoming. pthread_attr_init(3) is used to
initialize (to defaults) an attribute structure.
Furthermore, we explicitly make the threads joinable by
setting up this attribute within the structure (via
the pthread_attr_setdetachstate(3) API).
Once the threads are created, we must destroy the thread
attribute structure (via
the pthread_attr_destroy(3) API).

It is key to understand that only threads that have their detach state set as joinable can
be joined upon. Interestingly, a joinable thread can later be set to the detached state
(by calling the pthread_detach(3) API upon it); there is no converse routine.

The code continues; we now show you the thread worker function:

void * worker(void *data)
{
 long datum = (long)data;
 int slptm=8;

 printf(" worker #%ld: will sleep for %ds now ...\n", datum,
slptm);
 sleep(slptm);
 printf(" worker #%ld: work (eyeroll) done, exiting now\n",
datum);

 /* Terminate with success: status value 0.
 * The join will pick this up. */
 pthread_exit((void *)0);
}

Multithreading with Pthreads Part I - Essentials Chapter 14

[569]

Easy: we just have the so-called worker threads sleep for 8 seconds and then die;
the pthread_exit(3), this time, passes the return status 0 as a parameter. In the
following code snippet, we continue the code of main:

 // Thread join loop
 for (i = 0; i < NTHREADS; i++) {
 printf("main: joining (waiting) upon thread #%ld ...\n", i);
 ret = pthread_join(tid[i], (void **)&stat);
 if (ret)
 WARN("pthread_join() failed! [%d]\n", ret);
 else
 printf("Thread #%ld successfully joined; it terminated with"
 "status=%d\n", i, stat);
 }
 printf("\nmain: now dying... <Dramatic!> Farewell!\n");
 pthread_exit(NULL);
}

Here's the key part: in a loop, the main thread blocks (waits) upon the death of each
worker thread via the pthread_join(3) API; the second (value-result style)
parameter, in effect, returns the status of the thread that just terminated. The usual
zero-upon-success convention is followed, thus allowing the main thread to figure
out whether the worker threads completed their work successfully or not.

Let's build and run it:

$ make pthreads_joiner1
gcc -O2 -Wall -UDEBUG -c ../common.c -o common.o
gcc -O2 -Wall -UDEBUG -c pthreads_joiner1.c -o pthreads_joiner1.o
gcc -o pthreads_joiner1 pthreads_joiner1.o common.o -lpthread
$./pthreads_joiner1
main: creating thread #0 ...
main: creating thread #1 ...
 worker #0: will sleep for 8s now ...
main: creating thread #2 ...
 worker #1: will sleep for 8s now ...
main: joining (waiting) upon thread #0 ...
 worker #2: will sleep for 8s now ...

<< ... worker threads sleep for 8s ... >>

 worker #0: work (eyeroll) done, exiting now
 worker #1: work (eyeroll) done, exiting now
 worker #2: work (eyeroll) done, exiting now
Thread #0 successfully joined; it terminated with status=0
main: joining (waiting) upon thread #1 ...
Thread #1 successfully joined; it terminated with status=0

Multithreading with Pthreads Part I - Essentials Chapter 14

[570]

main: joining (waiting) upon thread #2 ...
Thread #2 successfully joined; it terminated with status=0

main: now dying... <Dramatic!> Farewell!
$

As the worker threads die, they are picked up, or joined, by the main thread
via pthread_join; not only that, their termination status—return value—can be
examined.

Okay, we'll make a copy of the preceding program and call
it ch14/pthreads_joiner2.c. The only change we make is instead of having each
worker thread sleep for an identical 8 seconds, we'll make the sleep time dynamic. We
will change the code; for instance, this line would be changed:sleep(slptm);

The new line would read as follows: sleep(slptm-datum);

Here, datum is the value passed to the thread—the loop index. This way, we find that
the worker threads sleep as follows:

Worker thread #0 sleeps for (8-0) = 8 seconds
Worker thread #1 sleeps for (8-1) = 7 seconds
Worker thread #2 sleeps for (8-2) = 6 seconds

Obviously, worker thread #2 will terminate first; so what? Well, think about it: in the
meantime, the main thread is looping around pthread_join, but in the order
of thread #0, thread #1, thread #2. Now, thread #0 will die last and thread #2 will
die first. Will this be an issue?

Let's try it out and see:

$./pthreads_joiner2
main: creating thread #0 ...
main: creating thread #1 ...
main: creating thread #2 ...
main: joining (waiting) upon thread #0 ...
 worker #0: will sleep for 8s now ...
 worker #1: will sleep for 7s now ...
 worker #2: will sleep for 6s now ...

<< ... worker threads sleep for 8s, 7s and 6s resp ... >>

 worker #2: work (eyeroll) done, exiting now
 worker #1: work (eyeroll) done, exiting now
 worker #0: work (eyeroll) done, exiting now
Thread #0 successfully joined; it terminated with status=0

Multithreading with Pthreads Part I - Essentials Chapter 14

[571]

main: joining (waiting) upon thread #1 ...
Thread #1 successfully joined; it terminated with status=0
main: joining (waiting) upon thread #2 ...
Thread #2 successfully joined; it terminated with status=0

main: now dying... <Dramatic!> Farewell!
$

What do we notice? In spite of worker thread #2 dying first, worker thread #0 gets
joined first because, in the code, that is the thread we wait for first!

The thread model join and the process model wait
By now, you should have begun to realize that although
the pthread_join(3) and wait(2) (and family) APIs seem to be very similar, they
are certainly not equivalent; several differences between them exist and are
enumerated in the following table:

Situation Thread : pthread_join(3) Process: wait[pid](2)

Condition
A thread being waited for must have
its detached state attribute set as
joinable, not detached.

None; any child process can (and
in fact must) be waited upon
(recall our fork rule #7)

Hierarchy

None: any thread can join on any other
thread; there is no requirement of a
parent-child relationship. In fact, we
do not consider threads to live within a
strict parent-child hierarchy as
processes do; all threads are peers.

A strict parent-child hierarchy
exists; only a parent can wait for a
child process.

Order

With threads, one is forced to join
(wait) upon the particular thread
specified as the parameter to
pthread_join(3). In other words, if
there are, say, three threads running
and main issues the join within an
ascending ordered loop, then it
must wait for the death or thread #1,
then thread #2, and then thread #3. If
thread #2 terminates earlier, there is no
help for it.

With wait, a process can wait
upon the death (or stoppage)
of any child, or specify a
particular child process to wait for
with waitpid.

Multithreading with Pthreads Part I - Essentials Chapter 14

[572]

Signaling No signal is sent upon a thread's death.
Upon a process's death, the kernel
sends the SIGCHLD signal to the
parent process.

A few other points to note regarding pthread_join(3) are as follows:

You require the thread ID of a thread in order to join upon it; this is
deliberately done so that we can, in effect, only join the threads of our
application process. Attempting to join on other threads (like a third-party
library thread) would be poor design.
What if the thread we are waiting for (to die) has already died?
Then pthread_join(3) just returns immediately.
What if a thread tries to join upon itself? This results in failure
(with errno set to EDEADLK).
Attempting to have several threads join upon one thread results in
undefined behavior; avoid this.
If a thread attempting to join on another thread is cancelled (covered later),
the target thread remains as it was (joinable).

Checking for life, timing out
Sometimes, we might have a situation wherein we want to check whether a particular
thread is still alive or not; one way to do so is via the pthread_tryjoin_np(3) API:

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_tryjoin_np(pthread_t thread, void **retval);
int pthread_timedjoin_np(pthread_t thread, void **retval,
 const struct timespec *abstime);

The first parameter to pthread_tryjoin_np(3) is the thread we are attempting to
join to; (the second parameter, as usual, is the target thread's termination status).
Notice the try phrase within the API – this typically specifies that the call is non-
blocking; in other words, we perform a non-blocking join on the target thread. If the
target thread is alive, then instead of waiting for it to die, the API returns immediately
with an error: errno will be set to EBUSY (and the man page tells us that this implies
the thread had not yet terminated at the time of the call).

Multithreading with Pthreads Part I - Essentials Chapter 14

[573]

What if we would like to wait (block) upon a target thread's death, but not forever? In
other words, we would like to wait for a given maximum time period. This can be
achieved via the pthread_timedjoin_np(3) API; the first two parameters are the
usual ones (the same as with pthread_join), while the third parameter specifies
the timeout in terms of the absolute time (or what is often called Unix time – the
number of seconds (and nanoseconds) elapsed since midnight 1 January 1970—the
Epoch!).

As covered in Chapter 13, Timers, the timespec data structure is of the following
format:

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

That's easy; but how do we specify the time as UNIX time (or time since the Epoch)?
We refer the reader to the man page on pthread_timedjoin_np(3), which gives a
simple example of the same (also, we ask you try this API out as an exercise).

Another thing I noticed when using
the pthread_timedjoin_np(3) API: it's possible that the join
times out and then proceeds to, say, release some resources – like
performing free(3) on a heap buffer—while the worker thread
is still alive and using it. This is a bug, of course; it also goes to show
that you must carefully think out and test the design; usually, using
a blocking join on all worker threads, thus ensuring they have all
terminated before freeing up resources, is the right approach.

Again, we remind you that the _np suffix to the APIs implies that
they are non-portable (Linux-only).

Join or not?
A thread that is explicitly set to the detached state cannot be joined upon; so, what
happens when it dies? Its resources are disposed of by the library.

Multithreading with Pthreads Part I - Essentials Chapter 14

[574]

A thread that is explicitly set to the joinable state (or if joinable is the default
state) must be joined upon; failure to do so results in a kind of resource leakage. So,
be careful: if you have created threads to be joinable, then you must ensure that the
join is performed.

Performing a join on other app threads by the main thread is usually considered a
best practice, since it prevents the zombie thread behavior we saw earlier. Also, it's
usually important for the creator thread to come to know whether its workers
successfully performed their job or not, and if not, why not. The join makes all of this
possible.

However, it is possible that your application does not want to wait around for some
worker threads; in this case, ensure that you create them as detached.

Parameter passing
Recall the signature of the pthread_create(3) API:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
 void *(*start_routine) (void *), void *arg);

The third parameter is the thread function—in effect, the life and scope of the newly
born thread. It receives a single parameter of type void *; this parameter to the new
born thread is passed via the fourth parameter to pthread_create: void *arg.

As mentioned earlier, its data type is a generic pointer, precisely so that we can, in
effect, pass along any data type as a parameter, and then in the thread routine,
appropriately typecast and use it. Until now, we have come across simple use cases of
the same – typically, passing along an integer value as the parameter. In our very first
simple multithreaded app – ch14/pthreads1.c – in our main function, we did the
following:

long i;
int ret;
pthread_t tid;

for (i = 0; i < NTHREADS; i++) {
 ret = pthread_create(&tid, NULL, worker, (void *)i);
 ...
}

Multithreading with Pthreads Part I - Essentials Chapter 14

[575]

And, in the thread routine worker, we performed a simple typecast-and-use:

void * worker(void *data)
{
 long datum = (long)data;
...

That's easy, but it does raise a fairly obvious question: in the
pthread_create(3) API, as there seems to be just one placeholder for the arg (the
parameter) how can you pass along more than one data item – several parameters, in
effect – to the thread routine?

Passing a structure as a parameter
The preceding heading gives it away: we pass a data structure. But how, exactly?
Allocate memory to a pointer to the data structure, initialize it, and pass the pointer
typecast as void *. (In fact, this is a very common approach that C programmers
use.) In the thread routine, as usual, typecast and use it.

To bring clarity, we will try this out (ch14/param_passing/struct_as_param.c):

For readability, only key parts of the source code are displayed; to
view the complete source code, build, and run it, the entire tree
is available for cloning from GitHub here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

/* Our data structure that we intend to pass as a parameter to the
threads. City Airport information. */
typedef struct {
 char IATA_code[IATA_MAXSZ];
 /* http://www.nationsonline.org/oneworld/IATA_Codes/ */
 char city[CITY_MAXSZ]; /* city name */
 float latitude, longitude; /* coordinates of the city airport */
 unsigned int altitude; /* metres */
 /* todo: add # runways, runway direction, radio beacons freq, etc
etc */
 unsigned long reserved; /* for future use */
} Airport;
/* yes! the {lat,long,alt} tuple is accurate :-) */
static const Airport city_airports[3] = {
 { "BLR", "Bangalore International", 13.1986, 77.7066, 904, 0 },
 { "BNE", "Brisbane International", 27.3942, 153.1218, 4, 0 },
 { "BRU", "Brussels National", 50.9010, 4.4856, 58, 0 },
};

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part I - Essentials Chapter 14

[576]

As an example, we build our very own airport info data structure, airport, and then
set up an array (city_airports), initializing a few members of it.

In the main function, we declare an array of pointers to the airport structure; we
know that a pointer by itself has no memory, so in the thread creation loop, we
allocate memory to each pointer and then initialize it to an airport (via a
simple memcpy(3)):

 Airport * plocdata[NTHREADS];
...
 // Thread creation loop
 for (i = 0; i < NTHREADS; i++) {
 printf("main: creating thread #%ld ...\n", i);

 /* Allocate and initialize data structure to be passed to the
 * thread as a parameter */
 plocdata[i] = calloc(1, sizeof(Airport));
 if (!plocdata[i])
 FATAL("calloc [%d] failed\n", i);
 memcpy(plocdata[i], &city_airports[i], sizeof(Airport));

 ret = pthread_create(&tid[i], &attr, worker, (void
*)plocdata[i]);
 if (ret)
 FATAL("pthread_create() index %d failed! [%d]\n", i, ret);
 }

Okay, so we already know that the preceding code is not really optimal; we could
have just passed the city_airports[i] structure pointer as the parameter to the
thread. For the sake of a pedantic example, making use of our just allocated
plocdata[i] structures, we memcpy one structure into another.

Then, in the pthread_create(3) call, we pass the pointer to our data structure as
the fourth parameter. This will become the argument to the thread; in the thread
routine, we declare an arg pointer of the same data type and equate it to the
typecast data pointer we receive:

void * worker(void *data)
{
 Airport * arg = (Airport *)data;
 int slptm=8;

 printf("\n----------- Airports Details ---------------\n"
 " IATA code : %.*s %32s\n"
 " Latitude, Longitude, Altitude : %9.4f %9.4f %9um\n"
 , IATA_MAXSZ, arg->IATA_code,

Multithreading with Pthreads Part I - Essentials Chapter 14

[577]

 arg->city,
 arg->latitude, arg->longitude, arg->altitude);
...

We can then proceed to use arg as a pointer to Airport; in the preceding demo code,
we merely print out the values in the structure. We encourage the reader to build and
run this code.

Did you notice the %.*s C printf format specifier trick in the
preceding code? This is done when we want to print a string that is
not necessarily NULL-terminated; the %.*s format specifier allows
one to specify the size followed by the string pointer. The string will
be printed to only size bytes.

Thread parameters – what not to do
The really key thing to keep in mind when passing a parameter to a thread routine is
that you must guarantee that the parameter passed along is thread-safe; essentially,
that it does not get modified in any manner while a thread (or threads) are using it.

(Thread safety is a crucial aspect of working with threads; we shall revisit this point
often in upcoming chapters, too).

To help understand the possible issues clearly, let's take a couple of typical examples.
In the first one, we shall (attempt to) pass the loop index as the parameter to the
newly born thread such as, in main (code: ch14/pthreads1_wrong.c):

 printf("main: &i=%p\n", &i);
 for (i = 0; i < NTHREADS; i++) {
 printf("Creating thread #%ld now ...\n", i);
 ret = pthread_create(&tid, NULL, worker, (void *)&i);
 ...
}

Did you notice!? We have passed the parameter as &i. So? Dereferencing it correctly
in the thread routine should still work, right:

void * worker(void *data)
{
 long data_addr = (long)data;
 long index = *(long *)data_addr;
 printf("Worker thread: data_addr=%p value=%ld\n",
 (void *)data_addr, index);
 pthread_exit((void *)0);
}

Multithreading with Pthreads Part I - Essentials Chapter 14

[578]

Looks okay – let's give it a try!

$./pthreads1_wrong
main: &i=0x7ffebe160f00
Creating thread #0 now ...
Creating thread #1 now ...
Worker thread: data_addr=0x7ffebe160f00 value=1
Creating thread #2 now ...
Worker thread: data_addr=0x7ffebe160f00 value=2
Worker thread: data_addr=0x7ffebe160f00 value=3
$

Well, it works. But hang on, try it a few more times—timing coincidences can fool you
into thinking that all's well when it's really not:

$./pthreads1_wrong
main: &i=0x7fff4475e0d0
Creating thread #0 now ...
Creating thread #1 now ...
Creating thread #2 now ...
Worker thread: data_addr=0x7fff4475e0d0 value=2
Worker thread: data_addr=0x7fff4475e0d0 value=2
Worker thread: data_addr=0x7fff4475e0d0 value=3
$

There's a bug! The index value has evaluated to the value 2 twice; why? Think
carefully: we have passed the loop index by reference – as the pointer to the loop
variable. Thread 1 comes alive, and looks up its value – so does thread 2, as does
thread 3. But wait: isn't it possible that we have a race here? Isn't it possible that by
the time thread 1 runs and looks up the value of the loop variable it has already
changed underneath it (because, don't forget, the loop is running in main)? That, of
course, is precisely what happened in the preceding code.

In other words, passing the variable by address is unsafe because its value could
change while it is being read (by the worker threads) as it being simultaneously
written to (by main); hence, it's not thread-safe and therefore will be buggy (racy).

The solution is actually really simple: do not pass the loop index by address; just pass
it as a literal value:

for (i = 0; i < NTHREADS; i++) {
 printf("Creating thread #%ld now ...\n", i);
 ret = pthread_create(&tid, NULL, worker, (void *)i);
 ...
}

Multithreading with Pthreads Part I - Essentials Chapter 14

[579]

Now, each worker thread receives a copy of the loop index, thus eliminating any race,
thus making it safe.

Now, don't jump to the conclusion that, hey, okay, so we should never pass a pointer
(an address) as a parameter. Of course you can! Just ensure that it's thread-safe – that
its value cannot change underneath it while being manipulated by main and the other
application threads.

Refer back to the ch14/struct_as_param.c code we demonstrated in the previous
section; we very much pass the thread parameter as a pointer to a structure. Look
closely: each pointer was separately allocated (via calloc(3)) in the main thread
creation loop. Thus, each worker thread received its own copy of the structure; hence,
all is safe and it works well.

An interesting exercise (that we leave to the reader) is to deliberately insert a defect
into the struct_as_param application by using exactly one allocated structure (not
three) and passing it to each of the worker threads. This time, it will be racy and will
(eventually) fail.

Thread stacks
We understand that whenever a thread is created, it acquires a new, freshly allocated
piece of memory for its stack. This leads to the understanding that (obviously, but we
shall state it nevertheless) all local variables declared within a thread function will
remain private to that thread; this is because they will reside in that thread's stack.
(Refer back to Fig 2 in this chapter – the new stack of the newly created thread is
shown in red). Also, whenever a context switch occurs, the Stack Pointer (SP) register
is updated to point to the current thread's stack.

Get and set thread stack size
Knowing, and being able to change, the size of thread stacks does matter (do see the
link provided in the Further reading section on the GitHub repository, which mentions
a real-world experience on how setting up a stack that's too small for a certain
platform caused random and really hard-to-debug failures).

So, what is the default thread stack size? The answer has already been provided;
recall the disp_defattr_pthread program we ran earlier in this chapter (in
the Code example – querying the default thread attributes section): it shows us that the
default thread stack size on the (modern NPTL) Linux platform is 8 MB.

Multithreading with Pthreads Part I - Essentials Chapter 14

[580]

The pthreads API set provides a few routines to set and query the thread stack size.
One way is as follows:

#include <pthread.h>
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t *attr,
 size_t *stacksize);

As we have already used pthread_attr_getstacksize(3) in the
earlier disp_defattr_pthread program, we shall refrain from showing its usage
once more over here. Setting the thread size is easily done with the
complementary pthread_attr_setstacksize(3) API – the second parameter is
the required size (in bytes). Note, though, that both of these APIs have the phrase
attr in them, implying that the stack size is actually set or queried from the thread
attribute structure and not a live thread itself. This leads us to understand that we can
only set or query the stack size at the time of creation of the thread by setting up the
attribute structure (which is, of course, subsequently passed as the second parameter
to pthread_create(3)). Once a thread is created, its stack size cannot be changed.
The exception to this rule is the stack of the main thread.

Stack location
Where in memory (technically, where in the VAS of the given process) does the
thread stack actually reside? The following points help us in this regard:

The stack of the main thread is always situated at the very top of the
process VAS.
The stacks of all other threads in the process are located somewhere
between the process heap segment and the stack of main; the precise
location is not known in advance to the app developer; in any case, we
should not need to know.
This is not directly related, but important: recall from Chapter 2, Virtual
Memory, that, for most processors, the stack(s) conform to the stack-grows-
down semantic; that is, the direction of growth of the stack segment is
toward lower virtual addresses.

Multithreading with Pthreads Part I - Essentials Chapter 14

[581]

Though we should not need to, is there a way to specify the location of the thread
stack? Well, yes, if you insist: the pthread_attr_[get|set]stack(3) APIs can be
used for this purpose, as well as to set and/or query the thread stack's size:

#include <pthread.h>
int pthread_attr_setstack(pthread_attr_t *attr,
 void *stackaddr, size_t stacksize);
int pthread_attr_getstack(const pthread_attr_t *attr,
 void **stackaddr, size_t *stacksize);

Although you can use pthread_attr_setstack to set the stack location, it's
recommended that this be left to the OS. Also, if you do use it, it's again
recommended that both the stack location, stackaddr, and the stack
size, stacksize, be a multiple of the system page size (and that the location is
aligned to a page boundary). Aligning the thread stack to a page boundary can be
easily achieved via the posix_memalign(3) API (we have covered example usage of
this API in Chapter 4, Dynamic Memory Allocation).

Be careful: if you are specifying the stack location within the thread attribute
structure, and creating threads in a loop (as is the normal fashion), you must ensure
that each thread receives a unique stack location (this is often done by allocating the
stack memory via the aforementioned posix_memalign(3) and then passing its
return value as the stack location). Also, of course, the memory pages that will be
used for the thread stack(s) must have both read-write permission
(recall mprotect(2) from Chapter 4, Dynamic Memory Allocation).

After all is said and done, the mechanics of setting and querying the thread stack is
straightforward; the really key point is this: (stress) test your application to ensure
that the provided thread stack memory is sufficient. As we saw in the Chapters 11,
Signaling - Part I, overflowing the stack is a serious defect and will cause undefined
behavior.

Multithreading with Pthreads Part I - Essentials Chapter 14

[582]

Stack guards
This neatly brings us to the next point: is there a way to have the application know
that stack memory is in danger of being, or rather, has been, overflowed?
Indeed: stack guards. Guard memory is a region of one or more virtual memory
pages that has been deliberately placed, and with appropriate permissions, to ensure
that any attempt to access that memory results in failure (or a warning of some sort;
for example, a signal handler for SIGSEGV could provide just such a semantic - with
the caveat that once we've received the SIGSEGV, we are in an undefined state and
must terminate; but at least we'll know and can fix the stack size!):

#include <pthread.h>
int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);
int pthread_attr_getguardsize(const pthread_attr_t *attr,
 size_t *guardsize);

The guard region is an additional memory region allocated at the end of the thread
stack for the number of bytes specified. The default (guard) size is the system page
size. Note, again, that the guard size is an attribute of the thread and can thus only be
specified at thread creation time (and not later). We will run the (code:
ch14/stack_test.c) app like so:

$./stack_test
Usage: ./stack_test size-of-thread-stack-in-KB
$./stack_test 2560
Default thread stack size : 8388608 bytes
Thread stack size now set to : 2621440 bytes
Default thread stack guard size : 4096 bytes

main: creating thread #0 ...
main: creating thread #1 ...
main: creating thread #2 ...
 worker #0:
main: joining (waiting) upon thread #0 ...
 worker #1:

 *** In danger(): here, sizeof long is 8
 worker #2:
Thread #0 successfully joined; it terminated with status=1
main: joining (waiting) upon thread #1 ...
dummy(): parameter val = 115709118
Thread #1 successfully joined; it terminated with status=0
main: joining (waiting) upon thread #2 ...
Thread #2 successfully joined; it terminated with status=1
main: now dying... <Dramatic!> Farewell!
$

Multithreading with Pthreads Part I - Essentials Chapter 14

[583]

In the preceding code, we specify 2,560 KB (2.5 MB) as the thread stack size. Though
this is far less than the default (8 MB), it turns out to be enough (for x86_64 at least, a
quick back-of-the-envelope calculation shows that, for the given program parameters,
we shall require a minimum of 1,960 KB to be allocated for each thread stack).

In the following code, we run it again, but this time specify the thread stack size as a
mere 256 KB:

$./stack_test 256
Default thread stack size : 8388608 bytes
Thread stack size now set to : 262144 bytes
Default thread stack guard size : 4096 bytes

main: creating thread #0 ...
main: creating thread #1 ...
 worker #0:
main: creating thread #2 ...
 worker #1:
main: joining (waiting) upon thread #0 ...
Segmentation fault (core dumped)
$

And, as expected, it segfaults.

Examining the core dump with GDB will reveal a lot of clues
regarding why the segfault occurred – including, very importantly,
the state of the thread stacks (in effect, the stack backtrace(s)), at
the time of the crash. This, however, goes beyond the scope of this
book.
We definitely encourage you to learn about using a powerful
debugger such as GDB (see the Further reading section on the GitHub
repository as well).

Also (on our test system at least), the kernel emits a message into the kernel log
regarding this crash; one way to look up the kernel log messages is via the
convenience utility dmesg(1). The following output is from an Ubuntu 18.04 box:

$ dmesg
[...]
kern :info : [<timestamp>] stack_test_dbg[27414]: segfault at
7f5ad1733000 ip 0000000000400e68 sp 00007f5ad164aa20 error 6 in
stack_test_dbg[400000+2000]
$

Multithreading with Pthreads Part I - Essentials Chapter 14

[584]

The code for the preceding application can be found here: ch14/stack_test.c :

For readability, only key parts of the source code are displayed; to
view the complete source code, build it, and run it, the entire tree
is available for cloning from GitHub here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

int main(int argc, char **argv)
{
[...]
 stack_set = atoi(argv[1]) * 1024;
[...]
 /* Init the thread attribute structure to defaults */
 pthread_attr_init(&attr);
[...]
 /* Set thread stack size */
 ret = pthread_attr_setstacksize(&attr, stack_set);
 if (ret)
 FATAL("pthread_attr_setstack(%u) failed! [%d]\n", TSTACK, ret);
 printf("Thread stack size now set to : %10u bytes\n", stack_set);
[...]

In main, we show the thread stack size attribute being initialized to the parameter
passed by the user (in KB). The code then goes on to create three worker threads and
then joins (waits) on them.

In the thread worker routine, we have only thread #2 performing some actual
work—you guessed it, stack-intensive work. The code for this is as follows:

void * worker(void *data)
{
 long datum = (long)data;

 printf(" worker #%ld:\n", datum);
 if (datum != 1)
 pthread_exit((void *)1);
 danger();
...

The danger function, of course, is the one where this dangerous, potentially stack-
overflowing work is carried out:

static void danger(void)
{
#define NEL 500
 long heavylocal[NEL][NEL], alpha=0;
 int i, j;

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part I - Essentials Chapter 14

[585]

 long int k=0;

 srandom(time(0));

 printf("\n *** In %s(): here, sizeof long is %ld\n",
 __func__, sizeof(long));
 /* Turns out to be 8 on an x86_64; so the 2d-array takes up
 * 500 * 500 * 8 = 2,000,000 ~= 2 MB.
 * So thread stack space of less than 2 MB should result in a
segfault.
 * (On a test box, any value < 1960 KB = 2,007,040 bytes,
 * resulted in segfault).
 */

 /* The compiler is quite intelligent; it will optimize away the
 * heavylocal 2d array unless we actually use it! So lets do some
 * thing with it...
 */
 for (i=0; i<NEL; i++) {
 k = random() % 1000;
 for (j=0; j<NEL-1; j++)
 heavylocal[i][j] = k;
 /*printf("hl[%d][%d]=%ld\n", i, j, (long)heavylocal[i][j]);*/
 }

 for (i=0; i<NEL; i++)
 for (j=0; j<NEL; j++)
 alpha += heavylocal[i][j];
 dummy(alpha);
}

The preceding function uses large amounts of (thread) stack space since we have
declared a local variable called heavylocal – a 2D-array of NEL*NEL elements
(NEL=500). On an x86_64 with a long data type occupying 8 bytes, this works out to
approximately 2 MB of space! Thus, specifying the thread stack size as any less than 2
MB should result in a stack overflow (the stack guard memory region will in fact
detect this) and therefore result in a segmentation violation (or segfault); this is
precisely what happened (as you can see in our trial run).

Interestingly, if we merely declare the local variable but do not actually make use of
it, modern compilers will just optimize the code out; hence, in the code, we strive to
make some (silly) use of the heavylocal variable.

Multithreading with Pthreads Part I - Essentials Chapter 14

[586]

A few additional points on the stack guard memory region, to round off this
discussion, are as follows:

If an application has used pthread_attr_setstack(3), it implies that it
is managing thread stack memory itself, and any guard size attribute will
be ignored.
The guard region must be aligned to a page boundary.
If the size of the guard memory region is less than a page, the actual
(internal) size will be rounded to a
page; pthread_attr_getguardsize(3) returns the theoretical size.
The man page on pthread_attr_[get|set]guardsize(3) does provide
additional information, including possible glibc bugs within the
implementation.

Summary
This chapter forms the first of three on the large topic of writing multithreaded
applications on the Linux platform. Here, we have covered two key areas: the first
was in regards to the all-important concepts regarding what exactly is a thread, and
we contrast it to the process model (which we studied in Chapter 9, Process
Execution and Chapter 10, Process Creation). Why you would prefer a multithreaded
design was covered in some detail, and included three examples. In this way,
the motivation to use a multithreaded design approach was being brought out.

The second part of this chapter focused on the actual pthread APIs (and their related
concepts), how we create a thread—how many can and how many should be created
was addressed as well. Thread termination basics, thread attributes, passing along a
parameter to the newly created thread, what is joining and how to perform it, and
finally, details on how we can manipulate the thread stack (and stack guard) size was
covered. Many example programs were shown to help solidify the concepts that were
taught.

In the next chapter, we shall focus squarely on another critical aspect of writing
powerful and safe multithreaded software – the issues of concurrency, races, critical
sections, deadlock (and it's avoidance) and atomicity; how we deal with these using
the mutex lock (and it's variants), as well as the condition variable.

15
Multithreading with Pthreads

Part II - Synchronization
One of the key reasons that multithreading is powerful and makes a big impact
performance-wise is that it lends itself to the notion of parallelism or concurrency;
from what we learned in the previous Chapter 14, Multithreading with Pthreads Part I -
Essentials, we understand that multiple threads of a process can (and indeed do)
execute in parallel. On large multicore systems (multicore is pretty much the norm
now, even in embedded systems), the effect is magnified.

However, as experience teaches us, there's always a trade-off. With parallelism comes
the ugly potential for races and the subsequent defects. Not only that, situations like
this typically become extremely hard to debug, and therefore, fix.

In this chapter, we shall attempt to:

Make the reader aware as to where and what exactly these concurrency
(race) defects are
How to avoid them with good design and coding practices in
multithreaded applications

Again, this chapter divides itself into two broad areas:

In the first part, we clearly explain the problem(s), such as
how atomicity matters and deadlock issues.
in the latter part of this chapter, we present the locking (and other)
mechanisms that the pthreads API set makes available to the application
developer to help tackle and avoid these issues altogether.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[588]

The racing problem
First and foremost, let's attempt to understand what and where exactly the
problem we are trying to resolve is. In the previous chapter, we learned that all
threads of a process share everything except for the stack; each thread has its own
private stack memory space.

Look carefully again at Chapter 14, Multithreading with Pthreads Part I-Essentials: Fig
2, (leaving out the kernel stuff); the virtual address space—the text and data
segments, but not the stack segment—are shared between all threads of a process.
The data segment, of course, is where global and static variables reside.

At the risk of overstating these facts, this implies that all the threads of a given
process truly (if not poss, then make COW also normal font not Copy On Write
(COW)) share the following:

The text segment
The data segments—initialized data, uninitialized data (earlier referred to
as the BSS), and the heap segment
Pretty much all the kernel-level objects and data maintained for the process
by the OS (again, refer to Chapter 14, Multithreading with Pthreads Part I-
Essentials : Fig 2)

A really important point to understand is that sharing the text segment is not a
problem at all. Why? Text is code; the machine code—the opcodes and operands that
make up what we call the machine language — reside in these memory pages. Recall
from Chapter 2, Virtual Memory, that all pages of text (code) have the same
permissions: read-execute (r-x). This is important, since multiple threads executing
text (code) in parallel is not only fine—it's encouraged! This is what parallelism is all
about, after all. Think about it; if we only read and execute code, we do not modify it
in any manner whatsoever; therefore, it's completely safe, even when being executed
in parallel.

On the other hand, data pages have permissions of read-write (rw). This implies that
a thread, A, working on a page of data in parallel—concurrently with another thread,
B,—is inherently dangerous. Why? It's fairly intuitive: they can end up clobbering the
memory values within the page. (One can imagine both threads writing to, for
example, a global linked list simultaneously.) The key point is that shared writable
memory has to be protected against concurrent access so that data integrity is
preserved at all times.

To really understand why we care so much about these issues, please read on.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[589]

Concurrency and atomicity
Concurrent execution implies that multiple threads can run truly in parallel on
multiple CPU cores. When this happens on text (code), it's good; we get higher
throughput. However, the moment we run concurrently while working on shared
writable data, we will have a problem with data integrity. This is because text is read-
only (and executable), whereas data is read-write.

What we would really like, of course, is to be greedy and have the best of both
worlds: execute code concurrently via multiple threads, but the moment we must
work on shared data, stop the concurrency (parallelism), and have just one thread run
through the data section sequentially until it's done, then resume parallel execution.

The pedagogical bank account example
A classic (pedagogical) example is that of the faulty bank account software
application. Imagine that Kaloor (needless to say, fictional names and figures have
been employed here), a freelance sculptor, has an account with his bank; his current
balance is $12,000.00. Two transactions, deposits of $3,000 and $8,000, which are
payments for work he has successfully completed, are issued simultaneously. It does
not take a genius to see that (assuming that there are no other transactions), very
soon, his account balance should reflect an amount of $23,000.00.

For the purpose of this example, let's visualize that the banking software application
is a multithreaded process; to keep things very simple, we consider that a thread is
spawned off to handle a transaction. The server system that the software runs upon is
a powerful multicore machine—it has, say, 12 CPU cores. This, of course, implies that
threads can run in parallel on different cores simultaneously.

So, let's visualize that for each of Kaloor's transactions we have a thread running to
perform it—thread A and thread B. Thread A (running on, say, CPU #0) works upon
the first deposit of $3,000 and thread B (running on, say, CPU #1) works upon the
(almost immediate) second deposit of $8,000.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[590]

We consider two cases here:

The case where, by chance, the transactions go through successfully. The
following diagram clearly shows this case:

Figure 1: The bank account; correct, by chance

The case where, again by chance, the transactions do not go through
successfully. The following diagram shows this case:

Figure 2: The bank account; incorrect, by chance

The problem area is highlighted in the preceding tables: It's quite clear that thread B
has performed an invalid read on the balance—it has read a stale value of $12,000 (the
value as of time t4) instead of fetching the actual current value of $15,000—resulting
in an effective loss of $3,000 for poor Kaloor.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[591]

How did this happen? In a nutshell, a race condition has caused the problem. To
understand the race, look carefully at the preceding table and visualize the activity:

The variable representing the current balance in the account; balance is
global:

It is residing in the data segment
It is shared by all threads of the process

At time t3, thread A on CPU #0: A deposit of $3,000 is made; the balance
is still $12,000 (not updated yet)
At time t4, thread B on CPU #1: A deposit of $8,000 is made; the balance is
still $12,000 (not updated yet)
At time t5:

Thread A on CPU #0: update the balance
Simultaneously, but on the other core:

Thread B on CPU #1: update the balance
By chance, what if thread B ran on CPU #1 a
few microseconds before thread A on CPU #0
could update the balance variable!?
Then, thread B reads the balance as $12,000
($3,000 short!) This is called a dirty read and is
at the heart of the problem. This very situation
is called a race; a race being a situation in
which the outcome is undefined and
unpredictable. In most cases, this will be a
problem (as it is here); in some rare cases
where it does not matter, it's referred to as a
benign race.

The fact to be emphasized is that the operation of depositing funds and updating the
balance (or the converse, withdrawing funds and updating the balance) has to be
guaranteed to be atomic. They cannot race, as that would be a defect (a bug).

The phrase atomic operation (or atomicity) in a software programming context
implies that the operation, once begun, will run to completion without interruption.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[592]

Critical sections
How do we fix the preceding race? It's quite straightforward, really: we have to
ensure that, as stated earlier, the banking operations—deposits, withdrawals, and so
on—are guaranteed to do two things:

Be the only thread running the code at that point in time
Be atomic — run to completion, without interruption

Once this is achieved, the shared data will be safe from corruption. The section of
code that must run in the fashion described previously is called a critical section.

In our fictional banking application, the threads running the code to perform a
banking operation (a deposit or a withdrawal) must do so in a critical section, shown
as follows:

Figure 3: The critical section

So, now, let's say that the banking application is corrected to take these facts into
account; the vertical timeline execution path of thread A and thread B would now be
as follows:

Fig 4: Correct banking application—critical section

Multithreading with Pthreads Part II - Synchronization Chapter 15

[593]

Here, both thread A and thread B, once they begin their (deposit) operations, run it
alone and to completion (without interruption); hence, sequentially and atomically.

To sum this up:

A critical section is code that must:
Run without interference from other threads in the process
(as it works upon some shared resource such as global data)
Run atomically (to completion, without interruption)

If the code of the critical section can run in parallel with other threads, this
is a defect (a bug), called a race
To prevent races, we have to guarantee that the code of the critical section
runs alone and atomically
To do so, we must synchronize critical sections

Now, the question is: how do we synchronize a critical section? Read on.

Locking concepts
There are several forms of synchronization in software; one of the commonly
encountered ones, and indeed one that we shall be working with quite a bit, is
called locking. A lock, in programming terms, and as seen by the application
developer, is ultimately a data structure instantiated as a variable.

When one requires a critical section, just encapsulate the code of the critical section
between a lock and a corresponding unlock operation. (For now, don't worry about
the code-level API details; we shall cover that later. Here, we are just focusing on
getting the concepts right.)

Let's represent the critical section, along with the synchronization mechanism—a
lock— using a diagram (a superset of the preceding Figure 3):

Fig 5: Critical section with locking

Multithreading with Pthreads Part II - Synchronization Chapter 15

[594]

The basic premise of a lock is as follows:

Only one thread can hold or own a lock at any given point in time; that
thread is the owner of the lock.
Upon the unlock, when more than one thread attempts to get or take the
lock, the kernel will guarantee that exactly one thread will get the lock.
The thread that gets the lock is called the winner (or the lock owner); the
threads that tried for but did not get the lock are called the losers.

So, visualize this: say that we have three threads, A, B, and C, running in parallel on
different CPU cores, all attempting to take a lock. The guarantee of the lock is that
exactly one thread gets it—let's say that thread C wins, taking the lock (thus thread C
is the winner or owner of the lock); threads A and B are the losers. What happens
after that?

The winner thread sees the lock operation as a non-blocking call; it
continues into the critical section (probably working on some shared
writable resource, such as global data).
The loser threads see the lock operation as a blocking call; they now block
(wait), but on what exactly? (Recall that a blocking call is one in which we
wait upon an event occurring and get unblocked once it occurs.) Well,
the unlock operation, of course!
The winner thread, upon (atomically) completing the critical section,
performs the unlock operation.
Either thread A or B will now get the lock, and the whole sequence repeats.

