
Serkan Kiranyaz
Turker Ince
Moncef Gabbouj

Multidimensional Particle
Swarm Optimization for
Machine Learning and
Pattern Recognition

AD
AP

TA
TI

ON
, L

EA
RN

IN
G,

AN
D

OP
TI

M
IZ

AT
IO

N
 Vo

lu
m

e 1
5

Adaptation, Learning, and Optimization

Volume 15

Editors-in-Chief

Meng-Hiot Lim
Division of Circuits and Systems, School of Electrical and Electronic Engineering,
Nanyang Technological University, Nanyang 639798, Singapore

Yew-Soon Ong
School of Computer Engineering, Nanyang Technological University, Block N4,
2b-39 Nanyang Avenue, Nanyang, 639798, Singapore

For further volumes:
http://www.springer.com/series/8335

http://www.springer.com/series/8335

Serkan Kiranyaz • Turker Ince
Moncef Gabbouj

Multidimensional Particle
Swarm Optimization
for Machine Learning
and Pattern Recognition

123

Serkan Kiranyaz
Moncef Gabbouj
Department of Signal Processing
Tampere University of Technology
Tampere
Finland

Turker Ince
Department of Electrical and Electronics

Engineering
Izmir University of Economics
Balcova, Izmir
Turkey

ISSN 1867-4534 ISSN 1867-4542 (electronic)
ISBN 978-3-642-37845-4 ISBN 978-3-642-37846-1 (eBook)
DOI 10.1007/978-3-642-37846-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013938212

ACM Computing Classification (1998): I.2, I.4, J.2

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The definition of success—To laugh much; to win respect of intelligent persons and the
affections of children; to earn the approbation of honest critics and endure the betrayal of
false friends; to appreciate beauty; to find the best in others; to give one’s self; to leave the
world a little better, whether by a healthy child, a garden patch, or a redeemed social
condition; to have played and laughed with enthusiasm, and sung with exultation; to know
even one life has breathed easier because you have lived—this is to have succeeded.

Ralph Waldo Emerson

The research work presented in this book has been carried out at the Depart-
ment of Signal Processing of Tampere University of Technology, Finland as a part
of the MUVIS project. This book contains a rich software compilation of C/C??

projects with open source codes, which can be requested from the authors via the
email address: MDPSO@email.com.

Over the years the authors have had the privilege to work with a wonderful
group of researchers, students, and colleagues, many of whom are our friends. The
amount of our achievements altogether is much more than any individual
achievement and we strongly believe that together we have really built something
significant. We thank all of them so deeply. Our special thanks and acknowl-
edgment go to Jenni Raitoharju and Stefan Uhlmann for their essential
contributions.

Last but not least, the authors wish to express their love and gratitude to their
beloved families; for their understanding and endless love, and the vital role they
played in our lives and through the completion of this book. We would like to
dedicate this book to our children: the new-born baby girl, Alya Nickole Kiranyaz,
the baby boy, Doruk Ince, Selma, and Sami Gabbouj.

Tampere, December 2012 Prof. Dr. Serkan Kiranyaz
Doc. Dr. Turker Ince

Prof. Dr. Moncef Gabbouj

v

Abstract

The field of optimization consists of an elegant blend of theory and applications.
This particular field constitutes the essence of engineering and it was founded,
developed, and extensively used by a certain group of creative people, known as
Engineers. They investigate and solve a given real world or theoretical problem as
best they can and that is why optimization is everywhere in human life, from tools
and machinery we use daily in engineering design, computer science, IT tech-
nology, and even economics. It is also true that many optimization problems are
multi-modal, which presents further challenges due to deceiving local optima.
Earlier attempts such as gradient descent methods show drastic limitations and
often get trapped into a local optimum, thus yielding a sub-optimum solution.
During the last few decades, such deficiencies turned attention toward stochastic
optimization methods and particularly to Evolutionary Algorithms. Genetic
Algorithms and Particle Swarm Optimization have been studied extensively and
the latter particularly promises much. However, the peculiar nature of many
engineering problems also requires dynamic adaptation, seeking the dimension of
the search space where the optimum solution resides, and especially robust tech-
niques to avoid getting trapped in local optima.

This book explores a recent optimization technique developed by the authors of
the book, called Multi-dimensional Particle Swarm Optimization (MD PSO),
which strives to address the above requirements following an algorithmic approach
to solve important engineering problems. Some of the more complex problems are
formulated in a multi-dimensional search space where the optimum dimension is
also unknown. In this case, MD PSO can seek for both positional and dimensional
optima. Furthermore, two supplementary enhancement methods, the Fractional
Global-Best Formation and Stochastic Approximation with Simultaneous Pertur-
bation, are introduced as an efficient cure to avoid getting trapped in local optima
especially in multi-modal search spaces defined over high dimensions. The book
covers a wide range of fundamental application areas, which can particularly
benefit from such a unified framework. Consider for instance a data clustering
application where MD PSO can be used to determine the true number of clusters
and accurate cluster centroids, in a single framework. Another application in the
field of machine intelligence is to determine the optimal neural network config-
uration for a particular problem. This might be a crucial step, e.g., for robust and

vii

accurate detection of electrocardiogram (ECG) heartbeat patterns for a specific
patient. The reader will see that this system can adapt to significant inter-patient
variations in ECG patterns by evolving the optimal classifier and thus achieves a
high accuracy over large datasets.

The proposed unified framework is then explored in a set of challenging
application domains, namely data mining and content-based multimedia classifi-
cation. Although there are numerous efforts for the latter, we are still in the early
stages of the development to guarantee a satisfactory level of efficiency and
accuracy. To accomplish this for content-based image retrieval (CBIR) and clas-
sification, the book presents a global framework design that embodies a collective
network of evolutionary classifiers. This is a dynamic and adaptive topology,
which allows the creation and design of a dedicated classifier for discriminating a
certain image class from the others based on a single visual descriptor. During an
evolution session, new images, classes, or features can be introduced whilst sig-
naling the classifier network to create new corresponding networks and classifiers
within, to dynamically adapt to the change. In this way the collective classifier
network will be able to scale itself to the indexing requirements of the image
content data reserve whilst striving for maximizing the classification and retrieval
accuracies for better user experience. However one obstacle still remains: low-
level features play the most crucial role in CBIR but they usually lack the dis-
crimination power needed for accurate visual description and representation
especially in the case of large and dynamic image data reserves. Finally, the book
tackles this major research objective and presents an evolutionary feature synthesis
framework, which aims to significantly improve the discrimination power by
synthesizing highly discriminative features. This is obviously not limited to only
CBIR, but can be utilized to synthesize enhanced features for any application
domain where features or feature extraction is involved.

The set of diverse applications presented in the book points the way to explore a
wide range of potential applications in engineering as well as other disciplines.
The book is supplemented with C/C?? source codes for all applications and many
sample datasets to illustrate the major concepts presented in the book. This will
allow practitioners and professionals to comprehend and use the presented tech-
niques and adapt them to their own applications immediately.

viii Preface

Contents

1 Introduction . 1
1.1 Optimization Era . 2
1.2 Key Issues . 4
1.3 Synopsis of the Book . 7
References . 10

2 Optimization Techniques: An Overview 13
2.1 History of Optimization. 13
2.2 Deterministic and Analytic Methods 29

2.2.1 Gradient Descent Method . 29
2.2.2 Newton–Raphson Method . 30
2.2.3 Nelder–Mead Search Method 32

2.3 Stochastic Methods . 33
2.3.1 Simulated Annealing. 33
2.3.2 Stochastic Approximation . 35

2.4 Evolutionary Algorithms . 37
2.4.1 Genetic Algorithms. 37
2.4.2 Differential Evolution . 41

References . 43

3 Particle Swarm Optimization . 45
3.1 Introduction . 45
3.2 Basic PSO Algorithm . 46
3.3 Some PSO Variants . 49

3.3.1 Tribes . 51
3.3.2 Multiswarms . 53

3.4 Applications. 55
3.4.1 Nonlinear Function Minimization 55
3.4.2 Data Clustering . 57
3.4.3 Artificial Neural Networks. 61

3.5 Programming Remarks and Software Packages 74
References . 80

ix

http://dx.doi.org/10.1007/978-3-642-37846-1_1
http://dx.doi.org/10.1007/978-3-642-37846-1_1
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_1#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_2
http://dx.doi.org/10.1007/978-3-642-37846-1_2
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_2#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_3#Bib1

4 Multi-dimensional Particle Swarm Optimization 83
4.1 The Need for Multi-dimensionality . 83
4.2 The Basic Idea . 85
4.3 The MD PSO Algorithm . 87
4.4 Programming Remarks and Software Packages 92

4.4.1 MD PSO Operation in PSO_MDlib Application 92
4.4.2 MD PSO Operation in PSOTestApp Application. 94

References . 99

5 Improving Global Convergence . 101
5.1 Fractional Global Best Formation . 102

5.1.1 The Motivation . 102
5.1.2 PSO with FGBF . 102
5.1.3 MD PSO with FGBF . 104
5.1.4 Nonlinear Function Minimization 104

5.2 Optimization in Dynamic Environments 116
5.2.1 Dynamic Environments: The Test Bed 116
5.2.2 Multiswarm PSO . 117
5.2.3 FGBF for the Moving Peak Benchmark for MPB. . . . 118
5.2.4 Optimization over Multidimensional MPB. 119
5.2.5 Performance Evaluation on Conventional MPB 120
5.2.6 Performance Evaluation on Multidimensional

MPB . 124
5.3 Who Will Guide the Guide? . 128

5.3.1 SPSA Overview . 130
5.3.2 SA-Driven PSO and MD PSO Applications 131
5.3.3 Applications to Non-linear Function Minimization . . . 134

5.4 Summary and Conclusions. 141
5.5 Programming Remarks and Software Packages 142

5.5.1 FGBF Operation in PSO_MDlib Application 143
5.5.2 MD PSO with FGBF Application Over MPB. 144

References . 147

6 Dynamic Data Clustering . 151
6.1 Dynamic Data Clustering via MD PSO with FGBF 152

6.1.1 The Theory . 152
6.1.2 Results on 2D Synthetic Datasets 155
6.1.3 Summary and Conclusions. 160

6.2 Dominant Color Extraction . 160
6.2.1 Motivation . 160
6.2.2 Fuzzy Model over HSV-HSL Color Domains 163
6.2.3 DC Extraction Results. 164
6.2.4 Summary and Conclusions. 170

6.3 Dynamic Data Clustering via SA-Driven MD PSO. 171

x Contents

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_4#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec15
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec15
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec18
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec18
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec19
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec19
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec20
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec20
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec21
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec21
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec22
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Sec22
http://dx.doi.org/10.1007/978-3-642-37846-1_5#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_6
http://dx.doi.org/10.1007/978-3-642-37846-1_6
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec13

6.3.1 SA-Driven MD PSO-Based Dynamic Clustering
in 2D Datasets . 171

6.3.2 Summary and Conclusions. 174
6.4 Programming Remarks and Software Packages 176

6.4.1 FGBF Operation in 2D Clustering 176
6.4.2 DC Extraction in PSOTestApp Application 179
6.4.3 SA-DRIVEN Operation in PSOTestApp

Application . 183
References . 185

7 Evolutionary Artificial Neural Networks 187
7.1 Search for the Optimal Artificial Neural Networks:

An Overview . 188
7.2 Evolutionary Neural Networks by MD PSO. 190

7.2.1 PSO for Artificial Neural Networks:
The Early Attempts. 190

7.2.2 MD PSO-Based Evolutionary Neural Networks 191
7.2.3 Classification Results on Synthetic Problems 193
7.2.4 Classification Results on Medical Diagnosis

Problems . 200
7.2.5 Parameter Sensitivity and Computational

Complexity Analysis . 203
7.3 Evolutionary RBF Classifiers for Polarimetric SAR Images. . . 205

7.3.1 Polarimetric SAR Data Processing 207
7.3.2 SAR Classification Framework. 209
7.3.3 Polarimetric SAR Classification Results 211

7.4 Summary and Conclusions. 217
7.5 Programming Remarks and Software Packages 218
References . 227

8 Personalized ECG Classification . 231
8.1 ECG Classification by Evolutionary Artificial

Neural Networks . 233
8.1.1 Introduction and Motivation. 233
8.1.2 ECG Data Processing . 235
8.1.3 Experimental Results . 239

8.2 Classification of Holter Registers . 244
8.2.1 The Related Work . 245
8.2.2 Personalized Long-Term ECG Classification:

A Systematic Approach. 246
8.2.3 Experimental Results . 250

8.3 Summary and Conclusions. 253
8.4 Programming Remarks and Software Packages 255
References . 257

Contents xi

http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec15
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec15
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec16
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec16
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec17
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec17
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec18
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec18
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec19
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec19
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Sec19
http://dx.doi.org/10.1007/978-3-642-37846-1_6#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_7
http://dx.doi.org/10.1007/978-3-642-37846-1_7
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec8
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_7#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_8
http://dx.doi.org/10.1007/978-3-642-37846-1_8
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec7
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec13
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec14
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec15
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec15
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec16
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Sec16
http://dx.doi.org/10.1007/978-3-642-37846-1_8#Bib1

9 Image Classification and Retrieval by Collective Network
of Binary Classifiers . 259
9.1 The Era of CBIR . 260
9.2 Content-Based Image Classification and Retrieval

Framework . 262
9.2.1 Overview of the Framework 263
9.2.2 Evolutionary Update in the Architecture Space 264
9.2.3 The Classifier Framework: Collective Network

of Binary Classifiers . 265
9.3 Results and Discussions. 270

9.3.1 Database Creation and Feature Extraction 271
9.3.2 Classification Results . 272
9.3.3 CBIR Results . 277

9.4 Summary and Conclusions. 280
9.5 Programming Remarks and Software Packages 281
References . 293

10 Evolutionary Feature Synthesis . 295
10.1 Introduction . 295
10.2 Feature Synthesis and Selection: An Overview. 297
10.3 The Evolutionary Feature Synthesis Framework 299

10.3.1 Motivation . 299
10.3.2 Evolutionary Feature Synthesis Framework 301

10.4 Simulation Results and Discussions 306
10.4.1 Performance Evaluations with Respect

to Discrimination and Classification 307
10.4.2 Comparative Performance Evaluations

on Content-Based Image Retrieval 309
10.5 Programming Remarks and Software Packages 314
References . 321

xii Contents

http://dx.doi.org/10.1007/978-3-642-37846-1_9
http://dx.doi.org/10.1007/978-3-642-37846-1_9
http://dx.doi.org/10.1007/978-3-642-37846-1_9
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec6
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec16
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec16
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec17
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec17
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec18
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Sec18
http://dx.doi.org/10.1007/978-3-642-37846-1_9#Bib1
http://dx.doi.org/10.1007/978-3-642-37846-1_10
http://dx.doi.org/10.1007/978-3-642-37846-1_10
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec1
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec2
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec3
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec4
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec5
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec9
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec10
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec11
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Sec12
http://dx.doi.org/10.1007/978-3-642-37846-1_10#Bib1

Acronyms

2D Two Dimensional
AAMI Association for the Advancement of Medical Instrumentation
AC Agglomerative Clustering
ACO Ant Colony Optimization
aGB Artificial Global Best
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
AS Architecture Space
AV Audio-Visual
BbNN Block-based Neural Networks
BP Back Propagation
bPSO Basic PSO
CBIR Content-Based Image Retrieval
CGP Co-evolutionary Genetic Programming
CLD Color Layout Descriptor
CM Color Moments
CNBC Collective Network of Binary Classifiers
CPU Central Processing Unit
CV Class Vector
CVI Clustering Validity Index
DC Dominant Color
DE Differential Evolution
DFT Discrete Fourier Transform
DLL Dynamic Link Library
DP Dynamic Programming
EA Evolutionary Algorithm
ECG Electrocardiogram
ECOC Error Correcting Output Code
EFS Evolutionary Feature Syntheses
EHD Edge Histogram Descriptor
EM Expectation-Maximization
ENN Evolutionary Neural Networks

xiii

EP Evolutionary Programming
ES Evolution Strategies
FCM Fuzzy C-means
FDSA Finite Difference Stochastic Approximation
FeX Feature Extraction
FF Fundamental Frequency
FFT Fast Fourier Transform
FGBF Fractional Global Best Formation
FT Fourier Transform
FV Feature Vector
GA Genetic Algorithm
GB Global Best
GLCM Gray Level Co-occurrence Matrix
GMM Gaussian Mixture Model
GP Genetic Programming
GTD Ground Truth Data
GUI Graphical User Interface
HMM Hidden Markov Model
HSV Hue, Saturation and (Luminance) Value
HVS Human Visual System
KF Key-Frame
KHM K-Harmonic Means
KKT Karush–Kuhn–Tucker
KLT Karhunen–Loéve Transform
kNN k Nearest Neighbours
LBP Local Binary Pattern
LP Linear Programming
MAP Maximum a Posteriori
MDA Multiple Discriminant Analysis
MD PSO Multi-dimensional Particle Swarm Optimization
ML Maximum-Likelihood
MLP Multilayer Perceptron
MPB Moving Peaks Benchmark
MRF Markov Random Field
MSE Mean-Square Error
MST Minimum Spanning Tree
MUVIS Multimedia Video Indexing and Retrieval System
NLP Nonlinear Programming
P Precision
PCA Principal Component Analysis
PNR Positive to Negative Ratio
PSO Particle Swarm Optimization
R Recall
RBF Radial Basis Function
RF Random Forest

xiv Acronyms

RGB Red, Green and Blue
SA Stochastic Approximation
SAR Synthetic Aperture Radar
SCD Scalable Color Descriptor
SIFT Scale-Invariant Feature Transform
SLP Single-Layer Perceptron
SO Stochastic Optimization
SOC Self-Organized Criticality
SOM Self-Organizing Maps
SPSA Simultaneously Perturbed Stochastic Approximation
SVEB Supra-ventricular Ectopic Beats
SVM Support Vector Machines
TI-DWT Translation-Invariant Dyadic Wavelet Transform
QP Query Path
UI User Interface
VEB Ventricular Ectopic Beats

Acronyms xv

Tables

Table 2.1 Pseudo-code for generic line search method. 30
Table 2.2 Pseudo-code of the simulated annealing algorithm 34
Table 3.1 Pseudo-code for the bPSO algorithm. 48
Table 3.2 A sample architecture space for MLP configuration

sets Rmin ¼ 9; 1; 1; 2f g and Rmax ¼ 9; 8; 4; 2f g 66
Table 3.3 The Overall Test CE Statistics . 73
Table 3.4 The data structure, PSOparam. 75
Table 3.5 Initialization of the PSO swarm . 77
Table 3.6 The main loop for (MD) PSO in Perform() function. 77
Table 3.7 Implementation of Step 3.1 of the PSO pseudo-code

given in Table 3.1 . 78
Table 3.8 The termination of a PSO run. 78
Table 3.9 Implementation of Step 3.4 of the PSO pseudo-code given

in Table 3.1 . 79
Table 4.1 Pseudo-code of MD PSO algorithm 91
Table 4.2 Implementation of Step 3.4 of the MD PSO pseudo-code

given in Table 4.1. 93
Table 4.3 The callback function OnDopso() activated when

pressed ‘‘Run’’ button on PSOtestApp GUI. 96
Table 4.4 Member functions of CPSOcluster class. 97
Table 4.5 The ApplyPSO() API function of the

CPSOcluster class.. 98
Table 4.6 The function CPSOcluster::PSOThread(). 99
Table 5.1 Pseudo-code of FGBF in bPSO . 103
Table 5.2 Pseudo-code for FGBF in MD PSO 105
Table 5.3 Benchmark functions with dimensional bias. 106
Table 5.4 Statistical results from 100 runs over 7 benchmark

functions . 112
Table 5.5 Best known results on the MPB. 123
Table 5.6 Offline error using Scenario 2 . 123
Table 5.7 Offline error on extended MPB . 128
Table 5.8 Pseudo-code for SPSA technique 130

xvii

Table 5.9 Pseudo-code for the first SA-driven PSO approach 132
Table 5.10 PSO Plug-in for the second approach 133
Table 5.11 MD PSO Plug-in for the second approach 134
Table 5.12 Benchmark functions without dimensional bias 135
Table 5.13 Statistical results from 100 runs over seven

benchmark functions . 136
Table 5.14 Statistical results between full-cost and low-cost modes

from 100 runs over seven benchmark functions 139
Table 5.15 t test results for statistical significance analysis

for both SPSA approaches, A1 and A2 140
Table 5.16 t table presenting degrees of freedom vs. probability 140
Table 5.17 Implementation of FGBF pseudo-code given in Table 5.2 . . 144
Table 5.18 The environmental change signaling from the main

MD PSO function. 145
Table 5.19 MD PSO with FGBF implementation for MPB. 146
Table 5.20 The fitness function MPB(). 147
Table 6.1 Processing time (in msec) per iteration for MD PSO

with FGBF clustering using 4 different swarm sizes.
Number of data items is presented in parenthesis
with the sample data space. 159

Table 6.2 Statistical results from 20 runs over 8 2D
data spaces . 173

Table 6.3 MD PSO initialization in the function
CPSOcluster::PSOThread(). 177

Table 6.4 MST formation in the function CPSO_MD
<T,X>::FGBF_CLFn(). 178

Table 6.5 MST formation in the function CPSO_MD
<T,X>::FGBF_CLFn(). 179

Table 6.6 Formation of the centroid groups by breaking
the MST iteratively. 180

Table 6.7 Formation of the aGB particle. 181
Table 6.8 The CVI function, CPSOcluster::ValidityIndex2. 182
Table 6.9 Initialization of DC extraction

in CPSOcolorQ::PSOThread() function 183
Table 6.10 The plug-in function SADFn() for the second

SA-driven approach, A2. 184
Table 6.11 The plug-in for the first SA-driven approach, A1. 185
Table 7.1 Mean (l) and standard deviation (r) of classification

error rates (%) over test datasets. 203
Table 7.2 A sample architecture space with range arrays,

R2
min ¼ 13; 6; 6; 3; 2f g and R2

max ¼ 13; 12; 10; 5; 2f g. 204
Table 7.3 Classification error rate (%) statistics of MD PSO

when applied to two architecture spaces. 204

xviii Tables

Table 7.4 Summary table of pixel-by-pixel classification results
of the RBF-MDPSO classifier over the training
and testing area of San Francisco Bay dataset 212

Table 7.5 Overall performance comparison (in percent)
for San Francisco Bay dataset . 213

Table 7.6 Overall performance (in percent) using smaller training
set (\ %1 of total pixels) for San Francisco Bay dataset . . . 214

Table 7.7 Overall performance comparison (in percent)
for Flevoland dataset. 215

Table 7.8 Summary table of pixel-by-pixel classification results
(in percent) of the RBF-MDPSO classifier over
the training and testing data of Flevoland 216

Table 7.9 Some members and functions of CMLPnet class. 219
Table 7.10 Some members and functions of CMLPnet class. 220
Table 7.11 CDimHash class members and functions. 221
Table 7.12 CGenClassifier class members and functions. 222
Table 7.13 The main entry function for evolutionary ANNs

and classification. 223
Table 7.14 The function evolving MLPs by MD PSO. 225
Table 7.15 The fitness function of MD PSO process

in the CMLP_PSO class. 226
Table 7.16 The constructors of the CSolSpace class. 227
Table 8.1 Summary table of beat-by-beat classification results

for all 44 records in the MIT/BIH arrhythmia database.
Classification results for the testing dataset only
(24 records from the range 200 to 234)
are shown in parenthesis.. 242

Table 8.2 VEB and SVEB classification performance of the presented
method and comparison with the three major algorithms
from the literature. 243

Table 8.3 VEB and SVEB classification accuracy of the
classification system for different PSO parameters
and architecture spaces. 244

Table 8.4 Overall results for each patient in the MIT-BIH
long-term database using the systematic approach
presented. For each class, the number of correctly
detected beats is shown relative to the total
beats originally present.. 252

Table 8.5 The overall confusion matrix . 253
Table 8.6 The function CPSOclusterND::PSOThread(). 256
Table 9.1 14 Features extracted per MUVIS database.. 272
Table 9.2 The architecture space used for MLPs. 273

Tables xix

Table 9.3 Average classification performance of each evolution
method per feature set by 10-fold random train/test set
partitions in Corel_10 database. The best classification
performances in the test set are highlighted. 274

Table 9.4 Confusion matrix of the evolution method, which produced
the best (lowest) test classification error in Table 9.3. 275

Table 9.5 Test dataset confusion matrices for evolution stages
1 (top), 2 (middle) and 3 (bottom) 276

Table 9.6 Final classification performance of the 3-stage
incremental evolution for each evolution method
and feature set for Corel_10 database.. 276

Table 9.7 Classification performance of each evolution method
per feature set for Corel_Caltech_30 database.. 277

Table 9.8 Retrieval performances (%) of the four batch queries
in each MUVIS databases. 278

Table 9.9 Retrieval performances per incremental evolution stage
and traditional (without CNBC) method. 279

Table 9.10 The CBNC specific data structures. 284
Table 9.11 The function: RunFeXfiles(int run).. 286
Table 9.12 The function: TrainCNBC(int run).. 287
Table 9.13 The class: CNBCglobal. 288
Table 9.14 The member function TrainDistributed() of the class

CNBCglobal. 289
Table 9.15 The class: COneNBC. 291
Table 9.16 The member function Train() of the class COneNBC. 292
Table 10.1 A sample set of F = 18 operators used in evolutionary

synthesis. 303
Table 10.2 A sample target vector encoding for 4 classes, c1,…, c4. . . . 305
Table 10.3 Discrimination measure (DM) and the number

of false positives (FP) for the original features. 307
Table 10.4 Statistics of the discrimination measure (DM), the number

of false positives (FP) and the corresponding output
dimensionalities for features synthesized by the first
run of EFS over the entire database. 308

Table 10.5 Statistics of the DM, FP and the corresponding output
dimensionalities for features synthesized by the first run
of the EFS evolved with the ground truth data over
45 % of the database. 308

Table 10.6 Test CEs for the original features 308
Table 10.7 Test CE statistics and the corresponding output

dimensionalities for features synthesized by a single run
of the EFS with 45 % EFS dataset.. 308

xx Tables

Table 10.8 ANMRR and AP measures using original low-level
features. ‘‘All’’ refers to all features are considered. 309

Table 10.9 ANMRR and AP statistics obtained by batch queries
over the class vectors of the single SLP. 309

Table 10.10 ANMRR and AP statistics for features synthesized
by a single run of the EFS when the output dimensionality
is fixed to C = 10 and operator selection is limited
to addition and subtraction. 310

Table 10.11 ANMRR and AP statistics for features synthesized
by a single run of the EFS when the output dimensionality
is fixed to C = 10 and all operators are used.. 310

Table 10.12 ANMRR and AP statistics and the corresponding output
dimensionalities for the synthesized features by a single
EFS run using the fitness function in Eq. (10.4). 311

Table 10.13 Retrieval performance statistics and the corresponding
output dimensionalities for the final synthesized features
by several EFS runs using the fitness function
in Eq. (10.4). 311

Table 10.14 ANMRR and AP statistics for the features synthesized
by the best MLP configuration evolved by MD PSO. 314

Table 10.15 ANMRR and AP statistics for the features synthesized
by the concatenated SLPs. 314

Table 10.16 The class CPSOFeatureSynthesis. 315
Table 10.17 The function: CPSOFeatureSynthesis::PSOThread()

(part-1) . 317
Table 10.18 The function: CPSOFeatureSynthesis::PSOThread()

(part-2). 318
Table 10.19 The function: CPSOFeatureSynthesis::FitnessFnANN() . . . 319
Table 10.20 The function: CPSOFeatureSynthesis::

ApplyFSadaptive(). 320

Tables xxi

Figures

Fig. 1.1 Some sample uni- and multi-modal functions. 4
Fig. 1.2 Sample clustering operations in 2D data space using K-means

method where the true K value must be set before.. 5
Fig. 2.1 Iterations of the fixed (left) and optimum a(k) (right) line

search versions of gradient descent algorithm plotted
over the Rosenbrock objective function, x(0) = [-0.5, 1.0] . . . 31

Fig. 2.2 (Left) Iterations of the Quasi-Newton method plotted over
Rosenbrock function, x0 = [-0.5, 1.0]. (Right) Iterations
of the gradient descent (red) vs. Quasi-Newton (black)
methods plotted over a quadratic objective function,
x(0) = [10, 5] . 32

Fig. 2.3 Left: Iterations of the Nelder–Mead method plotted over
Rosenbrock function with x(0) = [-0.5, 1.0]. The vertices w
ith the minimum function values are only plotted. Right:
consequtive simplex operations during the iterations 3–30 33

Fig. 2.4 The plot of 1,532 iterations of the simulated annealing
method over Rosenbrock function with x(0) = [-0.5, 1.0],
eC ¼ 10�3, T0 ¼ 1, wðTÞ ¼ 0:95T , Nðx0Þ ¼ x0 þ 0:01xranger
where r 2 Nð0; 1Þ, and xrangeis the dimensional
range, i.e., xrange ¼ 2� ð�2Þ ¼ 4 . 35

Fig. 2.5 The plot of 25,000 iterations of the FDSA method over
Rosenbrock function with x(0) = [-0.5, 1.0], eC ¼ 10�3,
a = 20, A = 250, c = 1, t ¼ 1; and s ¼ 0:75 37

Fig. 2.6 A sample chromosome representation for the two problem
variables, a and b . 38

Fig. 2.7 A sample crossover operation over two chromosomes gi

and gj after L = 10 bits. The resultant child chromosomes
are ci and cj . 39

Fig. 2.8 The distributions of real-valued GA population
for generations, g = 1, 160, 518 and 913 over Rosenbrock
function with S = 10, Px = 0.8 and r linearly decreases
from xrange to 0 . 40

xxiii

Fig. 2.9 A sample 2-D fitness function and the DE process
forming the trial vector . 42

Fig. 2.10 The distributions of DE population for generations,
g = 1, 20, 60 and 86 over Rosenbrock function with
S = 10, F = 0.8 and R = 0.1. 43

Fig. 3.1 Illustration of the basic velocity update mechanism in PSO . . . 47
Fig. 3.2 Particle velocity tendency to explode without

velocity clamping . 49
Fig. 3.3 Local PSO topologies . 54
Fig. 3.4 Some benchmark functions in 2D . 56
Fig. 3.5 The plots of the gbest particle’s personal best scores

for the four sample non-linear functions given in Fig. 3.4.
a Sphere. b Giunta. c Rastrigin. d Griewank 56

Fig. 3.6 11 synthetic data spaces in 2D . 59
Fig. 3.7 PSO clustering for 2D data spaces C1–C4 shown

in Fig. 3.6 . 60
Fig. 3.8 Erroneous PSO clustering over data spaces C4, C5, C8

and C9 shown in Fig. 3.6 . 60
Fig. 3.9 An example of a fully-connected feed-forward ANN 62
Fig. 3.10 Train (top) and test (bottom) error statistics vs. hash index

plots from shallow BP- and PSO-training over the
breast cancer dataset. 68

Fig. 3.11 Train (top) and test (bottom) error statistics vs. hash index
plots from deep BP- and PSO-training over the

breast cancer dataset. 69
Fig. 3.12 Train (top) and test (bottom) error statistics vs. hash index

plots from shallow BP- and PSO-training over the
heart disease dataset . 70

Fig. 3.13 Train (top) and test (bottom) error statistics vs. hash index
plots from deep BP- and PSO-training over the
heart disease dataset . 71

Fig. 3.14 Train (top) and test (bottom) error statistics vs. hash index
plots from shallow BP- and PSO-training over the
diabetes dataset . 72

Fig. 3.15 Train (top) and test (bottom) error statistics vs. hash index
plots from deep BP- and PSO-training over the diabetes
dataset . 73

Fig. 3.16 Error statistics (for network configuration with the hash index
d = 16) vs. training depth plots using BP and PSO over
the breast cancer (top), heart disease (middle), and diabetes
(bottom) datasets. 74

Fig. 4.1 2D synthetic data spaces carrying different
clustering schemes . 84

xxiv Figures

Fig. 4.2 An Illustrative MD PSO process during which particles
7 and 9 have just moved 2D and 3D solution spaces at time t;
whereas particle a is sent to 23rd dimension 86

Fig. 4.3 Sample MD PSO (right) vs. bPSO (left) particle structures.
For MD PSO Dmin ¼ 2; Dmax ¼ 10f g and at time t,
xdaðtÞ ¼ 2 and x~daðtÞ ¼ 3 . 88

Fig. 4.4 GUI of PSOTestApp with several MD PSO applications (top)
and MD PSO Parameters dialog is activated when pressed
‘‘Run’’ button (bottom) . 95

Fig. 5.1 A sample FGBF in 2D space . 103
Fig. 5.2 Fitness score (top in log-scale) and dimension (bottom)

plots vs. iteration number for MD PSO (left)
and bPSO (right) operations both of which run over
De Jong function . 107

Fig. 5.3 Fitness score (top in log-scale) and dimension (bottom)
plots vs. iteration number for a MD PSO run over Sphere
function with (left) and without (right) FGBF 108

Fig. 5.4 Particle index plot for the MD PSO with FGBF operation
shown in Fig. 5.3. 108

Fig. 5.5 Fitness score (top in log-scale) and dimension (bottom)
plots vs. iteration number for a MD PSO run over Schwefel
function with (left) and without (right) FGBF 109

Fig. 5.6 Fitness score (top in log scale) and dimension (bottom)
plots vs. iteration number for a MD PSO run over Giunta
function with (left) and without (right) FGBF 109

Fig. 5.7 MD PSO with FGBF operation over Griewank (top)
and Rastrigin (bottom) functions with d0 ¼ 20 (red) and
d0 ¼ 80 (blue) using the swarm size, S = 80 (left)
and S = 320 (right) . 110

Fig. 5.8 Current error at the beginning of a run 121
Fig. 5.9 Effect of multi-swarms on results . 122
Fig. 5.10 Effect of FGBF on results . 122
Fig. 5.11 Optimum dimension tracking in a MD PSO run 124
Fig. 5.12 Current error at the beginning of a MD PSO run 125
Fig. 5.13 Optimum dimension tracking without multi-swarms

in a MD PSO run . 126
Fig. 5.14 Effect of multi-swarms on the performance 126
Fig. 5.15 Optimum dimension tracking without FGBF

in a MD PSO run . 127
Fig. 5.16 Effect of FGBF on the performance 127
Fig. 6.1 The formation of the centroid subset in a sample clustering

example. The black dots represent data points over 2D
space and each colored ‘ ? ’ represents one centroid
(dimension) of a swarm particle . 154

Figures xxv

Fig. 6.2 Typical clustering results via MD PSO with FGBF.
Over-clustered samples are indicated with *. 156

Fig. 6.3 Fitness score (top) and dimension (bottom) plots vs. iteration
number for a MD PSO with FGBF clustering operation
over C4. 3 clustering snapshots at iterations 105, 1,050
and 1,850, are presented below. 157

Fig. 6.4 Fitness score (top) and dimension (bottom) plots vs. iteration
number for a MD PSO with FGBF clustering operation
over C9. 3 clustering snapshots at iterations 40, 950

and, 1,999, are presented below . 158
Fig. 6.5 Particle index plot for the MD PSO with FGBF clustering

operation shown in Fig. 6.4 . 158
Fig. 6.6 Fuzzy model for distance computation in HSV and HSL color

domains (best viewed in color) . 164
Fig. 6.7 Number of DC plot from three MPEG-7 DCDs

with different parameter set over the sample database 165
Fig. 6.8 The DC extraction results over 5 images from the sample

database (best viewed in color). 166
Fig. 6.9 The DC extraction results over 5 images from the sample

database (best viewed in color). 167
Fig. 6.10 DC number histograms of 2 sample images using

3 parameter sets. Some typical back-projected images
with their DC number pointed are shown within the
histogram plots (best viewed in color) 169

Fig. 6.11 2D synthetic data spaces carrying different
clustering schemes . 171

Fig. 6.12 Some clustering runs with the corresponding
fitness scores (f) . 174

Fig. 6.13 The worst and the best clustering results using
standalone (left) and SA-driven (right) MD PSO 175

Fig. 7.1 The function y ¼ cosðx=2Þ sinð8xÞplot in interval
�p; pf gwith 100 samples . 195

Fig. 7.2 Error statistics from exhaustive BP training (top) and dbest
histogram from 100 MD PSO evolutions (bottom)
for y ¼ cosðx=2Þ sinð8xÞ function approximation. 196

Fig. 7.3 Training MSE (top) and dimension (bottom) plots vs. iteration
number for 17th (left) and 93rd (right) MD PSO runs 197

Fig. 7.4 MSE plots from the exhaustive BP training (top) and a single
run of MD PSO (bottom) . 198

Fig. 7.5 Error statistics from exhaustive BP training (top) and dbest
histogram from 100 MD PSO evolutions (bottom)
for 10-bit parity problem . 198

xxvi Figures

Fig. 7.6 Error (MSE) statistics from exhaustive BP training (top)
and dbest histogram from 100 MD PSO evolutions (bottom)
for the two-spirals problem . 199

Fig. 7.7 Error statistics from exhaustive BP training over
Breast Cancer (top) and Diabetes (bottom) datasets. 202

Fig. 7.8 Error statistics from exhaustive BP training (top)
and dbest histogram from 100 MD PSO evolutions (bottom)
over the Heart Disease dataset . 202

Fig. 7.9 Overview of the evolutionary RBF network classifier
design for polarimetric SAR image . 210

Fig. 7.10 Pauli image of 600 9 600 pixel subarea of San Francisco
Bay (left) with the 5 9 5 refined Lee filter used. The training
and testing areas for three classes are shown using red
rectangles and circles respectively. The aerial photograph
for this area (right) provided by the U.S. Geological Survey
taken on Oct, 1993 can be used as ground-truth 211

Fig. 7.11 The classification results of the RBF-MDPSO classifier
over the 600 9 600 sub-image of San Francisco Bay
(black denotes sea, gray urban areas, white
vegetated zones) . 213

Fig. 7.12 The classification results of the RBF-MDPSO technique
for the original (900 9 1024) San Francisco Bay image
(black denotes sea, gray urban areas, white
vegetated zones) . 214

Fig. 7.13. Fitness score (left top) and dimension (left bottom) plots
vs. iteration number for a typical MD PSO run. The resulting
histogram plot (right) of cluster numbers which are
determined by the MD PSO method. 215

Fig. 7.14 The classification results on the L-band AIRSAR data
over Flevoland . 217

Fig. 8.1 Patient-specific ECG classification system 232
Fig. 8.2 Sample beat waveforms, including Normal (N), PVC (V),

and APC (S) AAMI heartbeat classes, selected from
record 201 modified-lead II from the MIT/BIH arrhythmia
database and corresponding TI DWT decompositions
for the first five scales. 236

Fig. 8.3 Power spectrum of windowed ECG signal from record 201
for Normal (N), PVC (V), and APC (S) AAMI heartbeat
classes, and equivalent frequency responses of FIR digital
filters for a quadratic spline wavelet at 360 Hz
sampling rate . 237

Fig. 8.4 Scatter plot of Normal (N), PVC (V), and APC (S) beats
from record 201 in terms of the first and third principal
components and RRi time interval . 239

Figures xxvii

Fig. 8.5 Error (MSE) statistics from exhaustive BP training (top)
and dbest histogram from 100 MD PSO evolutions (bottom)
for patient record 222 . 241

Fig. 8.6 The overview of the systematic approach for long-term
ECG classification . 247

Fig. 8.7 Sample beat waveforms, including Normal (N), PVC (V),
and APC (S) AAMI [13] heartbeat classes from the
MIT-BIH database. Heartbeat fiducial point intervals
(RR-intervals) and ECG morphology features
(samples of QRS complex and T-wave) are extracted 248

Fig. 8.8 Excerpt of raw ECG data from patient record 14,046
in the MIT-BIH long-term database. The three key-beats,
having morphological and RR-interval differences,
are chosen by the systematic approach presented 251

Fig. 8.9 Excerpt of raw ECG data from patient record 14,172
in the MIT-BIH long-term database. The key-beats extracted
by the systematic approach are indicated 251

Fig. 9.1 The overview of the CBIR framework 263
Fig. 9.2 Evolutionary update in a sample AS for MLP configuration

arrays Rmin ¼ 15; 1; 2f g and Rmax ¼ 15; 4; 2f g where
NR ¼ 3 and NC ¼ 5. The best runs for each configurations
are highlighted and the best configuration in each run
is tagged with ‘*’.. 265

Fig. 9.3 Topology of the CNBC framework with C classes
and N FVs . 266

Fig. 9.4 Illustration of the two-phase evolution session over
BCs’ architecture spaces in each NBC 268

Fig. 9.5 8 sample queries in Corel_10 (qA and qB), and
Corel_Caltech_30 (qC and qD) databases with
and without CNBC. The top-left image is the query image . . . 279

Fig. 9.6 Two sample retrievals of sample queries qA and qB,
performed at each stage from classes 2 and 6.
The top-left is the query image. 280

Fig. 10.1 An illustrative EFS, which is applied to 2D feature vectors
of a 3-class dataset . 299

Fig. 10.2 Two sample feature synthesis performed on 2-D (FS-1)
and 1-D (FS-2) feature spaces . 300

Fig. 10.3 The block diagram of Feature eXtraction (FeX) and the
EFS technique with R runs . 301

Fig. 10.4 Encoding jth dimensional component of the particle a
in dimension d for K-depth feature synthesis 302

Fig. 10.5 Four sample queries using original (left) and synthesized
features with single (middle) and four (right) runs.
Top-left is the query image . 313

xxviii Figures

Chapter 1
Introduction

God always takes the simplest way
Albert Einstein

Optimization as a generic term is defined by the Merriam-Webster dictionary as:
an act, process, or methodology of making something (as a design, system, or
decision) as fully perfect, functional, or effective as possible; specifically: the
mathematical procedures (as finding the maximum of a function) involved in this.

Dante Aligheiri, around the year 1300, elevated the simple principle of opti-
mization to a virtue:

All that is superfluous displeases God and Nature
All that displeases God and Nature is evil.

A number of medieval philosophers and thinkers defended the principle that
nature strives for the optimal or the best path. For instance, the famous French
mathematician Maupertuis proclaimed: If there occur some changes in nature, the
amount of action necessary for this change must be as small as possible. This was
also indicated by William of Occam, the most influential philosopher of the four-
teenth century, who quoted the principle of Economics as: Entities are not to be
multiplied beyond necessity. In science this is best known as: What can be done with
fewer is done in vain with more. Above all, optimization is founded and developed
by a certain type of ingenious and creative people, the so-called Engineers. As a
common misconception, English speakers tend to think that the word ‘‘engineering’’
is related to the word of ‘‘engine,’’ thus engineers are people who work with engines.
In fact, the word ‘‘engineer’’ comes from the French word ‘‘ingénieur’’ which
derives from the same Latin roots as the words ‘‘ingenuity’’ and ‘‘genius’’. There-
fore, ‘‘Optimization’’ is the very essence of engineering as engineers (at least the
good ones) are not interested with any solution of a given problem, but the best
possible or as fully perfect, functional, or effective as possible one. In short, engi-
neering is the art of creating optimum solutions and the optimality therein can be
defined by the conditions and constraints of the problem in hand.

The first step of the solution lies in the mathematical modeling of the problem
and its constraints. A mathematical model is needed for the proper representation
of the variables, features, and constraints. Once the model is formulated in terms of
a so-called ‘‘objective function,’’ then an efficient mathematical optimization
technique can be developed to search for the extremum point of the function,

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_1, � Springer-Verlag Berlin Heidelberg 2014

1

which corresponds to the optimum solution of the problem. In mathematical terms,
let f : S! R be the objective function from a set S to the real numbers. An
optimization technique searches for the extremum point x0 in S such that either
f x0ð Þ � f xð Þ or f x0ð Þ � f xð Þ for all x in S. In this way the original problem within
which an optimal solution is sought, is transformed to an equivalent (or sometimes
approximating) function optimization problem. The original problem can be a
multi-objective problem where there is more than one objective present. For
example, one might wish to design a video encoder with the lowest possible
complexity and highest compression rate. There will be one design with the lowest
complexity but possibly with an inferior compression rate and another one with the
highest compression rate but possibly with a very high complexity. Obviously,
there will be an infinite number of encoders with some compromise of complexity
and compression efficiency. As these objectives—usually—conflict with each
other, a trade-off will naturally occur. One way to tackle this kind of problem is to
perform a regularization technique, which will properly blend the two or multiple
objectives into a single objective function.

1.1 Optimization Era

The optimization era started with the early days of Newton, Lagrange, and Cau-
chy. Particularly, the development of the mathematical foundations such as dif-
ferential calculus methods that are capable of moving toward an optimum of a
function was possible thanks to the contributions of Newton, Gauss, and Leibnitz
to calculus. Cauchy proposed the first steepest descent method to solve uncon-
strained optimization problems. Furthermore, Bernoulli, Euler, Lagrange, Fermat,
and Weistrass developed the foundations of function minimization in calculus
while Lagrange invented the method of optimization for constrained problems
using the unknown multipliers called after him, i.e., Lagrange multipliers. After
the second half of the twentieth century, with the invention of digital computers,
massive number of new techniques and algorithms were developed to solve
complex optimization problems and such ongoing efforts stimulated further
research on different and entirely new areas in optimization era. A major break-
through was ‘‘linear programming’’, which was invented by George Dantzig. To
name few other milestones in this area:

• Kuhn and Tucker in 1951 carried out studies later leading to the research on
Nonlinear programming, which is the general case where the objective function
or the constraints or both contain nonlinear parts.

• Bellman in 1957 presented the principle of optimality for Dynamic program-
ming with an optimization strategy based on splitting the problem into smaller
sub-problems. The equation given by his name describes the relationship
between these sub-problems.

2 1 Introduction

• Combinatorial optimization is a generic term for a set of optimization methods
encapsulating operations research, algorithm theory, and computational com-
plexity theory. Methods in this domain search for a set of feasible solutions in
discrete spaces with the goal of finding the optimum solution where exhaustive
(or sequential) search is not feasible. It has important applications in several
fields, including artificial intelligence, machine learning, mathematics, and
software engineering. It is also applied to certain optimization problems that
involve uncertainty. For example, many real-world problems almost invariably
include some unknown parameters.

• Dantzig, Charnes, and Cooper developed Stochastic programming, which
studies the case in which some of the constraints or parameters depend on
random variables.

• Robust programming is, like stochastic programming, an attempt to capture
uncertainty in the data underlying the optimization problem. This is not done
through the use of random variables, but instead, the problem is solved taking
into account inaccuracies in the input data.

• Simulated Annealing and the family of evolutionary algorithms (EAs) are
sometimes called Meta-heuristics, which make few or no assumptions about the
problem being optimized and can thus search for the global optimum over a
large set of candidate solutions. However, there is no guarantee that the optimal
solution will ever be found.

Among all these methods and many others hereby unmentioned, it is hard to
classify the optimization methods as one method can be classified into many
categories. A crude classification can divide them into linear and nonlinear pro-
gramming. The former intends to seek an optimal solution to problems represented
by a set of linear equations. The Minimum Spanning Tree [1] and Simplex
methods [2] are examples of linear programming. An example of problems solved
by linear programming is that of the ‘‘traveling salesman,’’ seeking a minimal
traveling distance between two connected graph vertices. Nonlinear programming
(NLP) attempts to solve problems by nonlinear equations and can be divided
further into two sub-categories: deterministic and stochastic. The former performs
an iterative search within the solution (or error) space based on the gradient
information. In each iteration, the search is carried out toward the direction in
which the function is minimized. This is different in stochastic methods, which
perform the search through the rules of probability. This gives them advantage to
be applicable to any optimization problem as they do not require the gradient
information. Due to their extensive number, in this book, we can only discuss
some major and related optimization methods in detail among a wide variety of
global optimization techniques while giving an extensive survey on the amazing
history of optimization.

1.1 Optimization Era 3

1.2 Key Issues

Optimization problems are often multi-modal, meaning that there exist some
deceiving local optima, as seen in the two examples illustrated in Fig. 1.1. This is
one of the most challenging type of optimization problems since the optimum
solution can be hard to find (e.g., see the last example in the figure)—if not
impossible. Recall that deterministic optimization methods are based on the cal-
culation of derivatives or their approximations. They converge to the position
where the function gradient is null following the direction of the gradient vector.
When the solution space of the problem is uni-modal, they are reliable, robust, and
fast in finding the global optimum; however, due to their iterative approach they
usually fail to find the global optimum in multi-modal problems. Instead, they get
trapped into a local minimum. Random initialization of multiple runs may help
find better local optima; however, finding the global solution is never guaranteed.
For multi-modal problems with a large number of local optima, random initiali-
zation may result in random convergence, therefore; the results are unrepeatable
and sub-optimum. Furthermore, the assumptions for their applications may seldom
hold in practice, i.e., the derivative of the function may not be defined.

Besides function minimization in calculus, deterministic optimization methods
are commonly used in several important application areas. For example in artificial
neural networks, the well-known training method, back propagation (BP) [3], is
indeed a gradient descent learning algorithm. The parameters (weights and biases)
of a feed-forward neural network are randomly initialized and thus each individual
BP run performs a gradient descent in the solution (error) space to converge to a
(new) set of parameters. Another typical example is the expectation-maximization
(EM) method, which finds the maximum likelihood or maximum a posteriori
(MAP) estimates of the parameters in some statistical models. The most common
models are Gaussian mixture models (GMMs) that are parametric probability
density functions represented as a weighted sum of Gaussian probability density
functions. GMMs are commonly used as a parametric model of the probability
distribution of the properties or features in several areas in signal processing,
pattern recognition, and many other related engineering fields. In order to deter-
mine the parameters of a particular GMM, EM is used as an iterative method
which alternates between performing an expectation (E) step, which computes the

O
b

j.
F

un
ct

io
n

f(
x)

O
b

j.
F

un
ct

io
n

f(
x)

O
bj

.F
un

ct
io

n
f(

x)

x x x
Uni-modal function

multi-modal function with
few local optima

multi-modal function with no useful
gradient information

Isolated
global

optimum

Fig. 1.1 Some sample uni- and multi-modal functions

4 1 Introduction

expectation of the log-likelihood evaluated using the current estimate for the
parameters, and a maximization (M) step, which computes the parameters maxi-
mizing the expected log-likelihood found in step E. These estimates are then used
to determine the distribution of the latent variables in the next E step and so on.
EM is a typical example of deterministic optimization methods, which performs
greedy descent in the error space and if the step sizes are chosen properly, it can be
easily shown that EM becomes identical to the gradient descent method. GMMs
are especially useful as a data mining tool and frequently used to model data
distributions and to cluster them. K-means [4] is another example of a determin-
istic optimization technique, and perhaps one of the most popular data clustering
algorithm ever proposed. Similarly, when applied to complex clustering problems
in high-dimensional data spaces, as a natural consequence of the highly multi-
modal nature of the solution space, K-means cannot converge to the global opti-
mum—meaning that the true clusters cannot be revealed and either over- or
usually under-clustering occurs. See, for instance, the clustering examples in Fig.
4.1 where clusters are colored into red, green, and blue for a better visualization
and the data points are represented by colored pixels with the cluster centroids
shown by a white ‘+’. In the simulations, it took 4, 13, and 127 K-means runs,
respectively, to extract the true clusters in the first three examples as shown in the
figure. Even though we performed more than 10,000 runs, no individual run
successfully clusters the last example with 42 clusters. This is an expected out-
come considering the extremely multi-modal error space of the last example with a
massive number of local optima.

Such a deficiency turned the attention toward stochastic optimization methods
and particularly to evolutionary algorithms (EAs) such as genetic algorithm (GA)
[5], genetic programming (GP) [6], evolution strategies (ES), [7] and evolutionary
programming (EP), [8]. All EAs are population-based techniques which can often
avoid being trapped in a local optimum; however, finding the optimum solutions is
never guaranteed. On the other hand, another major drawback still remains
unanswered for all, that is, the inability to find the true dimension of the solution
space in which the global optimum resides. Many problems, such as data clus-
tering, require this information in advance without which convergence to the
global optimum is simply not possible, e.g., see the simple 2D data clustering
examples in Fig. 1.2 where the true number of clusters (K) must be set in advance.
In many clustering problems, especially complex ones with many clusters, this

K = 4 K = 5 K = 10 K = ?

Fig. 1.2 Sample clustering operations in 2D data space using K-means method where the true K
value must be set before

1.2 Key Issues 5

http://dx.doi.org/10.1007/978-3-642-37846-1_4

may not be feasible, if not impossible, to determine in advance, and thus the
optimization method should find it along with the optimum solution in that
dimension. This is also a major problem in many optimization methods mentioned
earlier. For instance, BP can only train a feed-forward ANN without searching for
the optimum configuration for the learning problem in hand. Therefore, what a
typical BP run can indeed accomplish is the sub-optimum parameter setting of a
sub-optimum ANN configuration.

All optimization methods so far mentioned and many more are applicable only
to static problems. Many real-world problems are dynamic and thus require sys-
tematic re-optimizations due to system and/or environmental changes. Even
though it is possible to handle such dynamic problems as a series of individual
processes via restarting the optimization algorithm after each change, this may
lead to a significant loss of useful information, especially when the change is not
too drastic, but rather incremental in nature. Since most of such problems have a
multi-modal nature, which further complicates the dynamic optimization prob-
lems, the need for powerful and efficient optimization techniques is imminent. Due
to the reasons mentioned earlier, in the last decade the efforts have been focused on
EAs and particularly on particle swarm optimization (PSO) [9–11], which has
obvious ties with the EA family, lies somewhere between GA and EP. Yet unlike
GA, PSO has no complicated evolutionary operators such as crossover, selection,
and mutation and it is highly dependent on stochastic processes. However, PSO
might exhibit some major problems and severe drawbacks such as parameter
dependency [12] and loss of diversity [13]. Particularly, the latter phenomenon
increases the probability of being trapped in local optima and it is the main source
of premature convergence problem especially when the dimensionality of the
search space is large [14] and the problem to be optimized is multi-modal [13, 15].

Low-level features (also called descriptors in some application domains) play a
central role in many computer vision, pattern recognition, and signal processing
applications. Features are various types of information extracted from the raw data
and represent some of its characteristics or signatures. However, especially the
(low-level) features, which can be extracted automatically, usually lack the dis-
crimination power needed for accurate processing especially in the case of a large
and varied media content data reserves. Especially in content-based image
indexing and retrieval (CBIR) area, this is referred to as ‘‘Semantic Gap’’ problem,
which defines a rather large gap between the low-level features and their limited
ability to represent the ‘‘content.’’ Therefore, it is crucial to optimize these features
particularly for achieving a reasonable performance on multimedia classification,
indexing, and retrieval applications, and perhaps for many other domains in var-
ious related fields. Since features are in high dimensions in general, the optimi-
zation method should naturally tackle with multi-modality and the phenomenon
so-called ‘‘the curse of dimensionality.’’ Furthermore, in such application domains,
the features may not be static, rather dynamically changing (new features can be
extracted or some features might be modified). This brings the scalability issue
along with the instantaneous adaptability to whatever (incremental) change may

6 1 Introduction

occur in time. All in all, these issues are beyond the capability of the basic PSO or
any other EA method alone and will thus be the major subject of this book.

1.3 Synopsis of the Book

This book, first of all, is not about PSO or any traditional optimization method
proposed since there are many brilliant books and publications for them. As the key-
issues are highlighted in the previous section, we shall basically start over where
they left. In this book after a proper introduction to the general field and related work,
we shall first present a novel optimization technique, the so-called Multi-
dimensional particle swarm optimization (MD PSO), which re-forms the native
structure of swarm particles in such a way that they can make inter-dimensional
passes with a dedicated dimensional PSO process. Therefore, in a multi-dimensional
search space where the optimum dimension is unknown, swarm particles can seek
for both positional and dimensional optima. This eventually negates the necessity of
setting a fixed dimension a priori, which is a common drawback for the family of
swarm optimizers. Therefore, instead of operating at a fixed dimension N, the MD
PSO algorithm is designed to seek both positional and dimensional optima within a
dimension range, (Dmin�N� Dmax). Nevertheless, MD PSO is still susceptible to
premature convergence as inherited by the basic PSO. To address this problem we
shall then introduce an enhancement procedure, called Fractional global best for-
mation (FGBF) technique, which basically collects all promising dimensional
components and fractionally creates an artificial global-best particle (aGB) that has
the potential to be a better ‘‘guide’’ than the PSO’s native gbest particle. We shall
further enrich this scope by introducing the application of stochastic approximation
(SA) technique to further ‘‘guide the guide.’’ As an alternative and generic approach
to FGBF, SA-driven PSO, and its multi-dimensional extension, SA-driven also
addresses the premature convergence problem in a more generic way. Both SA-
driven and MD PSO with FGBF can then be applied to solve many practical
problems in an efficient way. The first application is nonlinear function minimiza-
tion. We shall demonstrate the capability of both techniques for accurate root finding
in challenging high-dimensional nonlinear functions. The second application
domain is dynamic data clustering, which presents highly complex and multi-modal
error surface where traditional optimization or clustering techniques usually fails.
As discussed earlier, the dynamic clustering problem requires the determination of
the solution space dimension (i.e., number of clusters) and an effective mechanism to
avoid local optima traps (both dimensionally and spatially) particularly in complex
clustering schemes in high dimensions. The former requirement justifies the use of
the MD PSO technique while the latter calls for FGBF (or SA-driven). We shall
present that, if properly applied, the true number of clusters with accurate center
localization can be achieved. Several practical applications shall be demonstrated
based on this dynamic clustering technique, i.e., to start with, 2D synthetic data
spaces with ground truth clusters are first examined to show the accuracy and

1.2 Key Issues 7

efficiency of the method. In a specific application in the biomedical engineering, we
shall then present a novel and personalized long-term ECG classification system,
which addresses the problem within a long-term ECG signal, known as Holter
register, recorded from an individual patient. Due to the massive amount of ECG
data in a Holter register, visual inspection is quite difficult and cumbersome, if not
infeasible. Therefore, the system helps professionals to quickly and accurately
diagnose any latent heart disease by examining only the representative beats (the so-
called master key-beats) each of which is automatically extracted from a cluster of
homogeneous (similar) beats. Furthermore, dynamic clustering method shall be used
to ‘‘evolve’’ radial basis function (RBF) neural networks so that evolutionary RBF
networks can ‘‘adapt’’ or ‘‘search’’ for the optimum RBF architecture for the
problem in hand. We shall show that both training and test classification results
indicate a superior performance with respect to the traditional back propagation (BP)
method over real datasets (e.g., features from Benthic macroinvertebrate images).