In a more generic manner, we can now understand it as: if N threads are in
competition for a lock, the guarantee of the lock operation (by the OS) is that exactly
one thread—the winner—will get the lock. So, we shall have one winner
and N-1 losers. The winner thread proceeds into the code of the critical section; in the
interim, all the N-1 loser threads wait (block) upon the unlock operation. At some
point in the future (hopefully soon), the winner performs the unlock; this re-triggers
the whole sequence again: the N-1 losers again compete for the lock; we shall have
one winner and N-2 losers; the winner thread proceeds into the code of the critical
section. In the interim, all the N-2 loser threads wait (block) upon
the unlock operation and so on, until all the loser threads have become winners and
have hence run the code of the critical section.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[595]

Is it atomic?
The preceding discussion on the necessity for atomic execution of a critical section
might make you, the programmer, apprehensive: perhaps you are wondering, how
does one recognize a critical section? Well, that's easy: if you have the potential for
parallelism (multiple threads can run through the code path in parallel) and the code
path is working on some shared resource (usually global or static data), then you
have a critical section, implying that you will protect it via locking.

A quick thumb rule: in the majority of cases, multiple threads will
be running through code paths. Thus, in a general sense, the mere
presence of some writable shared resource of any sort—a global, a
static, an IPC shared-memory region, (even) a data item
representing a hardware register in a device driver— makes the
code path into a critical section. The rule is this: just protect it.

The fictional bank account example we saw in the previous section makes it amply
clear that we had a critical section which required protection (via locking). However,
one does come across cases in which it is perhaps not as apparent whether we indeed
require locking. Take this example: we have a global integer g in a multithreaded C
application program; at some point, we increment its value, such as: g ++;

It looks simple, but wait! It's a writeable shared resource—global data; multiple
threads might run through this code in parallel, thus rendering it a critical section
which requires protection (via a lock). Yes? Or no?

On the face of it, a simple increment (or decrement) operation might appear to
be atomic (recall that atomic runs to completion without interruption) in and of itself,
thus requiring no special protection via locks or any other form of synchronization.
But is this really the case?

Before we go any further, there is (yet) another key fact to be aware of which is,
the only thing guaranteed to be atomic on a modern microprocessor in a single
machine language instruction. After every machine instruction completes, the control
unit on the CPU checks whether it has to service anything else, typically a hardware
interrupt or (software) exception condition; if so, it sets the program counter (IP or
PC) to that address and branches off; if not, execution continues sequentially with the
PC register being appropriately incremented.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[596]

So, think carefully about this: whether or not an increment operation g++ is atomic or
not really depends on two factors:

The Instruction Set Architecture (ISA) of the microprocessor being used
(in simpler terms, it depends on the CPU itself)
How the C compiler for that processor generates code

If the compiler generates a single machine language instruction for the g++ C code,
then execution will indeed be atomic. But will it? Let's find out! (the importance of
being empirical - experimenting, trying things out—is a critical feature; our Chapter
19, Troubleshooting and Best Practices, covers more on such points).

A very interesting website, https:/ /godbolt. org (screenshots will follow), allows
one to see how various compilers compile a given piece of high-level language code
(at the time of writing this book, it supports 14 languages, including C and C++, and
various compilers, including, of course, gcc(1) and clang(1). Interestingly, with the
language drop-down set to C++, one can also compile via gcc for ARM!).

Let's begin by visiting this website and then doing the following:

Select C as the language via the drop-down1.
Select, in the right window pane, the compiler as x86_64 gcc 8.22.
In the left window pane, key in the following program:3.

int g=41;
int main(void)
{
 g ++;
}

https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org
https://godbolt.org

Multithreading with Pthreads Part II - Synchronization Chapter 15

[597]

The following is the output:

Figure 6: g++ increment via gcc 8.2 on x86_64, no optimization

Look at the right window pane—one can see the assembly language generated by the
compiler (which, of course, will subsequently become machine code corresponding to
the processor ISA). So? Note that the g++ C high-level language statement is
highlighted in a pale yellow color in its left window pane; the same color is used in
the right window to highlight the corresponding assembly. What does one, quite
glaringly, notice? The single line of C code, g++; , has become four assembly language
instructions. Thus, by virtue of our preceding learning, this code cannot be
considered to be atomic in and of itself (but we can certainly force it to be atomic by
using a lock).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[598]

The next experiment: leave everything the same, except notice that in the right
window pane there is a text widget into which you are allowed to type in option
switches to pass on to the compiler; we type -O2, implying that we would like the
compiler to use optimization level 2 (a fairly high optimization level). Now, for the
output:

Figure 7: g++ increment via gcc 8.2 on x86_64, optimization level 2

The g++ C code now boils down to just one assembly instruction, thus indeed
becoming atomic.

With the ARM compiler, and no optimization, g++ translates to several lines of
assembly— clearly, non-atomic:

Multithreading with Pthreads Part II - Synchronization Chapter 15

[599]

Fig 8: g++ increment via gcc 7.2.1 on ARM, no optimization

Our conclusion? It is usually important for applications that the code we write
remains portable across (CPU) architectures. In the preceding example, we clearly
find that the code generated by the compiler for the simple g++ operation is
sometimes atomic and sometimes not. (It will depend on several factors: the CPU's
ISA, the compiler, and the optimization level -On that it's compiled at, and so on.)
Hence, the only safe conclusion one can make is this: be safe, and wherever there
exists a critical section, protect it (with locks, or other means).

Dirty reads
Many programmers new to these topics make a fatal assumption, and think
something like this: Okay, I understand that when modifying a shared resource—like
a global data structure — I will be required to treat the code as a critical section and
protect it with locking, but, my code is only iterating over a global linked list; it's only
reading it and never writing to it and hence, this is not a critical section and does not
require protection (I'll even get brownie points for high performance).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[600]

Burst the bubble, please! It is a critical section. Why? Visualize this: while your code is
iterating over the global linked list (only reading it), precisely because you have not
taken a lock or synchronized in some other manner, another writer thread can very
well be writing to the data structure while you are reading it. Think about it: this is a
recipe for disaster; it's entirely possible that your code will end up reading stale or
half-written inconsistent data. This is called a dirty read, and it can happen when you
do not protect the critical section. In fact, this is precisely the defect in our fictional
banking application example.

Once again, we (re)stress these facts:

If the code is accessing a writable shared resource of any sort and there is
the potential for parallelism, then it's a critical section. Protect it.
Some side effects of this include the following:

If your code does have parallelism but works only on local
variables, there is no issue and it's not a critical section.
(Remember: each thread has its own private stack, and so
using local variables without explicit protection is fine.)
If a global variable is marked as const, then of course it's
fine—it's read-only, in any case.

(Note though, that the const keyword in C does not actually guarantee that the value
is indeed constant (as one typically understands it)! It just means that the variable is
read-only, but the data it refers to can still be changed if another pointer has access to
it from underneath using a macro instead might help).

Using locks correctly has a learning curve, perhaps a bit steeper than other
programming constructs; this is because, one has to first learn to recognize critical
sections, and therefore the need for locks (covered in the previous section), then learn
and use good design locking guidelines, and third, understand and avoid nasty
deadlocks!

Locking guidelines
In this section, we will present a small but important set of heuristics or guidelines for
the developer to keep in mind while designing and implementing multithreaded code
that makes use of locks. These may or may not apply in a given situation; with
experience, one learns to apply the right guidelines at the appropriate times.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[601]

Without further ado, here they are:

Keep locking granularity fine enough: lock data, not code.
Simplicity is key: Complex locking scenarios involving multiple locks and
threads lead to not just performance issues (the extreme case being
deadlock), but also to other defects. Keeping the design as simple as it can
be is always good practice.
Prevent Starvation: Holding a lock for an arbitrarily long amount of time
leads to the loser threads starving; one has to design—and indeed test—to
ensure that, as a rule of thumb, every critical section (the code between
the lock and the unlock operations) completes as soon as possible. Good
design ensures that there is no possibility of a critical section of code taking
far too long; using a timeout in conjunction with the lock is one way to
alleviate this issue (more on this later).
It’s really important to also understand that locking creates
bottlenecks. Good physical analogies for locking are as follows:

A funnel: Think of the stem of the funnel as the critical
section—it’s only wide enough to allow one thread to go
through at a time (the winner); the loser threads remain
blocked in the mouth of the funnel
A single toll booth on a multi-lane busy highway

Thus, avoiding long critical sections is key:

Build synchronization into the design, and avoid the temptation that goes
something like, okay, I'll first write the code and then come back and look
at locking. It typically does not go well; locking is a complex business as it
is; trying to postpone its correct design and implementation only
aggravates the issue.

Let's examine the first of these points in a bit more detail.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[602]

Locking granularity
While working on an application, let's say there are several places which require data
protection via locking—in other words, several critical sections:

Fig 9: Timeline with several critical sections

We have shown the critical sections (the places that, as we have learned, require
synchronization—locking) with the solid red rectangles on the timeline. The
developer might well realize, why not simplify this? Just take a single lock at time t1
and unlock it at time t6:

Figure 10: Coarse granularity locking

This will work in protecting all the critical sections. But this is at the cost
of performance. Think about it; each time a thread runs through the preceding code
path, it must take the lock, perform the work, and then unlock. That's fine, but what
about parallelism? It's effectively defeated; the code from t1 to t6 is now serialized.
This kind of over-amplified locking-of-all-critical-sections-with-one-big-fat-lock is
called coarse granularity locking.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[603]

Recall our earlier discussion: code (text) is never an issue—there is no need at all
to lock here; just lock the places where writable shared data of any sort is being
accessed. These are the critical sections! This gives rise to fine granularity
locking—we only take the lock at the point in time where a critical section begins and
unlock where it ends; the following diagram reflects this:

Figure 11: Fine granularity locking

As we stated previously, a good rule of thumb to keep in mind is to lock data, not
code.

Is super-fine granularity locking always best? Perhaps not; locking is
a complex business. Practical work has shown that, sometimes,
holding a lock while even working on code (pure text—the code
between the critical sections), is okay. It is a balancing act; the
developer must ideally use experience and trial-and-error to judge
locking granularity and efficiency, constantly testing and re-
evaluating the code paths for robustness and performance as one
goes along.

Straying too far in either direction might be a mistake; too coarse a
locking granularity yields poor performance, but too fine a
granularity can too.

Deadlock and its avoidance
A deadlock is the undesirable situation wherein it is impossible for the threads in
question to make further progress. The typical symptom of deadlock is that the
application (or device driver or whatever software it is) appears to hang.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[604]

Common deadlock types
Thinking about a couple of typical deadlock scenarios will help the reader
understand it better. Recall that the basic premise of a lock is that there can only be
one winner (the thread that obtained the lock) and N-1 losers. Another key point is
that only the winner thread can perform the unlock operation—no other thread can
do so.

Self deadlock (relock)
Knowing the aforementioned information, visualize this scenario: there is one lock
(we just call it L1) and three threads in competition for it (let's just call them
threads A, B, and C); let's say thread B is the winner. That's fine, but what happens if
thread B, within its critical section, again attempts to take the same lock, L1? Well,
think about it: lock L1 is currently in the locked state, thus forcing thread B to block
(wait) upon it getting unlocked. However, no thread but thread B itself can possibly
perform the unlock operation, so thread B will end up waiting forever! There we have
it: deadlock. This type of deadlock is termed the self deadlock, or the relock error.

One might argue, and indeed the case does exist, can't a lock be
taken recursively? Yes, as we shall see later that this can be done within the
pthreads API. However, good design often argues against using recursive locks;
indeed, the Linux kernel does not allow it.

The ABBA deadlock
A more complex form of deadlock can emerge in a scenario which involves nested
locking: two or more competing threads and two or more locks. Here, let's take the
simplest case: a scenario with two threads (A and B) working with two locks (L1 and
L2).

Let's say that this is what unfolds over the vertical timeline, as the following table
reveals:

Time Thread A Thread B
t1 Attempt to take lock L1 Attempt to take lock L2
t2 Gets lock L1 Gets lock L2
t3 <--- In critical section of L1 ---> <--- In critical section of L2 --->
t4 Attempt to take lock L2 Attempt to take lock L1
t5 Block on L2 being unlocked Block on L1 being unlocked

<waits forever: deadlock> <waits forever: deadlock>

Multithreading with Pthreads Part II - Synchronization Chapter 15

[605]

It's quite clear that each thread waits for the other to unlock the lock it wants; thus,
each thread waits forever, guaranteeing a deadlock. This kind of deadlock is often
called the deadly embrace or the ABBA deadlock.

Avoiding deadlock
Avoiding deadlock is obviously something we would want to ensure. In addition to
the points covered in the Locking guidelines section, there is one more key point, which
is that the order in which multiple locks are taken matters; keeping the lock ordering
consistent throughout will provide protection against deadlocks.

To understand why, let's re-look at the ABBA deadlock scenario we just covered
(refer to the preceding table). Look at the table again: notice that thread A takes lock
L1 and then attempts to take lock L2, while thread B does the opposite. We shall now
represent this scenario, but with a key caveat: lock ordering! This time, we shall have
a lock ordering rule; it could be as simple as this: first, take lock L1, and then take lock
L2:

lock L1 --> lock L2

With this lock ordering in mind, we find the scenario could play out as follows:

Time Thread A Thread B
t1 Attempt to take lock L1 Attempt to take lock L1
t2 Gets lock L1
t3 <Waits for L1 to be unlocked> <--- In critical section of L1 --->
t4 Unlock L1
t5 Gets lock L1
t6 <--- In critical section of L1 ---> Attempt to take lock L2
t7 Unlock L1 Gets locks L2
t8 Attempt to take lock L2 <--- In critical section of L2
t9 <Waits for L2 to be unlocked> --->
t10 Unlock L2
t11 Gets lock L2 <Continues with other work>
t12 <--- In critical section of L2 ---> ...
t13 Unlock L2 ...

The key point here is that both threads attempt to take locks in a given order; first L1,
and then L2. In the preceding table, we can visualize a case in which thread B obtains
the locks first, forcing thread A to wait. This is completely fine and expected; no
deadlock occurring is the whole point.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[606]

The precise ordering itself does not really matter; what does matter is the fact that the
designers and developers document the lock ordering to be followed and stick to it.

The lock ordering semantics, and indeed developer comments
regarding this key point, can be often found within the source tree
of the Linux kernel (ver 4.19, as of this writing). Here's one
example: virt/kvm/kvm_main.c

...
/*
 * Ordering of locks:
 *
 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 */
...

So, looking back at our first table, we can now clearly see that the deadlock occurred
because the lock ordering rule was violated: thread B took lock L2 before taking lock
L1!

Using the pthread APIs for
synchronization
Now that we have covered the required theoretical background information, let's
move on with the actual practice: for the remainder of this chapter, we shall focus on
how to use the pthreads API to perform synchronization, thus avoiding races.

We have learned that to protect writable shared data of any kind in a critical section,
we require locking. The pthreads API provides the mutex lock for exactly this use
case; we intend to hold the lock for a short while only—the duration of the critical
section.

There are scenarios, though, in which we require a different kind of
synchronization—we require to synchronize based on a certain data element's value;
the pthreads API provides the condition variable (CV) for this use case.

Let's cover these in turn.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[607]

The mutex lock
The word mutex is really an abbreviation for mutual exclusion; to the mutual
exclusion of all other (loser) threads, one thread—the winner—holds (or owns) the
mutex lock. Only when it is unlocked can another thread take the lock.

An FAQ: What really is the difference between the semaphore and
the mutex lock? Firstly, the semaphore can be used in two
ways—one, as a counter (with the counting semaphore object), and
two (relevant to us here), essentially as a mutex lock—the binary
semaphore.
Between the binary semaphore and the mutex lock, there exists two
primary differences: one, the semaphore is meant to be used to
synchronize between processes and not the threads internal to a
single process (it is indeed a well-known IPC facility); the mutex
lock is meant to synchronize between the threads of a given (single)
process. (Having said that, it is possible to create a process-shared
mutex, but it's never the default).
Two, the SysV IPC implementation of the semaphore provides the
possibility of having the kernel unlock the semaphore (via the
semop(2) SEM_UNDO flag) if the owner process is abruptly killed
(always possible via signal #9); no such possibility even exists for the
mutex—the winner must unlock it (we shall cover how the
developer can ensure this later).

Let's get started with a simple example of initializing, using, and destroying a mutex
lock. In this program, we shall create three threads and merely increment three global
integers, once each within the worker routine of the threads.

For readability, only key parts of the source code are displayed; to
view the complete source code, build, and run it. The entire tree
is available for cloning from GitHub here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

Code: ch15/mutex1.c:
static long g1=10, g2=12, g3=14; /* our globals */
pthread_mutex_t mylock; /* lock to protect our globals */

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part II - Synchronization Chapter 15

[608]

In order to use a mutex lock, one must first initialize it to the unlocked state; this can
be done as follows:

 if ((ret = pthread_mutex_init(&mylock, NULL)))
 FATAL("pthread_mutex_init() failed! [%d]\n", ret);

Alternatively, we could perform the initialization as a declaration, such as:

pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

In fact, there are a few mutex attributes that can be specified for the mutex lock (via
the pthread_mutexattr_init(3) API); we shall get to this later in this chapter. For
now, the attributes will be the system defaults.

Also, once we are done, we must destroy the mutex lock(s):

 if ((ret = pthread_mutex_destroy(&mylock)))
 FATAL("pthread_mutex_destroy() failed! [%d]\n", ret);

As usual, we then create the (three) worker threads in a loop (we do not show this
code here as it is repetitious). Here is the thread's worker routine:

void * worker(void *data)
{
 long datum = (long)data + 1;
 if (locking)
 pthread_mutex_lock(&mylock);

 /*--- Critical Section begins */
 g1 ++; g2 ++; g3 ++;
 printf("[Thread #%ld] %2ld %2ld %2ld\n", datum, g1, g2, g3);
 /*--- Critical Section ends */

 if (locking)
 pthread_mutex_unlock(&mylock);

 /* Terminate with success: status value 0.
 * The join will pick this up. */
 pthread_exit((void *)0);
}

Because the data we are working on with each thread is a writable shared (it's in the
data segment!) resource, we recognize that this is a critical section!

Multithreading with Pthreads Part II - Synchronization Chapter 15

[609]

Thus, we must protect it—here, we do so with a mutex lock. So, just prior to entering
the critical section, we first take the mutex lock and then work on the global data, and
then unlock our lock, rendering the operation safe against races. (Notice that in the
preceding code we only perform the locking and unlocking if the variable
called locking is true; this is a deliberate way to test our code. In production, of
course, please do away with the if condition and just perform the locking!) The
attentive reader will also notice that we have kept the critical section quite short—it
only encapsulates the global update and subsequent printf(3), nothing more. (This
is important for good performance; recall what we learned in the earlier section on
Locking granularity.)

As mentioned previously, we deliberately provide an option to the user
to avoid using locking altogether—this of course will, or rather, could, result in buggy
behavior. Let's try it out:

$./mutex1
Usage: ./mutex1 lock-or-not
 0 : do Not lock (buggy!)
 1 : do lock (correct)
$./mutex1 1
At start: g1 g2 g3
 10 12 14
[Thread #1] 11 13 15
[Thread #2] 12 14 16
[Thread #3] 13 15 17
$

It does work as expected. Even if we pass the parameter as zero—thus turning
locking off— the program does (usually) seem to work correctly:

$./mutex1 0
At start: g1 g2 g3
 10 12 14
[Thread #1] 11 13 15
[Thread #2] 12 14 16
[Thread #3] 13 15 17
$

Multithreading with Pthreads Part II - Synchronization Chapter 15

[610]

Why? Ah, this is important to understand: recall what we learned in the earlier
section Is it atomic? With a simple integer increment and compiler optimization set to
a high level (-O2 in fact, here), it's quite possible that the integer increments are
atomic and thus do not really require locking. However, this may not always be the
case, especially when we do something more complex than mere increments or
decrements on an integer variable. (Think about reading/writing a large global linked
list, and so on)! The bottom line: we must always recognize critical section(s) and
ensure that we protect them.

Seeing the race
To demonstrate exactly this issue (actually seeing the data race), we will write another
demo program. In this one, we will calculate the factorial of a given number (a quick
reminder: 3! = 3 x 2 x 1 = 6; recall from your school days—the notation
N! means factorial of N). Here's the relevant code:

For readability, only key parts of the source code are displayed; to
view the complete source code, build, and run it. The entire tree
is available for cloning from GitHub here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

Code: ch15/facto.c:
In main(), we initialize our mutex lock (and create two worker threads; we do not
show the code to create the threads, destroy them, as well as the mutex):

printf("Locking mode : %s\n"
 "Verbose mode : %s\n",
 (gLocking == 1?"ON":"OFF"),
 (gVerbose == 1?"ON":"OFF"));

if (gLocking) {
 if ((ret = pthread_mutex_init(&mylock, NULL)))
 FATAL("pthread_mutex_init() failed! [%d]\n", ret);
 }
...

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part II - Synchronization Chapter 15

[611]

The thread's worker routine is as follows:

void * worker(void *data)
{
 long datum = (long)data + 1;
 int N=0;
...
 if (gLocking)
 pthread_mutex_lock(&mylock);

 /*--- Critical Section begins! */
 factorize(N);
 printf("[Thread #%ld] (factorial) %d ! = %20lld\n",
 datum, N, gFactorial);
 /*--- Critical Section ends */

 if (gLocking)
 pthread_mutex_unlock(&mylock);
...

Recognizing the critical section, we take (and subsequently unlock) our mutex lock.
The code of the factorize function is as follows:

/*
 * This is the function that calculates the factorial of the given
parameter.
Stress it, making it susceptible to the data race, by turning verbose
mode On; then, it will take more time to execute, and likely end up
"racing" on the value of the global gFactorial. */
static void factorize(int num)
{
 int i;
 gFactorial = 1;
 if (num <= 0)
 return;
 for (i=1; i<=num; i++) {
 gFactorial *= i;
 VPRINT(" i=%2d fact=%20lld\n", i, gFactorial);
 }
}

Multithreading with Pthreads Part II - Synchronization Chapter 15

[612]

Read the preceding comment carefully; it's key to this demo. Let's try it out:

$./facto
Usage: ./facto lock-or-not [verbose=[0]|1]
Locking mode:
 0 : do Not lock (buggy!)
 1 : do lock (correct)
(TIP: turn locking OFF and verbose mode ON to see the issue!)
$./facto 1
Locking mode : ON
Verbose mode : OFF
[Thread #2] (factorial) 12 ! = 479001600
[Thread #1] (factorial) 10 ! = 3628800
$

The results are correct (verify this for yourself). Now we rerun it with locking off and
verbose mode on:

$./facto 0 1
Locking mode : OFF
Verbose mode : ON
facto.c:factorize:50: i= 1 fact= 1
facto.c:factorize:50: i= 2 fact= 2
facto.c:factorize:50: i= 3 fact= 6
facto.c:factorize:50: i= 4 fact= 24
facto.c:factorize:50: i= 5 fact= 120
facto.c:factorize:50: i= 6 fact= 720
facto.c:factorize:50: i= 7 fact= 5040
facto.c:factorize:50: i= 8 fact= 40320
facto.c:factorize:50: i= 9 fact= 362880
facto.c:factorize:50: i=10 fact= 3628800
[Thread #1] (factorial) 10 ! = 3628800
facto.c:factorize:50: i= 1 fact= 1
facto.c:factorize:50: i= 2 fact= 7257600 <-- Dirty Read!
facto.c:factorize:50: i= 3 fact= 21772800
facto.c:factorize:50: i= 4 fact= 87091200
facto.c:factorize:50: i= 5 fact= 435456000
facto.c:factorize:50: i= 6 fact= 2612736000
facto.c:factorize:50: i= 7 fact= 18289152000
facto.c:factorize:50: i= 8 fact= 146313216000
facto.c:factorize:50: i= 9 fact= 1316818944000
facto.c:factorize:50: i=10 fact= 13168189440000
facto.c:factorize:50: i=11 fact= 144850083840000
facto.c:factorize:50: i=12 fact= 1738201006080000
[Thread #2] (factorial) 12 ! = 1738201006080000
$

Multithreading with Pthreads Part II - Synchronization Chapter 15

[613]

Aha! In this case, 10! works, but 12! is wrong! We can literally see from the
preceding output that a dirty read has occurred (at the i==2 iteration of the calculation
for 12!), causing the defect. Well, of course: we did not protect the critical section here
(locking was turned off); it's really no wonder that it went wrong.

What we would like to stress, again, is that these races are delicate timing
coincidences; in a buggy implementation, your test cases might still succeed, but of
course that does not guarantee anything (it will likely fail in the field, as Murphy's
Law tells us!). (An unfortunate truth is that testing can reveal the presence of errors
but not their absence. Importantly, Chapter 19, Troubleshooting and Best Practices,
covers such points).

The reader will realize that, as these data races are delicate timing
coincidences, they may or may not occur exactly as shown here on
your test systems. Retrying the app a few times may help reproduce
these scenarios.

We leave it to the reader to try out the use case with locking mode on and verbose
mode on; it should work, of course.

Mutex attributes
A mutex lock can have several attributes associated with it. Furthermore, we
enumerate several of them.

Mutex types
A mutex can be one of four types, the default usually—but not always (it depends
upon the implementation)—being the normal mutex. The type of mutex used affects
the behavior of the lock and unlock. The types are: PTHREAD_MUTEX_NORMAL,
PTHREAD_MUTEX_ERRORCHECK, PTHREAD_MUTEX_RECURSIVE, and
PTHREAD_MUTEX_DEFAULT.

The system man page on pthread_mutex_lock(3) describes the behavior
depending on the mutex type with a table; for the reader's convenience, we have
reproduced the same here.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[614]

If a thread attempts to relock a mutex that it has already locked,
pthread_mutex_lock(3) shall behave as described in the relock column of the
following table. If a thread attempts to unlock a mutex that it has not locked or a
mutex which is unlocked, pthread_mutex_unlock(3) shall behave as described in
the Unlock When Not Owner column of the following table:

If the mutex type is PTHREAD_MUTEX_DEFAULT, the behavior of
pthread_mutex_lock(3) may correspond to one of the three other standard mutex
types, as described in the preceding table. If it does not correspond to one of those
three, the behavior is undefined for the cases marked †.

The relock column directly corresponds to what we described earlier in this chapter
as the self-deadlock scenario, such as, what effect attempting to re-lock an already-
locked lock (poetic wording, perhaps?) will have. Clearly, except for the recursive and
error check mutex case, the end result is either undefined (which means that anything
can happen!) or a deadlock indeed.

Similarly, attempting to unlock a mutex by any thread except the owner either results
in an undefined behavior or an error.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[615]

One might wonder: why does the locking API behave differently—in terms of error
return or failures—depending on the type of the mutex? Why not just have one
standard behavior for all types and thus simplify the situation? Well, it's the usual
trade-off between simplicity and performance: the way it's implemented allows, for
example, a well-written, programmatically proven correct real-time embedded
application to forgo extra error checking and thus gain speed (which is especially
important on critical code paths). On the other hand, in a development or debug
environment, the developer might choose to allow extra checking to catch defects
before shipping. (The man page on pthread_mutex_destroy(3) has a section
entitled Tradeoff Between Error Checks and Performance Supported that describes this
aspect in some detail.)

The pair of APIs to get and set a mutex's type attribute (the first column in the
preceding table) are quite straightforward:

include <pthread.h>
int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict
attr, int *restrict type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

The robust mutex attribute
Glancing at the preceding table, one spies the robustness column; what does it mean?
Recall that only the owner thread of a mutex lock can possibly unlock the mutex;
now, we ask, what if, by some chance, the owner thread dies? (Well, firstly, good
design will ensure this never happens; secondly, even if it does, there are ways to
protect against thread cancellation, a topic we will cover in the next chapter.) On the
face of it, there is no help for it; any other threads waiting on the lock will now just
deadlock (effectively, they will just hang). This behavior is in fact the default; it's also
the behavior that's set up by the robust attribute known
as PTHREAD_MUTEX_STALLED. To the (possible) rescue in such a situation, there
does exist another value for the robust mutex
attribute: PTHREAD_MUTEX_ROBUST. One can always query and set these
attributes upon the mutex via the following pair of APIs:

#include <pthread.h>
int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,
 int *robustness);
int pthread_mutexattr_setrobust(const pthread_mutexattr_t *attr,
 int robustness);

Multithreading with Pthreads Part II - Synchronization Chapter 15

[616]

If this attribute (the value PTHREAD_MUTEX_ROBUST) is set upon the mutex lock,
then if the owner thread dies while holding the mutex, a
subsequent pthread_mutex_lock(3) upon the lock will succeed, returning the
value EOWNERDEAD. Hang on, though! Even though the call returns a (so-called)
successful return, it's important to understand that the lock in question is now
considered to be in an inconsistent state and has to be reset into a consistent state via
the pthread_mutex_consistent(3) API:

int pthread_mutex_consistent(pthread_mutex_t *mutex);

A return value of zero here indicates success; the mutex is now back in a consistent
(stable) state and can be used normally (use it, and at some point, you must of course
unlock it).

To sum this up, to use the robust attribute mutex, use the following:

Initialize the mutex lock:
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);

Set the robust attribute on it:
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTE

X_ROBUST);
Owner thread

Lock it: pthread_mutex_lock(&mylock)
Now, assume that the thread owner abruptly dies (while
holding the mutex lock)

Another thread (perhaps main) can assume ownership:
First, detect the case:

ret = pthread_mutex_lock(&mylock);
if (ret == EOWNERDEAD) {

Then, make it consistent:
 pthread_mutex_consistent(&mylock)
Use it (or just unlock it)
Unlock it: pthread_mutex_unlock(&mylock)

Multithreading with Pthreads Part II - Synchronization Chapter 15

[617]

Instead of duplicating the wheel, we point the reader to a simple, readable example of
using the robust mutex attribute feature described previously. Find it within the man
page of pthread_mutexattr_setrobust(3).

Under the hood, the Linux pthreads mutex lock is implemented via
the futex(2) system call (and thus by the OS). The futex (fast user
mutex) provides a fast, robust, atomic-only instructions locking
implementation. Links with more details can be found in the Further
reading section on the GitHub repository.

IPC, threads, and the process-shared mutex
Visualize a large application that consists of several independent multithreaded
processes. Now, if the processes want to communicate with each other (and they
often will want to), how can this be achieved? The answer, of course, is Inter -process
Communication (IPC)—mechanisms that exist for this very purpose. Broadly
speaking, there are several IPC mechanisms available on the typical Unix/Linux
platforms; these include shared memory (as well as the mmap(2)), message queues,
semaphores (typically for synchronization), named (FIFO) and unnamed pipes,
sockets (Unix and internet domain), and, to some extent, signals.

Unfortunately, due to space constraints, we do not cover process
IPC mechanisms in this book; we urge the interested reader to look
into the links (and books) provided on IPC in the Further
reading section on the GitHub repository.

The thing to stress here is that all of these IPC mechanisms are meant for
communication between VM-isolated processes. So, our discussion here being
focused on multithreading, how do the threads within a given process communicate
with each other? Well, that's quite simple, really: just as one can set up and use a
shared memory region to effectively and efficiently communicate between processes
(writing and reading into that region, synchronizing access via a semaphore), threads
can simply and effectively use a global memory buffer (or any appropriate data
structure) as a medium within which to communicate with each other, and, of
course, synchronize access to the global memory region via a mutex lock.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[618]

Interestingly, it is possible to use a mutex lock as a synchronization primitive between
threads belonging to different processes. This is achieved by setting up the mutex
attribute called pshared, or process-shared. The pair of APIs to get and set
the pshared mutex attribute are as follows:

int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr,
 int *pshared);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
 int pshared);

The second parameter, pshared, can be set to one of the following:

PTHREAD_PROCESS_PRIVATE : The default; here, the mutex is only
visible to threads within the process in which the mutex has been created.
PTHREAD_PROCESS_SHARED: Here, the mutex is visible to any threads
that have access to the memory region in which the mutex is created,
including threads of different processes.

But how does one actually ensure that the memory region in which the mutex exists
is shared between processes (without which it will not be possible for the processes in
question to use the mutex)? Well, it's really back to basics: we must make use of one
of the IPC mechanisms we mentioned—shared memory turns out to be the right one
to use. So, we have the application set up a shared memory region (via either the
traditional SysV IPC shmget(2) or the newer POSIX IPC shm_open(2) system calls),
and have our process-shared mutex lock instantiated in this shared memory.

So, let's tie all this together with a simple application: we will write an application
that creates two shared memory regions:

One, a small shared memory region to act as a shared space for a process-
shared mutex lock and an once-only initialization control (more on this in a
minute)
Two, a shared memory region to act as a simple buffer to store IPC
messages

We will initialize a mutex with the process-shared attribute so that it can be used
between threads of differing processes to synchronize access; here, we fork and have
a thread of the original parent process and the newly born child process compete for
the mutex lock. Once they (sequentially) obtain it, they write a message into the
second shared memory segment. At the end of the app, we destroy the resources and
display the shared memory buffer (as a simple proof-of-concept).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[619]

Let's just try out our app (ch15/pshared_mutex_demo.c):

We have added some blank lines in the following code for
readability.

$./pshared_mutex_demo
./pshared_mutex_demo:15317: shmem segment successfully created /
accessed. ID=38928405
./pshared_mutex_demo:15317: Attached successfully to shmem segment at
0x7f45e9d50000
./pshared_mutex_demo:15317: shmem segment successfully created /
accessed. ID=38961174
./pshared_mutex_demo:15317: Attached successfully to shmem segment at
0x7f45e9d4f000

[pthread_once(): calls init_mutex(): from PID 15317]

Worker thread #0 [15317] running ...
 [thrd 0]: attempting to take the shared mutex lock...
 [thrd 0]: got the (shared) lock!
#0: work done, exiting now

 Child[15319]: attempting to taking the shared mutex lock...
 Child[15319]: got the (shared) lock!

main: joining (waiting) upon thread #0 ...
Thread #0 successfully joined; it terminated with status=0

Shared Memory 'comm' buffer:
00000000 63 63 63 63 63 00 63 68 69 6c 64 20 31 35 33 31 ccccc.child
1531
00000016 39 20 68 65 72 65 21 0a 00 74 74 74 74 74 00 74 9
here!..ttttt.t
00000032 68 72 65 61 64 20 31 35 33 31 37 20 68 65 72 65 hread 15317
here
00000048 21 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00
!...............
00000064 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
00000096 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
00000112 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................

Multithreading with Pthreads Part II - Synchronization Chapter 15

[620]

In the real world, things are not quite as simple as this; there does exist an additional
synchronization issue to think about: how can one ensure that the mutex lock is
initialized correctly and atomically (by only one process or thread), and, only
initialized once, should other threads attempt to use it? In our demo program, we
have used the pthread_once(3) API to achieve guaranteed once-only initialization
of the mutex object (but have ignored the have-threads-wait-and-only-use-it-once-
initialized issue). issue). (An interesting Q&A on Stack Overflow highlights this very
concern; take a look: https:/ /stackoverflow. com/ questions/ 42628949/ using-
pthread-mutex- shared- between- processes- correctly#.) However, the reality is
that the pthread_once(3) API is meant to be used between the threads of a process.
Also, POSIX requires that the initialization of the once_control is done statically;
here, we have performed it at run time, so it's not perfect.

In the main function, we set up and initialize the (IPC) shared memory segments; we
urge the reader to carefully go through the source code (reading all the comments)
and try it out for themselves as well:

For readability, only key parts of the source code are displayed;
to view the complete source code, build, and run it. The entire tree is
available for cloning from GitHub here: https:/ / github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

...

 /* Setup a shared memory region for the process-shared mutex lock.
 * A bit of complexity due to the fact that we use the space within
for:
 * a) memory for 1 process-shared mutex
 * b) 32 bytes of padding (not strictly required)
 * c) memory for 1 pthread_once_t variable.
 * We need the last one for performing guaranteed once-only
 * initialization of the mutex object.
 */
 shmaddr = shmem_setup(&gshm_id, argv[0], 0,
 (NUM_PSMUTEX*sizeof(pthread_mutex_t) + 32 +
 sizeof(pthread_once_t)));
 if (!shmaddr)
 FATAL("shmem setup 1 failed\n");

 /* Associate the shared memory segment with the mutex and
 * the pthread_once_t variable. */
 shmtx = (pthread_mutex_t *)shmaddr;
 mutex_init_once = (pthread_once_t *)shmaddr +
 (NUM_PSMUTEX*sizeof(pthread_mutex_t)) + 32;
 mutex_init_once = PTHREAD_ONCE_INIT; / see below comment on

https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://stackoverflow.com/questions/42628949/using-pthread-mutex-shared-between-processes-correctly#
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part II - Synchronization Chapter 15

[621]

pthread_once */

 /* Setup a second shared memory region to be used as a comm buffer
*/
 gshmbuf = shmem_setup(&gshmbuf_id, argv[0], 0, GBUFSIZE);
 if (!gshmbuf)
 FATAL("shmem setup 2 failed\n");
 memset(gshmbuf, 0, GBUFSIZE);

 /* Initialize the mutex; here, we come across a relevant issue: this
 * mutex object is already instantiated in a shared memory region
that
 * other processes might well have access to. So who will initialize
 * the mutex? (it must be done only once).
 * Enter the pthread_once(3) API: it guarantees that, given a
 * 'once_control' variable (1st param), the 2nd param - a function
 * pointer, that function will be called exactly once.
 * However: the reality is that the pthread_once is meant to be used
 * between the threads of a process. Also, POSIX requires that the
 * initialization of the 'once_control' is done statically; here, we
 * have performed it at runtime...
 */
 pthread_once(mutex_init_once, init_mutex);
...

The init_mutex function which initializes the mutex with the process-shared
attribute is shown as follows:

static void init_mutex(void)
{
 int ret=0;

 printf("[pthread_once(): calls %s(): from PID %d]\n",
 __func__, getpid());
 ret = pthread_mutexattr_init(&mtx_attr);
 if (ret)
 FATAL("pthread_mutexattr_init failed [%d]\n", ret);

 ret = pthread_mutexattr_setpshared(&mtx_attr,
PTHREAD_PROCESS_SHARED);
 if (ret)
 FATAL("pthread_mutexattr_setpshared failed [%d]\n", ret);
 ret = pthread_mutex_init(shmtx, &mtx_attr);
 if (ret)
 FATAL("pthread_mutex_init failed [%d]\n", ret);
}

Multithreading with Pthreads Part II - Synchronization Chapter 15

[622]

The code of the worker thread—the worker routine—is shown in the following code.
Here, we need to operate upon the second shared memory segment, implying of
course that this is a critical section. Hence, we take the process-shared lock, perform
the work, and subsequently unlock the mutex:

void * worker(void *data)
{
 long datum = (long)data;
 printf("Worker thread #%ld [%d] running ...\n", datum, getpid());
 sleep(1);
 printf(" [thrd %ld]: attempting to take the shared mutex lock...\n",
datum);

 LOCK_MTX(shmtx);
 /*--- critical section begins */
 printf(" [thrd %ld]: got the (shared) lock!\n", datum);
 /* Lets write into the shmem buffer; first, a 5-byte 'signature',
 followed by a message. */
 memset(&gshmbuf[0]+25, 't', 5);
 snprintf(&gshmbuf[0]+31, 32, "thread %d here!\n", getpid());
 /*--- critical section ends */
 UNLOCK_MTX(shmtx);

 printf("#%ld: work done, exiting now\n", datum);
 pthread_exit(NULL);
}

Notice that the lock and unlock operations are carried out by macros; here they are:

#define LOCK_MTX(mtx) do { \
 int ret=0; \
 if ((ret = pthread_mutex_lock(mtx))) \
 FATAL("pthread_mutex_lock failed! [%d]\n", ret); \
} while(0)

#define UNLOCK_MTX(mtx) do { \
 int ret=0; \
 if ((ret = pthread_mutex_unlock(mtx))) \
 FATAL("pthread_mutex_unlock failed! [%d]\n", ret); \
} while(0)

We leave it to the reader to look at the code where we fork and have the newly born
child process essentially do the same thing as the preceding worker thread—operate
upon the (same) second shared memory segment; being a critical section, it too
attempts to take the process-shared lock, and once it gets it, performs the work, and
subsequently unlocks the mutex.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[623]

Unless there is some compelling reason not to do so, when setting
up IPC between processes, we suggest that you use one (or some) of
the numerous IPC mechanisms that have been explicitly designed
for this very purpose. Using the process-shared mutex as a
synchronization mechanism between the threads of two or more
processes is possible, but ask yourself if it is really required.

Having said that, there are some advantages to using a mutex over
the traditional (binary) semaphore object; these include the fact that
the mutex is always associated with an owner thread, and only the
owner can operate upon it (preventing some illegal or defective
scenarios), and that mutexes can be set up to use nested (recursive)
locking, and deal with the priority inversion problem effectively (via
the inheritance protocol and/or priority ceiling attributes).

Priority inversion, watchdogs, and Mars
An Real Time Operating System (RTOS) often has time-critical multithreaded
applications running on it. Very simplistically, but nevertheless true, the primary rule
for the RTOS scheduler to decide which thread to run next is the highest priority
runnable thread must be the thread that is running. (By the way, we shall cover CPU
scheduling with regard to the Linux OS in Chapter 17, CPU Scheduling on Linux;
don't worry about the details for now.)

Priority inversion
Let's visualize an application that contains three threads; one of them is a high
priority thread (let's calls it thread A with priority 90), the other is a low priority
thread (let's calls it thread B with priority 10) and finally a medium priority thread,
C. (The priority range for the SCHED_FIFO scheduling policy is 1 to 99, with 99 being
the highest possible priority; more on this in a later chapter.) So, we can imagine that
we have these three threads within a process at differing priorities:

Thread A: high priority, 90
Thread B: low priority, 10
Thread C: medium priority, 45

Multithreading with Pthreads Part II - Synchronization Chapter 15

[624]

Furthermore, let's consider that we have some shared resource, X, which is coveted
by threads A and B; this, of course, constitutes a critical section, and thus, we will
need to synchronize access to it for correctness. We shall use a mutex lock to do so.

The normal case might well work like this (let's ignore thread C for now): thread B is
on the CPU running some code; thread A is working on something else on another
CPU core. Neither thread is in the critical section; thus, the mutex is in the unlocked
state.

Now (at time t1), thread B hits the code of the critical section and takes the mutex
lock, thus becoming the owner. It now runs the code within the critical section
(working on X). In parallel, what if—at time t2— thread A too happens to hit
the critical section and thus attempts to take the mutex lock? Well, we know that it's
already locked, and thus thread A will have to wait (block) upon the unlock that will
be performed (hopefully, soon) by thread B. Once thread B unlocks the mutex (at time
t3), thread A takes it (at time t4; we consider that the delay t4-t3 is very tiny), and life
(quite happily) continues. This seems fine:

Fig 12: Mutex locking: the normal good case

However, a potential bad case exists as well! Read on.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[625]

Watchdog timer in brief
A watchdog is a mechanism which is used to periodically detect that the system is in
a healthy state, and, if it is deemed not to be, to reboot it. This is achieved by setting
up a (kernel) timer (to say, a 60 second timeout). If all's well, a watchdog daemon
process (a daemon is nothing but a system background process) will consistently
cancel the timer (before it expires, of course) and subsequently re-enable it; this is
known as petting the dog. If the daemon does not (due to something having gone
badly wrong), the watchdog is annoyed and reboots the system! A pure software
watchdog implementation will not be protected against kernel bugs and faults; a
hardware watchdog (which latches into the board reset circuitry) will always be able
to reboot the system as and when required.

Often, the high priority threads of embedded applications are designed to have very
real deadlines within which they must complete some work; otherwise, the system is
considered to have failed. One wonders, what if at run time the OS itself—due to an
unfortunate bug— simply crashes or hangs (panics)? The application thread(s) then
cannot continue; we need a way to detect and get out of this mess. Embedded
designers often make use of watchdog timer (WDT) hardware circuitry (and an
associated device driver) to achieve precisely this. If the system or a critical thread
does not meet its deadline (fails to pet the dog), the system is rebooted.

So, back to our scenarios. Let's say we have a deadline for the high priority thread A
of 100 ms; repeat the preceding locking scenario in your mind, but with this
difference (refer to Fig 13: as well):

Thread B (the low priority thread), obtains the mutex lock at time t1.
Thread A also requests the mutex lock at time t2 (but has to wait upon the
unlock by thread B).
Before thread B can complete the critical section, another medium priority
thread C (running on the same CPU core and at priority 45) wakes up! It
will immediately preempt thread B as its priority is higher (recall that the
highest priority runnable thread must be the thread that is running).
Now, until thread C gets off the CPU, thread B cannot complete the critical
section, and therefore cannot perform the unlock.
This, in turn, can significantly delay thread A, which is blocking upon the
yet-to-happen unlock by thread B:

However, thread B has been preempted by thread C, hence it
cannot perform the unlock.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[626]

What if the time to unlock exceeds the deadline for thread A (at time t4)?
Then the watchdog timer will expire, forcing a system
reboot:

Fig 13: Priority inversion

Interesting, and unfortunate; did you notice that the highest priority thread (A) was
in effect forced to wait upon the lowest priority thread (B) on the system? This
phenomenon is in fact a documented software risk , formally called priority
inversion.

Not only that, consider what might happen if several medium priority threads woke
up while thread B was in its critical section (and thus holding the lock)? The potential
time wait for thread A can now become very large; such situations are known
as unbounded priority inversion.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[627]

The Mars Pathfinder mission in brief
Very interestingly, this precise scenario priority inversion played out quite
dramatically in a literally out of this world setting: on the surface of Mars! NASA
successfully landed a robot spacecraft (the Pathfinder Lander) on the Martian surface
on July 4, 1997; it then proceeded to unload and deploy a smaller
robot—the Sojourner Rover—onto the surface. However, controllers found that the
lander ran into problems—every so often it would reboot. Detailed analysis of the live
telemetry feed ultimately revealed the underlying issue—it was the software, which
had hit a priority inversion issue! To their immense credit, NASA's Jet Propulsion
Laboratory (JPL) team, along with engineers from Wind River, the company that
supplied a custom VxWorks RTOS to NASA, diagnosed and debugged the situation
from Earth, determined the root cause defect as a priority inversion issue, fixed it,
uploaded the new firmware to the rover, and it all worked:

Figure 14: Photo from the Mars Pathfinder Lander

Multithreading with Pthreads Part II - Synchronization Chapter 15

[628]

The news spread (in a viral fashion) when an MS engineer, Mike Jones, at an IEEE
Real-Time Symposium, wrote an interesting email about what occurred with NASA's
Pathfinder mission; this was ultimately, and in detail, responded to by the team
leader of NASA's JPL, Glenn Reeves, with a now quite famous article entitled What
Really Happened on Mars?. Many interesting insights were captured in this and
subsequent articles written on the topic. In my opinion, all software engineers would
do themselves a favor by reading these! (Do look up the links provided in the Further
reading section on the GitHub repository under Mars Pathfinder and Priority
Inversion.)

Glenn Reeves stresses a few important lessons learned and the reasons why they were
able to reproduce and fix the issue, and one of them is this: We strongly believe in the
test what you fly and fly what you test philosophy. In effect, because of the design
decisions to keep relevant detailed diagnostic and debug information in trace/log ring
buffers, which could be dumped at will (and sent to Earth), they were able to debug
the root issue at hand.

Priority inheritance – avoiding priority inversion
Okay, great; but how does one fix such an issue as priority inversion? Interestingly,
this is a known risk, and the design of the mutex includes a built-in solution. Two
mutex attributes exist with regard to helping address the priority inversion
issue—priority inheritance (PI) and priority ceiling.

PI is an interesting solution. Think about it, the key issue is the way in which the OS
schedules threads. In an OS (and especially on an RTOS), the scheduling of a real-
time thread—deciding who runs—is essentially directly proportional to
the priority of the competing threads: the higher your priority, the better the chance
you will run. So, let's take a quick relook at our preceding scenario example. Recall
that we have these three threads at differing priorities:

Thread A: high priority, 90
Thread B: low priority, 10
Thread C: medium priority, 45

Multithreading with Pthreads Part II - Synchronization Chapter 15

[629]

The priority inversion occurred when thread B held the mutex lock for a long while,
thus forcing thread A to block on the unlock for perhaps far too long (over the
deadline). So, think about this: what if, the moment thread B grabs the mutex lock,
we increase its priority to that of the highest priority thread on the system which is
also waiting on the same mutex lock. Then, of course, thread B will get priority 90 and
thus cannot be preempted (by thread C or any other thread for that matter)! This
ensures that it completes its critical section quickly and unlocks the mutex; the
moment it unlocks it, it goes back to its original priority. This solves the problem; this
approach is termed PI.

The pthreads API set provides a pair of APIs to query and set the protocol mutex
attribute, upon which you can make use of PI:

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t
 *restrict attr, int *restrict protocol);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
 int protocol);

The value that the protocol parameter can take is one of the following:
PTHREAD_PRIO_INHERIT,
PTHREAD_PRIO_NONE, or PTHREAD_PRIO_PROTECT (the default
being PTHREAD_PRIO_NONE). When a mutex has one of the INHERIT or
PROTECT protocols, its owner thread is affected in terms of scheduling priority.

A thread that holds the lock (owns it) on any mutexes initialized with
the PTHREAD_PRIO_INHERIT protocol will inherit the highest priority (and
therefore execute at that priority) of any thread that is blocked upon (waiting) on any
of these mutexes (robust or non-robust) that also uses this protocol.

A thread that holds the lock (owns it) on any mutexes initialized with
the PTHREAD_PRIO_PROTECT protocol will inherit the highest priority
ceiling (and therefore execute at that priority) of any thread that also uses this
protocol, regardless of whether or not they are currently blocking upon (waiting) on
any of these mutexes (robust or non-robust).

If a thread uses mutexes initialized with differing protocols, it will execute at the
highest priority defined among them.

On the Pathfinder mission, the RTOS used was the well-known VxWorks by Wind
River. The mutex (or semaphores) certainly had the PI attribute; it's just that the JPL
software team missed turning on the PI attribute of a mutex lock, resulting in
the priority inversion issue! (Actually, the software team was well aware of it and
used it in several places, but not the one place that struck — Murphy's Law at work!)

Multithreading with Pthreads Part II - Synchronization Chapter 15

[630]

Furthermore, the developer can make use of priority ceiling—this is the minimum
priority at which the owner thread will execute the code of the critical section. Thus,
being able to specify this, one can ensure that it's at a sufficiently high value to
guarantee that the owner thread does not get preempted while in the critical section.
The pthreads
pthread_mutexattr_getprioceiling(3) and pthread_mutexattr_setprioce
iling(3) API's can be used to query and set the priority ceiling attribute of a mutex.
(It must fall within the valid SCHED_FIFO priority range, typically 1 to 99 on the
Linux platform).

Again, in practice, there are some challenges in using priority
inheritance and ceiling attributes, which are, mostly, performance
overheads:

Heavier task/context switching can result
Priority propagation can add overhead
With many threads and many locks, there is performance
overhead, as well the potential for deadlock climbs

Summary of mutex attribute usage
In effect, if you would like to thoroughly test and debug your application and don't
really care about performance (right now, at least), then set up your mutex as follows:

Set the robust attribute on it (allowing one to catch the owner-dies-without-
unlocking case): pthread_mutexattr_setrobust(&attr, PTHREAD_MU
TEX_ROBUST)

Set the type to error checking (allowing one to catch the self-deadlock /
relock case):
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)

On the other hand, a well-designed and proven application that requires you to
squeeze out performance would use the normal (default) mutex type and attributes.
The preceding cases will not be caught (and will instead result in undefined
behavior), but then, they should never occur!

If one requires a recursive lock, (obviously) set the mutex type
to PTHREAD_MUTEX_RECURSIVE. With the recursive mutex, it's important to
realize that if the mutex lock is performed n times, it must also be unlocked n times in
order for it be considered to be truly in the unlocked state (and therefore lockable
again).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[631]

In a multiprocess and multithreaded application, if there is a need to use a mutex lock
between threads of different processes, this can be achieved via the process-shared
attribute of the mutex object. Note that, in this case, the memory that contains the
mutex must itself be shared between the processes (we usually use a shared memory
segment).

The PI and the priority ceiling attributes allow the developer to safeguard the
application against a well-understood software risk: priority inversion.

Mutex locking – additional variants
This section helps one understand additional—slightly different semantics—to mutex
locking. We will cover the timeout mutex variant, the "busy-waiting" use case, and
the reader-writer lock.

Timing out on a mutex lock attempt
In the earlier section, Locking guidelines, under the label prevent starvation, we
understood that holding a mutex lock for a long-ish time leads to performance issues;
noticeably, the loser threads will starve. A way to ward off this issue (although, of
course, fixing the underlying root cause of any starvation is the important thing to
do!) is to have the loser threads wait upon the mutex lock for only a certain amount of
time; if it takes longer to be unlocked, forget it. This is precisely the functionality that
the pthread_mutex_timedlock(3) API provides:

#include <pthread.h>
#include <time.h>
int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
 const struct timespec *restrict abstime);

It's quite obvious: all locking semantics remains the same as they do for the usual
pthread_mutex_lock(3), except that if the time spent blocking (waiting) upon the
lock exceeds the second parameter—the time specified as an absolute value, where
the API returns failure—the value returned will be ETIMEDOUT. (We have already
programmed timeouts in detail in Chapter 13, Timers.)

Note, though, that other error return values are possible (for example, EOWNERDEAD
for a robust mutex in which the previous owner terminates, EDEADLK for a deadlock
being detected on an error-checking mutex, and so on.). Please refer to the man page
on pthread_mutex_timedlock(3) for details.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[632]

Busy-waiting (non-blocking variant) for the lock
We understand how a mutex lock works normally: if a lock is already locked,
then attempting to take the lock will cause that thread to block (wait upon) the unlock
occurring. What if one wants a design which goes something like this: if the lock is
locked, don't make me wait; I'll do some other work and retry? This semantic is often
referred to as busy-waiting or non-blocking, and is provided by the trylock variant.
As the name suggests, we try for the lock and if we get it, great; if not, it's okay—we
do not force the thread to wait. The lock might be taken by any thread within the
process (or even outside if it's a process-shared mutex) including the same thread—if
it's marked as recursive. But hold on; if the mutex lock is indeed a recursive lock, then
taking it will succeed immediately and the call will return straight away.

 The API for this is as follows:

int pthread_mutex_trylock(pthread_mutex_t *mutex);.

While this busy-waiting semantic is useful on occasion—specifically, it is used to
detect and prevent certain types of deadlock—be careful when using it. Think about
it: for a lightly contented lock (one which is not being used often, in which the thread
attempting to take the lock will very likely get it straight away), using this busy-
wait semantic might be useful. But for a heavily contented lock (a lock on a hot code
path, taken and released often), this can actually hurt one's chances of obtaining the
lock! Why? Because you are not willing to wait for it. (Funny how software mimics
life sometimes, yes?)

The reader-writer mutex lock
Visualize a multithreaded application with some ten worker threads; let's say that,
most of the time (say 90% of the time), eight of the workers are busy scanning a global
linked list (or similar data structure). Now, of course, since it's global, we know that
it's a critical section; failing to protect it with a mutex can easily result in a dirty read
bug. But, this is at a major performance cost: as each worker thread wants to search
the list, it is forced to wait upon the unlock event from the owner.

Computer scientists have come up with quite an innovate alternative for situations
like this (also referred to as the reader-writer problem), wherein the data accesses are
such that for the majority of time (shared) data is only being read and not written
to. We use a special variant of the mutex lock called the reader-writer lock:

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

Multithreading with Pthreads Part II - Synchronization Chapter 15

[633]

Notice that it's a new type of lock altogether: the pthread_wrlock_t.

If a thread obtains a read lock for itself, the key point is this: the implementation now
trusts that this thread will only read and never write; thus, no actual locking is done
and the API will just return success! This way, readers actually run in parallel, thus
keeping performance high; there is no safety issue or race, as they guarantee they will
only read.

However, the moment a thread wishes to write data, it must obtain a write
lock: when this happens, normal locking semantics apply. The writer thread must
now wait for all readers to perform the unlock, and then the writer gets the write lock
and proceeds. While it's within the critical section, no thread—reader nor writer—will
be able to intervene; they will have to, as is usual, block (wait) upon the writer's
unlock. Thus, both scenarios are now optimized.

The usual suspects—the APIs—for setting up the reader-writer mutex lock attributes
exist (in alphabetical order):

pthread_rwlockattr_destroy(3P)

pthread_rwlockattr_getpshared(3P)

pthread_rwlockattr_setkind_np(3P)

pthread_rwlockattr_getkind_np(3P)

pthread_rwlockattr_init(3P)

pthread_rwlockattr_setpshared(3P)

Note that the APIs suffixed with _np imply they are non-portable,
and Linux-only.

Similarly, the reader-writer locking APIs follow the usual pattern—the timeout and
try variants are present as well:

pthread_rwlock_destroy(3P)

pthread_rwlock_init(3P)

pthread_rwlock_timedrdlock(3P)

pthread_rwlock_tryrdlock(3P)

pthread_rwlock_unlock(3P)

pthread_rwlock_rdlock(3P)

Multithreading with Pthreads Part II - Synchronization Chapter 15

[634]

pthread_rwlock_timedwrlock(3P)

pthread_rwlock_trywrlock(3P)

pthread_rwlock_wrlock(3P)

We expect the programmer to set up in a normal manner—initialize
the rwlock attribute object, initialize the rwlock itself
(with pthread_rwlock_init(3P)), destroy the attribute structure once done with it,
and then perform the actual locking as required.

Note, though, that when using reader-writer locks, the application should be carefully
tested for performance; it has been noted to be a slower implementation than the
usual mutex lock. Also, there is the additional worry that, under load, the reader-
writer locking semantics might result in writer starvation. Think: if readers keep
coming up, the writer thread might have to wait for a long time before it gets the lock.

Apparently, with the reader-writer lock, the opposite dynamic can also occur: the
readers could be starved. Interestingly, Linux provides a non-portable API, allowing
the programmer to specify which kind of starvation to prevent—reader or
writer—with the default being that the writers starve. The API to invoke to set this up
is pthread_rwlockattr_setkind_np(3). This allows some degree of tuning based
on your specific workload. (However, the implementation apparently still suffers
from a bug wherein, in effect, writer starvation remains the reality. We do not attempt
to go into this further; the reader is referred to the man page if further aid is
required.)

Nevertheless, the reader-writer lock variant is often useful; think of applications that
need to often scan some key-value map data structure and perform a table lookup of
some sort. (For example, an OS often has network code paths that often look up the
routing table but rarely update it.) The invariant is that the global shared data in
question is often read from but rarely written to.

The spinlock variant
A bit of repetition here: we already understand how a mutex lock works normally; if
a lock is already locked, then attempting to take the lock will cause that thread to
block (wait upon) the unlock occurring. Let's dig a little deeper; how exactly do the
loser threads block—wait upon — the unlock of the mutex? The answer is that, for the
mutex lock, they do so by sleeping (being scheduled off CPU by the OS). This, in fact,
is one of the defining properties of the mutex lock.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[635]

On the other hand, there exists a different kind of lock altogether—the spinlock (very
commonly used within the Linux kernel) whose behavior is quite the opposite: it
works by having the loser threads wait upon the unlock operation by spinning
(polling)—well, the reality is that the actual spinlock implementation is a lot more
refined and efficient than it's made to sound here; this discussion is well beyond the
scope of this book, though. At first glance, polling seems to be a poor way to have the
loser threads wait on the unlock; the reason it works well with the spinlock is that the
time taken within the critical section is guaranteed to be very small (technically, less
than the time required to perform two context switches), thus making the spinlock
much more efficient to use than the mutex when the critical section tiny.

Though the pthreads implementation does provide the spinlock, one should be clear
on these points:

The spinlock is only meant to be used by extreme performance real-time
threads that employ a real-time OS scheduling policy (SCHED_FIFO, and
possibly SCHED_RR; we discuss these in Chapter 17, CPU Scheduling on
Linux).
The default scheduling policy on the Linux platform is never a real-time
one; it's the non-real-time SCHED_OTHER policy, which is well-suited to
non-deterministic applications; using the mutex lock is the way to go.
Using spinlocks in user space is not considered the right design approach;
moreover, the code will be a lot more susceptible to deadlock and
(unbounded) priority inversion scenarios.

For the preceding reasons, we refrain from delving into the following
pthreads spinlock APIs:

pthread_spin_init(3)

pthread_spin_lock(3)

pthread_spin_trylock(3)

pthread_spin_unlock(3)

pthread_spin_destroy(3)

If required, do look them up within their respective manual pages (but also be doubly
careful if employing them!).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[636]

A few more mutex usage guidelines
In addition to the tips and guidelines that were provided earlier (refer to the Locking
Guidelines section), think upon this as well:

How many locks should one use?
With many lock instances, how to know which lock variable to use and
when?
Test whether a mutex is locked or not.

Let's take these points up one by one.

In small applications (like the kind shown here), perhaps using just a single lock to
protect critical sections is enough; it has the advantage of keeping things simple
(which is a big deal). However, in a large project, using just one lock to perform
locking on every critical section one might encounter has the potential to become a
major performance breaker! Think about why exactly this is: the moment that one
mutex lock is hit anywhere in the code, all parallelism stops, and the code runs in a
serialized fashion; if this happens often enough, performance will rapidly degrade.

Interestingly, the Linux kernel, for years, had a major performance
headache precisely because of one lock that was being used
throughout large cross sections of the codebase—so much so, that it
was nicknamed the big kernel lock (BKL) (a giant lock). It was
finally gotten rid of only in the 2.6.39 version of the Linux kernel
(see the Further reading section on the GitHub repository for a link to
more on the BKL).

So, while there is no rule to decide exactly how many locks one should use, the
heuristic is to think about the simplicity versus performance trade off. As a tip, in
large production-quality projects (like the Linux kernel), we often use a single lock to
protect a single datum— a data object; typically, this is a data structure. This would
ensure that the global data is protected while accessed, but only by the code paths
that actually access it and not every code path, thus ensuring both data safety as well
as parallelism (performance).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[637]

Okay, great. Now, if we do follow this guideline, what if we end up with a few
hundred locks!? (Yes, this is entirely possible in large projects that have a few
hundred global data structures.) Now, we have another practical problem: the
developer must ensure that they use the correct lock to protect a given data
structure (of what use is using lock X meant for data structure X while accessing data
structure Y? That would be a serious defect). So, a practical issue is how do I know for
sure which data structure is protected by which lock or, another way to state it: how
(how do I know for sure which lock variable protects which data structure?) The
naive solution is to name each lock appropriately, perhaps something
like lock_<DataStructureName>. Hmm, not as simple as it appears!

Informal polls have revealed that, often, one of the hardest things a
programmer does is variable naming! (See the Further
reading section on the GitHub repository for a link to this.)

So, here's a tip: embed the lock that protects a given data structure inside the data
structure itself; in other words, make it a member of the data structure it protects!
(Again, the Linux kernel often uses this approach.)

Is the mutex locked?
In certain situations, the developer might be tempted to ask: given a mutex, can I find
out if it's in the locked or unlocked state? Perhaps the reasoning is: if locked, let's
unlock it.

There is a way to test this: with the pthread_mutex_trylock(3) API. If it returns
EBUSY, it implies that the mutex is currently locked (otherwise, it should return 0,
implying it's unlocked). But wait! There is an inherent race condition here; just think
about this:

if (pthread_mutex_trylock(&mylock) != EBUSY)) { <-- time t1
 // it's unlocked <-- time t2
}
// it's locked

By the time we reach time t2, there is no guarantee that another thread has not, by
now, locked the mutex in question! So, this approach is incorrect. (The only realistic
way to do this kind of synchronization is to abandon doing this via mutex locks and
use condition variables instead; that's what we cover in the next section.)

Multithreading with Pthreads Part II - Synchronization Chapter 15

[638]

This concludes our (rather long) coverage on mutex locking. Before we are done, we
would like to point out another point of interest: we stated earlier that
being atomic implies being able to run the critical code section to completion without
interruption. But the reality is that our modern systems do interrupt us with
(alarming) regularity—hardware interruptions and exceptions being the norm! Thus,
one should realize that:

In user space, with it being impossible to mask hardware interrupts,
processes and threads will get interrupted at any point in time due to them.
Thus, it's essentially impossible to be truly atomic with user space
code. (But so what if we're interrupted by hardware
interrupts/faults/exceptions? They will perform their work and hand
control back to us, all very quickly. It's highly unlikely we race, sharing
global writable data with these code entities).
In kernel space, though, we run with OS privilege, actually making it
possible to mask even hardware interrupts, and thus allowing us to run in
a truly atomic fashion (how do you think the well-known Linux
kernel spinlock works?).

Now that we have covered the typical APIs used for locking, we encourage the reader
to, one, work on trying out examples in a hands-on manner; and two, revisit the
sections covered earlier in sections, Locking guidelines and Deadlock.

Condition variables
A CV is an inter-thread event notification mechanism. Where we use the mutex lock
to synchronize (serialize) access to a critical section, thus protecting it, we use
condition variables to facilitate efficient communication—in terms of synchronizing
based on the value of a data item—between the threads of a process. The following
discussion will make this clearer.

Often, in multithreaded application design and implementation, one is faced with this
type of situation: a thread, B, is performing some work and another thread, A, is
awaiting the completion of that work. Only when thread B completes the work
should thread A continue; how can we efficiently implement this in code?

Multithreading with Pthreads Part II - Synchronization Chapter 15

[639]

No CV – the naive approach
One might recall that the exit status of a thread (via pthread_exit(3)) is passed
back to the thread that calls pthread_join(3); could we make use of this feature?
Well, no: for one thing, it's not necessarily the case that thread B will terminate once
the designated work is complete (it might only be a milestone and not all of the job it
has to perform), and two, even if it does terminate, perhaps some other thread besides
the one invoking pthread_join(3) might need to know.

Okay; why not have thread A poll upon the completion by the simple technique of
having thread B set a global integer (call it gWorkDone) to 1 when the work is
complete (and having thread A poll on it, of course), perhaps something like the
following in pseudocode:

Time Thread B Thread A
t0 Initialize: gWorkDone = 0 < common >
t1 Perform the work ... while (!gWorkDone) ;

t2
t3 Work done; gWorkDone = 1 ...
t4 Detected; break out of the loop and continue

It might work, but it doesn't. Why not?:

One, polling on a variable for unbounded periods of time is very expensive
in CPU terms (and is just bad design).
Two, notice that we are operating upon a shared writable global variable
without protecting it; this is exactly the way to introduce data races, and
thus bugs, into the application.

Hence, the approach shown in the preceding table is considered to be a naive,
inefficient, and even possibly buggy (racy).

Using the condition variable
The correct approach is to use a CV. A condition variable is a way for threads to
synchronize upon the value of data in an efficient manner. It achieves the same end
result as the naive polling approach does, but in a far more efficient and, even more
importantly, correct manner.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[640]

Check out the following table:

Time Thread B Thread A

t0 Initialize: gWorkDone = 0 ; init the {CV,
mutex} pair < common >

t1 Wait upon signal from thread B : lock the
associated mutex; pthread_cond_wait()

t2 Perform the work ... < ... blocking ... >

t3

Work done;
lock the associated mutex; signal thread A
: pthread_cond_signal() ; unlock
the associated mutex

 ...

t4
Unblocked; check to see that the work is really
done, and if so, unlock the associated mutex, and
continue...

Though the preceding table shows us the sequence of steps, some explanation
is required. In the naive approach, we saw that one of the (serious) shortcomings is
the fact that the global shared data variable was being manipulated without
protection! The condition variable solves this by requiring that a condition variable be
always associated with a mutex lock; we can think of it as a {CV, mutex} pair.

The idea is simple: every time we intend to use the global predicate that tells us
whether or not the work has been completed (gWorkDone, in our example), we lock
the mutex, read/write the global, unlock the mutex, thus—importantly!—protecting
it.

The beauty of the CV is that we do not require polling at all: the thread awaiting work
completion uses pthread_cond_wait(3) to block (wait) upon that event
occurring, and the thread that has completed work "signals" its counterpart via
the pthread_cond_signal(3) API:

int pthread_cond_wait(pthread_cond_t *restrict cond,
 pthread_mutex_t *restrict mutex);
int pthread_cond_signal(pthread_cond_t *cond);

Though we use the word signal here, this has nothing to do with
Unix/Linux signals and signaling that we covered in earlier
Chapters 11, Signaling - Part I, and Chapter 12, Signaling - II.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[641]

(Notice how the {CV, mutex} pair go together). Of course, just as with threads, we
must first initialize the CV and its associated mutex lock; the CV is initialized either
statically via:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Or dynamically (at runtime) via the following API:

int pthread_cond_init(pthread_cond_t *restrict cond,
 const pthread_condattr_t *restrict attr);

If specific, non-default attributes of the CV are to be set up, one can do so via
the pthread_condattr_set*(3P) APIs, or just set the CV to default by first
invoking the pthread_condattr_init(3P) API and passing the initialized CV
attribute object as the second parameter to pthread_cond_init(3P):

int pthread_condattr_init(pthread_condattr_t *attr);

Conversely, when done, use the following APIs to destroy the CV attribute object and
the CV itself:

int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);

A simple CV usage demo application
Too many inits/destroys? Looking at the following simple code
(ch15/cv_simple.c) will clarify their usage; we write a small program to
demonstrate the usage of a condition variable and its associated mutex lock. Here, we
create two threads, A and B. We then have thread B perform some work and thread A
synchronize upon completion of that work by using the {CV, mutex} pair:

For readability, only key parts of the source code are displayed;
to view the complete source code, build and run it. The entire tree is
available for cloning from GitHub here: https:/ / github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

...
#define LOCK_MTX(mtx) do { \
 int ret=0; \
 if ((ret = pthread_mutex_lock(mtx))) \
 FATAL("pthread_mutex_lock failed! [%d]\n", ret); \
} while(0)

#define UNLOCK_MTX(mtx) do { \
 int ret=0; \

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part II - Synchronization Chapter 15

[642]

 if ((ret = pthread_mutex_unlock(mtx))) \
 FATAL("pthread_mutex_unlock failed! [%d]\n", ret); \
} while(0)

static int gWorkDone=0;
/* The {cv,mutex} pair */
static pthread_cond_t mycv;
static pthread_mutex_t mycv_mutex = PTHREAD_MUTEX_INITIALIZER;

In the preceding code, we again show the macros that implement the mutex lock and
unlock, the global predicate (Boolean) variable gWorkDone, and of course, the {CV,
mutex} pair of variables.

In the following code, in main, we initialize the CV attribute object and the CV itself:

// Init a condition variable attribute object
 if ((ret = pthread_condattr_init(&cvattr)))
 FATAL("pthread_condattr_init failed [%d].\n", ret);
 // Init a {cv,mutex} pair: condition variable & it's associated
mutex
 if ((ret = pthread_cond_init(&mycv, &cvattr)))
 FATAL("pthread_cond_init failed [%d].\n", ret);
 // the mutex lock has been statically initialized above.

The worker threads A and B are created and start their work (we do not repeat the
code showing thread creation here). Here, you will find the worker routine for thread
A— it must wait until thread B completes the work. We use the {CV, mutex} pair to
easily and efficiently achieve this.

The library does, however, require the application to guarantee that prior to invoking
the pthread_cond_wait(3P) API, the associated mutex lock is taken (locked);
otherwise, this will result in undefined behavior (or an actual failure when the mutex
type is PTHREAD_MUTEX_ERRORCHECK or a robust mutex). Once the thread is blocking
upon the CV, the mutex lock is auto-released.

Also, if a signal is delivered while the thread is blocked upon the wait condition, it
shall be processed and the wait will be resumed; it could also cause a return value of
zero for a spurious wake up (more on this in a minute):

static void * workerA(void *msg)
{
 int ret=0;

 LOCK_MTX(&mycv_mutex);
 while (1) {
 printf(" [thread A] : now waiting on the CV for thread B to

Multithreading with Pthreads Part II - Synchronization Chapter 15

[643]

finish...\n");
 ret = pthread_cond_wait(&mycv, &mycv_mutex);
 // Blocking: associated mutex auto-released ...
 if (ret)
 FATAL("pthread_cond_wait() in thread A failed! [%d]\n",
ret);
 // Unblocked: associated mutex auto-acquired upon release from
the condition wait...
 printf(" [thread A] : recheck the predicate (is the work really
"
 "done or is it a spurious wakeup?)\n");
 if (gWorkDone)
 break;
 printf(" [thread A] : SPURIOUS WAKEUP detected !!! "
 "(going back to CV waiting)\n");
 }
 UNLOCK_MTX(&mycv_mutex);
 printf(" [thread A] : (cv wait done) thread B has completed it's
work...\n");
 pthread_exit((void *)0);
}

It's very important to understand this: merely returning from
the pthread_cond_wait(3P) does not necessarily imply that the condition we were
waiting (blocking) upon — in this case, thread B completing the work—actually
occurred! In software, receiving a spurious wakeup (a false wakeup due to some
other event — perhaps a signal) can occur; robust software will literally recheck the
condition in a loop to determine that the reason we were awoken is the right one—in
our case here, that the work has indeed been completed. This is why we run in an
infinite loop and, once unblocked from pthread_cond_wait(3P), check whether the
global integer gWorkDone is actually having the value we expect (1, in this case,
signifying completion of the work).

All right, but think about this too: even reading a shared global becomes a critical
section (otherwise a dirty read could result); hence, we need to take the mutex before
doing so. Ah, this is where the {CV, mutex} pair idea has a built-in automatic
mechanism that really helps us out—the moment we
call pthread_cond_wait(3P), the associated mutex lock is automatically and
atomically released (unlocked), and then we block upon the condition variable signal.
The moment the other thread (B, here) signals us (on the same CV, obviously), we are
unblocked from pthread_cond_wait(3P) and the associated mutex lock is
automatically and atomically locked, allowing us to recheck the global (or whatever).
So, we do our work and then unlock it.

Multithreading with Pthreads Part II - Synchronization Chapter 15

[644]

Here's the code for the worker routine for thread B, which performs some sample
work and then signals thread A:

static void * workerB(void *msg)
{
 int ret=0;

 printf(" [thread B] : perform the 'work' now (first sleep(1) :-))
...\n");
 sleep(1);
 DELAY_LOOP('b', 72);
 gWorkDone = 1;

 printf("\n [thread B] : work done, signal thread A to continue
...\n");
 /* It's not strictly required to lock/unlock the associated mutex
 * while signalling; we do it here to be pedantically correct (and
 * to shut helgrind up).
 */
 LOCK_MTX(&mycv_mutex);
 ret = pthread_cond_signal(&mycv);
 if (ret)
 FATAL("pthread_cond_signal() in thread B failed! [%d]\n", ret);
 UNLOCK_MTX(&mycv_mutex);
 pthread_exit((void *)0);
}

Notice the comment detailing why we again take the mutex lock just prior to the
signal. Okay, let's try it out (we suggest you build and run the debug version as then,
the delay loop shows up correctly):

$./cv_simple_dbg
 [thread A] : now waiting on the CV for thread B to finish...
 [thread B] : perform the 'work' now (first sleep(1) :-)) ...
bb
bb
 [thread B] : work done, signal thread A to continue ...
 [thread A] : recheck the predicate (is the work really done or is it
a spurious wakeup?)
 [thread A] : (cv wait done) thread B has completed it's work...
$

Multithreading with Pthreads Part II - Synchronization Chapter 15

[645]

The API also provides a timeout variant of the blocking call:

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
 pthread_mutex_t *restrict mutex, const struct timespec *restrict
abstime);

The semantics are identical to that of pthread_cond_wait, except that the API
returns (with a failure value of ETIMEDOUT) if the time specified in the third
parameter, abstime, has (already) passed. The clock used to measure the time that's
elapsed is an attribute of the CV and can be set via
the pthread_condattr_setclock(3P) API.

(Both pthread_cond_wait and the pthread_cond_timedwait are cancellation
points; this topic is dealt with in the next chapter.)

CV broadcast wakeup
As we saw previously, the pthread_cond_signal(3P) API is used to unblock a
thread that is blocked upon a particular CV. A variant of this API is as follows:

int pthread_cond_broadcast(pthread_cond_t *cond);

This API allows you to unblock multiple threads that are blocking on the same
CV. So, for example, what if we have three threads blocking on the same CV; when
the application calls the pthread_cond_broadcast(3P), which thread will run
first? Well, this is like asking, when threads are created, which one will run first
(recall these discussions from the previous chapter). The answer, of course, is that, in
the absence of particular scheduling policies, it is indeterminate. The same answer
holds for the question when applied to the CV unblock and run on CPU.

To continue, once the waiting threads are unblocked, recall that the associated mutex
will be taken, but of course only one of the unblocked threads will get it first. Again,
this depends on scheduling policy and priority. With all defaults, it remains
indeterminate which thread gets it first. In any case, in the absence of real-time
characteristics, this should not matter to the application (if the application is real-time,
then read our Chapter 17, CPU Scheduling on Linux, and setting up real-time
scheduling policies and priorities first on each application thread).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[646]

Also, the manual page on these APIs clearly states that although the threads invoking
the preceding APIs (pthread_cond_signal and the pthread_cond_broadcast) do
not require that you hold the associated mutex lock when doing so (recall, we always
have a {CV, mutex} pair), pedantically correct semantics demand that they do hold
the mutex, perform the signal or broadcast, and then unlock the mutex (our example
app, ch15/cv_simple.c, does follow this guideline).

To round off this discussion on CVs, here are a few tips:

Do not use the condition variable approach from within a signal handler;
the code is not considered to be async signal-safe (recall our earlier Chapter
11, Signaling - Part I, and Chapter 12, Signaling - Part II).
Using the well-known Valgrind suite (recall that we covered Valgrind's
Memcheck tool in Chapter 6, Debugging Tools for Memory Issues),
specifically the tool named helgrind, is useful (sometimes) to detect
synchronization errors (data races) in pthreads multithreaded applications.
The usage is simple:
$ valgrind --tool=helgrind [-v] <app_name> [app-params

...]:
helgrind, though, like many tools of this type, can quite often
raise many false positives. For example, we find that
eliminating printf(3) in the cv_simple application we
wrote previously removes plenty of (false positive) errors
and warnings from helgrind!
Prior to invoking the pthread_cond_signal and/or
the pthread_cond_broadcast APIs, if the associated
mutex lock is not first acquired (it's not
required), helgrind complains.

Do try helgrind out (again, the Further reading section on the GitHub repository has a
link to its (really good) documentation).

Multithreading with Pthreads Part II - Synchronization Chapter 15

[647]

Summary
We began this chapter by focusing on the key concepts of concurrency, atomicity, and
the need to recognize critical sections and protect them. Locking is a typical way to
achieve this; the pthreads API set provides the powerful mutex lock to do so.
However, using locks, especially on large projects, is fraught with hidden problems
and dangers—we discussed useful Locking guidelines, Deadlock and its avoidance.

This chapter then went on to guide the reader in the usage of the pthreads mutex
lock. A lot of ground was covered here, including various mutex attributes, the
importance of recognizing and avoiding the priority inversion issue, and variations
on the mutex lock. Finally, we covered the need for and usage of the condition
variable (CV) and how it can be used to efficiently facilitate inter-thread event
notification.

The next chapter is the final one in this trilogy of chapters on multithreading; in it, we
shall focus on the important issues of thread safety (and thread-safe APIs), thread
cancellation and cleanup, mixing signals with MT, a few FAQs and tips, and look at
the pros and cons of the multiprocess vs the multithreaded model.