Another novel technique we shall present is the automatic design of artificial
neural networks (ANNs) for a given problem by evolving the network configuration
toward the optimal one within a given architecture space. This is entirely based on
multi-dimensional particle swarm optimization (MD PSO) technique. With the
proper encoding of the network configurations and parameters into particles, MD
PSO can then seek positional optimum in the error space and dimensional optimum
in the architecture space. The optimum dimension converged at the end of a MD
PSO process corresponds to a unique ANN configuration where the network
parameters (connections, weights, and biases) can then be resolved from the posi-
tional optimum reached on that dimension. Furthermore, the proposed technique
generates a ranked list of network configurations, from the best to the worst. This is
indeed a crucial piece of information, indicating what potential configurations can
be alternatives to the best one, and which configurations should not be used at all for
a particular problem. In this book, the architecture space will be defined over feed-
forward, fully-connected ANNs so as to use the conventional techniques for com-
parison such as BP and some other evolutionary methods in this field. This technique
is then applied over the most challenging synthetic problems (e.g., 10-bit parity
problem, highly dynamic function interpolation, two-spirals problem, etc.) to test its
performance on evolving networks. Additional optimization tests are performed
over several benchmark problems to test their generalization capability and compare
them with several competing techniques. We shall show that MD PSO evolves to
optimum or near-optimum networks in general and has a superior generalization
capability. Furthermore, MD PSO naturally favors a low-dimension solution when it
exhibits a competitive performance with a high dimension counterpart and such a
native tendency eventually leads the evolution process to favor compact network
configurations in the architecture space rather than the complex ones, as long as
optimality prevails. The main application area of this elegant technique shall be
generic and patient-specific classification system designed for robust and accurate
detection of electrocardiogram (ECG) heartbeat patterns. We shall deliberately
show and explain that this system can adapt to significant inter-patient variations in

8 1 Introduction

ECG patterns by evolving the optimal network structure and thus achieves a high
accuracy over large datasets. One major advantage of this system is that due to its
parameter invariance, it is highly generic and thus applicable to any ECG dataset.

We then focus on the multimedia classification, indexing, and retrieval problem
and provide detailed solutions within two chapters. In this particular area, the
following key questions still remain unanswered. (1) how to select relevant fea-
tures so as to achieve the highest discrimination over certain classes, (2) how to
combine them in the most effective way, (3) which distance metric to apply, (4)
how to find the optimal classifier configuration for the classification problem at
hand, (5) how to scale/adapt the classifier if a large number of classes/features are
present, and finally, (6) how to train the classifier efficiently to maximize the
classification accuracy. Traditional classifiers, such as support vector machines
(SVMs), random forest (RF), and artificial neural networks (ANNs), cannot cope
up with such requirements since a single classifier, no matter how powerful and
well-trained it can be, cannot discriminate efficiently a vast amount of classes, over
an indefinitely large set of features, where both classes and features are not static,
e.g., in the case of multimedia repositories. Therefore, in order to address these
problems and hence to maximize the classification accuracy which will in turn
boost the retrieval performance, we shall present a novel and generic-purpose
framework design that embodies a collective networks of evolutionary classifiers.
At a given time, this allows the creation and design of a dedicated classifier for
discriminating a certain class from the others. Each evolution session will ‘‘learn’’
from the current best classifier and can improve it further, possibly as a result of
the (incremental) optimization, which may find another configuration in the
architecture space as the ‘‘optimal.’’ Moreover, with each evolution, new classes or
features can also be introduced which signals the collective classifier network to
create new corresponding networks and classifiers within to adapt dynamically to
the change. In this way, the collective classifier network will be able to dynami-
cally scale itself to the indexing requirements of the multimedia database while
striving for maximizing the classification and retrieval accuracies thanks to the
dedicated classifiers within.

Finally, the multimedia indexing and retrieval problem further requires a
decisive solution for the well-known ‘‘Semantic Gap’’ problem. Initially, the focus
of the research in this field was on content analysis and retrieval techniques linked
to a specific medium. More recently, researchers have started to combine features
from various media. They have also started to study the benefit of knowledge
discovery in accurate content descriptions, refining relevance feedback, more
generally, improving indexing. All in all, narrowing the semantic gap basically
requires advanced approaches that depend on a central element to describe a
medium’s content: the features. Features are the basis of a content-based indexing
and retrieval system. They represent the information extracted from a medium in a
suitable way, they are stored in an index, and used during the query processing.
They basically characterize the medium’s signature. However, especially the low-
level features, which can be extracted automatically, currently lack the

1.3 Synopsis of the Book 9

discrimination power needed for accurate retrievals in large multimedia collec-
tions. Therefore, we shall focus on the following major research objective: how to
improve these features within an evolutionary feature synthesis framework that
will be based upon the MD PSO. In that, the features extracted will just be the
initial phase of the process while they will be subject to ongoing evolutionary
processes that will improve their discrimination capabilities based on the users’
(relevance) feedbacks/interactions with the retrieval system.

As a conclusion, the book shall mainly cover the theory and major applications of
the MD PSO technique, with some additional state-of-the-art algorithms to signifi-
cantly improve the PSO’s global convergence performance. MD PSO is a recent
optimization technique, which can be applied to many engineering problems if
properly adapted. Therefore, the applications that will be presented in the book are
guiding examples of ‘‘how to’’ perform MD PSO in an effective way. We have
particularly chosen the aforementioned problem domains, i.e., dynamic data clus-
tering, evolutionary ANNs, collective network of evolutionary classifiers, and
evolutionary feature synthesis, for which MD PSO will serve as the backbone
technique.

References

1. A. Kruger, ‘‘Median-cut color quantization,’’ Dr. Dobb’s J., 46–54 and 91–92, Sept. (1994)
2. S. Smale, On the average number of steps of the simplex method of linear programming.

Math. Program., 241–262 (1983)
3. Y. Chauvin, D.E. Rumelhart, Back Propagation: Theory, Architectures, and Applications

(Lawrence Erlbaum Associates Publishers, UK, 1995)
4. G. Hammerly, C. Elkan, Alternatives to the k-means algorithm that find better clusterings, in

Proceedings of the 11th ACM CIKM(2002), 600–607
5. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-

Wesley, MA, 1989) pp. 1–25
6. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,

671–680 (1983)
7. T. Back, F. Kursawe, Evolutionary algorithms for fuzzy logic: a brief overview, In Fuzzy

Logic and Soft Computing, World Scientific (Singapore, 1995), pp. 3–10
8. U.M. Fayyad, G.P. Shapire, P. Smyth, R. Uthurusamy, Advances in Knowledge Discovery

and Data Mining (MIT Press, Cambridge, 1996)
9. A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, New York,

2005)
10. J. Kennedy, R Eberhart, Particle swarm optimization, in Proceedings of IEEE International

Conference on Neural Networks, vol. 4 (Perth, Australia, 1995), pp. 1942–1948
11. M.G. Omran, A. Salman, A.P. Engelbrecht, Particle Swarm Optimization for Pattern

Recognition and Image Processing (Springer, Berlin, 2006)
12. M. Løvberg, T. Krink, Extending Particle Swarm Optimizers with Self-Organized Criticality.

Proc. IEEE Congr. Evol. Comput. 2, 1588–1593 (2002)
13. M. Riedmiller, H. Braun, ‘‘A Direct Adaptive Method for Faster Backpropagation Learning:

The RPROP Algorithm,’’ in Proceedings of the IEEE International Conference on Neural
Networks (1993), pp. 586–591

10 1 Introduction

14. G-J Qi, X-S Hua, Y. Rui, J. Tang, H.-J. Zhang, Image Classification With Kernelized Spatial-
Context, IEEE Transactions on Multimedia 12(4), 278–287, June (2010). doi:10.1109/
TMM.2010.2046270

15. K. Ersahin, B. Scheuchl, I. Cumming, Incorporating texture information into polarimetric
radar classification using neural networks,’’ in Proceedings of the IEEE International
Geoscience and Remote Sensing Symp (Anchorage, USA, 2004), pp. 560–563

References 11

http://dx.doi.org/10.1109/TMM.2010.2046270
http://dx.doi.org/10.1109/TMM.2010.2046270

Chapter 2
Optimization Techniques: An Overview

Since the fabric of the universe is most perfect, and is the work
of a most wise Creator, nothing whatsoever takes place in the
universe in which some form of maximum or minimum does not
appear.

Leonhard Euler

It is an undeniable fact that all of us are optimizers as we all make decisions for the
sole purpose of maximizing our quality of life, productivity in time, as well as our
welfare in some way or another. Since this is an ongoing struggle for creating the
best possible among many inferior designs, optimization was, is, and will always
be the core requirement of human life and this fact yields the development of a
massive number of techniques in this area, starting from the early ages of civili-
zation until now. The efforts and lives behind this aim dedicated by many brilliant
philosophers, mathematicians, scientists, and engineers have brought the high level
of civilization we enjoy today. Therefore, we find it imperative to get to know first
those major optimization techniques along with the philosophy and long history
behind them before going into the details of the method detailed in this book. This
chapter begins with a detailed history of optimization, covering the major
achievements in time along with the people behind them. The rest of the chapter
then draws the focus on major optimization techniques, while briefly explaining
the mathematical theory and foundations over some sample problems.

2.1 History of Optimization

In its most basic terms, Optimization is a mathematical discipline that concerns the
finding of the extreme (minima and maxima) of numbers, functions, or systems.
The great ancient philosophers and mathematicians created its foundations by
defining the optimum (as an extreme, maximum, or minimum) over several fun-
damental domains such as numbers, geometrical shapes optics, physics, astron-
omy, the quality of human life and state government, and several others. This era
started with Pythagoras of Samos (569 BC to 475 BC), a Greek philosopher who
made important developments in mathematics, astronomy, and the theory of
music. He is often described as the first pure mathematician. His most important
philosophical foundation is [1]: ‘‘that at its deepest level, reality is mathematical in
nature.’’

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_2, � Springer-Verlag Berlin Heidelberg 2014

13

Zeno of Elea (490 BC to 425 BC) who was a Greek philosopher famous for
posing so-called paradoxes was the first to conceptualize the notion of extremes in
numbers, or infinitely small or large quantities. He took a controversial point of
view in mathematical philosophy, arguing that any motion is impossible by per-
forming infinite subdivisions described by Zeno’s Dichotomy. Accordingly, one
cannot even start moving at all. Probably, Zeno was enjoying the challenging
concept of ‘‘infinity’’ with his contemporaries without the proper formulation of
the limit theory and calculus at the time.

Later, Plato (427 BC to 347 BC) who is one of the most important Greek
philosophers and mathematicians, gained from the disciples of Pythagoras, and
formed his idea [2], … ‘‘that the reality which scientific thought is seeking must be
expressible in mathematical terms, mathematics being the most precise and defi-
nite kind of thinking of which we are capable. The significance of this idea for the
development of science from the first beginnings to the present day has been
immense.’’ About 75 years earlier, Euclid wrote The Elements, Plato wrote The
Republic around 375 BC, where he was setting his ideas on education: In that, one
must study the five mathematical disciplines, namely arithmetic, plane geometry,
solid geometry, astronomy, and harmonics. After mastering mathematics, one can
proceed to the study of philosophy. The following dialog is a part of the argument
he made:

‘‘…But when it is combined with the perception of its opposite, and seems to involve the
conception of plurality as much as unity, then thought begins to be aroused within us, and
the soul perplexed and wanting to arrive at a decision asks ‘‘What is absolute unity?’’ This
is the way in which the study of the one has a power of drawing and converting the mind
to the contemplation of reality.’’

‘‘And surely,’’ he said, ‘‘this characteristic occurs in the case of one; for we see the same
thing to be both one and infinite in multitude?’’

‘‘Yes,’’ I said, ‘‘and this being true of one, it must be equally true of all number?’’
‘‘Certainly’’

Aristotle (384 BC to 322 BC), who was one of the most influential Greek
philosophers and thinkers of all times, made important contributions by system-
atizing deductive logic. He is perhaps best described by the authors of [3] as,
‘‘Aristotle, more than any other thinker, determined the orientation and the content
of Western intellectual history. He was the author of a philosophical and scientific
system that through the centuries became the support and vehicle for both medi-
eval Christian and Islamic scholastic thought: until the end of the seventeenth
century, Western culture was Aristotelian. And, even after the intellectual revo-
lutions of centuries to follow, Aristotelian concepts and ideas remained embedded
in Western thinking. ‘‘He introduced the well-known principle,’’ The whole is
more than the sum of its parts.’’ Both the Greek philosophers, Plato and Aristotle,
used their ‘‘powers of reasoning’’ to determine the best style of human life. Their
goal was to develop the systematic knowledge of how the behavior of both
individuals and society could be optimized. They particularly focused on questions
of ethics (for optimizing the lifestyle of an individual) and politics (for optimizing
the functioning of the state). At the end, both Plato and Aristotle recognized that

14 2 Optimization Techniques: An Overview

the knowledge of how the members of society could optimize their lives was
crucial. Both believed that the proper development of an individual’s character
traits was the key to living an optimal lifestyle.

As a follower of Plato’s philosophy, Euclid of Alexandria (325 BC to 265 BC)
was the most prominent antique Greek mathematician best known for his work on
geometry, The Elements, which not only makes him the leading mathematician of
all times but also one who influenced the development of Western mathematics for
more than 2,000 years [4]. It is probable that no results in The Elements were first
proved by Euclid but the organization of the material and its exposition are cer-
tainly due to him. He solved some of the earliest optimization problems in
Geometry, e.g., in the third book, there is a proof that the greatest and least straight
lines can be drawn from a point to the circumference of a circle; in the sixth book
it is proven that a square has the maximum area among all rectangles with given
total length of the edges.

Archimedes of Syracuse (287 BC to 212 BC) is considered by most historians of
mathematics as one of the greatest mathematicians of all times [5]. He was the
inventor of the water pump, the so-called Archimedes’ screw that consists of a pipe
in the shape of a helix with its lower end dipped in the water. As the device is
rotated the water rises up the pipe. This device is still in use in many places in the
world. Although he achieved great fame due to his mechanical inventions, he
believed that pure mathematics was the only worthy pursuit. His achievements in
calculus were outstanding. He perfected a method of integration which allowed
him to find areas, volumes, and surface areas of many bodies by using the method
of exhaustion, i.e., one can calculate the area under a curve by approximating it by
the areas of a sequence of polygons. In Heath [6], it is stated that ‘‘Archimedes
gave birth to the calculus of the infinite conceived and brought to perfection by
Kepler, Cavalieri, Fermat, Leibniz and Newton.’’ Unlike Zeno and other Greek
philosophers, he and Euclid were the first mathematicians who were not troubled
by the apparent contradiction of the infinite concept. For instance, they contrived
the method of exhaustion technique to find the area of a circle without knowing the
exact value of p.

Heron of Alexandria (*10 AC to *75 AC) who was an important geometer
and worker in mechanics wrote several books on mathematics, mechanics, and
even optics. He wrote the book, Catoptrica, which is attributed by some historians
to Ptolemy although most now seem to believe that this was his genuine work
indeed. In this book, Heron states that vision occurs as a result of light emissions
by the eyes with infinite velocity. He has also shown that light travels between two
points through the path of the shortest length.

Pappus of Alexandria (*290 AC to *350 AC) is the last of the great Greek
geometers and made substantial contributions on many geometrical optimization
problems. He proved what is known as the ‘‘honeycomb conjecture’’ that the
familiar honeycomb shape, which is a repeating hexagonal pattern (volumetric
hexagonal-shaped cylinders, stacked one against the other in an endless array) was
the optimal way of storing honey. Pappus introduces this problem with one of the
most charming essays in the history of mathematics, one that has frequently been

2.1 History of Optimization 15

excerpted under the title: On the Sagacity of Bees. In that, he speaks poetically of the
divine mission of bees to bring from heaven the wonderful nectar known as honey,
and says that in keeping with this mission they must make their honeycombs without
any cracks through which honey could be lost. Having also a divine sense of sym-
metry, the bees had to choose among the regular shapes that could fulfill this con-
dition, (e.g. triangles, squares, and hexagons). At the end they naturally chose the
hexagon because a hexagonal prism required the minimum amount of material to
enclose a given volume. He collected these ideas in his Book V and states his aim
that [7], ‘‘Bees, then, know just this fact which is useful to them, that the hexagon is
greater than the square and the triangle and will hold more honey for the same
expenditure of material in constructing each. But we, claiming a greater share in
wisdom than the bees, will investigate a somewhat wider problem, namely that, of
all equilateral and equiangular plane figures having an equal perimeter, that which
has the greater number of angles is always the greater, and the greatest of then all is
the circle having its perimeter equal to them.’’

Also in Book V, Pappus discusses the 13 semi-regular solids discovered by
Archimedes and solves other isoperimetric problems which were apparently dis-
cussed by the Athenian mathematician Zenodorus (200 BC to 140 BC). He
compares the areas of figures with equal perimeters and volumes of solids with
equal surface areas, proving that the sphere has the maximum volume among
regular solids with equal surface area. He also proves that, for two regular solids
with equal surface area, the one with the greater number of faces has the greater
volume. In Book VII, Pappus defines the two basic elements of analytical problem
solving, the analysis and synthesis [7] as, … ‘‘in analysis we suppose that which is
sought to be already done, and inquire what it is from which this comes about, and
again what is the antecedent cause of the latter, and so on until, by retracing our
steps, we light upon something already known or ranking as a first principle… But
in synthesis, proceeding in the opposite way, we suppose to be already done that
which was last reached in analysis, and arranging in their natural order as con-
sequents what were formerly antecedents and linking them one with another, we
finally arrive at the construction of what was sought…’’

During the time of the ancient great Greek philosophers and thinkers, arithmetic
and geometry were the two branches of mathematics. There were some early
attempts to do algebra in those days; however, they lacked the formalization of
algebra, namely the arithmetic operators that we take for granted today, such as
‘‘+, -, 9, 7’’ and of course, ‘‘=’’. Much of the world, including Europe, also
lacked an efficient numeric system like the one developed in the Hindu and Arabic
cultures. Al’Khwarizmi (790–850) was a Muslim Persian mathematician who
wrote on Hindu–Arabic numerals and was among the first to use the number zero
as a place holder in positional base notation. Algebra as a branch of mathematics
can be said to date to around the year 825 when Al’Khwarizmi wrote the earliest
known algebra treatise, Hisab al-jabr w’al-muqabala. The word ‘‘algebra’’ comes
from the Persian word al’jabr (that means ‘‘to restore’’) in the title. Moreover, the
English term ‘‘algorithm,’’ was derived from Al’Khwarizmi ‘s name as the way of a
Latin translation and pronunciation: Algoritmi.

16 2 Optimization Techniques: An Overview

Ibn Sahl (940–1000) was a Persian mathematician, physicist, and optics engi-
neer who was credited for first discovering the law of refraction, later called as the
Snell’s law. By means of this law, he computed the optimum shapes for lenses and
curved mirrors. This was probably the first application of optimization in an
engineering problem.

Further developments in algebra were made by the Arabic mathematician
Al-Karaji (953–1029) in his treatise Al-Fakhri, where he extends the methodology
to incorporate integer powers and integer roots of unknown quantities. Something
close to a proof by mathematical induction appears in a book written by Al-Karaji
who used it to prove the binomial theorem, Pascal’s triangle, and the sum of
integral cubes. The historian of mathematics, Woepcke in [8], credits him as the
first who introduced the theory of algebraic calculus. This was truly one of the
cornerstone developments for the area of optimization as it is one of the uses of
calculus in the real world.

René Descartes (1596–1650) was a French mathematician and philosopher and
his major work, La Géométrie, includes his linkage of algebra to geometry from
which we now have the Cartesian geometry. He had a profound breakthrough
when he realized he could describe any position on a 2D plane using a pair of
numbers associated with a horizontal axis and a vertical axis—what we call today
as ‘‘coordinates.’’ By assigning the horizontal measurement with x’s and the
vertical measurement with y’s, Descartes was the first to define any geometric
object such as a line or circle in terms of algebraic equations. Scott in [9] praises
his work for four crucial contributions:

1. He makes the first step toward a theory of invariants, which at later stages
derelativises the system of reference and removes arbitrariness.

2. Algebra makes it possible to recognize the typical problems in geometry and to
bring together problems which in geometrical dress would not appear to be
related at all.

3. Algebra imports into geometry the most natural principles of division and the
most natural hierarchy of method.

4. Not only can questions of solvability and geometrical possibility be decided
elegantly, quickly, and fully from the parallel algebra, without it they cannot be
decided at all.

The seminal construction of what we call graphs was obviously the cornerstone
achievement without which any formulation of optimization would not be possi-
ble. In that, Descartes united the analytical power of algebra with the descriptive
power of geometry into the new branch of mathematics, he named as analytic
geometry, a term which is sometimes called as Calculus with Analytic Geometry.
He was one of the first to solve the tangent line problem (i.e., the slope or the
derivative) for certain functions. This was the first step toward finding the maxima
or minima of any function or surface, the foundation of all analytical optimization
solutions. On the other hand, when Descartes published his book, La Géometrie in
1637, his contemporary Pierre de Fermat (1601–1665) was already working on
analytic geometry for about 6 years and he also solved the tangent line problem

2.1 History of Optimization 17

with a different approach, which is based on the approximation of the slope,
converging to the exact value on the limit. This is the pioneer work for finding the
derivative and henceforth calculating the optimum point when the slope is zero.
Due to this fact, Lagrange stated clearly that he considers Fermat to be the
inventor of the calculus. But at that time, such an approximation-based approach
was perhaps why Fermat did not get the full credit for his work. There was an
ongoing dispute between the two because Descartes thought that Fermat’s work
was reducing the importance of his own work La Géometrie. Fermat initiated the
technique for solving df(x)/dx = 0 to find the local optimum point of the function
f(x) and this is perhaps the basis in applied mathematics and its use in optimiza-
tion. Another reason for the dispute between them might be that Fermat found a
mistake in a book by Descartes and corrected it. Descartes attacked Fermat’s
method of maxima, minima, and tangents but in turn, Fermat proved correct and
eventually Descartes accepted his mistake. Fermat’s most famous work, called
Fermat’s Last Theorem, was the proof for the statement, xn þ yn ¼ zn, has no
integer solutions for n [2. His proof remains a mystery till today since Fermat
wrote it as, ‘‘I have discovered a truly remarkable proof which this margin is too
small to contain.’’ He also deduced the most fundamental optimization phenom-
enon in the optics, ‘‘the light always follows the shortest possible path’’, (or
similarly, ‘‘the light follows the path which takes the shortest time’’).

Like most developments, the calculus too was the culmination of centuries of
work. After these pioneers, the two most recognized discoverers of calculus are
Isaac Newton of England (1643–1727) and a German, Gottfried Wilhelm Leibniz
(1646–1716). Both deserve equal credit for independently coming up with cal-
culus; however, at that time a similar rivalry and dispute occurred between the two
as each accused the other of plagiarism for the rest of their lives. The mathematics
community today has largely adopted Leibniz’s calculus symbols but on the other
hand, the calculus he discovered allowed Newton to establish the well-known
physics laws which are sufficient in macro scale to explain many physical phe-
nomena in nature to a remarkable accuracy. Their approach to calculus was also
totally different, i.e., Newton considered functions changing in time, whereas
Leibniz thought of variables x, y as ranging over sequences of infinitely close
values, dx and dy; however, he never thought of the derivative as a limit. In 1666,
Newton found out the slope of a function by the derivative and solved the inverse
problem by taking the integral, which he used to calculate the area under any
function. Therefore, this work contains the first clear statement of the Fundamental
Theorem of Calculus. As Newton did not publish his findings until 1687, unaware
that he had discovered similar methods, Leibniz developed his calculus in Paris
between 1673 and 1676. In November 1675, he wrote a manuscript using the
common integral notation,

R
f xð Þ dx; for the first time. The following year, he

discovered the power law of differentiation, d xnð Þ ¼ nxn�1dx for both integer and
fractional n. He published the first account of differential calculus in 1684 and then
published the explanation of integral calculus in 1686. There were rumors that
Leibniz was following Newton’s studies from their common colleagues and

18 2 Optimization Techniques: An Overview

occasional discussion letters between the two, but despite of all his correspon-
dences with Newton, he had already come to his own conclusions about calculus.
In 1686 Leibniz published a paper, in Acta Eruditorum, dealing with the integral
calculus with the first appearance of the integral notation in print. Newton’s
famous work, Philosophiae Naturalis Principia Mathematica, surely the greatest
scientific book ever written, appeared in the following year. The notion that the
Earth rotated around the Sun was already known by ancient Greek philosophers,
but it was Newton who explained why, and henceforth, the great scientific revo-
lution began with it.

During his last years, Leibniz published Théodicée claiming that the universe is
in the best possible form but imperfect; otherwise, it would not be distinct from
God. He invented more mathematical terms than anyone else, including ‘‘func-
tion,’’ ‘‘analysis situ,’’ ‘‘variable,’’ ‘‘abscissa,’’ ‘‘parameter,’’ and ‘‘coordinate.’’
His childhood IQ has been estimated as the second-highest in all of history, behind
only Goethe [5]. Descriptions that have been applied to Leibniz include ‘‘one of the
two greatest universal geniuses’’ (da Vinci was the other) and the ‘‘Father of the
Applied Science.’’ On the other hand, Newton is the genius who began revolu-
tionary advances on calculus, optics, dynamics, thermodynamics, acoustics, and
physics; it is easy to overlook that he too was one of the greatest geometers for he
calculated the optimum shape of the bullet earlier than his invention of calculus.
Among many brilliant works in mathematics and especially in calculus, he also
discovered the Binomial Theorem, the polar coordinates, and power series for
exponential and trigonometric functions. For instance, his equation, ex ¼

P
xk= k!,

has been called as ‘‘the most important series in mathematics.’’ Another optimi-
zation problem he solved is the brachistochrone, which is the curve of fastest
descent between two points by a point-like body with a zero velocity while the
gravity is the only force (with no friction). This problem had defeated the best
mathematicians in Europe but it took Newton only a few hours to solve it. He
published the solution anonymously, yet upon seeing the solution, Jacob Bernoulli
immediately stated ‘‘I recognize the lion by his footprint.’’

After the era of Newton and Leibniz, the development of the calculus was
continued by the Swiss mathematicians, Bernoulli brothers, Jacob Bernoulli
(1654–1705), and Johann Bernoulli (1667–1748). Jacob was the first mathemati-
cian who applied separation of variables in the solution of a first-order nonlinear
differential equation. His paper of 1690 was indeed a milestone in the history of
calculus since the term integral appears for the first time with its integration
meaning. Jacob liked to pose and solve physical optimization problems such as the
catenary (which is the curve that an idealized hanging chain assumes under its own
weight when supported only at its ends) problem. He was a pioneer in the field of
calculus of variations, and particularly differential equations, with which he
developed new techniques to many optimization problems. In 1697, he posed and
partially solved the isoperimetric problem, which is a class of problems of the
calculus of variations. The simplest of them is the following: among all curves of
given length, find the curve for which some quantity (e.g., area) dependent on the

2.1 History of Optimization 19

curve reaches a minimum or maximum. Other optimization problems he solved
include isochronous curves and curves of fastest descent. Johann Bernoulli on the
other hand, followed a similar path like his brother. He mostly learned from him
and also from Leibniz, and later on he alone supported Leibniz for the Newton–
Leibniz controversy. He showed Leibniz’s calculus can solve certain problems
where Newton had failed. He also became the principle teacher of Leonhard Euler.
He developed the exponential calculus and together with his brother Jacob,
founded the calculus of variations. Although their work of line was pretty similar,
there were no common papers published, because after a while a bitter jealousy led
to another famous rivalry, this time between the Bernoulli brothers, who—espe-
cially Johann—began claiming each other’s work. Later, a similar jealousy arose
between Johann and his son, Daniel Bernoulli (1700–1782), where this time
Johann started to compete with him on his most important work, Hydrodynamica
in 1734 which Daniel published in 1738 at about the same time as Johann pub-
lished a similar version of it, Hydraulica. However, he discovered L’Hôpital’s
Rule 50 years before Guillaume de L’Hôpital (1661–1704) did, and according to
some mathematics historians, he solved the catenary problem before his brother
did, although he used ideas that Jacob had given when he posed the problem. He
attained great fame in his life and made outstanding contributions in calculus and
physics for solving many real optimization problems, e.g., about vibrations, elastic
bodies, optics, tides, and ship sails.

Calculus of variations is an area of calculus that deals with the optimization of
functionals, which are mappings from a set of functions to real numbers and are
often expressed as definite integrals involving functions and their derivatives. A
physical system can be modeled by functionals, with which their variables can be
optimized considering the constraints. Calculus of variations and the use of dif-
ferential equations for the general solution of many optimization problems may
not be possible without the Swiss mathematician, Leonhard Euler (1701–1783)
who is probably the most influential mathematician ever lived. He is the father of
mathematical analysis and his work in mathematics is so vast that we shall only
name the few crucial developments herein for calculus and optimization. He took
marvelous advantage of the analysis of Fermat, Newton, Leibniz, and the Bernoulli
family members, extending their work to marvelous heights. To start with, many
fundamental calculus and mathematical foundations that are used today were
created by Euler, i.e., in 1734, he proposed the notation f (x) for a function, along
with three of the most important constant symbols in mathematics: e for the base
of natural logs (in 1727), i for the square root of -1 (in 1777), p for pi, and several
mathematical notations such as ‘‘

P
’’ for summation (in 1755), finite differences

Dx, D2x, and many others. In 1748, he published his major work, Introductio in
analysin infinitorum in which he presented that mathematical analysis was the
study of functions. This was the pioneer work, which bases the foundations of
calculus on the theory of elementary functions rather than on geometric curves, as
had been done earlier. Also in this work, he unifies the trigonometric and expo-
nential functions by his famous formula: eix ¼ cos x þ isin x. (The particular

20 2 Optimization Techniques: An Overview

setting of x = p yields eip þ 1 ¼ 0 that fits the three most important constants in a
single equation.)

Euler was first partially and later totally blind during a long period of his life.
From the French Academy in 1735, he received a problem in celestial mechanics,
which had required several months to solve by other mathematicians. Euler, using
his improved methods solved it in 3 days (later, with his superior methods, Gauss
solved the same problem within an hour!). However, the strain of the effort
induced a fever that caused him the loss of sight in his right eye. Stoically
accepting the misfortune, he said, ‘‘Now I will have less distraction.’’ For a period
of 17 years, he was almost totally blind after a cataract developed in his left eye in
1766. Yet he possessed a phenomenal memory, which served him well during his
blind years as he calculated long and difficult problems on the blackboard of his
mind, sometimes carrying out arithmetical operations to over 50 decimal places.
The calculus of variations was created and named by Euler and in that he made
several fundamental discoveries. His first work in 1740, Methodus inveniendi
lineas curvas initiated the first studies in the calculus of variations. However, his
contributions already began in 1733, and his treaty, Elementa Calculi Variationum
in 1766 gave its name. The idea was already born with the brachistochrone curve
problem raised by Johann Bernoulli in 1696. This problem basically deals with the
following: Let a point particle of mass m on a string whose endpoints are at
a = (0,0) and b = (x,y), where y \ 0. If gravity acts on the particle with force
F = mg, what path of string minimizes its travel time from a to b, assuming no
friction? The solution of this problem was one of the first accomplishments of the
calculus of variations using which many optimization problems can be solved.
Besides Euler, by the end of 1754, Joseph-Louis Lagrange (1736–1813) had also
made crucial discoveries on the tautochrone that is the curve on which a weighted
particle will always arrive at a fixed point in a fixed amount of time independent of
its initial position. This problem too contributed substantially to the calculus of
variations. Lagrange sent Euler his results on the tautochrone containing his
method of maxima and minima in a letter dated 12 August 1755, and Euler replied
on 6 September saying how impressed he was with Lagrange’s new ideas (he was
19 years old at the time). In 1756, Lagrange sent Euler results that he had obtained
on applying the calculus of variations to mechanics. These results generalized
results which Euler had himself obtained. This work led to the famous Euler–
Lagrange equation, the solution of which is applied on many optimization prob-
lems to date. For example using this equation, one can easily show that the closed
curve of a given perimeter for which the area is a maximum, is a circle, the shortest
distance between two fixed points is a line, etc. Moreover, Lagrange considered
optimizing a functional with an added constraint and he turned the problem using
the method of Lagrange multipliers to a single optimization equation that can then
be solved by the Euler–Lagrange equation.

Euler made substantial contributions to differential geometry, investigating the
theory of surfaces and curvature of surfaces. Many unpublished results by Euler in
this area were rediscovered by Carl Friedrich Gauss (1777–1855). In 1737, Euler

2.1 History of Optimization 21

wrote the book, Mechanica which provided a major advance in mechanics. He
analyzed the motion of a point mass both in a vacuum, in a resisting medium,
under a central force, and also on a surface. In this latter topic, he solved various
problems of differential geometry and geodesics. He then addressed the problem of
ship propulsion using both theoretical and applied mechanics. He discovered the
optimal ship design and first established the principles of hydrostatics.

Based on these pioneers’ works, during the nineteenth century, the first opti-
mization algorithms were developed. During this era, many brilliant mathemati-
cians including Jakob Steiner (1796–1863), Karl Theodor Wilhelm Weierstrass
(1815–1897), William Rowan Hamilton (1805–1865), and Carl Gustav Jacob
Jacobi (1804–1851) made significant contributions to the field of calculus of
variations. The first iterative optimization technique that is known as Newton’s
method or Newton–Raphson method was indeed developed by four mathemati-
cians: Isaac Newton, Joseph Raphson (1648–1715), Thomas Simpson
(1710–1761), and Jean-Baptiste-Joseph Fourier (1768–1830). Newton in 1664
found a non-iterative algebraic method of root finding of a polynomial and in
1687, he described an application of his procedure to a non-polynomial equation in
his treaty Principia Mathematica where this was originated from Kepler’s equa-
tion. Note that this was a purely algebraic and non-iterative method. In 1690,
Raphson turned Newton’s method into an iterative one, applying it to the solution
of polynomial equations of degree up to 10. However, the method is still not based
on calculus; rather explicit polynomial expressions are used in function form,
f(x) and its derivative, f 0 xð Þ. Simpson in 1740 was the first to formulate the
Newton–Raphson method on the basis of calculus, extending it to an iterative
solver for the multivariate minimization. Fourier in 1831 brought the method as
we know of it today and published in his famous book, Analyse des équations
déterminées. The method finds the root of a scalar function, f (x) = 0, iteratively
by the following equation using only the first-order derivative, f 0 xð Þ.

xkþ1 ¼ xk � f xkð Þ=f 0 xkð Þ; k ¼ 0; 1; 2; . . . ð2:1Þ

where the initial guess, x0, is usually chosen randomly. Similarly, finding the root
of f 0, which is equivalent to the optimum (or stationary) point of the function, f(x),
can similarly be expressed as,

xkþ1 ¼ xk � f 0 xkð Þ=f 00 xkð Þ; k ¼ 0; 1; 2; . . . ð2:2Þ

Augustin-Louis Cauchy (1789–1857) did important work on differential equa-
tions and applications to mathematical physics. The four-volume series, Exercices
d’analyse et de physique mathématique published during 1840–1847 was a major
work in this area in which he proposed the method of the steepest descent (also
called as gradient descent) in 1847. This method is perhaps one of the most
fundamental and basic derivative-based iterative procedures for unconstrained
minimization of a differentiable function. Given a differentiable function in N-D,
f ð�xÞ, the gradient method in each step moves along the direction that minimizes
rf , that is, the direction of steepest descent and thus perpendicular to the slope of

22 2 Optimization Techniques: An Overview

the curve at that point. The method stops when it reaches to a local minimum
(maximum) where rf = 0 and thus no move is possible. Therefore, the update
equation is as follows:

�xkþ1 ¼ �xk � kkrf �xkð Þ; k ¼ 0; 1; 2; . . . ð2:3Þ

where �x0 is the initial starting point in the N-D space. An advantage of gradient
descent compared to Newton–Raphson method is that it only utilizes first-order
derivative information about the function when determining the direction of
movement. However, it is usually slower than Newton–Raphson to converge and it
tends to suffer from very slow convergence especially as a stationary point is
approached.

A crucial optimization application is the least-square approximation, which
finds the approximate solution of sets of equations in which there are more
equations than unknowns. At the age of 18, Carl Friedrich Gauss who was widely
agreed to be the most brilliant and productive mathematician ever lived, invented a
solution to this problem in 1795, although it was first published by Lagrange in
1806. This method basically minimizes the sum of the squares of the residual
errors, that is, the overall solution minimizes the sum of the squares of the errors
made in the results of every single equation. The most important application is in
data fitting and the first powerful demonstration of it was made by Gauss, at the
age of 24 when he used it to predict the future location of the newly discovered
asteroid, Ceres. In June 1801, Zach, an astronomer whom Gauss had come to
know two or three years earlier, published the orbital positions of Ceres, which
was discovered by an Italian astronomer Giuseppe Piazzi in January, 1801. Zach
was able to track its path for 40 days before it was lost in the glare of the sun.
Based on this data, astronomers attempted to determine the location of Ceres after
it emerged from behind the sun without solving the complicated Kepler’s non-
linear equations of planetary motion. Zach published several predictions of its
position, including one by Gauss which differed greatly from the others. When
Ceres was rediscovered by Zach on 7 December 1801, it was almost exactly where
Gauss had predicted using the least-squares method, which was not published at
the time.

The twentieth century brought the proliferation of several optimization tech-
niques. Calculus of variations was further developed by several mathematicians
including Oskar Bolza (1857–1942) and Gilbert Bliss (1876–1951). Harris Han-
cock (1867–1944) in 1917 published the first book on optimization, Theory of
Maxima and Minima. One of the crucial techniques of the optimization, Linear
Programming (LP), was developed in 1939 by the Russian mathematician, Leonid
Vitaliyevich Kantorovich (1912–1986); however, the method was kept secret until
the time the American scientist, George Bernard Dantzig (1914–2005) published
the Simplex method in 1947. LP, sometimes called linear optimization, is a
mathematical method for determining a way to achieve the optimal outcome in a
given mathematical model according to a list of requirements that are predefined
by some linear relationships. More formally, LP is a technique for the optimization

2.1 History of Optimization 23

of a linear objective function, subject to constraints expressed by linear
(in)equalities. In an LP, the variables are continuous while the objective function
and constraints must be linear expressions. An expression is linear if it can be
expressed in the form, c1x1 þ c2x2 þ . . .þ cnxn for some constants c1, c2,…,cn.
The solution space corresponds to a convex polyhedron, which is a set defined as
the intersection of finitely many half spaces, each of which is defined by a linear
inequality. Its objective function that is to be optimized (under the given con-
straints) is a real-valued affine function defined on this polyhedron. In short, the LP
method finds an optimum point in the polyhedron—if it exists. The Simplex
method, on the other hand, is an efficient method for finding the optimal solution in
one of the corners of the N-D polyhedron where N is the number of linear
(in)equalities each intersecting to yield a corner. The Simplex method iteratively
searches each corner to find the optimum one, which corresponds to the optimum
solution. Finding each of the N corners is a matter of solving a system of N
equations that can be done by Gaussian elimination method.

John Von Neumann (1903–1957) developed the theory of duality as an LP
solution, and applied it in the field of game theory. If an LP exists in the maxi-
mization linear form, which is called the primal LP, its dual is formed by having
one variable for each constraint of the primal (not counting the non-negativity
constraints of the primal variables), and having one constraint for each variable of
the primal (plus the non-negative constraints of the dual variables); then the
maximization can be switched to minimization, the coefficients of the objective
function are also switched with the right-hand sides of the inequalities, and the
matrix of coefficients of the left-hand side of the inequalities are transposed. In
1928, Von Neumann proved the minimax theorem in the game theory, which
indicates that there exists a pair of strategies for both players that allows each one
to minimize his maximum losses. Each player examines every possible strategy
and must consider all the possible responses of his adversary. He then plays out the
strategy which will result in the minimization of his maximum loss. Such a
strategy, which minimizes the maximum loss for each player is called the optimal
minmax solution. Alternatively, the theorem can also be thought of as maximizing
the minimum gain (maximin).

In 1939, Nonlinear Programming (NLP or Nonlinear Optimization) was first
developed by a graduate student William Karush (1917–1997), who was also the
first to publish the necessary conditions for the inequality constrained problem in
his Master’s thesis, Minima of Functions of Several Variables with Inequalities as
Side Constraints. The optimal solution by the NLP was only widely recognized
after a seminal conference paper in 1951 by Harold William Kuhn (born in 1925)
and Albert William Tucker (1905–1995). Thus the theory behind NLP was called
the Karush–Kuhn–Tucker (KKT) Theory, which provided necessary and sufficient
conditions for the existence of an optimal solution to an NLP. NLP has a particular
importance in optimal control theory and applications since optimal control
problems are optimization problems in (infinite-dimensional) functional spaces,
while NLP deals with the optimization problems in Euclidean spaces; optimal
control can indeed be seen as a generalization of NLP.

24 2 Optimization Techniques: An Overview

In 1952, Richard Bellman (1920–1984) made the first publication on dynamic
programming (DP), which is a commonly used method of optimally solving
complex problems by breaking them down into simpler problems. DP is basically
an algorithmic technique, which uses a recurrent formula along with one or more
starting states. A subsolution of the problem is constructed from those previously
found. DP solutions have a polynomial complexity, which assures a much faster
running time than other techniques such as backtracking and brute-force. The
problem is first divided into ‘‘states,’’ each of which represents a sub-solution of
the problem. The state variables chosen at any given point in time are often called
the ‘‘control’’ variables. Finally, the optimal decision rule is the one that achieves
the best possible value from the objective function, which is written as a function
of the state, called the ‘‘value’’ function. Bellman showed that a DP problem in
discrete time can be stated in a recursive form by writing down the relationship
between the value function in one period and the value in the next period. The
relationship between these two value functions is called the Bellman equation. In
other words, the Bellman equation, also known as a DP equation, is a necessary
condition for optimality. The Bellman equation can be solved by backwards
induction, either analytically in a few special cases, or numerically on a computer.
Numerical backwards induction is applicable to a wide variety of problems, but
may be infeasible when there are many state variables, due to the ‘‘Curse of
Dimensionality,’’ which is a term coined by Bellman to describe the problem
caused by the exponential increase in volume associated with adding extra
dimensions to the (search) space. One implication of the curse of dimensionality is
that some methods for numerical solution of the Bellman equation require vastly
more computer time when there are more state variables in the value function.

All of the optimization methods described till now have been developed for
deterministic processes applied over known differentiable (and double differen-
tiable) functions. Optimization by Stochastic Approximation (SA) aims at finding
the minima or maxima of an unknown function with unknown derivatives, both of
which can be confounded by random error. Therefore, SA methods belong to the
family of iterative stochastic optimization algorithms, which converge to the
optimum points of such functions that cannot be computed directly, but only
estimated via noisy observations. SA is a part of the stochastic optimization (SO)
methods that generate and use random variables, which appear in the formulation
of the optimization problem itself, along with the random objective functions or
random constraints. Stochastic approximation was introduced in 1951 by the
American mathematicians Herbert Ellis Robbins (1915–2001) and his student,
Sutton Monro (1919–1995) [10]. This algorithm is a root finder of the equation,
h xð Þ ¼ 0 which has a unique root at x ¼ a. It is assumed that one cannot observe
directly the function, h xð Þ, rather we have the noisy measurements of it, N Xð Þ,
where E N Xð Þð Þ ¼ h xð Þ (E(.) is the mathematical expectation operation). The
algorithm then iterates toward the root in the form: xkþ1 ¼ xk þ ck a� NðxÞð Þ
where c1; c2; . . .is a sequence of positive step sizes. They suggested the form of
ck ¼ c=k and proved that under certain conditions, xk converges to the root, a.

2.1 History of Optimization 25

Motivated by the publication of the Robbins-Monro algorithm in 1951, the
Kiefer-Wolfowitz algorithm [11] was introduced in 1952 by the Polish mathemati-
cian, Jacob Wolfowitz (1910–1981) and the American statistician, Jack Kiefer
(1924–1981). This is the first stochastic optimization method which seeks the
maximum point of a function. This method suffers from heavy function computa-
tions since it requires 2(d ? 1) function computations for each gradient computa-
tion, where d is the dimension of the search space. This is a particularly a significant
drawback in high dimensions. To address this drawback, James Spall in [12], pro-
posed the use of simultaneous perturbations to estimate the gradient. This method
would require only two function computations per iteration, regardless of the
dimension. For any SA method, applied over unimodal functions, it can be shown
that the method can converge to the local optimum point with probability one.

However, for multimodal functions, SA methods, as all other gradient-based
deterministic algorithms may be stuck on a local optimum. The convergence to the
global optimum point is a crucial issue, yet most likely infeasible by any of these
gradient-based methods. This brought the era of probabilistic metaheuristics. The
American physicist Nicholas Metropolis (1915–1999) in 1953 co-authored the
paper, Equation of State Calculations by Fast Computing Machines, a technique
that was going to lead to the first probabilistic metaheuristics method, now known
as simulated annealing. After this landmark publication, Keith Hastings (born in
1930) extended it to a more general case in 1970, by developing the Metropolis–
Hastings algorithm, which is a Markov chain Monte-Carlo method for creating a
series of random numbers from a known probability density function. In 1983, the
adaptation of this method led to the simulated annealing method [13], which is a
generic probabilistic metaheuristics for the global optimization problem so as to
converge to the global optimum of any function in a large search space. The name
annealing basically mimics the process undergone by misplaced atoms in a metal
when it is first heated and then slowly cooled. With a similar analogy, each step of
the simulated annealing attempts to replace the current solution with a new
solution chosen randomly according to a certain probability distribution. This new
solution may then be accepted with a probability that depends both on the dif-
ference between the corresponding function values and also on a global parameter
T (called the temperature) that is gradually decreased during the process
(annealing). When T is large, the choice between the new and the previous
solution becomes almost purely random and as T goes to zero; it consistently
selects the best solution between the two, mimicking a steepest descent (or ascent)
method. Therefore, especially when T is large (during the early stages of simulated
annealing’s iterative algorithm), it prevents the early trappings to a local minima
and then yields the convergence to the optimum point as T goes to zero. While this
technique cannot guarantee finding the optimum solution, it can often find a
suboptimum point in the close vicinity of it, even in the presence of noisy data.

The 1950s and early 1960s were the times when the use of the computers
became popular for a wide range of optimization problems. During this era, direct
search methods first appeared, whereas the name ‘‘direct search’’ was introduced

26 2 Optimization Techniques: An Overview

in 1961 by Robert Hooke and T. A. Jeeves. This was a pattern search method,
which is better than a random search due to its search directions by exploration in
the search space. After this key accomplishment, in 1962 the first simplex-based
direct search method was proposed by W. Spendley, G. R. Hext, and F. R. Hims-
worth in their paper, Sequential Application of Simplex Designs in Optimisation
and Evolutionary Operation. Note that this is an entirely different algorithm than
the Simplex method for LP as discussed earlier. It uses only two types of trans-
formations to form a new simplex (e.g., vertices of a triangle in 2D) in each step:
reflection away from the worst vertex (the one with the highest function value), or
shrinking toward the best vertex (the one with the lowest function value). For each
iteration, the angles between simplex edges remain constant during both opera-
tions, so the working simplex can change in size, but not in shape. In 1965, this
method was modified by John Ashworth Nelder (1924–2010) and Roger Mead
who added two more operators: expansion and contraction (in and out), which
allow the simplex to change not only its size, but also its shape [14]. Their
modified simplex method, known as Nelder-Mead (or simplex) method, became
immediately famous due to its simplicity and low storage requirements, which
makes it an ideal optimization technique especially for the primitive computers at
that time. During the 1970s and 1980s, it was used by several software packages
while its popularity grew even more. It is now a standard method in MATLAB�
where it can be applied by the command: fminsearch. Nowadays, despite its long
past history, the simplex method, is still one of the most popular heuristic opti-
mization techniques in use.

During the 1950s and 1960s, the concept of artificial intelligence (AI) was also
born. Along with the AI, a new family of metaheuristic optimization algorithms in
stochastic nature was created: evolutionary algorithms (EAs). An EA uses
mechanisms inspired by biological evolution such as reproduction, mutation,
recombination, and selection. It is also a stochastic method as in simulated
annealing; however, it is based on the collective behavior of a population. A
potential solution of the optimization problem plays the role of a member in the
population, and the fitness function determines the search space within which the
solutions lie. The earliest instances of EAs appeared during the 1950s and early
1960s, simulated on computers by evolutionary biologists who were explicitly
seeking to model aspects of natural evolution. At first, it did not occur to any of
them that this approach might be generally applicable to optimization problems.
The EAs were first used by a Norwegian-Italian mathematician; Nils Aall Barri-
celli (1912–1993) who applied to evolutionary simulations. By 1962, several
researchers developed evolution-inspired algorithms for function optimization and
machine learning, but at the time their work only attracted little attention. The first
development in this field for optimization came in 1965, when the German sci-
entist Ingo Rechenberg (born in 1934), developed a technique called evolution
strategy (ES), which uses natural problem-dependent representations, and pri-
marily mutation and selection, as search operators in a loop where each iteration is
called generation. The sequence of generations is continued until a termination
criterion is met.

2.1 History of Optimization 27

The next EA member came in 1966, when an American aerospace engineer,
Lawrence Fogel (1928–2007) developed evolutionary programming (EP) where a
potential solution of a given problem in hand is represented by simple finite-state
machines as predictors. Similar to evolution strategies, EP performs random
mutation of a simulated machine and keeps the best one. However, both EAs still
lack a crucial evolutionary operator, the crossover. As early as 1962, John Holland
(born in 1929) performed the pioneer work on adaptive systems, which laid the
foundation for a new EA, genetic algorithms (GAs). Holland was also the first to
explicitly propose crossover and other recombination operators. In 1975 he wrote
the ground-breaking book on GA, ‘‘Adaptation in Natural and Artificial Systems.’’
Based on earlier work on EAs by himself and by colleagues at the University of
Michigan, this book was the first to systematically and rigorously present the
concept of adaptive digital systems using evolutionary operators such as mutation,
selection and crossover, simulating processes of natural evolution. In a GA, a
population of strings (called chromosomes), which encodes potential solutions
(called individuals, creatures, or phenotypes) of an optimization problem, evolves
toward better solutions using these operators in an iterative way. Traditionally,
solutions are represented in binary strings of 0s and 1s, but other encodings are
also possible. The evolution usually starts from a population of randomly gener-
ated individuals and in each generation, the fitness of every individual in the
population is evaluated, multiple individuals are stochastically selected from the
current population (based on their fitness), and modified (recombined and possibly
randomly mutated) to form a new generation, and so on. The GA process is
terminated either when a successful solution or a maximum number of generations
is reached. These foundational works established more widespread interest in
evolutionary computation. By the early to mid-1980s, GAs were being applied to a
broad range of fields, from abstract mathematical problems to many engineering
problems such as pipeline flow control, pattern recognition and classification, and
structural optimization.

In 1995, differential evolution (DE) as the most recent EA was developed by
Rainer Storn and Kenneth Price. Similar to GA and many other EAs, DE is a
population-based technique, which performs evolutionary operators, mutation,
crossover, and selection in a certain way and the candidate solutions are repre-
sented by agents based on floating point number arrays (or vectors). As any other
EA, it is a generic optimization method that can be used on optimization problems
that are noisy, dynamic, or not even continuous. In each generation, it creates new
candidate solutions by combining existing ones according to its simple expression,
and then keeping whichever candidate solution has the best score or fitness. This is
a typical process of an EA, especially resembling GA; however, DE has a distinct
property of interaction among individuals, that is, each individual (agent) is
mutated with respect to three others. A similar concept of interaction became the
basis and the key element in one of the latest and the most successful methods in
the era of probabilistic metaheuristics, the Particle Swarm Optimization (PSO),
which was proposed in 1995 by Russell C. Eberhart and James Kennedy. PSO was
first intended as a simulation program for the social behavior and stylized

28 2 Optimization Techniques: An Overview

representation of the movement of organisms in a bird flock or fish school. The
algorithm was simplified and it was observed to be performing optimization. We
shall cover the details and the philosophy behind the PSO in Chap. 3 and,
therefore, in the forthcoming sections in this chapter, we shall now detail the major
optimization methods prior to PSO.

2.2 Deterministic and Analytic Methods

Assume an unconstrained optimization problem, such as min
x2<n

f xð Þ, where the

objective function f : <n ! < is sufficiently smooth with continuous second
derivative. It is well known from the theory of functions from Calculus that the
necessary and sufficient conditions for x* to be a local minimum are (1) gradient
f 0 x�ð Þ ¼ 0 and (2) Hessian H x�ð Þ (¼ r2f xð Þ) is positively definite. For some
problems, the solution can be obtained analytically by determining the zeros of the
gradient and verifying positive definiteness of the Hessian matrix at these points.
One particularly interesting property of an objective function is convexity. If f is a
convex function, satisfying f axþ 1� að Þyð Þ� af ðxÞ þ 1� að Þf yð Þ; a 2 ½0; 1�,
then it has only one (global) minimum. There are effective methods for solving
convex optimization problems [15].

For one-dimensional (and possibly multi-dimensional) unconstrained optimi-
zation problems, such as min

x2<n
f xð Þ, search methods explore the parameter space

iteratively by adjusting the search direction and the search range in every iteration
in order to find lower values of the objective function. Search methods are gen-
erally classified into three groups based on their use of (1) objective function
evaluations, (2) gradient of the objective function, and (3) Hessian of the objective
function. There are several iterative search methods, usually called ‘‘line search
methods’’ and designed to solve one-dimensional, unimodal unconstrained opti-
mization problems [16]. Some of these methods can be analogously applied to
multi-dimensional unconstrained problems. The generic pseudo-code for a line
search method is given in Table 2.1, where the steps 2.1 and 2.2 will differ for a
specific search method.

2.2.1 Gradient Descent Method

When the search direction is chosen as the gradient descent direction,�rf ðxÞ, the
corresponding iterative search is called the method of gradient descent (also
known as steepest descent or Cauchy’s method). The direction of the negative
gradient along which the objective function decreases fastest is the most natural
choice. This simple algorithm for continuous optimization uses gradient of the
objective function in addition to the function value itself, hence f must be a

2.1 History of Optimization 29

http://dx.doi.org/10.1007/978-3-642-37846-1_3

differentiable function. The principle of the gradient descent algorithm can be
obtained by setting the search direction as dðkÞ ¼ �rf xð Þ in step 2.1 and the
optimum step size as a kð Þ ¼ arg min

a2<þ
f x kð Þ � a k � 1ð ÞDf xð Þð Þ, in step 2.2 of the

generic line search method, resulting in the position update as

x k þ 1ð Þ ¼ xðkÞ � arg min
a2<þ

f x kð Þ � arf xð Þð Þ
� �

rf xð Þ ð2:4Þ

By using the optimum a kð Þ the gradient descent technique is guaranteed to
converge to a local minimum from any starting point x(0). Additionally, for the
exact line search version of the algorithm described, it can be shown that the next
step will be taken in the direction of the negative gradient at this new point and the
step size will be chosen such that the successive search directions are orthogonal.
In practice, there are inexact line search methods that use different criteria to find a
suitable step size avoiding too long or too short steps to improve efficiency. The
termination criterion is usually of the form rf ðxÞk k� g where g is small (1e� 6)
and positive. However, the gradient method requires a large number of iterations
for convergence when the Hessian of f near minima has a large condition number
(linear dependence). The plots of the gradient descent method with the fixed
aðkÞ ¼ 0:001ð Þ and the exact (optimal a kð Þ) step size over Rosenbrock (banana)

function,f x; yð Þ ¼ 100 y� x2ð Þ2þ 1� xð Þ2;are illustrated in Fig. 2.1. The total
numbers of iterations for the corresponding plots are 26093 and 6423, respectively.

2.2.2 Newton–Raphson Method

Assuming the objective function f(x) is a twice differentiable function, Newton–
Raphson method is based on the second order Taylor series expansion of the
function f around the point x:

Table 2.1 Pseudo-code for generic line search method

30 2 Optimization Techniques: An Overview

f xþ dð Þ ffi f ðxÞ þ Df ðxÞdþ 1
2
dTHf ðxÞd ð2:5Þ

where the Hessian matrix Hf xð Þ ¼ r2f xð Þ is assumed to be positive definite near
local minimum x*. Therefore, Newton–Raphson method utilizes both the first and
the second partial derivatives of the objective function to find its minimum.
Similar to the gradient descent method, it can be implemented as an iterative line

search algorithm using d kð Þ ¼ �Hf xð Þ�1rf xð Þ as the search direction (Newton
direction or the direction of the curvature) in 2.1 yielding the position update:

x k þ 1ð Þ ¼ x kð Þ � aðkÞHf xð Þ�1rf xð Þ ð2:6Þ

At each iteration, Newton–Raphson method approximates the objective func-
tion by a quadratic function around x(k) and moves toward its minima. In the
original algorithm, the step size, aðkÞ, is fixed to 1. While the convergence of
Newton–Raphson method is fast in general, being quadratic near x*, the compu-
tation and the storage of the inverse Hessian is costly. Quasi-Newton methods,
which compute the search direction (through inverse Hessian approximation) with
less computation can be alternatively employed. In the left plot in Fig. 2.2, iter-
ations of the Quasi-Newton method over the Rosenbrock function are shown. Note
that the convergence to the optimum point, (1, 1) is impressively faster than of
gradient descent as shown in Fig. 2.1 (33 iterations versus 6,423 iterations with the
optimal F x; yð Þ ¼ 2y2 þ x2). In the right plot, iterations of both gradient descent
and Quasi-Newton methods over a quadratic objective function,
F x; yð Þ ¼ 2y2 þ x2, are shown. It took 6 iterations for Quasi-Newton and 13
iterations for gradient descent to converge (að0Þ ¼ 0:05 for both methods).

Fig. 2.1 Iterations of the fixed (left) and optimum aðkÞ (right) line search versions of gradient
descent algorithm plotted over the Rosenbrock objective function, x(0) = [-0.5, 1.0]

2.2 Deterministic and Analytic Methods 31

2.2.3 Nelder–Mead Search Method

Nelder–Mead or downhill simplex method [14], is a heuristic algorithm for mul-
tidimensional unconstrained optimization problems. The Nelder–Mead algorithm
falls in the more general class of direct search algorithms which use only the
function values, thus it depends on neither the first nor the second order gradients.
This heuristic search method depends on the comparison of the objective function
values at the (n ? 1) vertices of a general simplex, followed by replacement of the
vertex with the highest function value by another point. It is, therefore, based on an
iterative simplex search, keeping track of n ? 1 points in n dimensions as vertices
of a simplex (i.e., a triangle in 2 dimensions, a tetrahedron in 3 dimensions, and so
on). It includes features, which enable the simplex to adapt to the local landscape
of the cost function, i.e., at each iteration, the simplex moves toward the minimum
by performing one of reflection, expansion, and contraction (in and out) opera-
tions. The stopping criterion is based on the standard deviation of the function
value over the simplex. This is indeed a ‘‘greedy’’ method in the sense that the
expansion point is kept if it improves the best function value in the current sim-
plex. The convergence of a Nelder–Mead operation over the Rosenbrock’s func-
tion is shown in the left plot of Fig. 2.3 and the right plot demonstrates the
consecutive simplex operations during iterations 3–30 where the total number of
iterations is 94. Note that the four operations are annotated in the plot.

Fig. 2.2 (Left) Iterations of the Quasi-Newton method plotted over Rosenbrock function,
x0 = [-0.5, 1.0]. (Right) Iterations of the gradient descent (red) versus Quasi-Newton (black)
methods plotted over a quadratic objective function, x(0) = [10, 5]

32 2 Optimization Techniques: An Overview

2.3 Stochastic Methods

2.3.1 Simulated Annealing

Metropolis in his groundbreaking paper, Equation of State Calculations by Fast
Computing Machines in 1953 introduced the algorithm which simulates the evo-
lution of a solid in a heat bath to thermal equilibrium. In physics, a thermal process
for obtaining low energy states of a solid in a heat bath consists of the following
two steps:

1. Increase the temperature of the heat bath to a maximum value at which the solid
melts;

2. Slowly decrease the temperature until the particles arrange themselves in the
ground state of the solid.

In the liquid phase, all particles are distributed randomly, whereas in the ground
state of the solid the particles are arranged in a highly structured lattice, for which
the corresponding energy is minimal. The ground state of the solid is obtained only
if the maximum value of the temperature is sufficiently high and the cooling is
performed slowly. Otherwise, the solid will be obtained in a meta-stable state
rather than in the true ground state. This is the key for achieving the optimal
ground state, which is the basis of the annealing as an optimization method. The
simulated annealing method is a Monte Carlo-based technique and generates a
sequence of states of the solid. Let i and j be the current and the subsequent state of
the solid and ei and ej their energy levels. The state j is generated by applying a
perturbation mechanism, which transforms the state i into j by a little distortion,
such as a mere displacement of a particle. If ej� ei, the state j is accepted as the
current state; otherwise, the state j may still be accepted as the current state with a
probability

Fig. 2.3 Left Iterations of the Nelder–Mead method plotted over Rosenbrock function with
x(0) = [-0.5, 1.0]. The vertices with the minimum function values are only plotted. Right
consecutive simplex operations during the iterations 3–30

2.3 Stochastic Methods 33

P i) jð Þ ¼ exp
ei � ej

kBT

� �

ð2:7Þ

where kB is a physical constant called the Boltzmann constant; recall from the
earlier discussion that T is the temperature of the state. This rule of acceptance is
known as Metropolis criterion. According to this rule, the Metropolis–Hastings
algorithm generates a sequence of solutions to an optimization problem by
assuming: (1) solutions of the optimization problem are equivalent to the state of
this physical system, and (2) the cost (fitness) of the solution is equivalent to the
energy of a state. Recall from the earlier discussion that the temperature is used as
the control parameter that is gradually (iteratively) decreased during the process
(annealing). Simulated annealing can thus be viewed as an iterative Metropolis–
Hastings algorithm, executed with the gradually decreasing values of T. With a
given cost (fitness) function, f, let w be the continuously decreasing temperature
function, T0 is the initial temperature, N is the neighborhood function, which
changes the state (candidate solution) with respect to the previous state in an
appropriate way, eC is the minimum fitness score aimed, and x is the variable to be
optimized in N-D search space. Accordingly, the pseudo-code of the simulated
annealing algorithm is given in Table 2.2.

Note that a typical characteristic of the simulated annealing is that it accepts
deteriorations to a limited extent. Initially, at large values of temperature, T, large
deteriorations may be accepted; as T gradually decreases, the amount of deterio-
rations possibly accepted goes down and finally, when the temperature reaches
absolute zero, deteriorations cannot happen at all—only improvements. This is
why it mimicks the family of steepest descent methods as T goes to zero. On the
other hand, recall that simulated annealing and the family of Evolutionary

Table 2.2 Pseudo-code of the simulated annealing algorithm

34 2 Optimization Techniques: An Overview

Algorithms (EAs) are sometimes called meta-heuristics, which make few or no
assumptions about the problem being optimized and can thus search for the global
optimum over a large set of candidate solutions. However, besides the population-
based nature of EAs, this particular property is another major difference between
them since EAs are all based on the ‘‘survival of the fittest’’ philosophy, whereas
for the simulated annealing, worse solutions (generations in GA or particle posi-
tions in PSO) can still be ‘‘tolerated’’ for the sake of avoiding a local optimum.

Figure 2.4 shows the simulated annealing iterations plotted over the Rosen-
brock function. The parameters and functions (for the temperature and neighbor-
hood) used are: eC ¼ 10�3, T0 ¼ 1, w Tð Þ ¼ 0:95T , N x0ð Þ ¼ x0 þ 0:01xranger
where r 2 N 0; 1ð Þ, and xrangeis the dimensional range, i.e., xrange ¼ 2� ð�2Þ ¼ 4.
Note that as T ? 0, it mimics the gradient descent method and hence took a longer
time to converge to the global optimum.

2.3.2 Stochastic Approximation

Recall that the goal of deterministic optimization methods is to minimize a loss
function L : Rp ! R1, which is a differentiable function of h and the minimum (or
maximum) point h� corresponds to zero-gradient point, i.e.,

g hð Þ � oL hð Þ
oh

�
�
�
� h ¼ h�

¼ 0 ð2:8Þ

As mentioned earlier, in cases where more than one point satisfies this equation
(e.g., a multi-modal problem), then such algorithms may only converge to a local
minimum. Moreover, in many practical problems, the exact gradient value, g, is

Fig. 2.4 The plot of 1,532
iterations of the simulated
annealing method over
Rosenbrock function with
x(0) = [-0.5, 1.0],
eC ¼ 10�3, T0 ¼ 1,
wðTÞ ¼ 0:95T , N x0ð Þ ¼ x0 þ
0:01xranger where
r 2 N 0; 1ð Þ, and xrange is the
dimensional range, i.e.,
xrange ¼ 2� ð�2Þ ¼ 4

2.3 Stochastic Methods 35

not readily available. This makes the stochastic approximation (SA) algorithms
quite popular. The general SA takes the following form:

h
_

kþ1 ¼ h
_

k � akg
_

k h
_

k

� �
ð2:9Þ

where g
_

k h
_

k

� �
is the estimate of the gradient g hð Þ at iteration k and akis a scalar

gain sequence satisfying certain conditions. Unlike any steepest (gradient) descent
method, SA assumes no direct knowledge of the gradient. To estimate the gradient,
there are two common SA methods: finite difference stochastic approximation
(FDSA) and simultaneous perturbation SA (SPSA) [17]. FDSA adopts the tradi-
tional Kiefer-Wolfowitz approach to approximate gradient vectors as a vector of
p partial derivatives where p is the dimension of the loss (fitness) function.
Accordingly, the estimate of the gradient can be expressed as follows:

g
_

k h
_

k

� �
¼

L h
_

kþckD1

� �
�L h

_

k�ckD1

� �

2ck

L h
_

kþckD2

� �
�L h

_

k�ckD2

� �

2ck

:
:
:

L h
_

kþckDp

� �
�L h

_

k�ckDp

� �

2ck

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð2:10Þ

where Dk is the unit vector with a 1 in the kth place and ck is a small positive
number that gradually decreases with k. Note that separate estimates are computed
for each component of the gradient, which means that a p-dimensional problem
requires at least 2p evaluations of the loss function per iteration. The convergence
theory for the FDSA algorithm is similar to that for the root-finding SA algorithm
of Robbins and Monro. These are: ak [0; ck [0, lim

k!1
ak ¼ 0; lim

k!1
ck ¼ 0,

P1
k¼0 ak\1 and

P1
k¼0 ak=ck\1. The selection of these gain sequences is

critical to the performance of the FDSA. The common choice is the following:

ak ¼
a

k þ Aþ 1ð Þt and ck ¼
c

k þ 1ð Þs ; ð2:11Þ

where a, c, t and s are strictly positive and A� 0. They are usually selected based
on a combination of the theoretical restrictions above, trial-and-error numerical
experimentation, and basic problem knowledge.

Figure 2.5 shows the FDSA iterations plotted over the Rosenbrock function
with the following parameters: a = 20, A = 250, c = 1, t ¼ 1 and s ¼ 0:75. Note
that during the early iterations, it performs a random search due to its stochastic
nature with large ak; ck values but then it mimics the gradient descent algorithm.
The large number of iterations needed for the convergence is another commonality
with the gradient descent.

36 2 Optimization Techniques: An Overview

2.4 Evolutionary Algorithms

Among the family members of EAs, this section will particularly focus on GAs
and DEs leaving out the details of both EP and ES while the next chapter will
cover the details of PSO.

2.4.1 Genetic Algorithms

In nature, every living organism has a set of rules, a blueprint so to speak,
describing how that organism is created (designed). The genes of an organism
represent these rules and they are connected together into long strings called
chromosomes. Each gene represents a specific property of the organism, such as
eye or hair color and the collective set of gene settings are usually referred to as an
organism’s genotype. The physical expression of the genotype—the organism
itself—is called the phenotype. The process of recombination occurs when two
organisms mate and the genes are shared in the resultant offspring. In a rare
occasion, a mutation occurs on a gene; however, this mutated gene will usually not
affect the creation of the phenotype. Yet in rare cases, it will be expressed in the
organism as a completely new trait. The ongoing cycle of natural selection,
recombination, and mutation brought the evolution of the life on earth in addition
to all such variations among the living organisms and of course their adaptation
and survival instincts. The gene mutation plays a crucial role in the famous
Darwinian rule of evolution, ‘‘the survival of the fittest.’’ Genetic Algorithms
(GAs) which are all inspired from the Darwinian evolution mimic all these natural
evolutionary processes so as to search and find the optimum solution of the
problem in hand.

Fig. 2.5 The plot of 25,000
iterations of the FDSA
method over Rosenbrock
function with x(0) = [-0.5,
1.0], eC ¼ 10�3, a = 20,
A = 250, c = 1, t ¼ 1; and
s ¼ 0:75

2.4 Evolutionary Algorithms 37

In order to accomplish this, the first step is the encoding of the problem
variables into genes in a way of strings. This can be a string of real numbers but
more typically a binary bit string (series of 0s and 1s). This is the genetic repre-
sentation of a potential solution. For instance, consider the problem with two
variables, a and b 3 0� a; b\256. A sample chromosome representation for the
ith chromosome, gi a; bð Þ, is shown in Fig. 2.6 where both a and b are encoded with
8-bits, therefore, the chromosome contains 16 bits. Note that examining the
chromosome string alone yields no information about the optimization problem.
It is only with the decoding of the chromosome into its phenotypic (real) values
that any meaning can be extracted for the representation. In this case, as described
below, the GA search process will operate on these bits (chromosomes), rather
than the real-valued variables themselves, except, of course, where real-valued
chromosomes are used.

The second requirement is a proper fitness function which calculates the fitness
score of any potential solution (the one encoded in the chromosome). This is
indeed the function to be optimized by finding the optimum set of parameters of
the system or the problem in hand. The fitness function is always problem
dependent. In nature, this corresponds to the organism’s ability to operate and to
survive in its present environment. Thus, the objective function establishes the
basis for the proper selection of certain organism pairs for mating during the
reproduction phase. In other words, the probability of selection is proportional to
the chromosome’s fitness. The GA process will then operate according to the
following steps:

1. Initialization: The initial population is created while all chromosomes are
(usually) randomly generated so as to yield an entire range of possible solutions
(the search space). Occasionally, the solutions may be ‘‘seeded’’ in areas where
optimal solutions are likely to be found. The population size depends on the
nature of the problem, but typically contains several hundreds of potential
solutions encoded into chromosomes.

2. Selection: For each successive generation, first the selection of a certain pro-
portion of the existing population is performed to breed a new generation. As
mentioned earlier, the selection process is random, however, favors the chro-
mosomes with higher fitness scores. Certain selection methods rate the fitness
of each solution and preferentially select the best solutions.

3. Reproduction: For each successive generation, the second step is to generate
the next generation chromosomes from those selected through genetic operators
such as crossover and mutation. These genetic operators ultimately result in the
child (next generation) population of chromosomes that is different from the
initial generation but typically shares many of the characteristics of its parents.

01001001 10001010
a b

),(bagi

Fig. 2.6 A sample
chromosome representation
for the two problem variables,
a and b

38 2 Optimization Techniques: An Overview

4. Evaluation: The child chromosomes are first decoded and then evaluated using
the fitness function and they replace the least-fit individuals in the population so
as to keep the population size unchanged. This is the only link between the GA
process and the problem domain.

5. Termination: During the Evaluation step, if any of the chromosomes achieves
the objective fitness score or the maximum number of generations is reached,
then the GA process is terminated. Otherwise, steps 2 to 4 are repeated to
produce the next generation.

To perform a crossover operation, an integer position, L, is selected uniformly at
random between 1 and the chromosome string length minus one, and the genetic
information exchanged between the individuals about this point, then two new off-
spring strings are produced. A sample operation for L = 10 is shown in Fig. 2.7. The
crossover operation is applied with a probability, Px, over the pairs chosen for
breeding. Crossover is a critical operator in GA due to two reasons: it greatly
accelerates the search early in the evolution of a population and it leads to effective
combination of subsolutions on different chromosomes. There is always a trade-off
when setting its value, i.e., assigning a too high Px may lead to premature conver-
gence to a local optimum and a too low value may deteriorate the rate of convergence.

The other genetic operator, mutation, is then applied to certain genes (bits) of the
child chromosomes with a probability, Pm. In the binary string representation, a
mutation will cause a single bit to change its state, i.e., 0) 1 or 1) 0. Assigning a
very low Pm leads to genetic drift (which is non-ergodic in nature) and the opposite
may lead to loss of good solutions unless there is an elitist selection. Without a
proper Pm setting, GAs may converge toward local optima or even some arbitrary
(non-optimum) points rather than the global optimum of the search space. This
indicates that a sufficiently high Pm setting should be assigned to teach the algorithm
how to ‘‘sacrifice’’ a short-term fitness in order to gain a longer term fitness. In
contrast to the binary GA, the real-valued GA uses real values in chromosomes
without any encoding and thus the fitness score of each chromosome can be com-
puted without decoding. This is a more straightforward, faster, and efficient scheme
than the binary counterpart. However, both crossover and mutation operations might

01001001 10001010ig

jg

ic

jc

10100101 00001111
X

01001001

10100101 00 001010

10 001111

L=10Fig. 2.7 A sample crossover
operation over two
chromosomes gi and gj after
L = 10 bits. The resultant
child chromosomes are ci and
cj

2.4 Evolutionary Algorithms 39

be different and there are numerous variants performing different approaches for
each. A similar crossover operation as in binary GA can still be used (flipping with a
probability, Px, over the pairs chosen for breeding). Another crossover operation
common for real-valued GA is to exploit the idea of creating the child chromosome
between parents via arithmetic recombination (linear interpolation), i.e., zi = a
xi ? (1–a) yi where xi, yi ,and zi are ith parent and child chromosomes, respectively,
and a : 0 B a B 1. The parameter a can be a constant, or a variable changing
according to some function or a random number. On the other hand, the most
common mutation method is to shift by a random deviate, applied to each chro-
mosome separately, taken from Gaussian distribution N(0, r) and then curtail it to
the problem range. Note that the standard deviation, r, controls the amount of shift.
Figure 2.8 shows the distributions of a real-valued GA population for generations,
g = 1, 160, 518, and 913 over Rosenbrock function with the parameter settings as,
S = 10, Px = 0.8, and an adaptive r linearly decreasing from xrange to 0, where xrange

is the dimensional range, i.e., xrange ¼ 2� ð�2Þ ¼ 4 for the problem shown in the
figure. It took 160 generations for a GA chromosome to converge to the close
vicinity of the optimum point, (1, 1).

Fig. 2.8 The distributions of real-valued GA population for generations, g = 1, 160, 518, and
913 over Rosenbrock function with S = 10, Px = 0.8, and r linearly decreases from xrange to 0

40 2 Optimization Techniques: An Overview

2.4.2 Differential Evolution

Differential Evolution (DE) is an evolutionary algorithm, showing particular
similarities to GA and hence can be called as a genetic-type method. DE has
certain differences in that it is applicable to real-valued vectors, rather than bit-
encoded strings. Accordingly, the ideas of mutation and crossover are substantially
different. Particularly, the mutation operator is entirely different in a way that it is
difficult to see why it is called mutation, except perhaps it serves the same purpose
of avoiding early local trappings. DE has a notion of population similar to PSO
rather than GA as its population members are called agents rather than
chromosomes.

Suppose we optimize a real-valued (fitness) function in N-D, having N real
variables. The ath agent in the population in the generation, g, represents the

candidate solution of this function in the following array form: xg
a ¼

xg
a;1; x

g
a;2; . . .; xg

a;N

h i
; a 2 1; S½ � where S represents the size of the population.

Then the DE process will follow the same path as GA except that the selection is
performed after the reproduction, as follows:

1. Initialization: The initial population is created with S [3. The range of each
agent is defined for g = 0, i.e., xmin

d \x0
a; d\xmax

d and agent vector elements are

randomly initialized within this range, xmin
d ; xmax

d

� �
.

2. Reproduction: For each successive generation, g = 1, 2,…, first mutation and
then the crossover operators are applied on each agent’s vector. To perform the
mutation over the ath agent vector, xg

a, three distinct agents, b, c, and d, are first
randomly chosen such that a 6¼ b 6¼ c 6¼ d. This is why S [3. The so-called
donor vector for agent a is formed as follows:

ygþ1
a ¼ xg

b � Fr xg
c � xg

d

	

ð2:12Þ

where r	U 0; 1ð Þ is a random variable with a uniform distribution and F is a
constant, usually assigned to 2. This is the mutation operation, which adds the
weighted difference of the two of the vectors to the third, hence gives the name
‘‘differential’’ evolution. The following crossover operation then forms a trial
vector from the elements of the agent vector, xg

a, and the elements of the donor
vector, ygþ1

a , each of which enters the trial vector with probability R.

ugþ1
a;j ¼

ygþ1
a;j if r�R or j ¼ d
xg

a;j if r [R and j 6¼ d

� �

ð2:13Þ

where 1� d\N is a random integer ensuring that ugþ1
a;j 6¼ xg

a;j. In other words, at
least one element from the donor vector is ensured into the trial vector.

2.4 Evolutionary Algorithms 41

3. Selection (with Evaluation): For each successive generation once the trial

vector is generated, the agent vector, xg
a, is compared with the trail vector, ugþ1

a;j ,
and the one with the better fitness is admitted to the next generation.

xgþ1
a ¼ ugþ1

a if f ugþ1
a

	

� f xg

a

	

xg
a else

� �

ð2:14Þ

4. Termination: During the previous step, if any agent achieves the objective
fitness score or the maximum number of generations is reached, then the DE
process is terminated. Otherwise, steps 2 and 3 are repeated to produce the next
generation.

Figure 2.9 illustrates the generation of the trial vector on a sample 2-D function.

Note that the trial vector, ugþ1
a , gathers the first-dimensional element ugþ1

a;1

� �
from

the agent vector, xg
a; 1 and the second-dimensional element ugþ1

a;2

� �
from the donor

vector, ygþ1
a;2 .

The choice of DE parameters F, S, and R can have a large impact on the
optimization performance and how to select good parameters that yield good
performance has therefore been subject to much research, e.g., see Price et al. [18]
and Storn [19]. Figure 2.10 shows the distributions of DE population for gener-
ations, g = 1, 20, 60, and 86 over Rosenbrock function with the parameter settings
as, S = 10, F = 0.8, and R ¼ 0:1. Note that as early as 20th generations, a
member of DE population already converged to the close vicinity of the optimum
point, (1, 1).

1x
Global

gx
g
ax

g
cx

gxdx

1+gy

1+gu

2x
g
bx

ay

Minimum

x
Trial

Vector

a

Fig. 2.9 A sample 2-D
fitness function and the DE
process forming the trial
vector

42 2 Optimization Techniques: An Overview

References

1. Biography in Encyclopaedia Britannica. http://www.britannica.com/eb/article-9062073/
Pythagoras

2. C Field, The Philosophy of Plato (Oxford, 1956)
3. Biography in Encyclopaedia Britannica. http://www.britannica.com/eb/article-9108312/

Aristotle
4. The MacTutor History of Mathematics archive. http://turnbull.dcs.st-and.ac.uk/history/
5. List of Greatest Mathematicians. http://fabpedigree.com/james/grmatm3.htm
6. T L Heath, A History of Greek mathematics II (Oxford, 1931)
7. I. Bulmer-Thomas, Selections illustrating the History of Greek mathematics II (London,

1941)
8. F. Woepcke, Extrait du Fakhri, traité d’Algèbre par Abou Bekr Mohammed Ben Alhacan

Alkarkhi (1853)
9. J. F. Scott, The Scientific Work of René Descartes (1987)

10. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–407
(1951)

11. J. Kiefer, J. Wolfowitz, Stochastic estimation of the maximum of a regression function. Ann.
Math. Stat. 23, 462–466 (1952)

12. J.C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Trans. Autom. Control 37, 332–341 (1992)

Fig. 2.10 The distributions of DE population for generations, g = 1, 20, 60, and 86 over
Rosenbrock function with S = 10, F = 0.8 and R ¼ 0:1

References 43

http://www.britannica.com/eb/article-9062073/Pythagoras
http://www.britannica.com/eb/article-9062073/Pythagoras
http://www.britannica.com/eb/article-9108312/Aristotle
http://www.britannica.com/eb/article-9108312/Aristotle
http://turnbull.dcs.st-and.ac.uk/history/
http://fabpedigree.com/james/grmatm3.htm

13. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,
671–680 (1983)

14. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313
(1965)

15. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, UK, 2004)
16. A. Antoniou, W.-S. Lu, Practical Optimization, Algorithms and Engineering Applications

(Springer, USA, 2007)
17. R. Silipo, et al., ST-T segment change recognition using artificial neural networks and

principal component analysis. Comput. Cardiol., 213–216, (1995)
18. K. Price, R. M. Storn, J. A. Lampinen, Differential Evolution: A Practical Approach to Global

Optimization. Springer. ISBN 978-3-540-20950-8 (2005)
19. R. Storn, ‘‘On the usage of differential evolution for function optimization’’. Biennial

Conference of the North American Fuzzy Information Processing Society (NAFIPS).
pp. 519–523, (1996)

44 2 Optimization Techniques: An Overview

Chapter 3
Particle Swarm Optimization

We converse as we live by repeating, by combining and
recombining a few elements over and over again just as nature
does when of elementary particles it builds a world.

William Gass

The behavior of a single organism in a swarm is often insignificant, but their
collective and social behavior is of paramount importance. The particle swarm
optimization (PSO) was introduced by Kennedy and Eberhart [1] in 1995 as a
population-based stochastic search and optimization process. It is originated from
the computer simulation of the individuals (particles or living organisms) in a bird
flock or fish school [2], which basically show a natural behavior when they search
for some target (e.g., food). The goal is, therefore, to converge to the global optima
of some multidimensional and possibly nonlinear function or system. Henceforth,
PSO follows the same path of other evolutionary algorithms (EAs), [3] such as
genetic algorithm (GA) [4], genetic programming (GP) [5], evolution strategies
(ES) [6], and evolutionary programming (EP) [7]. Recall that the common point of
all is that EAs are in population-based nature and they can avoid being trapped in a
local optimum. Thus they can find the optimum solutions; however, this is never
guaranteed.

3.1 Introduction

PSO in most basic terms belongs to the swarm intelligence paradigm, which
studies the collective behavior and social characteristics of organized, decentral-
ized, and complex systems known as ‘‘swarms.’’ A swarm is an apparently dis-
organized collection (population) of moving individuals that tend to cluster
together while each individual seems to be moving in a random direction. Each
individual in the swarm has the capability of interaction with the other individuals,
or the so-called ‘‘agents’’ (or ‘‘particles’’ in PSO), although the capabilities of each
agent are rather limited by certain set of rules. Therefore, the behavior of an agent
in a swarm is often insignificant, but their collective and social behavior is of
paramount importance, in that, the swarm intelligence comes both from the col-
lective adaptation and stochastic nature of the swarm. The main motivation stems
directly from the organic swarms in nature such as bird flocks, fish schools, ant
colonies, and other animal herds and packs, which exhibit an amazing self-

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_3, � Springer-Verlag Berlin Heidelberg 2014

45

organization and collective/social adaptation capabilities. This cannot be explained
simply by the aggregated behavior of each individual member in the swarm but
their collective adaptation to the environment, which in turn makes the survival in
nature possible.

An intelligent swarm can, therefore, be defined as a population of interacting
individuals that optimizes a function or goal by collectively adapting to the local
and/or global environment. In the area of global optimization, the swarm intelli-
gence first appeared with two methods: PSO in 1995 and ant colony optimization
(ACO) in 1992. After their invention, there was an exponential growth in the
number of scientific works related to swarm intelligence and the appearance of
new journals devoted to the innovations in swarm intelligence.

In a PSO process, a swarm of particles, each of which represents a potential
solution to the optimization problem in hand, navigate through the search space.
The particles are initially distributed randomly over the search space, and the goal
is to converge to the global optima of a function or a system. Each particle keeps
track of its position in the search space and its best solution so far achieved. This is
the personal best value (the so-called pbest [1]) and the PSO process also keeps
track of the global best solution so far achieved by the swarm with its particle
index (the so-called gbest [1]). So during their journey with discrete time itera-
tions, the velocity of each agent in the next iteration is computed as a function of
the best position of the swarm (position of the particle gbest as the social com-
ponent), the best personal position of the particle (pbest as the cognitive compo-
nent), and its previous velocity (the memory term). Both social and cognitive
components contribute randomly to the position of the agent in the next iteration.
This is illustrated in Fig. 3.1 where particle a has a new velocity update (at time
t ? 1), which can evade the nearby local optimum. This is of course an optimistic
illustration and there is absolutely no guarantee that it will happen as such, since
the cognitive and social components’ contributions to the velocity update are all
random; however, the tendency toward local and global best (similar to the
‘‘survival of the fittest’’ paradigm in the other EAs), and repeated trials with
random scales may yield a convergence to the global optimum sooner or later.
Note that its probability of success further rises due to the numerous number of
particles in the swarm, since it does not matter if all fail to achieve this but one.
This is the main philosophy behind the PSO and the next section is devoted to its
detailed description and formulation.

3.2 Basic PSO Algorithm

In the basic PSO method (bPSO), a swarm of particles flies through an N-
dimensional search space, where the position of each particle represents a potential
solution to the optimization problem. Each particle a in the swarm,
n ¼ fx1; ::; xa; ::; xSg, is represented by the following characteristics:

46 3 Particle Swarm Optimization

xa;jðtÞ : jth dimensional component of the position of particle a, at time t
va;jðtÞ : jth dimensional component of the velocity of particle a, at time t
ya;jðtÞ : jth dimensional component of the personal best (pbest) position of

particle a, at time t
ŷjðtÞ : jth dimensional component of the global best position of swarm, at time

t.

Let f denotes the fitness function to be optimized. Without loss of generality
assume that the objective is to find the minimum of f in N-dimensional space. Then
the personal best of particle a can be updated in iteration t ? 1 as,

ya;j t þ 1ð Þ ¼ ya;j tð Þ if f xa t þ 1ð Þð Þ[f ya tð Þð Þ
xa;j t þ 1ð Þ else

� �

8j 2 ½1;N� ð3:1Þ

Since gbest is the index of the GB particle, then ŷðtÞ ¼
ygbestðtÞ ¼ minðy1ðtÞ; ::; ySðtÞÞ. Then for each iteration in a PSO process, positional
updates are performed for each particle, a 2 ½1; S� and along each dimensional
component, j 2 ½1;N�, as follows:

va;jðt þ 1Þ ¼ wðtÞ va;jðtÞ þ c1r1;jðtÞ ya;jðtÞ � xa;jðtÞ
� �

þ c2r2;jðtÞ ŷjðtÞ � xa;jðtÞ
� �

xa;jðt þ 1Þ ¼ xa;jðtÞ þ va;jðt þ 1Þ
ð3:2Þ

)(txa

gbest position

pbest position
Previous velocity

Global optimum

)1(+tva

)(tya

)(ˆ ty

)(tva

New velocity

Current positionFig. 3.1 Illustration of the
basic velocity update
mechanism in PSO

3.2 Basic PSO Algorithm 47

where w is the inertia weight [8], and c1; c2 are the acceleration constants.
r1;j�Uð0; 1Þ and r2;j�Uð0; 1Þ are random variables with a uniform distribution.
Recall from the earlier discussion that the first term in the summation is the
memory term, which represents the contribution of previous velocity, the second
term is the cognitive component, which represents the particle’s own experience
and the third term is the social component through which the particle is ‘‘guided’’
by the gbest particle toward the GB solution so far obtained. Note that the gbest
particle is the common guide for all swarm particles since the third term exists in
each velocity update equation. Although the use of inertia weight, w, was later
added by Shi and Eberhart [8], into the velocity update equation, it is widely
accepted as the basic form of PSO algorithm. Each PSO run updates the positions
of the particles using Eq. (3.2). Depending on the problem to be optimized, PSO
iterations can be repeated until a specified number of iterations, say IterNo, is
exceeded, velocity updates become zero, or the desired fitness score is achieved
(i.e.,f \eC, where f is the fitness function and eC is the cut-off error). Accordingly,
the general pseudo-code of the bPSO is presented in Table 3.1.

Velocity clamping in step 3.4.1.2, also called as ‘‘dampening’’ with the user
defined maximum range Vmax (and �Vmax for the minimum) is one of the earliest
attempts to control or prevent oscillations [9]. Figure 3.2 illustrates a typical

Table 3.1 Pseudo-code for the bPSO algorithm

48 3 Particle Swarm Optimization

velocity explosion if the velocity clamping is not performed. Another way of
controlling the particle velocities is using the two acceleration constants, c1; c2,
which affect the trajectory of the particles. If they are set too small, the trajectory
of a particle falls and rises at a slow rate. As their value increased, the frequency of
the particle oscillations will be increased, so they are indeed the rate of velocity
change, or simply the accelerators. Eberhart and Shi suggested to use the inertia
weight which decreasing over time, typically from 0.9 to 0.4, with c1 ¼ c2 ¼ 2. It
has the effect of narrowing the search, gradually changing from an exploratory to
an exploitative mode.

Clerc and Kennedy [10] suggested a more generalized PSO, where a con-
striction coefficient, v, is applied to both terms of the velocity formula. They show
that the constriction PSO can converge without using velocity clamping by Vmax,
and can be formulated as,

va;jðt þ 1Þ ¼ v va;jðtÞ þ c1r1;jðtÞ ya;jðtÞ � xa;jðtÞ
� �

þ c2r2;jðtÞ ŷjðtÞ � xa;jðtÞ
� �� �

xa;jðt þ 1Þ ¼ xa;jðtÞ þ va;jðt þ 1Þ
ð3:3Þ

where usually c1 ¼ c2 ¼ 2:05, and the constriction factor v is set to 0.7289. By
using the constriction coefficient, the amplitude of the particle’s oscillation
gradually decreases, resulting in a convergence over time.

Some other important PSO variants and improvements will be covered in the
next section.

3.3 Some PSO Variants

The first set of improvements has been proposed for the problem-dependent per-
formance of PSO due to its strong parameter dependency. There are mainly two
types of approaches: The first one is through self-adaptation, which has been
applied to PSO by Clerc [11], Yasuda et al. [12], Zhang et al. [13], and Shi and
Eberhart [14]. The other approach is via performing hybrid techniques, which are
employed along with PSO by Angeline [15], Reynolds et al. [16], Higashi and Iba
[17], Esquivel and Coello Coello [18], and many others. Finally, Van den Bergh

v (t)a

t

Fig. 3.2 Particle velocity
tendency to explode without
velocity clamping

3.2 Basic PSO Algorithm 49

[19] showed that the following inequality should be satisfied in order to guarantee
the convergence to (local) optima:

w [
c1 þ c2

2
� 1 ð3:4Þ

where w is the inertia weight, and c1; c2 are the acceleration constants used in Eq.
(3.2). Mendes et al. [20] derived Fully Informed PSO (FIPS) from the constriction
PSO and present its general form as,

va;jðt þ 1Þ ¼ v va;jðtÞ þ
1

Naj j
X

n2Na

c1r1;jðtÞ yn;jðtÞ � xa;jðtÞ
� �

 !

xa;jðt þ 1Þ ¼ xa;jðtÞ þ va;jðt þ 1Þ
ð3:5Þ

where Na defines a neighborhood of the particle a, and Naj j is the number of
particles in it. In the FIPS, a particle is attracted by every other particle in its
neighborhood. Therefore, the performance of FIPS is generally more dependent on
the neighborhood topology (global best neighborhood topology is recommended).

The rest of the PSO variants presented in this section contains some
improvements trying to avoid the premature convergence problem via introducing
diversity to swarm particles. An earlier improvement to avoid premature con-
vergence is the craziness operator, which has been first proposed by Kennedy and
Eberhart [1]. At each iteration, a set of particles from the center of the swarm is
selected and randomized within the search space. However, they concluded that it
may not be a necessary operation since it does not contribute much to the per-
formance of PSO.

Attractive and Repulsive PSO (ARPSO) proposed [21] alternates between
attraction and repulsion phases. During attraction, ARPSO allows fast information
flow between particles causing a low diversity but a better convergence to the
solution. It is reported that 95 % fitness improvements can be obtained within this
phase. In the repulsion phase, the particles are pushed away from the GB solution
so far achieved to increase diversity. ARPSO exhibits a higher performance
compared to both PSO and GA.

Note that according to the velocity update equation in Eq. (3.2), the velocity of
the gbest particle will only depend on the memory term since xgbest ¼ ygbest ¼ ŷ.
To address this problem Van den Bergh introduced a new PSO variant, the PSO
with guaranteed convergence, (GCPSO) [22]. In GCPSO, a different velocity
update equation is used for the gbest particle based on two threshold values that
can be adaptively set during the process. It is claimed that GCPSO usually per-
forms better than the bPSO when applied to unimodal functions and comparable
for multimodal problems; however, due to its fast rate of convergence, GCPSO can
be more likely to trap to a local optimum with a guaranteed convergence, whereas
the bPSO may not. Based on GCPSO, Van den Bergh proposed the Multi-start
PSO (MPSO) [22], which repeatedly runs GCPSO over randomized particles and
stores the (local) optimum at each iteration. Yet, similar to bPSO and many of its

50 3 Particle Swarm Optimization

variants, the performance still degrades significantly as the dimension of the search
space increases [22].

Another attempt to improve the overall performance is to use multiple swarms
instead of one. Lovberg et al. [23] proposed an approach, which divides the main
swarm into several swarms where each swarm has its own gbest particle. The
particles between different swarms can mate by using an arithmetic crossover
operator with a certain probability, the so-called breeding operation. The results,
however, show that this approach did not improve the overall performance since
swarms with less particles do not have enough exploration power and no pre-
vention is designed against such small-size swarms getting too similar to each
other over time.

In another approach, Lovberg and Krink presented Self Organized Criticality
(SOC) PSO [24, 25]. The criticality measures the proximity of particles, so that the
particles that are too close to each other can be relocated in the search space to
improve the diversity of the swarm. They propose two types of relocation: The first
one is random initialization and the second one is random displacement of parti-
cles further in the search space. SOC PSO outperformed bPSO only in one out of
four cases.

3.3.1 Tribes

In all PSO variants presented earlier including the basic (canonical) version, the
description of the problem typically provides the following: the definition of the
solution (or search) space; the fitness function to be optimized (the objective
function) on each point of the search space; and finally, a stopping criterion (e.g.,
the maximum number of iterations or admissible error). The swarm, on the other
hand, can be defined by the population size and other intrinsic parameters such as
inertia factor w, acceleration constants c1; c2, or perhaps some other depending on
the variant. The particular PSO variant, ‘‘Tribes’’, is a parameter-free PSO algo-
rithm. Its major properties are:

• The swarm is divided into ‘‘tribes’’.
• At the beginning, the swarm is composed of only one particle.
• According to tribes’ behaviors, particles are added or removed.
• According to the performances of the particles, their strategies of displacement

are adapted.
• Adaptation of the swarm according to the performances of the particles.

In this process, some subgroups are defined in such a way that, inside each
group, every particle informs all other particles, including itself. Therefore, these
subgroups are called as tribes, a metaphor for different sized groups of particles
moving about the search space, looking for the global solution of the problem in
hand. In practice, this process is similar to nesting in GAs with the same purpose:

3.3 Some PSO Variants 51

to explore several promising areas simultaneously, usually around local minima.
When a particular tribe succeeds in finding a local minima, it informs others so
that they may decide collectively where the global optimum resides. Therefore,
there is an information network between tribes. Let A0 and B0 two particles in two
tribes, A and B. This means that from any particle in A to any particle in B, there
exists an information path, such as, ‘‘A0 informs A1, which informs A2…which
informs B0,…’’. In short, each tribe can be defined as a dense network, and there
are certain subnetworks among the tribes making the entire network fully con-
nected. Such a networking structure must be automatically generated and updated
by means of creation, evolution, and deletion of particles and tribes.

In brief, for tribes we can summarize the structural adaptations as follows:

• Definition of a status for each tribe: good, neutral, or bad.
• Definition of a status for each particle: good or neutral.
• Removal of a particle: remove the worst particle from a good tribe.
• Generation of a particle:improvement of performances of a bad tribe.

As in other canonical PSO types, each particle has current and personal best
positions. A particle is said to be good if it has just improved its personal best
performance, otherwise it is neutral. Note that this is a binary definition because
improvement is not measured. We check only if it is strictly positive (real
improvement) or null (no improvement). By definition, the best performance of a
particle cannot deteriorate, and that is why there is no ‘‘bad’’ particle in the
absolute, but only by comparison. The particle having the worst personal best
position within a tribe is called as the bad. Similarly, the best particle is assigned
relative to a tribe. Moreover, compared to canonical PSO, the particle memory is
slightly improved, so that it remembers its last two performance variations, thus
maintaining a short history of its moves. On the other hand, to measure the global
performance of a tribe, two status assignments, good and bad, are used. It is
determined by a simple rule: the higher the number of good particles in a tribe, the
more the tribe is itself good and vice versa. More precisely, consider tribe T with
size N, which can be assigned either good or bad according to:

T ¼ good if NGood [randð1;NÞ
bad else

� �

ð3:6Þ

where NGood\N is the number of good particles in T. Such a probabilistic
approach will then lead to the construction of new tribes using the adaptation rules
summarized earlier. For instance, only the worst particle in the best tribe is
removed. Moreover, for each bad tribe, a free particle is created and initialized in
such a way that the probability of a new region discovery can be higher.

The tribe creation process starts with the randomly generated initial particle,
which also constitutes the initial tribe. It will then undergo to the same PSO
velocity updates and if there is no improvement observed in the first iteration, then
a second tribe is generated and initialized with its first particle, and so on.
Therefore, the number of tribes along with their particles will be increased, in

52 3 Particle Swarm Optimization

order to improve the search ability with the increasing population as long as no
improvement is observed. As soon as a certain level of improvement is achieved,
the excess population will be regulated by removing the worst particles in the best
tribes.

3.3.2 Multiswarms

PSO was initially proposed as an optimization technique for static environments;
however, many real problems are dynamic, meaning that the environment and the
characteristics of the global optimum can change in time. Therefore, such prob-
lems require systematic re-optimizations due to system and/or environmental
changes. Even though it is possible to handle such dynamic problems as a series of
individual processes via restarting the optimization algorithm after each change,
this may lead to a significant loss of useful information, especially when the
change is not too drastic. The main problem of using the bPSO algorithm in a
dynamic environment is that eventually the swarm will converge to a single
peak—whether global or local. When another peak becomes the global maximum
as a result of an environmental change, it is likely that the particles keep moving in
the vicinity of the peak to which the swarm has converged earlier, and thus they
cannot find the new global maximum. Blackwell and Branke have addressed this
problem in [26] and [27] by introducing multiswarms that are actually separate
PSO processes. Each particle is now a member of one of the swarms only and it is
unaware of other swarms. This is one of the main differences compared to
‘‘Tribes’’, which otherwise is another good example of multiswarms. The main
idea is that each swarm can converge to a separate peak. Swarms interact only by
mutual repulsion that keeps them from converging to the same peak. For a single
swarm, it is essential to maintain enough diversity, so that the swarm can track
small location changes of the peak to which it is converging. For this purpose
Blackwell and Branke introduced charged and quantum swarms, which are analogs
to an atom having a nucleus and charged particles randomly orbiting it. The
particles in the nucleus take care of the fine tuning of the result while the charged
particles are responsible of detecting the position changes. However, it is clear
that, instead of charged or quantum swarms, some other method can also be used
to ensure sufficient diversity among particles of a single swarm, so that the peak
can be tracked despite of small location changes.

As one might expect, the best results are achieved when the number of swarms
is set equal to the number of peaks. However, it is then required that the number of
peaks is known beforehand. In [28], Blackwell presents self-adapting multisw-
arms, which can be created or removed during the PSO process, and therefore it is
not necessary to fix the number swarms beforehand. The repulsion between
swarms is realized by simply reinitializing the worse of two swarms if they move
within a certain range from each other. Using physical repulsion could lead to
equilibrium, where swarm repulsion prevents both swarms from getting close to a

3.3 Some PSO Variants 53

peak. A proper limit closer to which the swarms are not allowed to move, rrep is
attained by using the average radius of the peak basin, rbas. If p peaks are evenly
distributed in XN ; rrep ¼ rbas ¼ X=p1=N .

Multiswarms, or the so-called subswarms also exists in local PSO topologies.
Recall that in the (standard) global PSO, each particle is a neighbor of all other
particles (i.e., = a fully connected topology). Therefore, the personal best position
of the gbest particle guides the whole swarm as it affects all the velocity updates.
Yet, if the current global optimum is not close to the global optimum solution, it
may become hard, if not impossible, for the swarm to explore other areas of the
search space. Generally speaking, global PSOs usually converge faster and may
get trapped in a local optimum more easily. There are other local PSO variants
where the particles are grouped within neighborhoods according to a certain
strategy, to create subswarms. In this case, only the gbest particle in the subswarm
can influence the velocity update of a given particle in that subswarm. Conse-
quently, such local PSO variants (with certain subswarm topologies) converge
slower than the global PSO, but they have higher chance of avoiding local minima
due to greater population diversity [29]. Such a neighborhood approach actually
models the social networks [30]. Four sample topologies are shown in Fig. 3.3,
where the ‘‘Fully Connected’’ topology (also called as the ‘‘Star topology’’) cor-
responds to the global PSO. All the others are examples of local PSO topologies,
where a local best (lbest) particle guides the subswarm with a neighborhood size,
K. Henceforth, the same velocity update equation as given in Eq. (3.2) will be used
while ŷjðtÞ now represents the jth dimensional component of the lbest position of a
subswarm, at time t.

Consider for instance the ‘‘Ring’’ topology; as the simplest example of local
PSO, it connects each particle with the two immediate neighbors, e.g., K = 2 (left
and right particles). The flow of information in this topology is drastically reduced
compared to the global PSO (the star topology). Using the ring topology will slow
down the convergence rate, because the best solution found has to propagate
through several neighborhoods before affecting all particles in the swarm. This
slow propagation will allow the particles to explore more areas in the search space
and thus may decrease the chance of premature convergence. On the other hand,

Fully Connected RandomRing Von Neumann

Fig. 3.3 Local PSO topologies

54 3 Particle Swarm Optimization

the choice of topology and thus the size of the neighborhood might be critical, and
moreover it will induce new parameters to the PSO.

3.4 Applications

PSO as a generic optimization method can be applied to many problems in several
areas, ranging from numerical optimization, to machine learning, and signal
processing, just to name a few. For a given problem, that each particle represents a
potential solution of the problem and the swarm particles move in the solution
space seeking the optimum solution. Among many alternatives, we shall focus on
three sample problem domains to demonstrate how PSO can be applied to search
for the global solution.

3.4.1 Nonlinear Function Minimization

The first problem domain is nonlinear function minimization and several bench-
mark functions exist in high dimensions. Figure 3.4 presents six of these bench-
mark functions that are shown in 2D for illustration purposes. The general,
unconstrained function minimization problem in d-dimensional space has the
form:

x� ¼ x�1; x
�
2; ::; x

�
d

� 	
¼ arg min

x2Rd
f ðxÞ , f ðx�Þ ¼ minf ðxÞ

x2Rd

ð3:7Þ

where f(x) is the d-dimensional nonlinear function and suppose that it has a global
minimum within a practical range of �xmax, which corresponds to a d-dimensional
cube representing the boundaries of the search space. All the benchmark functions
in the figure have their global minimum at the origin, i.e., x� ¼ ½0; 0; ::; 0�. This is
the most natural type of problem where the position of the PSO particle a can
directly correspond to the points in the data space, i.e., the jth component of a
d-dimensional point (xj; j 2 ½1; d�) is stored in its positional component, xa;jðtÞ.
The PSO process can then start with a random initialization of each particle
position within the search range, �xmax (i.e., as in step 1.1: Randomize xað1Þ).

Figure 3.5 presents the four plots of the personal best score of the gbest particle
versus iteration (epoch) number obtained from the individual PSO runs for the four
sample functions in dimensions d = 20 and d = 80. In all runs the following
parameters are used: c1 ¼ c2 ¼ 2; xmax ¼ 500; Vmax ¼ xmax=5 ¼ 100; iterNo ¼
5000; eC ¼ 10�4 and S ¼ 50. The inertial factor, w, is linearly decreased from 0.9
to 0.4. Note that for unimodal functions in both dimensions, Sphere and Griewank,
PSO runs successfully converged (within a vicinity of eC) to the global minimum
within iterNo iterations. However, in the case of multimodal functions, i.e.,

3.3 Some PSO Variants 55

Fig. 3.4 Some benchmark functions in 2D

0 1000 2000 3000 4000 5000
10

-2

10
0

10
2

10
4

10
6

d = 20

d = 80

0 1000 2000 3000 4000
0

100

200

300

400

500

600

d = 20

d = 80

0 1000 2000 3000 4000
10

-5

10
0

10
5

d = 20

d = 80

0 1000 2000 3000 4000 5000
0

10

20

30

40

50
d = 20

d = 80

(a) (b)

(d)(c)

Fig. 3.5 The plots of the gbest particle’s personal best scores for the four sample non-linear
functions given in Fig. 3.4. a Sphere. b Giunta. c Rastrigin. d Griewank

56 3 Particle Swarm Optimization

Rastrigin and Giunta, a premature convergence to a local optimum is evident;
nevertheless, the gbest scores indicate a good performance level particularly for
the run on Rastrigin (a drastic drop from the level of 104 to 1.2). The effect of the
dimension on the convergence is also quite visible. It is easy to observe that the
higher the dimension it gets, the worse the convergence becomes. This observation
is valid for uni- and multimodal functions.

3.4.2 Data Clustering

The second application domain is data clustering. As the process of identifying
natural groupings in a multidimensional data based on some similarity measure
(e.g., Euclidean), data clustering can be divided into two main categories: hier-
archical and partitional [31]. Each category then has a wealth of subcategories and
different algorithmic approaches for finding the natural groupings, or the so-called
clusters. Clustering can also be performed in two different modes: hard (or crisp)
and fuzzy. In the former mode, the clusters are disjoint, nonoverlapping, and each
data point belongs to a single cluster, whereas in the latter case each data point can
belong to all the clusters with some degree of membership [32]. K-means [33] is
the well-known and widely used partitional clustering method, which first assigns
each data point to one of the K cluster centroids which are then updated by the
mean of the associated points. Starting from a random set of K centroids, this cycle
is then iteratively performed until the convergence criteria, DKmeans\e is reached
where the objective function, DKmeans can be expressed as,

DKmeans ¼
XK

k¼1

X

xp2ck

ck � xp

2 ð3:8Þ

where ck is the kth cluster center, xp is the pth data point in cluster ck and :k k is the
distance metric in the Euclidean space. As a hard clustering method, K-means
suffers from the following drawbacks:

• The number of clusters K, needs to be set in advance.
• The performance of the method depends on the initial (random) centroid posi-

tions as the method converges to the closest local optima.
• The method is also dependent to the distribution of the data.

The fuzzy version of K-means, the so-called fuzzy C-means (FCM) (sometimes
also called as fuzzy K-means) was proposed by Bezdek [34], and has become the
most popular fuzzy clustering method so far. It is a fuzzy extension of the K-means
with a similar objective function as follows:

DFCM ¼
XK

k¼1

X

xp2ck

um
kp ck � zp

2

with
XK

k¼1

ukp ¼ 1; 8p ð3:9Þ

3.4 Applications 57

where ukp� 1 is a positive membership value of the data point zp to the cluster ck

and m [1 is the fuzziness exponent. FCM usually achieves a better performance
compared to the K-means [35] and is less data dependent; however, it still suffers
from the same drawbacks, i.e., the number of clusters should be fixed a priori and
unfortunately it may also converge to local optima [32]. Zhang and Hsu [36]
proposed a novel fuzzy clustering technique, the so-called K-harmonic means
(KHM), which is less sensitive to initial conditions and promises further
improvements. The experimental results demonstrate that KHM outperforms both
K-means and FCM [36, 37]. An extensive survey over various types of clustering
techniques can be found in [32] and [38].

A hard clustering technique based on the bPSO was first introduced by Omran
et al. in [39] and this work showed that the bPSO can outperform K-means, FCM,
KHM, and some other state-of-the-art clustering methods in any (evaluation)
criteria. This is indeed an expected outcome due to the PSO’s aforementioned
ability to cope up with the local optima by maintaining a guided random search
operation through the swarm particles. In clustering, similar to other PSO appli-
cations, each particle represents a potential solution at a particular time t, i.e., the
particle a in the swarm, n ¼ fx1; ::; xa; ::; xSg, is formed as xaðtÞ ¼
fca;1; ::; ca;j; ::; ca;Kg) xa;jðtÞ ¼ ca;j where ca;j is the jth (potential) cluster centroid
in N-dimensional data space and K is the number of clusters fixed in advance. Note
that contrary to nonlinear function minimization in the earlier section, the data
space dimension, N, is now different than the solution space dimension, K. Fur-
thermore, the fitness function, f that is to be optimized, is formed with respect to
two widely used criteria in clustering:

• Compactness: Data items in one cluster should be similar or close to each other
in N-dimensional space and different or far away from the others belonging to
other clusters.

• Separation: Clusters and their respective centroids should be distinct and well-
separated from each other.

The fitness functions for clustering are then formed as a regularization function
fusing both Compactness and Separation criteria and in this problem domain they
are known as clustering validity indices. Omran et al. used the following validity
index in their work [39]

f ðxa; ZÞ ¼ w1dmaxðxa; ZÞ þ w2ðZmax � dminðxaÞÞ þ w3QeðxaÞ

where QeðxaÞ ¼

PK

j¼1

P

8zp2xa;j

xa;j�zpk k

xa;jk k
K

ð3:10Þ

where Qe is the quantization error (or the average intracluster distance), dmax is the
maximum average Euclidean distance of data points, Z ¼ fzpg, to their centroids,
xa; 8zp 2 xa;j, Zmax is a constant value for theoretical maximum intercluster

58 3 Particle Swarm Optimization

distance, and dmin is the minimum centroid (intercluster) distance in the cluster
centroid set xa. The weights, w1; w2; w3 are user defined regularization coeffi-
cients. So the minimization of the validity index f ðxa; ZÞ will simultaneously try to
minimize the intracluster distances (better Compactness) and maximize the
intercluster distance (better Separation). In such a regularization approach, dif-
ferent priorities (weights) can be assigned to both objectives via proper setting of
weight coefficients. Another traditional and well-known validity index is Dunn’s
index [40], which suffers from two drawbacks: It is computationally expensive and
sensitive to noise [41]. Several variants of Dunn’s index were proposed in [38],
where robustness against noise is improved. There are many other validity indices,
i.e., proposed by Turi [42], Davies and Bouldin [43], Halkidi and Vazirganis [44],
etc. A throughout survey can be found in [41]. Most of them presented promising
results; however, none of them can guarantee the ‘‘optimum’’ number of clusters in
every clustering scheme. Especially for the aforementioned PSO-based clustering
in [39], the clustering scheme further depends on weight coefficients and may
therefore result in over- and under-clustering particularly in complex data
distributions.

In order to test the clustering performance of the bPSO, we created 15 synthetic
data spaces as shown in Fig. 3.6, and to make the evaluation independent from the
choice of the parameters, we simply used Qe in Eq. (3.10) as the clustering validity
index function. For each clustering experiment, we manually set K as the true
number of clusters existing in 2D synthetic data space. For illustration purposes
each data space is formed in 2D; however, clusters are formed with different
shapes, densities, sizes, and intercluster distances to test the robustness of

C11: 54 ClustersC10: 48 ClustersC9: 42 Clusters

C5: 10 Clusters

C4: 10 ClustersC3: 6 ClustersC2: 5 ClustersC1: 4 Clusters

C7: 16 ClustersC6: 13 Clusters C8: 19 Clusters

Fig. 3.6 11 synthetic data spaces in 2D

3.4 Applications 59

clustering methods against such variations. Furthermore, recall that the number of
clusters determines the (true) dimension of the solution space in a PSO application,
and hence data spaces with different numbers of clusters are used to test the
convergence accuracy to the true (solution space) dimension. As a result, signif-
icantly varying complexity levels are achieved among the 11 data spaces to
establish a general purpose evaluation of each technique. We set: iterNo = 2,000;
however, the use of cut-off error as a termination criterion is avoided since it is not
feasible to set a unique eC value for all clustering schemes. Therefore, each PSO
run is executed with 2,000 iterations. The swarm size, S = 80, and the rest of the
PSO parameters are set as the default values given earlier are also used in all
experiments except the positional range, �xmax, since it can now be set simply as
the natural boundaries of the 2D data space.

The first set of clustering operations is performed over the simple data spaces
where they can yield accurate results, e.g., the results of clustering over the four
data spaces at the top row in Fig. 3.6 are shown in Fig. 3.7 where each cluster is
represented in one of the three color codes (red, green, and blue) for illustration
purposes and each cluster centroid (each dimensional component of the gbest
particle) is shown with a white ‘+’.

The convergence accuary of PSO tends to degrade with the increasing
dimensionality and complexity due to the well-known ‘‘curse of dimensionality’’
phenomenon from which no optimization technique can be entirely immune.
Figure 3.8 presents typical clustering results for K � 10 and while running each
PSO operation till iteration number reaches to 20,000 (i.e., stagnation). K = 10 is
indeed not a too high dimension for PSO but it particularly suffers from the highly
complex clustering schemes as in C4 and C5 (i.e., varying sizes, shapes, and

Fig. 3.7 PSO clustering for 2D data spaces C1-C4 shown in Fig. 3.6

Fig. 3.8 Erroneous PSO clustering over data spaces C4, C5, C8, and C9 shown in Fig. 3.6

60 3 Particle Swarm Optimization

structures among clusters). Over a simpler data space, e.g., C6 with 13 clusters, we
noticed that PSO occasionally yields accurate clustering but for those data spaces
with 20–25 clusters or above, clustering errors become inevitable regardless of the
level of complexity and errors tend to increase significantly in higher dimensions
as a natural consequence of earlier local traps. A typical example is C9, which has
42 clusters in the simplest form (uniform size, shape, and density) and the clus-
tering result presents many over- and under-clustering schemes with many occa-
sional miss-located centroids. Much worse performance can be expected from their
applications over C10 and C11.

As a result, although PSO-based clustering outperforms many well-known
clustering methods, it still suffers from two major drawbacks. The number of
clusters, K, (being the solution space dimension as well) should still be specified in
advance and similar to other PSO applications, the method obviously tends to trap
in local optima particularly when the complexity of the clustering scheme
increases. This also involves the dimension of the solution space, i.e., convergence
to ‘‘optimum’’ number of ‘‘true’’ clusters can only be guaranteed for low dimen-
sions. Recall from the earlier discussion that this is also true for dynamic clustering
schemes, DCPSO [45] and MEPSO [46], both of which eventually present results
only in low dimensions (K� 10 in [45] and K� 6 in [46]) and for simple data
distributions. The degradation is likely to be more severe particularly for DCPSO,
since it entirely relies on K-means for actual clustering.