16
Multithreading with Pthreads

Part III
Having covered, in Chapters 14, Multithreading with Pthreads Part I - Essentials, and
Chapter 15, Multithreading with Pthreads Part II - Synchronization, a lot of the whys and
hows of writing powerful multithreaded (MT) applications, this chapter focuses on
teaching the reader several key safety aspects of MT programming.

It sheds some light on many key safety aspects of developing safe and robust MT
applications; here, the reader will learn about thread safety, why it is required, and
how to make a function thread-safe. While running, it's possible to have one thread
kill another thread; this is achieved via the thread-cancelation
mechanism—going hand in hand with cancelation, how does one ensure that prior to
terminating a thread, one ensures that it first releases any resources it is still
holding (such as locks and dynamic memory)? Thread cleanup handlers are covered
to show this.

Finally, this chapter delves into how to safely mix multithreading and signaling, some
pros and cons of multiprocess versus multithreaded, as well as some tips and FAQs.

Thread safety
A key, and unfortunately often not a clearly apparent, issue when developing
multithreaded applications is that of thread safety. A thread-safe, or, as the man pages
like to specify it, MT-Safe, function or API is one that can be safely executed in
parallel by multiple threads with no adverse issue.

Multithreading with Pthreads Part III Chapter 16

[649]

To understand what this thread-safety issue actually is, let's go back to one of the
programs we saw in Appendix A, File I/O Essentials; you can find the source code
within the book's GitHub repository: https:/ /github. com/ PacktPublishing/ Hands-
on-System-Programming- with- Linux/ blob/ master/ A_fileio/ iobuf. c. In this
program, we used fopen(3) to open a file in append mode and then performed
some I/O (reads/writes) upon it; we duplicate a small paragraph of that chapter here:

We fopen(3) a stream (in append mode: a) to our destination, just a
regular file in the /tmp directory (it will be created if it does not exist)
Then, in a loop, for a number of iterations provided by the user as a
parameter, we will do the following:

Read several (512) bytes from the source stream (they will be
random values) via the fread(3) stdio library API
Write those values to our destination stream via the
fwrite(3) stdio library API (checking for EOF and/or error
conditions)

Here's a snippet of the code, mainly the testit function performs the actual I/O;
refer to: https:/ /github. com/ PacktPublishing/ Hands- on-System- Programming-
with-Linux/blob/ master/ A_ fileio/ iobuf. c:

static char *gbuf = NULL;

static void testit(FILE * wrstrm, FILE * rdstrm, int numio)
{
 int i, syscalls = NREAD*numio/getpagesize();
 size_t fnr=0;

 if (syscalls <= 0)
 syscalls = 1;
 VPRINT("numio=%d total rdwr=%u expected # rw syscalls=%d\n",
 numio, NREAD*numio, NREAD*numio/getpagesize());

 for (i = 0; i < numio; i++) {
 fnr = fread(gbuf, 1, NREAD, rdstrm);
 if (!fnr)
 FATAL("fread on /dev/urandom failed\n");

 if (!fwrite(gbuf, 1, fnr, wrstrm)) {
 free(gbuf);
 if (feof(wrstrm))
 return;
 if (ferror(wrstrm))
 FATAL("fwrite on our file failed\n");

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux/blob/master/A_fileio/iobuf.c

Multithreading with Pthreads Part III Chapter 16

[650]

 }
 }
}

Notice the first line of code, it's really important to our discussion; the memory buffer
used to hold the source and destination data is a global (static) variable, gbuf.

Here's where it's allocated in the main() function of the app:

...
 gbuf = malloc(NREAD);
 if (!gbuf)
 FATAL("malloc %zu failed!\n", NREAD);
...

So what? In Appendix A, File I/O Essentials, we worked with the implicit assumption
that the process is single-threaded; so long as this assumption remains true, the
program will work well. But think carefully about this; the moment we want to port
this program to become multithreaded-capable, the code is not good enough. Why? It
should be quite clear: if multiple threads simultaneously execute the code of
the testit function (which is exactly the expectation), the presence of the global
shared writable memory variable, gbuf, tells us that we will have critical sections in
the code path. As we learned in detail in Chapter 15, Multithreading with Pthreads Part
II - Synchronization, every critical section must be either eliminated or protected to
prevent data races.

In the preceding code fragment, we happily invoke
both fread(3) and fwrite(3) on this global buffer without any protection
whatsoever. Just visualize multiple threads that run through this code path
simultaneously; the result is havoc.

So, now we can see it and conclude that the testit function is not thread-safe (at the
very least, the programmer must document this fact, preventing others from using
the code in a multithreaded application!).

Worse imagine that the preceding thread-unsafe function we developed is merged
into a shared library (often referred to as a shared object file on Unix/Linux); any
(multithreaded) application that links into this library will have access to this
function. If multiple threads of such an application ever invoke it, we have a potential
race—a bug, a defect! Not just that, such defects are the really hard-to-spot and hard-
to-understand ones, causing issues and perhaps all kinds of temporary bandage fixes
(which only make the situation worse and the customer even less confident in the
software). Disasters are caused in seemingly innocent ways indeed.

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Multithreading with Pthreads Part III Chapter 16

[651]

Our conclusion on this is either render the function thread-safe, or clearly document it
as being thread-unsafe (and only use it, if at all, in a single-threaded context).

Making code thread-safe
Obviously, we would prefer to make the testit function thread-safe. Now the
question becomes, how exactly can we do that? Well, again, it's quite straightforward:
there are two approaches (more than two, actually, but we'll get to that later).

If we can eliminate any and all global shared writable data in the code path, we will
have no critical sections and no problem; in other words, it will become thread-safe.
So, one way to achieve this is to ensure that the function uses only local (automatic)
variables. The function is now reentrant safe. Before proceeding further, it's important
to understand some key points regarding reentrant and thread safety.

Reentrant-safe versus thread-safe
How exactly is reentrant-safe different from thread-safe? Confusion does prevail.
Here's a concise take: reentrant safety is an older issue prior to the advent of
multitasking and multithreading OSes, the implication being that only one thread of
concern is executing. For a function to be reentrant-safe, it should be able to be
correctly re-invoked from another context while the previous context has not yet
completed execution (think of a signal handler re-invoking a given function while it is
already executing). The key requirement: it should use only local variables or have
the ability to save and restore the global it uses such that it's safe. (These ideas have
been dealt with in Chapter 11, Signaling - Part I, in the Reentrant safety and
signaling section. As we mentioned in that chapter, a signal handler should only call
functions that are guaranteed to be reentrant safe; in the signal-handling context,
these functions are referred to as being async-signal-safe.)

On the other hand, thread safety is a much more recent issue—we are referring to
modern OSes that are multithreaded-capable. A function that is thread-safe can be
invoked in parallel from multiple threads (running on multiple CPU cores perhaps)
simultaneously, without breaking it. The shared writable data is the thing that
matters as code is in any case only readable can executable and thus completely safe
to execute in parallel.

Multithreading with Pthreads Part III Chapter 16

[652]

Making a function thread-safe via the use of a mutex lock (these discussions follow in
some detail with examples) is indeed possible but introduces performance issues.
There are better ways to make a function thread-safe: refactoring it, or using TLS or
TSD—we'll cover these in the Thread safety via TLS and Thread safety via TSD section.

In short, reentrant safety is concerned with one thread re-invoking a function while
an active invocation still exists; thread safety is concerned with multiple
threads—concurrent code—executing the same function in parallel. (An excellent
Stack Overflow post describes this in more detail; please refer to the Further
reading section on the GitHub repository.)

Now, back to our earlier discussions. In theory, using only local variables sounds
good (and, for small utility functions, we should design it that way), but the reality is
that there are complex projects that evolve in such a manner that using global shared
writable data objects within functions becomes something that cannot always be
avoided. In such circumstances, from what we learned in the previous Chapter 15,
Multithreading with Pthreads Part II - Synchronization, on synchronization, we know the
answer: identify and protect the critical sections using a mutex lock.

Yes, that would work, but at a significant cost to performance. Remember, locks
defeat parallelism and serialize the code flow, creating bottlenecks. Achieving thread
safety without using a mutex lock is what actually constitutes a truly reentrant-safe
function. Such code would indeed be a useful thing, and it can be done; there are two
powerful techniques to achieve this, called TLS and TSD. A little patience please, we
shall cover how to use these in the section: Thread safety via TLS and Thread safety via
TSD.

A point to emphasize: the designer and programmer must
guarantee that all code that can be executed by multiple threads at
any point in time is designed, implemented, tested, and documented
to be thread-safe. This is one of the key challenges to meet when
designing and implementing multithreaded applications.

On the other hand, if one can guarantee that a function will always only be executed
by a single thread (an example is an early initialization routine called from
main() before threads are created), then obviously there is no need to guarantee that
it's thread-safe.

Multithreading with Pthreads Part III Chapter 16

[653]

Summary table – approaches to making functions
thread-safe
Let's summarize the preceding points in the form of a table that tells us how to
achieve the all-important goal of thread-safety for all our functions:

Approach to make a function thread-safe Comments
Use only local variables Naive; hard to achieve in practice.
Use global and/or static variables and protect
critical sections with mutex locks Viable but can significantly impact performance [1]

Refactor the function, making it reentrant-safe-
eliminate the use of static variables in a
function by using more parameters as
required

Useful approach—several old foo
glibc functions refactored to foo_r.

Thread local storage (TLS)
Ensures thread safety by having one copy of the
variable per thread; toolchain and OS-version-
dependent. Very powerful and easy to use.

Thread-specific data (TSD) Same goal: make data thread-safe –older
implementation, more work to use.

Table 1: Approaches to making functions thread-safe

[1] Though we say that using the mutex can significantly impact performance, the
mutex performance is, in the normal case, really very high (largely due to its internal
implementation on Linux via the futex–fast user mutex).

Let's check out these approaches in more detail.

The first one, using only local variables, being a fairly naive approach, will probably
only work well with small programs; we shall leave it at that.

Thread safety via mutex locks
Given that a function does use global and/or static variables, and the decision is to
continue to use them (the second approach we mention in Table 1), obviously the
places in the code where they are used constitute critical sections. As Chapter 15,
Multithreading with Pthreads Part II - Synchronization, has shown in detail, we must
protect these critical sections; here, we use the pthreads mutex lock to do so.

Multithreading with Pthreads Part III Chapter 16

[654]

For readability, only key parts of the source code are displayed here;
to view the complete source code, build and run it, the entire tree is
available for cloning from GitHub: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

We apply this approach the addition of a pthread mutex lock to our sample function
(we rename it appropriately; find the full source code here: ch16/mt_iobuf_mtx.c)
in the following snippet:

static void testit_mt_mtx(FILE * wrstrm, FILE * rdstrm, int numio,
 int thrdnum)
{
 ...
 for (i = 0; i < numio; i++) {
 LOCK_MTX(&mylock);
 fnr = fread(gbuf, 1, NREAD, rdstrm);
 UNLOCK_MTX(&mylock);
 if (!fnr)
 FATAL("fread on /dev/urandom failed\n");

 LOCK_MTX(&mylock);
 if (!fwrite(gbuf, 1, fnr, wrstrm)) {
 free(gbuf);
 UNLOCK_MTX(&mylock);
 if (feof(wrstrm))
 return;
 if (ferror(wrstrm))
 FATAL("fwrite on our file failed\n");
 }
 UNLOCK_MTX(&mylock);
 }
}

Here, we use the same macros to perform the mutex lock and unlock as we did in (To
avoid repetition, we do not show the code to initialize the mutex lock, please refer
to Chapter 15, Multithreading with Pthreads Part II - Synchronization, for these details.
Also we added an additional thrdnum parameter to the function, so as to be able to
print out the thread number that's currently running through it.)

The key point: at the critical sections—the places in the code where we access (read or
write) the shared writable global variable, gbuf—we take the mutex lock, perform the
access (in our case, at the fread(3) and fwrite(3)), and unlock the mutex.

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part III Chapter 16

[655]

Now, even when multiple threads run through the preceding function, there will be
no data-integrity issue. Yes, it will work, but at a significant performance cost; as
stated earlier, each critical section (the code between a lock and the
corresponding unlock) will be serialized. Hence, locking can form bottlenecks in the
code path, especially if, as in our example, the numio parameter is a large number,
then the for loop will execute for a while. Similarly, bottlenecks will result if the
function is a busy one and is invoked often. (a quick check with perf(1) revealed
that the single-threaded version took 379 ms to perform a 100,000 I/Os and the
multithreaded version with locking took 790 ms for the same number of I/Os.)

We have covered this, but let's quickly test ourselves: why did we not protect the
places in the code that use the variables such as fnr and syscalls? The answer is
because it's a local variable; more to the point, every thread will get its own copy of a
local variable when it executes the preceding function, because every thread has its
own private stack—and local variables are instantiated on the stack.

To make the program work, we have had to refactor how the preceding function is
actually set up as the thread-worker routine; we find we need to pass various
parameters to each thread using a custom data structure, and then have a small
wrapper function—wrapper_testit_mt_mtx()—invoke the actual I/O function;
we leave it to the reader to check out the source in detail.

Let's run it:

$./mt_iobuf_mtx 10000
./mt_iobuf_mtx: using default stdio IO RW buffers of size 4096 bytes;
IOs=10000
mt_iobuf_mtx.c:testit_mt_mtx:62: [Thread #0]: numio=10000 total
rdwr=5120000 expected # rw syscalls=1250
mt_iobuf_mtx.c:testit_mt_mtx:66: gbuf = 0x23e2670
mt_iobuf_mtx.c:testit_mt_mtx:62: [Thread #1]: numio=10000 total
rdwr=5120000 expected # rw syscalls=1250
mt_iobuf_mtx.c:testit_mt_mtx:66: gbuf = 0x23e2670
 Thread #0 successfully joined; it terminated with status=0
 Thread #1 successfully joined; it terminated with status=0
$

This reveals the full picture; clearly, the I/O buffer being used, gbuf, is the same for
both threads (look at the addresses printed out), hence the need to lock it.

Multithreading with Pthreads Part III Chapter 16

[656]

As an aside, within the standard-file streaming APIs, there exists (non-
standard) *_unlocked APIs, such
as fread_unlocked(3) and fwrite_unlocked(3). These are the same as their
regular counterparts, except that they are explicitly marked to be MT-unsafe in the
documentation. It's not advisable to use them.

By the way, open files are a shared resource between the threads of
a process; the developer must take this into account as well.
Performing IO simultaneously with multiple threads on the same
underlying file object can cause corruption, unless file-
locking techniques are used. Here, in this specific case, we are
explicitly using a mutex lock to protect critical sections – which
happen to be at the precise points where we perform file I/O, so
explicit file-locking becomes unnecessary.

Thread safety via function refactoring
As we saw in the preceding example, we need the mutex lock because
the gbuf global buffer was being used by all application threads as their I/O buffer.
So, think on this: what if we can allocate an I/O buffer that's local to each thread? That
would indeed solve the issue! How exactly, will be shown with the following code.

But first, now that you are familiar with the previous example (where we used the
mutex lock), study the output of the refactored program:

$./mt_iobuf_rfct 10000
./mt_iobuf_rfct: using default stdio IO RW buffers of size 4096 bytes;
IOs=10000
mt_iobuf_rfct.c:testit_mt_refactored:51: [Thread #0]: numio=10000
total rdwr=5120000 expected # rw syscalls=1250
 iobuf = 0x7f283c000b20
mt_iobuf_rfct.c:testit_mt_refactored:51: [Thread #1]: numio=10000
total rdwr=5120000 expected # rw syscalls=1250
 iobuf = 0x7f2834000b20
 Thread #0 successfully joined; it terminated with status=0
 Thread #1 successfully joined; it terminated with status=0
$

The key realization: the I/O buffer used here, iobuf, is unique for each thread (just
look at the addresses printed out)! Thus, this eliminates the critical sections in the I/O
function and the need to use a mutex. In effect, the function is using only local
variables and is thus both reentrant and thread-safe.

Multithreading with Pthreads Part III Chapter 16

[657]

For readability, only key parts of the source code are displayed here.
To view the complete source code, build and run it; the entire tree is
available for cloning from GitHub: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

The following code snippets clearly reveal how this is set up (the full source
code: ch16/mt_iobuf_rfct.c):

struct stToThread {
 FILE *wrstrm, *rdstrm;
 int thrdnum, numio;
 char *iobuf;
};
static struct stToThread *ToThread[NTHREADS];
static void * wrapper_testit_mt_refactored(void *msg)
{
 struct stToThread *pstToThread = (struct stToThread *)msg;
 assert (pstToThread);

 /* Allocate the per-thread IO buffer here, thus avoiding the global
 * heap buffer completely! */
 pstToThread->iobuf = malloc(NREAD);
 ...
 testit_mt_refactored(pstToThread->wrstrm, pstToThread->rdstrm,
 pstToThread->numio, pstToThread->thrdnum,
 pstToThread->iobuf);

 free(pstToThread->iobuf);
 pthread_exit((void *)0);
}

As can be seen, we refactor by adding an additional buffer pointer member to our
custom stToThread structure. The important part: in the thread-wrapper function,
we then allocate it memory and pass the pointer it to our thread routine. We add an
additional parameter to our thread I/O routine for this very purpose:

static void testit_mt_refactored(FILE * wrstrm, FILE * rdstrm, int
numio, int thrdnum, char *iobuf)
{
...
 for (i = 0; i < numio; i++) {
 fnr = fread(iobuf, 1, NREAD, rdstrm);
 if (!fnr)
 FATAL("fread on /dev/urandom failed\n");
 if (!fwrite(iobuf, 1, fnr, wrstrm)) {
 ...
 }

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part III Chapter 16

[658]

Now, in the preceding I/O loop, we operate upon the per-thread iobuf buffer, thus
there is no critical section, no need for locking.

The standard C library and thread safety
A significant amount of the standard C library (glibc), code is not thread-safe. What?
one asks. But, hey, a lot of this code was written back in the 1970s and 1980s, when
multithreading did not exist (for Unix, at least); thus, one can hardly blame them for
not designing it to be thread-safe!

List of APIs not required to be thread-safe
The standard C library, glibc, has many older functions that, in the words of the Open
Group manual, need not be thread-safe (or are not required to be thread-safe). All
functions defined by this volume of POSIX.1-2017 shall be thread-safe, except that the
following functions need not be thread-safe. What does that actually mean? Simple:
these APIs are not thread-safe. So, be careful—do not use them in MT
applications. The complete list can be found at: http:/ / pubs. opengroup. org/
onlinepubs/9699919799/ functions/ V2_chap02. html#tag_ 15_ 09_01.

Of course, the preceding list is only valid as of POSIX.1-2017 and is
bound to get outdated. The reader must be aware of this recurring
issue, and the need to constantly update information like this.

Also, they are mostly library-layer (glibc) APIs. Of all the preceding APIs, only one of
them—readdir(2)-is a system call; that too is considered deprecated (we are to use
its glibc wrapper, readdir(3)). As a rule of thumb, all system calls are written to be
thread-safe.

An interesting aside: PHP, a popular web-scripting
language, is not considered thread-safe; hence, web servers that
serve PHP pages do so using the traditional multiprocess model and
not a faster multithreaded framework (for example, Apache uses its
internal mpm_prefork module—which is single-threaded – to deal
with PHP pages).

http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01
http://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_09_01

Multithreading with Pthreads Part III Chapter 16

[659]

So, seeing what we have just discussed, does one conclude that glibc is no longer
viable to develop thread-safe MT apps? No sir, work has been done to convert
(refactor, really) many of the preceding APIs to render them thread-safe. Read on.

Refactoring glibc APIs from foo to foo_r
Of course, today, with MT applications being the de facto reality, what do we do?
The glibc maintainers understand these issues, and have used precisely the
refactoring techniques – passing additional parameters to avoid the usage of global
and/or static variables (like we did previous with our ch16/mt_iobuf_rfct.c
code), including using parameters as return values—to refactor
standard glibc functions to become thread-safe. The glibc naming convention is if
the older function is named foo, the refactored, usually reentrant- and thread-safe,
version is named foo_r.

To help lend clarity to this discussion, let's take an example of a glibc API that has
both the older foo and the newer foo_r functionality. The ctime(3) API is often
used by application developers; given a Unix-time timestamp, it converts it into a
human-readable date-timestamp (ASCII text). (Recall that we have used
the ctime API in Chapter 13, Timers.) Let's recall, directly from Chaptr 13, Timers,
that Unix systems store time as the number of seconds elapsed since January 1, 1970,
midnight (00:00) – think of it as Unix's birth! This time value is called time since the
Epoch or Unix time. OK, but it's going to be a rather large number of seconds today,
right? So how does one express it in a human-readable format? Glad you asked;
that's precisely the job of the ctime(3) and the ctime_r(3) APIs.

The signature of the ctime(3) API is as follows:

include <time.h>
char *ctime(const time_t *timep);

Do you spot the issue here for multithreaded applications? The return value is the
time represented in plain ASCII text; it is stored by ctime(3) in a static (thus,
shared) data variable. If multiple threads execute the ctime(3) more or less
simultaneously (and that, my friend, is exactly what can, and indeed does, happen on
modern multicore systems!), there is always the risk that we perform dirty reads or
writes on the shared data. Simply because it is not protected; simply because when
the ctime(3) was first designed and implemented, only a single thread would ever
run it at a given point in time. Which is not the case today, of course. In other
words, ctime(3) is marked in the man page as being MT-Unsafe, that is, it
is not thread-safe. Thus, calling ctime(3) from an MT application is wrong—you run
the risk of having a race, a bug, or a defect at some point.

Multithreading with Pthreads Part III Chapter 16

[660]

The good glibc folks have literally re-implemented (refactored) ctime(3) to become
reentrant and thread-safe; the newer API is christened ctime_r(3). Here is a quote
from its man page: the reentrant version ctime_r() does the same, but stores the
string in a user-supplied buffer which should have room for at least 26 bytes:

char *ctime_r(const time_t *timep, char *buf);

Excellent! Did you notice that the key point here is that the ctime(3) API has been
refactored (and renamed to ctime_r(3)) to become re-entrant- and thread-safe by
having the user supply the buffer in which the result is returned? How will the user
do this? Simple; here's some code showing one way to achieve this (we just require
the concept here, no error-checking is shown):

// Thread Routine here
struct timespec tm;
char * mybuf = malloc(32);
...
clock_gettime(CLOCK_REALTIME, &tm); /* get the current 'UNIX'
timestamp*/
ctime_r(&tm.tv_sec, mybuf); /* put the human-readable ver into
'mybuf'*/
...
free(mybuf);

Think about it: each thread that executes the preceding code will allocate a separate
unique buffer and pass that buffer pointer to the ctime_r(3) routine. This way, we
ensure that we do not step on each other's toes; the API is now reentrant- and thread-
safe.

Notice in the preceding code how we achieved this refactoring trick in C: by passing
the unique buffer to be written into as a value-result-style parameter! This is indeed a
common technique, often employed by the glibc foo_r routines: we keep the
routine thread-safe by passing one or more values to it (and even back to the caller,
as a kind of return value) without using static or global variables (instead
using value-result (or in-out) style parameters)!

The man page on ctime(3), and indeed on most other APIs, documents whether the
API it describes are thread-safe: this is extremely important to note! We cannot over-
stress this: the multithreaded application programmer must check and ensure that all
functions being called in a function that is supposed to be thread-safe, are themselves
(documented to be) thread-safe.

Multithreading with Pthreads Part III Chapter 16

[661]

Here's a screenshot of a part of the man page on ctime(3) that shows, under
the ATTRIBUTES section, this information:

Figure 1 : Screenshot of ATTRIBUTES section of the man page on ctime(3)

Quite obviously, MT-Safe implies the routine is thread-safe; MT-Unsafe implies it
isn't. The man page on attributes(7) delves further into these details; it clearly notes
that being thread-safe does not guarantee that the API is also atomic; do read through
it.

We also note that the man page states that POSIX.1-2008 marks the ctime_r
API itself as obsolete, and to use strftime(3) in its place. Please do so. Here, we
have used the ctime(3) and ctime_r(3) APIs merely to illustrate an example
regarding the thread-unsafe and -safe versions of a glibc routine.

Some glibc foo and foo_r APIs
The ctime(3), this being thread-unsafe, is now replaced by its thread-safe
counterpart ctime_r(3); this is just one example of a generic trend in modern glibc:

The older, thread (MT-unsafe) unsafe function is called foo
Has a counterpart, the newer, thread (MT-Safe) safe foo_r API

Multithreading with Pthreads Part III Chapter 16

[662]

To give the reader an appreciation of this, we enumerate some (not all!) of the glibc
foo_r style of APIs:

asctime_r(3)
crypt_r(3)
ctime_r(3)
drand48_r(3)

getpwnam_r(3)
getpwuid_r(3)
getrpcbyname_r(3)
getrpcbynumber_r(3)
getrpcent_r(3)
getservbyname_r(3)

seed48_r(3)
setkey_r(3)
srand48_r(3)
srandom_r(3)
strerror_r(3)
strtok_r(3)

getdate_r(3)
getgrent_r(3)
getgrgid_r(3)
getgrnam_r(3)
gethostbyaddr_r(3)
gethostbyname2_r(3)
gethostbyname_r(3)
gethostent_r(3)
getlogin_r(3)

nrand48_r(3)
ptsname_r(3)
qecvt_r(3)
qfcvt_r(3)
qsort_r(3)
radtofix_r(3)
rand_r(3)
random_r(3)
readdir_r(3)

ustrtok_r(3)
val_gethostbyaddr_r(3)
val_gethostbyname2_r(3)
val_gethostbyname_r(3)

Table 3: Some of the glibc foo_r APIs

This list is not intended to be exhaustive; note that the ctime_r(3) API is in this list.
At the risk of repetition, ensure you only use the foo_r APIs in an MT application as
they are the thread-safe versions of the foo API.

Thread safety via TLS
The preceding discussion was with regard to the already existing standard C
library, glibc, and its API set. What about MT applications that are newly designed
and developed? Obviously, the code we write for them must be thread-safe.

Let's not forget how we rendered our testit_mt_refactored function to become
thread-safe by refactoring it – adding an iobuf parameter that passed along the
address of the buffer to use for I/O—guaranteeing the buffer will be unique for each
thread and thus thread-safe (without any need for locking).

Could we get such functionality automatically? Well, yes: the compiler (GCC and
clang) does provide an almost magical feature to do something similar: TLS. With
TLS, a variable marked with the __thread special storage class keyword will be
instantiated once per thread that comes alive. In effect, if we use only local and TLS
variables, our function will by definition be thread-safe, without any (expensive)
locking required.

Multithreading with Pthreads Part III Chapter 16

[663]

There do exist some ground rules and caveats; let's check them out:

The __thread keyword can be used alone, or with (in fact, only with)
the static or extern keywords; if used with them, it must appear after
them:

__thread long l;
extern __thread struct MyStruct s1;
static __thread int safe;

More broadly, the __thread keyword can be specified against any global
and file-or- function scope static or extern variable. It cannot be applied
to any local variables.
TLS can only be used on (fairly) recent versions of the toolchain and kernel.

Something important to understand: though it may seem akin to having a locked
variable, this is certainly not the case! Consider this: given a TLS variable
called mytls, different threads using it in parallel is fine. However, if a thread uses
the address-of operator on the TLS variable, &mytls, it will have the address of its
instance of the variable. Any other thread, if access to this address, can use this
address to gain access to the variable; thus, it's not really locked in any real sense. Of
course, if the programmer uses normal conventions (not letting other threads access a
different thread's TLS variables), then all will work well.

It's important to realize that TLS support is only available from the Linux 2.6 kernel
onward, gcc ver 3.3 or later, and NPTL. Well, practically speaking, this implies that
pretty much any fairly recent Linux distribution will support TLS.

So, as usual, let's port our thread-unsafe function to become thread-safe via TLS. This
is really simple; all we have to do is make the previously global buffer, gbuf, into a
thread-safe TLS buffer (iobuf):

static __thread char iobuf[NREAD]; // our TLS variable

static void testit_mt_tls(FILE * wrstrm, FILE * rdstrm, int numio, int
thrdnum)
{
 int i, syscalls = NREAD*numio/getpagesize();
 size_t fnr=0;

 if (syscalls <= 0)
 syscalls = 1;
 VPRINT("[Thread #%d]: numio=%d total rdwr=%u expected # rw
 syscalls=%d\n"
 " iobuf = %p\n", thrdnum, numio, NREAD*numio, syscalls,

Multithreading with Pthreads Part III Chapter 16

[664]

iobuf);
...

The only important change to note is the declaration of the iobuf variable now as a
TLS variable; everything else pretty much remains the same. A quick test run
confirms that each thread receives a separate copy of the TLS variable:

$./mt_iobuf_tls 12500
./mt_iobuf_tls: using default stdio IO RW buffers of size 4096 bytes;
IOs=12500
mt_iobuf_tls.c:testit_mt_tls:48: [Thread #0]: numio=12500 total
rdwr=6400000 expected # rw syscalls=1562
 iobuf = 0x7f23df1af500
mt_iobuf_tls.c:testit_mt_tls:48: [Thread #1]: numio=12500 total
rdwr=6400000 expected # rw syscalls=1562
 iobuf = 0x7f23de9ae500
 Thread #0 successfully joined; it terminated with status=0
 Thread #1 successfully joined; it terminated with status=0
$

Each iobuf is a per-thread TLS instance; each has a unique address. No locking, no
fuss, job done. Real-world usage of TLS is high; the uninitialized global errno is a
perfect example.

TLS seems such a powerful and easy-to-use technique to make a function thread-safe;
is there a downside? Well, think about it:

For every variable marked as the TLS storage class, memory will have to be
runtime-allocated for every thread that comes alive; if we have large TLS
buffers, this can cause significant amounts of memory to be allocated.
Platform support: your Linux platform, if too old, will not support it
(usually shouldn't be the case).

Thread safety via TSD
Prior to the TLS technique that we just saw (that is, before Linux 2.6 and gcc 3.3), how
did one guarantee writing a new API to be thread safe? A much older technology
exists, called TSD.

In a nutshell, TSD is a more complex solution from the application developer's
viewpoint—more work must be done to achieve the very same end result that TLS so
easily gives us; that of making a function thread-safe.

Multithreading with Pthreads Part III Chapter 16

[665]

With TSD, the thread-safe routine must invoke an initializer function (usually done
with pthread_once(3)), which creates a unique thread-specific data key (using the
pthread_key_create(3) API). This initializer routine associates a thread-specific
data variable (such as the iobuf buffer pointer in our example) with that key, using
the pthread_getspecific(3) and pthread_setspecific(3) APIs. The end
result is that the data item is now thread-specific and therefore thread-safe. Here, we
do not delve further into using TSD as it's an older solution that TLS easily and
elegantly replaces on modern Linux platforms. Nevertheless, for the interested
reader, please refer to the Further reading section on the GitHub repository—we
provide a link to using TSD.

Thread cancelation and cleanup
The pthreads design provides a sophisticated framework for achieving two other key
activities for a robust multithreaded application: the ability to have a thread in the
app cancel (effectively, kill) another thread, and the ability to have a thread that is
either terminated normally (via the pthread_exit(3)) or abnormally (via
cancelation) be able to perform the required resource cleanup.

The following sections deal with these topics.

Canceling a thread
Visualize a GUI application running; it pops up a dialog box informing the user that it
is now performing some work (perhaps displaying a progress bar as well). We
imagine that this work is being carried out by a thread of the overall application
process. For the user's convenience, a Cancel button is provided as well; clicking on it
should cause the ongoimg work to be canceled.

How can we implement this? In other words, how does one kill off a thread? The first
thing to note is that pthreads provides a framework for exactly this type of
operation: thread cancelation. Canceling a thread is not sending it a signal; it is a way
for one thread to request another a thread to die. Making this happen requires us to
understand and follow the provided framework.

Multithreading with Pthreads Part III Chapter 16

[666]

The thread cancelation framework
To help bring clarity, let's take an example: let's say that the main thread of an
application creates two worker threads, A and B. Now, the main thread wants
to cancel thread A.

The API to request cancelation upon a target thread (A, here) is the following:

int pthread_cancel(pthread_t thread);

The thread parameter is the target thread—the one we are (politely) requesting to
please go and die, thank you very much.

But, you guessed it, it's not as simple as that: the target thread has two attributes (that
it can set) that determine whether and when it gets canceled:

Cancelability state
Cancelability type

The cancelability state
The target thread is required to be in an appropriate cancelability state. The state is
Boolean-cancelability (on the target thread, A) is either enabled or disabled; here is the
API to set this up:

int pthread_setcancelstate(int state, int *oldstate);

The two possible cancelability states, the value provided as the first parameter, for a
thread are as follows:

PTHREAD_CANCEL_ENABLE (default on creation)
PTHREAD_CANCEL_DISABLE

Clearly, the previous cancelability state will be returned in the second
parameter, oldstate.) The target thread can only be canceled if its cancelability state
is enabled. A thread's cancelability state is enabled by default upon creation.

This is a powerful feature of the framework: if the target thread, A, is performing a
critical activity and does not want to be even considered for cancelation, it merely sets
its cancelability state to disabled, and, upon finishing the said critical activity, resets it
to enabled.

Multithreading with Pthreads Part III Chapter 16

[667]

The cancelability type
Assuming the target thread has the cancelability state enabled is the first step; the
thread's cancelability type determines what happens next. There are
two types: deferred (the default) and asynchronous. When a thread's cancelability
type is asynchronous, it can be canceled at any point in time (in fact, it should happen
immediately, but is not always guaranteed to); if the cancelability
type is deferred (the default), it can only be canceled (terminated) when it hits the
next cancelation point.

A cancelation point is a list of (usually blocking) functions (more on this shortly).
When the target thread—that, remember, is of the enabled cancelability state and the
deferred type—encounters the next cancelation point in its code path, it will
terminate.

Here is the API to set the cancelability type:

int pthread_setcanceltype(int type, int *oldtype);

The two possible cancelability types, the value provided as the first parameter type,
are:

PTHREAD_CANCEL_DEFERRED (default on creation)
PTHREAD_CANCEL_ASYNCHRONOUS

Clearly, the previous cancelability type will be returned in the second
parameter, oldtype.

Whew! Let's try to represent this cancelation framework as a flowchart:

Multithreading with Pthreads Part III Chapter 16

[668]

Figure 2: Pthreads cancelation

pthread_cancel(3) is a non-blocking API. What we mean is that, even if the target
thread has its cancelability state disabled, or its cancelability state is enabled but the
cancelability type is deferred and it has not reached a cancelation point, though the
target thread might take some time to actually die,
the main thread's pthread_cancel(3) call will return with success (return value 0),
implying that the cancelation request has been successfully queued.

Disabling the cancelation state for a short time while a critical activity is carried out is
fine, but doing the same for long periods could cause the application to seem
unresponsive.

Multithreading with Pthreads Part III Chapter 16

[669]

Using the asynchronous value for the cancelability type is usually not the right thing
to do. Why? Well, it becomes a race as to when exactly the thread was canceled; was it
before it allocated some resource (such as memory via malloc(3)) or after? In such
situations, even cleanup handlers are not really useful. Also, only APIs documented
as being async-cancel-safe can be safely canceled in an async fashion; realistically
there are very few—only the cancelation APIs themselves. For these reasons, it's
considered best to avoid asynchronous cancelation. On the other hand, if a thread is
predominantly highly CPU-bound (performing some mathematical calculation, say
prime number generation), then using async cancelation can help guarantee the
thread dies immediately on request.

Another key point: how does (in our example) the main thread know that the target
thread has actually terminated? Remember that the main thread is expected
to join upon all threads; hence, the target thread upon termination will get joined,
and—here's the thing – the return value (status) from pthread_join(3) will
be PTHREAD_CANCELED. pthread_join(3) is the only way to check that cancelation
has actually occurred.

We have learned that, with the (default) cancelation type as deferred, the actual
thread-cancelation will not occur until the target thread encounters a cancelation
point function. A cancelation point is merely an API at which thread-cancelation is
actually detected and made to take effect by the underlying implementation.
The cancelation points are not limited to the pthreads APIs; many glibc functions
serve as cancelation points. The reader can find a list of cancelation point APIs by
following a link (Open Group POSIX.1c threads) provided in the Further
reading section on the GitHub repository. As a rule of thumb, the cancelation points
are typically blocking library APIs.

But, what if a thread is executing code that just does not have a cancelation point
within it (say, a CPU-bound calculation loop)? In such cases, either one can use
the asynchronous cancelation type or, even better, explicitly introduce a guaranteed
cancelation point into the loop by invoking the void
pthread_test_cancel(void); API.

If the to-be-cancelled target thread hits this function, and a cancelation request is
pending, it will terminate.

Multithreading with Pthreads Part III Chapter 16

[670]

Canceling a thread – a code example
A simple code example demonstrating thread-cancelation follows; we have
the main thread create two worker threads (think of them as thread A and thread B)
and then have the main thread cancel thread A. In parallel, we deliberately have
thread A disable cancelation (by setting the cancelation state to disabled), do some
bogus work (we call our trusty DELAY_LOOP macro to simulate work), then re-enable
cancelation. The cancelation request takes effect at the next cancelation point (as, of
course, the type defaults to deferred), which, here, is simply the sleep(3) API.

The code demonstrating thread cancelation (ch16/cancelit.c) follows.

For readability, only key parts of the source code are displayed here.
To view the complete source code, build and run it. The entire tree
is available for cloning from GitHub: https:/ / github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

We pick up the code in main, after the thread creation loop is done:

int main(void)
{
...
 // Lets send a cancel request to thread A (the first worker thread)
 ret = pthread_cancel(tid[0]);
 if (ret)
 FATAL("pthread_cancel(thread 0) failed! [%d]\n", ret);

 // Thread join loop
 for (i = 0; i < NTHREADS; i++) {
 printf("main: joining (waiting) upon thread #%ld ...\n", i);
 ret = pthread_join(tid[i], (void **)&stat);
 ...
 printf("Thread #%ld successfully joined; it terminated with"
 "status=%ld\n", i, stat);
 if ((void *)stat == PTHREAD_CANCELED)
 printf(" *** Was CANCELLED ***\n");
 }
 }

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part III Chapter 16

[671]

Here is the thread worker routine:

void * worker(void *data)
{
 long datum = (long)data;
 int slptm=8, ret=0;

 if (datum == 0) { /* "Thread A"; lets keep it in a 'critical' state,
 non-cancellable, for a short while, then enable
 cancellation upon it. */
 printf(" worker #%ld: disabling Cancellation:"
 " will 'work' now...\n", datum);
 if ((ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
NULL)))
 FATAL("pthread_setcancelstate failed 0 [%d]\n", ret);
 DELAY_LOOP(datum+48, 100); // the 'work'
 printf("\n worker #%ld: enabling Cancellation\n", datum);
 if ((ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL)))
 FATAL("pthread_setcancelstate failed 1 [%d]\n", ret);
 }

 printf(" worker #%ld: will sleep for %ds now ...\n", datum, slptm);
 sleep(slptm); // sleep() is a 'cancellation point'
 printf(" worker #%ld: work (eyeroll) done, exiting now\n", datum);

 /* Terminate with success: status value 0.
 * The join will pick this up. */
 pthread_exit((void *)0);
}

A quick test run reveals that it indeed works; one can see that thread A has been
cancelled. We suggest you run the debug version of the program, as shown here, as
then the DELAY_LOOP macro's effect can be seen (otherwise it completes its job almost
instantaneously as it's pretty much optimized away by the compiler):

$./cancelit_dbg
main: creating thread #0 ...
main: creating thread #1 ...
 worker #0: disabling Cancellation: will 'work' now...
0 worker #1: will sleep for 8s now ...
main: joining (waiting) upon thread #0 ...
00
00000000000000000000000000000
 worker #0: enabling Cancellation
 worker #0: will sleep for 8s now ...
Thread #0 successfully joined; it terminated with status=-1
 *** Was CANCELLED ***
main: joining (waiting) upon thread #1 ...