3.4.3 Artificial Neural Networks

3.4.3.1 An Overview

Another application domain is the training of artificial neural networks (ANNs) for
supervised data classification. After the introduction of simplified neurons by
McCulloch and Pitts in 1943 [20], ANNs have been widely applied to many
application areas, most of which used feedforward ANNs with the back propa-
gation (BP) training algorithm. An ANN consists of a set of connected processing
units, usually called neurons or nodes. ANNs can be described as directed graphs,
where each node performs some activation function on its inputs and then passes
the result forward to be the input of some other neurons, until the output neurons
are reached.

ANNs can be divided into feed forward and recurrent networks according to
their connectivity. In a recurrent ANN there can be backward loops in the network
structure, while in feedforward ANNs they are no loops. Furthermore, feedforward
ANNs are usually organized into layers of parallel neurons and only connections
between adjacent layers are possible. All layers besides the input and the output
layers are called hidden layers. Commonly, the input layer is just a passive layer,
where no computations are carried out and it is thus not counted in the total
number of layers. The active neurons perform an activation function f of the form,

3.4 Applications 61

yp;l
k ¼ f

XNl�1

j¼1

wl
jkyp;l�1

j � hl
k

 !

; ð3:11Þ

where yp;l
k is the output of neuron k at layer l, when pattern p is fed to the ANN,

Nl�1 is the total number of neurons in layer l-1, wl
jkis the connection weight

between neuron j at layer l-1 and neuron k at layer l, and hl
k is the bias of neuron

k. For the first processing layer (the layer after the input layer), yp;l�1
j ¼ yp;0

j is

naturally the jth dimension of the input xp
j . The number of input neurons Ni and the

number of output neurons No for ANNs are defined by the problem, while the
number of hidden layers and the number of neurons in each hidden layer is
somehow decided usually by expert rule of thumb and with respect to the problem.
A sample feedforward ANN is illustrated in Fig. 3.9. It has three layers (two
hidden layers and the output layer). Figure 3.9 also shows the connection weights
w2

j1 and the bias h2
1

for the first neuron in layer 2.
As an example illustrated in Fig. 3.9, the most common ANN type is the

multilayer perceptron (MLP) [47]. It is a feedforward network, which contains one
or more hidden layers, each with a given number of neurons. The degree of neuron
connectivity is usually high and the neurons have smooth nonlinear activation
functions. The use of nonlinear activation functions is essential, because otherwise
the MLP could always be reduced to a single-layer perceptron (SLP) without
changing its capabilities. Another popular type of feed-forward ANN is the radial
basis function (RBF) network [48], which has always two layers in addition to the
passive input layer: a hidden layer of RBF units and a linear output layer. Only the
output layer has connection weights and biases. The activation function of the kth
RBF unit is defined as,

yk ¼ u
X � lkk k

r2
k

� �

; ð3:12Þ

where u is a radial basis function or, in other words, a strictly positive radially
symmetric function, which has a unique maximum at N-dimensional center lk and
whose value drops rapidly close to zero away from the center. rk is the width of

Fig. 3.9 An example of a
fully connected feed-forward
ANN

62 3 Particle Swarm Optimization

the peak around center lk. The activation function gets noteworthy values only
when the distance between the N-dimensional input X and the center lk, X � lkk k,
is smaller than the width rk. The most commonly used activation function in RBF
networks is the Gaussian basis function defined as,

yk ¼ exp � X � lkk k2

2r2
k

 !

; ð3:13Þ

where lk and rk are the mean and standard deviation of the Gaussian function and
||.|| is the Euclidean norm. While MLPs construct global approximations to non-
linear input–output mappings, RBF is built from local approximations centered on
clusters of input training samples, and both have a universal function approxi-
mation capability. More detailed information about MLPs and RBF networks the
reader may consult [47].

Back propagation is the most commonly used training technique for feedfor-
ward ANNs. BP has the advantage of a directed search, where the weights are
updated in such a way as to minimize the error. However, there are several aspects,
which make the algorithm not guaranteed to be universally useful. Most trouble-
some is its strict dependency on the learning rate parameter, which, if not set
properly, can either lead to oscillation or indefinitely long training time. Network
paralysis might also occur, i.e., as the ANN trains, the weights tend to assume
quite large values and the training process can come to a virtual standstill. Fur-
thermore, BP eventually slows down by an order of magnitude for every extra
(hidden) layer added to the ANN. After all, BP is simply a gradient descent
algorithm over the error space, which can be complicated and may contain many
deceiving local minima (multimodal). Therefore, BP most likely gets trapped into
a local minimum, making it entirely dependent on the initial (weight) settings.

Let Nl
h be the number of hidden neurons in layer l of a MLP with input and

output layer sizes NI and NO, respectively. The input neurons are merely fan out
units, since no processing takes place there. Let F be the activation function
applied over the weighted inputs plus a bias, as follows:

yp;l
k ¼ Fðsp;l

k Þ where sp;l
k ¼

X

j

wl�1
jk yp;l�1

j þ hl
k ð3:14Þ

where yp;l
k is the output of the kth neuron of the lth hidden/output layer when

pattern p is fed at the input, wl�1
jk is the weight from the jth neuron in layer l-1 to

the kth neuron in layer l, and hl
kis the bias value of the kth neuron of the lth hidden/

output layer, respectively. The training mean square error, MSE, at the output layer
is formulated as,

MSE ¼ 1
2PNO

X

p2T

XNO

k¼1

tp
k � yp;O

k

� �2
ð3:15Þ

3.4 Applications 63

where tp
k is the target (desired) output and yp;O

k is the actual output from the kth
neuron in the output layer, l = O, for pattern p in the training set T with size P,
respectively.

The BP algorithm can be summarized as follows:

1. Initialize the weights wl
jk and biases hl

k randomly. For RBF networks initialize
also peak centers lk and sigmas rk.

2. Feed pattern p to the network. Compute the output yp;l
k of each neuron.

3. Calculate the error between the computed output yp;o
k of each output neuron and

the desired output tp
k as ep;o

k ¼ tp
k � yp;o

k .
4. For each neuron k, calculate the local gradients oEp

ohl
k
, where Ep is the total error

energy defined as Ep ¼ 1
2

P
k2o ðe

p;o
k Þ

2and hl
k is a uniform symbol for each

parameter wl
jk, hl

k, lk ,and rk. The name BP algorithm comes from the fact that
local gradients are computed starting from the output layer and then iteratively
proceeding backwards toward the input layer. The formulas for calculating the
local gradients for MLP and RBF can be found in [47] and [49], respectively.

5. Update the parameters as follows:

hl
kðt þ 1Þ ¼ hk

kðtÞ þ Dhk
kðtÞ

Dhk
kðtÞ ¼ �g

oEp

ohk
k

þ aDhk
kðt � 1Þ

ð3:16Þ

where, g is the learning rate parameter and a is the momentum constant.

One complete run over the training dataset is called an epoch. Usually many
epochs are required to obtain the best training results; on the other hand, too many
training epochs can lead to over fitting. In the above realization of the BP algo-
rithm, the network parameters are updated after every training sample. This is
called the online or sequential mode. The other possibility is the batch mode,
where all the training samples are first presented to the network and then the
parameters are adjusted, so that the total training error is minimized. The
sequential mode is often favored over the batch mode as it requires less storage
space. Moreover, the sequential mode is less likely to get trapped in a local
minimum as updates at every training sample make the search stochastic in nature.
Hence, sequential BP mode is used for MLP training.

PSO has been successfully applied for training feedforward [50–53] and
recurrent ANNs [54, 55] and several works on this field have shown that it can
achieve a superior learning ability to the traditional BP method in terms of
accuracy and speed. At time t, suppose that particle a in the swarm,
n ¼ fx1; . . .; xa; . . .; xSg, has the positional component:

xaðtÞ ¼ fw0
jkg; fw1

jkg; fh1
kg; fw2

jkg; fh2
kg; . . .; fwO�1

jk g; fhO�1
k g; fhO

k g
n o

where

fwl
jkg and fhl

kg represent the sets of weights and biases of layer l. Note that the

64 3 Particle Swarm Optimization

input layer (l = 0) contains only weights, whereas the output layer (l = O) has
only biases. With such a direct encoding scheme, the particle a represents all
potential network parameters of the MLP architecture. In the next section, we shall
present a direct comparison of PSO versus BP training of a collection of MLPs
over supervised classification over several medical datasets.

3.4.3.2 BP versus PSO: Comparative Performance Evaluation Over
Medical Datasets

An architecture space (AS) can be defined over a certain range of configurations,
i.e., say from a SLP to complex MLPs with many hidden layers. Suppose, for the
sake of simplicity, that a range is defined for the number of layers, Lmin; Lmax½ � and
another for the number of neurons for each hidden layer l, Nl

min;N
l
max

� 	
. Without

loss of generality, assume that the size of both input and output layers is deter-
mined by the problem and hence fixed. Consequently, the architecture space can
now be defined by only two (MLP) configuration sets, Rmin ¼

NI ;N1
min; . . .;NLmax�1

min ;NO

 �
and Rmax ¼ NI ;N1

max; . . .;NLmax�1
max ;NO

 �
, one for the

minimum and the other for the maximum number of neurons allowed for each
layer of a MLP. The size of both arrays is naturally Lmax þ 1 , where the corre-
sponding entries define the range of neurons possible on the lth hidden layer for all
those MLPs, which can have an lth hidden layer. The size of input and output
layers, fNI ;NOg, is fixed and remains the same for all configurations in the
architecture space within which any l-layer MLP can be defined providing that
Lmin� l� Lmax. Lmin� 1 and Lmax can be set to any reasonable value for the
problem at hand. In this way, all network configurations in the architecture space
are enumerated into a hash table with a proper hash function, which ranks the
networks with respect to their complexity, i.e., associates higher hash indices to
networks with higher complexity. The hash function then enumerates all potential
MLP configurations into hash indices, starting from the simplest MLP with Lmin �
1 hidden layers, each of which has a minimum number of neurons given in Rmin; to
the most complex network with Lmax � 1 hidden layers, each of which has the
maximum number of neurons given in Rmax. Take, for instance, the following
configuration sets, Rmin ¼ f9; 1; 1; 2g and Rmax ¼ f9; 8; 4; 2g, which indicate
that Lmax ¼ 3. If Lmin ¼ 1 then the hash function enumerates all MLP configura-
tions in the architecture space as shown in Table 3.2 Note that in this example, the
input and output layer sizes are nine and two, which are eventually fixed for all
MLP configurations. The hash function associates the first index (d = 0) with the
simplest possible architecture, i.e., a SLP with only input and output layers (i.e.,
9 9 2). From indices 1 to 8, all configurations belong to 2-layers MLP with a
single hidden layer containing a varying number of neurons between 1 and 8 (as
specified in the 2nd entries of arrays Rmin and Rmax). Similarly, for indices 9 and
up, 3-layer MLPs are enumerated in which the number of neurons in the 1st and
2nd hidden layer sizes are varied according to the corresponding entries in Rmin

3.4 Applications 65

and Rmax. Finally, the most complex MLP with the largest number of possible
layers and the highest number of neurons is associated with the highest index,
d = 40. Therefore, all 41 entries in the hash table span the architecture space with
respect to the configuration complexity.

The comparative evaluations of both training algorithms were performed using
a medical diagnosis benchmark dataset from the UCI Machine Learning repository
[56], which is partitioned into three sets: training, validation, and testing. There are
several techniques [57] to use training and validation sets individually to prevent
overfitting and thus to improve the classification performance in the test data.
However, there is no universally effective technique and there are several research
articles reporting against the use of the cross validation technique in the design and
training of MLP networks [57], [58]. In this book, for simplicity and to obtain an
unbiased performance measure under equal training conditions, the validation and
training sets are simply combined to be used for training. From Proben1 repository
[56], three benchmark classification problems, breast cancer, heart disease, and
diabetes, are selected, which were commonly used by previous studies. These are
medical diagnosis problems, which present the following attributes:

• All of them are real-world problems based on medical data from human patients.
• The input and output attributes are similar to those used by a medical doctor.
• Since medical samples and data are expensive to obtain, the training sets are

quite limited.

Table 3.2 A sample
architecture space for MLP
configuration sets Rmin ¼

9; 1; 1; 2f g and
Rmax ¼ 9; 8; 4; 2f g

Index Configuration Index Configuration

0 9 9 2 21 9 9 5 9 2 9 2
1 9 9 1 9 2 22 9 9 6 9 2 9 2
2 9 9 2 9 2 23 9 9 7 9 2 9 2
3 9 9 3 9 2 24 9 9 8 9 2 9 2
4 9 9 4 9 2 25 9 9 1 9 3 9 2
5 9 9 5 9 2 26 9 9 2 9 3 9 2
6 9 9 6 9 2 27 9 9 3 9 3 9 2
7 9 9 7 9 2 28 9 9 4 9 3 9 2
8 9 9 8 9 2 29 9 9 5 9 3 9 2
9 9 9 1 9 1 9 2 30 9 9 6 9 3 9 2
10 9 9 2 9 1 9 2 31 9 9 7 9 3 9 2
11 9 9 3 9 1 9 2 32 9 9 8 9 3 9 2
12 9 9 4 9 1 9 2 33 9 9 1 9 4 9 2
13 9 9 5 9 1 9 2 34 9 9 2 9 4 9 2
14 9 9 6 9 1 9 2 35 9 9 3 9 4 9 2
15 9 9 7 9 1 9 2 36 9 9 4 9 4 9 2
16 9 9 8 9 1 9 2 37 9 9 5 9 4 9 2
17 9 9 1 9 2 9 2 38 9 9 6 9 4 9 2
18 9 9 2 9 2 9 2 39 9 9 7 9 4 9 2
19 9 9 3 9 2 9 2 40 9 9 8 9 4 9 2
20 9 9 4 9 2 9 2

66 3 Particle Swarm Optimization

We now briefly describe each classification problem next.

1. Breast Cancer

The objective of this dataset is to classify breast lumps as either benign or
malignant according to microscopic examination of cells that are collected by
needle aspiration. There are 699 exemplars of which 458 are benign and 241 are
malignant and they are originally partitioned as 350 for training, 175 for valida-
tion, and 174 for testing. The dataset consists of 9 input attributes and 2 output
attributes, i.e., each input pattern is described by 9-dimensional vector and there
are two possible outcomes of the classifier. It is created at University of Wisconsin
Madison by Dr. William Wolberg.

2. Heart Disease

The initial dataset consists of 920 exemplars with 35 input attributes, some of
which are severely missing. Hence, a second dataset is composed using the
cleanest part of this set, which was created at Cleveland Clinic Foundation by
Dr. Robert Detrano. The Cleveland dataset is called ‘‘heartc’’ in Proben1 reposi-
tory and contains 303 exemplars but 6 of them still contain missing data and are
hence discarded. The remaining exemplars are partitioned as follows: 149 for
training, 74 for validation, and 74 for testing. There are 13 input and 2 output
attributes. The purpose is to predict the presence of a heart disease according to the
input attributes.

3. Diabetes

This dataset is used to predict diabetes diagnosis among Pima Indians. The data
is collected from female patients, aged 21 years or older. There are total of 768
exemplars of which 500 are classified as diabetes negative and 268 as diabetes
positive. The dataset is originally partitioned as 384 for training, 192 for valida-
tion, and 192 for testing. It consists of eight input attributes and two output
attributes.

The input attributes of all datasets are scaled within the range [0,1] by a linear
function. Note that their output attributes are encoded using a 1-of-c representation
for c = 2 classes. The winner-takes-all methodology is applied so that the output
of the highest activation designates the class. Overall, the experimental setup
becomes identical to those used in the previous studies and thus fair comparative
evaluations can now be made over the classification error rate of the test data. In
all experiments in this section, we use the sample architecture space given in
Table 3.2, which has the generalized form as, Rmin ¼ fNI ; 1; 1; NOg and Rmax ¼
fNI ; 8; 4; NOg containing the compact 1-, 2-, or 3-layer MLPs where NI and NO,
are determined by the number of input and output attributes of the classification
problem. For BP, all networks were trained with 500 (shallow training) and with
5,000 (deep training) iterations with a low learning rate of 0.02 to prevent oscil-
lations. For PSO training, in addition to default settings for the standard algorithm
parameters as defined in Sect. 2.3, the number of particles was set to 40 (S = 40)

3.4 Applications 67

http://dx.doi.org/10.1007/978-3-642-37846-1_2

and the number of training iterations was set to 200 for the shallow and 2,000 for
the deep training cases. For all experiments in this section, unless stated otherwise,
100 independent runs are performed for each configuration to compute the error
statistics plots for each dataset. We mainly consider two major criteria for the
performance assessment: (1) training MSE, which indicates the error minimization
achieved by each method; (2) test CE, which is the primary objective of the
classifier as it shows the classification accuracy level achieved as well as the
generalization capability of each method. Using the corresponding error statistics
plots, both criteria shall then be statistically evaluated by considering on the
average (i.e., mean MSE and CE) and the best (i.e., minimum MSE and CE)
performances achieved by each method, BP and PSO.

In order to perform a comprehensive and a systematic assessment of the per-
formance of ANN classifiers in medical diagnosis, we apply exhaustive BP and
PSO training for each network configuration in the architecture space, which is
defined over MLPs with sigmoid activation functions. In this way we can escape
from the bias or possible effect of a particular network over the performance,
which was the case of many of the aforementioned studies that were mostly
performed using only one or few fixed network architecture(s). Furthermore, to
assess the effect of the training depth on both BP and PSO, both shallow and deep
training will be applied over every network configuration in the architecture space
by setting the number of iterations appropriately.

Figure 3.10 presents the corresponding error statistics plots from the shallow
training over the breast cancer dataset. BP in general achieves the lowest average

0 5 10 15 20 25 30 35 40
0.02

0.025

0.03

0.035
Min. BP-Train MSE
Mean BP-Train MSE
Min. PSO-Train MSE
Mean PSO-Train MSE

0 5 10 15 20 25 30 35 40

0

5

10

15
x 10

-3

Min. BP-Test CE Mean BP-Test CE Min. PSO-Test CE Mean PSO-Test CE

Fig. 3.10 Train (top) and test (bottom) error statistics vs. hash index plots from shallow BP- and
PSO-training over the breast cancer dataset

68 3 Particle Swarm Optimization

training MSEs within a narrow variance except few network configurations with
the corresponding indices, d 2 ½13; 16� where PSO slightly surpasses BP. On the
other hand, PSO achieves the best training performances (i.e., minimum MSEs)
over the majority of network configurations except for the compact ones
(d 2 ½0; 9�), where BP is consistently more successful. The lowest overall training
MSE (both average and minimum) is too achieved by PSO using the configuration
with the hash indices d = 14 and d = 16 (MLPs: 9 9 6 9 1 9 2 and
9 9 8 9 1 9 2), respectively. In terms of the classification performances over the
test set, the results are consistently in favor of PSO, which performs better than BP
with respect to both performance criteria. Particularly, PSO achieved the optimal
0 % CE (i.e.,100 % classification accuracy) as its best performance among all
networks except for two networks (d = 9 and 10), whereas BP managed to achieve
this only over the compact networks (i.e., d ¼ 0 and d 2 ½2; 8�), plus the complex
MLP with d = 39. Overall, PSO usually demonstrates a better classification per-
formance for the breast cancer dataset with the shallow training.

The error statistics plots obtained from deep training of all networks in the
architecture space by both methods are shown in Fig. 3.11. In this case, both BP
and PSO achieve lower training MSEs as a natural consequence of the deep or
overtraining, and BP in general achieves the lowest average training MSEs, par-
ticularly on complex networks with two hidden layers but it also surpasses PSO in
terms of the minimum training MSEs except for only few networks. Due to such
overtraining, the classification performance of both methods is expected to
degrade, which is the case as shown by the bottom plots of Fig. 3.11. However, the

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Min. BP-Train MSE Mean BP-Train MSE Min. PSO-Train MSE Mean PSO-Train MSE

Min. BP-Test CE Mean BP-Test CE Min. PSO-Test CE Mean PSO-Test CE

Fig. 3.11 Train (top) and test (bottom) error statistics vs. hash index plots from deep BP- and
PSO-training over the breast cancer dataset

3.4 Applications 69

degradation on PSO’s performance is not as severe as that of BP. Furthermore,
note that there is almost no performance loss in the case of compact networks, due
to PSO’s global search ability. Particularly for complex networks, a significant
performance gap in terms of average test CE occurs between the two methods in
favor of PSO, since BP, as a deterministic local search method, is drastically
affected by the overfitting of the training data and thus exhibits significantly worse
average classification performance. This is also true but at a lesser extent for PSO;
especially its minimum CE cannot anymore guarantee 0 % CE level for all net-
work configurations.

Figure 3.12 presents the corresponding error statistics plots from the shallow
training over the heart disease dataset. Both average and minimum training MSE
statistics of both methods vary significantly with respect to the network configu-
ration, making either method better than the other for a given network and error
criterion. This is a good example that clearly shows the effect of different network
configurations over the performance of each method. Therefore, using only one or
few architectures for comparative evaluations may favor either method and hence
such a static and limited approach is not sufficient to draw reliable conclusions.
The lowest training MSE (both average and minimum) is achieved by PSO using
the network with the hash index d = 16 (MLP: 13 9 8 9 1 9 2). As in the
previous dataset, about the classification performances over the test set, the results
are consistently in favor of PSO, which performs better than BP for all networks in
the architecture space with respect to both performance criteria.

0 5 10 15 20 25 30 35 40
0.06

0.07

0.08

0.09

0.1

0.11

0.12
Min. BP-Train MSE Mean BP-Train MSE Min. PSO-Train MSE Mean PSO-Train MSE

0 5 10 15 20 25 30 35 40

0.16

0.18

0.2

0.22

0.24

0.26
Min. BP-Test CE Mean BP-Test CE Min. PSO-Test CE Mean PSO-Test CE

Fig. 3.12 Train (top) and test (bottom) error statistics vs. hash index plots from shallow BP- and
PSO-training over the heart disease dataset

70 3 Particle Swarm Optimization

Contrary to shallow training results, the top plot in Fig. 3.13 indicates that
whenever deep training is performed over this dataset, BP surpasses PSO with
respect to the training MSEs (both average and minimum) for all networks. Hence
due to the overfitting of the training data, the classification performance of BP over
the test set is quite degraded while no significant performance degradation occurs
for PSO. PSO, once again, exhibits its relative immunity against overtraining due
to its global search ability and yields the best classification performance over the
test set (i.e., well generalization) regardless of the training depth. This is true for
both average and the best performance criteria considered (see red and blue curves
at the bottom plot in Fig. 3.13). PSO achieves the overall best classification per-
formance, *13 % CE, from the three different networks with the corresponding
hash indices, d = 14, 30, and 39 although no network configuration makes too
much difference when the average classification performance is concerned.

Figure 3.14 presents the corresponding error statistics plots from the shallow
training over the diabetes dataset. Similar comments can be made about the
training performance of PSO and BP as in the shallow training experiments over
the heart disease dataset. That is, although BP is consistently better than PSO for
compact networks, their training performances (minimum and average MSEs) are
quite comparable and varying along with the network configuration. In terms of
the classification performance over the test set, PSO usually achieves slightly
lower CEs but the results are again quite comparable. When minimum CEs are
concerned, from the network with the hash index d = 16 (MLP: 8 9 8 9 1 9 2)
PSO achieved a minimum of 17.1 % CE that is slightly lower than the 18.8 %

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12
Min. BP-Train MSE Mean BP-Train MSE Min. PSO-Train MSE Mean PSO-Train MSE

0 5 10 15 20 25 30 35 40
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Min. BP-Test CE Mean BP-Test CE Min. PSO-Test CE Mean PSO-Test CE

Fig. 3.13 Train (top) and test (bottom) error statistics vs. hash index plots from deep BP- and
PSO-training over the heart disease dataset

3.4 Applications 71

minimum CE achieved by BP from the network with the hash index d = 4 (MLP:
8 9 4 9 2). Finally, according to the error statistics plots in Fig. 3.15 obtained by
deep training over the same dataset, similar conclusions can be drawn about both
training (MSE) and generalization (test CE) performances of PSO and BP as in the
deep training experiments over the heart disease dataset, i.e., PSO yields almost
the same average training MSE levels and BP significantly reduces both average
and minimum MSE levels, as expected. One observation worth mentioning here is
that the training and test performances of BP in both deep and shallow training
exhibits a large variation with respect to the network configuration used (e.g.,
compare for instance the mean BP training MSE or test CE for d = 8 and d = 9),
whereas the corresponding performance levels of PSO are more stable and usually
with a smaller variance, regardless of the network configuration.

The overall test CE statistics of both training techniques (BP and PSO) com-
puted over all configurations in selected MLP architecture spaces for each dataset
are enlisted in Table 3.3. We used the following three statistics: minimum (min),
mean (l), and standard deviation (r), respectively, which are computed per
training depth (deep and shallow). The results in the table clearly indicate that PSO
training on average achieves better classification performance than BP over the
three benchmark medical diagnosis problems.

Finally, in order to accomplish the comparative performance evaluations of
each method with respect to the variations in the training depth, we have selected a
particular network configuration with the hash index d = 16, which is a relatively
compact and one of the best performing classifier configuration within the sample

0 5 10 15 20 25 30 35 40
0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18
Min. BP-Train MSE
Mean BP-Train MSE
Min. PSO-Train MSE
Mean PSO-Train MSE

0 5 10 15 20 25 30 35 40
0.16

0.18

0.2

0.22

0.24

0.26

0.28
Min. BP-Test CE
Mean BP-Test CE
Min. PSO-Test CE
Mean PSO-Test CE

Fig. 3.14 Train (top) and test (bottom) error statistics vs. hash index plots from shallow BP- and
PSO-training over the diabetes dataset

72 3 Particle Swarm Optimization

architecture space, and we have performed exhaustive training (with 100 runs) for
each of the 10 intermediate (training) depths, between the corresponding shallow
and deep training, i.e., [500, 5,000] for BP and [200, 2,000] for PSO. Figure 3.16
shows the training MSE and test CE plots versus the training depth for all three
datasets. From the figure, it is clear that both methods reduce the training MSE
with increasing training depths, as a natural consequence of the overfitting of the
training data. On the other hand, PSO achieves lower average and minimum

0 5 10 15 20 25 30 35 40
0.11

0.12

0.13

0.14

0.15

0.16

Min. BP-Train MSE Mean BP-Train MSE Min. PSO-Train MSE

0 5 10 15 20 25 30 35 40

0.16

0.18

0.2

0.22

0.24

Min. BP-Test CE Mean BP-Test CE Min. PSO-Test CE Mean PSO-Test CE

Mean PSO-Train MSE

Fig. 3.15 Train (top) and test (bottom) error statistics vs. hash index plots from deep BP- and
PSO-training over the diabetes dataset

Table 3.3 The Overall Test CE Statistics

DataSet Training Method Training Depth Min. Test CE Statistics Mean Test CE Statistics

min l r min l r

Cancer BP Shallow 0 0.0045 0.0024 0.0003 0.0101 0.0024
PSO 0 0.0003 0.0013 0 0.0078 0.0024
BP Deep 0 0.0055 0.0036 0 0.0176 0.0064
PSO 0 0.0015 0.0026 0 0.0121 0.0052

Diabetes BP Shallow 0.1875 0.2002 0.0063 0.2101 0.2175 0.0112
PSO 0.1719 0.1878 0.0067 0.2079 0.2137 0.0028
BP Deep 0.1719 0.1941 0.0129 0.2135 0.2246 0.0068
PSO 0.1667 0.1836 0.0101 0.2069 0.2135 0.0040

Heart BP Shallow 0.1757 0.1928 0.0100 0.1893 0.2222 0.0087
PSO 0.1471 0.1603 0.0092 0.1957 0.2043 0.0031
BP Deep 0.1486 0.1773 0.0171 0.2150 0.2340 0.0096
PSO 0.1324 0.1578 0.0151 0.1976 0.2060 0.0054

3.4 Applications 73

training MSEs for the breast cancer, higher for the diabetes, and quite similar for
the heart disease datasets, respectively. The classification performance of PSO
shows a strong immunity against variations in the training depth and it generally
achieves the lowest minimum CEs. For this particular network, either BP or PSO
can achieve a better average classification performance depending on the training
depth. Hence, this clearly draws the conclusion that the training depth too should
be considered while comparing and/or analyzing individual performance of each
method.

3.5 Programming Remarks and Software Packages

This is the first chapter from which we start to explain briefly the software
packages we supply along with this book. All software programs are developed
using C and C++ languages under Microsoft � Visual Studio 6.5 (VS6.5: version
6 with Service Pack 5). There are several applications developed and in this
chapter, we shall start with describing the PSO test-bed application for nonlinear
function minimization, namely PSO_MDlib. It is a simple console application

1 2 3 4 5 6 7 8 9 10
0.01

0.015

0.02

0.025

Min. BP-Train MSE
Mean BP-Train MSE
Min. PSO-Train MSE

Mean PSO-Train MSE

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

Min. BP-Test CE
Mean BP-Test CE
Min. PSO-Test CE
Mean PSO-Test CE

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10
0.12

0.13

0.14

0.15

1 2 3 4 5 6 7 8 9 10

0.18

0.2

0.22

x200 PSO, x500 BPx200 PSO, x500 BP

Fig. 3.16 Error statistics (for network configuration with the hash index d = 16) vs. training
depth plots using BP- and PSO-over the breast cancer (top), heart disease (middle), and diabetes
(bottom) datasets

74 3 Particle Swarm Optimization

which is a VS6.5 workspace with three projects in it: MTL, PSO_MDlib, and
PSO_MDmain. The first one, MTL, stands for MUVIS Template Library, which
contains basic data structures such as link lists (queues), registers, threads, etc. (we
shall later return to MUVIS). PSO_MDlib is a static library, where the basic
(canonical and global) PSO has been implemented along with its multidimensional
extension, MD PSO (to be discussed in Chap. 4). Finally, PSO_MDmain.cpp is
the main console application, which offers three different entry point functions,
main(), two of which are enabled with a compiler flag: BATCH_RUN or
MOVING_PEAKS_BENCHMARK. The latter enables a special MD PSO
application over a benchmark dynamic environment, which will be presented as
the application for Sect. 5.2 in Chap. 5. The compiler flag BATCH_RUN can be
enabled so as to test both PSO and/or MD PSO over all the functions, for both PSO
types (BASIC vs. FGBF), over all test functions, and with several runs (FGBF will
also be discussed in Chap. 5).

All intrinsic PSO (and MD PSO) parameters are stored in PSOparam structure
(see the header file: PSOparam.h) (Table 3.4).

The first three parameters, S (_noAgent), iterNo (_maxNoIter), and eC(_e-
CutOff) are common for PSO and MD PSO. The next three parameters are specific
for MD PSO and will be covered in the Chap. 4. Finally, we shall perform bPSO
application; therefore, _mode is set to BASIC. Since MD PSO is simply the
multidimensional extension of the PSO, when _dMin=_dMax-1, then the MD
PSO will be reduced to a regular PSO process at the solution space dimension
_dMin.

PSO and its extension MD PSO are jointly implemented in an object-oriented,
template-based, and morphological structure with four class implementations:

1. template \class T, class X[class CPSO_MD {…}
2. template \class T, class X[class CParticle {…}
3. template \class X[class CSolSpace {…}
4. class COneClass {…}

The main class: Template <class T, class X> class CPSO_MD is a template
based class with two template class implementations, class T and class X. Such a

Table 3.4 The data structure, PSOparam

3.5 Programming Remarks and Software Packages 75

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4

template-based class structure makes MD PSO applicable to any problem as long
as the potential solution of the problem (class T) along with the data space (class
X) can be implemented accordingly. CPSO_MD contains an array of CParticle
object pointers (CParticle<T,X>** m_pPA) with the total number of m_noP.
Each particle has their regular PSO elements such as positions, velocities, and
personal best positions, stored in the following array of pointers,
T** m_pXX; // Current position of this particle in all dimensions.
T** m_pVX; // Current velocity of this particle in all dimensions.
T** m_pXY; // Personal best position of this particle in all dimensions.

The template class, class T represents the potential solution of the problem and
we assign class T to the following template class: template <class X> class
CSolSpace <X>. It simply contains the position of the solution, its dimension, and
the boundaries, i.e.,
X* m_pPos; // Current Position in N-dimensional solution space.
int m_nDim; // Dimension of the solution space.
X m_min, m_max; // Minimum and Maximum ranges (boundaries of the

solution).

Finally, the template class, class X, represents the data space, where the real
values of the PSO particle elements are stored. For instance, it can simply be set to
standard data structures such as float or double for nonlinear function minimi-
zation, yet for a generic usage, we shall assign it to class COneClass, which
contains nothing but a single floating point data element along with its individual
score, i.e.,
float m_x; // data per dimension.
float m_bScore; // and the individual score of each dimension.

and the standard arithmetic operators (=, +, -,/,\,[, etc.) are implemented (for
m_x) accordingly. We shall clarify the use of the member variable m_bScore in
Chap. 5.

All nonlinear functions are implemented within MYFUN.cpp source file. To
perform a PSO operation for nonlinear function minimization, a CPSO_MD
object should be created with proper template classes: <class T, class X>, and
initialized with: (1) the default PSO parameters stored in PSOparam _psoDef, and
(2) the fitness function ? any nonlinear function within MYFUN.cpp. In short,
the entire MD PSO initialization can be summarized as:

Create: CPSO_MD < CSolSpace < COneClass > ,COneClass > *pPSO =
new CPSO_MD < CSolSpace < COneClass > ,COneClass>
(_psoDef._noAgent, _psoDef._maxNoIter, _psoDef._eCutOff,

_psoDef._mode);
1) pPSO- > Init(_psoDef._dMin, _psoDef._dMax, _psoDef._vdMin, _pso-

Def._vdMax, -500, 500, _psoDef._xvMin, _psoDef._xvMax);/*** Initialize the
object ***/

76 3 Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5

2: pPSO- > SetFitnessFn(Sphere);/*** PUT Fn here ***/
Step 1 (the Init(..) call) basically creates and (randomly) initializes the MD

PSO swarm, as shown in Table 3.5 where each particle, m_pPA[a], has been
randomized within the positional and dimensional ranges specified within the
_psoDef.

After the initialization, the function call: pPSO->Perform(); will execute a
PSO run over the function specified. In order to avoid the dimensional bias, note
that *pDim (the target dimension for MD PSO) should be equal to _dMin=_d-
Max-1. Each PSO run can be observed in real time (via DbgOut program UI) or
offline using the two MATLAB files generated during the runtime. The first
MATLAB file with the function name (sphere50_d50_mode0.m) contains the
statistics for each run, such as mean and standard deviation of the best scores
achieved. The second one stores the personal best scores (fitness) achieved by the
gbest (GB) particles and the last particle that becomes gbest during the run. The
call, pPSO->Perform(), has basically an iteration loop within which the (MD)
PSO is executed, as given in Table 3.6.

In the main PSO loop, step 3 of the PSO pseudo-code given in Table 3.1 is
performed. Step 3.1 where personal best positions of each particle (step 3.1.1) as
well as the assignment of the gbest particle (step 3.1.2) are performed, as given in
the Table 3.7.

Recall that the fitness function (sphere) has already been given to the PSO
object and assigned to the member function pointer, m_fpGetScore, which
computes the fitness of the current (or personal best) position of any particle in the
swarm, m_pPA[a]->GetPos(), at dimension, m_pPA[a]->GetDim(). Once the
fitness score has been computed (minval), it is compared with the past personal
best score (m_pPA[a]->GetPBScore()), and if it is surpassed, the (new) personal
best score and its new location are updated. This new personal best score is also
compared with the gbest particle’s personal best score and if it surpasses the old
gbest, it will then become the new gbest particle. Since this is a bPSO operation

Table 3.5 Initialization of the PSO swarm

Table 3.6 The main loop for (MD) PSO in Perform() function

3.5 Programming Remarks and Software Packages 77

where cur_dim_a=m_xdMin, all swarm particles reside in the current dimension:
cur_dim_a.

For the moment, we shall skip another PSO mode, which enables the FGBF
operation within the if(m_mode==FGBF) statement as it will be explained in
Chap. 5.

The termination of the PSO process (by either IterNo or eC) is verified by the
following code in Table 3.8. Note that the current dimension is equal to
m_dbest=m_xdMin, since this is a PSO process over a single dimension. So the
index of the gbest particle is stored in m_gbest[m_dbest -
m_xdMin]]=m_gbest[0].

If neither of the termination criterion is reached, then step 3.4 is executed to
update the position (and the dimension if it is a MD PSO run, as will be explained
in Chap. 4) of each swarm particle as given in Table 3.9. Within the loop, each
particle’s cognitive and social components are computed and the velocity update is

Table 3.7 Implementation of Step 3.1 of the PSO pseudo-code given in Table 3.1

Table 3.8 The termination of a PSO run

78 3 Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4

composed over the previous velocity weighted with the inertia factor, weight_up.
The velocity is clamped as in step 3.4.1.2 of the PSO pseudo-code (vx->Check-
Limit();) and finally, the particle’s current position is updated to a new position
with the composed and clamped velocity term (i.e. *xx +=vx). As the last step, this
new position is also verified whether it falls within the problem boundaries
specified in advance (�xmax). Note that this practical verification step is omitted in
the pseudo-code of the PSO given in Table 3.1.

As mentioned earlier, the multidimensional extension of the bPSO, the MD
PSO will be explained in the Chap. 4 and the FGBF technique will be explained in
Chap. 5. Accordingly, the programming details that have so far been skipped in
this section shall be discussed at the end of those chapters.

Table 3.9 Implementation of Step 3.4 of the PSO pseudo-code given in Table 3.1

3.5 Programming Remarks and Software Packages 79

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5

References

1. J. Kennedy, R. Eberhart, Particle swarm optimization. In Proceedings of IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia, 1995

2. J.J. van Zyl, Unsupervised classification of scattering mechanisms using radar polarimetry
data. IEEE Trans. Geosci. Remote Sens. 27, 36–45 (1989)

3. A. Antoniou, W.-S. Lu, Practical Optimization, Algorithms and Engineering Applications
(Springer, USA, 2007)

4. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-
Wesley, Reading MA, 1989), pp. 1–25

5. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,
671–680 (1983)

6. T. Back, F. Kursawe, Evolutionary Algorithms for Fuzzy Logic: A Brief Overview. In Fuzzy
Logic and Soft Computing (World Scientific, Singapore, 1995), pp. 3–10

7. U.M. Fayyad, G.P. Shapire, P. Smyth, R. Uthurusamy, Advances in Knowledge Discovery
and Data Mining (MIT Press, Cambridge, MA, 1996)

8. Y. Shi, R.C. Eberhart, A modified particle swarm optimizer. In Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 69–73

9. R. Eberhart, P. Simpson, R. Dobbins, Computational Intelligence. PC Tools (Academic Press
Inc., Boston, MA, USA, 1996)

10. M. Clerc, J. Kennedy, The particle swarm-explosion, stability and convergence in a
multidimensional complex space. IEEE Trans. Evol. Comput. 6(2), 58–73 (2002)

11. L.-Y. Chuang, H.W. Chang, C.J. Tu, C.H. Yang, Improved binary PSO for feature selection
using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

12. K. Yasuda, A. Ide, N. Iwasaki, ‘‘Adaptive Particle Swarm Optimization. Proc. IEEE Int.
Conf. Sys. Man Cybern. 2, 1554–1559 (2003)

13. W.-J. Zhang, Y. Liu, M. Clerc, An adaptive PSO algorithm for reactive power optimization.
Adv. Power Syst. Control Oper. Manage. (APSCOM) 1, 302–307 (2003). (Hong Kong)

14. Y. Shi, R.C. Eberhart, Fuzzy adaptive particle swarm optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation. IEEE Press, vol. 1, pp. 101–106, 2001

15. P.J. Angeline, Using selection to improve particle swarm optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 84–89. IEEE Press, 1998

16. R.G. Reynolds, B. Peng, J. Brewster, Cultural swarms II: Virtual algorithm emergence. In
Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003),
pp. 1972–1979, Australia, 2003

17. H. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation. In Proceedings of
the IEEE Swarm Intelligence Symposium, pp. 72–79, 2003

18. K. Ersahin, B. Scheuchl, I. Cumming, Incorporating texture information into polarimetric
radar classification using neural networks. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, pp. 560–563, Anchorage, USA, Sep 2004

19. F. Van den Bergh, A.P. Engelbrecht, A new locally convergent particle swarm optimizer. In
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
pp. 96–101, 2002

20. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 7, 115–133 (1943)

21. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. In Proceedings of the IEEE International Conference on Neural
Networks, pp. 586–591, 1993

22. G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, H.-J. Zhang, Image classification with kernelized spatial-
context. IEEE Trans on Multimedia 12(4), 278–287 (2010). doi:10.1109/
TMM.2010.2046270

80 3 Particle Swarm Optimization

http://dx.doi.org/10.1109/TMM.2010.2046270
http://dx.doi.org/10.1109/TMM.2010.2046270

23. M. Løvberg, T.K. Rasmussen, T. Krin, Hybrid particle swarm optimiser with breeding and
sub-populations. In Proceedings of GECCO2001—Genetic and Evolutionary Computation
Conference, p. 409, CA, USA. July 7–11, 2001

24. Y. Lin, B. Bhanu, Evolutionary feature synthesis for object recognition. IEEE Trans. Man
Cybern. C 35(2), 156–171 (2005)

25. M. Løvberg, T. Krink, Extending particle swarm optimizers with self-organized criticality.
Proc. IEEE Congr. Evol. Comput. 2, 1588–1593 (2002)

26. T.M. Blackwell, J. Branke, Multi-swarm optimization in dynamic environments. Appl. Evol.
Comput. 3005, 489–500 (2004). (Springer)

27. T.M. Blackwell, J. Branke, Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10/4, 51–58 (2004)

28. T.M. Blackwell, Particle swarm optimization in dynamic environments. Evol. Comput. Dyn.
Uncertain Environ. Stud. Comput. Intell. 51, 29–49 (2007). (Springer)

29. R. Mendes, Population topologies and their influence in particle swarm performance. PhD
thesis, Universidade do Minho, 2004

30. J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle
swarm performance. In Proceedings of the 1999 Congress on Evolutionary Computation, vol.
3. doi:10.1109/CEC.1999.785509, 1999

31. H. Frigui, R. Krishnapuram, Clustering by competitive agglomeration. Pattern Recogn. 30,
1109–1119 (1997)

32. A.K. Jain, M.N. Murthy, P.J. Flynn, Data clustering: A review. ACM Computing Reviews,
Nov 1999

33. C.P. Tan, K.S. Lim, H.T. Ewe, Image processing in polarimetric SAR images using a hybrid
entropy decomposition and maximum likelihood (EDML). In Proceedings of International
Symposium on Image and Signal Processing and Analysis (ISPA), pp. 418–422, Sep 2007

34. B. Bhanu, J. Yu, X. Tan, Y.Lin, Feature synthesis using genetic programming for face
expression recognition. Genetic and Evolutionary Computation (GECCO 2004), Lecture
Notes in Computer Science, vol. 3103, pp. 896–907, 2004

35. G. Hammerly, Learning structure and concepts in data through data clustering. PhD thesis,
June 26, 2003

36. B. Zhang, M. Hsu, K-harmonic means—a data clustering algorithm. Hewlett-Packard Labs
Technical Report HPL-1999-124, 1999

37. G. Hammerly, C. Elkan, Alternatives to the k-means algorithm that find better clusterings. In
Proceedings of the 11th ACM CIKM, pp. 600–607, 2002

38. N.R. Pal, J. Biswas, Cluster validation using graph theoretic concepts. Pattern Recogn. 30(6),
847–857 (1997)

39. T. Ojala, M. Pietikainen, D. Harwood, A comparative study of texture measures with
classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)

40. T.G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-correcting output
codes. J. Artif. Intell. Res. 2, 263–286 (1995)

41. M. Halkidi, Y. Batistakis, M. Vazirgiannis, On cluster validation techniques. J. Intell. Inf.
Syst. 17(2, 3), 107–145 (2001)

42. T.N. Tran, R. Wehrens, D.H. Hoekman, L.M.C. Buydens, Initialization of Markov random
field clustering of large remote sensing images. IEEE Trans. Geosci. Remote Sens. 43(8),
1912–1919 (2005)

43. S.R. Cloude, E. Pottier, An entropy based classification scheme for land applications of
polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 35, 68–78 (1997)

44. M. Halkidi, M. Vazirgiannis, Clustering validity assessment: finding the optimal partitioning
of a dataset. In Proceedings of First IEEE International Conference on Data Mining
(ICDM’01), pp. 187–194, 2001

45. M.G. Omran, A. Salman, A.P. Engelbrecht, Dynamic clustering using particle swarm
optimization with application in image segmentation. Patt. Anal. Appl. 8, 332–344 (2006)

References 81

http://dx.doi.org/10.1109/CEC.1999.785509

46. A. Abraham, S. Das, S. Roy, Swarm intelligence algorithms for data clustering. In Soft
Computing for Knowledge Discovery and Data Mining Book, Part IV, pp. 279–313, Oct 25,
2007

47. S. Haykin, Neural Networks: a Comprehensive Foundation (Prentice hall, USA, 1998). June
48. S. Pittner, S.V. Kamarthi, Feature extraction from wavelet coefficients for pattern recognition

tasks. IEEE Trans. Pattern Anal. Machine Intell. 21, 83–88 (1999)
49. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313

(1965)
50. M. Carvalho, T.B. Ludermir, Particle swarm optimization of neural network architectures and

weights. In Proceedings of the 7th International Conference on Hybrid intelligent Systems,
pp. 336–339, Washington DC, 17–19 Sep 2007

51. M. Meissner, M. Schmuker, G. Schneider, Optimized particle swarm optimization (OPSO)
and its application to artificial neural network training. BMC Bioinf 7, 125 (2006)

52. Z. Ye, C.-C. Lu, Wavelet-based unsupervised SAR image segmentation using hidden markov
tree models. In Proceedings of the 16th International Conference on Pattern Recognition
(ICPR’02), vol. 2, pp. 20729, 2002

53. C. Zhang, H. Shao, An ANN’s evolved by a new evolutionary system and its application. In
Proceedings of the 39th IEEE Conference on Decision and Control, vol. 4, pp. 3562–3563,
2000

54. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–407
(1951)

55. J.F. Scott, The Scientific Work of René Descartes, 1987
56. L. Prechelt, Proben1—A set of neural network benchmark problems and benchmark rules.

Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, Germany,
September, 1994

57. S. Amari, N. Murata, K.R. Muller, M. Finke, H.H. Yang, Asymptotic statistical theory of
overtraining and cross-validation. IEEE Trans. Neural Networks 8(5), 985–996 (1997)

58. T.L. Ainsworth, J.P. Kelly, J.-S. Lee, Classification comparisons between dual-pol, compact
polarimetric and quad-pol SAR imagery. ISPRS J. Photogram. Remote Sens. 64, 464–471
(2009)

82 3 Particle Swarm Optimization

Chapter 4
Multi-dimensional Particle Swarm
Optimization

If you want your children to be intelligent, read them fairy
tales. If you want them to be more intelligent, read them more
fairy tales.

Albert Einstein

Imagine now that each PSO particle can also change its dimension, which means
that they have the ability to jump to another (solution space) dimension as they see
fit. In that dimension they simply do regular PSO moves but in any iteration they
can still jump to any other dimension. In this chapter we shall show how the design
of PSO particles is extended into Multi-dimensional PSO (MD PSO) particles so as
to perform interdimensional jumps without altering or breaking the natural PSO
concept.

4.1 The Need for Multi-dimensionality

The major drawback of the basic PSO algorithm and many PSO variants is that
they can only be applied to a search space with fixed dimensions. However, in
many of the optimization problems (e.g., clustering, spatial segmentation, opti-
mization of the multi-dimensional functions, evolutionary artificial neural network
design, etc.), the optimum dimension where the optimum solution lies is also
unknown and should thus be determined within the PSO process. Take for
instance, the optimization problem of multi-dimensional functions. Let us start
with the d-dimensional sphere function,

Fð�xÞ ¼
Xd

i¼1

x2
i ð4:1Þ

This is a unimodal function with a single minimum point at the origin. When
d is fixed and thus known a priori, there are powerful optimization techniques,
including PSO, which can easily find the exact minimum or converge to e-
neighborhood of the minimum. We can easily extend this to a family of functions,
i.e.,

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_4, � Springer-Verlag Berlin Heidelberg 2014

83

Fð�x; dÞ ¼
Xd

i¼1

x2
i 8d 2 fDmin;Dmaxg ð4:2Þ

At any particular dimension, d, Fð�x; dÞ has the minimum at the origin in d-
dimensional space, i.e., Fð�x; dÞ ¼ 0 for �x ¼ f0; 0; . . .; 0g: Now consider the fol-
lowing multi-dimensional form of Fð�x; dÞ with a dimensional bias term, WðdÞ:

Fð�x; dÞ ¼
Xd

i¼1

x2
i þWðdÞ 8d 2 fDmin;Dmaxg where

WðdÞ ¼
0 for d ¼ d0

[0 else

() ð4:3Þ

In this case, it is obvious that there is only one true optimum point at the origin
of dimension d0: In other words, at all other dimensions, the function F x; dð Þhas
only suboptimal points at the origin in each dimension. One straightforward
alternative for the optimization in this type of multi-dimensional functions is to run
the method distinctively for every dimension in the range. However, this might be
too costly—if not infeasible for many problems especially depending on the
dimensional range.

Another typical example of multi-dimensional optimization problems is data
clustering where the true number of clusters is usually unknown. Some typical 2D
synthetic data spaces with ground truth clusters were shown in Fig. 3.17 in the
previous chapter, some of which are also shown in Fig. 4.1. Recall that for
illustration purposes each data space is formed in 2D; however, clusters are formed
with different shapes, densities, sizes, and inter-cluster distances. Such a clustering
complexity will make their error surfaces highly multimodal and the optimization
method for clustering now has to find out the true number of clusters as well as the
accurate cluster centroids around which clusters are formed. Only few PSO studies
have so far focused on this problem, i.e., [1] and [2]. In Ref. [2], Omran et al.

C3: 10 ClustersC2: 10 ClustersC1: 6 Clusters

C5: 16 Clusters

C4: 13 Clusters

C6: 19 Clusters C8: 22 ClustersC7: 22 Clusters

Fig. 4.1 2D synthetic data spaces carrying different clustering schemes

84 4 Multi-dimensional Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_3

presented Dynamic Clustering PSO (DCPSO), which is in fact a hybrid clustering
algorithm where binary PSO is used (only) to determine the number of clusters
(and hence the dimension of the solution space) along with the selection of initial
cluster centers whilst the traditional K-means method performs the clustering
operation in that dimension (over the initial cluster centers). In Ref. [1], Abraham
et al. presented the Multi-Elitist PSO (MEPSO), another variant of the basic PSO
algorithm to address the premature convergence problem. In addition to being
nongeneric PSO variants that are applicable only to clustering problems, both [1]
and [2] do not clarify whether or not they can cope with higher dimensions of the
solution space since the maximum number of clusters used in their experiments are
only 6 and 10, respectively. This is also true for most of the static (fixed dimen-
sional) PSO variants due to the aforementioned fact that the probability of getting
trapped into a local optimum significantly increases in higher search space
dimensions [3]. An extended survey about PSO and its variants can be found in
Ref. [4].

In order to address this problem in an effective way, in this chapter we present a
multi-dimensional PSO (MD PSO) technique, which negates the need of fixing the
dimension of the solution space in advance.

4.2 The Basic Idea

In the simplest form, MD PSO reforms the native structure of swarm particles in
such a way that they can make interdimensional passes with a dedicated dimen-
sional PSO process. Therefore, in a multi-dimensional search space where the
optimum dimension is unknown, swarm particles can seek for both positional and
dimensional optima. This eventually negates the necessity of setting a fixed
dimension a priori, which is a common drawback for the family of swarm opti-
mizers. Therefore, instead of operating at a fixed dimension d, the MD PSO
algorithm is designed to seek both positional and dimensional optima within a
dimension range, (Dmin� d�Dmax:)

In order to accomplish this, each particle has two sets of components, each of
which has been subjected to two independent and consecutive processes. The first
one is a regular positional PSO, i.e., the traditional velocity updates and due
positional shifts in N-dimensional search (solution) space. The second one is a
dimensional PSO, which allows the particle to navigate through dimensions.
Accordingly, each particle keeps track of its last position, velocity, and personal
best position (pbest) in a particular dimension, so that when it revisits that the same
dimension at a later time, it can perform its regular ‘‘positional’’ fly using this
information. The dimensional PSO process of each particle may then move the
particle to another dimension where it will remember its positional status and keep
‘‘flying’’ within the positional PSO process in this dimension, and so on. The
swarm, on the other hand, keeps track of the gbest particles in all dimensions, each
of which respectively indicates the best (global) position so far achieved and can

4.1 The Need for Multi-dimensionality 85

thus be used in the regular velocity update equation for that dimension. Similarly,
the dimensional PSO process of each particle uses its personal best dimension in
which the personal best fitness score has so far been achieved. Finally, the swarm
keeps track of the global best dimension, dbest, among all the personal best
dimensions.

Figure 4.2 illustrates a typical MD PSO operation at a time instance t where
three particles have just been moved to the dimensions: d = 2 (particle 7), d = 3
(particle 9), and finally d = 23 (particle a), respectively by the dimensional PSO
process with the guidance of dbest. The figure also shows illustrative 2D and 3D
solution (search) spaces in which the particles (including 7 and 9) currently in

2)(7 =txd

3)(9 =txd

23)(=txda

gbest (3)

9

7

gbest (2)d=2

d=3

MD PSO
(dbest) a

Fig. 4.2 An Illustrative MD PSO process during which particles 7 and 9 have just moved 2D and
3D solution spaces at time t; whereas particle a is sent to 23rd dimension

86 4 Multi-dimensional Particle Swarm Optimization

these dimensions are making regular positional PSO moves by the guidance of the
gbest particles (gbest(2) and gbest(3)). Afterwards each particle in these dimen-
sions will have the freedom to leave to another dimension and similarly, new
particles may come and perform the positional PSO operation and so on.

4.3 The MD PSO Algorithm

In a MD PSO process at time (iteration) t, each particle a in the swarm,
n ¼ fx1; . . .; xa; . . .; xSg, encapsulates the following positional/dimensional PSO
parameters:

xxxdaðtÞ
a;j ðtÞ jth component of the position vector of particle a, in dimension xdaðtÞ

vxxdaðtÞ
a;j ðtÞ jth component of the velocity vector of particle a, in dimension xdaðtÞ

xyxdaðtÞ
a;j ðtÞ jth component of the personal best (pbest) position vector of particle a,

in dimension xda tð Þ
gbest(d) Global best particle index in dimension d
xŷd

j ðtÞ jth component of the global best position vector of swarm, in
dimension d

xda tð Þ Dimension of particle a
vdaðtÞ Velocity of dimension of particle a

x~daðtÞ Personal best dimension of particle a

dbest Global best dimension ever achieved

Note that a simple two-letter naming convention is applied for these parame-
ters. Each parameter has two letters (i.e., xx, vx, etc.). The first letter is either ‘‘x’’
or ‘‘v’’, representing either the positional or the velocity member of a particle.
Since there are two interleaved PSO processes involved, the first letter will then
indicate the position in the former and dimension in the latter process. The second
character indicates the type of the PSO process or the type of the parameter (either
current or personal best position for instance). Thus all parameters in dimensional

PSO have the second character as either ‘‘d’’ or ‘‘~d’’. Similarly, all parameters in
the positional PSO have the second character as either ‘‘x’’ or ‘‘y’’. There are only
two exceptions in this naming convention, gbest(d) and dbest, as we intend to keep
the native PSO naming convention for gbest particle along with the fact that now
there are distinct gbest particles for each dimension, thus yielding to gbest(d). The
same analogy also applies to the parameter dbest being as the global best
dimension.

Let f denotes the dimensional fitness function that is to be optimized within a
certain dimension range, fDmin;Dmaxg: Without loss of generality assume that the
objective is to find the minimum (position) of f at the optimum dimension within a
multi-dimensional search space. Assume that the particle a visits (back) the same

4.2 The Basic Idea 87

dimension after T iterations (i.e., xdaðtÞ ¼ xdaðt þ TÞ), then the personal best
position can be updated in iteration t ? T as follows:

xyxdaðtþTÞ
a;j ðt þ TÞ ¼ xyxdaðtÞ

a;j ðtÞ if f ðxxxdaðtþTÞ
a ðt þ TÞÞ[f ðxyxdaðtÞ

a ðtÞÞ
xxxdaðtþTÞ

a;j ðt þ TÞ else

()

j ¼ 1; 2; . . .; xdaðtÞ
ð4:4Þ

Furthermore, the personal best dimension of particle a can be updated at iter-
ation t ? 1 as follows:

x~daðt þ 1Þ ¼ x~daðtÞ if f ðxxxdaðtþ1Þ
a ðt þ 1ÞÞ[f ðxyx~daðtÞ

a ðtÞÞ
xdaðt þ 1Þ else

()

ð4:5Þ

Note that both Eqs. (4.4) and (4.5) are analogous to Eq. (3.1), which update the
personal best position/dimension in the basic (global) PSO if a better current
position/dimension is reached.