Multithreading with Pthreads Part III Chapter 16

[672]

 worker #1: work (eyeroll) done, exiting now
Thread #1 successfully joined; it terminated with status=0

main: now dying... <Dramatic!> Farewell!
$

Cleaning up at thread exit
Consider this hypothetical situation: a thread takes a mutex lock and allocates some
heap memory. Obviously, once the critical section it is in is done, we expect it to free
up the heap memory and unlock the mutex. Failure to do this cleanup will cause
serious, if not fatal, application bugs (defects) such as memory leakage or deadlock.

But, one wonders, what if the poor thread is canceled prior to the free and unlock? It
could happen, right? No! Not if the developer understands and uses the thread
cleanup handler mechanism that the pthreads framework provides.

What happens when a thread terminates? The following steps are part of the
pthreads cleanup framework:

All cleanup handlers are popped (reverse order of the cleanup handler1.
push)
TSD destructors, if they exist, are invoked2.
The thread dies3.

This opens our eyes to an interesting fact: the pthreads framework provides a
guaranteed way for a thread to ensure that it cleans up after itself—frees up memory
resources, closes open files, and so on—before terminating.

The programmer can take care of all these cases by setting up a thread-cleanup
handler – in effect, a kind of destructor function. A cleanup handler is a function that
is automatically executed when a thread is canceled or terminates with
pthread_exit(3); it's set up by invoking the pthread_cleanup_push(3) API:

void pthread_cleanup_push(void (*routine)(void *), void *arg);

Clearly, the first parameter to the preceding routine is the cleanup handler function
pointer, in other words, the name of the cleanup handler function. The second
parameter is any argument one cares to pass to the handler function (often a pointer
to a dynamically allocated buffer or data structure).

Multithreading with Pthreads Part III Chapter 16

[673]

The reverse semantic is achieved via the corresponding cleanup pop routine; when
invoked, it pops off the cleanup handler stack and thus in reverse order executes the
cleanup handler(s) that were earlier pushed onto the cleanup handler stack:

void pthread_cleanup_pop(int execute);

One can also explicitly invoke the topmost cleanup handler on the cleanup stack by
calling the thread_cleanup_pop(3) API with a non-zero argument.

The POSIX standard maintains that the preceding pair of APIs—the
push and pop cleanup handlers—can be implemented as macros
that expand into functions; indeed, it seems to be implemented this
way on the Linux platform. As a side effect of this, it
becomes imperative that the programmer call both routines (the
pair) within the same function. Failure to comply causes weird
compiler failures.

As noted, TSD destructor handlers too, if they exist, get invoked; here, we ignore this
aspect.

You might think, fine, if we use these cleanup handler techniques,
we can safely restore state as both thread-cancelation and -
termination will guarantee that they invoke any registered cleanup
handlers (destructors). But, what if another process (perhaps
a root process) sends my MT app a fatal signal (such as kill -9
<mypid>)? Well, there's nothing to be done. Please realize that with
a fatal signal, all threads in the process, and indeed the entire
process itself, will die (in this example). It's an academic question—a
moot point. On the other hand, a thread cannot just randomly get
killed; there has to be an explicit pthread_exit(3) or cancelation
carried out upon it. Thus, there is no excuse for the lazy
programmer—set up cleanup handler(s) to perform the appropriate
cleanup and all will be well.

Thread cleanup – code example
As a simple code example, let's modify our earlier refactored
program—ch16/mt_iobif_rfct.c by installing a thread-cleanup handler routine.
To test it, we cancel the first worker thread if the user passes 1 as the second
parameter to our demo program, the ch16/cleanup_hdlr.c. program.

Multithreading with Pthreads Part III Chapter 16

[674]

For readability, only key parts of the source code are displayed here.
To view the complete source code, build and run it. The entire tree is
available for cloning from GitHub: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

Here is the cleanup handler function and the re-worked wrapper routine – now with
the cleanup handler push and pop APIs:

static void cleanup_handler(void *arg)
{
 printf("+++ In %s +++\n" " free-ing buffer %p\n", __func__, arg);
 free(arg);
}
...
static void *wrapper_testit_mt_refactored(void *msg)
{
 struct stToThread *pstToThread = (struct stToThread *)msg;
 ...
 /* Allocate the per-thread IO buffer here, thus avoiding the global
 * heap buffer completely! */
 pstToThread->iobuf = malloc(NREAD);
 ...
 /* Install a 'cleanup handler' routine */
 pthread_cleanup_push(cleanup_handler, pstToThread->iobuf);

 testit_mt_refactored(pstToThread->wrstrm, pstToThread->rdstrm,
 pstToThread->numio, pstToThread->thrdnum,
 pstToThread->iobuf);

/* *Must* invoke the 'push's counterpart: the cleanup 'pop' routine;
 * passing 0 as parameter just registers it, it does not actually pop
 * off and execute the handler. Why not? Because that's precisely what
 * the next API, the pthread_exit(3) will implicitly do!
 */
 pthread_cleanup_pop(0);
 free(pstToThread->iobuf);

 // Required for pop-ping the cleanup handler!
 pthread_exit((void *)0);
}

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part III Chapter 16

[675]

Here, main() sets up the thread-cancelation as required:

...
 if (atoi(argv[2]) == 1) {
 /* Lets send a cancel request to thread A */
 ret = pthread_cancel(tid[0]);
 ...

A quick test run confirms that, upon cancelation, the cleanup handler is indeed
invoked and cleanup performed:

$./cleanup_hdlr 23114 1
./cleanup_hdlr: using default stdio IO RW buffers of size 4096 bytes;
IOs=23114
main: sending CANCEL REQUEST to worker thread 0 ...
cleanup_hdlr.c:testit_mt_refactored:52: [Thread #0]: numio=23114 total
rdwr=11834368 expected # rw syscalls=2889
 iobuf = 0x7f2364000b20
cleanup_hdlr.c:testit_mt_refactored:52: [Thread #1]: numio=23114 total
rdwr=11834368 expected # rw syscalls=2889
 iobuf = 0x7f235c000b20
+++ In cleanup_handler +++
 free-ing buffer 0x7f2364000b20
 Thread #0 successfully joined; it terminated with status=-1
 : was CANCELED
 Thread #1 successfully joined; it terminated with status=0
$

Threads and signaling
In Chapter 11, Signaling - Part I, and Chapter 12, Signaling - Part II, we covered
signaling in detail. We are still on the same Unix/Linux platform; signaling and its
usage for the application designer/developer does not simply disappear just because
we are now working on MT applications! We still have to handle signals (recall that
you can list your platform's available signals with a simple kill -l on the shell).

Multithreading with Pthreads Part III Chapter 16

[676]

The issue
So, what's the problem? There is a significant difference in how we handle signals in
MT apps. Why? The fact is that the traditional manner of handling signals does not
really mix well with the pthreads framework. If you can avoid the usage of signals in
your MT app, please do so. If not (often the case in real-world MT apps), then read
on—we shall detail how to handle signals when within an MT application.

But why is signaling now an issue? It's quite straightforward: signals were designed
and meant for the process model. Consider this: how does one process send a signal
to another process? It's quite clear - using the kill(2) system call:

int kill(pid_t pid, int sig);

Clearly, the first parameter, pid, is the PID of the process to deliver the sig signal
(number) to. But, and here we see it, a process can be multithreaded—which
particular thread will receive, and which particular thread will handle, the
signal? The POSIX standard cowardly states that "any ready thread cna handle a
given signal". What if all threads are ready? Then who does? All of them? It's
ambiguous, to say the least.

The POSIX solution to handling signals on MT
The good news is that the POSIX committee has come up with a recommendation to
the developers of MT applications for signal-handling. This solution rests on an
interesting design fact; although a process has a table of signal dispositions (set up by
the kernel and the sigaction(2) system call), every thread within the process has
its own discrete signal mask (using which it can selectively block signals) and signal
pending mask (by which the kernel remembers which signals are pending delivery to
the thread).

Knowing this, the POSIX standard recommends that a developer handle signals in a
pthreads application as follows:

Mask (block) all signals in the main thread.
Now any thread created by main inherits its signal mask, implying that
signals will be blocked in all subsequently created threads—this is what we
want.
Create a special thread that is dedicated to performing signal-handling for
the entire application. Its job is to catch (trap) all required signals and
handle them (in a synchronous fashion).

Multithreading with Pthreads Part III Chapter 16

[677]

Note that although it's possible to trap signals via the sigaction(2) system call, the
semantics of signal-handling in MT apps often lead to using the blocking variants of
signaling APIs—the sigwait(3), sigwaitinfo(3), and sigtimedwait(3) library
APIs. It is usually a good idea to use one of these blocking APIs within our dedicated
signal-handler thread to block all required signals.

Thus, whenever a signal does arrive, the signal-handler thread is unblocked, and it
receives the signal; also (assuming we're using the sigwait(3) API), the signal
number is updated in the second parameter to sigwait(3). It can now perform the
required signal-processing on behalf of the application.

Code example – handling signals in an MT app
A quick demonstration of the POSIX recommended technique for handling signals in
an MT application follows (ch16/tsig.c):

For readability, only key parts of the source code are displayed here.
To view the complete source code, build and run it. The entire tree
is available for cloning from GitHub: https:/ / github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

// ... in main:
/* Block *all* signals here in the main thread.
 * Now all subsequently created threads also block all signals. */
 sigfillset(&sigset);
 if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
 FATAL("main: pthread_sigmask failed");
...
 /*--- Create the dedicated signal handling thread ---*/
 ret = pthread_create(&pthrd[t], &attr, signal_handler, NULL);
 if (ret)
 FATAL("pthread_create %ld failed [%d]\n", t, ret);
...

The worker threads don't do much—they just invoke our DELAY_LOOP macro to
simulate some work. Here, see the signal-handler thread routine:

static void *signal_handler(void *arg)
{
 sigset_t sigset;
 int sig;

 printf("Dedicated signal_handler() thread alive..\n");
 while (1) {

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Multithreading with Pthreads Part III Chapter 16

[678]

 /* Wait for any/all signals */
 if (sigfillset(&sigset) == -1)
 FATAL("sigfillset failed");
 if (sigwait(&sigset, &sig) < 0)
 FATAL("sigwait failed");

 /* Note on sigwait():
 * sigwait suspends the calling thread until one of (any of) the
 * signals in set is delivered to the calling thread. It then stores
 * the number of the signal received in the location pointed to by
 * "sig" and returns. The signals in set must be blocked and not
 * ignored on entrance to sigwait. If the delivered signal has a
 * signal handler function attached, that function is *not* called.
 */
 switch (sig) {
 case SIGINT:
 // Perform signal handling for SIGINT here
 printf("+++ signal_handler(): caught signal #%d +++\n", sig);
 break;
 case SIGQUIT:
 // Perform signal handling for SIGQUIT here
 printf("+++ signal_handler(): caught signal #%d +++\n", sig);
 break;
 case SIGIO:
 // Perform signal handling for SIGIO here
 printf("+++ signal_handler(): caught signal #%d +++\n", sig);
 break;
 default:
 // Signal <whichever> caught
 printf("*** signal_handler(): caught signal #%2d [unhandled]
***\n", sig);
 break;
 }
 }
 return (void *)0;
}

We leave it as a quick exercise to the reader to try it out, noting the output. By the
way, how will you finally kill it? Just open another Terminal window and issue kill
-9 <PID> from there.

Multithreading with Pthreads Part III Chapter 16

[679]

For the reader's convenience, we repeat an important tip originally
shown in Chapter 12, Signaling - Part II.
An important point to note: neither the sigwait(3),
sigwaitinfo(2), nor sigtimedwait(2) APIs can wait
for synchronously generated signals from the kernel—typically the
ones that indicate a failure of some sort, such as the SIGFPE and the
SIGSEGV. These can only be caught in the normal asynchronous
fashion—via signal(2) or via sigaction(2). For such cases, as
we have repeatedly shown, the sigaction(2) system call would be
the superior choice.

Also, to mask signals in a MT app, don't use the sigprocmask(2) API—it's not
thread-safe. Instead, use the pthread_sigmask(3) library routine, which is.

Note that the following APIs are available to send signals to threads within the
process:

pthread_kill(3): An API to send a signal to a particular thread within
the same process
tgkill(2): An API to send a signal to a particular thread within a given
thread group.
tkill(2): A deprecated predecessor of tgkill.

Look up the details on their respective man pages. Having said this, it's far better to
kill a thread via the pthreads cancelation framework than by sending it a signal.

Threads vs processes – look again
Right from the start of this trilogy (Chapter 14, Multithreading with Pthreads Part I -
Essentials, Chapter 15, Multithreading with Pthreads Part II - Synchronization, and
Chapter 16, Multithreading with Pthreads Part III) on multithreading with pthreads,
with regard to the multiprocess (single-threaded) versus multithreaded argument, we
have repeatedly said that it's not all advantages or disadvantages—there is always
some of both, a trade–off.

Table 4 and Table 5 describe some of the pros and cons of the multiprocess (several
single-threaded processes) versus the multithreaded (several threads within a single
process) approaches.

Multithreading with Pthreads Part III Chapter 16

[680]

The multiprocess vs the multithreading
model – pros of the MT model
Here are some pros of the MT model over the single-threaded process:

Context Multiprocess (single-threaded)
model Multithreaded (MT) model

Design for
parallelized
workloads

• Cumbersome
• Non-intuitive
• Using
the fork/wait semantics repeatedly
(creating a large number of processes)
isn't simple or intuitive either

• Lends itself to building parallelized software;
calling the pthread_create(3) in a loop is
easy and intuitive as well
• Achieving a logical separation of tasks becomes
easy
• The OS will have threads take advantage of
multicore systems implicitly; for the Linux OS, the
granularity of scheduling is a thread, not a process
(more on this in the next chapter)
• Overlapping CPU with IO becomes easy

Creation/
destruction
performance

Much slower Much faster than processes; resource-
sharing guarantees this

Context
switching Slow Much faster between the threads of a process

Data sharing

Done via IPC (Inter-Process
Communication) mechanisms;
involves a learning curve, can be
fairly complex; synchronization
(via the semaphore) required

Inherent; all global and static data items are
implicitly shared between threads of a given
process; synchronization (via the mutex) is
required

Table 4: Multiprocess versus multithreading model – pros of the MT model

Multithreading with Pthreads Part III Chapter 16

[681]

The multiprocess vs the
multithreading model – cons of the MT model
Here are some cons of the MT model over the single-threaded process:

Context Multiprocess (single-threaded)
model Multithreaded (MT) model

Thread-safety
No such requirement;
processes always have address
space separation.

The most serious downside: every function in
the MT application that can be run in parallel by
threads must be written, verified, and
documented to be thread-safe. This includes the
app code and the project libraries, as well as any
third-party libraries it links into.

Application
integrity

In a large MT app, if any one
thread encounters a fatal error
(such as a segfault), the entire
app is now buggy and will
have to shut down.

In a multiprocess app, only the process
that encounters a fatal error will have to shut
down; the rest of the project keeps running[1].

Address space
constraints

On 32-bit CPUs, the VAS
(virtual address space)
available to user mode
apps is fairly small (either
2 GB or 3 GB), but still
large enough for a typical
single-threaded app; on
64-bit CPUs the VAS is
enormous (2^64 = 16 EB).

On a 32-bit system (still common on many
embedded Linux products), the available VAS to
user mode will be small (2/3 GB). Considering
sophisticated MT apps with many threads, that's
not a lot! In fact, it's one of the reasons
embedded vendors are aggressively moving
products to 64-bit systems.

The Unix
everything's a
file semantics

The semantic holds true:
files (descriptors), devices,
sockets, terminals, and so
on can all be treated as
files; also, each process has
its own copy of a given
resource.

Resource-sharing, seen as an advantage,
can also be seen as a downside:
• The sharing can defeat the traditional Unix model
advantage
• The sharing of open files, memory regions, IPC
objects, paging tables, resource limits, and so on
implies synchronization overhead upon access

Signal-handling Designed for the process
model.

Not designed for the MT model; can be done, but
a bit clumsy to handle signals.

Multithreading with Pthreads Part III Chapter 16

[682]

Designing,
maintaining, and
debugging

Quite straightforward
compared to the MT model.

Increases complexity because the programmer
has to track (in this mind) the state of several
threads simultaneously, including notoriously
complex locking scenarios. Debugging deadlock
(and other) situations can be quite difficult (tools
such as GDB and helgrind help, but the human
still needs to track things).

Table 5: Multiprocess versus multithreading model – cons of the MT model

[1] The Google Chrome open source project architecture is based on
the multiprocess model; see their comic adaptation on why: http:/ /
www. google. com/ googlebooks/ chrome/ med_ 00.html. From a
software-design viewpoint, the site is very interesting.

Pthreads – a few random tips and FAQs
To conclude this chapter, we provide answers to FAQs on multithreading as well as a
brief note on how to debug a MT application using GDB. Do read on.

Every function in your MT application that can be run in parallel by
threads must be written, verified, and documented to be thread-
safe. This includes your MT app code, your project libraries, as
well as any third-party libraries you link into.

Pthreads – some FAQs
Q: What happens in a multithreaded process when a thread calls one of the
exec*() routines?
A: The calling application (the predecessor) is completely replaced by the
successor process, which will be only the thread that called exec. Note that
no TSD destructors or thread-cleanup handlers are called.
Q: What happens in a multithreaded process when a thread calls fork(2)?
A: It's OS-dependent. On modern Linux, only the thread that called
fork(2) is replicated in the new child process. All other threads that
existed prior to the fork are gone. No TSD destructors or thread cleanup
handlers are called. Calling fork in a multithreaded application can lead to
difficulties; it is not recommended. Find a link in the Further
reading section on the GitHub repository regarding this very question.

http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html
http://www.google.com/googlebooks/chrome/med_00.html

Multithreading with Pthreads Part III Chapter 16

[683]

Think of it this way: calling fork in an MT application for multiprocessing
is considered the wrong approach; invoking fork for the sole purpose of
executing another program is okay (via the typical fork-exec-wait semantic
we learned about). In other words, the newly born child process should
only call functions documented as being async-signal-safe and/or the exec*
routines to invoke another application.
Also, you can set up handlers to run when fork is invoked via the
pthread_atfork(3) API.
Q: What is the effect on Resource Limits (see ulimit/prlimit) in a
multithreaded application?
A: All resource limits—except the stack size limit, of course—are shared by
all threads in the process. On older Linux kernels, this was not the case.

Debugging multithreaded (pthreads)
applications with GDB
GDB supports debugging MT apps; almost all the usual commands work normally,
just a few commands tend to be thread-specific. Here are the key ones to be aware of:

See all visible threads:

(gdb) info threads
 Id Target Id Frame
<thr#> Thread <addr> (LWP ...) in <function> [at <srcfile>]

Switch context to a particular thread by using the thread
<thread#> command.
Apply a given command to all threads of the process: (gdb) thread
apply all <cmd>

Show the stack (GDB's backtrace or bt command) of all threads (the
following example output is from our earlier MT
app, mt_iobuf_rfct_dbg; first, we show the threads via the thread
find . command):

(gdb) thread find .
Thread 1 has target name 'tsig_dbg'
Thread 1 has target id 'Thread 0x7ffff7fc9740 (LWP 24943)'
Thread 2 has target name 'tsig_dbg'
Thread 2 has target id 'Thread 0x7ffff77f7700 (LWP 25010)'
Thread 3 has target name 'tsig_dbg'

Multithreading with Pthreads Part III Chapter 16

[684]

Thread 3 has target id 'Thread 0x7ffff6ff6700 (LWP 25194)'
(gdb) thread apply all bt

Thread 3 (Thread 0x7fffeffff700 (LWP 21236)):
#0 testit_mt_refactored (wrstrm=0x603670, rdstrm=0x6038a0, numio=10,
thrdnum=1, iobuf=0x7fffe8000b20 "")
 at mt_iobuf_rfct.c:44
#1 0x00000000004010e9 in wrapper_testit_mt_refactored (msg=0x603c20)
at mt_iobuf_rfct.c:88
#2 0x00007ffff7bbe594 in start_thread () from /lib64/libpthread.so.0
#3 0x00007ffff78f1e6f in clone () from /lib64/libc.so.6

Thread 2 (Thread 0x7ffff77f7700 (LWP 21235)):
#0 testit_mt_refactored (wrstrm=0x603670, rdstrm=0x6038a0, numio=10,
thrdnum=0, iobuf=0x7ffff0000b20 "")
 at mt_iobuf_rfct.c:44
#1 0x00000000004010e9 in wrapper_testit_mt_refactored (msg=0x603ad0)
at mt_iobuf_rfct.c:88
#2 0x00007ffff7bbe594 in start_thread () from /lib64/libpthread.so.0
#3 0x00007ffff78f1e6f in clone () from /lib64/libc.so.6

Thread 1 (Thread 0x7ffff7fc9740 (LWP 21203)):
#0 0x00007ffff7bbfa2d in __pthread_timedjoin_ex () from
/lib64/libpthread.so.0
#1 0x00000000004013ec in main (argc=2, argv=0x7fffffffcd88) at
mt_iobuf_rfct.c:150
(gdb)

Some miscellaneous tips and tricks with regard to MT programming
with pthreads (including several we have already come across), are
in a blog article mentioned in the Further reading section on the
GitHub repository (Pthreads Dev - common programming mistakes
to avoid); please do check it out.

Multithreading with Pthreads Part III Chapter 16

[685]

Summary
In this chapter, we covered several safety aspects of working with threads that
the powerful pthreads framework provides. We looked at thread-safe APIs, what
they are, why they are required, and how to make a thread routine thread-safe. We
also learned how to have one thread cancel (effectively, kill off) a given thread, and
how to have the victim thread deal with any required cleanup.

The remainder of the chapter focused on how to safely mix threads with the signaling
interfaces; we also compared and contrasted – giving pros and cons (some food for
thought, really)—the typical multiprocess single-threaded with several processes
versus multithreaded (with one process) approaches. Tips and FAQs round off this
trilogy of chapters (Chapter 14, Multithreading with Pthreads Part I - Essentials and in
this chapter).

In the next chapter, the reader will be taken through details on CPU scheduling on
the Linux platform, and very interestingly, how the application developer can exploit
CPU scheduling (with a multithreaded application demo).

17
CPU Scheduling on Linux

An often-posed question that people have about Linux is, how does scheduling
work? We will address this question for user space application developers in this
chapter in some detail. In order for the reader to clearly grasp important concepts
regarding CPU scheduling on Linux and how you can powerfully use this in
applications, we will cover essential background information (the process state
machine, real time, and so on) as well. This chapter will end with a brief note on how
the Linux OS can even be used as a hard, real-time OS.

In this chapter, the reader will learn about the following topics:

The Linux process (or thread) state machine and, importantly, the POSIX
scheduling policies that Linux implements under the hood
Related concepts, such as real-time and CPU affinity
How to exploit the fact that, on a per-thread basis, you can program
threads with a given scheduling policy and real time priority (a sample app
will be shown)
A brief note on the fact that Linux can also be used as an RTOS

The Linux OS and the POSIX scheduling
model
In order to understand scheduling at the level of the application developer (and how
you can leverage this knowledge in actual code), we must first cover some required
background information.

CPU Scheduling on Linux Chapter 17

[687]

The first and very important concept for the developer to understand is that OSes
maintain a construct called the Kernel Schedulable Entity (KSE). The KSE is the
granularity at which the OS scheduling code operates. In effect, what object exactly
does the OS schedule? Is it the application, the process, the thread? Well, the short
answer is that the KSE on the Linux OS is a thread. In other words, all runnable
threads compete for the CPU resource; the kernel scheduler is ultimately the arbiter
that decides which thread gets which CPU core and when.

Next, we present an overview of the process, or thread's, state machine.

The Linux process state machine
On the Linux OS, every process or thread runs through a variety of definite states,
and by encoding these, we can form the state machine of a process (or thread) on the
Linux OS (do refer to Figure 1 in the following section while reading this).

Since we now understand that the KSE on the Linux OS is
a thread and not a process, we shall ignore convention—which uses
the word process—and instead use the word thread when describing
the entity that cycles through various states of the state machine. (If
more comfortable, you could always, in your mind, substitute the
word process for thread in the following matter.)

The states that a Linux thread can cycle through are as follows (the ps(1) utility
encodes the state via the letter shown here):

R: Ready-to-run or Running
Sleeping:

S: Interruptible Sleep
D: Uninterruptible Sleep

T: Stopped (or suspended/frozen)
Z: Zombie (or defunct)
X: Dead

CPU Scheduling on Linux Chapter 17

[688]

When a thread is newly created (either via the fork(2),
pthread_create(3) or clone(2) APIs), and once the OS determines that the
thread is fully born, it informs the scheduler of its existence by putting the thread into
a runnable state. A thread in the R state is either actually running on a CPU core or is
in the ready-to-run state. What we need to understand is that in both cases, the thread
is enqueued on a data structure within the OS called a run queue (RQ). The threads
in the run queue are the valid candidates to run; no thread can possibly run unless it
is enqueued on an OS run queue. (For your information, Linux from version 2.6
onward best exploits all possible CPU cores by setting up one RQ per CPU core, thus
obtaining perfect SMP scalability.) Linux does not explicitly distinguish between the
ready-to-run and running states; it merely marks the thread in either state as R.

The sleep states
Once a thread is running its code, it obviously keeps doing so, until, typically, one of
a few things (mentioned as follows) happen:

It blocks on I/O, thus sleeping—entering state of S or D, depending (see the
following paragraph).
It is preempted; there's no state change, and it remains in a ready-to-run
state R on a run queue.
It is sent a signal that causes it to stop, thus entering state T.

It is sent a signal (typically SIGSTOP or SIGTSTP) that
causes it to terminate, thus first entering state Z (zombie is a
transient state on the way to death), and then actually dying
(state X).

Often, a thread will encounter in its code path a blocking API—one that will cause it
to enter a sleep state, waiting on an event. While blocked, it is removed (or dequeued)
from the run queue it was on, and instead added (enqueued) onto what's called a
wait queue (WQ). When the event it was waiting upon arises, the OS will issue it a
wakeup, causing it to become runnable (dequeued from its wait queue and enqueued
onto a run queue) again. Note that the thread won't run instantaneously; it will
become runnable (Rr in Figure 1, Linux state machine), and a candidate for the
scheduler; soon enough, it will get a chance and actually run on the CPU (Rcpu).

A common misconception is to think that the OS maintains one run
queue and one wait queue. No—the Linux kernel maintains one run
queue per CPU. Wait queues are often created and used by device
drivers (as well as the kernel); thus, there can be any number of
them.

CPU Scheduling on Linux Chapter 17

[689]

The depth of the sleep determines precisely which state the thread is put into. If a
thread issues a blocking call and the underlying kernel code (or device driver code)
puts it into an interruptible sleep, the state is marked as S. An interruptible sleep state
implies that the thread will be awoken when any signal destined for it is delivered;
then, it will run the signal handler code, and if not terminated (or stopped),
will resume the sleep (recall the SA_RESTART flag to sigaction(2) from Chapter
11, Signaling - Part I). This interruptible sleep state S is indeed very commonly seen.

On the other hand, the OS (or driver) could put the blocking thread into a
deeper uninterruptible sleep, in which case the state is marked as
D. An uninterruptible sleep state implies that the thread will not respond to signals
(none; not even a SIGKILL from root!). This is done when the kernel determines that
the sleep is critical and the thread must await the pending event, blocking upon at
any cost. (A common example is a read(2) from a file—while data is being actually
read, the thread is placed into an uninterruptible sleep state; another is the mounting
and unmounting of a filesystem.)

Performance issues are often caused by very high I/O bottlenecks;
high CPU usage is not always a major problem, but continually high
I/O will make the system feel very slow. A quick way to determine
which application(s) (processes and threads, really) are causing the
heavy I/O is to filter the ps(1) output looking for processes (or
threads) in the D, uninterruptible sleep state. As an example, refer to
the following:

$ ps -LA -o state,pid,cmd | grep "^D"
D 10243 /usr/bin/gnome-shell
D 13337 [kworker/0:2+eve]
D 22545 /home/<user>/.dropbox-dist/dropbox-
lnx.x86_64-58.4.92/dropbox
$

Notice that we use ps -LA; the -L switch shows all threads alive as
well. (FYI, the thread shown in the preceding square
brackets,[kworker/...], is a kernel thread.)

The following diagram represents the Linux state machine for any process or thread:

CPU Scheduling on Linux Chapter 17

[690]

Figure 1: Linux state machine

The preceding diagram shows transitions between states via red arrows. Do note that
for clarity, some transitions (for example, a thread, can be killed while asleep or
stopped) are not explicitly shown in the preceding diagram.

What is real time?
Many misconceptions exist regarding the meaning of real time (in application
programming and OS contexts). Real time essentially means that not only do the real-
time thread (or threads) perform their work correctly, but they must perform within a
given worst-case deadline. Actually, the key factor in a real time system is called
determinism. Deterministic systems have a guaranteed worst-case response time to
real-world (or artificially generated) events; they will process them within a bounded
time constraint. Determinism leads to predictable response, under any
conditions—even extreme load. One way in which computer scientists classify
algorithms is via their time complexity: the big-O notation. O(1) algorithms
are deterministic; they guarantee that they will complete within a certain worst-case
time, no matter the input load. True real-time systems require O(1) algorithms for
implementing their performance-sensitive code paths.

CPU Scheduling on Linux Chapter 17

[691]

Interestingly, real time does not necessarily mean real fast. A VDC survey (refer to
the Further reading section on the GitHub repository for more details) shows that the
majority of real-time systems have a deadline (real-time response time) requirement
of 1 to 9 milliseconds. As long as the system can consistently and without fail service
the event within its given deadline (which could be fairly large), it's real time.

Types of real time
Real time is often classified into three types, as follows:

Hard real-time systems are defined as those that must always meet all
deadlines. Failure to meet a deadline even once results in the catastrophic
failure of the system, including possible loss to human life, financial loss,
and so on. A hard real time system requires a Real-Time Operating
System (RTOS) to drive it. (Also, it's really important that the applications
are written to be hard real time as well!). Possible hard real-time domains
include human transportation vehicles of many types (aircraft, marine
vessels, spacecraft, trains, and elevators) and some kinds of military grade
or defense equipment, nuclear reactors, medical electronics, and stock
exchanges. (Yes, stock exchanges are very much a hard real time system; do
read the book Automate This: How Algorithms Came to Rule Our World—refer
to the Further reading section on the GitHub repository for more
information.)
Soft real-time systems are all about best effort; deadlines do exist, but there
is absolutely no guarantee that they will be met. The system will do its best
to meet them; failure to do so is considered okay (often, it's just more of an
annoyance to the end user rather than anything dangerous). Consumer
electronics products (such as our smartphones, MP3 players, cameras,
tablets, and smart speakers) are typical examples. While using them, it
quite often happens that you will hear a glitch while listening to music, or a
streaming video stutters, buffers, and jitters. While annoying, it's unlikely
the user will perish.
Firm real-time systems fall in-between the hard and soft real-time
ones—deadlines are important and will be met as far as is possible, but
again, no ironclad guarantees can be made. Performance degradation due
to missing too many deadlines is an issue here.

CPU Scheduling on Linux Chapter 17

[692]

Scheduling policies
A key job of the operating system (OS) is to schedule runnable tasks. The POSIX
standard states that a POSIX-complaint OS must provide (at least) three scheduling
policies. A scheduling policy is really the scheduling algorithm used by the OS to
schedule tasks. In this book, we will not delve into such details, but we do need the
application developer to be aware of the scheduling policies available. These are as
follows:

SCHED_FIFO

SCHED_RR

SCHED_OTHER (also known as SCHED_NORMAL)

Our discussions on this, naturally, will be solely with regard to the Linux OS.

The first important thing to understand is that the vanilla Linux OS is not an RTOS; it
does not support hard real-time and is classified as a General Purpose Operating
System (GPOS), like the others—Unix, Windows, and macOS.

Do read on, though; we shall see that while hard real-time is not
possible with vanilla Linux, it is indeed possible to run an
appropriately patched Linux as an RTOS.

Linux, though a GPOS, easily performs as a soft real-time system. Indeed, its high
performance characteristics bring it close to being a firm real-time system. Thus, the
predominant use of the Linux OS in consumer electronics (and enterprise) products is
not at all surprising.

Next, the first two scheduling policies that we mentioned—SCHED_FIFO and
SCHED_RR —are Linux's soft real-time scheduling policies. The SCHED_OTHER (also
known as SCHED_NORMAL) policy is the non-real-time scheduling policy and is always
the default one. The SCHED_OTHER policy is implemented on modern Linux kernels as
the Completely Fair Scheduler (CFS); it's an implementation whose primary design
goals are to provide overall high system throughput and fairness to every runnable
task (thread), ensuring that a thread does not starve. This is quite the anti-thesis of a
real-time policy algorithm, whose overriding motivation is priority of the thread.

CPU Scheduling on Linux Chapter 17

[693]

For both the SCHED_FIFO and SCHED_RR soft real-time policies, the Linux OS
specifies a priority range. This range is from 1 to 99, where 1 is the lowest real-time
priority and 99 is the highest. The soft real-time scheduling policy design on Linux
follows what is known as fixed priority preemptive scheduling, and this is important to
understand. Fixed priority implies that the application decides and fixes the thread
priority (and can change it); the OS does not. Preemption is the act of the OS
snatching away the CPU from the running thread, relegating it back to its run queue,
and context switching to another thread. The precise preemptive semantics with
regard to the scheduling policies will be covered next.

We shall now briefly describe, in real-world terms, what it means to be running under
these differing scheduling policies.

A running SCHED_FIFO thread can only be preempted under the following three
conditions:

It (in)voluntarily yields the processor (technically, it moves out from the R
state). This happens when a task issues a blocking call or invokes a system
call like sched_yield(2).
It stops or dies.
A higher priority real-time task becomes runnable.

This is the key point to understand: a SCHED_FIFO task is aggressive; it runs with
infinite timeslice, and unless it blocks (or is stopped or killed), will continue to run on
the processor indefinitely. However, the moment a higher priority thread becomes
runnable (state R, entering the run queue), it will be preempted in favor of this
thread.

SCHED_RR behavior is nearly identical to that of SCHED_FIFO, except that:

It has a finite timeslice, and thus has an additional scenario under which it
can be preempted: when its timeslice expires.
When preempted, the task is moved to the tail of the run queue for its
priority level, ensuring that all SCHED_RR tasks at the same priority level
are executed in turn (hence its name round robin).

Notice that on an RTOS the scheduling algorithm is simple, as all it really has to do is
implement this semantic: the highest priority runnable thread must be the thread that
is running.

CPU Scheduling on Linux Chapter 17

[694]

All threads run under the SCHED_OTHER (or SCHED_NORMAL) scheduling policy by
default. It is a decidedly non-real-time policy, the emphasis being on fairness and
overall throughput. Its implementation from Linux kernel version 2.6.0 up until 2.6.22
(inclusive) was via the so-called O(1) scheduler; from 2.6.23 onward, a further
improved algorithm called the Completely Fair Scheduler (CFS) implements this
scheduling policy (actually a scheduling class). Refer to the following table for more
information:

Scheduling policy Type Priority range
SCHED_FIFO Soft real-time: Aggressive, unfair 1 to 99
SCHED_RR Soft real-time: Less aggressive 1 to 99
SCHED_OTHER Non real-time: Fair, time sharing; the default Nice value (-20 to +19)

Though not very commonly used, we point out that Linux also
supports a batched mode process execution policy with the
SCHED_BATCH policy. Also, the SCHED_IDLE policy is used for
very low priority background tasks. (In fact, the CPU idle
thread—(mis)named swapper with PID 0, exists for each CPU and
runs only when absolutely no other task wants the processor).

Peeking at the scheduling policy and priority
Linux provides the chrt(1) utility to view and change a thread's (or process) real-
time scheduling policy and priority. A quick demonstration of using it to display the
scheduling policy and priority of a given process (by PID) can be seen in the
following code:

$ chrt -p $$
pid 1618's current scheduling policy: SCHED_OTHER
pid 1618's current scheduling priority: 0
$

In the preceding, we have queried the scheduling policy and priority of
the chrt(1) process itself (with the shell's $$ variable). Try this for other threads;
you will notice the policy is (almost) always SCHED_OTHER and that the real-time
priority is zero. A real-time priority of zero implies that the process is not real time.

You can always query a thread's scheduling policy and (real-time)
priority by passing the thread PID (via the output of ps -LA or
similar) to chrt(1).

CPU Scheduling on Linux Chapter 17

[695]

The nice value
So, now you may be wondering, if all non-real-time threads (the SCHED_OTHER chaps)
have a priority of zero, then how can I support prioritization between them? Well,
that's exactly what the nice value of a SCHED_OTHER thread is for: it's the (older) Unix-
style priority model and now, on Linux, specifies a relative priority between the non-
real-time threads.

The nice value is a priority range between -20 to +19 (on modern Linux), with the base
priority being zero. On Linux, it's a per-thread attribute; when a thread is created, it
inherits the nice value of its creator thread—zero being the default. Refer to the
following diagram:

Figure 2: Linux thread priority ranges

From 2.6.23 (with the CFS kernel scheduler), the nice value of a thread has a large
impact (a factor of 1.25 for each degree of nice value) on scheduling; thus, -20 nice
value threads get much more CPU bandwidth (this is good for CPU-sensitive
applications like multimedia) and +19 nice value threads get very little CPU.

An application programmer can query and set the nice value via
the nice(1) command-line utility, and the nice(2), setpriority(2), and
sched_setattr(2) system calls (the last being the most recent and correct one to
use). We refer you to the respective man pages for these APIs.

Keep in mind that a real-time (SCHED_FIFO or SCHED_RR) thread is always superior
to a SCHED_OTHER thread in terms of priority (thus pretty much guaranteeing that it
will get a chance to run earlier).

CPU Scheduling on Linux Chapter 17

[696]

CPU affinity
Let's visualize a Linux system with four CPU cores and, for simplicity, one ready-to-
run thread. On which CPU core will this thread run? The kernel will decide this; the
key thing to realize is that it could run upon any of the four available CPUs!

Can the CPU(s) it could possibly be run upon be specified by the programmer? Yes,
indeed; just this feature alone is called CPU affinity. On Linux, it is a per-thread
attribute (within the OS). The CPU affinity can be changed on a per-thread basis by
changing the thread's CPU affinity mask; this is achieved, of course, via a system call.
Let's take a look at the following code:

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>
int sched_setaffinity(pid_t pid, size_t cpusetsize,
 const cpu_set_t *mask);
int sched_getaffinity(pid_t pid, size_t cpusetsize,
 cpu_set_t *mask);

The kernel scheduler will honor the CPU mask—the set of CPUs the thread is allowed
to execute upon—set by the programmer. We are expected to specify the CPU affinity
mask as a cpu_set_t object. (We refer the reader to the man page on
sched_setaffinity(2), which helpfully provides an example program).

Note that the pthreads framework provides the wrapper
APIs pthread_setaffinity_np(3) and pthread_getaffinity_np(3) to
perform the same on a given thread (they internally invoke
the sched_setaffinity(2) system call).

An interesting design is that of CPU reservation. On a sufficiently multi-core system
(say we have a system with four CPU cores: 0, 1, 2, and 3), you can use the preceding
CPU affinity mask model to effectively set aside one CPU core (say core 3) for a given
thread (or threads) that are crucial to performance. This implies that you must set the
CPU mask for that thread to the particular CPU (say core 3) and, importantly, set the
CPU mask for all other threads to exclude core 3.

CPU Scheduling on Linux Chapter 17

[697]

Though it may sound simple, it's really not a trivial exercise; some of the reasons why
this is the case are as follows:

You must realize that the CPU set aside is not really exclusively
reserved for the thread(s) specified; for true CPU reservation, except for the
given thread(s) running on that CPU, all other threads on the entire
system must somehow be excluded from running on that CPU.
As a general guideline, the OS scheduler best understands how to allocate
CPU bandwidth among available CPU cores (it has a load balancer
component and understands the CPU hierarchy); thus, CPU allocation is
best left to the OS.