Figure 4.3 shows sample MD PSO and bPSO particles with indices a. A bPSO
particle that is at a (fixed) dimension, N = 5, contains only positional components,
whereas MD PSO particle contains both positional and dimensional components,
respectively. In the figure the dimension range for the MD PSO is given in
between 2 and 10; therefore, the particle contains nine sets of positional compo-
nents. In this example as indicated by the arrows the current dimension the particle
a resides is 2 (xda tð Þ ¼ 2) whereas its personal best dimension is 3 (x~da tð Þ ¼ 3:)
Therefore, at time t a positional PSO update is first performed over the positional
elements,xx2

aðtÞ and then the particle may move to another dimension with respect

bPSO Particle

0 21 3 4
0 21 3 4
0 21 3 4

:)(txa

:)(tva
:)(tya

 (Positional)

0 21 3 4 65 7 8 9
0 21 3 4 65 7 8 9
0 21 3 4 65 7 8 9

0 1
0 1
0 1

0 21
0 21
0 21

)(txda

)(tvda

)(
~

tdx a

:)(2 txxa

:)(2 txya

:)(2 tvxa

:)(3 txxa

:)(3 txya

:)(3 tvxa

:)(10 txxa

:)(10 txya

:)(10 tvxa

MD PSO Particle

(Dimensional) (Positional)

Fig. 4.3 Sample MD PSO (right) vs. bPSO (left) particle structures. For MD PSO Dmin ¼ 2;f
Dmax ¼ 10g and at time t, xda tð Þ ¼ 2 and x~da tð Þ ¼ 3

88 4 Multi-dimensional Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_3

to the dimensional PSO. Recall that each positional element, xx2
a;jðtÞ; j 2 f0; 1g;

represents a potential solution in the data space of the problem.
Recall that gbest(d) is the index of the global best particle at dimension d and

let S(d) be the total number of particles in dimension d, then xŷdbestðtÞ ¼

xydbest
gbestðdbestÞðtÞ ¼ arg min

8i2 1;S½ �
ðf ðxydbest

i ðtÞÞ: For a particular iteration t, and for a

particle a 2 f1; Sg; first the positional components are updated in its current
dimension, xda tð Þ and then the dimensional update is performed to determine its
next (t ? 1st) dimension, xdaðt þ 1Þ: The positional update is performed for each
dimensional component, j 2 f1; xdaðtÞg;, as follows:

vxxdaðtÞ
a;j ðt þ 1Þ ¼ wðtÞvxxddaðtÞ

a;j ðtÞ þ c1r1;jðtÞ xyxdaðtÞ
a;j ðtÞ � xxxdaðtÞ

a;j ðtÞ
� �

þ c2r2;jðtÞ xŷxdaðtÞ
j ðtÞ � xxxdaðtÞ

a;j ðtÞ
� �

xxxdaðtÞ
a;j ðt þ 1Þ ¼ xxxdaðtÞ

a;j ðtÞ þ Cvx vxxdaðtÞ
a;j ðt þ 1Þ; fVmin;Vmaxg

h i

xxxdaðtÞ
a;j ðt þ 1Þ Cxx xxxdaðtÞ

a;j ðt þ 1Þ; fXmin;Xmaxg
h i

ð4:6Þ

where Cxx½:; :� � Cvx½:; :�are the clamping operators applied over each positional
component, xxd

a;j and vxd
a;j: Cxx½:; :� may or may not be applied depending on the

optimization problem but Cvx½:; :� is needed to avoid exploding. Each operator can
be applied in two different ways,

Cxx½xxd
a;jðtÞ; fXmin;Xmaxg� ¼

xxd
a;jðtÞ if Xmin � xxd

a;jðtÞ�Xmax

Xmin if xxd
a;jðtÞ\Xmin

Xmax if xxd
a;jðtÞ[Xmax

8
><

>:

9
>=

>;
ðaÞ

Cxx½xxd
a;jðtÞ; fXmin;Xmaxg� ¼

xxd
a;jðtÞ if Xmin � xxd

a;jðtÞ�Xmax

UðXmin;XmaxÞ else

� �

ðbÞ

ð4:7Þ

where the option (a) is a simple thresholding to the range limits and (b) reinitial-
izes randomly the positional component in the jth dimension (j \ d).

Note that the particle’s new position, xxxdaðtÞ
a ðt þ 1Þ; will still be in the same

dimension, xdaðtÞ; however, the particle may jump to another dimension after-
wards with the following dimensional update equations:

vdaðt þ 1Þ ¼ vdaðtÞ þ c1r1ðtÞ x~daðtÞ � xdaðtÞ
� �

þ c2r2ðtÞ dbest � xdaðtÞð Þ
� 	

xdaðt þ 1Þ ¼ xdaðtÞ þ Cvd vdaðt þ 1Þ; fVDmin;VDmaxg½ �
xdaðt þ 1Þ Cxd xdaðt þ 1Þ; fDmin;Dmaxg½ �

ð4:8Þ

where :b c is the floor operator, Cxd½:; :� and Cvd½:; :� are the clamping operators
applied over dimensional components, xda tð Þ and vdaðtÞ; respectively. Though we
employed the inertia weight for positional velocity update in Eq. (4.5), we have

4.3 The MD PSO Algorithm 89

witnessed no benefit of using it for dimensional PSO, and hence we left it out of
Eq. (4.8) for the sake of simplicity. Note that both velocity update Eqs. (4.6) and
(4.8) are similar to those for the basic PSO given in Eq. (3.2). Cvd½:; :� is similar to
Cvx½:; :�; which is used to avoid exploding. This is accomplished by basic thres-
holding expressed as follows:

Cvd½vdaðtÞ; fVDmin;VDmaxg� ¼
vdaðtÞ if VDmin � vdaðtÞ�VDmax

VDmin if vdaðtÞ\VDmin

VDmax if vdaðtÞ[VDmax

8
<

:

9
=

;
ð4:9Þ

Cxd½:; :�; on the other hand, is a mandatory clamping operator, which keeps the
dimensional jumps within the dimension range of the problem, fDmin;Dmaxg:
Furthermore within Cxd½:; :�; an optional in-flow buffering mechanism can also be
implemented. This can be a desired property, which avoids the excess number of
particles on a certain dimension. Particularly, dbest and dimensions within its close
vicinity have a natural attraction and without such buffering mechanism, the
majority of swarm particles may be hosted within this local neighborhood, and
hence other dimensions might encounter a severe depletion. To prevent this, the
buffering mechanism should control the in-flow of the particles (by the dimen-
sional velocity updates) to a particular dimension. On some early bPSO imple-
mentations over problems with low (and fixed) dimensions, 15–20 particles were
usually sufficient for a successful operation. However, in high dimensions this may
not be so since more particles are usually needed as the dimension increases.
Therefore, we empirically set the number of particles to be proportional to the
solution space dimension and not less than 15. At time t, let PdðtÞ be the number of
particles in dimension d. Cxd½:; :� can then be expressed with the (optional) buf-
fering mechanism as follows:

Cxd½xdaðtÞ; fDmin;Dmaxg� ¼

xdaðt � 1Þ f PdðtÞ �max 15; xdaðtÞð Þ
xdaðt � 1Þ if xdaðtÞ\Dmin

xdaðt � 1Þ f xdaðtÞ[Dmax

xdaðtÞ else

8
>><

>>:

9
>>=

>>;
ð4:10Þ

In short, the clamping and buffering operator, Cxd½:; :�; allows a dimensional jump
only if the target dimension is within the dimensional range and there is a room for
a newcomer.

Accordingly, the general pseudo-code of the MD PSO technique is given in
Table 4.1.

It is easy to see that the random initialization of the swarm particles’ performed
in step 1 is similar to the initialization of the bPSO (between the same steps) given
in Table 3.1. The dimensional PSO is initialized in the same way; however, there is
a difference in the initialization of the positional PSO, that is, particle positions are
randomized for all solution space dimensions (8d 2 ½Dmin;Dmax�) instead of a
single dimension. After the initialization phase, step 3 first evaluates each particle
a, which is residing in its current dimension, xdaðtÞ; (1) to validate its personal best
position in that dimension (step 3.1.1.1), (2) to validate (and update if improved)

90 4 Multi-dimensional Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3

the gbest particle in that dimension (step 3.1.1.2), (3) to validate (and update if
improved) its personal best dimension, (step 3.1.1.3) and finally, (4) to validate
(and update if improved) the global best dimension, dbest (step 3.1.1.4). Step 3.1
in fact evaluates the current position and dimension of each particle with its
personal best values that will be updated if any improvement is observed. The
(new) personal best position/dimension updates will then lead to the computation
of the (new) global best elements such as dbest and gbest(d) 8d 2 Dmin;Dmax½ �ð Þð Þ:
At any time t, the optimum solution will be xŷdbest at the optimum dimension,
dbest, achieved by the particle gbest(dbest), and finally the best (fitness) score
achieved will naturally be f ðxŷdbestÞ: This (best) fitness score so far achieved can
then be used to determine whether the termination criteria is met in step 3.3. If not,
step 3.4 performs first the positional PSO (step 3.4.1) and then the dimensional

Table 4.1 Pseudo-code of MD PSO algorithm

4.3 The MD PSO Algorithm 91

PSO (step 3.4.3) to perform positional and dimensional updates for each particle,
respectively. Once each particle moves to a new position and (jumps to a new)
dimension, then in the next iteration its personal best updates will be performed
and so on, until the termination criteria is met.

4.4 Programming Remarks and Software Packages

As this is the second chapter including software packages and programming
remarks, in the next subsection we shall first complete the description of the
PSO_MDlib test bed application to show how to apply MD PSO for multi-
dimensional nonlinear function minimization, and then start with another major
MD PSO application with GUI support, namely PSOtestApp.

4.4.1 MD PSO Operation in PSO_MDlib Application

The test bed application, PSO_MDlib, is initially designed for regular MD PSO
operations for the sole purpose of multi-dimensional nonlinear function minimi-
zation. Recall that in the previous chapter, we fixed the dimension of any function
as _dMin = _dMax 2 1. Recall further that both _dMin and dMax correspond to
the dimensional range Dmin;Dmaxf g and thus any logical range values can be
assigned for them within the PSOparam structure (default: {2, 101}). The target
dimension can be set in at the beginning of the main() function, i.e.,

int tar_dim[3] = {20, 50, 80};
…
pDim = &tar_dim[2];//The target dimension.

which points to the third entry of the tar_dim[2] array (*pDim = 80). The
dimensional bias stored in the pointer pDim will then be used as the dimensional
bias in all nonlinear functions implemented in MYFUN.cpp which makes them
biased to all dimensions except the target dimension (i.e., *pDim = 80). In other
words, the nonlinear function has a unique global minimum (i.e., 0 for all func-
tions) only in the target dimension. Then MD PSO can be tested accordingly to
find out whether it can converge to the global optimum that resides in the target
(true) dimension. Once the MD PSO object has been initialized with a proper
dimensional range and dimensional PSO parameters (i.e., _psoDef._dMin,
_psoDef._dMax, _psoDef._vdMin, _psoDef._vdMax) then the rest of the code is
identical for both operations. At the end, recall that MD PSO is just the multi-
dimensional extension of the basic PSO.

As initially explained, in the main MD PSO process loop, i.e., the step 3 of the
MD PSO pseudo-code given in Table 4.1, is performed within Table 3.7 given in

92 4 Multi-dimensional Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_3

Sect. 3.5. In that section we explained it in parallel with the basic PSO run, more
details can now be given with respect to the parameters of the MD PSO swarm
particles. First of all, note that there is an individual gbest particle for each
dimension and whenever the particle a visits resides in the current dimension,
cur_dim_a, it can be the new gbest particle in that dimension if its current position
surpasses gbest’s. Note that cur_dim_a can now be any integer number between
m_xdMin and m_xdMax-1. Another MD PSO parameter, dbest (m_dbest in the
code), which can be updated only if the particle becomes the new gbest in
cur_dim_a, and it can achieve a fitness score even better than the best fitness score
achieved in the dimension dbest.

The termination criteria (by either IterNo or eC) were explained in Sect. 3.5
with the code given in Table 3.9. The best performance achieved by the MD PSO
swarm can be gathered from the personal best position of the gbest particle in
dbest dimension, i.e., m_gbest[m_dbest - m_xdMin] and the call in the if()
statement, which compares it with the m_eCutOff, i.e., m_pPA[m_g-
best[m_dbest - m_xdMin]]- > GetPBScore(m_dbest).

If neither of the termination criteria is reached, then step 3.4 is executed to
update the position and the dimension of each swarm particle as given in
Table 4.2. As shown in Table 3.10 in Sect. 3.5, first in the positional update, each
particle’s cognitive (cogn) and social (social) components are computed and the
velocity update is composed over the previous velocity weighted with the inertia
factor. The velocity is clamped (vx- > CheckLimit()) and finally, the particle’s
current position is updated to a new position with the composed and clamped

Table 4.2 Implementation of Step 3.4 of the MD PSO pseudo-code given in Table 4.1

4.4 Programming Remarks and Software Packages 93

http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3

velocity term. As the last step, this new position is also verified whether it falls
within the problem boundaries specified in advance (�xmax by xx- > Check-
Limit()), all of which are performed within step 3.4.1 of the MD PSO pseudo-
code. The dimensional PSO within step 3.4.3 of the MD PSO pseudo-code is then
performed and this is simply a PSO implementation in 1D, over the integer
numbers to find out the optimal dimension using the PSO mechanism. Within the
loop, each particle’s cognitive (dbestx-xdim) and social components (m_dbest-
xdim) are computed and the velocity update is composed over the previous
dimensional velocity component, vdim. The velocity is clamped and the current
dimension of the particle is updated. As the last step, this new dimension is also
verified whether it falls within the problem boundaries specified in advance. Recall
that Cxd½:; :� and Cvd½:; :� are the clamping operators applied over dimensional
components, xda tð Þ and vda tð Þ; respectively. Note that in the code both clamping
operators are simply implemented by four member variables of the class:
m_xdMin, m_xdMax and m_vdMin, m_vdMax.

4.4.2 MD PSO Operation in PSOTestApp Application

The major MD PSO test bed application is PSOTestApp. It is a single dialog-
based Windows application over which several MD PSO applications, mostly
based on data (or feature) clustering, are implemented. In this section, its pro-
gramming basics and use will only be introduced whilst keeping the details of the
individual applications to the following chapters. PSOTestApp is a multithread
application where there is a dedicated thread for its GUI (Dialog) implementation
as shown in Fig. 4.4. In the figure, the snapshot on the top is the main GUI where a
selection of MD PSO applications is shown and the one in the bottom shows also a
pop-up menu dialog with MD PSO parameters. This pop-up dialog is activated
whenever the ‘‘Run’’ button is pressed. So the user first selects a proper (MD PSO)
application from the main combo box, then opens the proper source file(s) (to
process or to read data), and finally presses the ‘‘Run’’ button to initiate the MD
PSO application with the proper parameters that can be specified in the pop-up
dialog ‘‘MD PSO Parameters’’.

PSOTestApp workspace consists of eight projects: Converters, DbgRouter,
Frame, FrameRenderer, Image, MTL, PSOCluster, and PSOTestApp. The first six
are the supplementary projects (description of which is skipped as it is beyond the
scope of this book), which are used to render an image, create a thread, output
debug messages during run-time, etc. PSOCluster is the main DLL project, which
executes all MD PSO applications [1–8 in Fig. 4.4 (top)]. As shown in the figure,
there are eight applications listed in the combo list, six of which are implemented:
‘‘1. 2D Clustering over binary (B\W) images…’’, ‘‘2. 3D Color Quantization over
color images…’’, ‘‘4. 2D Clustering via GMM over binary (B\W) images…’’, ‘‘6.
N-D Clustering over *.dt (data) files…’’, ‘‘7. RBF Network Training via N-D
Clustering…’’, and ‘‘8. Feature Synthesis…’’. In this section, we shall give an

94 4 Multi-dimensional Particle Swarm Optimization

overview and data structures for the PSOTestApp and PSOCluster projects, and
then focus on the first application (1. 2D Clustering over binary (B\W) images).
The rest of the clustering applications (except eighth application Feature Syn-
thesis) will be covered in Chaps. 5 and 6. The eighth application, Evolutionary
Feature Synthesis, will be covered in Chap. 10.

The entry point of a Windows Dialog workspace created by Visual Studio 6.5 is
the [nameofApp]Dlg.cpp. For PSOTestApp it is therefore, PSOtestAppDlg.cpp
where all Windows dialog-based control and callback functions are implemented.
In this source file, a separate thread operates all the user’s actions by the callback
functions of the class CPSOtestAppDlg such as:

Fig. 4.4 GUI of PSOTestApp with several MD PSO applications (top) and MD PSO Parameters
dialog is activated when pressed ‘‘Run’’ button (bottom)

4.4 Programming Remarks and Software Packages 95

http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_6
http://dx.doi.org/10.1007/978-3-642-37846-1_10

• void CPSOtestAppDlg::OnButtonOpen() //Open button
• void CPSOtestAppDlg::OnDopso() //Run button
• void CPSOtestAppDlg::OnStop() //Stop button
• etc.

When ‘‘Run’’ button is pressed, the MD PSO application (selected in the combo
list) is initiated within the OnDopso() function and the request is conducted to the
proper interface class implemented within the PSOCluster library (DLL). For this,
in the header file PSOtestAppDlg.h, the class CPSOtestAppDlg contains six
interface classes, each of which has (the one and only) member object to
accomplish the task initiated. These member objects are as follows:

• CPSOcluster m_PSOt; //The generic 2-D PSO clustering obj..
• CPSOclusterND m_PSOn; //The generic N-D PSO clustering obj..
• CPSO_RBFnet m_PSOr; //The generic PSO RBF Net. training obj..
• CPSOcolorQ m_PSOc; //The generic PSO colorQ obj..
• CPSOclusterGMM m_PSOgmmt; //The GMM PSO clustering obj..
• CPSOFeatureSynthesis m_PSOfs; //The Feat. Synth. obj..

Each interface class is responsible of one of the MD PSO applications listed
above and each object executes its task in a dedicated thread created at the
beginning of the operation. Assume for instance that a user selects ‘‘2D Cluster-
ing’’ application. Then in the OnDopso() function the following code in Table 4.3
activates the API function, ApplyPSO(), of the CPSOcluster class.

Recall that CPSOcluster class contains the API as well as the implementer
functions for the 2D clustering operations using the MD PSO. It has the following
member functions as presented in Table 4.4. The Init() function initializes the
object with the window handler of the dialog, which is used to send Windows
messages to the GUI thread (handled within the CPSOtestAppDlg class). The

Table 4.3 The callback function OnDopso() activated when pressed ‘‘Run’’ button on
PSOtestApp GUI

96 4 Multi-dimensional Particle Swarm Optimization

Stop() function can stop an ongoing MD PSO application anytime and abruptly.
The ShowResults() function will show the 2D clustering results on a separate
dialog, which is created and controlled within the CPSOtestAppDlg class. Finally,
as presented in Table 4.5 the API function, ApplyPSO(), is called within the
callback function CPSOtestAppDlg::OnDopso() and creates a dedicated thread in
which the MD PSO application (2D clustering) is executed. This thread function is
called PSOThread() and created as:

CMThread < CPSOcluster > (PSOThread, this, THREAD_PRIOR-
ITY_NORMAL).Begin ();

There are three set of parameters of this API function, the list of input filenames
(pFL), MD PSO parameters (psoParam), and SPSA parameters (saParam),
which will be explained in the next chapter. The input files for 2D clustering
application are black and white images similar to the ones shown in Figs. 3.7 and
4.1, and 2D data points are represented by white pixels. As the MD PSO process
terminates, the resultant output images consist of the clusters extracted from the
image, each of which rendered with three-color representation, as typical examples
are shown in Figs. 3.8 and 3.9. The structure, psoParam contains all MD PSO
parameters, which can be edited by the user via MD PSO parameters dialog. Both
psoParam and saParam are copied into the member structures (m_psoParam and
m_saParam) and as a result, the MD PSO process can now be executed by a
separate thread within the function PSOThread().

Table 4.4 Member functions of CPSOcluster class

4.4 Programming Remarks and Software Packages 97

http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3

As this is a 2D clustering application of the MD PSO, the data space (class X) is
implemented by the CPixel2D class declared in the Pixel2D.h file. This class
basically contains all the arithmetic operations that can be performed over 2D
pixels with coordinates (m_x and m_y). Recall that COneClass was used as the
data space class (class X) in Sect. 3.5 for nonlinear function minimization and now
as the application is changed to 2D clustering, a proper\class X> implementation
is, first of all, required. The second required input to MD PSO for 2D clustering
application is a proper fitness function. Recall that for nonlinear function mini-
mization, one of the benchmark functions was given as the fitness function by
calling, pPSO- > SetFitnessFn(Sphere), and now the application in hand is 2D
clustering, as discussed in Sect. 3.4.2, the so-called ‘‘Clustering Validity Index’’
(CVI) function should be implemented in accordance with the MD PSO particles
and given to the MD PSO object in the same way. In the CPSOcluster object,
there are two sample CVI functions implemented: ValidityIndex() and Validi-
tyIndex2(). The theory and design considerations of the MD PSO data clustering
operations will be covered in Chap. 6 in detail, and thus are skipped in this section.
Since both CVI functions are static (to be able to use their function pointers), the
entire 2D data space (the white pixels) is stored into the following link list
structure declared in CPSOcluster class: static CQueueList < CPixel2D > *
s_pPixelQ; so that both CVI functions can use it to access real data points.
Therefore, for each 2D black&white input image containing the white pixels for
2D clustering, the image is first decoded (Step 1), s_pPixelQ is created and 2D
white pixels are stored (Step 2) and finally, MD PSO object is created, initialized
properly, and executed to perform the clustering (Step 3). Each MD PSO clus-
tering operation can be repeated several times, the number of which is set by the
user and stored in the m_psoParam._repNo parameter. All three steps can easily
be recognized in the CPSOcluster::PSOThread() function, as given in Table 4.6.
Note further that the clustering operation is performed for each image in the list of
input filenames (m_pFL).

Table 4.5 The ApplyPSO() API function of the CPSOcluster class

98 4 Multi-dimensional Particle Swarm Optimization

http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_6

References

1. A. Abraham, S. Das and S. Roy, ‘‘Swarm Intelligence Algorithms for Data Clustering’’, in Soft
Computing for Knowledge Discovery and Data Mining book, Part IV, pp. 279-313, Oct. 25,
2007

2. M.G. Omran, A. Salman, A.P. Engelbrecht, Dynamic Clustering using Particle Swarm
Optimization with Application in Image Segmentation. In Pattern Analysis and Applications 8,
332–344 (2006)

3. G-J Qi, X-S Hua, Y. Rui, J. Tang, H.-J. Zhang, ‘‘Image Classification With Kernelized Spatial-
Context,’’ IEEE Trans. on Multimedia, vol.12, no.4, pp.278-287, June 2010. doi: 10.1109/
TMM.2010.2046270

4. M. G. Omran, A. Salman, and A.P. Engelbrecht, Particle Swarm Optimization for Pattern
Recognition and Image Processing, Springer Berlin, 2006

Table 4.6 The function CPSOcluster::PSOThread()

References 99

http://dx.doi.org/10.1109/TMM.2010.2046270
http://dx.doi.org/10.1109/TMM.2010.2046270

Chapter 5
Improving Global Convergence

Like they say, you can learn more from a guide in one day than
you can in three months fishing alone.

Mario Lopez

As a natural extension of PSO, MD PSO may also have a serious drawback of
premature convergence to a local optimum, due to the direct link of the infor-
mation flow between particles and gbest, which ‘‘guides’’ the rest of the swarm
resulting in possible loss of diversity. Hence, this phenomenon increases the
probability of being trapped in local optima [1] and it is the main cause of the
premature convergence problem especially when the search space is of high
dimensions [2] and the problem to be optimized is multimodal [1]. Another reason
for the premature convergence is that particles are flown through a single point
which is (randomly) determined by gbest and pbest positions and this point is not
even guaranteed to be a local optimum [3]. Various modifications and PSO
variants have been proposed in order to address this problem such as [1, 3–28]. As
briefly discussed in Sect. 3.3, such methods usually try to improve the diversity
among the particles and the search mechanism either by changing the update
equations toward a more diversified version, by adding more randomization to the
system (to particle velocities, positions, etc.), or simply resetting some or all
particles randomly when some conditions are met. On the one hand, most of these
variants require additional parameters to accomplish the task and thus making the
algorithms even more parameter dependent. On the other hand, the main problem
is in fact the inability of the algorithm to use available diversity in one or more
positional components of a particle. Note that one or more components of any
particle may already be in a close vicinity of the global optimum. This potential is
then wasted with the (velocity) update in the next iteration, which changes all the
components at once. In this chapter, we shall address this drawback of global
convergence by developing two efficient techniques. The first one, the so-called
Fractional Global Best Formation (FGBF), collects all such promising (or simply
the best) components from each particle and fractionally creates an artificial global
best (GB) candidate, the aGB, which will be the swarm’s global best (GB) particle
if it is better than the previous GB and the just-computed gbest. Note that
whenever a better gbest particle or aGB particle emerges, it will replace the current
GB particle. Without any additional change, we shall show that FGBF can avoid
local optima and thus yield the optimum (or near optimum) solution efficiently
even in high dimensional search spaces. Unfortunately FGBF is not an entirely

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_5, � Springer-Verlag Berlin Heidelberg 2014

101

http://dx.doi.org/10.1007/978-3-642-37846-1_3

generic technique, which should be specifically adapted to the problem at hand (we
shall return to this issue later). In order to address this drawback efficiently, we
shall further present two generic approaches, one of which moves gbest efficiently
or simply put, ‘‘guides’’ it with respect to the function (or error surface) it resides
on. The idea behind this is quite simple: since the velocity update equation of gbest
is quite poor, we shall replace it with a simple yet powerful stochastic search
technique to guide it instead. We shall henceforth show that due to the stochastic
nature of the search technique, the likelihood of getting trapped into a local
optimum can significantly be decreased.

5.1 Fractional Global Best Formation

5.1.1 The Motivation

FGBF is designed to avoid premature convergence by providing a significant
diversity obtained from a proper fusion of the swarm’s best components (the
individual dimension(s) of the current position of each particle in the swarm). At
each iteration in a bPSO process, an aGB is fractionally formed by selecting the
most promising or simply the best particle positional vector components from the
entire swarm.

Therefore, especially during the initial steps, the FGBF can most of the time be
a better alternative than the native gbest particle, since it has the advantage of
assessing each component of every particle in the swarm individually, and forming
the aGB particle fractionally by using the most promising components among
them. This process naturally uses the available diversity among individual com-
ponents and thus it can prevent the swarm from trapping in local optima. Take for
instance, the function minimization problem as illustrated in Fig. 5.1 where 2D
space is used for illustration purposes. In the figure, three particles in a swarm are
ranked as the 1st (or the gbest), the 3rd, and the 8th with respect to their proximity
to the target position (or the global solution) of some function. Although gbest
particle (i.e., 1st ranked particle) is the closest in the overall sense, the particles
ranked 3rd and 8th provide the best x and y dimensions (closest to the target’s
respective dimensions) in the entire swarm, and hence the aGB particle via FGBF
yields a closer particle to the target than the swarm’s gbest.

5.1.2 PSO with FGBF

Suppose for a swarm n, FGBF is performed in a PSO process at a (fixed) dimension
N. Recall from the earlier discussion that at iteration, t, each PSO particle, a, has the
following components: position, xa; jðtÞ, velocity, va; jðtÞ and the personal best

102 5 Improving Global Convergence

position, ya; jðtÞ, j 2 ½1; N�. The aGB particle, obtained through the FGBF process,
is fractionally formed from the components of some swarm particles, and therefore it
does not use any velocity term. Consequently, yaGBðtÞ is set to the best of xaGBðtÞ and
yaGBðt � 1Þ. As a result, the FGBF process creates one aGB particle providing a
potential GB solution, yaGB tð Þ. Let f ða; jÞ be the dimensional fitness score of the jth
dimensional component of the position vector of particle a. Suppose that all
dimensional fitness scores (f ða; jÞ; 8a 2 ½1; S�; 8j 2 ½1; N�) can be computed in
step 3.1 and FGBF pseudo-code as given in Table 5.1 can then be plugged in
between steps 3.3 and 3.4 of bPSO’s pseudo-code.

Step 2 in the FGBF pseudo-code along with the computation of f ða; jÞ depends
entirely on the optimization problem. It keeps track of partial fitness contributions
from each individual component from each particle’s position. For those problems

X

1

3

8 +

gbest

x

y

bestxΔ

bestyΔ

),(11 yx

),(88 yx

),(33 yx

),(: 83 yxaGB

0

),(TT yxTarget:

FGBF

F
G

B
F

Fig. 5.1 A sample FGBF in 2D space

Table 5.1 Pseudo-code of FGBF in bPSO

FGBF in bPSO (n, f ða; jÞ)
1. Create a new aGB particle, fxaGB; jðtÞ; yaGB; jðtÞg for 8j 2 ½1; N�
2. Let a½j� ¼ arg min

a2n j2½1; N�
ðf ða; jÞÞ be the index array of particles yielding the minimum f ða; jÞ

for the jth dimensional component
3. xaGB; jðtÞ ¼ xa½j�; jðtÞ for 8j 2 ½1; N�
4. If (f ðxaGBðtÞÞ\f ðyaGBðt � 1ÞÞ) then yaGBðtÞ ¼ xaGBðtÞ
5. Else yaGBðtÞ ¼ yaGBðt � 1Þ
6. If (f ðyaGBðtÞÞ\f ð~yðtÞÞ then ~yðtÞ ¼ yaGBðtÞ

5.1 Fractional Global Best Formation 103

without any constraints (e.g., nonlinear function minimization), the best dimen-
sional components can simply be selected, whereas in others (e.g., clustering),
some promising components, which satisfy the problem constraints or certain
criteria required, are first selected, grouped, and the most suitable one in each
group is then used for FGBF. Here, the internal nature of the problem will
determine the ‘‘suitability’’ of the selection.

5.1.3 MD PSO with FGBF

The previous section introduced the principles of FGBF when applied in a bPSO
process on a single dimension. In this section, we present its generalized form with
the proposed MD PSO where there is one gbest particle per (potential) dimension
of the solution space. For this purpose, recall that at a particular iteration, t, each

MD PSO particle, a, has the following components: position (xxxdaðtÞ
a; j ðtÞ), velocity

(vxxdaðtÞ
a; j ðtÞ) and the personal best position (xyxdaðtÞ

a; j ðtÞ) for each potential dimensions
in solution space (i.e., xda ðtÞ 2 ½Dmin; Dmax� and j 2 ½1; xdaðtÞ�) and their
respective counterparts in the dimensional PSO process (i.e., xda tð Þ, vda tð Þ, and
x~da tð Þ). The aGB particle does not need dimensional components where a single
positional component with the maximum dimension Dmax is created to cover all
dimensions in the range, 8d 2 ½Dmin; Dmax�, and as explained earlier, there is no
need for the velocity term either, since aGB particle is fractionally (re-) formed
from the dimensions of some swarm particles at each iteration.

Furthermore, the aforementioned competitive selection ensures that
xyd

aGBðtÞ; 8d 2 ½Dmin;Dmax� is set to the best of the xxd
aGBðtÞ and xyd

aGBðt � 1Þ. As a
result, the FGBF process creates one aGB particle providing (potential) GB
solutions (xyd

aGBðtÞ) for all dimensions in the given range (i.e., 8d 2 ½Dmin; Dmax�).
Let f a; jð Þ be the dimensional fitness score of the jth component of particle a,
which has the current dimension, xdaðtÞ and j 2 ½1; xdaðtÞ�. At a particular time t,
all dimensional fitness scores (f ða; jÞ; 8a 2 ½1; S�) can be computed in step 3.1
and FGBF pseudo-code for MD PSO as given in Table 5.2 can then be plugged in
between steps 3.2 and 3.3 of the MD PSO’s pseudo-code. Next, we will present the
application of MD PSO with FGBF to nonlinear function minimization and other
applications will be presented in detail in the following chapters.

5.1.4 Nonlinear Function Minimization

A preliminary discussion and experimental results of the application of the basic
PSO over four nonlinear functions were given in Sect. 3.4.1. We now selected
seven benchmark functions and biased them with a dimensional term in order to

104 5 Improving Global Convergence

http://dx.doi.org/10.1007/978-3-642-37846-1_3

test the performance of MD PSO. The functions given in Table 5.3 provide a good
mixture of complexity and modality and have been widely studied by several
researchers, e.g., see [10, 16, 22, 29–31]. The dimensional bias term, W dð Þ, has the
form of WðdÞ ¼ K d � d0j ja where the constants K and a are properly set with
respect to the dynamic range of the function to be minimized. Note that the
variable d0, Dmin� d0�Dmax, is the target dimension in which the global mini-
mum resides and hence all functions have the global minimum Fnðx; d0Þ ¼ 0,
when d ¼ d0. Sphere, De Jong, and Rosenbrock are the unimodal functions and the
rest are multimodal, meaning that they have many deceiving local minima. On the
macroscopic level, Griewank demonstrates certain similarities with unimodal
functions especially when the dimensionality is above 20; however, in low
dimensions it bears a significant noise, which creates many local minima due to the
second multiplication term with cosine components. Yet with the addition of
dimensional bias term WðdÞ, even unimodal functions eventually become multi-
modal, since they now have a local minimum at every dimension (which is their
global minimum at that dimension without W dð Þ) but only one global minimum at
dimension, d0.

Recall from the earlier remarks that a MD PSO particle a represents a potential
solution at a certain dimension, and therefore the jth component of a d-dimensional
point xj; j 2 1; d½ �

� �
is stored in its positional component, xxd

a; jðtÞ at time t. Step
3.1 in MD PSO’s pseudo-code computes the (dimensional) fitness score (f ða; jÞ) of
the jth component (xj) and at step 2 in the FGBF process, the index of the particle
with those xj’s yielding minimum f ða; jÞ is then stored in the array a½j�. Except the
nonseparable functions, Rosenbrock and Griewank, the assignment of f ða; jÞ for

particle a is straightforward (e.g., f ða; jÞ ¼ x2
j for Sphere, f ða; jÞ ¼ xjsin

ffiffiffiffiffiffiffi
xj

�
�
�
�

q� �

for Schwefel, etc., simply using the term with the jth component of the summa-

tion). For Rosenbrock, we can set f ða; jÞ ¼ ðxjþ1 � x2
j Þ

2 þ ðxj � 1Þ2 since the aGB

particle, which is fractionally formed by those xj’s minimizing the jth summation

Table 5.2 Pseudo-code for FGBF in MD PSO

FGBF in MD PSO (f ða; jÞ)
1. Create a new aGB particle, fxxd

aGB; jðtÞ; xyd
aGB; jðtÞg for 8d 2 ½Dmin; Dmax�; 8j 2 ½1; d�

2. Let a½j� ¼ arg min
a2½1;S� j2½1;Dmax �

ðf ða; jÞÞ be the index array of particles yielding the minimum

f ða; jÞ for the jth dimension
3. For 8d 2 ½Dmin; Dmax� do:

3.1. xxd
aGB; jðtÞ ¼ xxd

a½j�;jðtÞ for 8j 2 ½1; d�
3.2. If (f ðxxd

aGBðtÞÞ\f ðxyd
aGBðt � 1ÞÞ) then xyd

aGBðtÞ ¼ xxd
aGBðtÞV

3.3. Else xyd
aGBðtÞ ¼ xyd

aGBðt � 1Þ
3.4. If (f ðxyd

aGBðtÞÞ\f ðxyd
gbestðdÞðtÞÞ then xyd

gbestðdÞðtÞ ¼ xyd
aGBðtÞ

4. End for

5. Re-assign dbest: dbest ¼ arg min
d2½Dmin ; Dmax �

ðf ðxyd
gbestðdÞðtÞÞ

5.1 Fractional Global Best Formation 105

T
ab

le
5.

3
B

en
ch

m
ar

k
fu

nc
ti

on
s

w
it

h
di

m
en

si
on

al
bi

as

F
un

ct
io

n
F

or
m

ul
a

In
it

ia
l

ra
ng

e
�

x m
ax

D
im

en
si

on
ra

ng
e

D
m

in
;

D
m

ax
½

�
Sp

he
re

F
1
ðx
;

d 0
Þ¼

Pd i¼
1

x2 i

�
	

þ
ðd
�

d 0
Þ4

±
15

0
[2

,
10

0]

D
e

Jo
ng

F
2
ðx
;

d 0
Þ¼

Pd i¼
1

ix
4 i

�
	

þ
ðd
�

d 0
Þ4

±
50

[2
,

10
0]

R
os

en
br

oc
k

F
3
ðx
;

dÞ
¼

Pd i¼
1

10
0
ðx

iþ
1
�

x2 i
Þ2
þ
ðx

i
�

1Þ
2

�
	

þ
ðd
�

d 0
Þ4

±
50

[2
,

10
0]

R
as

tr
ig

in
F

4
ðx
;

d 0
Þ¼

Pd i¼
1

10
þ

x2 i
�

10
co

s
ð2

p
x i
Þ

�
	

þ
ðd
�

d 0
Þ4

±
50

[2
,

10
0]

G
ri

ew
an

k
F

5
ðx
;

d 0
Þ¼

1
4;

00
0

Pd i¼
1

x2 i
�
Qd i¼

1
co

s
x i ffiffiffi
ffiffiffi

iþ
1

p
�

�
�

	

þ
0:

2
ðd
�

d 0
Þ2

±
50

0
[2

,
10

0]

Sc
hw

ef
el

F
6
ðx
;

d 0
Þ¼

41
8:

98
29

d
þ
Pd i¼

1
x i

si
n

ffiffiffi
ffiffiffi x ij
j

p �
�

�
	

þ
40
ðd
�

d 0
Þ2

±
50

0
[2

,
10

0]

G
iu

nt
a

F
7
ðx
;

d 0
Þ¼

Pd i¼
1

si
n

16 15
x i
�

1
�

�
þ

si
n

2
16 15

x i
�

1
�

�
þ

1 50
si

n
4
ð1

6 15
x i
�

1Þ
�

�
þ

26
8

1;
00

0

�
	

þ
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffiffi

d
�

d 0
j

j
p

±
50

0
[2

,
10

0]

106 5 Improving Global Convergence

term, eventually minimizes the function. Finally for Griewank one can approxi-
mate f ða; jÞ � x2

j for particle a and the FGBF operation then finds and uses such xj

that can come to a close vicinity of the global minimum at dimension j on a
macroscopic scale, so that the native PSO process can then have a higher chance of
avoiding those noise-like local optima, and thus eventually converge to the global
optimum.

We use the termination criteria as the combination of the maximum number of
iterations allowed (iterNo = 5,000) and the cut-off error (eC ¼ 10�4). Table 5.3
also presents both positional, �xmax, and dimensional Dmin; Dmax½ � range values,
whereas the other parameters are empirically set as Vmax ¼ xmax=2 and
VDmax ¼ 18. Unless stated otherwise, these range values are used in all experi-
ments presented in this section. The first set of experiments was performed for
comparative evaluation of the standalone MD PSO versus bPSO over both uni-
and multimodal functions. Figure 5.2 presents typical plots where both techniques
are applied over the unimodal function, De Jong using the swarm size, S = 160.
The red curves of both plots in Fig. 5.2 and all the rest of the figures in this section
represent the behavior of the GB particle (whether it is a new gbest or the aGB
particle created by FGBF) and the corresponding blue curves represent the
behavior of the gbest particle when the termination criteria are met (e.g.,
gbest = 74 for bPSO and f y74ð158Þ½ � ¼ 9:21 � 10�5\eC). Naturally, the true
dimension (d0 ¼ 20) is set in advance for the bPSO process and it converges to the
global optima within 158 iterations as shown in the right plot, whereas MD PSO
takes 700 iterations to finally place the GB particle at the target dimension
(d0 ¼ 20) and then only 80 iterations more to satisfy the termination criteria.
Recall that its objective is to find the global minimum of the function at the true
dimension. Overall, the standalone MD PSO is slower compared to bPSO, but over
an extensive set of experiments, its convergence behavior to the global optimum is
found similar to that of the bPSO. For instance, their performance is degraded in

0 100 200 300 400 500 600 700 800
5

10

15

20

0 100 200 300 400 500 600 700 800
10

-5

10
0

10
5

10
10

GB score

gbest score

GB dimension

gbest dimension

0 20 40 60 80 100 120 140 160
19

19.5

20

20.5

21

0 20 40 60 80 100 120 140 160
10

-5

10
0

10
5

10
10

GB score

gbest score

GB dimension

gbest dimension

Fig. 5.2 Fitness score (top in log-scale) and dimension (bottom) plots vs. iteration number for
MD PSO (left) and bPSO (right) operations both of which run over De Jong function

5.1 Fractional Global Best Formation 107

higher dimensions, e.g., for the same function but at d0 ¼ 50, both require—on the
average—five times more iterations to find the global minimum.

A significant speed improvement can be achieved when MD PSO is performed
with FGBF. A typical MD PSO run using the swarm size, S = 320, over another
unimodal function, Sphere, but at a higher (target) dimension, is shown in Fig. 5.3.
Note that the one with FGBF (left) took only 160 iterations, whereas the stand-
alone MD PSO (right) is completed within 3,740 iterations. Note also that within a
few iterations, the process with FGBF already found the true dimension, d0 ¼ 40,
and after only 10 iterations, the aGB particle already came in a close vicinity of the
global minimum (i.e., f ðxy40

aGBð10ÞÞ ffi 4 � 10�2). As shown in Fig. 5.4, the
particle index plot for this operation clearly shows the time instances where aGB
(with index number 320) becomes the GB particle, e.g., the first 14 iterations and
then occasionally in the rest of the process.

Besides the significant speed improvement for unimodal functions, the primary
contribution of FGBF technique becomes most visible when applied over multi-
modal functions where the bPSO (and the standalone MD PSO) are generally not

0 20 40 60 80 100 120 140 160 180
20

40

60

80

100

0 20 40 60 80 100 120 140 160 180
10

-5

10
0

10
5 GB score

gbest score

GB dimension

gbest dimension

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

0 500 1000 1500 2000 2500 3000 3500 4000
10

-5

10
0

10
5

GB score

gbest score

GB dimension

gbest dimension

Fig. 5.3 Fitness score (top in log-scale) and dimension (bottom) plots vs. iteration number for a
MD PSO run over Sphere function with (left) and without (right) FGBF

0 20 40 60 80 100 120 140 160
150

200

250

300

350

particle
 no.

aGB=320

GB = aGB

iteration no.

Fig. 5.4 Particle index plot for the MD PSO with FGBF operation shown in Fig. 5.3

108 5 Improving Global Convergence

able to converge to the global optimum even at the low dimensions. Figures 5.5
and 5.6 present two (standalone MD PSO vs. MD PSO with FGBF) applications
(using a swarm size 320) over Schwefel and Giunta functions at d0 ¼ 20. Note that
when FGBF is used, MD PSO can directly have the aGB particle in the target
dimension (d0 ¼ 20) at the beginning of the operation. Furthermore, the PSO
process benefits from having an aGB particle that is indeed in a close vicinity of
the global minimum. This eventually helps the swarm to move toward the right
direction thereafter. Without this mechanism, both standalone PSO applications
are eventually trapped into local minima due to the highly multimodal nature of
these functions. This is quite evident in the right-hand plots of both figures, and
except for few minority cases, it is also true for other multimodal functions. In
higher dimensions, standalone MD PSO applications over multimodal functions

0 20 40 60 80 100 120 140 160 180
10

20

30

40

50

0 20 40 60 80 100 120 140 160 180
10

-5

10
0

10
5

GB score

gbest score

GB dimension

gbest dimension

0 1000 2000 3000 4000 5000
10

20

30

40

0 1000 2000 3000 4000 5000
10

3

10
4

GB score

gbest score

GB dimension

gbest dimension

Fig. 5.5 Fitness score (top in log-scale) and dimension (bottom) plots vs. iteration number for a
MD PSO run over Schwefel function with (left) and without (right) FGBF

0 50 100 150 200 250 300 350 400
19

19.5

20

20.5

21

0 50 100 150 200 250 300 350 400
10

-5

10
-4

10
-3

10
-2

GB score

gbest score

GB dimension

gbest dimension

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

0 1000 2000 3000 4000 5000
10

-2

10
0

10
2

GB score

gbest score

GB dimension

gbest dimension

Fig. 5.6 Fitness score (top in log scale) and dimension (bottom) plots versus iteration number for
a MD PSO run over Giunta function with (left) and without (right) FGBF

5.1 Fractional Global Best Formation 109

yield even worse results such as earlier traps in local minima and possibly at the
wrong dimension. For example, in standalone MD PSO operations over Schwefel
and Giunta with d0 ¼ 80, the GB scores at t = 4,999 (f ðxŷ80Þ) are 8,955.39 and
1.83, respectively.

An observation worth mentioning here is that MD PSO with FGBF is usually
affected by the higher dimensions, but its performance degradation usually entails
a slower convergence as opposed to an entrapment at a local minimum. For
instance, when applied over Schwefel and Giunta at d0 ¼ 80, the convergence to
the global optima is still achieved after only a slight increase in the number of
iterations, i.e., 119 and 484 iterations, respectively. Moreover, Fig. 5.7 presents the
fitness plots for MD PSO with FGBF using two different swarm sizes over two
more multimodal functions, Griewank and Rastrigin. Similar to earlier results, the
global minimum at the true dimension is reached for both functions; however, for
d0 ¼ 20 (red curves) the process takes a few hundreds iterations less than the one
at d0 ¼ 80 (blue curves).

The swarm size has a direct effect on the performance of MD PSO with FGBF,
that is, a larger swarm size increases the speed of convergence, which is quite
evident in Fig. 5.7 between the corresponding plots on the left- and the right side.
This is due to the fact that with the larger swarm size, the probability of having
better swarm components (which are closer to the global optimum) of the aGB
particle increases, thus yielding a better aGB particle formation in general. Note
that this is also clear in the plots at both sides, i.e., at the beginning (within the first
10–15 iterations when aGB is usually the GB particle) the drop in the fitness score
is much steeper on the right-hand plots with respect to the ones on the left.

For an overall performance evaluation, both proposed methods are tested over
seven benchmark functions using three different swarm sizes (160, 320, and 640)
and target dimensions (20, 50, and 80). For each setting, 100 runs are performed
and the first- and second-order statistics (mean, l and standard deviation, r) of the
operation time (total number of iterations) and the two components of the solution,

0 100 200 300 400 500 600 700
10

-5

10
0

10
5

0 200 400 600 800 1000 1200 1400
10

-5

10
0

10
5

GB score, d=20

GB score, d=80

GB score, d=20

GB score, d=80

0 50 100 150 200 250 300 350
10

-5

10
0

10
5

0 100 200 300 400 500 600 700 800 900
10

-5

10
0

10
5

GB score, d=20

GB score, d=80

GB score, d=20
GB score, d=80

Fig. 5.7 MD PSO with FGBF operation over Griewank (top) and Rastrigin (bottom) functions
with d0 ¼ 20 (red) and d0 ¼ 80 (blue) using the swarm size, S = 80 (left) and S = 320 (right)

110 5 Improving Global Convergence

the fitness score achieved in the resulting dimension (dbest), are presented in
Table 5.4. During each run, the operation terminates when the fitness score drops
below the cut-off error eC ¼ 10�4ð Þ and it is assumed that the global minimum of
the function in the target dimension is reached, henceforth, the score is set to 0 and
obviously, dbest ¼ d0. Therefore, for a particular function, the target dimension,
d0and swarm size, S, obtaining l = 0 as the average score means that the method
converges to the global minimum in the target dimension at every run. On the
other hand, having the average iteration number as 5,000 indicates that the method
cannot converge to the global minimum at all, instead it gets trapped in a local
minimum. The statistical results enlisted in Table 5.4 approve earlier observations
and remarks about the effects of modality, swarm size, and dimension over the
performance (both speed and accuracy). Particularly for the standalone MD PSO
application, increasing the swarm size improves the speed of convergence wher-
ever the global minimum is reached for unimodal functions, Sphere and De Jong,
whilst reducing the score significantly for the others.

The score reduction is particularly visible on higher dimensions, e.g., for
d0 ¼ 80, compare the highlighted average scores of the top five functions. Note
that especially for De Jong at d0 ¼ 50, none of the standalone MD PSO runs with
S = 160 converges to the global minimum whilst they all converge with a higher
swarm population (i.e., 320 or 640).

Both dimension and modality have a direct effect on the performance of the
standalone MD PSO. For unimodal functions, its convergence speed decreases
with increasing dimension, e.g., see the highlighted average values of the iteration
numbers for Sphere at d0 ¼ 20 versus d0 ¼ 50. For multimodal functions,
regardless of the dimension and the swarm size, all standalone MD PSO runs get
trap in local minima (except perhaps few runs on Rosenbrock at d0 ¼ 20); how-
ever, the fitness performance still depends on the dimension, that is, the final score
tends to increase in higher dimensions indicating an earlier entrapment at a local
minimum. Regardless of the swarm size, this can easily be seen in all multimodal
functions except Griewank and Giunta both of which show higher modalities in
lower dimensions. Especially, Griewank becomes a plain Sphere function when
the dimensionality exceeds 20. This is the reason of the performance improvement
(or score reduction) from d0 ¼ 20 to d0 ¼ 50 but note that the worst performance
(highest average score) is still encountered at d0 ¼ 80.

As the entire statistics in the right side of Table 5.4 indicate, MD PSO with
FGBF finds the global minimum at the target dimension for all runs over all
functions regardless of the dimension, swarm size and modality, and without any
exception. Moreover, the mutual application of MD PSO and FGBF significantly
improves the convergence speed, e.g., compares the highlighted average iteration
numbers with the results of the standalone MD PSO. Dimension, modality, and
swarm size might still be important factors over the speed and have the same
effects as mentioned earlier, i.e., the speed degrades with modality and dimen-
sionality, whereas it improves with increasing swarm size. Their effects, however,
vary significantly among the functions, e.g., as highlighted in Table 5.4, the swarm

5.1 Fractional Global Best Formation 111

T
ab

le
5.

4
S

ta
ti

st
ic

al
re

su
lt

s
fr

om
10

0
ru

ns
ov

er
se

ve
n

be
nc

hm
ar

k
fu

nc
ti

on
s

F
un

ct
io

ns
S

ta
nd

al
on

e
M

D
P

S
O

M
D

P
S

O
w

it
h

F
G

B
F

S
co

re
It

er
.

N
o

db
es

t
S

co
re

It
er

.
N

o
db

es
t

S
d 0

l
r

l
r

l
r

l
r

l
r

l
r

Sp
he

re
16

0
20

0
0

1,
47

5
11

7
20

0
0

0
16

6
27

20
0

50
0

0
4,

60
5

28
0

50
0

0
0

17
2

37
50

0
80

45
.0

66
61

.2
3

4,
65

9
1,

04
6

78
.5

1.
23

4
0

0
16

9
34

80
0

32
0

20
0

0
1,

02
4

58
20

0
0

0
13

3
16

20
0

50
0

0
3,

16
6

63
1

50
0

0
0

13
1

25
50

0
80

5.
94

9
7.

58
4

4,
71

2
62

6
79

0.
85

8
0

0
12

6
24

80
0

64
0

20
0

0
93

2
16

1
20

0
0

0
93

15
20

0
50

0
0

2,
61

2
70

1
50

0
0

0
10

1
15

50
0

80
0.

31
7

0.
46

2
4,

83
1

34
3

79
.7

0.
47

0
0

95
15

80
0

D
e

Jo
ng

16
0

20
0

0
1,

04
7

74
20

0
0

0
6

1
20

0
50

0.
70

5
0.

46
2

5,
00

0
0

49
.3

0.
47

0
0

18
28

50
0

80
5,

18
4.

4
1,

74
5.

7
5,

00
0

0
71

.6
5

0.
74

5
0

0
10

2
24

80
0

32
0

20
0

0
83

3
66

20
0

0
0

4
1

20
0

50
0

0
4,

00
4

16
6

50
0

0
0

6
1

50
0

80
81

1.
02

32
3.

37
5,

00
0

0
74

.8
5

0.
58

7
0

0
19

20
80

0
64

0
20

0
0

64
3

69
20

0
0

0
2

1
20

0
50

0
0

3,
18

4
14

5
50

0
0

0
4

1
50

0
80

67
.4

52
24

.7
5

5,
00

0
0

77
.3

0.
47

0
0

7
1

80
0

(c
on

ti
nu

ed
)

112 5 Improving Global Convergence

T
ab

le
5.

4
(c

on
ti

nu
ed

)

F
un

ct
io

ns
S

ta
nd

al
on

e
M

D
P

S
O

M
D

P
S

O
w

it
h

F
G

B
F

S
co

re
It

er
.

N
o

db
es

t
S

co
re

It
er

.
N

o
db

es
t

R
os

en
br

oc
k

16
0

20
0.

00
08

0.
00

04
4,

79
7

90
3

20
0

0
0

1,
61

9
1,

78
5

20
0

50
0.

00
9

0.
00

3
5,

00
0

0
50

0
0

0
39

8
14

9
50

0
80

7.
61

7
7.

83
4

50
0

0
78

.7
5

0.
78

6
0

0
36

7
98

80
0

32
0

20
0.

00
1

0.
00

2
4,

31
7

1,
22

1
20

0
0

0
32

5
23

9
20

0
50

0.
00

9
0.

00
4

5,
00

0
0

50
0

0
0

25
7

33
50

0
80

0.
49

0.
49

5
5,

00
0

0
79

.6
5

0.
58

7
0

0
25

8
47

80
0

64
0

20
0.

00
09

0.
00

2
4,

56
0

98
2

20
0

0
0

16
0

37
20

0
50

0.
00

6
0.

00
3

5,
00

0
0

50
0

0
0

19
3

58
50

0
80

0.
01

8
0.

00
5

5,
00

0
0

80
0

0
0

18
9

23
80

0
R

as
tr

ig
in

16
0

20
2.

13
7

0.
56

5
5,

00
0

0
19

.3
5

0.
49

0
0

30
4

40
20

0
50

24
.0

51
5.

58
3

5,
00

0
0

48
.2

0.
41

0
0

39
2

49
50

0
80

21
2.

37
5

16
5.

19
6

5,
00

0
0

77
.1

5
1.

87
1

0
0

37
5

55
80

0
32

0
20

1.
50

6
0.

53
1

5,
00

0
0

19
.3

5
0.

48
9

0
0

22
8

21
20

0
50

9.
78

8
4.

18
1

5,
00

0
0

48
.9

5
0.

22
4

0
0

27
7

47
50

0
80

77
.3

17
31

.9
09

5,
00

0
0

77
.4

5
0.

60
5

0
0

27
2

65
80

0
64

0
20

0.
96

0.
52

7
5,

00
0

0
19

.5
01

0.
51

3
0

0
16

4
15

20
0

50
7.

30
8

2.
58

1
5,

00
0

0
49

.3
0.

65
7

0
0

20
6

30
50

0
80

28
.7

09
8.

39
9

5,
00

0
0

78
.3

0.
93

3
0

0
19

5
47

80
0

G
ri

ew
an

k
16

0
20

3.
26

2
14

.4
85

4,
16

3
1,

48
6

19
.1

01
4.

02
5

0
0

43
8

78
20

0
50

0.
23

2
0.

27
1

4,
77

9
67

3
49

.2
0.

69
6

0
0

72
5

36
50

0
80

9.
49

9
5.

73
1

5,
00

0
0

73
.9

2.
43

5
0

0
1,

02
9

57
80

0
32

0
20

0.
01

9
0.

01
6

4,
21

9
1,

60
1

20
0

0
0

39
5

76
20

0
50

0.
00

7
0.

00
9

4,
53

7
45

4
50

0
0

0
61

8
34

50
0

80
3.

05
9

1.
85

7
5,

00
0

0
76

.4
5

1.
09

9
0

0
86

6
43

80
0

64
0

20
0.

01
7

0.
01

7
4,

20
5

1,
63

8
20

0
0

0
32

5
74

20
0

50
0.

01
6

0.
02

4,
30

6
87

7
50

0
0

0
53

1
37

50
0

80
0.

67
5

0.
38

5
5,

00
0

0
78

.2
5

0.
55

0
0

71
0

44
80

0

(c
on

ti
nu

ed
)

5.1 Fractional Global Best Formation 113

T
ab

le
5.

4
(c

on
ti

nu
ed

)

F
un

ct
io

ns
S

ta
nd

al
on

e
M

D
P

S
O

M
D

P
S

O
w

it
h

F
G

B
F

S
co

re
It

er
.

N
o

db
es

t
S

co
re

It
er

.
N

o
db

es
t

Sc
hw

ef
el

16
0

20
1,

43
2.

3
33

6.
76

5,
00

0
0

16
.3

0
1.

41
8

0
0

21
5

33
20

0
50

6,
03

6.
2

59
7.

33
5,

00
0

0
45

.4
5

1.
23

4
0

0
19

9
29

50
0

80
11

,3
04

1,
48

9.
8

5,
00

0
0

74
.7

2.
22

6
0

0
16

1
35

80
0

32
0

20
1,

26
1.

7
32

0.
70

9
5,

00
0

0
16

.2
0

1.
50

8
0

0
16

8
36

20
0

50
5,

28
8.

8
57

6.
13

2
5,

00
0

0
45

.5
5

1.
39

4
0

0
14

6
24

50
0

80
8,

88
2.

8
1,

43
4.

3
5,

00
0

0
75

.8
1.

81
4

0
0

12
0

22
80

0
64

0
20

94
6.

61
2

26
4.

63
5

5,
00

0
0

16
.8

5
1.

26
8

0
0

12
1

21
20

0
50

4,
41

2.
2

92
1.

06
2

5,
00

0
0

45
.2

2.
06

7
0

0
10

3
15

50
0

80
8,

03
2.

1
1,

18
0.

9
5,

00
0

0
75

.2
2.

44
7

0
0

85
12

80
0

G
iu

nt
a

16
0

20
1.

48
8

0.
69

5,
00

0
0

20
0

0
0

79
3

62
6

20
0

50
0.

77
6

0.
20

7
5,

00
0

0
50

0
0

0
69

9
28

1
50

0
80

1.
13

1
0.

14
5,

00
0

0
80

0
0

0
86

3
29

3
80

0
32

0
20

1.
00

3
0.

58
2

5,
00

0
0

20
0

0
0

12
8

92
20

0
50

0.
54

3
0.

12
7

5,
00

0
0

50
0

0
0

28
3

11
3

50
0

80
1.

14
0

0.
75

6
5,

00
0

0
80

0
0

0
45

6
11

5
80

0
64

0
20

0.
67

5
0.

51
7

5,
00

0
0

20
0

0
0

1
1

20
0

50
0.

41
8

0.
14

0
5,

00
0

0
50

0
0

0
4

4
50

0
80

0.
78

9
0.

14
5

5,
00

0
0

80
0

0
0

20
6

80
0

114 5 Improving Global Convergence

size can enhance the speed radically for Giunta but only merely for Griewank. The
same statement can be made concerning the dimension of De Jong and Sphere.

Based on the results in Table 5.4, we can perform comparative evaluations with
some of the promising PSO variants such as [1, 30–32] where similar experiments
were conducted over some or all of these benchmark functions. They have,
however, the advantage of fixed dimension, whereas MD PSO with FGBF finds the
true dimension as part of the optimization process. Furthermore, it is rather dif-
ficult to make speed comparisons since none of them really find the global min-
imum for most functions; instead, they have demonstrated some incremental
performance improvements in terms of score reduction with respect to some other
competing technique(s). For example in Angeline [32], a tournament selection
mechanism is formed among particles and the method is applied over four func-
tions (Sphere, Rosenbrock, Rastrigin, and Griewank). Although the method is
performed over a reduced positional range, ±15, and at low dimensions (10, 20,
and 30), they got varying average scores between the range {0.3, 1,194}. As a
result, both better and worse performances than the bPSO were reported depending
on the function. In Esquivel and Coello Coello [30], bPSO and two PSO variants,
GCPSO and mutation-extended PSO over three neighborhood topologies were
applied to some common multimodal functions, Rastrigin, Schwefel, and Grie-
wank. Although the dimension is rather low (30), none of the topologies over any
PSO variant converged to the global minimum and average scores varying in the
range of {0.0014, 4,762} were reported. In Riget and Vesterstrom [1], a diversity
guided PSO variant, ARPSO, along with two competing methods, bPSO and GA
were applied over the multimodal functions Rastrigin, Rosenbrock, and Griewank,
at three different dimensions (20, 50, and 100). The range was kept quite low for
Rosenbrock and Rastrigin, ±100 and ±5.12, respectively, and for each run; the
number of evaluations (product of iterations and the swarm size) was kept in the
range of 400,000–2,000,000, depending on the dimension. The experimental
results have shown that none of the three methods converged to the global min-
imum except ARPSO over (only) Rastrigin at dimension 20. Only when ARPSO
runs until stagnation is reached after 200,000 evaluations, it can find the global
minimum over Rastrigin at higher dimensions (50 and 100). However, in practical
sense, this indicates that the total number of iterations might be in the magnitude
of 105 or even higher. Recall that the number of iterations required for MD PSO
with FGBF to convergence to the global minimum is less than 400 for any
dimension. ARPSO performed better than bPSO and GA over Rastrigin and Ro-
senbrock but worse over Griewank. The CPSO proposed in Bergh and Engelbrecht
[24] was applied over five functions of which four are common (Sphere, Rastrigin,
Rosenbrock, and Griewank). The dimension of all functions was fixed to 30 and in
this dimension, CPSO performed better than bPSO in 80 % of the experiments.
Finally in Richards and Ventura [31], dynamic sociometries via ring and star were
introduced among the swarm particles and the performance of various combina-
tions of swarm size and sociometry over six functions (the ones used in this section
except Schwefel) was reported. Although the tests were performed over

5.1 Fractional Global Best Formation 115

comparatively reduced positional ranges and at a low dimension (30), the exper-
imental results indicate that none of the sociometry and swarm size combination
converged to the global minimum for multimodal functions except only for some
dimensions of the Griewank function.

5.2 Optimization in Dynamic Environments

Particle swarm optimization was proposed as an optimization technique for static
environments; however, many real problems are dynamic, meaning that the
environment and the characteristics of the global optimum can change in time. In
this section, we shall first adapt PSO with FGBF over multimodal, nonstationary
environments. To establish the follow up of local optima, we will also introduce a
multiswarm algorithm, which enables each swarm to converge to a different
optimum and use FGBF technique, distinctively. Finally for the multidimensional
dynamic environments where the optimum dimension itself changes in time, we
utilize MD PSO, which eventually pushes the frontier of the optimization prob-
lems in dynamic environments toward a global search in a multidimensional space,
where there exists a multimodal problem possibly in each dimension. We shall
present both the standalone MD PSO and the mutual application of MD PSO and
FGBF over the moving peaks benchmark (MPB), which originally simulates a
dynamic environment in a unique (fixed) dimension. MPB is appropriately
extended to accomplish the simulation of a multidimensional dynamic system,
which contains dynamic environments active in multiple dimensions.

5.2.1 Dynamic Environments: The Test Bed

Conceptually speaking, MPB developed by Branke in [33] is a simulation of a
configurable dynamic environment changing over time. The environment consists
of a certain number of peaks with varying locations, heights, and widths. The
dimension of the fitness function is fixed in advance and thus is an input parameter
of the benchmark. An N-dimensional fitness function with m peaks is expressed as:

Fð~x; tÞ ¼ max B ~xð Þ; max
p¼1...m

P ~x; hpðtÞ; wpðtÞ; ~cpðtÞ
� �

� 	

ð5:1Þ

where Bð~xÞ is time invariant basis landscape, whose utilization is optional, and P is
the function defining the height of the pth peak at location ~x, where each of the
m peaks can have its own dynamic parameters such as height, hpðtÞ, width, wpðtÞ
and location vector of the peak center, ~cpðtÞ. Each peak parameter can be ini-
tialized randomly or set to a certain value and after a time period (number of

116 5 Improving Global Convergence

evaluations), Te, at a time (evaluation) t, a change over a single peak, p, can be
defined as follows:

hpðtÞ ¼hpðt � TeÞ þ r1Dh

wpðtÞ ¼wpðt � TeÞ þ r2Dw

~cpðtÞ ¼~cpðt � TeÞ þ~vpðtÞ
ð5:2Þ

where r1; r2 2 Nð0; 1Þ, Dh and Dw are the height and width severities and~vpðtÞ is
the normalized shift vector, which is a linear combination of a random vector and
the previous shift vector, ~vpðt � TeÞ. The type and number of peaks along with
their initial heights and widths, environment (search space) dimension and size,
change severity, level of change randomness, and change frequency can be defined
[33]. To allow comparative evaluations among different algorithms, three standard
settings of such MPB parameters, the so-called Scenarios, have been defined.
Scenario 2 is the most widely used. Each scenario allows a range of values, among
them the following are commonly used: number of peaks = 10, change severity
vlength = 1.0, correlation lambda = 0.0, and peak change frequency = 5,000. In
Scenario 2, no basis landscape is used and peak type is a simple cone with the
following expression

P ~x; hpðtÞ; wpðtÞ; ~cpðtÞ
� �

¼ hpðtÞ � spðtÞ ~x�~cpðtÞ

 where

spðtÞ ¼
hpðtÞ
wpðtÞ

and ~x�~cpðtÞ

 ¼

ffi
XN

i¼1

xi � cpi

� �2

vu
u
t 8xi 2~x; 8cpi 2~cpðtÞ

ð5:3Þ

where spðtÞ is the slope and :k k is the Euclidean distance. More detailed infor-
mation on MPB and the rest of the parameters used in this benchmark can be
obtained from Branke [33].

5.2.2 Multiswarm PSO

The main problem of using the basic PSO algorithm in a dynamic environment is
that eventually the swarm will converge to a single peak—whether global or local.
When another peak becomes the global maximum as a result of an environmental
change, it is likely that the particles keep circulating close to the peak to which the
swarm has converged and thus they cannot find the new global maximum.
Blackwell and Branke have addressed this problem in [34] and [35] by introducing
multiswarms that are actually separate PSO processes. Recall from Sect. 3.3.2 that
each particle is now a member of one of the swarms only and it is unaware of other
swarms. Hence in this problem domain, the main idea is that each swarm can
converge to a separate peak. Swarms interact only by mutual repulsion that keeps
them from converging to the same peak. For a single swarm it is essential to

5.2 Optimization in Dynamic Environments 117

http://dx.doi.org/10.1007/978-3-642-37846-1_3

maintain enough diversity, so that the swarm can track small location changes of
the peak to which it is converging. For this purpose Blackwell and Branke
introduced charged and quantum swarms, which are analogs to an atom having a
nucleus and charged particles randomly orbiting it. The particles in the nucleus
take care of the fine tuning of the result while the charged particles are responsible
of detecting the position changes. However, it is clear that, instead of charged or
quantum swarms, some other method can also be used to ensure sufficient diversity
among particles of a single swarm, so that the peak can be tracked despite of small
location changes.

As one might expect, the best results are achieved when the number of swarms
is set equal to the number of peaks. However, it is then required that the number of
peaks is known beforehand. In [5], Blackwell presents self-adapting multiswarms,
which can be created or removed during the PSO process, and therefore it is not
necessary to fix the number swarms beforehand.

The repulsion between swarms is realized by simply reinitializing the worse of
two swarms if they move within a certain range from each other. Using physical
repulsion could lead to equilibrium, where swarm repulsion prevents both swarms
from getting close to a peak. A proper proximity threshold, rrep can be obtained by
using the average radius of the peak basin, rbas. If p peaks are evenly distributed in
N-dimensional cube, XN, then rrep ¼ rbas ¼ X=p1=N .

5.2.3 FGBF for the Moving Peak Benchmark for MPB

The previous section introduced how FGBF process works within a bPSO at a
fixed dimension and referred to some applications in other domains representing
static environments. However, in dynamic environments, this approach eventually
leads the swarm to converge to a single peak (whether global or local), and
therefore it may lose its ability to track other peaks. As any of the peaks can
become the optimum peak as a result of environmental changes, bPSO equipped
with FGBF is likely to lead to suboptimal solutions. This is the basic motivation of
using multiswarms along with the FGBF operation. As described earlier, mutual
repulsion between swarms is applied, where the distance between the swarms’
global best locations is used to measure the distance between two swarms. Instead
of using charged or quantum swarms, FGBF is sufficient to collect the necessary
diversity and thus enable peak tracking if the peaks’ locations are changed. Particle
velocities are also reinitialize after each environment change to enhance diversity.

Each particle with index a in a swarm n, represents a potential solution and
therefore, the jth component of an N-dimensional point (xj; j 2 f1; Ng) is stored
in its positional component, xa; jðtÞ, at a time t. The aim of the PSO process is to
search for the global optimum point, which maximizes P ~x; hpðtÞ; wpðtÞ; ~cpðtÞ

� �
,

in other words, finding the global (highest) peak in MPB environment. Recall that
in Scenario 2 of MPB the peaks used are all in cone shape, as given in Eq. (5.3).

118 5 Improving Global Convergence

Since in Eq. (5.3), hpðtÞ and spðtÞ are both set by MPB, finding the highest peak is

equivalent to minimizing the ~x�~cpðtÞ

 term, yielding f ða; jÞ ¼ � xj � cpj

� �2
.

Step 3.1 in bPSO’s pseudo-code computes the (dimensional) fitness scores
(f ða; jÞ; f ðgbest; jÞ) of the jth components (xa; j; ygbest; j) and in step 1 of the FGBF
process, the dimensional component yielding maximum f a; jð Þ is then placed in
aGB. In step 3, these dimensional components are replaced by dimensional
components of the personal best position of the gbest particle, if they yield higher
dimensional fitness scores. We do not expect that dimensional fitness scores can be
evaluated with respect to the optimum peak, since this requires the a priori
knowledge of the global optimum, instead we use either the current peak where
the particle resides on or the peak to which the swarm is converging (swarm peak).
We shall thus consider and evaluate both modes separately.

5.2.4 Optimization over Multidimensional MPB

For testing the multidimensional optimization technique Branke’s MPB is exten-
ded to a multidimensional version, in which there exists multiple search space
dimensions within a dimensional range Dmin; Dmaxf g, and the optimal dimension
changes over time in addition to the dynamic nature of the conventional MPB.
Peak locations in different dimensions share the common coordinates in the fitness
function, and thus such an extension further allows exploitation of the information
gathered in other search space dimensions.

The multidimensional extension of the MPB is straightforward. The initiali-
zation and changes of peak locations must now be done in the highest possible
search space dimension, Dmax. Locations in other dimensions can be obtained
simply by leaving out the unused coordinates (nonexisting dimensions). The
optimal dimension is chosen randomly every time the environment is changed.
Therefore, the fitness function with m peaks in a multidimensional environment
can be expressed as:

Fð~xd; tÞ ¼ max B ~xd
� �

; max
p¼1...m

P ~xd; d; hpðtÞ; wpðtÞ; ~cd
p
ðtÞ

� �� 	

ð5:4Þ

where d 2 fDmin; Dmaxg is the dimension of position ~xd and ~cd
pðtÞ refers to first

d coordinates (dimensions) of the peak center location. A cone peak is now
expressed as follows:

P ~xd; hpðtÞ; wpðtÞ; ~cpdðtÞ
� �

¼ hpðtÞ � spðtÞ 	 ~xd �~cd
p
ðtÞ

=d � ðDopt � dÞ2 where

spðtÞ ¼
hpðtÞ
wpðtÞ

and ~xd �~cd
pðtÞ

 ¼

ffi
Xd

i¼1

xd
i
� cd

pi

� �2

vu
u
t 8xd

i 2~xd; 8cd
pi 2~cd

pðtÞ

ð5:5Þ

5.2 Optimization in Dynamic Environments 119

where Dopt is the current optimal dimension. Compared with Eq. (5.3), now for all

nonoptimal dimensions a penalty term ðDopt � dÞ2 is subtracted from the whole
environment. In addition, the peak slopes are scaled by the term 1=d. The purpose
of this scaling is to prevent the benchmark from favoring lower dimensions.
Otherwise, a solution, whose coordinates each differs from the optimum by 1.0
would be a better solution in a lower dimension as the Euclidian distance is used.

Similar to the unidimensional (PSO) case, each positional component xxd
aðtÞ of

a MD PSO particle represents a potential solution in dimension d. The only dif-
ference is that now the dimension of the optimal solution is not known beforehand,
but it can vary within the defined range. Even a single particle can provide
potential solutions in different dimensions as it makes interdimensional passes as a
result of MD PSO process. This dynamic multidimensional optimization algorithm
combines multiswarms and FGBF with MD PSO. As in the different dimensions,
the common coordinates of the peak locations are the same, it does not seem
purposeful for two swarms to converge to a same peak in different dimensions.
Therefore, the mutual repulsion between swarms is extended to affect swarms that
are in different dimensions. Obviously, only the common coordinates are con-
sidered when the swarm distance is computed.

FGBF naturally exploits information gathered in other dimensions. When the
aGB particle is created, FGBF algorithm is not limited to use dimensional com-
ponents from only those particles which are in a certain dimension, but it can
combine dimensional coordinates of particles in different dimensions. Note that as

we still use the dimensional fitness score, f a; jð Þ ¼ � xj � cpj

� �2
, the common

coordinates of the positional components of the aGB particle created in different
search space dimensions, d 2 f1; Dmaxg, shall be the same. In other words, it is
not necessary to create the positional components of the aGB particle from scratch
in every search space dimension, d 2 f1; Dmaxg, instead one (new) coordinate
(dimension) to the aGB particle is created and added. Note also that it is still
possible that in some search space dimensions aGB beats the native gbest particle,
while in other dimensions it does not. In multidimensional version also the
dimension and dimensional velocity of each particle are reinitialized after an
environmental change in addition to the particle velocities in each dimension.

5.2.5 Performance Evaluation on Conventional MPB

We conducted an exhaustive set of experiments over the MPB Scenario 2 using the
settings given earlier. In order to investigate the effect of multiswarm settings,
different numbers of swarms and particles in a swarm are used. Both FGBF modes
are applied using the current and swarm peaks. In order to investigate how FGBF
and multiswarms individually contribute to the results, experiments with each of
them performed separately will also be presented.

120 5 Improving Global Convergence

Figure 5.8 presents the current error plot, which shows the difference between
the global maximum and the current best result during the first 80,000 function
evaluations, when 10 swarms, each with four particles, are used and the swarm
peak mode is applied for the FGBF operation. It can be seen from the figure that as
the environment changes after every 5,000 evaluations, it causes the results to
temporarily deteriorate. However, it is clear that after these environment changes,
the results improve (i.e., the error decreases quite rapidly), which shows the benefit
of tracking the peaks instead of randomizing the swarm when a change occurs. The
figure also reveals other typical behavior of the algorithm. First of all, after the first
few environmental changes, the algorithm does not behave as well as at later
stages. This is because the swarms have not yet converged to a peak. Generally, it
is more difficult to initially converge to a narrow or low peak than to keep tracking
a peak that becomes narrow and/or low. It can also be seen that typically the
algorithm gets close to the optimal solution before the environment is changed
again. In few cases, where the optimal solution is not found, the algorithm has
been unable to keep a swarm tracking that peak, which is too narrow.

In Figs. 5.9 and 5.10, the contributions of multiswarms with FGBF are dem-
onstrated. The algorithm is run on MPB applying the same environment changes,
first with both using multiswarms and FGBF, then without multiswarms and finally
without FGBF. Same settings are used as before. Without multiswarms, the
number of particles is set to 40 to keep the total number of particles unchanged.

0 1 2 3 4 5 6 7 8

x 10
4

0

5

10

15

20

25

30

Number of evaluations

C
ur

re
nt

 e
rr

or

Fig. 5.8 Current error at the beginning of a run

5.2 Optimization in Dynamic Environments 121

2 3 4 5 6 7 8

x 10
4

0

5

10

15

20

25

30

35

40

Number of evaluations

C
ur

re
nt

 e
rr

or
without multi-swarms

with multi-swarms

Fig. 5.9 Effect of multi-swarms on results

2 3 4 5 6 7 8

x 10
4

0

1

2

3

4

5

6

7

8

9

10

Number of evaluations

C
ur

re
nt

 e
rr

or

without FGBF

with FGBF

Fig. 5.10 Effect of FGBF on results

122 5 Improving Global Convergence

As expected, the results without multiswarms are significantly deteriorated due
to the aforementioned reasoning. When the environment is changed, the highest
point of the peak to which the swarm is converging can be found quickly, but that
can provide good results only when that peak happens to be the global optimum.
When multiswarms are used, but without using the FGBF, it is clear that the
algorithm can still establish some kind of follow-up of peaks as the results
immediately after environment changes are only slightly worse than with FGBF.
However, if FGBF is not used, the algorithm can seldom find the global optimum.
Either there is no swarm converging to the highest peak or the peak center just
cannot be found fast enough.

The reported performance of five methods from the literature using the same,
MPB with the same settings is listed in Table 5.5.

The best results were achieved by the extremal optimization algorithm [38];
however, this algorithm is specifically designed only for MPB and its applicability
to other practical dynamic problems is not clear. The best results by a PSO-based
algorithm were achieved by Blackwell and Branke’s multiswarm algorithm
described earlier. For evaluation and comparison purposes, the performance results
of multiple swarms with FGBF in terms of the offline error are listed in Table 5.6.
Each result given is the average of 50 runs, where each run consists of 500,000
function evaluations. As expected the best results are achieved when 10 swarms
are used. Four particles in a swarm turned out to be the best setting. Between the

Table 5.6 Offline error using Scenario 2

No. of swarms No. of particles Swarm peak Current peak

10 2 1.81 ± 0.50 2.58 ± 0.55
10 3 1.22 ± 0.43 1.64 ± 0.53
10 4 1.03 – 0.35 1.37 – 0.50
10 5 1.19 ± 0.32 1.52 ± 0.44
10 6 1.27 ± 0.41 1.59 ± 0.57
10 8 1.31 ± 0.43 1.61 ± 0.45
10 10 1.40 ± 0.39 1.70 ± 0.55

8 4 1.50 ± 0.41 1.78 ± 0.57
9 4 1.31 ± 0.54 1.66 ± 0.54

11 4 1.09 ± 0.35 1.41 ± 0.42
12 4 1.11 ± 0.30 1.46 ± 0.43

Table 5.5 Best known results on the MPB

Source Base algorithm Offline error

Blackwell and Branke [34] PSO 2.16 ± 0.06
Li et al. [36] PSO 1.93 ± 0.06
Mendes and Mohais [37] Differential evolution 1.75 ± 0.03
Blackwell and Branke [35] PSO 1.75 ± 0.06
Moser and Hendtlass [38] Extremal optimization 0.66 ± 0.02

5.2 Optimization in Dynamic Environments 123

two FGBF modes, better results are obtained when the swarm peak is used as the
peak~cpðtÞ.

5.2.6 Performance Evaluation on Multidimensional MPB

The extended multidimensional MPB uses similar settings as in the case of con-
ventional MPB (at fixed dimension) except that the change frequency is set to
15,000. The search space dimension range used is d 2 5 ; 15½ �. Figure 5.11 shows
how the global optimal dimension changes over time and how MD PSO is tracking
these changes. The current best dimension represents the dimension, where the
best solution is achieved among all swarms’ dbest dimensions. Ten multiswarms
are used with seven particles in each. FGBF is used with the swarm peak mode. It
can be seen that the algorithm always finds the optimal dimension, even though the
difference in peaks heights between the optimal dimension and its neighbor
dimensions is quite insignificant (=1) compared to the peak heights (30–70).
Figure 5.12 shows how the current error behaves during the first 250,000 evalu-
ations, when the same settings are used. It can be seen that the algorithm behavior
is similar to the unidimensional case, but now the initial phase, when the algorithm
has not been yet behaving at its best is longer. Similarly, it takes a longer time to

0 0.5 1 1.5 2 2.5

x 10
5

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h

sp
ac

e
di

m
en

si
on

optimal dimension

current best dimension

Fig. 5.11 Optimum dimension tracking in a MD PSO run

124 5 Improving Global Convergence

regain the optimal behavior if the follow up of some peaks is lost for some reason
(it is, for example, possible that higher peaks hide other lower peaks under them).

Figures 5.13 and 5.14 illustrate the effect of using multiswarms on the per-
formance of the algorithm. Without multiswarms the number of particles is set to
70. Figure 5.13 shows that a single swarm can also find the optimal dimension
easily; however, as in the unidimensional case, without use of multiswarms, the
optimal peak can be found only if it happens to be the peak to which the swarm is
converging. This can be seen in Fig. 5.14. During the initial phase of the multi-
swarm algorithm results with and without multiswarms are similar. This indicates
that both algorithms initially converge to the same peak (highest) and as a result of
the first few environmental changes some peaks that are not yet discovered by
multiswarms become the highest.

Figures 5.15 and 5.16 illustrate the effect of FGBF on the performance of the
algorithm. In Fig. 5.15, it can be seen that without FGBF the algorithm has severe
problems in tracking the optimal dimension. In this case, it loses the benefit of
exploiting the natural diversity among the dimensional components and it is not
able to exploit information gathered from other dimensions. Therefore, even if
some particles visit the optimal dimension, they cannot track the global peak fast
enough that would hence surpasses the best results in other dimensions. Therefore,
the algorithm gets trapped in some suboptimum dimension where it happens to
find the best solution in an early phase. Such reasons also cause the current error to
be generally higher without FGBF, as can be seen in Fig. 5.16.

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

14

Number of evaluations

C
ur

re
nt

 e
rr

or

Fig. 5.12 Current error at the beginning of a MD PSO run

5.2 Optimization in Dynamic Environments 125

0 0.5 1 1.5 2 2.5

x 10
5

0

5

10

15

20

25

30

Number of evaluations

C
ur

re
nt

 e
rr

or

without multi-swarms

with multi-swarms

Fig. 5.14 Effect of multi-swarms on the performance

0 0.5 1 1.5 2 2.5

x 10
5

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h

sp
ac

e
di

m
en

si
on

optimal dimension
current best dimension

Fig. 5.13 Optimum dimension tracking without multi-swarms in a MD PSO run

126 5 Improving Global Convergence

0 0.5 1 1.5 2 2.5

x 10
5

0

5

10

15

20

25

Number of evaluations

 C
ur

re
nt

 e
rr

or

without FGBF

with FGBF

Fig. 5.16 Effect of FGBF on the performance

0 0.5 1 1.5 2 2.5

x 10
5

5

6

7

8

9

10

11

12

13

14

15

Number of evalutions

S
ea

rc
h

sp
ac

e
di

m
en

si
on

optimal dimension

current best dimension

Fig. 5.15 Optimum dimension tracking without FGBF in a MD PSO run

5.2 Optimization in Dynamic Environments 127

The numerical results in terms of offline errors are given in Table 5.7. Each
result given is the average of 50 runs, where each run consists of 500,000 function
evaluations. As in the unimodal case, the best results are achieved when the
number of swarms is equal to the number of peaks, which is 10. Interestingly,
when the swarm peak mode is used the optimal number of particles becomes seven
while with current peak mode it is still four. Note that these results cannot be
directly compared with the results on conventional MPB since the objective
function of multidimensional MPB is somewhat different.

Overall, MD PSO operation with FGBF and with multiswarms fundamentally
upgrades the particle structure and the swarm guidance, both of which accomplish
substantial improvements in terms of speed and accuracy for dynamic, multidi-
mensional and multimodal environments.

5.3 Who Will Guide the Guide?

Let us recall the definition of the Merriam Webster dictionary for optimization, the
mathematical procedures (as finding the maximum of a function) involved in this.
More specifically, consider now the problem of finding a root h	 (either minimum

or maximum point) of the gradient equation: gðhÞ
 oLðhÞ
oh ¼ 0 for some differen-

tiable function L : Rp ! R1. As discussed in Chap. 2, when g is defined and L is a
unimodal function, there are powerful deterministic methods for finding the global
h	 such as traditional steepest descent and Newton–Raphson methods. However, in
many real problems g cannot be observed directly and/or L is multimodal, in which
case the aforementioned approaches may be trapped into some deceiving local
optima. This brought the era of stochastic optimization algorithms, which can
estimate the gradient and may avoid being trapped into a local optimum due to
their stochastic nature. One of the most popular stochastic optimization techniques
is stochastic approximation (SA), in particular the form that is called ‘‘gradient
free’’ SA. Among many SA variants proposed by several researchers such as

Table 5.7 Offline error on
extended MPB

No. of swarms No. of particles Swarm peak Current peak

10 4 2.01 ± 0.98 3.29 – 1.44
10 5 1.77 ± 0.83 3.41 ± 1.69
10 6 1.79 ± 0.98 3.64 ± 1.60
10 7 1.69 – 0.75 3.71 ± 1.74
10 8 1.84 ± 0.97 4.21 ± 1.83
10 10 1.96 ± 0.94 4.20 ± 2.03

8 7 1.79 ± 0.91 3.72 ± 1.86
9 7 1.83 ± 0.84 4.30 ± 2.15

11 7 1.75 ± 0.91 3.52 ± 1.40
12 7 2.03 ± 0.97 4.01 ± 1.97

128 5 Improving Global Convergence

http://dx.doi.org/10.1007/978-3-642-37846-1_2

Styblinski and Tang [39], Kushner [40], Gelfand and Mitter [41], and Chin [42],
the one and somewhat different SA application is called simultaneous perturbation
SA (SPSA) proposed by Spall in 1992 [43]. The main advantage of SPSA is that it
often achieves a much more economical operation in terms of loss function
evaluations, which are usually the most computationally intensive part of an
optimization process.

As discussed earlier, PSO has a severe drawback in the update of its global best
(gbest) particle, which has a crucial role of guiding the rest of the swarm. At any
iteration of a PSO process, gbest is the most important particle; however, it has the
poorest update equation, i.e., when a particle becomes gbest, it resides on its
personal best position (pbest) and thus both social and cognitive components are
nullified in the velocity update equation. Although it guides the swarm during the
following iterations, ironically it lacks the necessary guidance to do so effectively.
In that, if gbest is (likely to get) trapped in a local optimum, so is the rest of the
swarm due to the aforementioned direct link of information flow. We have shown
that an enhanced guidance achieved by FGBF alone is indeed sufficient in most
cases to achieve global convergence performance on multimodal functions and
even in high dimensions. However, the underlying mechanism for creating the
aGB particle, the so-called FGBF, is not generic in the sense that it is rather
problem dependent, which requires (the estimate of) individual dimensional fitness
scores. This may be quite hard or even not possible for certain problems.

In order to address this drawback efficiently, in this section we shall present two
approaches, one of which moves gbest efficiently or simply put, ‘‘guides’’ it with
respect to the function (or error surface) it resides on. The idea behind this is quite
simple; since the velocity update equation of gbest is quite poor, SPSA as a simple
yet powerful search technique is used to drive it instead. Due to its stochastic
nature, the likelihood of getting trapped into a local optimum further decreased and
with the SA, gbest is driven according to (an approximation of) the gradient of the
function. The second approach has a similar idea with the FGBF, i.e., an aGB
particle is created by SPSA this time, which is applied over the personal best
(pbest) position of the gbest particle. The aGB particle will then guide the swarm
instead of gbest if it achieves a better fitness score than the (personal best position
of) gbest. Note that both approaches only deal with the gbest particle and hence the
internal PSO process remains as is. That is, neither of them is a PSO variant by
itself; rather a solution for the problem of the original PSO caused by the poor
gbest update. Furthermore, we shall demonstrate that both approaches have a
negligible computational cost overhead, e.g., only few percent increase of the
computational complexity, which can be easily compensated with a slight
reduction either in the swarm size or in the maximum iteration number allowed.
Both approaches of SA-driven PSO (SAD PSO) will be tested and evaluated
against the basic PSO (bPSO) over several benchmark uni- and multimodal
functions in high dimensions. Moreover, they are also applied to the multidi-
mensional extension of PSO, the MD PSO technique.

5.3 Who Will Guide the Guide? 129

5.3.1 SPSA Overview

Recall that there are two common SA methods: finite difference SA (FDSA) and
simultaneous perturbation SA (SPSA). As covered in Sect. 2.3.2, FDSA adopts the
traditional Kiefer–Wolfowitz approach to approximate gradient vectors as a vector
of p partial derivatives where p is the dimension of the loss function. On the other

hand, SPSA has all elements of h
_

k perturbed simultaneously using only two
measurements of the loss (fitness) function as

g
_

kðh
_

kÞ ¼
Lðh

_

k þ ckDkÞ � Lðh
_

k � ckDkÞ
2ck

D�1
k1

D�1
k2
:
:
:

D�1
kp

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð5:6Þ

where the p-dimensional random variable Dk is usually chosen as a Bernoulli �1
distribution and ck is a scalar gain sequence satisfying certain conditions [43].

Spall in [43] presented conditions for convergence of SPSA (i.e., h
_

k ! h) and
show that under certain conditions both SPSA and FDSA have the same conver-
gence ability –yet SPSA needs only two measurements, whereas FDSA requires
2p measurements. This makes SPSA the natural choice for driving gbest in both
approaches. Table 5.8 presents the general pseudo-code of the SPSA technique.

SPSA has five parameters as given in Table 5.8. Spall in [44] recommended to
use values for A (the stability constant), a, and c as 60, 0.602, and 0.101,
respectively. However, he also concluded that ‘‘the choice of both gain sequences
is critical to the performance of the SPSA as with all stochastic optimization
algorithms and the choice of their respective algorithm coefficients’’. This espe-
cially makes the choice of the gain parameters a and c critical for a particular
problem. For instance, Maryak and Chin in [45] proposed to set these parameters

Table 5.8 Pseudo-code for
SPSA technique

SPSA (IterNo, a, c, A, a, c)

1. Initialize h
_

1

2. For 8k 2 ½1; IterNo�do:
2.1. Generate zero mean, p-dimensional perturbation

vector: Dk

2.2. Let ak ¼ a=ðAþ kÞa and ck ¼ c=kc

2.3. Compute Lðh
_

k þ ckDkÞ and Lðh
_

k � ckDkÞ
2.4. Compute g

_

kðh
_

kÞ using Eq. (5.6)

2.5. Compute h
_

kþ1 using Eq. (2.9)
3. End for

130 5 Improving Global Convergence

http://dx.doi.org/10.1007/978-3-642-37846-1_2
http://dx.doi.org/10.1007/978-3-642-37846-1_2

with respect to the problem whilst keeping the other three (A, a, and c) as rec-
ommended in Spall [44].

Maeda and Kuratani in [46] used SPSA with the bPSO in a hybrid algorithm
called Simultaneous Perturbation PSO (SP-PSO) over a limited set of problems
and reported some slight improvements over the bPSO. Both proposed SP-PSO

variants involved the insertion of ĝk ĥk

� �
directly over the velocity equations of all

swarm particles with the intention of improving their local search capability. This
may, however, present some drawbacks. First of all, performing SPSA at each
iteration and for all particles will double the computational cost of the PSO, since
SPSA will require an additional function evaluation at each iteration.1 Secondly,

such an abrupt insertion of SPSA’s ĝk ĥk

� �
term directly into the bPSO may

degrade the original PSO workout, i.e., the collective swarm updates and inter-
actions, and require an accurate scaling between the parameters of the two
methods, PSO’s and SPSA. Otherwise, it is possible for one technique to dominate
the other, and hence their combination would not necessarily gain from the
advantage of both. This is perhaps the reason of the limited success, if any,
achieved by SP-PSO. As we discuss next and demonstrate its elegant performance
experimentally, SPSA should not be combined with SP-PSO as such. A better
alternative would be to use SPSA to guide only PSO’s native guide, gbest.

5.3.2 SA-Driven PSO and MD PSO Applications

In this section, two distinct SAD PSO approaches are presented and applied only to
gbest whilst keeping the internal PSO and MD PSO processes unchanged. Since
SPSA and PSO are iterative processes, in both approaches to be introduced next,
SPSA can easily be integrated into PSO and MD PSO by using the same iteration
count (i.e., t
 k). In other words, at a particular iteration t in the PSO process,
only the SPSA steps 2.1–2.5 in Table 5.8 are inserted accordingly into the PSO
and MD PSO processes. The following subsections will detail each approach.

5.3.2.1 First SA-Driven PSO Approach: gbest Update by SPSA

In this approach, at each iteration, gbest particle is updated using SPSA. This
requires the adaptation of the SPSA elements (parameters and variables) and
integration of the internal SPSA part (within the loop) appropriately into the PSO

1 In Maeda and Kuratani [46], the function evaluations are given with respect to the iteration
number; however, it should have been noted that SP-PSO performs twice more evaluations than
bPSO per iteration. Considering this fact, the plots therein show little or no performance
improvement at all.

5.3 Who Will Guide the Guide? 131

pseudo-code, as shown in Table 5.9. Note that such a ‘‘plug-in’’ approach will not
change the internal PSO structure and only affects the gbest particle’s updates. It
only costs two extra function evaluations and hence at each iteration the total
number of evaluations is increased from S to S ? 2, where S is the swarm size.

Since the fitness of each particle’s current position is computed within the PSO
process, it is possible to further decrease this cost to only one extra fitness eval-

uation per iteration. Let h
_

k þ ckDk ¼ xaðtÞ in step 3.4.1.1. And thus Lðh
_

k þ ckDkÞ
is known a priori. Then naturally, h

_

k � ckDk ¼ xaðtÞ � 2ckDk which is the only

(new) location where the (extra) fitness evaluation (Lðh
_

k � ckDkÞ) has to be

computed. Once the gradient ĝk; ĥk

� �� �
is estimated in step 3.4.1.4, then the next

(updated) location of the gbest will be: xaðt þ 1Þ ¼ h
_

kþ1. Note that the difference
of this ‘‘low-cost’’ SPSA update is that xaðt þ 1Þ is updated (estimated) not from
xaðtÞ, but instead from xaðtÞ � ckDk.

This approach can easily be extended for MD PSO, which is a natural extension
of PSO for multidimensional search within a given dimensional range,
d 2 Dmin;Dmax½ �. The main difference is that in each dimension, there is a distinct
gbest particle, gbest(d). So SPSA is applied individually over the position of each
gbest(d) if it (re-) visits the dimension d, (i.e., d ¼ xdgbestðtÞ). Therefore, there can
be a maximum of 2ðDmax � Dmin þ 1Þ number of function evaluations, indicating a

Table 5.9 Pseudo-code for the first SA-driven PSO approach

132 5 Improving Global Convergence

significant cost especially if a large dimensional range is used. However, this is a
theoretical limit, which can only happen if gbestðiÞ 6¼ gbestðjÞ for 8i; j 2
½Dmin; Dmax�; i 6¼ j and all particles visit the particular dimensions in which they
are gbest (i.e., xdgbestðdÞðtÞ ¼ d; 8t 2 ½1; iterNo�). Especially in a wide dimen-
sional range, note that this is highly unlikely due to the dimensional velocity,
which makes particles move (jump) from one dimension to another at each iter-
ation. It is straightforward to see that under the assumption of a uniform distri-
bution for particles’ movements over all dimensions within the dimensional range,
SA-driven MD PSO too, would have the same cost overhead as the SAD PSO.
Experimental results indicate that the practical overhead cost is only slightly
higher than this.

5.3.2.2 Second SA-driven PSO Approach: aGB Formation by SPSA

The second approach replaces the native FGBF operation with the SPSA to create
an aGB particle. SPSA is basically applied over the pbest position of the gbest
particle. The aGB particle will then guide the swarm instead of gbest if it achieves
a better fitness score than the (personal best position of) gbest. SAD PSO pseudo-
code as given in Table 5.10 can then be plugged in between steps 3.3 and 3.4 of
bPSO pseudo-code.

The extension of the second approach to MD PSO is also quite straightforward.
In order to create an aGB particle, for all dimensions in the given range (i.e.,
8d 2 Dmin; Dmax½ �ð Þ) SPSA is applied individually over the personal best position

of each gbest(d) particle and furthermore, the aforementioned competitive selec-
tion ensures that xyd

aGBðtÞ; 8d 2 ½Dmin; Dmax� is set to the best of the xxd
aGBðt þ 1Þ

and xyd
aGBðtÞ. As a result, SPSA creates one aGB particle providing (potential) GB

solutions (xyd
aGBðt þ 1Þ; 8d 2 ½Dmin; Dmax�) for all dimensions in the given

dimensional range. The pseudo-code of the second approach as given in

Table 5.10 PSO Plug-in for the second approach

A2) SA-driven PSO Plug-in (n, a, c, A, a, c)

1. Create a new aGB particle, fxaGBðt þ 1Þ; yaGBðt þ 1Þg
2. Let k = t, h

_

k ¼ ŷðtÞ and L = f
3. Let s and ck ¼ c=kc

4. Compute Lðh
_

k þ ckDkÞ and Lðh
_

k � ckDkÞ
5. Compute g

_

kðh
_

kÞ using Eq. (5.6)

6. Compute xaGBðtÞ ¼ h
_

kþ1 using Eq. (2.9)

7. Compute f ðxaGBðt þ 1ÞÞ ¼ Lðh
_

kþ1Þ
8. If (f ðxaGBðt þ 1ÞÞ\f ðyaGBðtÞÞ) then yaGBðt þ 1Þ ¼ xaGBðt þ 1Þ
9. Else yaGBðt þ 1Þ ¼ yaGBðtÞ
10. If (f ðyaGBðt þ 1ÞÞ\f ðŷðtÞÞ then ŷðtÞ ¼ yaGBðt þ 1Þ

5.3 Who Will Guide the Guide? 133

http://dx.doi.org/10.1007/978-3-642-37846-1_2

Table 5.11 can then be plugged in between steps 3.2 and 3.3 of the MD PSO
pseudo-code, given in Table 5.12.

Note that in the second SAD PSO approach, there are three extra fitness
evaluations (as opposed to two in the first one) at each iteration. Yet as in the first
approach, it is possible to further decrease the cost of SAD PSO by one (from three

to two fitness evaluations per iteration). Let h
_

k þ ckDk ¼ ŷðtÞ in step 2 and thus

L ĥk þ ckDk

� �
is known a priori. Then aGB formation follows the same analogy as

before and the only difference is that the aGB particle is formed not from h
_

k ¼ ŷðtÞ
but from h

_

k ¼ ŷðtÞ � ckDk. However, in this approach a major difference in the
computational cost may occur since in each iteration there are inevitably 3ðDmax �
DminÞ (or 2ðDmax � DminÞ for lowcost application) fitness evaluations, which can
be significant.

5.3.3 Applications to Non-linear Function Minimization

The same seven benchmark functions given in Table 5.3 are used in this section
but without the dimensional terms (see their original form in Table 5.12). Recall
that Sphere, De Jong, and Rosenbrock are unimodal functions and the rest are
multimodal, meaning that they have many local minima. Recall further that on the
macroscopic level Griewank demonstrates certain similarities with unimodal
functions especially when the dimensionality is above 20; however, in low
dimensions it bears a significant noise.

Table 5.11 MD PSO Plug-in for the second approach

A2) SA-driven MD PSO Plug-in (n, a, c, A, a, c)

1. Create a new aGB particle, fxxd
aGBðt þ 1Þ; xyd

aGBðt þ 1Þg for 8d 2 ½Dmin; Dmax�
2. For 8d 2 ½Dmin; Dmax� do:

2.1. Let k = t, h
_

k ¼ xŷdðtÞ and L = f
2.2. Let ak ¼ a=ðAþ kÞa and ck ¼ c=kc

2.3. Compute Lðh
_

k þ ckDkÞ and Lðh
_

k � ckDkÞ
2.4. Compute g

_

kðh
_

kÞusing Eq. (5.6)

2.5. Compute xxd
aGBðt þ 1Þ ¼ h

_

kþ1V using Eq. (2.9)

2.6. If (f ðxxd
aGBðt þ 1ÞÞ\f ðxyd

aGBðtÞÞ) then xyd
aGBðt þ 1Þ ¼ xxd

aGBðt þ 1Þ
2.7. Else xyd

aGBðt þ 1Þ ¼ xyd
aGBðtÞ

2.8. If (f ðxyd
aGBðt þ 1ÞÞ\f ðxyd

gbestðdÞðtÞÞ then xyd
gbestðdÞðtÞ ¼ xyd

aGBðt þ 1Þ
3. End For

4. Re-assign dbest: dbest ¼ arg min
d2½Dmin ; Dmax �

ðf ðxyd
gbestðdÞðtÞÞ

134 5 Improving Global Convergence

http://dx.doi.org/10.1007/978-3-642-37846-1_2

T
ab

le
5.

12
B

en
ch

m
ar

k
fu

nc
ti

on
s

w
it

ho
ut

di
m

en
si

on
al

bi
as

F
un

ct
io

n
F

or
m

ul
a

In
it

ia
l

ra
ng

e
D

im
en

si
on

se
t:

{d
}

Sp
he

re
F

1
ðx
;

dÞ
¼

Pd i¼
1

x2 i

�
	

[-
15

0,
75

]
20

,
50

,
80

D
e

Jo
ng

F
2
ðx
;

dÞ
¼

Pd i¼
1

ix
4 i

�
	

[-
50

,
25

]
20

,
50

,
80

R
os

en
br

oc
k

F
3
ðx
;

dÞ
¼

Pd i¼
1

10
0
ðx

iþ
1
�

x2 i
Þ2
þ
ðx

i
�

1Þ
2

�
	

[-
50

,
25

]
20

,
50

,
80

R
as

tr
ig

in
F

4
ðx
;

dÞ
¼

Pd i¼
1

10
þ

x2 i
�

10
co

s
ð2

px
iÞ

�
	

[-
50

0,
25

0]
20

,
50

,
80

G
ri

ew
an

k
F

5
ðx
;

dÞ
¼

1
4;

00
0

Pd i¼
1

x2 i
�
Qd i¼

1
co

s
x i ffiffiffi
ffiffiffi

iþ
1

p
�

�
�

	
[-

50
0,

25
0]

20
,

50
,

80

Sc
hw

ef
el

F
6
ðx
;

dÞ
¼

41
8:

98
29

d
þ
Pd i¼

1
x i

si
n

ffiffiffi
ffiffiffi x ij
j

p �
�

�
	

[-
50

0,
25

0]
20

,
50

,
80

G
iu

nt
a

F
7
ðx
;

dÞ
¼

Pd i¼
1

si
n

16 15
x i
�

1
�

�
þ

si
n

2
16 15

x i
�

1
�

�
þ

1 50
si

n
4
ð1

6 15
x i
�

1Þ
�

�
þ

26
8

1;
00

0

�
	

[-
50

0,
25

0]
20

,
50

,
80

5.3 Who Will Guide the Guide? 135

T
ab

le
5.

13
S

ta
ti

st
ic

al
re

su
lt

s
fr

om
10

0
ru

ns
ov

er
se

ve
n

be
nc

hm
ar

k
fu

nc
ti

on
s

F
un

ct
io

ns
d

S
P

S
A

bP
SO

S
A

D
P

S
O

(A
2)

S
A

D
P

S
O

(A
1)

l
r

l
r

l
r

l
r

S
ph

er
e

20
0

0
0

0
0

0
0

0
50

0
0

0
0

0
0

0
0

80
0

0
13

5.
27

2
27

6.
18

5
0

0
0

0
D

e
Jo

ng
20

0.
01

3
0.

02
75

0
0

0
0

0
0

50
0.

02
18

0.
03

9.
04

45
26

.9
96

2
0.

00
75

0.
00

91
0.

21
89

0.
64

91
80

0.
41

8
0.

26
7

99
8.

73
7

83
2.

19
93

0.
25

84
0.

47
06

13
54

6.
02

4,
30

5.
04

R
os

en
br

oc
k

20
1.

14
42

2
0.

26
92

1.
26

46
2

0.
43

82
1.

29
94

1
0.

46
58

0.
40

89
0.

21
30

50
3.

59
42

0.
74

85
15

.9
05

3
5.

21
49

1
12

.3
51

41
2.

67
73

1
2.

54
72

0.
36

96
80

5.
39

28
0.

79
61

17
0.

95
47

23
1.

91
13

28
.1

52
7

5.
16

99
5.

29
19

0.
81

77
R

as
tr

ig
in

20
20

4.
91

69
51

.2
86

3
0.

04
29

0.
03

83
0.

03
83

0.
03

69
0.

03
26

0.
03

00
50

51
3.

38
88

75
.7

01
5

0.
05

28
0.

06
88

0.
03

81
0.

04
36

0.
03

53
0.

05
03

80
83

2.
92

18
10

2.
17

92
0.

79
43

0.
95

17
0.

23
63

0.
65

52
0.

12
40

0.
16

94
G

ri
ew

an
k

20
0

0
0

0
0

0
0

0
50

1.
06

31
e

?
00

7
3.

37
26

e
?

00
6

50
.7

31
7

19
1.

15
58

0
0

30
74

.0
2

13
,9

89
80

2.
82

51
e

?
00

7
5.

78
96

e
?

00
6

24
,9

78
23

,2
57

20
,7

33
24

,1
60

37
8,

21
0

13
7,

41
0

S
ch

w
ef

el
20

0.
35

84
0.

07
94

1.
74

74
0.

39
15

0.
30

76
0.

07
58

0.
39

91
0.

07
96

50
0.

89
06

0.
10

06
10

.2
02

7
2.

21
45

0.
82

78
0.

10
93

0.
97

91
0.

12
32

80
1.

43
52

0.
14

65
21

.8
26

9
5.

18
09

1.
36

33
0.

14
02

1.
55

28
0.

15
44

G
iu

nt
a

20
42

,7
43

66
7.

24
94

49
5.

07
77

24
5.

12
20

44
5.

13
60

26
4.

11
60

44
5.

13
56

24
9.

54
12

50
10

,7
24

1,
02

7.
6

4,
25

7
71

3.
17

23
3,

93
8.

9
62

6.
91

94
3,

91
6.

2
75

8.
32

90
80

17
,2

83
1,

24
7.

9
9,

87
3.

6
1,

31
3

8,
83

8.
2

1,
35

7
8,

45
4.

2
1,

28
5.

3

136 5 Improving Global Convergence

Both approaches of the proposed SAD PSO along with the ‘‘low cost’’ appli-
cation are tested over seven benchmark functions and compared with the bPSO
and standalone SPSA application. The results are shown in Table 5.13. The same
termination criteria as the combination of the maximum number of iterations
allowed (iterNo = 10,000) and the cut-off error (eC ¼ 10�5) were used. Three
dimensions (20, 50, and 80) for the sample functions are used in order to test the
performance of each technique. PSO (bPSO and SAD PSO) used a swarm size,
S = 40 and w was linearly decreased from 0.9 to 0.2. Also the values for A, a, c, a,
and c were set as recommended to 60, 0.602, 0.101, 1, and 1, for all functions. No
parameter tuning was done on purpose for SPSA since it may not be feasible for
many practical applications, particularly the ones where the underlying fitness
surface is unknown. In order to make a fair comparison among SPSA, bPSO, and
SAD-PSO, the number of evaluations is kept equal (so S = 38 and S = 37 are
used for both SAD PSO approaches and the number of evaluations is set to
40 9 10,000 = 4e+5 for SPSA). For each function and dimension, 100 runs are
performed and the first- and second-order statistics (mean, l and standard devia-
tion, r) of the fitness scores are reported in Table 5.13 whilst the best statistics are
highlighted. During each run, the operation terminates when the fitness score drops
below the cut-off error and it is assumed that the global minimum of the function is
reached, henceforth; the score is set to 0. Therefore, an average score l = 0 means
that the method converges to the global minimum at every run.

As the entire statistics in the right side of Table 5.13 indicate, either SAD PSO
approach achieves an equal or superior average performance statistics over all
functions regardless of the dimension, modality, and without any exception. In
other words, SAD PSO works equal or better than the best of bPSO and SPSA—
even though either of them might have a quite poor performance for a particular
function. Note especially that if SPSA performs well enough (meaning that the
setting of the critical parameters, e.g., a and c is appropriate), then a significant
performance improvement can be achieved by SAD PSO, i.e., see for instance De
Jong, Rosenbrock, and Schwefel. On the other hand, if SPSA does not perform
well, even much worse than any other technique, SAD PSO still outperforms
bPSO to a certain degree, e.g., see Giunta and particularly Griewank for d = 50
where SAD PSO can still converge to the global optimum (l = 0) although SPSA
performance is rather low. This supports the aforementioned claim, i.e., the PSO
update for gbest is so poor that even an underperforming SPSA implementation
can still improve the overall performance significantly. Note that the opposite is
also true, that is, SAD PSO, which internally runs SPSA for gbest achieves better
performance than SPSA alone.

Based on the results in Table 5.13, we can perform comparative evaluations
with some of the promising PSO variants such as [1, 30–32] where similar
experiments are performed over some or all of these benchmark functions. For
example in Angeline [32], a tournament selection mechanism is formed among
particles and the method is applied over four functions (Sphere, Rosenbrock,
Rastrigin, and Griewank). Although the method is applied over a reduced

5.3 Who Will Guide the Guide? 137

positional range, ±15, and at low dimensions (10, 20, and 30), the mean scores
were in the range {0.3, 1,194}. As a result, both better and worse performances
than bPSO, depending on the function, were reported. In Esquivel and Coello
Coello [30], bPSO and two PSO variants, GCPSO and mutation-extended PSO
over three neighborhood topologies are applied to multimodal functions, Rastrigin,
Schwefel, and Griewank. Although the dimension is rather low (30), none of the
topologies over any PSO variant converged to the global minimum and the mean
scores were reported in the range of {0.0014, 4,762}. In Riget and Vesterstrom [1],
a diversity guided PSO variant, ARPSO, along with two competing methods, bPSO
and GA were applied over the multimodal functions, Rastrigin, Rosenbrock, and
Griewank at dimensions, 20, 50, and 100. The experimental showed that none of
the three methods converged to the global minimum except ARPSO for Rastrigin
at dimension 20. ARPSO performed better than bPSO and GA for Rastrigin and
Rosenbrock but worse for Griewank. The CPSO proposed in Bergh and Enge-
lbrecht [24] was applied to five functions including Sphere, Rastrigin, Rosenbrock,
and Griewank. The dimension of all functions is fixed to 30 and in this dimension,
CPSO performed better than bPSO in 80 % of the experiments. Finally in Richards
and Ventura [31], dynamic sociometries via ring and star were introduced among
the swarm particles and the performance of various combinations of swarm size
and sociometry over six functions (the ones used in this section except Schwefel)
was reported. Although the tests were performed over comparatively reduced
positional ranges and at a low dimension (30), the experimental results indicate
that none of the sociometry and swarm size combinations converged to the global
minimum of multimodal functions except for some cases of the Griewank
function.

The statistical comparison between low-cost mode and the original (full cost) is
reported in Table 5.14. The statistics in the table indicate that both modes within
both approaches usually obtain a similar performance but occasionally a signifi-
cant gap is visible. For instance, lowcost mode achieves a significantly better
performance within the second SAD PSO approach for De Jong and Griewank
functions at d = 80. The opposite is true for Schwefel particularly at d = 20.

In order to verify if the results are statistically significant, statistical signifi-
cance test is next applied between each SAD PSO approach and each technique
(bPSO and SPSA) using the statistical data given in Table 5.13. Let H0 be the null
hypothesis, which states that there is no difference between the proposed and
competing techniques (i.e., the statistical results occur by chance). We shall then
define two common threshold values for P, 5 % and 1 %. If the P value, which is
the probability of observing such a large difference (or larger) between the sta-
tistics, is less than either threshold, then we can reject H0 with the corresponding
confidence level. To accomplish this, the standard t test was performed and the t
values were computed between the pair of competing methods. Recall that the
formula for the t test is as follows:

138 5 Improving Global Convergence

T
ab

le
5.

14
S

ta
ti

st
ic

al
re

su
lt

s
be

tw
ee

n
fu

ll
-c

os
t

an
d

lo
w

-c
os

t
m

od
es

fr
om

10
0

ru
ns

ov
er

se
ve

n
be

nc
hm

ar
k

fu
nc

ti
on

s

F
un

ct
io

ns
d

F
ul

l
co

st
m

od
e

L
ow

co
st

m
od

e

S
A

D
P

S
O

(A
2)

S
A

D
P

S
O

(A
1)

S
A

D
P

S
O

(A
2)

S
A

D
P

S
O

(A
1)

l
r

l
r

l
r

l
r

S
ph

er
e

20
0

0
0

0
0

0
0

0
50

0
0

0
0

0
0

0
0

80
0

0
0

0
0

0
0

0
D

e
Jo

ng
20

0
0

0
0

0
0

0
0

50
0.

00
75

0.
00

91
0.

21
89

0.
64

91
0.

00
73

0.
00

36
23

.7
97

7
48

.2
01

2
80

0.
25

84
0.

47
06

13
54

6.
02

43
05

.0
4

0.
03

26
0.

02
90

14
13

6
4,

57
8.

8
R

os
en

br
oc

k
20

1.
29

94
1

0.
46

58
0.

40
89

0.
21

30
1.

14
12

0.
40

31
0.

31
24

0.
20

35
50

12
.3

51
41

2.
67

73
1

2.
54

72
0.

36
96

9.
20

63
2.

26
57

2.
58

64
0.

82
32

80
28

.1
52

7
5.

16
99

5.
29

19
0.

81
77

24
.0

14
2

4.
98

23
12

.9
92

3
2.

84
97

R
as

tr
ig

in
20

0.
03

83
0.

03
69

0.
03

26
0.

03
00

0.
02

63
0.

06
34

0.
03

83
0.

03
27

50
0.

03
81

0.
04

36
0.

03
53

0.
05

03
0.

00
66

0.
00

83
0.

00
62

0.
00

82
80

0.
23

63
0.

65
52

0.
12

40
0.

16
94

0.
00

53
0.

00
86

0.
00

43
0.

00
65

G
ri

ew
an

k
20

0
0

0
0

0
0

0
0

50
0

0
30

74
.0

2
13

98
9

0.
00

18
0.

01
25

30
33

.1
16

58
8

80
20

73
3

24
,1

60
37

8,
21

0
13

7,
41

0
14

3.
5,

79
4

1,
24

7.
7

34
2,

23
0

11
4,

28
0

S
ch

w
ef

el
20

0.
30

76
0.

07
58

0.
39

91
0.

07
96

0.
75

38
0.

21
03

2.
13

27
0.

59
60

50
0.

82
78

0.
10

93
0.

97
91

0.
12

32
1.

27
44

0.
22

82
6.

47
97

1.
05

69
80

1.
36

33
0.

14
02

1.
55

28
0.

15
44

1.
69

65
0.

21
65

9.
52

52
1.

62
41

G
iu

nt
a

20
44

5.
13

60
26

4.
11

60
44

5.
13

56
24

9.
54

12
37

5.
65

10
24

2.
73

01
38

7.
89

01
24

9.
88

83
50

39
38

.9
62

6.
91

94
3,

91
6.

2
75

8.
32

90
3,

28
2

89
0.

34
26

3,
68

8.
3

90
8.

48
03

80
8,

83
8.

2
1,

35
7

8,
45

4.
2

1,
28

5.
3

7,
92

2.
1

1,
32

0.
2

12
,1

32
1,

57
9.

4

5.3 Who Will Guide the Guide? 139

t ¼ l1 � l2ffi
ðn1�1Þr2

1þðn2�1Þr2
2

n1þn2�2
n1þn2
n1n2

� �r ð5:7Þ

where n1 ¼ n2 ¼ 100 is the number of runs. Using the first- and second-order
statistics presented in Table 5.13, the overall t test values are computed and
enlisted in Table 5.15. In those entries with 0 value, both methods have a zero
mean and zero variance, indicating convergence to the global optimum. In such
cases, H0 cannot be rejected. In those nonzero entries, t test values corresponding
to the best approach are highlighted. In the t tests the degrees of freedom is
n1 þ n2 � 2 ¼ 198. Table 5.16 presents two corresponding entries of t test values
required to reject H0 at several levels of confidence (one-tailed test). Accordingly,

Table 5.15 t test results for statistical significance analysis for both SPSA approaches, A1 and
A2

Functions d Pair of competing methods

bPSO (A2) bPSO (A1) SPSA (A2) SPSA (A1)

Sphere 20 0 0 0 0
50 0 0 0 0
80 4.90 4.90 0 0

De Jong 20 0 0 4.73 4.73
50 3.35 3.27 4.56 3.03
80 12.00 28.62 2.95 31.46

Rosenbrock 20 0.54 17.56 2.88 21.42
50 6.06 25.55 31.50 12.54
80 6.16 7.14 43.51 0.88 (*)

Rastrigin 20 0.86 2.12 39.95 39.95
50 1.80 2.05 67.81 67.81
80 4.83 6.93 81.49 81.50

Griewank 20 0 0 0 0
50 2.65 2.16 31.52 31.51
80 1.27 (*) 25.35 48.76 48.13

Schwefel 20 36.11 33.75 4.63 3.62
50 42.28 41.59 4.23 5.56
80 39.48 39.12 3.55 5.53

Giunta 20 1.39 1.43 589.42 593.75
50 3.35 3.27 56.37 53.31
80 5.48 7.73 45.81 49.28

Table 5.16 t Table presenting degrees of freedom versus probability

Degrees of freedom P: Probability

0.1 0.05 0.01 0.001

100 1.29 1.66 2.364 3.174
1 1.282 1.645 2.325 3.090

140 5 Improving Global Convergence

H0 can be rejected and hence all results are statistically significant beyond the
confidence level of 0.01 except the two entries shown with a (*) in Table 5.15.
Note that the majority of the results are statistically significant beyond the 0.001
level of confidence (e.g., the likelihood to occur by chance is less than 1 in 1,000
times).