Modern Linux kernels have support for a very powerful
feature: control groups (cgroups). (see Appendix B, Daemon
Processes, for a note). With regard to CPU reservation, it can be
achieved via the cgroup model. Please refer to the following Q&A
on Stack Overflow for more details: How to use cgroups to limit all
processes except whitelist to a single CPU: https:/ / unix.
stackexchange. com/ questions/ 247209/ how- to- use-cgroups- to-
limit- all- processes- except- whitelist- to-a- single- cpu.

For convenience, Linux provides the taskset(1) utility as a simple way to query
and specify the CPU affinity mask of any given process (or thread). Here, we shall
query the CPU affinity mask of two processes. (we assume that the system we are
running on has four CPU cores; we can use lscpu(1) to query this):

$ taskset -p 1
pid 1's current affinity mask: f
$ taskset -p 12446
pid 12446's current affinity mask: 7
$

PID 1's (systemd) CPU affinity mask is 0xf, which, of course, is binary 1111. If a bit is
set 1, it implies the thread can run on the CPU represented by that bit. If the bit is
cleared 0, it implies the thread cannot run on the CPU represented by that bit. Exactly
as expected, on a four-CPU box, the CPU affinity bitmask is 0xf (1111) by default,
implying that, the process (or thread) can run on any available CPU. Interestingly, in
the preceding output the bash process appears to have a CPU affinity mask of 7,
which translates to binary 0111, implying that it will never be scheduled to run on
CPU 3.

https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu
https://unix.stackexchange.com/questions/247209/how-to-use-cgroups-to-limit-all-processes-except-whitelist-to-a-single-cpu

CPU Scheduling on Linux Chapter 17

[698]

In the following code, a simple shell script invokes the chrt(1) as well as
the taskset(1) utility in a loop, displaying the scheduling policy, (real-time)
priority, and CPU affinity mask of every process that's alive on the system:

ch17/query_sched_allprcs.sh
for p in $(ps -A -To pid)
do
 chrt -p $p 2>/dev/null
 taskset -p $p 2>/dev/null
done

We encourage the reader to try this out on their own system. In the following code,
we grep(1) for any SCHED_FIFO tasks:

$./query_sched_allprcs.sh | grep -A2 -w SCHED_FIFO
pid 12's current scheduling policy: SCHED_FIFO
pid 12's current scheduling priority: 99
pid 12's current affinity mask: 1
pid 13's current scheduling policy: SCHED_FIFO
pid 13's current scheduling priority: 99
pid 13's current affinity mask: 1
--
pid 16's current scheduling policy: SCHED_FIFO
pid 16's current scheduling priority: 99
pid 16's current affinity mask: 2
pid 17's current scheduling policy: SCHED_FIFO
pid 17's current scheduling priority: 99
pid 17's current affinity mask: 2
--
[...]

Yes! We find some threads. Wow, they are all of SCHED_FIFO real-time priority
99! Let's check out who these threads are (with a cool one-liner script, too):

$ ps aux | awk '$2==12 || $2==13 || $2==16 || $2==17 {print $0}'
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 12 0.0 0.0 0 0 ? S 13:42 0:00 [migration/0]
root 13 0.0 0.0 0 0 ? S 13:42 0:00 [watchdog/0]
root 16 0.0 0.0 0 0 ? S 13:42 0:00 [watchdog/1]
root 17 0.0 0.0 0 0 ? S 13:42 0:00 [migration/1]
$

For clarity, the ps aux heading—which would not normally be
displayed—is shown in the preceding code. Also, we use the ps
aux style as, conveniently, kernel threads are displayed in brackets.

CPU Scheduling on Linux Chapter 17

[699]

It turns out (here, in this particular example, at least) that they are all kernel threads
(see the following information box). The important thing to understand is that they
are deliberately SCHED_FIFO (real-time) priority 99, so that, when they want to run
on the CPU, they will run pretty much immediately. In fact, let's take a glance at their
CPU affinity mask: it's deliberately allocated (with values like 1,2,4,8) so that they
are affined to a particular CPU core. It's important to understand that these kernel
threads are not CPU hoggers; in reality, they will spend most of the time asleep (state
S) and only spring into action when required.

Kernel threads are not very different from their user space
counterparts; they too compete for the CPU resource. The key
difference is that kernel threads have no view of user space—they
only execute in kernel virtual address space (whereas user space
threads, of course, see both: userland in normal user mode and,
upon issuing a system call, they switch to kernel space).

Exploiting Linux's soft real-time
capabilities
Recall that, earlier in this chapter, we stated: The soft real-time scheduling policy
design on Linux follows what is known as fixed priority preemptive scheduling; fixed
priority implies that the application decides and fixes the thread priority (and can
change it); the OS does not.

Not only can the application switch between thread priorities, but even the
scheduling policy (in effect, the scheduling algorithm used under the hood by the OS)
can be changed by the application developer; this can be done on a per-thread
basis. That's indeed very powerful; it implies that an application having, say, five
threads, can decide what scheduling policy and priority to assign to each of these
threads!

Scheduling policy and priority APIs
Obviously, in order to achieve this, the OS must expose some APIs; indeed, there are
a few system calls that deal with exactly this—changing a given process or thread's
scheduling policy and priority.

CPU Scheduling on Linux Chapter 17

[700]

Here's a list—a sampling, really—of some of the more important of these APIs:

sched_setscheduler(2): Sets the scheduling policy and parameters of a
specified thread.
sched_getscheduler(2): Returns the scheduling policy of a specified
thread.
sched_setparam(2): Sets the scheduling parameters of a specified thread.
sched_getparam(2): Fetches the scheduling parameters of a specified
thread.
sched_get_priority_max(2): Returns the maximum priority available
in a specified scheduling policy.
sched_get_priority_min(2): Returns the minimum priority available
in a specified scheduling policy.
sched_rr_get_interval(2): Fetches the quantum used for threads that
are scheduled under the round-robin scheduling policy.
sched_setattr(2): Sets the scheduling policy and parameters of a
specified thread. This (Linux-specific) system call provides a superset of the
functionality of sched_setscheduler(2) and sched_setparam(2).
sched_getattr(2): Fetches the scheduling policy and parameters of a
specified thread. This (Linux-specific) system call provides a superset of the
functionality of sched_getscheduler(2) and sched_getparam(2).

sched_setattr(2) and sched_getattr(2) are currently
considered to be the latest and more powerful of these APIs. Also,
on Ubuntu, one can issue the convenient man -k sched command
to see all utils and APIs related to scheduling (-k: keyword).

The astute reader will quickly notice that all of the APIs we mentioned previously are
system calls (section 2 of the manual), but what about pthreads APIs? Indeed, they do
exist and, as you may have guessed, are mostly just wrappers that invoke the
underlying system calls; in the following code, we show two of them:

#include <pthread.h>
int pthread_setschedparam(pthread_t thread, int policy,
 const struct sched_param *param);
int pthread_getschedparam(pthread_t thread, int *policy,
 struct sched_param *param);

CPU Scheduling on Linux Chapter 17

[701]

It's important to note that, in order to set the scheduling policy and priority of a
thread (or process), you need to be running with root access. Recall that the modern
way to bestow privileges to threads is via the Linux Capabilities model (we covered
this in detail in Chapter 8, Process Capabilities). A thread with the capability
CAP_SYS_NICE can arbitrarily set its scheduling policy and priority to any value it
desires. Think about it: if this were not the case, then pretty much all apps could insist
that they run as SCHED_FIFO priority 99, effectively rendering the whole concept
meaningless!

pthread_setschedparam(3) internally invokes
the the sched_setscheduler(2) system call,
and pthread_getschedparam(3) invokes the sched_getscheduler(2) system
call under the hood. Their API signatures are:

#include <sched.h>
int sched_setscheduler(pid_t pid, int policy,
 const struct sched_param *param);
int sched_getscheduler(pid_t pid);

Other pthreads APIs exist as well. Notice that the ones shown here help set up the
thread attribute structure:
pthread_attr_setinheritsched(3), pthread_attr_setschedparam(3), pthr
ead_attr_setschedpolicy(3), and pthread_setschedprio(3), to name a few.

The man page on sched(7) (look it up by typing man 7 sched in a
terminal window) details the available APIs for controlling
scheduling policy, priority, and behavior for threads. It provides
details on current Linux scheduling policies, privileges required to
change them, relevant resource limit values, and kernel tunables for
scheduling, as well as other miscellaneous details.

Code example – setting a thread scheduling policy
and priority
To help solidify the concepts that we learned about in the previous sections of this
chapter, we will design and implement a small demo program, illustrating how a
modern Linux pthreads application can set an individual thread's scheduling policy
and priority to make threads (soft) real-time.

CPU Scheduling on Linux Chapter 17

[702]

Our demo app will have a total of three threads. The first is main(), of course. The
following bullet points show what the application is designed to do:

Thread 0 (main(), really):
This runs as a SCHED_OTHER scheduling policy with real-time priority 0,
which is the default. It does the following:

Queries the priority range of SCHED_FIFO, printing out the
values
Creates two worker threads (with joinability state set to
detached); they will automatically inherit the scheduling
policy and priority of main
Prints the character m to the terminal in a loop (using
our DELAY_LOOP macro; for a little longer than usual)
Terminates

Worker thread 1:
Changes its scheduling policy to SCHED_RR, setting its real-
time priority to the value passed on the command line
Sleeps for 2 seconds (thus blocking on I/O, allowing main to
get some work done)
Upon waking up, it prints the character 1 to the terminal in a
loop (via the DELAY_LOOP macro)
Terminates

Worker thread 2:
Changes its scheduling policy to SCHED_FIFO, setting its
real-time priority to the value passed on the command line
plus 10
Sleeps for 4 seconds (thus blocking on I/O, allowing Thread 1
to do some work)
Upon waking up, it prints the character 2 to the terminal in a
loop
Terminates

Let's take a quick look at the code (ch17/sched_rt_eg.c):

For readability, only key parts of the source code are displayed
here; to view the complete source code, and build and run it, the
entire tree is available for cloning from GitHub here: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

CPU Scheduling on Linux Chapter 17

[703]

The following code is the code for main(). (We have omitted showing the error
checking code):

#define NUMWORK 200
...
 min = sched_get_priority_min(SCHED_FIFO);
 max = sched_get_priority_max(SCHED_FIFO);
 printf("SCHED_FIFO: priority range is %d to %d\n", min, max);
 rt_prio = atoi(argv[1]);
...
 ret = pthread_create(&tid[0], &attr, worker1, (void *)rt_prio);
 ret = pthread_create(&tid[1], &attr, worker2, (void *)rt_prio);
 pthread_attr_destroy(&attr);
 DELAY_LOOP('m', NUMWORK+100);
 printf("\nmain: all done, app exiting ...\n");
 pthread_exit((void *)0);
}

The following code is for worker thread 1. We have omitted showing the error
checking code:

void *worker1(void *msg)
{
 struct sched_param p;
 printf(" RT Thread p1 (%s():%d:PID %d):\n"
 " Setting sched policy to SCHED_RR and RT priority to %ld"
 " and sleeping for 2s ...\n", __func__, __LINE__, getpid(),
(long)msg);

 p.sched_priority = (long)msg;
 pthread_setschedparam(pthread_self(), SCHED_RR, &p);
 sleep(2);
 puts(" p1 working");
 DELAY_LOOP('1', NUMWORK);
 puts(" p1: exiting..");
 pthread_exit((void *)0);
}

CPU Scheduling on Linux Chapter 17

[704]

The code of worker thread 2 is almost identical to that of the preceding worker
thread; the difference, however, is that we set the policy to SCHED_FIFO and the real-
time priority is bumped up by 10 points, thus making it more aggressive. We only
show this snippet here:

 p.sched_priority = prio + 10;
 pthread_setschedparam(pthread_self(), SCHED_FIFO, &p);
 sleep(4);
 puts(" p2 working");
 DELAY_LOOP('2', NUMWORK);

Let's build it (we definitely recommend building the debug version, as then the
DELAY_LOOP macro's effect is clearly seen) and give it a spin:

$ make sched_rt_eg_dbg
gcc -g -ggdb -gdwarf-4 -O0 -Wall -Wextra -DDEBUG -pthread -c
sched_rt_eg.c -o sched_rt_eg_dbg.o
gcc -o sched_rt_eg_dbg sched_rt_eg_dbg.o common_dbg.o -pthread -lrt
$

We must run our app as root; we use sudo(8) to do so:

$ sudo ./sched_rt_eg_dbg 14
SCHED_FIFO: priority range is 1 to 99
main: creating RT worker thread #1 ...
main: creating RT worker thread #2 ...
 RT Thread p1 (worker1():68:PID 18632):
 Setting sched policy to SCHED_RR and RT priority to 14 and sleeping
for 2s ...
m RT Thread p2 (worker2():101:PID 18632):
 Setting sched policy to SCHED_FIFO and RT priority to 24 and sleeping
for 4s ...
mm
mmm p1 working
1m
1m11m1m1m1m1m1m1m1m1m1m1
m11m1m1m1m1m1m1m1m1m1m1m
1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m11m1m1m p2 working
2m12m12m1m2m12m12m1m2m12m12m1m2m12m12m12m12m12m112m12m12m12m112m12m12m
112m12m12m112m12m12m12m112m12m12m121m211m21m21m21m211m21m21m21m211m21m
21m21m211m21m21m21m211m21m21m21m211m21m21m21
main: all done, app exiting ...
$

CPU Scheduling on Linux Chapter 17

[705]

In the preceding output, we can see the following characters:

m: This implies that the main thread is currently running on CPU
1: This implies that the (soft) real-time worker thread 1 is currently running
on CPU
2: This implies that the (soft) real-time worker thread 2 is currently running
on CPU

But, oops, the preceding output really isn't what we expect: the m, 1, and 2 characters
are intermingled, leading us to conclude that they have been time-sliced.

But this isn't the case. Think about it—the output is as it appears in the preceding
code for the simple reason that we have run the app on a multi-core system (in the
preceding code, on a laptop with four CPU cores); thus, the kernel scheduler has
cleverly exploited the hardware and run all three threads in parallel on different CPU
cores! So, in order to have our demo application run the way we expect, we need to
ensure that it runs on exactly one CPU core and no more. How? Recall CPU affinity:
we can use the sched_setaffinity(2) system call to do this. There is an easier
way: we can use taskset(1) to guarantee that the process (and thus all threads
within it) run on only one CPU core (for example, CPU 0) by specifying the CPU
mask value as 01. So, let's perform the following command:

$ sudo taskset 01 ./sched_rt_eg_dbg 14
[sudo] password for <username>: xxx
SCHED_FIFO: priority range is 1 to 99
main: creating RT worker thread #1 ...
main: creating RT worker thread #2 ...
m RT Thread p2 (worker2():101:PID 19073):
 Setting sched policy to SCHED_FIFO and RT priority to 24 and sleeping
for 4s ...
 RT Thread p1 (worker1():68:PID 19073):
 Setting sched policy to SCHED_RR and RT priority to 14 and sleeping
for 2s ...
mm
mmm p1 working
11
11 p2 working
22
22
22 p2
exiting ...
11
11 p1: exiting..
mm
mm

CPU Scheduling on Linux Chapter 17

[706]

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
main: all done, app exiting ...
$

Yes, using the taskset(1) to ensure that the whole app—all three threads—runs on
the first CPU core has the desired effect. Now, study the preceding output carefully;
we can see that the main() thread – non-real-time—runs first for about 2 seconds;
once 2 seconds have elapsed, the worker thread 1 wakes up, becoming runnable. As
its policy and priority far outweighs that of main(), it preempts main() and
runs, printing 1s to the terminal. Remember that worker thread 2 is also running in
parallel, but, of course, it sleeps for 4 seconds. So, 2 seconds later—once a total of 4
seconds have elapsed – worker thread 2 wakes up, becoming runnable. As its policy
is SCHED_FIFO and, more importantly, its priority is 10 points higher than thread 1, it
preempts thread 1 and runs, printing 2s to the terminal. Until it terminates, the other
threads cannot run; once it does, worker thread 1 runs. Again, until it
terminates, main() cannot run; once it does die, main() finally gets the CPU and
finishes, and so the application terminates. Interesting; do try it out for yourself.

For your information, the man page on pthread_setschedparam(3) has a fairly
detailed example program: http:/ /man7. org/linux/ man-pages/ man3/ pthread_
setschedparam. 3. html.

Soft real-time – additional considerations
A few additional points to think about: we have the power to associate threads with a
(soft) real-time policy and priority (with the caveat that we have root access; or the
CAP_SYS_NICE capability). For most human interactive application domains this is
not only unnecessary, but it will cause disconcerting feedback and side effects to the
typical desktop or server system end user. As a general rule, you should avoid using
these real-time policies on interactive applications. Only when it is essential to highly
prioritize a thread—typically for a real-time application (perhaps running on an
embedded Linux box), or some kinds of benchmarking or profiling software
(perf(1) being a good example; one can specify the --realtime=n parameter to
perf to have it run as SCHED_FIFO priority n)—should you consider using these
powerful technologies.

Also, the precise real-time priorities to be used are left to the application architects;
using the same priority values for SCHED_FIFO and SCHED_RR threads (recall that
both policies are peers, with SCHED_FIFO being more aggressive) can lead to
unpredictable scheduling. Carefully think about the design and accordingly set the
policy and priority of each real-time thread.

http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedparam.3.html

CPU Scheduling on Linux Chapter 17

[707]

Finally, though not covered in depth in this book, Linux's cgroups model allows you
to powerfully control the bandwidth allocation of a resource (CPUs, network, and
block I/O) for a given process or group of processes. If this is what is required,
consider using the cgroups framework to achieve your goals.

RTL – Linux as an RTOS
The fact is, incredible as it may seem, the Linux OS can be used as an RTOS; that is, a
hard real-time-capable RTOS. The project started out as the brainchild of Thomas
Gleixner (of Linutronix), who wanted to port Linux to become an RTOS.

Again, this is really the beauty of the open source model and Linux;
being open source, interested, and motivated people take Linux (or
other projects) as a starting point and build upon it, often coming up
with significantly new and useful products.

A few points to note regarding this project are as follows:

Modifying the Linux kernel to become an RTOS is a necessarily invasive
procedure; Linus Torvalds, the de facto Linux boss, does not want this code
in the upstream (vanilla) Linux kernel. Thus, the real-time Linux kernel
project lives as a patch series (on kernel.org itself; see the links in the
Further reading section on the GitHub repository for more information) that
can be applied upon a mainline kernel.
This effort has been successfully undertaken right from the 2.6.18 Linux
kernel (from perhaps around 2006 or 2007).
For many years, the project was called Preempt-RT (with the patches
themselves called PREEMPT_RT).
Later (from October 2015 onward), stewardship of the project was taken
over by the Linux Foundation (LF)—a positive step. The name was
changed from Preempt RT to real-time Linux (RTL).
Indeed, the RTL roadmap very much has the goal of pushing relevant
PREEMPT_RT work upstream (into the mainline Linux kernel; see
the Further reading on the GitHub repository section for a link on this).

CPU Scheduling on Linux Chapter 17

[708]

In effect, you can apply the appropriate RTL patches and then use Linux as a hard
real-time RTOS. Industry has already begun to use the project (in industrial control
apps, drones, and TV cameras); we can only imagine that this will grow
tremendously. It's also important to note that having a hard real-time OS is not
sufficient for true real-time usage; even the applications have to be written to conform
to real-time expectations. Do check out the HOWTO documentation provided on this
by the RTL project wiki site (see the Further reading section on the GitHub repository).

Summary
In this chapter, we covered important concepts related to CPU scheduling on Linux
and real-time. The reader has been taken through progressive topics on the Linux
thread state-machine, real-time, CPU affinity, and the available POSIX scheduling
policies. Furthermore, we have shown APIs—both at the pthreads and system call
layers—to exploit these powerful mechanisms. A demo application reinforced the
concepts that we learned. Finally, a quick note on the fact that Linux can also be used
as a hard real-time (RTOS) was covered.

In the next chapter, the reader will be shown how to achieve the best I/O performance
using modern techniques.

18
Advanced File I/O

In Appendix A , File I/O Essentials, we covered how an application developer can
exploit the available glibc library APIs as well as the typical system calls for
performing file I/O (open, read, write, and close). While they work, of course, the
reality is that performance is not really optimized. In this chapter, we focus on more
advanced file I/O techniques, and how the developer can exploit newer and better
APIs, for gaining performance.

Often, one gets stressed about the CPU(s) and its/their performance. While important,
in many (if not most) real-world application workloads, it's really not the CPU(s) that
drag down performance but the I/O code paths that are the real culprit. This is quite
understandable; recall, from Chapter 2, Virtual Memory, we showed that disk speed,
in contrast with RAM, is orders of magnitude slower. The case is similar with
network I/O; thus, it stands to reason that the real performance bottlenecks occur due
to heavy sustained disk and network I/O.

In this chapter, the reader will learn several approaches to improve I/O performance;
broadly speaking, these approaches will include the following:

Taking full advantage of the kernel page cache
Giving hints and advice to the kernel on file usage patterns
Using scatter-gather (vectored) I/O
Leveraging memory mapping for file I/O
Learning about and using sophisticated DIO and AIO techniques
Learning about I/O schedulers
Utilities/tools/APIs/cgroups for monitoring, analysis, and bandwidth
control on I/O

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Advanced File I/O Chapter 18

[710]

I/O performance recommendations
The key point when performing I/O is realizing that the underlying storage (disk)
hardware is much, much slower than RAM. So, devising strategies to minimize going
to the disk and working more from memory will always help. In fact, both the library
layer (we have already discussed studio buffering in some detail), and the OS (via
the page cache and other features within the block I/O layers, and, in fact, even within
modern hardware) will perform a lot of work to ensure this. For the (systems)
application developer, a few suggestions to consider are made next.

If feasible, use large buffers (to hold the data read or to be written) when performing
I/O operations upon a file—but how large? A good rule of thumb is to use the same
size for the local buffer as the I/O block size of the filesystem upon which the file
resides (in fact, this field is internally documented as block size for filesystem I/O). To
query it is simple: issue the stat(1) command upon the file in which you want to
perform I/O. As an example, let's say that on an Ubuntu 18.04 system we want to read
in the content of the currently running kernel's configuration file:

$ uname -r
4.15.0-23-generic
$ ls -l /boot/config-4.15.0-23-generic
-rw-r--r-- 1 root root 216807 May 23 22:24 /boot/config-4.15.0-23-
generic
$ stat /boot/config-4.15.0-23-generic
 File: /boot/config-4.15.0-23-generic
 Size: 216807 Blocks: 424 IO Block: 4096 regular file
Device: 801h/2049d Inode: 398628 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2018-07-30 12:42:09.789005000 +0530
Modify: 2018-05-23 22:24:55.000000000 +0530
Change: 2018-06-17 12:36:34.259614987 +0530
 Birth: -
$

As can be seen from the code, stat(1) reveals several file characteristics (or
attributes) from the file's inode data structure within the kernel, among them the I/O
block size.

Internally, the stat(1) utility issues the stat(2) system call, which parses
the inode of the underlying file and supplies all details to user space. So, when
required programmatically, make use of the [f]stat(2) API(s).

Advanced File I/O Chapter 18

[711]

Further, if memory is not a constraint, why not just allocate a moderately-to-really-
large buffer and perform I/O via it; it will help. Determining how large requires some
investigation on your target platform; to give you an idea, in the earlier days, pipe I/O
used to use a kernel buffer of size one page; on the modern Linux kernels, the pipe
I/O buffer size is increased to a megabyte by default.

The kernel page cache
As we learned from Appendix A, File I/O Essentials, when a process (or thread)
performs file I/O by, say, using the fread(3) or fwrite(3) library layer APIs, they
ultimately are issued to the underlying OS via the read(2) and write(2) system
calls. These system calls get the kernel to perform the I/O; though it seems intuitive,
the reality is that the read-and-write system calls are not synchronous; that is, they
may return before the actual I/O has completed. (Obviously, this will be the case for
writes to a file; synchronous reads have to return the data read to the user space
memory buffer; until then, the read blocks. However, using Asynchronous I/O
(AIO), even reads can be made asynchronous.)

The fact is, within the kernel, every single-file I/O operation is cached within a global
kernel cache called the page cache. So, when a process writes data to a file, the data
buffer is not immediately flushed to the underlying block device (disk or flash
storage), it's cached in the page cache. Similarly, when a process reads data from the
underlying block device, the data buffer is not instantly copied to the user space
process memory buffer; no, you guessed it, it's stored within the page cache first (and
the process will actually receive it from there). Refer again to Appendix A, File I/O
Essentials, Figure 3: More detail—app to stdio I/O buffer to kernel page cache, to see this.

Why is this caching within the kernel's page cache helpful? Simple: by exploiting the
key property of a cache, that it, the speed discrepancy between the cached memory
region (RAM) and the region it is caching (the block device), we gain tremendous
performance. The page cache is in RAM, thus keeping the contents of all file I/O
cached (as far as is possible) pretty much guarantees hits on the cache when
applications perform reads on file data; reading from RAM is far faster than reading
from the storage device. Similarly, instead of slowly and synchronously writing
application data buffers directly to the block device, the kernel caches the write data
buffers within the page cache. Obviously, the work of flushing the written data to the
underlying block devices and the management of the page cache memory itself is
well within the Linux kernel's scope of work (we do not discuss these internal details
here).

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Advanced File I/O Chapter 18

[712]

The programmer can always explicitly flush file data to the underlying storage
device; we have covered the relevant APIs and their usage back in Appendix A, File
I/O Essentials.

Giving hints to the kernel on file I/O patterns
We now understand that the kernel goes ahead and caches all file I/O within its page
cache; this is good for performance. It's useful to think about an example: an
application sets up and performs streaming reads on a very large video file (to
display it within some app window to the user; we shall assume the particular video
file is being accessed for the first time). It's easy to understand that, in general,
caching a file as it's read from the disk helps, but here, in this particular case, it would
not really help much, as, the first time, we still have to first go to the disk and read it
in. So, we shrug our shoulders and continue coding it in the usual way, sequentially
reading in chunks of video data (via it's underlying codec) and passing it along to the
render code.

Via the posix_fadvise(2) API
Can we do better? Yes, indeed: Linux provides the posix_fadvise(2) system call,
allowing an application process to give hints to the kernel on it's pattern of access to
file data, via a parameter called advice. Relevant to our example, we can pass advice
as the value POSIX_FADV_SEQUENTIAL, POSIX_FADV_WILLNEED, to inform the
kernel that we expect to read file data sequentially and that we expect we shall
require access to the file's data in the near future. This advice causes the kernel to
initiate an aggressive read-ahead of the file's data in sequential order (lower-to-higher
file offsets) into the kernel page cache. This will greatly help increase performance.

The signature of the posix_fadvise(2) system call is as follows:

#include <fcntl.h>
int posix_fadvise(int fd, off_t offset, off_t len, int advice);

Clearly, the first parameter fd represents the file descriptor (we refer the reader to
Appendix A, File I/O Essentials), and the second and third parameters, offset and
len, specify a region of the file upon which we pass the hint or advice via the fourth
parameter, advice. (The length is actually rounded up to the page granularity.)

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Advanced File I/O Chapter 18

[713]

Not only that, the application, upon finishing processing upon a chunk of video data,
could even specify to the OS that it will not require that particular piece of memory
any longer by invoking posix_fadvise(2) with advice set to the value
POSIX_FADV_DONTNEED; this will be a hint to the kernel that it can free up the page(s)
of the page cache holding that data, thereby creating space for incoming data of
consequence (and for already cached data that may still be useful).

There are some caveats to be aware of. First, it's important for the developer to realize
that this advice is really just a hint, a suggestion, to the OS; it may or may not be
honored. Next, again, even if the target file's pages are read into the page cache, they
could be evicted for various reasons, memory pressure being a typical one. There's no
harm in trying though; the kernel will often take the advice into account, and it can
really benefit performance. (More advice values can be looked up, as usual, within
the man page pertaining to this API.)

Interestingly, and now understandably, cat(1) uses the
posix_fadvise(2) system call to inform the kernel that it intends
to perform sequential reads until EOF. Using the powerful
strace(1) utility on cat(1) reveals the following:
...fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0

Don't get stressed with the fadvise64; it's just the underlying system
call implementation on Linux for the posix_fadvise(2) system
call. Clearly, cat(1) has invoked this on the file (descriptor 3),
offset 0 and length 0—implying until EOF, and with
the advice parameter set to POSIX_FADV_SEQUENTIAL.

Via the readahead(2) API
The Linux (GNU)-specific readahead(2) system call achieves a similar result as the
posix_fadvise(2) we just saw in terms of performing aggressive file read-ahead.
Its signature is as follows:

include <fcntl.h>
ssize_t readahead(int fd, off64_t offset, size_t count);

The read-aheads are performed on the target file specified by fd, starting from the file
offset and for a maximum of count bytes (rounded up to page granularity).

Advanced File I/O Chapter 18

[714]

Though not normally required, what if you want to explicitly empty
(clean) the contents of the Linux kernel's page cache? If required, do
this as the root user:

sync && echo 1 > /proc/sys/vm/drop_caches

Don't miss the sync(1) first, or you risk losing data. Again, we
stress that flushing the kernel page cache should not be done in the
normal course, as this could actually hurt I/O performance. A
collection of useful command -line interface (CLI) wrapper utilities
called linux-ftools is available on GitHub here: https:/ /github.
com/ david415/ linux- ftools. It provides the fincore(1) (that's
read as f-in-core), fadvise(1), and fallocate(1) utilities; it's
very educational to check out their GitHub README, read their
man pages, and try them out.

MT app file I/O with the pread, pwrite APIs
Recall the read(2) and write(2) system calls that we saw in Appendix A, File I/O
Essentials; they form the basis of performing I/O to files. You will also recall that, upon
using these APIs, the underlying file offset will be implicitly updated by the OS. For
example, if a process opens a file (via open(2)), and then performs a read(2) of 512
bytes, the file's offset (or the so-called seek position) will now be 512. If it now writes,
say, 200 bytes, the write will occur from position 512 up to position 712, thereby
setting the new seek position or offset to this number.

Well, so what? Our point is simply that the file's offset being set implicitly causes
issues when a multithreaded application has multiple threads simultaneously
performing I/O upon the same underlying file. But wait, we have mentioned this
before: the file is required to be locked and then worked upon. But, locking creates
major performance bottlenecks. What if you design an MT app whose threads work
upon different portions of the same file in parallel? That sounds great, except that the
file's offset would keep changing and thus ruin our parallelism and thus performance
(you will also recall from our discussions in Appendix A, File I/O Essentials, that
simply using lseek(2) to set the file's seek position explicitly can result in
dangerous races).

https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://github.com/david415/linux-ftools
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Advanced File I/O Chapter 18

[715]

So, what do you do? Linux provides the pread(2) and pwrite(2) system calls
(p for positioned I/O) for this very purpose; with these APIs, the file offset to perform
I/O at can be specified (or positioned) and the actual underlying file offset is not
changed by the OS. Their signature is as follows:

#include <unistd.h>
ssize_t pread(int fd, void *buf, size_t count, off_t offset);
ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

The difference between the pread(2)/pwrite(2) and the usual read(2)/write(2)
system calls is that the former APIs take an additional fourth parameter—the file
offset at which to perform the read or write I/O operation, without modifying it. This
allows us to achieve what we wanted: having an MT app perform high-performance
I/O by having multiple threads simultaneously read and write to different portions of
the file in parallel. (We leave the task of trying this out as an interesting exercise to the
reader.)

A few caveats to be aware of: first, just as with read(2) and write(2),
pread(2), and pwrite(2) too can return without having transferred all requested
bytes; it is the programmer's responsibility to check and call the APIs in a loop until
no bytes remain to transfer (revisit Appendix A, File I/O Essentials). Correctly using the
read/write APIs, where issues such as this are addressed). Secondly, when a file is
opened with the O_APPEND flag specified, Linux's pwrite(2) system call always
appends data to the EOF irrespective of the current offset value; this violates the
POSIX standard, which states that the O_APPEND flag should have no effect on the
start location where the write occurs. Thirdly, and quite obviously (but we must state
it), the file being operated upon must be capable of being seeked upon (that is, the
fseek(3) or lseek(2) APIs are supported). Regular files always do support the
seek operation, but pipes and some types of devices do not).

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Advanced File I/O Chapter 18

[716]

Scatter – gather I/O
To help explain this topic, let's say that we are commissioned with writing data to a
file such that three discontiguous data regions A, B, and C are written (filled with As,
Bs, and Cs, respectively); the following diagram shows this:

+------+-----------+---------+-----------+------+-----------+
| | ... A ... | | ... B ... | | ... C ... |
+------+-----------+---------+-----------+------+-----------+
|A_HOLE| A_LEN | B_HOLE | B_LEN |C_HOLE| C_LEN |
+------+-----------+---------+-----------+------+-----------+
 ^ ^ ^
 A_START_OFF B_START_OFF C_START_OFF

The discontiguous data file

Notice how the files have holes—regions that do not contain any data content; this is
possible to achieve with regular files (files that are largely holes are termed sparse
files). How do you create the hole? Simple: just perform an lseek(2) and then
write(2) data; the length seeked forward determines the size of the hole in the file.

So, how can we achieve this data file layout as shown? We shall show two
approaches—one, the traditional manner, and two, a far more optimized-for-
performance approach. Let's get started with the traditional approach.

Discontiguous data file – traditional approach
This seems quite simple: first seek to the required start offset and then write the data
content for the required length; this can be done via the pair of lseek(2) and
write(2) system calls. Of course, we will have to invoke this pair of system calls
three times. So, we write some code to actually perform this task; see the (relevant
snippets) of the code here (ch18/sgio_simple.c):

For readability, only key parts of the source code are displayed; to
view the complete source code, build, and run it, the entire tree
is available for cloning from GitHub here: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

#define A_HOLE_LEN 10
#define A_START_OFF A_HOLE_LEN
#define A_LEN 20

#define B_HOLE_LEN 100

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Advanced File I/O Chapter 18

[717]

#define B_START_OFF (A_HOLE_LEN+A_LEN+B_HOLE_LEN)
#define B_LEN 30

#define C_HOLE_LEN 20
#define C_START_OFF (A_HOLE_LEN+A_LEN+B_HOLE_LEN+B_LEN+C_HOLE_LEN)
#define C_LEN 42
...
static int wr_discontig_the_normal_way(int fd)
{ ...
 /* A: {seek_to A_START_OFF, write gbufA for A_LEN bytes} */
 if (lseek(fd, A_START_OFF, SEEK_SET) < 0)
 FATAL("lseek A failed\n");
 if (write(fd, gbufA, A_LEN) < 0)
 FATAL("write A failed\n");

 /* B: {seek_to B_START_OFF, write gbufB for B_LEN bytes} */
 if (lseek(fd, B_START_OFF, SEEK_SET) < 0)
 FATAL("lseek B failed\n");
 if (write(fd, gbufB, B_LEN) < 0)
 FATAL("write B failed\n");

 /* C: {seek_to C_START_OFF, write gbufC for C_LEN bytes} */
 if (lseek(fd, C_START_OFF, SEEK_SET) < 0)
 FATAL("lseek C failed\n");
 if (write(fd, gbufC, C_LEN) < 0)
 FATAL("write C failed\n");
 return 0;
}

Notice how we have written the code to use an {lseek, write} pair of system calls
three times in succession; let's try it out:

$./sgio_simple
Usage: ./sgio_simple use-method-option
 0 = traditional lseek/write method
 1 = better SG IO method
$./sgio_simple 0
In setup_buffers_goto()
In wr_discontig_the_normal_way()
$ ls -l tmptest
-rw-rw-r--. 1 kai kai 222 Oct 16 08:45 tmptest
$ hexdump -x tmptest
0000000 0000 0000 0000 0000 0000 4141 4141 4141
0000010 4141 4141 4141 4141 4141 4141 4141 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
*
0000080 0000 4242 4242 4242 4242 4242 4242 4242
0000090 4242 4242 4242 4242 4242 4242 4242 4242

Advanced File I/O Chapter 18

[718]

00000a0 0000 0000 0000 0000 0000 0000 0000 0000
00000b0 0000 0000 4343 4343 4343 4343 4343 4343
00000c0 4343 4343 4343 4343 4343 4343 4343 4343
00000d0 4343 4343 4343 4343 4343 4343 4343
00000de
$

It worked; the file we created, tmptest (we have not shown the code to create the
file, allocate and initialize the buffers, and so on, here; please look it up via the book's
GitHub repository), is of length 222 bytes, although the actual data content (the As,
Bs, and Cs) is of length 20+30+42 = 92 bytes. The remaining (222 - 92) 130 bytes are the
three holes in the file (of length 10+100+20 bytes; see the macros that define these in
the code). The hexdump(1) utility conveniently dumps the file's content; 0x41 being
A, 0x42 is B, and 0x43 is C. The holes are clearly seen as NULL-populated regions of
the length we wanted.

Discontiguous data file – the SG – I/O approach
The traditional approach using the {lseek, write} pair of system calls three times
in succession worked, of course, but at a rather large performance penalty; the fact is,
issuing system calls is considered very expensive. A far superior approach
performance-wise is called scatter-gather I/O (SG-I/O, or vectored I/O). The relevant
system calls are readv(2) and writev(2); this is their signature:

#include <sys/uio.h>
ssize_t readv(int fd, const struct iovec *iov, int iovcnt);
ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

These system calls allow you to specify a bunch of segments to read or write in one
shot; each segment describes a single I/O operation via a structure called iovec:

struct iovec {
 void *iov_base; /* Starting address */
 size_t iov_len; /* Number of bytes to transfer */
};

The programmer can pass along an array of segments describing the I/O operations to
perform; this is precisely the second parameter—a pointer to an array of struct iovecs;
the third parameter is the number of segments to process. The first parameter is
obvious—the file descriptor representing the file upon which to perform the gathered
read or scattered write.

Advanced File I/O Chapter 18

[719]

So, think about it: you can gather together discontiguous reads from a given file into
buffers (and their sizes) you specify via the I/O vector pointer, and you can scatter
discontiguous writes to a given file from buffers (and their sizes) you specify via the
I/O vector pointer; these types of multiple discontiguous I/O operations are thus
called scatter-gather I/O! Here is the really cool part: the system calls are guaranteed
to perform these I/O operations in array order and atomically; that is, they will return
only when all operations are done. Again, though, watch out: the return value from
readv(2) or writev(2) is the actual number of bytes read or written, and -1 on
failure. It's always possible that an I/O operation performs less than the amount
requested; this is not a failure, and it's up to the developer to check.

Now, for our earlier data file example, let's look at the code that sets up and performs
the discontiguous scattered ordered-and-atomic writes via writev(2):

static int wr_discontig_the_better_SGIO_way(int fd)
{
 struct iovec iov[6];
 int i=0;

 /* We don't want to call lseek of course; so we emulate the seek
 * by introducing segments that are just "holes" in the file. */

 /* A: {seek_to A_START_OFF, write gbufA for A_LEN bytes} */
 iov[i].iov_base = gbuf_hole;
 iov[i].iov_len = A_HOLE_LEN;
 i ++;
 iov[i].iov_base = gbufA;
 iov[i].iov_len = A_LEN;

 /* B: {seek_to B_START_OFF, write gbufB for B_LEN bytes} */
 i ++;
 iov[i].iov_base = gbuf_hole;
 iov[i].iov_len = B_HOLE_LEN;
 i ++;
 iov[i].iov_base = gbufB;
 iov[i].iov_len = B_LEN;

 /* C: {seek_to C_START_OFF, write gbufC for C_LEN bytes} */
 i ++;
 iov[i].iov_base = gbuf_hole;
 iov[i].iov_len = C_HOLE_LEN;
 i ++;
 iov[i].iov_base = gbufC;
 iov[i].iov_len = C_LEN;
 i ++;

Advanced File I/O Chapter 18

[720]

 /* Perform all six discontiguous writes in order and atomically! */
 if (writev(fd, iov, i) < 0)
 return -1;
/* Do note! As mentioned in Ch 19:
 * "the return value from readv(2) or writev(2) is the actual number
 * of bytes read or written, and -1 on failure. It's always possible
 * that an I/O operation performs less than the amount requested;
this
 * is not a failure, and it's up to the developer to check."
 * Above, we have _not_ checked; we leave it as an exercise to the
 * interested reader to modify this code to check for and read/write
 * any remaining bytes (similar to this example: ch7/simpcp2.c).
 */
 return 0;
}

The end result is identical to that of the traditional approach; we leave it to the reader
to try it out and see. This is the key point: the traditional approach had us issuing a
minimum of six system calls (3 x {lseek, write} pairs) to perform the
discontiguous data writes into the file, whereas the SG-I/O code performs the very
same discontiguous data writes with just one system call. This results in significant
performance gains, especially for applications under heavy I/O workloads.