5.4 Summary and Conclusions

This chapter focused on a major drawback of the PSO algorithm: the poor gbest
update. This can be a severe problem, which may cause premature convergence to
local optima since gbest as the common term in the update equation of all parti-
cles, is the primary guide of the swarm. Therefore, a solution for the social
problem in PSO is the main goal of this chapter, i.e., ‘‘Who will guide the guide?’’
which resembles the rhetoric question posed by Plato in his famous work on
government: ‘‘Who will guard the guards?’’ (Quis custodiet ipsos custodes?). At
first the focus is drawn on improving the global convergence of PSO and in turn,
MD PSO, as its convergence performance is still limited to the same level as PSO,
which suffers from the lack of diversity among particles. This leads to a premature
convergence to local optima especially when multimodal problems are optimized
in high dimensions. Realizing that the main problem lies in fact in the inability of
using the available diversity among the vector components of swarm particles’
positions, the FGBF technique adapted in this section addresses this problem by
collecting the best components and fractionally creating an artificial global best,
aGB, particle that has the potential to be a better ‘‘guide’’ then the swarm’s native
gbest particle. When used with FGBF, MD PSO exhibits such an impressive speed
gain that their mutual performance surpasses bPSO by several magnitudes.
Experimental results over nonlinear function minimization show that except in few
minority cases, the convergence to the global minimum at the target dimension is
achieved within fewer than 1,000 iterations on the average, mostly only within few
hundreds or even less. Yet, the major improvement occurs in the convergence
accuracy. MD PSO with FGBF finds the global minimum at the target dimension
for all runs over all functions without any exception. This is a substantial
achievement in the area of PSO-based nonlinear function minimization.

FGBF was then tested in another challenging domain, namely optimization in
dynamic environments. In order to make comparative evaluations with other
techniques in the literature, FGBF with multiswarms is then applied over a con-
ventional benchmark system, the Moving Peak Benchmark, MPB. The results over
MPB with common settings (i.e., Scenario 2) clearly indicate the superior per-
formance of FGBF with multiswarms over other PSO-based methods. To make the
benchmark more generic for real-world applications where the optimum dimen-
sion may be unknown too, MPB is extended to a multidimensional system in
which there is a certain amount of dependency among dimensions. Note that
without such dependency embedded, the benchmark would be just a bunch of

5.3 Who Will Guide the Guide? 141

independent MPBs in different dimensions, and thus a distinct and independent
optimization process would be sufficient for each dimension. The optimization
algorithm combining FGBF and multiswarms with MD PSO exhibits both global
convergence ability and an impressive speed gain, so that their mutual perfor-
mance surpasses bPSO by several magnitudes. The experiments conducted over
the extended MPB approve that MD PSO with multiswarms and FGBF always
finds and tracks the optimum dimension where the global peak resides. On both
(conventional and extended) MPBs, the proposed techniques generally find and
track the global peak, yet they may occasionally converge to a near-optimum peak,
particularly if the height difference happens to be insignificant.

However, FGBF is not an entirely generic method, which makes it hard or even
impossible to perform if the individual dimensional scores cannot be computed. To
remedy this drawback, SPSA is adopted to guide the gbest particle toward the
‘‘right’’ direction with the gradient estimate of the underlying surface whilst
avoiding local traps due to its stochastic nature. In that, the SAD PSO has an
identical process with the basic PSO, because the guidance is only provided to
gbest particle—not the whole swarm. In SAD PSO, two approaches were intro-
duced, where SPSA is explicitly used. The first approach replaces the PSO update
of gbest with SPSA, whereas in the second an aGB particle, is created, which can
replace gbest if it has to a better fitness score than gbest itself. Both SAD PSO
approaches were tested over seven nonlinear functions and the experimental
results demonstrated that they achieved a superior performance over all functions
regardless of the dimension, modality. Especially if the setting of the critical
parameters, e.g., a and c is appropriate, then a significant performance gain can be
achieved by SAD PSO. If not, SAD PSO still outperforms bPSO. This shows that
SPSA, even without proper parameter setting still performs better than the PSO’s
native gbest update. Furthermore, the complexity overhead in SAD PSO is neg-
ligible, i.e., only two (or three in the second approach) extra fitness evaluations per
iteration (one less in the lowcost mode) are needed. The experimental results show
that the low-cost mode does not cause a noticeable performance loss; on the
contrary, it may occasionally perform even better.

Finally, both approaches are also integrated into MD PSO, which defines a new
particle formation and integrates the ability of dimensional navigation into the core
of the PSO process. Recall that such flexibility negates the requirement of setting
the dimension in advance, since swarm particles can now converge to the global
solution at the optimum dimension simultaneously.

5.5 Programming Remarks and Software Packages

As described in the related sections of the previous chapters, the test-bed appli-
cation, PSO_MDlib, is designed to implement MD PSO operations for the pur-
pose of multidimensional nonlinear function minimization and dynamic system
(MPB) optimization. The skipped operations that are plugged into the template

142 5 Improving Global Convergence

<class T, class X> bool CPSO_MD<T,X>::Perform() function, FGBF is first
explained in the following section. We shall then explain the implementation
details of MPB and the application of MD PSO with FGBF over it. We shall
explain the implementation details of both SA-driven and MD PSO with FGBF
over the dynamic data clustering application in the next chapter.

5.5.1 FGBF Operation in PSO_MDlib Application

In the previous chapters, the standalone MD PSO operation implemented within
the template <class T, class X> bool CPSO_MD<T,X>::Perform() function was
explained. To enable the FGBF operation, the MD PSO object should be created
with the mode setting ‘‘FGBF’’, CPSO_MD<CSolSpace<COneClass>,COne-
Class> *pPSO = new CPSO_MD<CSolSpace<COneClass>,COneClass>
(_psoDef._noAgent, _psoDef._maxNoIter, _psoDef._eCutOff, _psoDef._mode).

Table 5.17 presents the implementation of FGBF pseudo-code given in
Table 5.2. The function m_fpFindGBDim(m_pPA, m_noP) determines (flags)
the best dimensional components of each particle and constitutes the array a½j� ¼

arg min
a2½1; S� j2½1; Dmax�

ðf ða; jÞÞ given in Table 5.2. Therefore, steps 1 and 2 in the table

are implemented in the member function m_fpFindGBDim(m_pPA, m_noP).
The step 3.1, that is the construction of the aGB particle, is implemented within the
first for loop, for(a=0;a<m_noP;a++), and note that the initial aGB particle is
represented by the object, xyb_i, which is filled by the best dimensional compo-
nents of the flagged particles (by the boolean array, bInGB[]). Then this new aGB
particle first competes against the personal best position of the previous aGB
particle and if it beats it, then the personal best position of the new aGB particle
will be taken from this new aGB particle’s position; otherwise, the previous aGB
particle resides (the new one is not taken into account at all). Therefore, steps 3.2,
3.3, and 3.4 are implemented within the second for loop, for (int cur_d=m_xd-
Min; cur_d<m_xdMax; cur_d++), and finally the best overall position is
replaced in the personal best position of the final gbest particle, m_pPA[m_g-
best[cur_d-m_xdMin]]->GetPBPos(cur_d), for dimension cur_d. Finally, the
step 5, the update of the dbest, is implemented within the last for loop, which
basically searches for the best overall fitness score for the (final) gbest particles in
all dimensions. Whichever, dimension leads to the minimum score will thus be
assigned as the new dbest for this iteration.

5.5 Programming Remarks and Software Packages 143

5.5.2 MD PSO with FGBF Application Over MPB

PSO_MDlib when configured for MPB optimization during the compile time by
simply defining ‘‘MOVING_PEAKS_BENCHMARK’’. When defined, another
entry point main() function (at the bottom) will be compiled instead for MDPSO
with FGBF optimization over MPB environment, which is implemented in the
source file movpeaks.cpp (and movpeaks.h). The MD PSO with FGBF operation is
almost identical as in the nonlinear function minimization; except the fitness
function (MPB()) and the setting of the change period by calling pPSO-

Table 5.17 Implementation of FGBF pseudo-code given in Table 5.2

144 5 Improving Global Convergence

T
ab

le
5.

18
T

he
en

vi
ro

nm
en

ta
l

ch
an

ge
si

gn
al

in
g

fr
om

th
e

m
ai

n
M

D
P

S
O

fu
nc

ti
on

5.5 Programming Remarks and Software Packages 145

>SetChangeFreq(CHANGE_FREQ). This will trigger the MPB resetting within
the template <class T, class X> bool CPSO_MD<T,X>::Perform() function at
the beginning of the main for loop of the MD PSO run, as shown in Table 5.18.
When the change period, m_changeFreq, is a nonzero value, then the signaling is
sent to the MPB code by calling m_fpGetScore(NULL, -1), which will call
change_peaks() function within the fitness function, MPB(). In this case the MPB
will go through an environmental change, the peaks will shift and no fitness
evaluation will be performed within the function. Besides this, MD PSO initiali-
zation and the fitness function are of course different. It can also be performed
several times (runs) and at each run, the C code given in Table 5.19 is executed.
The first three function calls (init_peaks(); TracePeaks(); setChangeFreq()) are
performed for MPB initialization. The fitness function pointer of the benchmark
(MPB) is then given to the MD PSO object as, pPSO->SetFitnessFn(MPB). Note
that the dimension (fixed) and the positional ranges, where the MD PSO is per-
formed, are set by the call getMPBparams(dim, min_x, max_x) and the default
values are set as: dim = 5, and max_x = -min_x = 50. The rest of the MPB’s
default parameters are all set at the beginning of the movpeaks.cpp source file.

The first three function calls (init_peaks(); TracePeaks(); setChangeFreq())
are performed for MPB initialization. The fitness function pointer (MPB) is then
given to the MD PSO object, pPSO by calling pPSO->SetFitnessFn(MPB). As
mentioned earlier, besides this fitness function and the setting of the nonzero

Table 5.19 MD PSO with FGBF implementation for MPB

146 5 Improving Global Convergence

change period, the rest of the MD PSO with FGBF operation is identical with the
nonlinear function minimization.

Finally, the fitness function MPB() is given in Table 5.20. Note that the first if()
statement checks for the signal for environmental change, that is sent from the
native MD PSO function, Perform(). If signal is sent (e.g., by assigning dim = -1
to) then the function change_peaks() changes the MPB environment and the
function returns abruptly without fitness evaluation. Otherwise, the position stored
in pPos proposed by a particle will be evaluated by the function eval_movpeaks(),
which returns the difference of the current height from the global peak height. The
other function calls are for debug purposes.

References

1. J. Riget, J.S. Vesterstrom, A diversity-guided particle swarm optimizer—The ARPSO,
Technical report, Department of Computer Science, University of Aarhus, 2002

2. G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, H.-J. Zhang, Image classification with Kernelized
spatial-context. IEEE Trans. Multimedia 12(4), 278–287 (2010). doi:10.1109/
TMM.2010.2046270

3. F. Van den Bergh, A.P. Engelbrecht, A new locally convergent particle swarm optimizer, in
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
(2002), pp. 96–101

Table 5.20 The fitness function MPB()

5.5 Programming Remarks and Software Packages 147

http://dx.doi.org/10.1109/TMM.2010.2046270
http://dx.doi.org/10.1109/TMM.2010.2046270

4. A. Abraham, S. Das, S. Roy, Swarm intelligence algorithms for data clustering. in Soft
Computing for Knowledge Discovery and Data Mining book, Part IV, (2007), pp. 279–313,
Oct 25 2007

5. T.M. Blackwell, Particle swarm optimization in dynamic environments. Evolutionary
Computation in Dynamic and Uncertain Environments, Studies in Computational
Intelligence, vol. 51 (Springer, Berlin, 2007) pp. 29–49

6. Y.-P. Chen, W.-C. Peng, M.-C. Jian, Particle swarm optimization with recombination and
dynamic linkage discovery. IEEE Trans. Syst. Man Cybern. Part B 37(6), 1460–1470 (2007)

7. K.M. Christopher, K.D. Seppi, The Kalman swarm. A new approach to particle motion in
swarm optimization, in Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO, (2004), pp. 140–150

8. L.-Y. Chuang, H.W. Chang, C.J. Tu, C.H. Yang, Improved binary PSO for feature selection
using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

9. R. Eberhart, P. Simpson, R. Dobbins, Computational Intelligence,PC Tools (Academic,
Boston, 1996)

10. H. Higashi, H. Iba, Particle Swarm Optimization with Gaussian Mutation, in Proceedings of
the IEEE swarm intelligence symposium, (2003), pp. 72–79

11. S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its adaptive variant.
IEEE Trans. Syst. Man Cybern. Part B 35(6), 1272–1282 (2005)

12. B. Kaewkamnerdpong, P.J. Bentley, Perceptive particle swarm optimization: an
investigation, in Proceedings of IEEE Swarm Intelligence Symposium, (California, 2005),
pp. 169–176, 8–10 June 2005

13. U. Kressel, Pairwise Classification and support vector machines. in Advances in Kernel
Methods—Support Vector Learning (1999)

14. J.J. Liang, A.K. Qin, Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

15. Y. Lin, B. Bhanu, Evolutionary feature synthesis for object recognition. IEEE Trans. Man
Cybern. Part C 35(2), 156–171 (2005)

16. M. Løvberg, T. Krink, Extending particle swarm optimizers with self-organized criticality, in
Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2 (2002),
pp. 1588–1593

17. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 7, 115–133 (1943)

18. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng.
32(3), 230–236 (1985)

19. T. Peram, K. Veeramachaneni, C.K. Mohan, Fitness-distance-ratio based particle swarm
optimization, in Proceedings of the IEEE Swarm Intelligence Symposium, (IEEE Press, 2003)
pp. 174–181

20. K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global
Optimization (Springer, Berlin, 2005). ISBN 978-3-540-20950-8

21. A.C. Ratnaweera, S.K. Halgamuge, H.C. Watson, Particle swarm optimiser with time varying
acceleration coefficients, in Proceedings of the International Conference on Soft Computing
and Intelligent Systems, (2002), pp. 240–255

22. Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in Proceedings of the IEEE
Congress on Evolutionary Computation, (1998), pp. 69–73

23. Y. Shi, R.C. Eberhart, Fuzzy adaptive particle swarm optimization. in Proceedings of the
IEEE Congress on Evolutionary Computation, (IEEE Press, 2001), vol. 1, pp. 101–106

24. F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization.
IEEE Trans. Evol. Comput. 3, 225–239 (2004)

25. X. Xie, W. Zhang, Z. Yang, A dissipative particle swarm optimization, in Proceedings of the
IEEE Congress on Evolutionary Computation, vol. 2 (2002), pp. 1456–1461

26. X. Xie, W. Zhang, Z. Yang, Adaptive particle swarm optimization on individual level,
in Proceedings of the Sixth International Conference on Signal Processing, vol. 2 (2002),
pp. 1215–1218

148 5 Improving Global Convergence

27. X. Xie, W. Zhang, Z. Yang, Hybrid particle swarm optimizer with mass extinction,
in Proceedings of the International Conference on Communication, Circuits and Systems,
vol. 2 (2002), pp. 1170–1173

28. W.-J. Zhang, X.-F. Xie, DEPSO: Hybrid particle swarm with differential evolution operator,
in Proceedings of the IEEE International Conference on System, Man, and Cybernetics, vol.
4 (2003), pp. 3816–3821

29. P.I. Angeline, Evolutionary optimization versus particle swarm optimization: Philosophy and
performance differences. in Evolutionary Programming VII, Conference EP’98, Springer
Verlag, Lecture Notes in Computer Science No. 1447, (California, USA, 1998). pp. 410–601

30. S.C. Esquivel, C.A. Coello Coello, On the use of particle swarm optimization with
multimodal functions, in Proceedings of 1106 the IEEE Congress on Evolutionary
Computation, (IEEE Press, 2003), pp. 1130–1136

31. M. Richards, D. Ventura, Dynamic sociometry in particle swarm optimization, in Proceedings
of the Sixth International Conference on Computational Intelligence and Natural Computing,
(North Carolina, 2003) pp. 1557–1560

32. P.J. Angeline, Using Selection to Improve Particle Swarm Optimization, in Proceedings of
the IEEE Congress on Evolutionary Computation, (IEEE Press, 1998), pp. 84–89

33. J. Branke, Moving peaks benchmark (2008), http://www.aifb.unikarlsruhe.de/*jbr/
MovPeaks/. Accessed 26 June 2008

34. T.M. Blackwell, J. Branke, Multi-Swarm Optimization in Dynamic Environments.
Applications of Evolutionary Computation, vol. 3005 (Springer, Berlin, 2004), pp. 489–500

35. T.M. Blackwell, J. Branke, Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10(4), 51–58 (2004)

36. X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation in a dynamic
environment, in Proceedings of Genetic and Evolutionary Computation Conference, (Seattle
Washington, 2006), pp. 51–58

37. R. Mendes, A. Mohais, DynDE: a differential evolution for dynamic optimization problems.
IEEE Congress on Evolutionary Computation, (2005) pp. 2808–2815

38. I. Moser, T. Hendtlass, A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. IEEE Congress on Evolutionary Computation,
(2007), pp. 252–259

39. M.A. Styblinski, T.-S. Tang, Experiments in nonconvex optimization: stochastic
approximation with function smoothing and simulated annealing. Neural Netw. 3(4),
467–483 (1990)

40. H.J. Kushner, G.G. Yin, Stochastic Approximation Algorithms and Applications (Springer,
New York, 1997)

41. S.B. Gelfand, S.K. Mitter, Recursive stochastic algorithms for global optimization. SIAM
J. Control Optim. 29(5), 999–1018 (1991)

42. D.C. Chin, A more efficient global optimization algorithm based on Styblinski and Tang.
Neural Networks, (1994), pp. 573–574

43. J.C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37(3), 332–341 (1992)

44. J.C. Spall, Implementation of the simultaneous perturbation algorithm for stochastic
optimization. IEEE Trans. Aerosp. Electron. Syst. 34, 817–823 (1998)

45. J.L. Maryak, D.C. Chin, Global random optimization by simultaneous perturbation stochastic
approximation, in Proceedings of the 33rd Conference on Winter Simulation, (Washington,
DC, 2001), pp. 307–312

46. Y. Maeda, T. Kuratani, Simultaneous Perturbation Particle Swarm Optimization. IEEE
Congress on Evolutionary Computation, CEC’06, (2006) pp. 672–676

References 149

http://www.aifb.unikarlsruhe.de/~jbr/MovPeaks/
http://www.aifb.unikarlsruhe.de/~jbr/MovPeaks/

Chapter 6
Dynamic Data Clustering

Data are a precious thing and will last longer than the systems
themselves.

Tim Berners-Lee

Clustering in the most basic terms, is the collection of patterns, which are usually
represented as vectors or points in a multi-dimensional data space, into groups
(clusters) based on similarity or proximity. Such an organization is useful in
pattern analysis, classification, machine learning, information retrieval, spatial
segmentation, and many other application domains. Cluster validity analysis is the
assessment of the clustering method’s output using a specific criterion for opti-
mality, i.e., the so-called clustering validity index (CVI). Therefore, the optimality
of any clustering method can only be assessed with respect to the CVI, which is
defined over a specific data (feature) representation with a proper distance (sim-
ilarity) metric. What characterizes a clustering method further depends on its
scalability over the dimensions of the data and solution spaces, i.e., whether or not
it can perform well enough on a large dataset; say with a million patterns and
having large number of clusters (e.g.,�10). In the former case, the complexity of
the method may raise an infeasibility problem and the latter case shows the degree
of its immunity against the well-known phenomenon, ‘‘the curse of dimension-
ality’’. Even humans, who perform quite well in 2D and perhaps in 3D, have
difficulties of interpreting data in higher dimensions. Nevertheless, most real
problems involve clustering in high dimensions, in that; the data distribution can
hardly be modeled by some ideal structures such as hyperspheres.

Given a CVI, clustering is a multi-modal problem especially in high dimensions,
which contains many sub-optimum solutions such as over- and under-clustering.
Therefore, well-known deterministic methods such as K-means, Max–Min [1, 2],
FCM [2, 3], SOM [2], etc., are susceptible to get trapped to the closest local
optimum since they are all greedy descent methods, which start from a random
point in the solution space and perform a localized search. This fact eventually turns
the focus on stochastic Evolutionary Algorithms (EAs) [4] such as Genetic Algo-
rithms (GAs) [5], Genetic Programming (GP) [6], Evolution Strategies (ES), [7],
and Evolutionary Programming (EP), [8], all of which are motivated by the natural
evolution process and thus make use of evolutionary operators. The common point
of all is that EAs are in population-based nature and can perform a globalized
search. So they may avoid becoming trapped in a local optimum and find the
optimum solution; however, this is never guaranteed. Many works in the literature

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_6, � Springer-Verlag Berlin Heidelberg 2014

151

have shown that EA-based methods outperform their deterministic counterparts,
[5, 9, 10]. However, EAs suffer from the sensitivity of high parameter dependence
(e.g., crossover and mutation probabilities, internal parameters, etc.), in that one has
to tune some or all parameters to suit the application in hand. They further present a
high complexity, which makes them applicable only over limited datasets. As the
most popular EA method, GAs in general use binary string representations and this
may create the ambiguity of finding an appropriate quantization level for data
representation. Several researchers have shown that PSO exhibits a better clustering
performance than the aforementioned techniques [11–13]; however, when the
problem is multi-modal, PSO may also become trapped in local optima [14] due to
the premature convergence problem especially when the search space is of high
dimensions [13]. Furthermore, PSO has so far been applied to simple clustering
problems [11–13], where the data space is limited and usually in low dimensions
and the number of clusters (hence the solution space dimension) is kept reasonably
low (e.g., \10). Moreover, all clustering methods mentioned earlier are static in
nature, that is, the number of clusters has to be specified a priori. This is also true for
PSO since in its basic form it can only be applied to a search space with a fixed
dimension.

In this chapter, we shall address data clustering as an optimization problem by
utilizing techniques for finding the optimal number of clusters in a (fixed) multi-
dimensional data or feature space. As detailed in the next section, in order to
accomplish dynamic clustering where the optimum number of clusters is also
determined within the process, we shall utilize FGBF in conjunction with the MD
PSO, both of which are adapted to the data clustering problem in hand.

6.1 Dynamic Data Clustering via MD PSO with FGBF

6.1.1 The Theory

Based on the discussion in Sect. 3.4.2, it is obvious that the clustering problem
requires the determination of the solution space dimension (i.e., number of clus-
ters, K) and an effective mechanism to avoid local optima traps (both dimen-
sionally and spatially) particularly in complex clustering schemes in high
dimensions (e.g., K [10). The former requirement justifies the use of the MD
PSO technique while the latter calls for FGBF. At time t, the particle a in the
swarm, n ¼ x1; . . .; xa; . . .; xSf g; has the positional component formed as,

xxxdaðtÞ
a ðtÞ ¼ fca;1; . . .; ca;j; . . .; ca;xdaðtÞg) xxxdaðtÞ

a; j ðtÞ ¼ ca; j meaning that it rep-
resents a potential solution (i.e., the cluster centroids) for the xdaðtÞ number of
clusters while jth component being the jth cluster centroid. Apart from the regular
limits such as (spatial) velocity, Vmax, dimensional velocity, VDmax, and dimension
range Dmin� xdaðtÞ�Dmax; the N dimensional data space is also limited with

some practical spatial range, i.e., Xmin\xxxdaðtÞ
a ðtÞ\Xmax. In case this range is

152 6 Dynamic Data Clustering

http://dx.doi.org/10.1007/978-3-642-37846-1_3

exceeded even for a single dimension j, xxxdaðtÞ
a; j ðtÞ, then all positional components

of the particle for the respective dimension xdaðtÞ are initialized randomly within
the range (i.e., refer to step 1.3.1 in MD PSO pseudo-code) and this further
contributes to the overall diversity. The following validity index is used to obtain
computational simplicity with minimal or no parameter dependency,

f xxxdaðtÞ
a ; Z

� �
¼ Qe xxxdaðtÞ

a

� �
xdaðtÞð Þa where

Qe xxxdaðtÞ
a

� �
¼ 1

xdaðtÞ
XxdaðtÞ

j¼1

P

8zp2xxxdaðtÞ
a;j

xxxdaðtÞ
a;j � zp

xxxdaðtÞ
a

�
�
�

�
�
�

ð6:1Þ

where Qe is the quantization error (or the average intra-cluster distance) as the
Compactness term and ðxdaðtÞÞa is the Separation term, by simply penalizing
higher cluster numbers with an exponential, a[0: Using a ¼ 1; the validity index
yields the simplest form (i.e., only the nominator of Qe) and becomes entirely
parameter-free.

On the other hand, (hard) clustering has some constraints. Let Cj ¼
fxxxdaðtÞ

a; j ðtÞg ¼ fca; jg be the set of data points assigned to a (potential) cluster

centroid xxxdaðtÞ
a; j ðtÞ for a particle a at time t. The clusters Cj; 8j 2 ½1; xdaðtÞ� should

maintain the following constraints:

1. Each data point should be assigned to one cluster set, i.e.,
SxdaðtÞ

j¼1
Cj ¼ Z

2. Each cluster should contain at least one data point, i.e., Cj 6¼ f/g;
8j 2 ½1; xdaðtÞ�

3. Two clusters should have no common data points, i.e., Ci \ Cj ¼ f/g;
; i 6¼ j and 8i; j 2 ½1; xdaðtÞ�

In order to satisfy the 1st and 3rd hard clustering constraints, before computing
the clustering fitness score via the validity index function in (6.1), all data points
are first assigned to the closest centroid. Yet there is no guarantee for the fulfill-

ment of the 2nd constraint since xxxdaðtÞ
a ðtÞ is set (updated) by the internal dynamics

of the MD PSO process and hence any dimensional component (i.e., a potential

cluster candidate), xxxdaðtÞ
a; j ðtÞ; can be in an abundant position (i.e., no closest data

point exists). To avoid this, a high penalty is set for the fitness score of the particle,

i.e., f ðxxxdaðtÞ
a ; ZÞ � 1; if fxxxdaðtÞ

a; j g ¼ f/g for any j.
The major outlines so far given are sufficient for the standalone application of

the MD PSO technique for a dynamic clustering application; however, the FGBF
operation presents further difficulties since for the aGB creation the selection of the
best or the most promising dimensions (i.e., the cluster centroids) among all
dimensions of swarm particles is not straightforward. Recall that in step 2 of the

6.1 Dynamic Data Clustering via MD PSO with FGBF 153

FGBF pseudo-code, the index array of such particles yielding the minimum f ða; jÞ
for the jth dimension, can be found as, a½j� ¼ arg min

a2½1; S� j2½1;Dmax�
ðf ða; jÞÞ: This was

straightforward for the nonlinear function minimization where each dimension of
the solution space is distinct and corresponds to an individual dimension of the
data space. However, in the clustering application, any (potential) cluster centroid

of each particle, xxxdaðtÞ
a; j ðtÞ; is updated independently and can be any arbitrary point

in N dimensional data space. Furthermore, data points assigned to the jth

dimension of a particle a, ð8zp 2 xxxdaðtÞ
a;j ðtÞÞ; also depend on the distribution of the

other dimensions (centroids), i.e., the ‘‘closest’’ data points are assigned to the jth
centroid only because the other centroids happen to be at a farther location.
Inserting this particular dimension (centroid) into another particle (say aGB, in
case selected), might create an entirely different assignment (or cluster) including
the possibility of having no data points assigned to it and thus violating the 2nd
clustering constraint. To avoid this problem, a new approach is adopted for step 2
to obtain a½j�: At each iteration, a subset among all dimensions of swarm particles
is first formed by verifying the following: a dimension of any particle is selected
into this subset if and only if there is at least one data point that is closest to it.
Henceforth, the creation of the aGB particle within this verified subset ensures that
the 2nd clustering constraint will (always) be satisfied. Figure 6.1 illustrates the
formation of the subset on a sample data distribution with 4 clusters. Note that in
the figure, all dimensions of the entire swarm particles are shown as ‘+’ but the red
ones belonging to the subset have at least one (or more) data points closest
whereas the blue ones have none and hence they are discarded.

Once the subset centroids are selected, then the objective is to compose a½j� with
the most promising Dmax centroids selected from the subset in such a way that each

+
+

+

+

+

+

+

+ +

+

+

+

++

+
++

+

+

G2

G4G3

G1

+

+

+

Fig. 6.1 The formation of the centroid subset in a sample clustering example. The black dots
represent data points over 2D space and each colored ‘+’ represents one centroid (dimension) of a
swarm particle

154 6 Dynamic Data Clustering

dimensional component of the aGB particle with K dimensions ðxxK
aGB; jðtÞ; 8j 2

½1; K�Þ; which is formed from a½j� (see step 3.1 of FGBF in MD PSO pseudo-code)
can represent one of the true clusters, i.e., being in a close vicinity of its centroid.
To accomplish this, only such Dmax dimensions that fulfill the two clustering
criteria, Compactness and Separation are selected and then stored in a½j�: To
achieve well-separated clusters and to avoid the selection of more than one cen-
troid representing the same cluster, spatially close centroids are first grouped using
a Minimum Spanning Tree (MST) [15] and then a certain number of centroid
groups, say d 2 ½Dmin; Dmax�; can be obtained simply by breaking (d - 1) longest
MST branches. From each group, one centroid, which provides the highest
Compactness score (i.e., minimum dimensional fitness score,f a; jð Þ) is then
selected and inserted into a½j� as the jth dimensional component. During the

computation of the validity index f ðxxxdaðtÞ
a ; ZÞ in (6.1), f a; jð Þ can simply be set as

the jth term of the summation in Qe expression, such as,

f ða; jÞ ¼

P

8zp2xxxdaðtÞ
a; j

xxxdaðtÞ
a; j � zp

�
�
�

�
�
�

xxxdaðtÞ
a

�
�
�

�
�
�

ð6:2Þ

In Fig. 6.1, a sample MST is formed using 14 subset centroids as the nodes and
13 branches are shown as the red lines connecting the closest nodes (in a minimum
span). Breaking the 3 longest branches (shown as the dashed lines) thus reveals the
4 groups (G1, …, G4) among which one centroid yielding the minimum f a; jð Þ can
then be selected as an individual dimension of the aGB particle with 4 dimensional
components (i.e., d ¼ K ¼ 4; xxK

aGB; jðtÞ; 8j 2 ½1; K�).

6.1.2 Results on 2D Synthetic Datasets

In order to test the clustering performance of the standalone MD PSO, we used the
same 15 synthetic data spaces as shown in Fig. 3.6, and to make the evaluation
independent from the choice of the parameters, we simply used Qe in Eq. (6.1) as
the CVI function. Note that this is just a naïve selection and any other suitable CVI
function can also be selected since it is a black box implementation for MD PSO.
We also use the same PSO parameters and settings given in Sect. 3.4.2, and recall
that the clustering performance degraded significantly for complex datasets or
datasets with large number of clusters (e.g., [10).

As stated earlier, MD PSO with FGBF, besides its speed improvement, has its
primary contribution over the accuracy of the clustering, i.e., converging to the
true number of clusters, K, and correct localization of the centroids. As typical
results shown in Fig. 6.2, MD PSO with FGBF meets the expectations on clus-
tering accuracy, but occasionally results in a slightly higher number of clusters

6.1 Dynamic Data Clustering via MD PSO with FGBF 155

http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3

(over-clustering). This is due to the use of a simple but quite impure validity index
in (6.1) as the fitness function and for some complex clustering schemes it may,
therefore, yield its minimum score at a slightly higher number of clusters. A
sample clustering operation validating this fact is shown in Fig. 6.3. Note that the
true number of clusters is 10, which is eventually reached at the beginning of the
operation, yet the minimum score achieved with K ¼ 10 � 750ð Þ remains higher
than the one with K ¼ 11 � 610ð Þ and than the final outcome, K ¼ 12 � 570ð Þ too.
The main reason for this is that the validity index in (6.1) over long (and loose)
clusters such as ‘C’ and ‘S’ in the figure, yields a much higher fitness score with
one centroid than two or perhaps more and therefore, over all data spaces with
such long and loose clusters (e.g., C4, C8, C10, and C11), the proposed method
yields a slight over-clustering but never under-clustering. Improving the validity
index or adapting a more sophisticated one such as Dunn’s index [16] or many
others, might improve the clustering accuracy.

An important observation worth mentioning is that clustering complexity (more
specifically modality) affects the proposed methods’ mutual performance much
more than the total cluster number (dimension). For instance, MD PSO with FGBF
clustering (with S = 640) over data space C9 can immediately determine the true
cluster number and the accurate location of the centroids with a slight offset (see
Fig. 6.4), whereas this takes around 1,900 iterations for C8. Figure 6.5 shows time
instances where aGB (with index number 640) becomes the GB particle. It

C11: 62 Clusters*

C10: 49 Clusters*

C9: 42 Clusters

C5: 10 Clusters

C4: 12 Clusters*C3: 6 ClustersC2: 5 ClustersC1: 4 Clusters

C7: 16 ClustersC6: 13 Clusters C8: 27 Clusters*

Fig. 6.2 Typical clustering results via MD PSO with FGBF. Over-clustered samples are
indicated with *

156 6 Dynamic Data Clustering

immediately (at the 1st iteration) provides a ‘‘near optimum’’ GB solution with 43
clusters and then the MD PSO process (at the 38th iteration) eventually finds the
global optimum with 42 clusters (i.e., see the 1st snapshot in Fig. 6.4). Afterward
the ongoing MD PSO process corrects the slight positional offset of the cluster
centroids (e.g., compare 1st and 2nd snapshots in Fig. 6.4). So when the clusters
are compact, uniformly distributed, and have similar shape, density, and size, thus
yielding the simplest form, it becomes quite straightforward for FGBF to select the
‘most promising’ dimensions with a greater accuracy. As the complexity
(modality) increases, different centroid assignments and clustering combinations
have to be assessed to converge toward the global optimum, which eventually
becomes a slow and tedious process.

Recall from the earlier discussion (Sect. 5.1.4) about the application of the
proposed methods over nonlinear function minimization (both standalone MD
PSO and MD PSO with FGBF), a certain speed improvement occurs in terms of
reduction in iteration number and a better fitness score is achieved, when using a
larger swarm. However, the computational complexity (per iteration) also
increases since the number of evaluations (fitness computations) is proportional to
the number of particles. The same trade-off also exists for clustering application
and a significantly higher computational complexity of the mutual application of
the proposed methods can occur due to the spatial MST grouping for the selection
of the well-separated centroids. As explained in the previous section, MST is the
essence of choosing the ‘‘most promising’’ dimensions (centroids) so as to form

Fig. 6.3 Fitness score (top) and dimension (bottom) plots vs. iteration number for a MD PSO
with FGBF clustering operation over C4. 3 clustering snapshots at iterations 105, 1,050, and
1,850, are presented below

6.1 Dynamic Data Clustering via MD PSO with FGBF 157

http://dx.doi.org/10.1007/978-3-642-37846-1_5

the best possible aGB particle. However, it is a costly operation ðOðN2
SSÞÞ where

NSS is the subset size, which is formed by those dimensions (potential centroids)
having at least one data item closest to it. Therefore, NSS tends to increase if a
larger swarm size is used and/or MD PSO with FGBF clustering is performed over
large and highly complex data spaces.

Table 6.1 presents average processing times per iteration over all sample data
spaces and using 4 different swarm sizes. All experiments are performed on a
computer with P-IV 3 GHz CPU and 1 GB RAM. Note that the processing times
tend to increase in general when data spaces get larger but the real factor is the
complexity. The processing for a highly complex data structure, such as C10, may
require several times more computations than a simpler but comparable-size data

Fig. 6.4 Fitness score (top) and dimension (bottom) plots vs. iteration number for a MD PSO
with FGBF clustering operation over C9. 3 clustering snapshots at iterations 40, 950, and 1,999,
are presented below

particle
 no.

aGB=640

GB = aGB

iteration no.

Fig. 6.5 Particle index plot for the MD PSO with FGBF clustering operation shown in Fig. 6.4

158 6 Dynamic Data Clustering

T
ab

le
6.

1
P

ro
ce

ss
in

g
ti

m
e

(i
n

m
se

c)
pe

r
it

er
at

io
n

fo
r

M
D

P
S

O
w

it
h

F
G

B
F

cl
us

te
ri

ng
us

in
g

4
di

ff
er

en
t

sw
ar

m
si

ze
s.

N
um

be
r

of
da

ta
it

em
s

is
pr

es
en

te
d

in
pa

re
nt

he
si

s
w

it
h

th
e

sa
m

pl
e

da
ta

sp
ac

e

S
C

1
(2

38
)

C
2

(4
08

)
C

3
(1

,4
41

)
C

4
(1

,2
68

)
C

5
(3

,2
41

)
C

6
(1

,3
14

)
C

7
(3

,0
71

)
C

8
(5

,9
07

)
C

9
(2

,1
92

)
C

10
(3

,2
57

)
C

11
(1

2,
48

6)

80
19

.7
57

14
0

68
8

86
4.

1
23

1.
5

69
0.

8
1,

73
4.

5
84

7.
7

4,
41

8.
2

8,
40

5.
1

16
0

31
.7

10
4.

9
35

7.
3

1,
64

1
1,

35
1.

3
46

5.
5

2,
71

6.
3

3,
84

2.
8

1,
69

9.
4

13
,6

93
.7

26
,6

08
.6

32
0

62
.3

22
2.

9
1,

74
8.

8
4,

54
2.

5
3,

46
3.

9
1,

00
7

3,
84

5.
7

7,
37

2.
7

4,
44

4.
5

55
,2

80
.6

62
,6

41
.9

64
0

15
3.

4
51

2
3,

38
9.

4
17

,0
46

.4
8,

21
0.

1
4,

00
4.

5
11

,3
98

.6
23

,6
69

.8
14

,8
28

.2
15

9,
64

2.
3

21
2,

88
4.

6

6.1 Dynamic Data Clustering via MD PSO with FGBF 159

space, such as C5. Therefore, on such highly complex data spaces, the swarm size
should be kept low, e.g., 80 BS B 160, for the sake of a reasonable processing
time.

6.1.3 Summary and Conclusions

In this section we presented a robust dynamic data clustering technique based on
MD PSO with FGBF. Note that although the ability of determining the optimum
dimension where the global solution exists is gained with MD PSO, its conver-
gence performance is still limited to the same level as bPSO, which suffers from
the lack of diversity among particles. This leads to a premature convergence to
local optima especially when multi-modal problems are optimized at high
dimensions. Ideally the (clustering) complexity can be thought of as synonymous
to (function) modality, i.e., speed and accuracy performances of both methods
drastically degrade with increasing complexity. Needless to say that the true
number of clusters has to be set in advance for bPSO whereas MD PSO finds it as a
part of the optimization process and hence exhibits a slower convergence speed
compared to bPSO. When MD PSO is enhanced with FGBF, a significant speed
improvement is achieved and such cooperation provides accurate clustering results
over complex data spaces. Since the clustering performance also depends on the
validity index used, occasional over-clustering can be encountered where we have
shown that such results indeed correspond to the global minimum of the validity
index function used. As a result, the true number of clusters and accurate centroid
localization are achieved at the expense of increased computational complexity
due to the usage of MST.

6.2 Dominant Color Extraction

6.2.1 Motivation

Dominant Color (DC) extraction is basically a dynamic color quantization process,
which seeks for such prominent color centers that minimize the quantization error.
To this end, studying human color perception and similarity measurement in the
color domain becomes crucial and there is a wealth of research performed in this
field. For example in [17], Broek et al. focused on the utilization of color cate-
gorization (called focal colors) for content-based image retrieval (CBIR) purposes
and introduced a new color matching method, which takes human cognitive
capabilities into account. They exploited the fact that humans tend to think and
perceive colors only in 11 basic categories (black, white, red, green, yellow, blue,
brown, purple, pink, orange, and gray). In [18], Mojsilovic et al. performed a series

160 6 Dynamic Data Clustering

of psychophysical experiments analyzing how humans perceive and measure
similarity in the domain of color patterns. One observation worth mentioning here
is that the human eye cannot perceive a large number of colors at the same time,
nor it is able to distinguish similar (close) colors well. Based on this, they showed
that at the coarsest level of judgment, the human visual system (HVS) primarily
uses dominant colors (i.e., few prominent colors in the scenery) to judge similarity.

Many existing DC extraction techniques, particularly the ones widely used in
CBIR systems such as MPEG-7 Dominant Color Descriptor (DCD), have severe
drawbacks and thus show a limited performance. The main reason for this is
because most of them are designed based on some heuristics or naïve rules that are
not formed with respect to what humans or more specifically the human visual
system (HVS) finds ‘‘relevant’’ in color similarity. Therefore, it is of decisive
importance that human color perception is considered while modeling and
describing any color composition of an image. In other words, when a particular
color descriptor is designed entirely based on HVS and color perception rules,
further discrimination power and hence certain improvements in retrieval perfor-
mance can be achieved. For this reason in this section we shall present a fuzzy
model to achieve a perceptual distance metric over HSV (or HSL) color space,
which provides means of modeling color in a way HVS does. In this way the
discrimination between distinct colors is further enhanced, which in turn improves
the clustering (and DC extraction) performance.

In order to solve the problems of static quantization in color histograms, various
DC descriptors, e.g., [19–23], have been developed using dynamic quantization
with respect to the image color content. DCs, if extracted properly according to the
aforementioned color perception rules, can indeed represent the prominent colors
in any image. They have a global representation, which is compact and accurate;
and they are also computationally efficient. MPEG-7 DC descriptor (DCD) is
adopted as in [20] where the method is designed with respect to HVS color
perceptual rules. For instance, HVS is more sensitive to changes in smooth regions
than in detailed regions. Thus colors are quantized more coarsely in the detailed
regions while smooth regions have more importance. To exploit this fact, a
smoothness weight w pð Þð Þ is assigned to each pixel (p) based on the variance in a
local window. Afterward, the General Lloyd Algorithm (GLA, also referred to as
Linde–Buzo–Gray and it is equivalent to the well-known K-means clustering
method [2]) is used for color quantization. For a color cluster Ci, its centroid ci is
calculated by,

ci ¼
P

wðpÞxðpÞ
P

wðpÞ ; xðpÞ 2 Ci ð6:3Þ

and the initial clusters for GLA is determined by using a weighted distortion
measure, defined as,

Di ¼
X

wðpÞ xðpÞ � cik k2; xðpÞ 2 Ci ð6:4Þ

6.2 Dominant Color Extraction 161

This is used to determine which clusters to split until either a maximum number
of clusters (DCs), Nmax

DC ; is achieved or a maximum allowed distortion criterion, eD;
is reached. Hence, pixels with smaller weights (detailed regions) are assigned
fewer clusters so that the number of color clusters in the detailed regions where the
likelihood of outliers’ presence is high, is therefore suppressed. As the final step,
an agglomerative clustering (AC) is performed on the cluster centroids to further
merge similar color clusters so that there is only one cluster (DC) hosting all
similar color components in the image. A similarity threshold Ts is assigned to the
maximum color distance possible between two similar colors in a certain color
domain (CIE-Luv, CIE_Lab, etc.). Another merging criterion is the color area, that
is, any cluster should have a minimum amount of coverage area, TA, so as to be
assigned as a DC; otherwise, it will be merged with the closest color cluster since it
is just an outlier. Another important issue is the choice of the color space since a
proper color clustering scheme for DC extraction tightly relies on the metric.
Therefore, a perceptually uniform color space should be used and the most
common ones are CIE-Luv and CIE-Lab, which are designed in such a way that
color distances perceived by HVS are also equal in L2 (Euclidean) distance in these
spaces. For CIE-Luv, a typical value for TS is between 10 and 25, TA is between
1–5 % and eD\0:05 [23].

Particularly for dominant color extraction, the optimal (true) number of DCs in
an image is also unknown and should thus be determined within the clustering
process, in an optimized way and without critical parameter dependency. MPEF-7
DCD, as a modified K-means algorithm, does not address these requirements at all.
Therefore, the reason for the use of MD PSO with FGBF clustering is obvious.
Furthermore, humans tend to think and describe color the way they perceive it.
Therefore, in order to achieve a color (dis-) similarity metric taking HVS into
account, HSV (or HSL), which is a perceptual color space and provides means of
modeling color in a way HVS does, is used in the presented technique for
extracting dominant colors. Note that in a typical image with 24-bit RGB repre-
sentation, there can be several thousands of distinct colors, most of which cannot
be perceived by HVS. Therefore, to reduce the computational complexity of RGB
to HSV color transformation and particularly to speed up the dynamic clustering
process via MD PSO and FGBF, a pre-processing step, which creates a limited
color palette in RGB color domain, is first performed. In this way such a massive,
yet unperceivable amount of colors in RGB domain can be reduced to a reasonable
number, e.g., 256 \ n \ 512. To this end, we used the Median Cut method [24]
because it is fast (i.e., O(n)) and for such a value of n, it yields an image which can
hardly be (color-wise) distinguished from the original. Only the RGB color
components in the color palette are then transformed into HSV (or HSL) color
space over which the dynamic clustering technique is applied to extract the
dominant colors, as explained next.

162 6 Dynamic Data Clustering

6.2.2 Fuzzy Model over HSV-HSL Color Domains

Let c1 ¼ fh1; s1; v1g and c2 ¼ fh2; s2; v2g be two colors in HSV domain. Assume
for the sake of simplicity that the hue is between 0 and 360� and both s and v are
unit normalized. The normalized Euclidean distance between s and v can be
defined as,

c1 � c2k k2¼ ðv1 � v2Þ2 þ s1 cosðh1Þ � s2 cosðh2Þð Þ2

þ s1 sinðh1Þ � s2 sinðh2Þð Þ2
ð6:5Þ

During the dynamic clustering process by MD PSO and FGBF, the problem of
using this equation for computing a color distance between a candidate color
centroid, xxd

a; jðtÞ; 8j 2 ½1; d� and a color in the palette, zp 2 xxd
aðtÞ; as in Eq. (6.1)

is that it has a limited discrimination power between distinct colors, as it basically
yields arbitrary fractional numbers despite the fact that HVS finds ‘‘no similarity’’
in between. Therefore, instead of using this typical distance metric for all color
pairs, we adopt a perceptual approach in order to improve discrimination between
different colors. Recall from the earlier discussion that humans can recognize and
distinguish 8 to 12 colors. Recall that in [17], the authors exploited the fact that
humans tend to think and perceive colors only in 11 basic categories. Hence above
a certain hue difference between two colors, it is obvious that they become entirely
different for HVS, e.g., yellow and green are as different as yellow and blue or
cyan or black or purple, etc. So if the hue difference is above a certain limit, a
maximum difference should be used (i.e., 1.0). We have selected an upper limit by
considering distinct colors number as only 8, therefore, the perceptual threshold is,
DTH ¼ 360=8 ¼ 45�: In practice, however, even a lower hue threshold can also be
used; because, two colors for instance with 40� of hue difference can hardly have
any similarity—yet 45� present a safe margin leaving any subjectivity out.

We then use a fuzzy color model for further discrimination. As shown in
Fig. 6.6, for a fixed hue, e.g., red for HSV and green for HSL, a typical saturation
(S) versus Value (V) or Lightness (L) plot can be partitioned into 5 regions: White
(W), Black (B), Gray (G), Color (C), and Fuzzy (F), which is a transition area
among others. W, B, and G are the areas where there is absolutely no color (hue)
component whereas in F, there is a hint of a color presence with a known hue but
perhaps not fully saturated. In C, the color described by its hue, is fully perceivable
with a varying saturation and value. It is a fact that the borders among color
regions are highly subjective and this is the sole reason to use a large Fuzzy region,
so as to address this subjectivity in color perception and thus to contain the error.
This is the reason why there is no need for drawing precise boundaries of F (even
if possible) or the boundaries between W $ G and B $ G because between two
colors, say one in C and one in F, or both in C or both in F, the same distance
metric shall anyway be applied (as in Eq. 6.5) provided that they have hue dif-
ferences less than DTH thus presenting some degree of color similarity. This is not
a condition in other cases where at least one color is from either of the ‘‘no color’’

6.2 Dominant Color Extraction 163

areas. For instance, between W $ G and B $ G, the distance should only be
computed over V (or L) components because they have no perceivable color
components. The boundaries are only important to distinguish areas such as C, W,
and B (and between C$ G) where there is no similarity among them. Therefore,
as shown in the HSL map on the right with blue arrows, if two colors, despite the
fact that they have similar hues (i.e., DH\DTH), happen to be in such regions, the
maximum distance (1.0) shall be applied rather than computing Eq. (6.5).

6.2.3 DC Extraction Results

We have made comparative evaluations against MPEG-7 DCD over a sample
database with 110 images, which are selected from Corel database in such a way
that their prominent colors (DCs) are easy to be recognized by a simple visual
inspection. We used the typical internal PSO parameters c1; c2 and wð Þ as in [25].
Unless otherwise stated, in all experiments in this section, the two critical PSO
parameters, swarm size (S) and number of iterations, (iterNo) are set as 100 and

W W

C

C

F
F

B B

G

G

HSV HSL

Fig. 6.6 Fuzzy model for distance computation in HSV and HSL color domains (best viewed in
color)

164 6 Dynamic Data Clustering

500, respectively. Their effects over the DC extraction are then examined. The
dimension (search) range for DC extraction is set as Dmin ¼ 2; Dmax ¼ 25: This
setting is in harmony with the maximum number of DCs set by the MPEG-7 DCD,
i.e., Nmax

DC ¼ 25: Finally the size of the initial color palette created by the Median
Cut method is set as 256.

6.2.3.1 Comparative Evaluations Against MPEG-7 DCD

In order to demonstrate the strict parameter dependency of MPEG-7 DCD, we
have varied only two parameters, TA and TS while keeping the others fixed, i.e.,
Nmax

DC ¼ 25; and eD ¼ 0:01: Experiments are performed with three sets of param-
eters: P1 : TA ¼ 1 %; TS ¼ 15; P2 : TA ¼ 1 %; TS ¼ 25; and P3 : TA ¼ 5 %; TS ¼
25: The number of DCs (per image) plots obtained from the 110 images in the
sample database using each parameter set can be seen in Fig. 6.7. It is evident from
the figure that the number of DCs is strictly dependent on the parameters used and
can vary significantly, i.e., between 2 and 25.

Figures 6.8 and 6.9 show some visual examples from the sample database. In
both figures, the first column shows the output of the Median-Cut algorithm with
256 (maximum) colors, which is almost identical to the original image. The second
and the rest of the three columns show the back-projected images using the DCs
extracted from the presented technique and MPEG-7 DCD with those three
parameter sets, respectively. Note that the parts, where DC centroids cannot be
accurately localized or missed completely by MPEG-7 DCD, are pointed with
(yellow) arrows. There is an ambiguity for deciding which parameter set yield the
best visual performance although it would have naturally been expected from the
first set, P1 : TA ¼ 1 %; TS ¼ 15; where the highest number of DCs are extracted
(see the red plot in Fig. 6.7), but it is evident that P2 and P3 can also yield
‘‘comparable or better’’ results; however, it is a highly subjective matter.

0 20 40 60 80 100 120
0

5

10

15

20

25

image number

DC Number Ts=15, Ta=1%
Ts=25, Ta=1%
Ts=25, Ta=5%

Fig. 6.7 Number of DC plot from three MPEG-7 DCDs with different parameter set over the
sample database

6.2 Dominant Color Extraction 165

According to the results, one straightforward conclusion is that not only the
number of DCs significantly varies but DC centroids, as well, change drastically
depending on the parameter values used. On the other hand, it is obvious that the best
DC extraction performance is achieved by the presented technique, where none of
the prominent colors are missed or mislocated while the ‘‘true’’ number of DCs is
extracted. However, we do not in any waw claim that the presented technique
achieves the minimum quantization error (or the mean square error, MSE), due to
two reasons. First, the optimization technique is applied over a regularization
(fitness) function where the quantization error minimization (i.e., minimum
Compactness) is only one part of it. The other part, implying maximum Separation,
presents a constraint so that minimum MSE has to be achieved using the least number
of clusters (DCs). The second and the main reason is that the computation of MSE is
typically performed in RGB color space, using the Euclidean metric. Recall that the
presented DC extraction is performed over HSV (or HSL) color domain, which is
discontinuous and requires nonlinear transformations, and using a fuzzy distance
metric with respect to the HVS perceptual rules for enhancing the discrimination
power. Therefore, the optimization in this domain using such a fuzzy metric obvi-
ously cannot ensure a minimum MSE in RGB domain. Besides that, several studies
show that MSE is not an appropriate metric for visual (or perceptual) quality (e.g.,
[26]) and thus we hereby avoid using it as a performance measure.

Median-Cut
(Original) Proposed MPEG-7

DCD (P3)
MPEG-7
DCD (P2)

MPEG-7
DCD (P1)

(a)

(b)

(c)

(d)

(e)

Fig. 6.8 The DC extraction results over 5 images from the sample database (best viewed in
color)

166 6 Dynamic Data Clustering

6.2.3.2 Robustness and Parameter Insensitivity

Due to its stochastic nature, there is a concern about robustness (defined here as
repeatability) of the results. In this section, we perform several experiments to
examine whether or not the results are consistent in regard to accuracy of the DC

Median-Cut
(Original)

MPEG-7
DCD (P3)Proposed

MPEG-7
DCD (P2)

MPEG-7
DCD (P1)

(a)

(b)

(c)

(d)

(e)

Fig. 6.9 The DC extraction results over 5 images from the sample database (best viewed in color)

6.2 Dominant Color Extraction 167

centroids and their numbers. Repeatability would be a critical problem for
deterministic methods such as K-means, Min–Max, etc., if the initial color
(cluster) centroids are randomly chosen, as the original algorithm suggests.
Eventually such methods would create a different clustering scheme each time
they are performed since they are bound to get trapped to the nearest local opti-
mum from the initial position. The solution to this problem induced by MPEG-7
DCD method is to change the random initialization part to a fixed (deterministic)
initial assignment to the existing data points so that the outcome, DC centroids,
and the number of DCs extracted, will be the same each time the algorithm is
performed over a particular image with the same parameters. This would also be a
practical option for the presented technique, i.e., fixing the initialization stage and
using a constant seed for the random number generator that MD PSO uses.
However, as a global optimization method, we shall demonstrate that MD PSO
with FGBF can most of the time converge to (near-) optimal solutions, meaning
that, the number of DCs and their centroids extracted from the presented dynamic
clustering technique shall be consistent and perceptually intact. Furthermore, in
order to show that significant variations for two major parameters, iterNo and S, do
not cause drastic changes on the DC extraction, we will use three parameter sets:
P1: S = 50, iterNo = 500, P2: S = 50, iterNo = 1,000 and P3: S = 100,
iterNo = 1,000. With each parameter set, we run the presented technique (with
random initialization and random seeds) 100 times over two images. The DC
number histograms per image and per parameter set are as shown in Fig. 6.10. In
the first image (left), it is certain that the number of DCs is either 2 or 3, as one
might argue the yellowish color of the dot texture over the object can be counted as
a DC or not. For the image on the right, it is rather difficult to decide the exact
number of DCs, since apart from blue, the remaining 5 colors, red, pink, yellow,
green, and brown have certain shades.

It is, first of all, obvious that the presented technique is parameter invariant since
in both cases, the significant parameter variations, (particularly from P1 to P3 where
both iterNo and S are doubled) only cause a slight difference over the histograms. A
high degree of robustness (repeatability) is also achieved since all runs in the first
image yielded either 2 or 3 DCs, as desired and [95 % of the runs in the second
image, the number of DCs is in the range 16 ± 1. Among the back-projected
images, it is evident that quite similar/almost identical DCs are anyway extracted
even though they have different number of DCs (e.g., see the two with 14 and 18
DCs). As a result of the perceptual model used, the number of DCs can slightly vary,
somewhat reflecting the subjectivity in HVS color perception, but similar DCs are
extracted by the presented technique regardless of the parameter set used.

6.2.3.3 Computational Complexity Analysis

The computational complexity of the DC extraction technique depends on two
distinct processes. First is the pre-processing stage which creates a limited color
palette in RGB color domain using the Median Cut method and the following RGB

168 6 Dynamic Data Clustering

to HSV color transformation. Recall that the Median Cut is a fast method (i.e.,
O(n)), which has the same computational complexity as K-means. The following
color transformation has an insignificant processing time since it is only applied to
a reduced number of colors. As the dynamic clustering technique based on MD
PSO with FGBF is stochastic in nature, a precise computational complexity
analysis is not feasible; however, there are certain attributes, which proportionally
affect the complexity such as swarm size (S), the total number of iteration (IterNo)
and the dimension of the data space, (n). Moreover, the complexity of the validity
index used has a direct impact over the total computational cost since for each

Image 1

Image 2

P1

P3

P2

Fig. 6.10 DC number histograms of 2 sample images using 3 parameter sets. Some typical back-
projected images with their DC number pointed are shown within the histogram plots (best
viewed in color)

6.2 Dominant Color Extraction 169

particle (and at each iteration) it is used to compute the fitness of that particle. This
is the main reason of using such a simple (and parameter independent) validity
index as in Eq. (6.1). In that, the presented fuzzy color model makes the com-
putational cost primarily dependent on the color structure of the image because the
normalized Euclidean distance that is given in Eq. (6.5) and is used within the
validity index function is obviously quite costly; however, recall that it may not be
used at all for such color pairs that do not show any perceptual color similarity.
This further contributes to the infeasibility of performing an accurate computa-
tional complexity analysis for the presented technique. For instance, it takes on the
average of 4.3 and 17.2 s to extract the DCs for the images 1 and 2 shown in
Fig. 6.10, respectively. Nevertheless, as any other EA the DC extraction based on
MD PSO with FGBF is slow in nature and may require indefinite amount of
iterations to converge to the global solution.