The interested reader, delving into the full source code of the
previous example program (ch18/sgio_simple.c) will notice
something that perhaps seems peculiar (or even just wrong): the
blatant use of the controversial goto statement! The fact, though, is
that the goto can be very useful in error handling—performing the
code cleanup required when exiting a deep-nested path within a
function due to failure. Please check out the links provided in
the Further reading section on the GitHub repository for more. The
Linux kernel community has been quite happily using the goto for
a long while now; we urge developers to look into appropriate
usage of the same.

Advanced File I/O Chapter 18

[721]

SG – I/O variations
Recall from the MT app file I/O with the pread, pwrite APIs section, we could use the
pread(2) and pwrite(2) system calls to effectively perform file I/O in parallel via
multiple threads (in a multithreaded app). Similarly, Linux provides the preadv(2)
and the pwritev(2) system calls; as you can guess, they provide the functionality of
the readv(2) and writev(2) with the addition of a fourth parameter offset; just as
with the readv(2) and writev(2), the file offset at which SG-IO is to be performed
can be specified and it will not be changed (again, perhaps useful for an MT
application). The signature of the preadv(2) and pwritev(2) is shown here:

#include <sys/uio.h>
ssize_t preadv(int fd, const struct iovec *iov, int iovcnt,
 off_t offset);
ssize_t pwritev(int fd, const struct iovec *iov, int iovcnt,
 off_t offset);

Recent Linux kernels (version 4.6 onward for some) also provide a further variation
on the APIs: the preadv2(2) and the pwritev2(2) system calls. The difference from
the previous APIs is that they take an additional fifth parameter flag allowing the
developer to have more control over the behavior of the SG-I/O operations by being
able to specify whether they are synchronous (via the RWF_DSYNC and
the RWF_SYNC flags), high-priority (via the RWF_HIPRI flag), or non-blocking (via
the RWF_NOWAIT flag). We refer the reader to the man page on preadv2(2)/
pwritev2(2) for details.

File I/O via memory mapping
Both in Appendix A, File I/O Essentials, and in this chapter, we have on several
occasions mentioned how the Linux kernel's page cache helps greatly enhance
performance by caching the content of files within it (alleviating the need to each time
go to the really slow storage device and instead just read or write data chunks within
RAM). However, though we gain performance via the page cache, there remains a
hidden problem with using both the traditional read(2), write(2) APIs or even the
faster SG-I/O (the [p][read|write][v]2) APIs.

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf

Advanced File I/O Chapter 18

[722]

The Linux I/O code path in brief
To understand what the issue is, we must first gain a bit of a deeper understanding of
how the I/O code path actually works; the following diagram encapsulates the points
of relevance:

Figure 1: Page cache populated with
disk data

Advanced File I/O Chapter 18

[723]

The reader should realize that though this diagram seems quite
detailed, we're actually seeing a rather simplistic view of the entire
Linux I/O code path (or I/O stack), only what is relevant to this
discussion. For a more detailed overview (and diagram), please see
the link provided in the Further reading section on the GitHub
repository.

Let's say that a Process P1 intends to read some 12 KB of data from a target file that it
has open (via the open(2) system call); we envision that it does so via the usual
manner:

Allocate a heap buffer of 12 KB (3 pages = 12,288 bytes) via the malloc(3)
API.
Issue the read(2) system call to read in the data from the file into the heap
buffer.

The read(2) system call performs the work within the OS;
when the read is done, it returns (hopefully the value
12,288; remember, it's the programmer's job to check this
and not assume anything).

This sounds simple, but there's a lot more that happens under the hood, and it is in
our interest to dig a little deeper. Here's a more detailed view of what happens (the
numerical points 1, 2, and 3 are shown in a circle in the previous diagram; follow
along):

Process P1 allocates a heap buffer of 12 KB via the malloc(3) API (len = 121.
KB = 12,288 bytes).
Next, it issues a read(2) system call to read data from the file (specified2.
by fd) into the heap buffer buf just allocated, for length 12 KB.
As read(2) is a system call, the process (or thread) now switches to kernel3.
mode (remember the monolithic design we covered back in Chapter 1,
Linux System Architecture); it enters the Linux kernel's generic filesystem
layer (called the Virtual Filesystem Switch (VFS)), from where it will be
auto-shunted on to its appropriate underlying filesystem driver (perhaps
the ext4 fs), after which the Linux kernel will first check: are these pages of
the required file data already cached in our page cache? If yes, the job is
done, (we short circuit to step 7), just copy back the pages to the user space
buffer. Let's say we get a cache miss—the required file data pages aren't in
the page cache.

Advanced File I/O Chapter 18

[724]

Thus, the kernel first allocates sufficient RAM (page frames) for the page4.
cache (in our example, three frames, shown as pink squares within the page
cache memory region). It then fires off appropriate I/O requests to the
underlying layers requesting the file data.
The request ultimately ends up at the block (storage) driver; we assume it5.
knows its job and reads the required data blocks from the underlying
storage device controller (a disk or flash controller chip, perhaps). It then
(here's the interesting thing) is given a destination address to write the file
data to; it's the address of the page frames allocated (step 4) within the page
cache; thus, the block driver always writes the file data into the
kernel's page cache and never directly back to the user mode process
buffers.
The block driver has successfully copied the data blocks from the storage6.
device (or whatever) into the previously allocated frames within the kernel
page cache. (In reality, these data transfers are highly optimized via an
advanced memory transfer technique called Direct Memory Access
(DMA), wherein, essentially, the driver exploits the hardware to directly
transfer data to and from the device and system memory without the
CPU's intervention. Obviously, these topics are well beyond the scope of
this book.)
The just-populated kernel page cache frames are now copied into the user7.
space heap buffer by the kernel.
The (blocking) read(2) system call now terminates, returning the value8.
12,288 indicating that all three pages of file data have indeed been
transferred (again, you, the app developer, are supposed to check this
return value and not assume anything).

Advanced File I/O Chapter 18

[725]

It's all looking great, yes? Well, not really; think carefully on this: though the read(2)
(or pread[v]2) API did succeed, this success came at a considerable price: the
kernel had to allocate RAM (page frames) in order to hold the file data within its page
cache (step 4) and, once data transfer was done (step 6) then copied that content into
the user space heap memory (step 7). Thus, we have used twice the amount of RAM
that we should have by keeping an extra copy of the data. This is highly wasteful,
and, obviously, the multiple copying around of the data buffers between the block
driver to the kernel page cache and then the kernel page cache to the user space heap
buffer, reduces performance as well (not to mention that the CPU caches get
unnecessarily caught up with all this trashing their content). With the previous
pattern of code, the issue of not waiting for the slow storage device is taken care of
(via the page cache efficiencies), but everything else is really poor—we have actually
doubled the required memory usage and the CPU caches are overwritten with
(unnecessary) file data while copying takes place.

Memory mapping a file for I/O
Here is a solution to these issues: memory mapping via the mmap(2) system
call. Linux provides the very powerful mmap(2) system call; it enables the developer
to map any content directly into the process virtual address space (VAS). This
content includes file data, hardware device (adapter) memory regions, or just generic
memory regions. In this chapter, we shall only focus on using mmap(2) to map in a
regular file's content into the process VAS. Before getting into how the mmap(2)
becomes a solution to the memory wastage issue we just discussed, we first need to
understand more about using the mmap(2) system call itself.

The signature of the mmap(2) system call is shown here:

#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,
 int fd, off_t offset);

Advanced File I/O Chapter 18

[726]

We want to map a given region of a file, from a given offset and for length bytes
into our process VAS; a simplistic view of what we want to achieve is depicted in this
diagram:

Figure 2: Memory mapping a file region into process VAS

To achieve this file mapping to process VAS, we use the mmap(2) system call.
Glancing at its signature, it's quite obvious what we need to do first: open the file to
be mapped via the open(2) (in the appropriate mode: read-only or read-write,
depending on what you want to do), thereby obtaining a file descriptor; pass this
descriptor as the fifth parameter to mmap(2). The file region to be mapped into the
process VAS can be specified via the sixth and second parameters respectively—the
file offset at which the mapping should begin and the length (in bytes).

Advanced File I/O Chapter 18

[727]

The first parameter, addr, is a hint to the kernel as to where in the process VAS the
mapping should be created; the recommendation is to pass 0 (NULL) here, allowing
the OS to decide the location of the new mapping. This is the correct portable way to
use the mmap(2); however, some applications (and, yes, some malicious security
hacks too!) use this parameter to try to predict where the mapping will occur. In any
case, the actual (virtual) address where the mapping is created within the process
VAS is the return value from the mmap(2); a NULL return indicates failure and must
be checked for.

Here is an interesting technique to fix the location of the mapping:
first perform a malloc(3) of the required mapping size and pass
the return value from this malloc(3) to the mmap(2)'s first
parameter (also set the flags parameter to include the MAP_FIXED
bit)! This will probably work if the length is above
MMAP_THRESHOLD (128 KB by default) and the size is a multiple
of the system page size. Note, again, this technique is not portable
and may or may not work.

Another point to note is that most mappings—and always file mappings—are
performed to page granularity, that is, in multiples of the page size; thus, the return
address is usually page-aligned.

The third parameter to mmap(2) is an integer bitmask prot—the memory protections
of the given region (recall we have already come across memory protections
in Chapter 4, Dynamic Memory Allocation, in the Memory protection section). The
prot parameter is a bitmask and can either be just the PROT_NONE bit (implying no
permissions) or the bitwise OR of the remainder; this table enumerates the bits and
their meaning:

Protection bit Meaning
PROT_NONE No access allowed on the page(s)
PROT_READ Reads allowed on the page(s)
PROT_WRITE Writes allowed on the page(s)
PROT_EXEC Execute access allowed on the page(s)

mmap(2) protection bits

Advanced File I/O Chapter 18

[728]

The page protections must match those of the file's open(2), of course. Also note
that, on older x86 systems, writable memory used to imply readable memory (that is,
PROT_WRITE => PROT_READ). This is no longer the case; you must explicitly specify
whether the mapped pages are readable or not (the same holds true for executable
pages too: it must be specified, the text segment being the canonical example). Why
would you use PROT_NONE? A guard page is one realistic example (recall the Stack
guards section from Chapter 14, Multithreading with Pthreads Part I - Essentials).

File and anonymous mappings
The next point to understand is that there are broadly two types of mappings; a file-
mapped region or an anonymous region. A file-mapped region quite obviously maps
the (full, or partial) content of a file (as shown in the previous figure). We think of the
region as being backed by a file; that is, if the OS runs short of memory and decides to
reclaim some of the file-mapped pages, it need not write them to the swap
partition—they're already available within the file that was mapped. On the other
hand, an anonymous mapping is a mapping whose content is dynamic; the data
segments (initialized data, BSS, heap), the data sections of library mappings, and the
process (or thread) stack(s) are excellent examples of anonymous mappings. Think of
them as not being file-backed; thus, if memory runs short, their pages may indeed be
written to swap by the OS. Also, recall what we learned back in Chapter 4, Dynamic
Memory Allocation, regarding the malloc(3); the fact is that the glibc malloc(3)
engine uses the heap segment to service the allocation only when it's for a small
amount—less than MMAP_THRESHOLD (defaults to 128 KB). Any malloc(3)
above that will result in mmap(2) being internally invoked to set up an anonymous
memory region—a mapping!—of the required size. These mappings (or segments)
will live in the available virtual address space between the top of the heap and the
stack of main.

Advanced File I/O Chapter 18

[729]

Back to the mmap(2): the fourth parameter is a bitmask called flags; there are
several flags, and they affect many attributes of the mapping. Among them, two flags
determine the privacy of the mapping and are mutually exclusive (you can only use
any one of them at a time):

MAP_SHARED: The mapping is a shared one; other processes might work
on the same mapping simultaneously (this, in fact, is the generic manner in
which a common IPC mechanism—shared memory —can be
implemented). In the case of a file mapping, if the memory region is written
to, the underlying file is updated! (You can use the msync(2) to control the
flushing of in-memory writes to the underlying file.)
MAP_PRIVATE: This sets up a private mapping; if it's writable, it implies
COW semantics (leading to optimal memory usage, as explained
in Chapter 10, Process Creation). A file-mapped region that is private
will not carry through writes to the underlying file. Actually, a private file-
mapping is very common on Linux: this is precisely how, at the time of
starting to execute a process, the loader (see the information box) brings in
the text and data of both the binary executable as well as the text and data
of all shared libraries that the process uses.

The reality is that when a process runs, control first goes to a
program embedded into your a.out binary executable—the loader
(ld.so or ld-linux[-*].so). It performs the key work of setting
up the C runtime environment: it memory maps (via the mmap(2))
the text (code) and initialized data segments from the binary
executable file into the process, thereby creating the segments in the
VAS that we have been talking about since Chapter 2, Virtual
Memory. Further, it sets up the initialized data segment, the BSS, the
heap, and the stack (of main()), and then it looks for and memory
maps all shared libraries into the process VAS.

Try performing a strace(1) on a program; you will see (early in
the execution) all the mmap(2) system calls setting up the process
VAS! The mmap(2) is critical to Linux: in effect, the entire setup of
the process VAS, the segments or mappings—both at process
startup as well as later—are all done via the mmap(2) system call.

Advanced File I/O Chapter 18

[730]

To help get these important facts clear, we show some (truncated) output of
running strace(1) upon ls(1); (for example) see how the open(2) is done upon
glibc, file descriptor 3 is returned, and that in turn is used by the mmap(2) to create a
private file-mapped read-only mapping of glibc's code (we can tell by seeing that the
offset in the first mmap is 0) in the process VAS! (A detail: the open(2) becomes the
openat(2) function within the kernel; ignore that, just as quite often on Linux, the
mmap(2) becomes mmap2(2).) The strace(1) (truncated) output follows:

$ strace -e trace=openat,mmap ls > /dev/null
...
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6",
O_RDONLY|O_CLOEXEC) = 3
mmap(NULL, 4131552, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3,
0) = 0x7f963d8a5000
mmap(0x7f963dc8c000, 24576, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e7000) = 0x7f963dc8c000
...

The kernel maintains a data structure called the virtual memory
area (VMA) for each such mapping per process; the proc filesystem
reveals all mappings to us in user space via /proc/PID/maps. Do
take a look; you will literally see the virtual memory map of the
process user space. (Try sudo cat /proc/self/maps to see the
map of the cat process itself.) The man page on proc(5) explains in
detail how to interpret this map; please take a look.

The mmap advantage
Now that we understand how to use the mmap(2) system call, we revisit our earlier
discussion: recall, using the read(2)/write(2) or even the SG-I/O type APIs (the
[p]readv|writev2) resulted in a double-copy; memory wastage (plus the fact
that CPU caches get trashed as well).

The key to realizing why the mmap(2) so effectively solves this serious issue is this:
the mmap(2) sets up a file mapping by internally mapping the kernel page caches
pages that contain the file data (that was read in from the storage device) directly into
the process virtual address space. This diagram (Figure 3) puts this into perspective
(and makes it self-explanatory):

Advanced File I/O Chapter 18

[731]

Figure 3: Page cache populated with
disk data

A mapping is not a copy; thus mmap(2)-based file I/O is called a zero-copy
technique: a way of performing work on an I/O buffer of which exactly one copy is
maintained by the kernel in it's page cache; no more copies are required.

The fact is that the device driver authors look to optimize their data
path using zero-copy techniques, of which the mmap(2) is certainly
a candidate. See more on this interesting advanced topic within
links provided in the Further reading section on the GitHub
repository.

Advanced File I/O Chapter 18

[732]

The mmap(2) does incur significant overhead in setting up the mapping (the first
time), but, once done, I/O is very quick, as it is essentially performed in memory.
Think about it: to seek to a location within the file and perform I/O there, just use
your regular 'C' code to move to a given location from the mmap(2) return value (it's
just a pointer offset) and do the I/O work in memory itself (via the memcpy(3),
s[n]printf(3), or whatever you prefer); no lseek(2), no read(2)/write(2), or
SG-I/O system call overheads at all. Using the mmap(2) for very small amounts of I/O
work may not be optimal; it's usage is recommended when large and continuous I/O
workloads are indicated.

Code example
To aid the reader in working with the mmap(2) for the purpose of file I/O, we have
provided the code of a simple application; it memory maps a given file (the file's
pathname, start offset, and length are provided as parameters) via the mmap(2) and
hexdumps (using a, slightly enhanced, open source hexdump function) the memory
region specified on to stdout. We urge the reader to look up the code, build, and try
it out.

The complete source code for this book is available for cloning from
GitHub here: https:/ /github. com/ PacktPublishing/ Hands- on-
System- Programming- with- Linux. The aforementioned program is
here within the source tree: ch18/mmap_file_simple.c.

Memory mapping – additional points
A quick summation of a few additional points to wrap up the memory mapping
discussion follows:

The fourth parameter to mmap(2), flags, can take on several other (quite
interesting) values; we refer the reader to the man page on mmap(2) to
browse through them: http:// man7. org/linux/ man-pages/ man2/ mmap. 2.
html.

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html

Advanced File I/O Chapter 18

[733]

Directly analogous to how we can give hints or advice to the kernel
regarding kernel page cache pages with the posix_fadvise(2) API, you
can provide similar hints or advice to the kernel regarding memory usage
patterns for a given memory range (start address, length provided) via the
posix_madvise(3) library API. The advice values include being able to
say that we expect random access to data (thereby reducing read-ahead, via
the POSIX_MADV_RANDOM bit), or that we expect to access data in the
specified range soon (via the POSIX_MADV_WILLNEED bit, resulting in more
read-ahead and mapping). This routine invokes the underlying system call
madvise(2) on Linux.
Let's say we have mapped a region of a file into our process address space;
how do we know which pages of the mapping are currently residing in the
kernel page (or buffer) cache? Precisely this can be determined via the
mincore(2) system call (read as "m-in-core").
The programmer has explicit (and fine-tuned) control over synchronizing
(flushing) file-mapped regions (back to the file) via the msync(2) system
call.
Once complete, the memory mapping should be unmapped via the
munmap(2) system call; the parameters are the base address of the
mapping (the return value from mmap(2)) and the length. If the process
terminates, the mapping is implicitly unmapped.
On fork(2), a memory mapping is inherited by the child process.
What if an enormous file is memory mapped, and at runtime when
allocating page frames to hold the mapping in the process VAS (recall our
discussion on demand-paging from Chapter 4, Dynamic Memory
Allocation), the system runs out of memory (drastic, but it could occur); in
cases such as these, the process will receive the SIGSEGV signal (and thus
it's up to the app's signal-handling ability to gracefully terminate).

Advanced File I/O Chapter 18

[734]

DIO and AIO
A significant downside of using both the blocking [p]read[v](2) /
[p]write[v](2) APIs as well as the mmap(2) (actually much more so with the
mmap) is this: they depend on the kernel page cache always being populated with the
file's pages (that it's working upon or mapping). If this is not the case—which can
happen when the data store is much larger than RAM size (that it, files can be
enormous)—it will result in a lot of meta-work by the kernel memory management
(mm) code to bring in pages from disk to page cache, allocating frames, stitching up
page table entries for them, and so on. Thus, the mmap technique works best when the
ratio of RAM to storage is as close to 1:1 as possible. When the storage size is much
larger than the RAM (often the case with enterprise-scale software such as databases,
cloud virtualization at scale, and so on), it can suffer from latencies caused by all the
meta work, plus the fact that significant amounts of memory will be used for paging
metadata.

Two I/O technologies—DIO and AIO—alleviate these issues (at the cost of
complexity); we provide a brief note on them next. (Due to space constraints, we
focus on the conceptual side of these topics; learning to use the relevant APIs is then a
relatively easy task. Do refer to the Further reading section on the GitHub repository.)

Direct I/O (DIO)
An interesting I/O technology is Direct I/O (DIO); to use it, specify the O_DIRECT flag
when opening the file via the open(2) system call.

With DIO, the kernel page cache is completely bypassed, thereby immediately giving
the benefit that all the issues that can be faced with the mmap technique now
disappear. On the other hand, this does imply that the entire cache management is to
be completely handled by the user space app (large projects such as databases would
certainly require caching!). For regular small apps with no special I/O requirements,
using DIO will likely degrade performance; be careful, test your workload under
stress, and determine whether to use DIO or skip it.

Traditionally, the kernel handles which pieces of I/O (the I/O requests) are serviced
when—in other words, I/O scheduling (it's not directly related, but also see the
section on I/O schedulers). With DIO (and with AIO, seen next), the application
developer can essentially take over I/O scheduling by determining when to perform
I/O. This can be both a blessing and a curse: it provides the flexibility to the
(sophisticated) app developer to design and implement I/O scheduling, but this is not
a trivial thing to perform well; as usual, it's a trade-off.

Advanced File I/O Chapter 18

[735]

Also, you should realize that though we call the I/O path direct, it does not guarantee
that writes are immediately flushed to the underlying storage medium; that's a
separate feature, one that can be requested by specifying the O_SYNC flag to the
open(2) or of course explicitly flushing (via the [f]sync(2) system calls).

Asynchronous I/O (AIO)
Asynchronous I/O (AIO) is a modern high-performance asynchronous non-blocking
I/O technology that Linux implements. Think about it: non-blocking and
asynchronous implies that an application thread can issue a read (for file or network
data); the usermode API returns immediately; the I/O is queued up within the kernel;
the application thread can continue working on CPU-bound stuff; once the I/O
request completes, the kernel notifies the thread that the read is ready; the thread
then actually performs the read. This is high-performance—the app does not remain
blocked on I/O and can instead perform useful work while the I/O request is
processed; not only that, it is asynchronously notified when the I/O work is done. (On
the other hand, the multiplexing APIs such as select(2), poll(2), and
epoll(7) are asynchronous—you can issue the system call and return
immediately—but they actually are still blocking in nature because the thread
must check for I/O completion—for example, by using the poll(2) in tandem with a
read(2) system call when it returns—which is still a blocking operation.)

With AIO, a thread can initiate multiple I/O transfers concurrently; each transfer will
require a context—called the [a]iocb—the [async] I/O control block data structure
(Linux calls the structure an iocb, the POSIX AIO framework (a wrapper library) calls
it aiocb). The [a]iocb structure contains the file descriptor, the data buffer, the async
event notification structure sigevent, and so on. The alert reader will recall that we
have already made use of this powerful sigevent structure in Chapter 13, Timers,
within the Creating and using a POSIX (interval) timer section. It's really via
this sigevent structure that the asynchronous notification mechanism is
implemented (we had used it in Chapter 13, Timers, to be asynchronously informed
that our timer expired; this was done by setting sigevent.sigev_notify to the
value SIGEV_SIGNAL, thereby receiving a signal upon timer expiry). Linux exposes
five system calls for the app developer to exploit AIO; they are as follows:
io_setup(2), io_submit(2), io_cancel(2), io_getevents(2),
and io_destroy(2).

Advanced File I/O Chapter 18

[736]

AIO wrapper APIs are provided by two libraries—libaio and librt (which is released
along with glibc); you can use their wrappers which will ultimately invoke the system
calls of course. There are also the POSIX AIO wrappers; see the man page on aio(7)
for an overview on using it, as well as example code. (Also see the articles in
the Further reading section on the GitHub repository for more details and example
code.)

I/O technologies – a quick comparison
The following table provides a quick comparison to some of the more salient
comparison points between the four to five Linux I/O technologies we have seen,
namely: the blocking read(2)/write(2) (and the SG-
I/O/positioned [p]read[v](2)/[p]write[v](2)), memory mapping, non-blocking
(mostly synchronous) DIO, and non-blocking asynchronous AIO:

I/O Type APIs Pros Cons
Blocking
(regular and
SG-IO /
positioned)

[p]read[v](2)
/[p]write[v](2) Easy to use Slow; double-copy of

data buffers

Memory
Mapping mmap(2)

(Relatively) easy to use; fast (in
memory I/O); single copy of
data (a zero-copy technique);
works best when RAM:Storage ::
~ 1:1

MMU-intensive
(high page table
overhead, meta-
work) when RAM:
Storage ratio is 1:N
(N>>1)

DIO
(non-blocking,
mostly
synchronous)

open(2) with
O_DIRECT flag

Zero-copy technique; no impact
on page cache; control over
caching; some control over I/O
scheduling

Moderately complex
to set up and use:
app must perform its
own caching

AIO
(non-blocking,
asynchronous)

<Various: see aio(7) -
POSIX AIO, Linux
io_*(2), and so on>

Truly async and non-
blocking—required for high-
performance apps; zero-copy
technique; no impact on page
cache; full control over caching,
I/O and thread scheduling

Complex to set up
and use

Linux I/O technologies—a quick comparison

Advanced File I/O Chapter 18

[737]

In the Further reading section on the GitHub repository, we provide links to two blog
articles (from two real-world products: Scylla, a modern high-performance
distributed No SQL data store, and NGINX, a modern high-performance web
server), that discuss in depth how these alternative powerful I/O technologies (AIO,
thread pools) are used in (their respective) real-world products; do take a look.

Multiplexing or async blocking I/O – a quick
note
You often hear about powerful multiplexing I/O APIs—the select(2), poll(2),
and, more recently, Linux's powerful epoll(7) framework. These APIs, select(2),
poll(2), and/or epoll(7), provide what is known as asynchronous blocking I/O.
They work well upon descriptors that remain blocked on I/O; examples are sockets,
both Unix and internet domain, as well as pipes—both unnamed and named pipes
(FIFOs).

These I/O technologies are asynchronous (you can issue the system call and return
immediately) but they actually are still blocking in nature because the thread
must check for I/O completion, for example, by using the poll(2) in tandem with a
read(2) system call, which is still a blocking operation.

These APIs are really very useful for network I/O operations, the canonical example
being a busy (web)server monitoring hundreds (and perhaps thousands) of
connections. First, each connection being represented by a socket descriptor makes
using the select(2) or poll(2) system calls appealing. However, the fact is that
select(2) is old and limited (to a maximum of 1,024 descriptors; not enough);
secondly, both select(2) and poll(2)'s internal implementations have an
algorithmic time complexity of O(n), which makes them non-scalable.
The epoll(7) implementation has no (theoretical) descriptor limit and uses an O(1)
algorithm and what's known as edge-triggered notifications. This table summarizes
these points:

API Algorithmic Time-Complexity Max number of clients
select(2) O(n) FD_SETSIZE (1024)
poll(2) O(n) (theoretically) unlimited
epoll(7) APIs O(1) (theoretically) unlimited

Linux asynchronous blocking APIs

Advanced File I/O Chapter 18

[738]

These features have thus made the epoll(7) set of APIs (epoll_create(2),
epoll_ctl(2), epoll_wait(2), and epoll_pwait(2)) a favorite for implementing
non-blocking I/O on network applications that require very high scalability. (See a
link to a blog article providing more details on using multiplexed I/O, including
the epoll, on Linux in the Further reading section on the GitHub repository.)

I/O – miscellaneous
A few miscellaneous remaining topics to round off this chapter follow.

Linux's inotify framework
While brilliant for network I/O, these multiplexing APIs, though they can in theory be
used for monitoring regular file descriptors, will simply report them as always being
ready (for reading, writing, or an error condition has arisen), thereby diminishing
their usefulness (when used upon regular files).

Perhaps Linux's inotify framework, a means to monitor filesystem events including
events on individual files, might be what you are looking for. The inotify framework
provides the following system calls to help developers monitor
files: inotify_init(2), inotify_add_watch(2) (which can be subsequently
read(2)), and then inotify_rm_watch(2). Check out the man page on
inotify(7) for more details: http:/ / man7. org/ linux/ man- pages/ man7/ inotify. 7.
html.

I/O schedulers
An important feature within the Linux I/O stack is a part of the kernel block layer
called the I/O scheduler. The issue being addressed here is basically this: I/O requests
are being more or less continually issued by the kernel (due to apps wanting to
perform various file data/code reads and writes); this results in a continuous stream
of I/O requests being ultimately received and processed by the block driver(s). The
kernel folks know that one of the primary reasons that I/O sucks out performance is
that the physical seek of a typical SCSI disk is really slow (compared to silicon speeds;
yes, of course, SSDs (solid state devices) are making this a lot more palatable
nowadays).

http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html

Advanced File I/O Chapter 18

[739]

So, if we could use some intelligence to sort the block I/O requests in a way that
makes the most sense in terms of the underlying physical medium, it would help
performance. Think of an elevator in a building: it uses a sort algorithm, optimally
taking people on and dropping them off as it traverses various floors. This is what the
OS I/O schedulers essentially try to do; in fact, the first implementation was called
Linus's elevator.

Various I/O scheduler algorithms exist (deadline, completely fair queuing (cfq),
noop, anticipatory scheduler: these are now considered legacy; the newest as of the
time of writing seem to be the mq-deadline and budget fair queuing (bfq) I/O
schedulers, with bfq looking very promising for heavy or light I/O workloads (bfq is a
recent addition, kernel version 4.16). The I/O schedulers present within your Linux
OS are a kernel feature; you can check which they are and which is being used; see it
being done here on my Ubuntu 18.04 x86_64 box:

$ cat /sys/block/sda/queue/scheduler
noop deadline [cfq]
$

Here, bfq is the I/O scheduler being used on my Fedora 28 system (with a more
recent kernel):

$ cat /sys/block/sda/queue/scheduler
mq-deadline [bfq] none
$

The default I/O scheduler here is bfq. Here's the interesting bit: the user can actually
select between I/O schedulers, run their I/O stress workloads and/or benchmarks, and
see which one yields the maximum benefit! How? To select the I/O scheduler at boot
time, pass along a kernel parameter (via the bootloader, typically GRUB on an x86-
based laptop, desktop or server system, U-Boot on an embedded Linux); the
parameter in question is passed as elevator=<iosched-name>; for example, to set
the I/O scheduler to noop (useful for systems with SSDs perhaps), pass the parameter
to the kernel as elevator=noop.

There's an easier way to change the I/O scheduler immediately at runtime; just
echo(1) the one you want into the pseudo-file; for example, to change the I/O
scheduler to mq-deadline,do the following:

echo mq-deadline > /sys/block/sda/queue/scheduler
cat /sys/block/sda/queue/scheduler
[mq-deadline] bfq none
#

Advanced File I/O Chapter 18

[740]

Now, you can (stress) test your I/O workloads on different I/O schedulers, thus
deciding upon which yields the optimal performance for your workload.

Ensuring sufficient disk space
Linux provides the posix_fallocate(3) API; its job is to guarantee that sufficient
disk space is available for a given range specific to a given file. What that actually
means is that whenever the app writes to that file within that range, the write is
guaranteed not to fail due to lack of disk space (if it does fail, errno will be set to
ENOSPC; that won't happen). It's signature is as follows:

#include <fcntl.h>
int posix_fallocate(int fd, off_t offset, off_t len);

Here are some quick points to note regarding this API:

The file is the one referred to by the descriptor fd.
The range is from offset for len bytes; in effect, this is the disk space that
will be reserved for the file.
If the current file size is less than what the range requests (that
is, offset+len), then the file is grown to this size; otherwise, the file's size
remains unaltered.
posix_fallocate(3) is a portable wrapper over the underlying system
call fallocate(2).
For this API to succeed, the underlying filesystem must support
the fallocate; if not, it's emulated (but with a lot of caveats and issues;
refer to the man page for more).
Also, a CLI utility called fallocate(1) exists to perform the same task
from, say, a shell script.

These APIs and tools may come in very useful for software such as
backup, cloud provisioning, digitization, and so on, guaranteeing
sufficient disk space is available before a long I/O operation begins.

Advanced File I/O Chapter 18

[741]

Utilities for I/O monitoring, analysis, and bandwidth
control
This table summarizes various utilities, APIs, tools, and even a cgroup blkio
controller; these tools/features will prove very useful in monitoring, analyzing (to
pinpoint I/O bottlenecks), and allocating I/O bandwidth (via the ioprio_set(2) and
the powerful cgroups blkio controller.)

Utility name What it does

iostat(1)

Monitors I/O and displays I/O statistics about devices and storage
device partitions. From the man page on iostat(1): The iostat
command is used for monitoring system input/output device loading
by observing the time the devices are active in relation to their
average transfer rates. The iostat command generates reports that
can be used to change system configuration to better balance
the input/output load between physical disks.

iotop(1)
In the style of top(1) (for CPU), iotop continually displays threads
sorted by their I/O usage. Must run as root.

ioprio_[get|set](2)

System calls to query and set I/O scheduling class and priority of a
given thread; see the man pages for details: http:/ /man7. org/
linux/ man- pages/ man2/ ioprio_ set. 2.html; see its wrapper
utility ionice(1) as well.

perf-tools

Among these tools (from B Gregg) is iosnoop-perf(1) and
iolatecy-perf(1) to snoop I/O transactions and observe I/O
latencies respectively. Install these tools from their GitHub repository
here: https:/ /github. com/ brendangregg/ perf- tools.

cgroup blkio controller

Use the powerful Linux cgroup's blkio controller to limit I/O
bandwidth for a process or group of processes in any required fashion
(heavily used in cloud environments, including Docker); see the
relevant link in the Further reading section on the GitHub repository.

Tools/utilities/APIs/cgroups for I/O monitoring, analysis, and bandwidth control

Note: the preceding mentioned utilities may not be installed on the Linux system by
default; (obviously) install them to try them out.

Do also check out Brendan Gregg's superb Linux Performance blog
pages and tools (which include perf-tools, iosnoop, and iosnoop
latency heat maps); please find the relevant links in the Further
reading section on the GitHub repository.

http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools

Advanced File I/O Chapter 18

[742]

Summary
In this chapter, we learned powerful approaches to a critical aspect of working with
files: ensuring that I/O performance is kept as high as is possible, as I/O is really the
performance-draining bottleneck in many real-world workloads. These techniques
ranged from file access pattern advice passing to the OS, SG-I/O techniques and APIs,
memory mapping for file I/O, DIO, AIO, and so on.

The next chapter in the book is a brief look at daemon processes;
what they are and how to set them up. Kindly take a look at this
chapter here: https:/ /www.packtpub. com/ sites/ default/ files/
downloads/ Daemon_ Processes. pdf.

https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

19
Troubleshooting and Best

Practices
A brief overview on newer Linux troubleshooting tools and utilities, as well as
industry best practices to follow when designing, developing, and deploying real-
world Linux systems apps, is the focus of this chapter. We wish to make it very clear,
though, that this is a book on Linux systems programming; the troubleshooting tips
and best practices described here are exclusively with regard to the system-level
development of applications (typically written in C/C++) on a Linux system; we
do not deal with generic troubleshooting on Linux (topics such as troubleshooting
network or configuration issues, system administration tips, and tricks).

For this chapter in particular (mainly due to the vast scope and size of the content it
only mentions in passing), we have provided several useful online articles and books
in the Further reading section on the GitHub repository. Please do browse through
them.

This chapter serves to round off this book; here, with respect to Linux systems
programming, the reader will be given the following:

An overview of (newer) troubleshooting tools and techniques
An overview of industry best practices—in terms of design, software
engineering, programming implementation, and testing

Troubleshooting and Best Practices Chapter 19

[744]

Troubleshooting tools
In this section, we will mention several tools and utilities that can help the application
developer identify system bottlenecks and performance issues. (Note that here, to
save space and time, we do not delve into the dozens of usual suspects—well-known
system monitoring utilities on Linux such as ps, pstree, top, htop, pidstat,
vmstat, dstat, sar, nagios, iotop, iostat, ionice, lsof, nmon, iftop, ethtool,
netstat, tcpdump, wireshark—and instead mention the newer ones). Here is an
important thing to remember when performing data collection (or benchmarking) for
later analysis: take the trouble to set up a test rig and, when using it, change (as far as
is possible) only one variable at a time for a given run so that you can see its impact.

perf
Performance measurement and analysis is an enormous topic; the identification,
analysis, and determination of the root cause for performance issues is no trivial task.
In recent years, the perf(1) and htop(1) utility has emerged as the fundamental
tool for performance measurement and analysis on the Linux platform.

Sometimes, all you need is to see what is consuming the most CPU; traditionally, we
use the well-known top(1) utility to do so. Try, instead, the very useful perf
variant, like so: sudo perf top.

Also, you can exploit some of the features with the following:

sudo perf top -r 90 --sort pid,comm,dso,symbol
 (-r 90 => collect data with SCHED_FIFO RT scheduling class and
priority 90 [1-99]).

Essentially, this is the perf workflow: record a session (data files get saved) and
generate a report. (See the links in Further reading section on the GitHub repository.)

Excellent diagrams available on Brendan Gregg's blog clearly show the dozens of
tools available for performing observation, performance analysis, and dynamic
tracing on Linux:

Linux performance tools: http:/ /www. brendangregg. com/ Perf/ linux_
perf_ tools_ full. png

Linux performance observability tools: http:/ /www. brendangregg. com/
Perf/ linux_ observability_ tools. png

http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_perf_tools_full.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_observability_tools.png

Troubleshooting and Best Practices Chapter 19

[745]

Due to its visual impact, Brendan Gregg's Flame Graph scripts are very interesting
too; check out the links in the Further reading section on the GitHub repository.

Brendan Gregg also leads the development of a project called perf-tools. Here are
some words from the project: performance analysis tools based on Linux
perf_events (aka perf) and Ftrace. Several very useful shell script wrappers (over
Perf, Ftrace, and Kprobes) make up the tools; do clone the GitHub repository and try
them out. (https:/ /github. com/ brendangregg/ perf- tools.)

Tracing tools
In-depth tracing often has the desirous side effect of having the developer or tester
spot performance bottlenecks as well as debug systems-level latencies and issues.
Linux has a plethora of frameworks and tools available for tracing, both at user space
and at the level of the kernel; some of the more relevant ones are mentioned here:

User space: ltrace(1) (trace library APIs), strace(1) (trace system calls;
also try doing sudo perf trace), LTTng-ust, uprobes.
Kernel space: LTTng, ftrace (plus several frontends such as tracecmd(1),
kernelshark GUIm), Kprobes—(including Jprobes—up to Kernel Version
4.14), Kretprobes; SystemTaprm) eBPF.

The Linux proc filesystem
Linux has a very rich and powerful filesystem called procfs—proc for process. It is
usually mounted under /proc, and it contains pseudo-files and directories that
contain valuable runtime-generated information on processes and internals
information. In a nutshell, procfs serves as a UI for two key purposes:

It serves as a viewport into detailed process, thread, OS, and hardware
information.
It serves as the place to query and set kernel-level tunables (switches and
values for the core kernel, scheduling, memory, and network parameters).

Taking the trouble to study and use the Linux proc filesystem is well worth it. Pretty
much all the user space monitoring and analysis tools are ultimately based on procfs.
Find further information in the links provided in Further reading section on the
GitHub repository.

https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools

Troubleshooting and Best Practices Chapter 19

[746]

Best practices
In this section, we briefly enumerate what we consider to be industry best practices,
though they are mostly generic and thus broad in scope; we will particularly look at
them through the lens of the Linux systems programmer.

The empirical approach
The word empirical (according to the Cambridge English dictionary) means based on
what is experienced or seen, rather than on theory. This is perhaps the critical
principle to be followed. A fascinating article by Gustavo Duarte (mentioned
here: https:// www. infoq. com/ news/ 2008/ 02/realitydrivendevelopment) states:
"Action and experimentation are the cornerstones of empiricism. No attempt is made to
subdue reality by extensive analysis and copious documentation. Reality is invited in via
experiments. Instead of agonizing over market research, an empirical company hires interns
and develops a product in one summer. A non-empirical company has 43 people planning an
off-button design for one year." Throughout this book, too, we have always tried to
consciously follow an empirical approach; we definitely urge the reader to cultivate
and embed the empirical principle in design and development.

Software engineering wisdom in a nutshell
Frederick P Brooks wrote his famous treatise The Mythical Man-Month: Essays on
Software Engineering back in 1975, and this book is to date billed as the most
influential book on software project management. This is no wonder: certain truths
are just that—truths. Here are a few gems from this volume:

Plan to throw one away; you will anyway.
There is no silver bullet.
Good cooking takes time. If you are made to wait, it is to serve you better,
and to please you.
The bearing of a child takes nine months, no matter how many women are
assigned.
Good judgment comes from experience, and experience comes from bad
judgment.

https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment
https://www.infoq.com/news/2008/02/realitydrivendevelopment

Troubleshooting and Best Practices Chapter 19

[747]

Interestingly, and, of course, the design philosophy of the venerable Unix OS indeed
incorporates great design principles, principles that remain in effect to this day on
Linux. We covered this in Chapter 1, Linux System Architecture, in the section, The
Unix philosophy in a nutshell.

Programming
Let's now move on to the more mundane but really important things to be kept in
mind by the developer.

A programmer’s checklist – seven rules
We suggest seven rules as follows:

Rule #1 : Check all APIs for their failure case.
Rule #2 : Compile with warnings on (-Wall -Wextra) and eliminate all
warnings as far as is possible.
Rule #3 : Never trust (user) input; validate it.
Rule #4 : Use assertions in your code.
Rule #5 : Eliminate unused (or dead) code from the codebase immediately.
Rule #6 : Test thoroughly; 100% code coverage is the objective. Take the
time and trouble to learn to use powerful tools: memory checkers
(Valgrind, the sanitizer toolset), static and dynamic analyzers, security
checkers (checksec), fuzzers (see the following explanation).
Rule #7 : Do not assume anything (assume makes an ass out of u and me).

Here are some examples of how serious failures can result from not following the
rules: An Ariane 5 unmanned rocket crashed early in its launch (June 4, 1996); the bug
was ultimately traced to a register overflow issue, a single type casting error (rule #5).
The Knight Capital Group lost $460 million in 45 minutes. Don’t assume the size of a
page. Use the getpagesize(2) system call or the sysconf(3) to obtain it. Further
along these lines, see the blog article entitled Low-Level Software Design (there are links
to these in the Further reading section on GitHub repository).

Troubleshooting and Best Practices Chapter 19

[748]

Better testing
Testing is a critical activity; thorough and continual testing (including regression
testing) leads to a stable product in which both the engineering team and the
customer have deep confidence.

Here is an often-overlooked truth: complete code coverage testing is critical! Why?
Simple—there are often hidden defects lurking in sections of code that never actually
get tested (error handling being the typical example); the fact is though, they will be
hit one fine day, and this can cause terrible failures.

Then again, unfortunately, testing can only reveal the presence of errors, not their
absence; nevertheless, good and thorough testing is absolutely critical. Most testing
performed (test cases written) tends to be positive test cases; interestingly, the
majority of software (security) vulnerabilities escape unnoticed by this kind of testing.
Negative test cases help catch these failures; a class of software testing called
fuzzing helps greatly in this regard. Testing code on different machine architectures
can help expose hidden defects as well.

Using the Linux kernel's control groups
Use the Linux kernel's cgroups (control groups) technology to specify and constrain
resource allocation and bandwidth. The cgroup controllers on a modern Linux system
include the following: CPU (limits on CPU usage), CPU set (the modern way to
perform CPU affinity constraining a group of processes to a set of CPUs), blkio
(limits on I/O), devices (limits on which processes can use which devices), freezer
(suspend/resume task execution), memory (limits on memory usage), net_cls
(network packets tagging with classid), net_prio (limit network traffic per
interface), namespaces (ns), perf_event (for performance analysis).

Limiting resources is critical not only from a requirements angle, but from a security
perspective too (think about malicious attackers dreaming up [D]DoS attacks).
Incidentally, containers (essentially a lightweight virtualization technique), a hot topic
nowadays, are largely a reality because of the combination of two Linux kernel
technologies that have sufficiently evolved: cgroups and namespaces.

Troubleshooting and Best Practices Chapter 19

[749]

Summary
Question: What's the biggest room in the world?
Answer: The room for improvement!

This, in general, should sum up the attitude you should have when working on
enormous projects, and keep learning for life topics such as Linux. We, again, urge
the reader to not only read for conceptual understanding—that's important!—but to
also get their hands dirty and write the code. Make mistakes, fix them, and learn from
them. Contributing to open source is a fantastic way to do so.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Linux Administration on Azure
Frederik Vos

ISBN: 978-1-78913-096-6

Understand why Azure is the ideal solution for your open source
workloads
Master essential Linux skills and learn to find your way around the Linux
environment
Deploy Linux in an Azure environment
Use configuration management to manage Linux in Azure
Manage containers in an Azure environment
Enhance Linux security and use Azure’s identity management systems
Automate deployment with Azure Resource Manager (ARM) and
Powershell
Employ Ansible to manage Linux instances in an Azure cloud environment

https://www.packtpub.com/virtualization-and-cloud/hands-linux-administration-azure

Other Books You May Enjoy

[751]

Practical Linux Security Cookbook - Second Edition
Tajinder Kalsi

ISBN: 978-1-78913-839-9

Learn about vulnerabilities and exploits in relation to Linux systems
Configure and build a secure kernel and test it
Learn about file permissions and how to securely modify files
Authenticate users remotely and securely copy files on remote systems
Review different network security methods and tools
Perform vulnerability scanning on Linux machines using tools
Learn about malware scanning and read through logs

https://www.packtpub.com/networking-and-servers/practical-linux-security-cookbook-second-edition

Other Books You May Enjoy

[752]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

A
Address Sanitizer (ASan)
 cons 228
 pros 228
 reference 223
 summary table 227
 used, for building programs 213
 used, for executing test cases 214, 219, 227
Address Space Layout Randomization (ASLR)

129

Alarm API 479
alloca
 used, for allocating automatic memory 159,

161

alternate signal stack
 large (16 MB) 419
 small (100 KB) 418
 used, for implementing handle high-volume

signals 416
 using 415
API interfaces
 about 104, 105
 code examples 106, 108, 110
APIs
 blocking 402
Application Binary Interface (ABI) 27, 435
ARM system 156
ARM-32
 memprot program, executing 157, 159
Asynchronous I/O (AIO) 711, 735

B
backtrace (bt) command 83
bash-builtins 91
benign race condition 339
big kernel lock (BKL) 636

Buffer Overflow (BoF) attacks 276

C
C/C++ developer
 actions 234
capabilities
 embedding, into program binary 284, 285,

286, 288
 setting, programmatically 290, 291, 293, 295
capability bitmask 280
capability-dumb binary 288
capability-smart binary 288
CLI digital clock
 about 483
 trial runs 487
coarse granularity locking 602
code coverage
 in testing 233
command-line interface (CLI) 15, 24, 240, 475
Common Vulnerabilities and Exposures (CVE)

167

Common Weakness Enumeration (CWE) 167
Compile-time instrumentation (CTI) 211
Completely Fair Scheduler (CFS) 694
condition variable (CV)
 about 606
 broadcast wakeup 645
 CV usage demo application 641, 645
 naive approach 639
 using 639
control groups (cgroups) 697
control register 2 (CR2) 435
copy-on-write(COW) 346, 347, 530
credentials (cred) 298
Crude IPC 455

[754]

D
daemons
 about 519
deadlock
 ABBA deadlock 604
 about 603
 avoiding 605, 606
 self deadlock (relock) 604
 types 604
debugging tools
 dynamic analysis tools 197
 key points 233
 static analysis tools 197
demand-paging
 about 137, 138
 mincore 139
denial-of-service (DoS) attack 90, 179, 360,

557

design motivation
 CPU, overlapping with I/0 540
 IPC 541
 logical separation 540
 manager-worker model 541
 potential parallelism 539
digression 356
Direct I/O (DIO) 734
Direct Memory Access (DMA) 724
Discretionary Access Control (DAC) 278
double-free
 test case 179
dumpcap 289, 290
dynamic analysis tools 197
dynamic binary instrumentation (DBI) 198

E
Effective Group ID (EGID) 245
Effective User ID (EUID) 245
end-of-file (EOF) 14
errno
 about 439
 handling 439
 race 440
exec family APIs
 about 307, 310, 314

 code example 319, 321
 error handling 310
 execle API 316
 execlp API 314
 execv API 316
 OS level 317
 successor name, specifying 311
 summary table 318
 zero argument, passing 310
exec Unix axiom
 about 302
 exec operation, considerations 303
 experiment 305
 point of no return 306
 testing 304

F
Fedora 27
 reference 10, 50
file descriptor (fd)
 about 340
file I/O
 file, memory mapping 725
 Linux I/O code path 722
First Come First Served (FCFC) 448
fork bomb
 about 360
 reference 361
fork system call
 using 327
fork
 atomic execution 337
 child process 324
 effect, on open files 339
 malloc 344
 multiple child, creating 360
 open files 343
 parent process 324
 rules 328, 329, 330, 331, 333, 334, 335,

337, 338, 339, 341, 342, 370, 371
 security 343
 working 324, 325
free API
 about 123, 124
 overview 124

[755]

Ftrace 156

G
General Protection Fault (GPF) 437
General Purpose Operating System (GPOS)

692

getcap 288
glibc malloc API
 about 114
 calloc API 124
 free API 122
 malloc API 114, 116
 realloc API 125
Glibc mallop
 options, via environment 232
Glibc mallopt 230
GNU C library (glibc) 114
GNU Debugger (GDB) 81, 211
Graphical User Interface (GUI) 24, 300
Group Identifier (GID) 241

H
hard limits 95
hardware-paging 61
hardware-segmentation 61
heap segment 114, 128
hyperthreading (HT) 561

I
I/O performance recommendations
 about 710
 analysis 741
 async blocking I/O 737
 Asynchronous I/O (AIO) 734, 735
 bandwidth control 741
 Direct I/O (DIO) 734
 file I/O, via memory mapping 721
 I/O monitoring, utilities 741
 I/O schedulers 738
 I/O technologies 736
 kernel page cache 711
 Linux's inotify framework 738
 miscellaneous 738
 multiplexing 737
 pread, using 714

 pwrite APIs 714
 scatter-gather I/O 716
 sufficient disk space, ensuring 740
incorrect memory accesses
 about 167
 out-of-bounds memory accesses 170
 uninitialized variables, accessing 168
 uninitialized variables, using 168
 use-after-free (UAF) bugs 176
 use-after-return (UAR) bugs 176
information node (inode) 242
Instruction Pointer (IP) 85, 328
Instruction Set Architecture (ISA) 596
Integer OverFlow (IOF) 119
Inter-Process Communication (IPC) 67
interval timers
 about 480
 CLI digital clock 483
 profiling timers 488

J
Jet Propulsion Laboratory (JPL) 627
join
 using 570

K
kernel build
 configuring (j4) 536
kernel documentation, on credentials
 reference 280
kernel page cache
 about 711
 hints, giving 712
 hints, giving via posix_fadvise(2) API 712
 hints, giving via readahead(2) API 713
Kernel Schedulable Entity (KSE) 687

L
Last In First Out (LIFO) 78
Least Significant Bits (LSB) 231
Linux Foundation (LF) 707
Linux kernel 298
Linux OS scheduling model
 about 686
 process 687

[756]

 real time 690
 sleep states 688
 state machine 687
Linux system
 technical prerequisites 9, 49
Linux Tracing Toolkit next generation (LTTng)

461, 462
Linux's soft real-time capabilities
 exploiting 699
 scheduling policy APIs 699
 scheduling priority APIs 700
 soft real-time systems, considerations 706
 thread scheduling policy, setting up 701
 thread scheduling priority, setting up 701
Linux
 about 10
 as RTOS 707
 performance tools, reference 744
locking
 about 593
 atomicity, checking 595, 599
 considerations 599
 granularity 602
 guidelines 600
login shell 240
ls
 binaries, displaying 296
LSM Logs 155

M
malloc API helpers 234
malloc API
 about 114, 116
 FAQs 117, 120
 overview 122
malloc
 and program break 133
 default options 133
 freed memory 136
 large allocations option 135, 136
 statistics, displaying 134
 working 132
mapping 74
Memory Checker tool (Memcheck) 198
memory issues

 about 165, 167
 incorrect memory accesses 167
 memory leakage 182
 undefined behavior 192
memory leakage
 about 123, 182
 fragmentation 193
 miscellaneous 194
 test case 183, 184, 186, 187, 188, 190, 191
memory locking
 about 140, 141
 limits 141, 144
 pages, locking 145, 146
 privileges 141, 144
Memory Management Unit (MMU) 65
memory mapping, file
 anonymous mapping 728
 code example 732
 considerations 732
 MAP_PRIVATE 729
 mmap advantage 730
memory protection
 about 146
 code example 147, 149, 152
 keys 159
mincore
 URL 139
mmap 132
modern POSIX capabilities model 276
multiprocess model
 versus multithreading model, cons 681
 versus multithreading model, pros 680
multiprocess, versus multithreaded
 creation/destruction 528
 kernel build 536
 matrix multiplication 531, 534
multiprocess
 versus multithreaded 527
multithreaded (MT) 648
multithreading 522
mutex attribute
 attempt, timing out 631
 usage 630
mutex lock
 about 607, 610

[757]

 attributes 613
 busy-waiting (non-blocking variant) 632
 checking 637
 data race 610, 613
 IPC 617
 Mars 623
 Mars Pathfinder mission 627
 priority inheritance (PI) 628
 priority inversion 623
 process-shared mutex 617
 reader-writer mutex lock 632
 robust mutex attribute 615
 semantics 631
 spinlock variant 634
 threads 617
 types 613
 usage guidelines 636
 watchdog timer 625
mutual exclusion (mutex) 607

N
nanosleep system call 443, 445
National Vulnerability Database (NVD) 181
Native Posix Threading Library (NPTL) 544
Next Generation Posix Threads (NGPT) 544

O
older interfaces
 about 476
 alarm(2) system call 476
 interval timers 479
Open File Descriptor Table (OFDT) 340
operating system (OS) 692
orphans 368
out-of-bounds memory accesses
 about 170
 read overflow 170
 read overflow, test case 173, 174
 read underflow 170
 read underflow, test case 175
 write overflow 170
 write overflow, test case 171, 172
 write underflow 170
 write underflow, test case 172

P
packcap 276
Page Table Entry (PTE) 427
pages 61
Paging Table (PT) 63
parameter
 passing 574
 structure, passing 575
 thread parameters 577, 579
pedagogical bank account example 589, 590
pentesting 277
performance motivation
 context switching 542
 creation and destruction 541
 modern hardware 541
 resource sharing 542
permanence 111
permission models layering 297
pipe 21
Portable Operating System Interface for

Computing Environments (POSICE) 544
Portable Operating System Interface for Unix

(POSIX) 544
POSIX (interval) timers
 about 490
 application workflow 491
 arming 494
 creating 491
 disarming 494
 mechanism, example programs 500
 overrun, figuring 499
 querying 496
 run walk interval timer application 509
 run-walk timer game 500
 timer lookup via proc 516
 using 491
 workflow 496, 499
POSIX capabilities model
 about 277, 278, 279
 file capability sets 283
 thread capability sets 282
POSIX scheduling model
 about 686
 CPU affinity 696

[758]

 nice value 695
 scheduling policies 692
 scheduling policies, peeking 694
 scheduling priority, peeking 694
POSIX threads (pthreads) 522, 543
Principle of Least Privilege (PoLP) 279
priority inheritance (PI) 628
prlimit utility
 about 101
 examples 102
proc filesystem 280
Process Control Block (PCB) 254
process crashes
 handling 422
 SA_SIGINFO, information detailing 422
process credentials
 about 245, 254
 code example 255
 hacking 258, 261
 querying 254
 saved-set ID 257
 setting up 257
 sudo utility 256
process descriptor 73
process execution
 about 301
 exec family APIs 307
 exec Unix axiom 302
 program, converting to process 301
Process Identifier (PID) 241, 303
process memory layout
 about 73
 mapping 74
 segments 74
 VM split 84
process model wait 571
process
 creating 324
 versus threads 679
procfs
 about 745
 process capabilities, viewing 281
profiling (perf) 325
program binary
 capabilities, embedding into 284, 285, 286,

288

program break 128
pthread APIs
 condition variable (CV) 638
 mutex lock 607
 using, for synchronization 606
pthreads
 about 682
 FAQs 682
 multithread pthreads applications, debugging

with GDB 683

Q
QEMU 156

R
race condition 339
race
 critical sections 592, 593
 defeating, after fork 350
racing problem
 about 588
 atomicity 589
 concurrent execution 589
read-execute (r-x) 76
Read-Write (RW) 68
real and effective IDs
 about 244, 246
 password, changing 247, 249
 setgid bits 249
 setuid bits 249
Real Group ID (RGID) 245
real time signals
 about 446, 448
 priority 448, 450, 451
 standard signals, differences 447
real time
 about 690
 firm real-time systems 691
 hard real-time system 691
 soft real-time systems 691
 types 691
Real User ID (RUID) 245
real, effective and saved-set-ID (res) 271
real-time Linux (RTL) 707

[759]

Real-Time Operating System (RTOS) 691
realloc API
 about 125
 corner cases 126
 reallocarray API 127
reentrant functions
 about 391
 async-signal-safe functions 393
reentrant
 functions 391
 safety 391
resource limit values
 caveats 100
 changing 98
 prlimit utility 101
 querying 98
resource limits
 about 90, 92
 availability 93
 types 93
run walk interval timer application
 low-level design and code 512, 515
 trial runs 510
run-walk timer game
 about 500
 code view 505, 508
 trail 503
 working 501

S
SA_NOCLDWAIT flag
 using 399, 400
SA_SIGINFO
 crash location, searching in source code 437
 information, detailing 422
 information, extracting 428, 432
 information, trapping 432
 information, trapping from crash 428
 register, dumping 433, 437
 siginfo_t structure 423, 427
 system-level details, obtaining on process

crashes 427
Sanitizer tools
 about 211
 AddressSanitizer (ASan) 212

 Kernel AddressSanitizer (KASAN) 212
 LeakSanitizer (LSan) 212
 MemorySanitizer (MSan) 212
 reference 213
 ThreadSanitizer (TSan) 212
 UndefinedBehaviorSanitizer (UBSan) 212
saved-set ID 257
sbrk() API
 using 128, 131
Scatter – gather I/O
 about 716
 discontiguous data file 716
 SG – I/O approach 718
SEALS
 URL 158
security
 tips 298
segments
 about 61, 74
 data segments 76
 library segments 77
 stack segment 78
 text segment 76
setgid binary 250
setgid bits
 about 250
 hacking 251, 253
 setting up, with chmod 250
setgid installed programs
 identifying 262
 setres[u|g]id(2) system calls 271
setuid binary 248, 249
setuid bits
 about 250
 hacking 251, 253
 setting up, with chmod 250
setuid root binaries 249
setuid-root binary 249
setuid-root
 about 276
 example 264
 identifying 262
 privileges, giving up 267
 saved-set UID 268, 271
sigaction flags

[760]

 about 397
 alternate signal stack, using 415
 interrupted system calls 402
 SA_NOCLDSTOP flag 402
 SA_NOCLDWAIT 398
 SA_NODEFER flag 405
 SA_RESETHAND flag 404
 SA_RESTART flag, used for fixing interrupted

system calls 403
sigaction system call
 used, for trapping signals 381
sigaction system
 sidebar 382
 structure 382, 385, 386
signal handler
 safety measures 393
 signal-safe atomic integers 394
signal-handling techniques
 alternatives 463
 pause 464
 signalfd API 471, 473
 sigtimedwait system calls 470
 sigwait library API 465, 467, 468, 470
 sigwaitinfo 470
 synchronously blocking, for signals via

sigwait* APIs 465
 synchronously waiting, for signals 463
 waiting 464
signaling
 about 439, 675
 as IPC 455
 Crude IPC 455
 data item, sending 456, 457, 459, 461
 errno, handling 439
 handling, in MT app 677, 679
 issue 676
 LTTng 461, 462
 POSIX solution 676
 sleep state, using 442
signals
 about 376
 behavior, when masked 405
 example cases 373
 existence, checking 454
 handling 380

 handling, at high volume 420
 handling, within OS 391
 kill system, calling 452
 killing permissions 454
 mask, querying 388
 masking 387
 masking, with sigprocmask API 387
 mechanism 373, 376
 need for 373
 raise API 453
 SA_NODEFER 407
 SA_NODEFER bit, executing 411, 413
 SA_NODEFER signal flag, avoiding 406
 sending 452
 standard or UNIX signals 377, 379
 trapping, with sigaction system call 381
simpsh project 347, 351, 352, 353, 355
sleep state
 nanosleep system call 443, 445
 using 442
soft limits 95
Stack Pointer (SP) 579
stack segment
 process stack 78
 stack memory 78
 stack, peeking 81
standard or UNIX signals 378
static analysis tools 197
sudo 256
Symmetric Multiprocessor (SMP) 554
synchronization 339
system architecture, Linux
 ABI 27
 about 27, 38
 control register's content, accessing 33
 preliminaries 27
 register's content, accessing via inline

assembly 31
system calls
 about 254
 process credentials, querying 254
 process credentials, setting up 257
 setgid installed programs, identifying 262
 setuid-root, identifying 262

[761]

T
text 76
thread attributes
 querying 563
thread cancellation
 about 665
 cancelability state 666
 cancelability type 667, 669
 code example 670, 671
 framework 666
thread capability sets
 Ambient (Amb) 282
 Bounding (Bnd) 282
 Effective (Eff) 282
 Inheritable (Inh) 282
 Permitted (Prm) 282
thread cleanup
 about 665
 at thread exit 672
 code example 673, 675
thread join
 about 573
 life, checking 572
 using 566
thread model join 571
thread safety
 about 648, 650, 651
 APIs, avoiding 658
 approaches, for creating functions 653
 foo_r API 661
 glibc APIs, refactoring 659, 660, 661
 glibc foo API 661
 reentrant 651, 652
 standard C library 658
 thread-safe code, creating 651
 via function refactoring 656, 658
 via mutex locks 653, 655, 656
 via TLS 662, 664
 via TSD 664
thread stacks
 about 579
 guards 582, 585
 location 580
 size 579

threads
 about 522
 attributes 562
 counting 555
 creating 546, 556, 558, 560
 design motivation 539
 experimenting with 551
 features 539
 history 543
 managing 545
 parameter, passing 574
 performance motivation 541
 POSIX threads 543
 pthread APIs 545
 resource sharing 523, 527
 terminating, ways 554
 termination 549
 versus processes 679
timers
 via file descriptors 517
tracing tools
 kernel space 745
 user space 745
troubleshooting tools
 about 744
 Linux proc filesystem 745
 perf 744
 tracing tools 745

U
Ubuntu Desktop
 download link 10, 50
ucontext 423
undefined behavior (UB) 123
uninitialized memory reads (UMR) 116, 168,

169

uninitialized variables
 accessing 168
 using 168
Unix fork-exec semantic 348
Unix permission model
 about 238
 access category, determining 242, 244
 at user level 239
 real and effective IDs 244, 246

 security notes 273
 system calls 254
 working 239
Unix
 about 10
 cat utility 19
 command-line interface (CLI) 24
 design philosophy 12
 files 12
 mechanisms principle 25
 modular design 24
 philosophy 11
 plain text 23
 standard input (stdin) 18
 standard output (stdout) 18
 tools, assigning for specific task 15
 tools, combining 21
 word count (wc) 18
Use After Return (UAR)
 about 176
 test case 178
use-after-free (UAF)
 test case 176, 177
User Identifier (UID) 241
user interface (UI) 540

V
Valgrind tools
 cachegrind 198
 callgrind 198
 drd 198
 helgrind 198
 massif 198
 Memcheck 198
 Memcheck, using 198
Valgrind
 summary table 210
 about 198
 cons 210
 Memcheck, using 202, 206

 pros 210
 reference 198
vfork 368
virtual address space (VAS) 58, 114, 302,

303, 522, 725
Virtual Filesystem Switch (VFS) 12, 723
virtual memory (VM), benefits
 memcpy() program, testing 69, 72
 memory-region protection 68
 physical memory 67
 process-isolation 66
virtual memory (VM)
 about 49, 50, 54, 56, 57
 address-translation 65
 benefits 66
 indirection 65
 objective 52
 paging 61
 problem 51
 simplified 64
 simplistic flawed approach 58, 60
virtual memory area (VMA) 730
VM split 85

W
wait API 355, 357, 358
wait
 about 349
 actual system call 366
 performing 350
 scenarios 358, 359, 362
 variations 362, 364, 365
watchdog timer (WDT) 625
watchdog timers 519
white-hat hacking 277
Wireshark 289

Z
zombies 369, 370

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Linux System Architecture
	Technical requirements
	Linux and the Unix operating system
	The Unix philosophy in a nutshell
	Everything is a process – if it's not a process, it's a file
	One tool to do one task
	Three standard I/O channels
	Word count
	cat

	Combine tools seamlessly
	Plain text preferred
	CLI, not GUI
	Modular, designed to be repurposed by others
	Provide mechanisms, not policies
	Pseudocode

	Linux system architecture
	Preliminaries
	The ABI
	Accessing a register's content via inline assembly
	Accessing a control register's content via inline assembly
	CPU privilege levels
	Privilege levels or rings on the x86

	Linux architecture
	Libraries
	System calls
	Linux – a monolithic OS
	What does that mean?

	Execution contexts within the kernel
	Process context
	Interrupt context

	Summary

	Virtual Memory
	Technical requirements
	Virtual memory
	No VM – the problem
	Objective

	Virtual memory
	Addressing 1 – the simplistic flawed approach
	Addressing 2 – paging in brief
	Paging tables – simplified
	Indirection
	Address-translation

	Benefits of using VM
	Process-isolation
	The programmer need not worry about physical memory
	Memory-region protection
	SIDEBAR :: Testing the memcpy() C program

	Process memory layout
	Segments or mappings
	Text segment
	Data segments
	Library segments
	Stack segment
	What is stack memory?
	Why a process stack?
	Peeking at the stack

	Advanced – the VM split

	Summary

	Resource Limits
	Resource limits
	Granularity of resource limits
	Resource types
	Available resource limits

	Hard and soft limits
	Querying and changing resource limit values
	Caveats
	A quick note on the prlimit utility
	Using prlimit(1) – examples

	API interfaces
	Code examples

	Permanence

	Summary

	Dynamic Memory Allocation
	The glibc malloc(3) API family
	The malloc(3) API
	malloc(3) – some FAQs
	malloc(3) – a quick summary

	The free API
	free – a quick summary

	The calloc API
	The realloc API
	The realloc(3) – corner cases
	The reallocarray API

	Beyond the basics
	The program break
	Using the sbrk() API
	How malloc(3) really behaves
	Code example – malloc(3) and the program break
	Scenario 1 – default options
	Scenario 2 – showing malloc statistics
	Scenario 3 – large allocations option

	Where does freed memory go?

	Advanced features
	Demand-paging
	Resident or not?

	Locking memory
	Limits and privileges
	Locking all pages

	Memory protection
	Memory protection – a code example

	An Aside – LSM logs, Ftrace
	LSM logs
	Ftrace
	An experiment – running the memprot program on an ARM-32
	Memory protection keys – a brief note

	Using alloca to allocate automatic memory

	Summary

	Linux Memory Issues
	Common memory issues
	Incorrect memory accesses
	Accessing and/or using uninitialized variables
	Test case 1: Uninitialized memory access

	Out-of-bounds memory accesses
	Test case 2
	Test case 3
	Test case 4
	Test case 5
	Test case 6
	Test case 7

	Use-after-free/Use-after-return bugs
	Test case 8
	Test case 9
	Test case 10

	Leakage
	Test case 11
	Test case 12
	Test case 13
	Test case 13.1
	Test case 13.2
	Test case 13.3

	Undefined behavior
	Fragmentation
	Miscellaneous

	Summary

	Debugging Tools for Memory Issues
	Tool types
	Valgrind
	Using Valgrind's Memcheck tool
	Valgrind summary table
	Valgrind pros and cons : a quick summary

	Sanitizer tools
	Sanitizer toolset
	Building programs for use with ASan
	Running the test cases with ASan
	AddressSanitizer (ASan) summary table
	AddressSanitizer pros and cons – a quick summary

	Glibc mallopt
	Malloc options via the environment

	Some key points
	Code coverage while testing
	What is the modern C/C++ developer to do?
	A mention of the malloc API helpers

	Summary

	Process Credentials
	The traditional Unix permissions model
	Permissions at the user level
	How the Unix permission model works
	Determining the access category

	Real and effective IDs
	A puzzle – how can a regular user change their password?
	The setuid and setgid special permission bits
	Setting the setuid and setgid bits with chmod
	Hacking attempt 1

	System calls
	Querying the process credentials
	Code example
	Sudo – how it works
	What is a saved-set ID?

	Setting the process credentials
	Hacking attempt 2

	An aside – a script to identify setuid-root and setgid installed programs
	setgid example – wall
	Giving up privileges
	Saved-set UID – a quick demo
	The setres[u|g]id(2) system calls

	Important security notes

	Summary

	Process Capabilities
	The modern POSIX capabilities model
	Motivation
	POSIX capabilities
	Capabilities – some gory details
	OS support
	Viewing process capabilities via procfs

	Thread capability sets
	File capability sets

	Embedding capabilities into a program binary
	Capability-dumb binaries
	Getcap and similar utilities
	Wireshark – a case in point

	Setting capabilities programmatically

	Miscellaneous
	How ls displays different binaries
	Permission models layering
	Security tips
	FYI – under the hood, at the level of the Kernel

	Summary

	Process Execution
	Technical requirements
	Process execution
	Converting a program to a process
	The exec Unix axiom
	Key points during an exec operation
	Testing the exec axiom
	Experiment 1 – on the CLI, no frills
	Experiment 2 – on the CLI, again

	The point of no return

	Family time – the exec family APIs
	The wrong way
	Error handling and the exec
	Passing a zero as an argument
	Specifying the name of the successor

	The remaining exec family APIs
	The execlp API
	The execle API
	The execv API

	Exec at the OS level
	Summary table – exec family of APIs
	Code example

	Summary

	Process Creation
	Process creation
	How fork works
	Using the fork system call
	Fork rule #1
	Fork rule #2 – the return
	Fork rule #3
	Atomic execution?

	Fork rule #4 – data
	Fork rule #5 – racing
	The process and open files
	Fork rule #6 – open files
	Open files and security

	Malloc and the fork
	COW in a nutshell

	Waiting and our simpsh project
	The Unix fork-exec semantic
	The need to wait

	Performing the wait
	Defeating the race after fork
	Putting it together – our simpsh project
	The wait API – details

	The scenarios of wait
	Wait scenario #1
	Wait scenario #2
	Fork bombs and creating more than one child
	Wait scenario #3

	Variations on the wait – APIs
	The waitpid(2)
	The waitid (2)
	The actual system call

	A note on the vfork

	More Unix weirdness
	Orphans
	Zombies
	Fork rule #7

	The rules of fork – a summary

	Summary

	Signaling - Part I
	Why signals?
	The signal mechanism in brief

	Available signals
	The standard or Unix signals

	Handling signals
	Using the sigaction system call to trap signals
	Sidebar – the feature test macros
	The sigaction structure
	Masking signals
	Signal masking with the sigprocmask API
	Querying the signal mask

	Sidebar – signal handling within the OS – polling not interrupts

	Reentrant safety and signalling
	Reentrant functions
	Async-signal-safe functions

	Alternate ways to be safe within a signal handler
	Signal-safe atomic integers

	Powerful sigaction flags
	Zombies not invited
	No zombies! – the classic way
	No zombies! – the modern way

	The SA_NOCLDSTOP flag
	Interrupted system calls and how to fix them with the SA_RESTART
	The once only SA_RESETHAND flag
	To defer or not? Working with SA_NODEFER
	Signal behavior when masked
	Case 1 : Default : SA_NODEFER bit cleared
	Case 2 : SA_NODEFER bit set
	Running of case 1 – SA_NODEFER bit cleared [default]
	Running of case 2 – SA_NODEFER bit set

	Using an alternate signal stack
	Implementation to handle high-volume signals with an alternate signal stack
	Case 1 – very small (100 KB) alternate signal stack
	Case 2 : A large (16 MB) alternate signal stack

	Different approaches to handling signals at high volume

	Summary

	Signaling - Part II
	Gracefully handling process crashes
	Detailing information with the SA_SIGINFO
	The siginfo_t structure
	Getting system-level details when a process crashes
	Trapping and extracting information from a crash
	Register dumping
	Finding the crash location in source code

	Signaling – caveats and gotchas
	Handling errno gracefully
	What does errno do?
	The errno race
	Fixing the errno race

	Sleeping correctly
	The nanosleep system call

	Real-time signals
	Differences from standard signals
	Real time signals and priority

	Sending signals
	Just kill 'em
	Killing yourself with a raise
	Agent 00 – permission to kill
	Are you there?

	Signaling as IPC
	Crude IPC
	Better IPC – sending a data item
	Sidebar – LTTng

	Alternative signal-handling techniques
	Synchronously waiting for signals
	Pause, please
	Waiting forever or until a signal arrives

	Synchronously blocking for signals via the sigwait* APIs
	The sigwait library API
	The sigwaitinfo and the sigtimedwait system calls

	The signalfd(2) API

	Summary

	Timers
	Older interfaces
	The good ol' alarm clock
	Alarm API – the downer

	Interval timers
	A simple CLI digital clock
	Obtaining the current time
	Trial runs

	A word on using the profiling timers

	The newer POSIX (interval) timers mechanism
	Typical application workflow
	Creating and using a POSIX (interval) timer
	The arms race – arming and disarming a POSIX timer
	Querying the timer
	Example code snippet showing the workflow
	Figuring the overrun

	POSIX interval timers – example programs
	The reaction – time game
	How fast is fast?
	Our react game – how it works
	React – trial runs
	The react game – code view

	The run:walk interval timer application
	A few trial runs
	The low – level design and code

	Timer lookup via proc

	A quick mention
	Timers via file descriptors
	A quick note on watchdog timers

	Summary

	Multithreading with Pthreads Part I - Essentials
	Multithreading concepts
	What exactly is a thread?
	Resource sharing

	Multiprocess versus multithreaded
	Example 1 – creation/destruction – process/thread
	The multithreading model

	Example 2 – matrix multiplication – process/thread
	Example 3 – kernel build
	On a VM with 1 GB RAM, two CPU cores and parallelized make -j4
	On a VM with 1 GB RAM, one CPU core and sequential make -j1

	Motivation – why threads?
	Design motivation
	Taking advantage of potential parallelism
	Logical separation
	Overlapping CPU with I/O
	Manager-worker model
	IPC becoming simple(r)

	Performance motivation
	Creation and destruction
	Automatically taking advantage of modern hardware
	Resource sharing
	Context switching

	A brief history of threading
	POSIX threads
	Pthreads and Linux

	Thread management – the essential pthread APIs
	Thread creation
	Termination
	The return of the ghost
	So many ways to die

	How many threads is too many?
	How many threads can you create?
	Code example – creating any number of threads

	How many threads should one create?

	Thread attributes
	Code example – querying the default thread attributes

	Joining
	The thread model join and the process model wait
	Checking for life, timing out
	Join or not?

	Parameter passing
	Passing a structure as a parameter
	Thread parameters – what not to do

	Thread stacks
	Get and set thread stack size
	Stack location
	Stack guards

	Summary

	Multithreading with Pthreads Part II - Synchronization
	The racing problem
	Concurrency and atomicity
	The pedagogical bank account example
	Critical sections

	Locking concepts
	Is it atomic?
	Dirty reads

	Locking guidelines
	Locking granularity

	Deadlock and its avoidance
	Common deadlock types
	Self deadlock (relock)
	The ABBA deadlock

	Avoiding deadlock

	Using the pthread APIs for synchronization
	The mutex lock
	Seeing the race
	Mutex attributes
	Mutex types
	The robust mutex attribute
	IPC, threads, and the process-shared mutex

	Priority inversion, watchdogs, and Mars
	Priority inversion
	Watchdog timer in brief
	The Mars Pathfinder mission in brief
	Priority inheritance – avoiding priority inversion
	Summary of mutex attribute usage

	Mutex locking – additional variants
	Timing out on a mutex lock attempt
	Busy-waiting (non-blocking variant) for the lock
	The reader-writer mutex lock
	The spinlock variant

	A few more mutex usage guidelines
	Is the mutex locked?

	Condition variables
	No CV – the naive approach
	Using the condition variable
	A simple CV usage demo application
	CV broadcast wakeup

	Summary

	Multithreading with Pthreads Part III
	Thread safety
	Making code thread-safe
	Reentrant-safe versus thread-safe
	Summary table – approaches to making functions thread-safe
	Thread safety via mutex locks
	Thread safety via function refactoring
	The standard C library and thread safety
	List of APIs not required to be thread-safe
	Refactoring glibc APIs from foo to foo_r
	Some glibc foo and foo_r APIs

	Thread safety via TLS
	Thread safety via TSD

	Thread cancelation and cleanup
	Canceling a thread
	The thread cancelation framework
	The cancelability state
	The cancelability type
	Canceling a thread – a code example

	Cleaning up at thread exit
	Thread cleanup – code example

	Threads and signaling
	The issue
	The POSIX solution to handling signals on MT
	Code example – handling signals in an MT app

	Threads vs processes – look again
	The multiprocess vs the multithreading model – pros of the MT model
	The multiprocess vs the multithreading model – cons of the MT model

	Pthreads – a few random tips and FAQs
	Pthreads – some FAQs
	Debugging multithreaded (pthreads) applications with GDB

	Summary

	CPU Scheduling on Linux
	The Linux OS and the POSIX scheduling model
	The Linux process state machine
	The sleep states

	What is real time?
	Types of real time

	Scheduling policies
	Peeking at the scheduling policy and priority
	The nice value
	CPU affinity

	Exploiting Linux's soft real-time capabilities
	Scheduling policy and priority APIs
	Code example – setting a thread scheduling policy and priority
	Soft real-time – additional considerations

	RTL – Linux as an RTOS
	Summary

	Advanced File I/O
	I/O performance recommendations
	The kernel page cache
	Giving hints to the kernel on file I/O patterns
	Via the posix_fadvise(2) API
	Via the readahead(2) API

	MT app file I/O with the pread, pwrite APIs
	Scatter – gather I/O
	Discontiguous data file – traditional approach
	Discontiguous data file – the SG – I/O approach
	SG – I/O variations

	File I/O via memory mapping
	The Linux I/O code path in brief
	Memory mapping a file for I/O
	File and anonymous mappings
	The mmap advantage
	Code example
	Memory mapping – additional points

	DIO and AIO
	Direct I/O (DIO)
	Asynchronous I/O (AIO)
	I/O technologies – a quick comparison

	Multiplexing or async blocking I/O – a quick note
	I/O – miscellaneous
	Linux's inotify framework
	I/O schedulers
	Ensuring sufficient disk space
	Utilities for I/O monitoring, analysis, and bandwidth control

	Summary

	Troubleshooting and Best Practices
	Troubleshooting tools
	perf
	Tracing tools
	The Linux proc filesystem

	Best practices
	The empirical approach
	Software engineering wisdom in a nutshell
	Programming
	A programmer’s checklist – seven rules
	Better testing
	Using the Linux kernel's control groups

	Summary

	Other Books You May Enjoy
	Index