6.2.4 Summary and Conclusions

In this section, the dynamic clustering technique based on MD PSO with FGBF is
applied for extracting ‘‘true’’ number of dominant colors in an image. In order to
improve the discrimination among different colors, a fuzzy model over HSV (or
HSL) color space is then presented so as to achieve such a distance metric that
reflects HVS perception of color (dis-) similarity. The DC extraction experiments
using MPEG-7 DCD have shown that the method, although a part of the MPEG-7
standard, is highly dependent on the parameters. Moreover, since it is entirely
based on K-means clustering method, it can create artificial colors and/or misses
some important DCs due to its convergence to local optima, thus yielding critical
over- and under-clustering. Consequently, a mixture of different colors, and hence
artificial DCs or DCs with shifted centroids, may eventually occur. This may also
cause severe degradations over color textures since the regular textural pattern
cannot be preserved if the true DC centroids are missed or shifted. Using a simple
CVI, we have successfully addressed these problems and a superior DC extraction
is achieved with ground-truth DCs. The optimum number of DCs can slightly vary
on some images, but the number of DCs on such images is hardly definitive, rather
subjective and thus in such cases the dynamic clustering based on a stochastic
optimization technique can converge to some near-optimal solutions. The tech-
nique presented in this section shows a high level of robustness for parameter
insensitivity and hence the main idea is that instead of struggling to fine tune
several parameters to improve performance, which is not straightforward—if
possible at all, the focus can now be drawn to designing better validity index
functions or improving the ones for the purpose of higher DC extraction perfor-
mance in terms of perceptual quality.

170 6 Dynamic Data Clustering

6.3 Dynamic Data Clustering via SA-Driven MD PSO

The theory behind the SA-driven PSO and its multi-dimensional extension, SA-
driven MD PSO is well explained in the previous chapter. Recall that unlike the
FGBF method, the main advantage of this global convergence technique is its
generic nature—the applicability to any problem without any need of adaptation or
tuning. Therefore, the clustering application of SA-driven (MD) PSO requires no
changes for both Simultaneously Perturbed Stochastic Approximation (SPSA)
approaches, and the (MD) PSO particles are encoded in the same way as was
explained in Sect. 6.1. In this section we shall focus on the application of SA-
driven MD PSO in dynamic clustering.

6.3.1 SA-Driven MD PSO-Based Dynamic Clustering in 2D
Datasets

In order to test each SA-driven MD PSO approach over clustering, we created 8
synthetic data spaces as shown in Fig. 6.11 where white dots (pixels) represent
data points. For illustration purposes each data space is formed in 2D; however,
clusters are formed with different shapes, densities, sizes, and inter-cluster dis-
tances to test the robustness of clustering application of the proposed approaches
against such variations. Furthermore, recall that the number of clusters determines
the (true) dimension of the solution space in a PSO application and hence it is also
kept varying among data spaces to test the converging accuracy to the true
(solution space) dimension. As a result, significantly varying complexity levels are
established among all data spaces to perform a general-purpose evaluation of each
approach.

Unless stated otherwise, the maximum number of iterations is set to 10,000 as
before; however, the use of cut-off error as a termination criterion is avoided since

C3: 10 ClustersC2: 10 ClustersC1: 6 Clusters

C5: 16 Clusters

C4: 13 Clusters

C6: 19 Clusters C8: 22 ClustersC7: 22 Clusters

Fig. 6.11 2D synthetic data spaces carrying different clustering schemes

6.3 Dynamic Data Clustering via SA-Driven MD PSO 171

it is not feasible to set a unique eC value for all clustering schemes. The positional
range can now be set simply as the natural boundaries of the 2D data space. For
MD PSO, we used the swarm size, S = 200 and for both SA-driven approaches, a
reduced number is used in order to ensure the same number of evaluation among
all competing techniques. w is linearly decreased from 0.75 to 0.2 and we again
used the recommended values for A, a and c as 60, 0.602, and 0.101, whereas a and
c are set to 0.4 and 10, respectively. For each dataset, 20 clustering runs are
performed and the 1st and 2nd order statistics (mean, l and standard deviation, r)
of the fitness scores and dbest values converged are presented in Table 6.2.

According to the statistics in Table 6.2, similar comments can be made as in the
PSO application on nonlinear function minimization, i.e., either SA-driven
approach achieves a superior performance over all data spaces regardless of the
number of clusters and cluster complexity (modality) without any exception. The
superiority hereby is visible on the average fitness scores achieved as well as the
proximity of the average dbest statistics to the optimal dimension. Note that d in
the table is the optimal dimension, which may be different than the true number of
clusters due to the validity index function used.

Some further important conclusions can be drawn from the statistical results in
Table 6.2. First of all, the performance gap tends to increase as the cluster number
(dimension of the solution space) rises. For instance all methods have fitness scores
in a close vicinity for the data space C1 while both SA-driven MD PSO approaches
perform significantly better for C7. Note, however, that the performance gap for C8
is not as high as in C7, indicating SPSA parameters are not appropriate for C8 (as a
consequence of fixed SPSA parameter setting). On the other hand, in some par-
ticular clustering runs, the difference in the average fitness scores in Table 6.2 does
not correspond to the actual improvement in the clustering quality. Take for
instance the two clustering runs over C1 and C2 in Fig. 6.12, where some clustering
instances with the corresponding fitness scores are shown. The first (left-most)
instances in both rows are from severely erroneous clustering operation although
only a mere difference in fitness scores occurs with the instances in the second
column, which have significantly less clustering errors. One the other hand, the
proximity of the average dbest statistics to the optimal dimension may be another
alternative for the evaluation of the clustering performance; however, it is likely
that two runs, one with severely under- and another with over-clustering, may have
an average dbest that is quite close to the optimal dimension. Therefore, the
standard deviation should play an important role in the evaluation and in this aspect;
one can see from the statistical results in Table 6.2 that the second SA-driven MD
PSO approach (A2) in particular achieves the best performance (i.e., converging to
the true number of clusters and correct localization of the centroids) while the
performance of the standalone MD PSO is the poorest.

For visual evaluation, Fig. 6.13 presents the worst and the best clustering
results of the two competing techniques, standalone versus SA-driven MD PSO,
based on the highest (worst) and lowest (best) fitness scores achieved among the
20 runs. The clustering results of the best performing SA-driven MD PSO
approach, as highlighted in Table 6.2, are shown while excluding C1 since results

172 6 Dynamic Data Clustering

T
ab

le
6.

2
S

ta
ti

st
ic

al
re

su
lt

s
fr

om
20

ru
ns

ov
er

8
2D

da
ta

sp
ac

es

C
lu

st
er

s
N

o.
d

M
D

P
S

O
S

A
-d

ri
ve

n
(A

2)
S

A
-d

ri
ve

n
(A

1)

S
co

re
db

es
t

S
co

re
db

es
t

S
co

re
db

es
t

l
r

l
r

l
r

l
r

l
r

l
r

C
1

6
6

1,
45

6.
5

10
8.

07
6.

4
0.

78
1,

45
5.

2
10

3.
43

6.
3

0.
67

1,
47

3.
8

10
9

6.
2

1.
15

C
2

10
12

1,
24

3.
2

72
.1

2
10

.9
5

2.
28

1,
15

8.
3

44
.1

3
12

.6
5

2.
08

1,
17

0.
8

64
.8

8
11

.6
5

1.
56

C
3

10
11

3,
83

3.
7

21
5.

48
10

.4
3.

23
3,

79
9.

7
16

3.
5

11
.3

2.
57

3,
88

4.
8

19
4.

03
11

.5
5

2.
66

C
4

13
14

1,
89

4.
5

32
1.

3
20

.2
3.

55
1,

64
9.

8
24

3.
38

19
.7

5
2.

88
1,

67
6.

2
29

5.
8

19
.6

2.
32

C
5

16
17

5,
75

6
1,

43
9.

8
19

7.
96

5,
12

0.
4

1,
07

6.
3

22
.8

5
4.

17
4,

11
8.

3
33

0.
31

21
.8

2.
87

C
6

19
28

21
,5

33
4,

22
0.

8
19

.9
5

10
.1

6
18

,3
23

1,
68

7.
6

26
.4

5
2.

41
20

,0
16

3,
38

2
22

.3
6.

97
C

7
22

22
3,

24
3

1,
13

3.
3

21
.9

5
2.

8
2,

74
8.

2
87

1.
1

23
2.

51
2,

38
0.

5
1,

05
9.

2
22

.5
5

2.
8

C
8

22
25

6,
50

8.
85

1,
01

4
17

.2
5

10
.4

4
6,

04
5.

1
41

2.
78

26
.4

5
3.

01
5,

87
0.

25
78

8.
6

23
.5

5.
55

6.3 Dynamic Data Clustering via SA-Driven MD PSO 173

of all techniques are quite close for this data space due to its simplicity. Note first
of all that the results of the (standalone) MD PSO deteriorate severely as the
complexity and/or the number of clusters increases. Particularly in the worst
results, the critical errors such as under-clustering often occur with dislocated
cluster centroids.

For instance 4 out of 20 runs for C6 result in severe under-clustering with 3
clusters, similar to the one shown in the figure whereas this goes up to 10 out of 20
runs for C8. Although the clusters are the simplest in shape and in density for C7,
due to the high solution space dimension (e.g., number of clusters = 22), even the
best MD PSO run is not immune to under-clustering errors. In some of the worst
SA-driven MD PSO runs too, a few under-clusterings do occur; however, they are
minority cases in general and definitely not as severe as in MD PSO runs. It is
quite evident from the worst and the best results in the figure that SA-driven MD
PSO achieves a significantly superior clustering quality and usually converges to a
close vicinity of the global optimum solution.

6.3.2 Summary and Conclusions

In this section, SA-driven MD PSO is applied to the dynamic data clustering
problem and tested over 8 synthetic data spaces in 2D with ground truth clusters.
The statistical results obtained from the clustering runs approve the superiority of
SA-driven MD PSO in terms of global convergence. As in SA-driven PSO
application for nonlinear function minimization, we have applied a fixed set of
SPSA parameters and hence we can make the same conclusion as before about the

10 clusters
f = 1120.1

7 clusters
f = 1551.62

6 clusters
f = 1359.17

4 clusters
f = 1625.55

9 clusters
f = 1201.6

9 clusters
f = 1378.1

3 clusters
f = 1439.9

Fig. 6.12 Some clustering runs with the corresponding fitness scores (f)

174 6 Dynamic Data Clustering

effect of the SPSA parameters over the performance. Furthermore, we have
noticed that the performance gap widens especially when the clustering com-
plexity increases since the performance of the standalone MD PSO operation,
without proper guidance, severely deteriorates. One observation worth mentioning
is that the second approach on SA-driven MD PSO has a significant overhead cost,
which is anyway balanced by using a reduced number of particles in the experi-
ments; therefore, the low-cost mode should be used with a limited dimensional
range for those applications with high computational complexity.

C3

C2

C6

C5

C4

C8

C7

MD-PSO SAD MD-PSO

Worst Best BestWorst

Fig. 6.13 The worst and the best clustering results using standalone (left) and SA-driven (right)
MD PSO

6.3 Dynamic Data Clustering via SA-Driven MD PSO 175

6.4 Programming Remarks and Software Packages

As the basics described in Sect. 4.4.2, the major MD PSO test-bed application is
PSOTestApp where several MD PSO applications, mostly based on data (or
feature) clustering, are implemented. In this section, we shall describe the pro-
gramming details for performing MD PSO-based dynamic clustering applications:
(1) 2D data clustering with FGBF, (2) 3D dynamic color quantization, and (3) 2D
data clustering with SA-driven MD PSO. These operations that are plugged into
the template <class T, class X> bool CPSO_MD <T,X>::Perform() function,
the first clustering application performed in CPSOcluster class is explained in the
following section. We shall then explain the implementation details the second
application performed in CPSOcolorQ class. Finally, the third application, which
is also performed in CPSOcluster class will be explained. Note that the interface
CPSOcluster class was described in Sect. 4.4.2, therefore the focus is mainly
drawn on the FGBF plug-in function for both MD PSO modes, FGBF and SA-
driven.

6.4.1 FGBF Operation in 2D Clustering

MD PSO application for 2D clustering operations over synthetic datasets is briefly
explained in Sect. 4.4.2. Recall that there are two sample CVI functions imple-
mented: ValidityIndex() and ValidityIndex2(). Recall further that the data space
(class X) is implemented by the CPixel2D class declared in the Pixel2D.h file.
This class basically contains all the arithmetic operations that can be performed
over 2D pixels with coordinates (m_x and m_y). Table 6.3 presents the initiali-
zation steps performed in the CPSOcluster::PSOThread() function and presents
the rest of the code that initiates MD PSO (with FGBF) clustering operation. The
positional and velocity ranges (psoVelMin, psoVelMax, psoPosMin, psoPos-
Max) are then set according to the frame dimensions. Then the MD PSO object
(m_pPSO) is initialized with these settings. Finally, the call, m_pPSO->Per-
form(), will start the MD PSO clustering operation with the user setting MD PSO
mode as FGBF. The main function in PSOTestApp, CPSO_MD<T,X>::Per-
form(), is identical to the one in PSO_MDlib application except the plug-in FGBF
operations for clustering and feature synthesis. This plugin is called in the fol-
lowing if() statement,

if(m_mode == FGBF)
{

If (m_bFS == true) FGBF_FSFn(xyb, xyb_i, score_min);//FGBF for Syn-
thesis Function…
else FGBF_CLFn(xyb, xyb_i, score_min);//FGBF for CLustering Function…

}//if FGBF…

176 6 Dynamic Data Clustering

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_4

In this section, we shall focus on the FGBF function, FGBF_CLFn(), for any
(2D, 3D, or N-D) clustering operation. The other function, FGBF_FSFn(), for
feature syntheses will be covered in Chap. 10.

Recall from the FGBF application over clustering that in order to achieve well-
separated clusters and to avoid the selection of more than one centroid representing
the same cluster, spatially close centroids are first grouped using a MST and then a
certain number of centroid groups, say d 2 Dmin; Dmax½ �, can be obtained simply by
breaking (d - 1) longest MST branches. From each group, one centroid, which
provides the highest Compactness score [i.e., minimum dimensional fitness
score,f a; jð Þ as given in Eq. (6.2) is then selected and inserted into a j½ � as the jth
dimensional component. Table 6.4 presents the actual code accomplishing the first
two steps: (1) By calling m_fpFindGBDim(m_pPA, m_noP), a subset among all
potential centroids (dimensions of swarm particles) is first formed by verifying the
following: a dimension of any particle is selected into this subset if and only if there
is at least one data point that is closest to it, and (2) Formation of the MST object by
grouping the spatially close centroids (dimensions).

Table 6.5 presents how the first step is performed. In the first loop, it is resetting
the Boolean array that is present in each swarm particle, which actually holds the
a j½ � array. Then it determines which particle has a dimensional component (a
potential centroid) in its current dimension that is closest to one of the data points
(a white pixel in CPixel2D *pPix structure). The closest centroid is then selected
as the candidate dimension (one of the red ‘+’ in Fig. 6.1), all of which are then
used to form the MST within the FGBF_CLFn() function. Note that in the for-
loop over all swarm particles, the dimensions selected within the fpFindGBDim()
function of each particle are then appended into the MST object by pMSTp-
>AppendItem(&pCC[c]). In this way the MST is formed from the selected
dimensions (centroids) as illustrated in Fig. 6.1.

Table 6.3 MD PSO initialization in the function CPSOcluster::PSOThread()

6.4 Programming Remarks and Software Packages 177

http://dx.doi.org/10.1007/978-3-642-37846-1_10

Once the MST is formed, then its longest branches are iteratively broken to
form the group of centroids. Table 6.6 presents the code breaking the longest MST
branches within a loop starting from 1 to Dmax. Recall that the best centroid
candidate selected from each group will be used to form the corresponding
dimensional component of the aGB particle. Each (broken) group is saved within
the MST array, pMSTarr[], and in the second for loop at the bottom, there is a
search for the longest branch among all MSTs stored in this array. Once found, the
MST with the (next) longest branch is then broken into two siblings and each is
added into the array.

Finally, as presented in Table 6.7 the aGB particle (xyb[]) is formed by
choosing the best dimensional components (the potential centroids with the min-
imum f a; jð Þ) where the individual dimensional scores are computed within the
CVI function for all particles and stored in m_bScore member of CPixel2D class.
Note that the if() statement checks whether the aGB formation is within the
dimensional range, d 2 fDmin; Dmaxg: If so, then within a for loop of all MST
groups, the best dimensional component is found and assigned to the corre-
sponding dimension of the aGB particle. Once the aGB particle is formed (for that
dimension), then recall that it has to compete with the best of previous aGB and
gbest particles. If it surpasses, only then it will be the GB particle of the swarm for
that dimension. This is then repeated for each dimensions in the range, d 2
fDmin; Dmaxg; and the GB particle is formed according to the competition result.

Table 6.8 shows the implementation of the CVI function that is given in Eq.
(6.1). Recall that the entire 2D dataset (white pixels) is stored in the link list
s_pPixelQ. In the first for loop each of them is assigned to the closest potential
cluster centroids (stored in the current position of the particle in dimension
_nDim) and stored in an array of link lists pClusterQ[cm]. In this way we can

Table 6.4 MST formation in the function CPSO_MD<T,X>::FGBF_CLFn()

178 6 Dynamic Data Clustering

know the group (cluster) of pixels represented with the cmth cluster centroid. The
second for loop then evaluates each cluster centroid by computing the quantization
error, Qe if and only if it has at least one or more data points assigned to it.
Otherwise, the entire set of potential centroids proposed by the particle in that
dimension will be discarded due to the violation of the second clustering constraint
by assigning its fitness value to a very large value (i.e., 1e ? 9) imitating a
practical infinity value. As mentioned earlier, individual dimensional scores are
also computed and stored in the m_bScore member, that will then be used to
perform FGBF. Finally, the Qe computed for a particle position is multiplied by
the Separation term, ðxdaðtÞÞa; where a ¼ 3=2 in this CVI function and returned as
the fitness (CVI) score of the current position of the particle.

6.4.2 DC Extraction in PSOTestApp Application

In order to perform DC extraction over natural images, the second action, namely
‘‘2. 3D Color Quantization over color images’’ should be selected in the GUI of the

Table 6.5 MST formation in the function CPSO_MD<T,X>::FGBF_CLFn()

6.4 Programming Remarks and Software Packages 179

PSOTestApp application as shown in Fig. 4.4 and then one or more images should
be selected as input. Then the main dialog object from CPSOtestAppDlg class
will use the object from CPSOcolorQ class in the CPSOtestAppDlg::OnDopso()
function to extract the DCs (by the command: m_PSOc.ApplyPSO(m_pXImList,
m_psoParam, m_saParam)). CPSOcolorQ class is quite similar to the CPSO-
cluster having the same CVI function, and an identical code for MD PSO and
FGBF operations. Recall that DC extraction is nothing but a dynamic clustering
operation in 3D color space. Therefore, the few differences lie in the initialization,
formation of the color dataset. Moreover, the template class \X[is now imple-
mented within CColor class, which has three color components, m_c1, m_c2,
m_c3 and the weight of the color, m_weight. As shown in Table 6.9, during the
initialization of the DC extraction operation in the beginning of the CPSOcol-
orQ::PSOThread() function, for the RBG frame buffer of each input image, there
is a pre-processing step, which performs the median-cut method to create a color
palette of number of colors, MAX_COLORS that is a constant value initially set

Table 6.6 Formation of the centroid groups by breaking the MST iteratively

180 6 Dynamic Data Clustering

http://dx.doi.org/10.1007/978-3-642-37846-1_4

to 256. Over the this color palette, the dynamic clustering operation by MD PSO
with FGBF will extract the optimum number of DCs with respect to the CVI
function, CPSOcolorQ::ValidityIndex2(). It can be performed in one of the four
color spaces: RGB, LUV, HSV, and HSL by setting m_usedColorSpace to either
of the CS_RGB, CS_LUV, CS_HSV, CS_HSL variables in the constructor of the
class, CPSOcolorQ. If the color space selected is not RGB, then the color palette
is also converted to the selected color space and stored in the CColor array
s_ppColorA. As explained in Sect. 1.2, each color space has, first of all, a distinct
color distance function, i.e., HSV and HSL uses the distance metric given in Eq.
(6.5), while RGB and LUV use a plain Euclidean function. Each color distance
metric is performed in a distinct static function, which is stored in the function
pointer s_fpDistance. In this way, both the CPSOcolorQ:: ValidityIndex2() and
CPSOcolorQ:: FindGBDim() functions can use this static function pointer to

Table 6.7 Formation of the aGB particle

6.4 Programming Remarks and Software Packages 181

http://dx.doi.org/10.1007/978-3-642-37846-1_1

compute the distance between two colors regardless from the choice of the color
space. Furthermore, the positional range setting for MD PSO swarm particles vary
with respect to the choice of the color space. For example, fXmin; Xmaxg ¼
f0; 0; 0g; f255; 255; 255gf g for RGB color space. As mentioned earlier, apart

from such initialization details, the rest of the operation is identical the 2D
dynamic clustering application explained in the previous section. Once the DCs
are extracted, they are back projected to an output image in the CPSOcolorQ::
GetResults() function as some resultant images are shown in Figs. 6.8 and 6.9.

Table 6.8 The CVI function, CPSOcluster::ValidityIndex2

182 6 Dynamic Data Clustering

6.4.3 SA-DRIVEN Operation in PSOTestApp Application

Both SA-driven approaches, A1 and A2, are implemented within the template
<class T, class X> bool CPSO_MD<T,X>::Perform() function as two separate
plug-ins, and the code for 2D data clustering (or any other MD PSO application) is
identical due to the fact that both approaches are generic. The first SA-driven plug-
in that implements the second SA-driven approach (A2), is called in the following
if() statement,

if(m_mode == SAD)
{//A2: Create aGB particle and compete with gbest at each dimension…

SADFn(xyb, score_min, iter);
}//if SAD…

and the plug-in function, SADFn(), is given in Table 6.10.
Recall that this approach is also an aGB formation, similar to the one given in

Table 6.7 while the underlying method is now SPSA, not FGBF, and thus it can be
used for any MD-PSO application. The new aGB particle is formed on each
dimension by applying SPSA over the personal best position of the gbest particle

Table 6.9 Initialization of DC extraction in CPSOcolorQ::PSOThread() function

6.4 Programming Remarks and Software Packages 183

on that dimension, cur_d: m_pPA[m_gbest[cur_d-m_xdMin]]->GetPB-
Pos(cur_d), basically implementing the pseudo-code given in Table 5.11. There is
a low cost mode, which is applied if the ‘‘LOWCOST’’ definition is made. Once
the new aGB particle for that dimension is created, its fitness function is computed
and then compared with the personal best position of gbest particle in that
dimension. This comparison is also identical to the FGBF operation given in
Table 6.7 and thus excluded in the table above.

The first SA-driven approach is directly plugged into the MD PSO code as
shown in Table. When this SAD mode is chosen (m_mode = SADv1), as the

Table 6.10 The plug-in function SADFn() for the second SA-driven approach, A2

184 6 Dynamic Data Clustering

http://dx.doi.org/10.1007/978-3-642-37846-1_5

pseudo-code given in Table, SPSA will only update the position of the native gbest
particle, m_gbest[cur_dim_a-m_xdMin] on its current dimension cur_dim. As in
the second SA-driven approach, there is a low-cost mode applied with the same
definition ‘‘LOWCOST’’ (Table 6.11).

References

1. J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles (Addison-Wesley, London, 1974)
2. A.K. Jain, M.N. Murthy, P.J. Flynn, Data clustering: A review. ACM Comput. Rev. 31(3),

264–323 (1999)
3. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum, New

York, 1981)
4. A. Antoniou, W.-S. Lu, Practical Optimization, Algorithms and Engineering Applications

(Springer, USA, 2007)
5. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-

Wesley, Reading, MA, 1989), pp. 1–25
6. J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection (MIT Press, Cambridge, MA, 1992)

Table 6.11 The plug-in for the first SA-driven approach, A1

6.4 Programming Remarks and Software Packages 185

7. T. Back, F. Kursawe, Evolutionary Algorithms for Fuzzy Logic: A Brief Overview, in
Proceedings of Fuzzy Logic and Soft Computing, World Scientific, Singapore, Nov 1995,
pp. 3–10

8. U.M. Fayyad, G.P. Shapire, P. Smyth, R. Uthurusamy, Advances in Knowledge Discovery
and Data Mining (MIT Press, Cambridge, MA, 1996)

9. A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, Chichester,
2005)

10. T. Ince, S. Kiranyaz, J. Pulkkinen, M. Gabbouj, Evaluation of global and local training
techniques over feed-forward neural network architecture spaces for computer-aided medical
diagnosis. Expert Syst. Appl. 37(12), 8450–8461 (2010). doi:10.1016/j.eswa.2010.05.033.
(Article ID 4730)

11. M.G. Omran, A. Salman, A.P. Engelbrecht, Dynamic clustering using particle swarm
optimization with application in image segmentation. Pattern Anal. Appl. 8, 332–344 (2006)

12. M.G. Omran, A. Salman, A.P. Engelbrecht, Particle Swarm Optimization for Pattern
Recognition and Image Processing (Springer, Berlin, 2006)

13. F. Van den Bergh, An Analysis of Particle Swarm Optimizers, PhD thesis, Department of
Computer Science, University of Pretoria, Pretoria, South Africa, 2002

14. J. Riget, J.S. Vesterstrom, A Diversity-Guided Particle Swarm Optimizer—The ARPSO,
Technical report, Department of Computer Science, University of Aarhus, 2002

15. J. R. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem, in Proceedings of AMS, vol. 7, no. 1, 1956

16. J.C. Dunn, Well separated clusters and optimal fuzzy partitions. J. Cyber. 4, 95–104 (1974)
17. E.L. Van den Broek, P.M.F. Kisters, L.G. Vuurpijl, The Utilization of Human Color

Categorization for Content-Based Image Retrieval, in Proceedings of Human Vision and
Electronic Imaging IX, San José, CA (SPIE, 5292), 2004, pp. 351–362

18. A. Mojsilovic, J. Kovacevic, J. Hu, R.J. Safranek, K. Ganapathy, Matching and retrieval
based on the vocabulary and grammar of color patterns. IEEE Trans. Image Process. 9(1),
38–54 (2000)

19. A. Abraham, S. Das, S. Roy, Swarm Intelligence Algorithms for Data Clustering, in
Proceedings of Soft Computing for Knowledge Discovery and Data Mining Book, Part IV,
Oct. 25, 2007, pp. 279–313

20. Y. Deng, C. Kenney, M. S. Moore, B.S. Manjunath, Peer Group Filtering and Perceptual
Color Image Quantization, in Proceedings of IEEE International Symposium on Circuits and
Systems, ISCAS, vol. 4, 1999, pp. 21–24

21. J. Fauqueur, N. Boujemaa, Region-Based Image Retrieval: Fast Coarse Segmentation and
Fine Color Description, in Proceedings of IEEE Int. Conf. on Image Processing (ICIP’2002),
(Rochester, USA, 2002), pp. 609–612

22. A. Mojsilovic, J. Hu, E. Soljanin, Extraction of perceptually important colors and similarity
measurement for image matching, retrieval and analysis. IEEE Trans. Image Process. 11,
1238–1248 (2002)

23. B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, A.Yamada, Color and texture descriptors.
IEEE Trans. On Circuits and Systems for VideoTechnology. 11, 703–715 (2001)

24. A. Kruger, Median-cut color quantization. Dr Dobb’s J. Softw. Tools Prof. Program. 19(10),
46–55 (1994)

25. Y. Shi, R.C. Eberhart, A Modified Particle Swarm Optimizer, in Proceedings of the IEEE
Congress on Evolutionary Computation, 1998, pp. 69–73

26. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From error
visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

186 6 Dynamic Data Clustering

http://dx.doi.org/10.1016/j.eswa.2010.05.033

Chapter 7
Evolutionary Artificial Neural Networks

If you just have a single problem to solve, then fine, go ahead
and use a neural network. But if you want to do science and
understand how to choose architectures, or how to go to a new
problem, you have to understand what different architectures
can and cannot do.

Marvin Minsky

Artificial neural networks (ANNs) are known as ‘‘universal approximators’’ and
‘‘computational models’’ with particular characteristics such as the ability to learn
or adapt, to organize or to generalize data. Because of their automatic (self-
adaptive) process and capability to learn complex, nonlinear surfaces, ANN
classifiers have become a popular choice for many machine intelligence and
pattern recognition applications. In this chapter, we shall present a technique for
automatic design of Artificial Neural Networks (ANNs) by evolving to the optimal
network configuration(s) within an architecture space (AS), which is a family of
ANNs. The AS can be formed according to the problem in hand encapsulating
indefinite number of network configurations. The evolutionary search technique is
entirely based on multidimensional Particle Swarm Optimization (MD PSO). With
a proper encoding of the network configurations and parameters into particles, MD
PSO can then seek positional optimum in the error space and dimensional opti-
mum in the AS. The optimum dimension converged at the end of a MD PSO
process corresponds to a unique ANN configuration where the network parameters
(connections, weights, and biases) can then be resolved from the positional opti-
mum reached on that dimension. In addition to this, the proposed technique
generates a ranked list of network configurations, from the best to the worst. This
is indeed a crucial piece of information, indicating what potential configurations
can be alternatives to the best one, and which configurations should not be used at
all for a particular problem. In this chapter, the architecture space is defined over
feed-forward, fully connected ANNs so as to use the conventional techniques such
as back-propagation and some other evolutionary methods in this field. We shall
then apply the evolutionary ANNs over the most challenging synthetic problems to
test its optimality on evolving networks and over the benchmark problems to test
its generalization capability as well as to make comparative evaluations with the
several competing techniques. We shall demonstrate that MD PSO evolves to
optimum or near-optimum networks in general and has a superior generalization
capability. In addition, MD PSO naturally favors a low-dimension solution when it
exhibits a competitive performance with a high dimension counterpart and such a

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_7, � Springer-Verlag Berlin Heidelberg 2014

187

native tendency eventually steers the evolution process toward the compact net-
work configurations in the architecture space instead of more complex ones, as
long as optimality prevails.

7.1 Search for the Optimal Artificial Neural Networks:
An Overview

In the fields of machine learning and artificial intelligence, the evolutionary search
mimics the process of natural evolution for finding the optimal solution to complex
high dimensional, multimodal problems. In other words, it is basically a search
process using an evolutionary algorithm (EA) to determine the best possible
(optimal or near-optimal) design among a large collection of potential solutions
according to a given cost function. Up to date, designing a (near) optimal network
architecture is made by a human expert and requires a tedious trial and error
process. Specifically, determining the optimal number of hidden layers and the
optimal number of neurons in each hidden layer is the most critical task. For
instance, an ANN with no or too few hidden layers may not differentiate among
complex patterns, and instead may lead to only a linear estimation of such—
possibly nonlinear—problem. In contrast, if an ANN has too many nodes/layers, it
might be affected severely by noise in data due to over-fitting, which eventually
leads to a poor generalization. Furthermore, proper training of complex networks
is often a time-consuming task. The optimum number of hidden nodes/layers
might depend on the input/output vector sizes, the amount of training and test data,
and more importantly the characteristics of the problem, e.g., its dimensionality,
nonlinearity, dynamic nature, etc.

The era of ANNs started with the simplified neurons proposed by McCulloch
and Pitts in 1943 [1], and particularly after 1980s, ANNs have widely been applied
to many areas, most of which used feed-forward ANNs trained with the back-
propagation (BP) algorithm. As detailed in Sect. 3.4.3, BP has the advantage of
performing directed search, that is, weights are always updated in such a way as to
minimize the error. However, there are several aspects, which make the algorithm
not guaranteed to be universally useful. The most troublesome is its strict
dependency on the learning rate parameter, which, if not set properly, can either
lead to oscillation or an indefinitely long training time. Network paralysis [2]
might also occur, i.e., as the ANN trains, the weights tend to be quite large values
and the training process can come to a virtual standstill. Furthermore, BP even-
tually slows down by an order of magnitude for every extra (hidden) layer added to
ANN [2]. Above all; BP is only a gradient descent algorithm applied on the error
space, which can be complex and may contain many deceiving local minima
(multi-modal). Therefore, BP gets most likely trapped into a local minimum,
making it entirely dependent on the initial settings. There are many BP variants
and extensions which try to address some or all of these problems, see, e.g., [3–5],

188 7 Evolutionary Artificial Neural Networks

http://dx.doi.org/10.1007/978-3-642-37846-1_3

yet all share one major drawback, that is, the ANN architecture has to be fixed in
advance and the question of which specific ANN structure should be used for a
particular problem still remains unsolved.

Several remedies can be found in the literature, some of which are briefly
described next. Let NI ;NHand NO be the number of neurons in the input, the
hidden, and the output layers of a 2-layers feed-forward ANN. Jadid and Fairbain
in [6] proposed an upper bound on NH such as NH �NTR=ðRþ NI þ NOÞ where
NTR is the number of training patterns. Masters [7] suggested that ANN archi-
tecture should resemble to a pyramid with NH �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NI þ NO
p

. Hecht-Nielsen [8]
proved that NH �NI þ 1 by using Kolmogrov theorem. Such boundaries may only
give an idea about the architecture range that should be applied in general but
many problems with high nonlinearity and dynamic nature may require models
that far exceed these bounds. Therefore, these limits can only serve as a rule of
thumb which should further be analyzed.

Designing the optimal network architecture can be thought as a search process
within the AS containing all potential and feasible architectures. Some attempts are
found in the literature such as the research on constructive and pruning algorithms,
[9–12]. The former methods initially assume a minimal ANN and insert nodes and
links as warranted while the latter proceeds to the opposite way, i.e., starting with a
large network, superfluous components are pruned. However, Angeline et al. in [13]
pointed out that ‘‘Such structural hill climbing methods are susceptible to becoming
trapped at structural local minima.’’ The reasoning behind this is clarified by Miller
et al. in [14], stating that the AS is non-differentiable, complex, deceptive, and
multimodal. Therefore, those constructive and pruning algorithms eventually face
similar problems in the AS as BP does in the error (weight) space. This makes EA
[15] such as genetic algorithm (GA) [16], genetic programming (GP) [17], evo-
lutionary strategies (ES), [18], and evolutionary programming (EP), [19], more
promising candidates for both training and evolving the ANNs. Furthermore, they
have the advantage of being applicable to any type of ANNs, including feed-
forward ANNs, with any type of activation functions.

GAs are a popular form of EAs that rely mainly on reproduction heuristic,
crossover, and random mutations. When used for training ANNs (with a fixed
architecture), many researchers [14, 20–23] reported that GAs can outperform BP
in terms of both accuracy and speed, especially for large networks. However, as
stated by Angeline et al. in [13] and Yao and Liu in [24], GAs are not well suited
for evolving networks. For instance, the evolution process by GA suffers from the
permutation problem [25], indicating that two identical ANNs may have different
representations. This makes the evolution process quite inefficient in producing fit
offsprings. Most GAs use binary string representations for connection weights and
architectures. This creates many problems, one of which is the representation
precision of quantized weights. If weights are coarsely quantized, training might
be infeasible since the required accuracy for a proper weight representation cannot
be obtained. On the other hand, if too many bits are used (fine quantization), binary
strings may be unfeasibly long, especially for large ANNs, and this makes the

7.1 Search for the Optimal Artificial Neural Networks: An Overview 189

evolution process too slow or even impractical. Another problem in this binary
representation is that network components belonging to the same or neighboring
neurons may be placed far apart in the binary string. Due to crossover operation,
the interactions among such components might be lost and hence the evolution
speed is drastically reduced.

EP-based Evolutionary ANNs (ENNs) in [13, 24] have been proposed to
address the aforementioned problems of GAs. The main distinction of EPs from
GAs is that they do not use the problematic crossover operation, instead make the
commitment to mutation as the sole operator for searching over the weight and
ASs. For instance the so-called EPNet, proposed in [24] uses 5 different mutations:
hybrid training, node and connection deletions, node and connection additions. It
starts with an initial population of M random networks, partially trains each net-
work for some epochs, selects the network with the best-rank performance as the
parent network and if it is improved beyond some threshold, further training is
performed to obtain an offspring network, which replaces its parent and the process
continues until a desired performance criterion is achieved. Over several bench-
mark problems, EPNet was shown to discover compact ANNs, which exhibits
comparable performance with the other GA-based evolutionary techniques.
However, it is not shown that EPNet creates optimal or near-optimal architectures.
One potential drawback is the fact that the best network is selected based only on
partial training since the winner network as a result of such initial (limited) BP
training may not lead to the optimal network at the end. Therefore, this process
may eliminate potential networks which may be the optimal or near-optimal ones
if only a proper training would have been performed. Another major drawback is
the algorithm’s dependence on BP as the primary training method which suffers
from the aforementioned problems. Its complex structure can only be suitable or
perhaps feasible for applications where computational complexity is not a crucial
factor and or the training problem is not too complex, as stated in [24], ‘‘However,
EPNet might take a long time to find a solution to a large parity problem. Some of
the runs did not finish within the user-specified maximum number of generations.’’
Finally, as a hybrid algorithm it uses around 15 user-defined parameters/thresholds
some of which are set with respect to the problem. This obviously creates a
limitation in a generic and modular application domain.

7.2 Evolutionary Neural Networks by MD PSO

7.2.1 PSO for Artificial Neural Networks: The Early
Attempts

Recall that PSO, which has obvious ties with the EA family, lies somewhere in
between GA and EP. Yet unlike GA, PSO has no complicated evolutionary
operators such as crossover, selection, and mutation and it is highly dependent on

190 7 Evolutionary Artificial Neural Networks

stochastic processes. PSO has been successfully applied for training feed-forward
[26–29] and recurrent ANNs [30, 31] and several works on this field have shown
that it can achieve a superior learning ability to the traditional BP method in terms
of accuracy and speed. Only few researchers have investigated the use of PSO for
evolutionary design of ANNs or to be precise, the fully connected feed-forward
ANNs, the multilayer perceptrons (MLPs) only with single hidden layer. In [26,
29], the PSO–PSO algorithm and its slightly modified variant, PSO–PSO: weight
decay (PSO–PSO:WD) have been proposed. Both techniques use an inner PSO to
train the weights and an outer one to determine the (optimal) number of hidden
nodes. Both methods perform worse classification performance than EP and GA-
based Evolutionary Neural Networks (ENNs) on three benchmark problems from
Proben1 dataset [32]. Recently, Yu et al. proposed an improved PSO technique,
the so-called IPSONet [28], which achieved a comparable performance in terms of
average classification error rate over the same dataset in Proben1. All potential
network architectures have been encoded into the particles of a single PSO
operation, which evaluates their weights and architecture simultaneously. How-
ever, such an all-in-one encoding scheme makes the dimension of particles too
high and thus the method can be applied to only single hidden layer MLPs with a
limited number of (hidden) nodes (i.e., maximum 7 was used in [28]). Further-
more, it turns out to be a hybrid technique, which uses GA operators such as
mutation and crossover in order to alleviate the stagnation problem of PSO on such
high dimensions.

7.2.2 MD PSO-Based Evolutionary Neural Networks

The major drawback of many PSO variants including the basic method is that they
can only be applied to a search space with a fixed dimension. However, in the field
of ANNs as well as in many of the optimization problems (e.g., clustering, spatial
segmentation, function optimization, etc.), the optimum dimension where the
optimum solution lies, is also unknown and should thus be determined. By a
proper adaptation, MD PSO can be utilized for designing (near-) optimal ANNs. In
this section, the focus is particularly drawn on automatic design of feed-forward
ANNs and the search is carried out over all possible network configurations within
the specified AS. Therefore, no assumption is made about the number of (hidden)
layers and in fact none of the network properties (e.g., feed-forward, differentiable
activation function, etc.) is an inherent constraint of the proposed scheme. All
network configurations in the AS are enumerated into a dimensional hash table
with a proper hash function, which ranks the networks with respect to their
complexity. That is, it associates a higher hash index to a network with a higher
complexity. MD PSO can then use each index as a unique dimension of the search
space where particles can make inter-dimensional navigations to seek an optimum
dimension (dbest) and the optimum solution on that dimension, xŷdbest. The

7.2 Evolutionary Neural Networks by MD PSO 191

optimum dimension found naturally corresponds to a distinct ANN architecture
where the network parameters (connections, weights and biases) can be resolved
from the positional optimum reached on that dimension. One important advantage
of the proposed approach compared to other evolutionary methods is that at the
end of a MD PSO evolution process, apart from the best solution achieved on the
optimum dimension, 2nd, 3rd, etc., ranked solutions, which corresponds to 2nd,
3rd, etc., best network configurations within the AS are readily available. This
further indicates other potential ANN configurations that might be convenient to
use for the particular problem encountered. For example the best solution might
correspond to a highly complex network whereas an acceptable performance can
also be achieved by a much simpler one, say the 3rd best solution provided that it
yields an acceptable performance loss. In addition, the worst architecture(s) will
also be known, indicating what such ANN configurations should not be used at all
for the same problem.

In this section, we shall use MD PSO for evolving fully connected, feed-
forward ANNs or the so-called MLPs. The reasoning behind this choice is that
MLP is the most widely used type of ANNs and conventional methods such as BP
can be used for training. Furthermore, we can perform comparative evaluations
against other PSO techniques such as IPSONet, PSO–PSO, and PSO–PSO:WD, all
of which are used to automatically design MLPs—however, only with a single
hidden layer. This may be a serious drawback especially for complex problems,
and it is the main reason for their inferior performance with respect to other EAs
based on GA and EP. No such assumptions over network properties are made for
MD PSO and the AS can be defined over a wide range of configurations, i.e., say
from a single-layer perceptron (SLP) to complex MLPs with many hidden layers.

We shall construct the AS as explained in Sect. 3.4.3.2 and herein we shall
recall some of the key-points. A range is defined for the minimum and maximum
number of layers, fLmin; Lmaxg and the number of neurons for hidden layer l,
fNl

min;N
l
maxg.The sizes of the input and the output layers are usually determined by

the problem at hand and hence are assumed to be fixed. Therefore, the AS can now
be defined by two range arrays, Rmin ¼ fNI ;N1

min; . . .;NLmax�1
min ;NOg and

Rmax ¼ fNI ;N1
max; . . .;NLmax�1

max ;NOg, the minimum and the maximum number of
neurons allowed for each layer of a MLP, respectively. The size of both arrays is
naturally Lmax þ 1 where the corresponding entries define the range of the lth
hidden layer. The size of the input and the output layers, fNI ;NOg, is fixed and it is
the same for all configurations in the AS for any l-layer MLP, where
Lmin� l� Lmax. Lmin� 1 and Lmax can be set to any value that is suitable for the
problem at hand. The hash function then enumerates all potential MLP configu-
rations into hash indices, starting from the simplest MLP with Lmin � 1 hidden
layers, each has the minimum number of neurons given in Rmin, to the most
complex network with Lmax � 1 hidden layers, each has the maximum number of
neurons given in Rmax. In Sect. 3.4.3.2, the following range arrays are used, Rmin ¼
f9; 1; 1; 2g and Rmax ¼ f9; 8; 4; 2g, which indicate that Lmax ¼ 3. If Lmin ¼ 1
then the hash function enumerates all MLP configurations in the AS as shown in

192 7 Evolutionary Artificial Neural Networks

http://dx.doi.org/10.1007/978-3-642-37846-1_3
http://dx.doi.org/10.1007/978-3-642-37846-1_3

Table 4. Note that in this example, the input and output layer sizes are 9 and 2,
which are eventually fixed for all MLP configurations. The hash function asso-
ciates the 1st dimension to the simplest possible architecture, i.e., a SLP with only
the input and the output layers (9 9 2). From dimensions 2–9, all configurations
are 2-layer MLPs with a hidden layer size varying between 1 and 8 (as specified in
the 2nd entries of Rmin and Rmax). Similarly, for dimensions 10 and higher, 3-layer
MLPs are enumerated where the 1st and the 2nd hidden layer sizes are varied
according to the corresponding entries in Rmin and Rmax. Finally, the most complex
MLP with the maximum number of layers and neurons is associated with the
highest dimension, 41. Therefore, all 41 entries in the hash table span the AS with
respect to the configuration complexity and this eventually determines the
dimensional range of the solution space as Dmin ¼ 1 and Dmax ¼ 41.

At time t, suppose that the particle a in the swarm, n ¼ x1; . . .; xa; . . .; xSf g, has
the positional component formed as,

xxxdaðtÞ
a ðtÞ ¼ fw0

jkg; fw1
jkg; fh

1
kg; fw2

jkg; fh
2
kg; ; :::; fwO�1

jk g; fh
O�1
k g; fhO

k g
n o

where wl
jk

n o
and hl

k

� �
represent the sets of weights and biases of the layer l. Note

that the input layer (l = 0) contains only weights whereas the output layer (l = O)
has only biases. By means of such a direct encoding scheme, the particle a rep-
resents all potential network parameters of the MLP architecture at the dimension
(hash index) xda tð Þ. As mentioned earlier, the dimensional
range,Dmin� xda tð Þ�Dmax, where MD PSO particles can make inter-dimensional
jumps, is determined by the AS defined. Apart from the regular limits such as
positional velocity range,fVmin; Vmaxg, dimensional velocity range,
fVDmin; VDmaxg, the data space can also be limited with a practical range, i.e.,

Xmin� xxdxdaðtÞ
a tð Þ\Xmax. In short, only a few boundary parameters need to be

defined in advance for the MD PSO process, as opposed to other GA-based
methods, or EPNet, which use several parameters and external techniques (e.g.,
Simulated Annealing, BP, etc.) in a complex process. Setting MSE in Eq. (3.15) as
the fitness function enables MD PSO to perform evolutions of both network
parameters and architectures within its native process.

7.2.3 Classification Results on Synthetic Problems

In order to test and evaluate the performance of MD PSO for evolving ANNs,
experiments are performed over a synthetic dataset and real benchmark dataset.
The aim is to test the ‘‘optimality’’ of the networks found with the former dataset,
and the ‘‘generalization’’ ability while performing comparative evaluations against
several popular techniques with the latter dataset. In order to determine which
network architectures are (near-) optimal for a given problem, we apply exhaustive
BP training over every network configuration in the given AS. As mentioned

7.2 Evolutionary Neural Networks by MD PSO 193

http://dx.doi.org/10.1007/978-3-642-37846-1_3

earlier, BP is a gradient descent algorithm, which for a single run, it is susceptible
to get trapped to the nearest local minimum. However, applying BP a large number
of times (e.g., K = 500 is used in the experiments) with randomized initial
parameters eventually increases the chance of converging to (a close vicinity of)
the global minimum in the error space. Note that even though K is high, there is
still no guarantee of converging to the global optimum with BP; however, the aim
is to obtain the ‘‘trend’’ of best performances achievable with every configuration
under equal training conditions. In this way the optimality of the networks evolved
by MD PSO can be justified.

Due to the reasoning given earlier, the AS is defined over MLPs (possibly
including SLP) with any activation function. The input and output layer sizes are
determined by the problem. We use the learning parameter for BP as k ¼ 0:002
and the iteration number is 10,000. The default PSO parameters for MD PSO are
used, i.e. the swarm size, S = 200, and the velocity ranges
Vmax ¼ �Vmin ¼ Xmax=2, and VDmax ¼ �VDmin ¼ Dmax=2. The dimensional range
is determined by the AS defined and the positional range is set as
Xmax ¼ �Xmin ¼ 2. Unless stated otherwise, these parameters are used in all
experiments presented in this section. We use the most typical activation func-
tions: hyperbolic tangent (tanhðxÞ ¼ ex�e�x

exþe�x) or sigmoid (sigmðxÞ ¼ 1=ð1þ e�xÞ)
for problems in this section with bipolar and unipolar inputs.

Many investigations in the literature developing EA-based methods for auto-
matic training or evolving ANNs often present limited testing over quite simple
synthetic problems. For example in [33], the bPSO training algorithm is tested
against BP over function approximation problem of y ¼ 2x2 þ 1. In another work,
[34], a hybrid PSO-BP algorithm is tested over problems such as 3-bit parity and
function approximation of y ¼ sinð2xÞe�x. Note that the dynamic nature of these
functions is quite stationary and it is thus fairly easy to approximate them by
MLPs. EPNet in [24] has been tested over N-bit parity problem where N is kept
within 4�N � 8 (due to feasibility problems mentioned earlier). Similarly, on
such low N-bit parity problems, even the simplest MLPs can provide as satis-
factory solutions as any other. This eventually creates an ambiguity over the
decision of ‘‘optimality’’ since no matter how limited the AS is defined; still many
networks in it can achieve ‘‘near-optimum’’ solutions. For instance consider the
AS defined with Rmin ¼ f3; 1; 1; 1g and Rmax ¼ f3; 8; 4; 1g for the 3-bit parity
problem in [34], more than 90 % of the configurations in such a limited AS can
achieve an MSE less than 10�4. So in order to show the optimality of the network
configurations evolved by MD PSO, we shall first of all, use this ‘‘limited’’ AS (R1:
R1

min ¼ fNI ; 1; 1; NOg and R1
max ¼ fNI ; 8; 4; NOg) containing the simplest 1-, 2-,

or 3-layer MLPs with L1
min ¼ 1 and L1

max ¼ 3. The set contains 41 networks similar
to configurations in Table 4 with different input and output layer dimensions, i.e.,
NI ¼ 9 and NO ¼ 2. Furthermore, we have selected the following the most chal-
lenging set of problems that can be solved with as few as possible ‘‘optimal’’
configurations: function approximation of y ¼ cos x=2ð Þ sin 8xð Þ, 10-bit parity and
two-spiral. In all experiments in this section, we set K = 500 for exhaustive BP

194 7 Evolutionary Artificial Neural Networks

training and perform 100 MD PSO runs, each of which terminates at the end of
1,000 epochs (iterations).

As shown in Fig. 7.1, the function y ¼ cos x=2ð Þ sin 8xð Þhas a highly dynamic
nature within the interval �p; pf g. 100 samples are taken for training where
x coordinate of each sample is fed as input and y is used as the desired (target)
output, so all networks are formed with NI ¼ NO ¼ 1. At the end of each run, the
best fitness score (minimum error) achieved, f xŷdbest

� �
, by the particle with the

index gbest(dbest) at the optimum dimension dbest is stored. The histogram of
dbest, which is a hash index indicating a particular network configuration in R1,
eventually provides the crucial information about the (near-) optimal
configuration(s).

Figure 7.2 shows the dbest histogram and the error statistics plot from the
exhaustive BP training for the function approximation problem. Note that BP can
at best perform a linear approximation for most of the simple configurations (hash
indices) resulting in MSE � 0:125 and only some 3-layer MLPs (in the form of
1 9 M 9 N 9 1 where M = 5,6,7,8 and N = 2, 3, 4) yield convergence to near-
optimal solutions. Accordingly, from the dbest histogram it is straightforward to
see that a high majority (97 %) of the MD PSO runs converges to those near-
optimal configurations. Moreover, the remaining solutions with dbest = 8 and 9
(indicating 2-layer MLPs in 1 9 7 9 1 and 1 9 8 9 1 forms) achieve a com-
petitive performance with respect to the optimal 3-layer MLPs. Therefore, these
particular MD PSO runs are not indeed trapped to local minima; on the contrary,
the exhaustive BP training on these networks could not yield a ‘‘good’’ solution.
Furthermore, MD PSO evolution in this AS confirmed that 4 out of 41

Fig. 7.1 The function y ¼ cos x=2ð Þ sin 8xð Þ plot in interval �p; pf g with 100 samples

7.2 Evolutionary Neural Networks by MD PSO 195

configurations achieve the minimal MSEs (mMSEs), namely 1 9 7 9 4 9 1
(mMSE(40) = 0.0204), 1 9 7 9 2 9 1 (mMSE(23) = 0.0207), 1 9 7 9 3 9 1
(mMSE(33) = 0.0224), and 1 9 8 9 1 (mMSE(9) = 0.0292). These are the four
local peaks in the histogram indicating that the majority of the runs evolves to
these optimum networks whilst the rest converged to similar but near-optimum
configurations, which perform only a slightly worse than the optial solutions.

Figure 7.3 presents the fitness (MSE) and the dimension (hash index) plots per
iteration for two distinct MD PSO runs where the red curves of both plots belong
to the GB particle (the gbest particle at each iteration) and the corresponding plots
of the blue curve exhibit the behavior of the particular gbest particles when the
process terminates (i.e., gbest particles are 31 and 181 for the left and right plots,
respectively). Recall that the main objective of the MD PSO is to find the true
dimension where the global optimum resides and at this dimension, its internal
process becomes identical with the bPSO. The optimum dimensions are 23 and 41
for the left and the right plots. Note that in both experiments, several dimensions
became dbest before they finally converge to the true optimum. Furthermore, it is
interesting to observe the steep descent in MSE of both gbest particles (blue curve)
after they converge to the optimum dimensions.

Recall that an important advantage of MD PSO process is its ability to provide
not only the best network configuration but a ranked list of all possible network
configurations in the AS, especially when MD PSO takes a sufficiently long time
for evolution. Figure 7.4 illustrates this fact with a typical experiment over y ¼
cos x=2ð Þ sin 8xð Þ function approximation problem. The plot on the top is identical
to the one in Fig. 7.2, showing the error statistics of the exhaustive BP training

Fig. 7.2 Error statistics from exhaustive BP training (top) and dbest histogram from 100 MD
PSO evolutions (bottom) for y ¼ cos x=2ð Þ sin 8xð Þ function approximation

196 7 Evolutionary Artificial Neural Networks

whereas the bottom one shows the minimum MSE (best fitness) achieved per
dimension at the end of a MD PSO evolution process with 10,000 iterations (i.e.
mMSEðdÞ ¼ f ðxŷdð10; 000Þ Þ 8d 2 f1; 41g). Note that both curves show a
similar behavior for d [18 (e.g. note the peaks at d = 19–20, 26–27, and 34);
however, only MD PSO provides a few near-optimal solutions for d� 18, whereas
none of the BP runs managed to escape from local minima (the linear approxi-
mation). Most of the optimal and near-optimal configurations can be obtained from
this single run, e.g., the ranked list is {dbest = 23, 24, 40, 33, 22, 39, 30,…}.
Additionally, the peaks of this plot reveal the worst network configurations that
should not be used for this problem, e.g., d = 1, 2, 8, 9, 10, 11, 19, 26, and 34.
Note, however, that this can be a noisy evaluation since there is always the
possibility that MD PSO process may also get trapped in a local minimum on these
dimensions and/or not sufficient amount of particles visited this dimension due to
their natural attraction toward dbest (within the MD PSO process), which might be
too far away. This is the reason of the erroneous evaluation of dimensions 8 and 9,
which should not be on that list.

Figure 7.5 shows the dbest histogram and the error statistics plot from the
exhaustive BP training for 10-bit parity problem, where NI ¼ 10; NO ¼ 1 are used
for all networks. In this problem, BP exhibits a better performance on the majority
of the configurations, i.e., 4� 0�4�mMSEðdÞ� 10�3 for d ¼ 7; 8; 9; 16; 23;
24; 25; and f29; 41g � f34g. The 100 MD PSO runs show that there are in fact
two optimum dimensions: 30 and 41 (corresponding to 3-layer MLPs in
10 9 5 9 3 9 1 and 10 9 8 9 4 9 1 forms), which can achieve minimum
MSEs, i.e., mMSEð30Þ\2� 10�5 and mMSEð41Þ\10�5. The majority of MD
PSO runs, which is represented in the dbest histogram in Fig. 7.5, achieved
MSEðdbestÞ\8� 10�4except the four runs (out of 100) with MSEðdbestÞ[
4� 10�3 for dbest = 4, 18, and 19. These are the minority cases where MD PSO
trapped to local minima but the rest evolved to (near-) optimum networks.

Fig. 7.3 Training MSE (top) and dimension (bottom) plots vs. iteration number for 17th (left)
and 93rd (right) MD PSO runs

7.2 Evolutionary Neural Networks by MD PSO 197

The Two-spirals problem [35], proposed by Alexis Wieland, is highly nonlinear
and promises further interesting properties. For instance, the 2D data exhibits some
temporal characteristics where the radius and the angle of the spiral vary with time.

Fig. 7.4 MSE plots from the exhaustive BP training (top) and a single run of MD PSO (bottom)

Fig. 7.5 Error statistics from exhaustive BP training (top) and dbest histogram from 100 MD
PSO evolutions (bottom) for 10-bit parity problem

198 7 Evolutionary Artificial Neural Networks

The error space is highly multimodal with many local minima, thus methods, such
as BP, encounters severe problems in error reduction [36]. The dataset consists of
194 patterns (2D points), 97 samples in each of the two classes (spirals). The
dataset is now used as a benchmark for ANNs by many researchers. Lang and
Witbrock in [35] reported that a near-optimum solution could not be obtained with
standard BP algorithm over feed-forward ANNs. They tried a special network
structure with short-cut links between layers. Similar conclusions are reported by
Baum and Lang [36] that the problem is unsolvable with 2-layers MLPs with
2 9 50 9 1 configuration. This, without doubt, is one of the hardest problems in
the field of ANNs. Figure 7.6 shows dbest histogram and the error statistics plot
from the exhaustive BP training for the two-spirals problem where
NI ¼ 2; NO ¼ 1. It is obvious that none of the configurations yield a sufficiently
low error value with BP training and particularly BP can at best perform a linear
approximation for most of the configurations (hash indices) resulting MSE � 0:49
and only few 3-layer MLPs (with indices 32, 33, 38 and 41) are able to reduce
MSE to 0.3. MD PSO also shows a similar performance with BP, achieving
0:349�mMSEðdbestÞ� 0:371 for dbest = 25, 32, 33, 38 and 41. These are
obviously the best possible MLP configurations to which a high majority of MD
PSO runs converged.

Fig. 7.6 Error (MSE) statistics from exhaustive BP training (top) and dbest histogram from 100
MD PSO evolutions (bottom) for the two-spirals problem

7.2 Evolutionary Neural Networks by MD PSO 199

7.2.4 Classification Results on Medical Diagnosis Problems

In the previous section a set of synthetic problems that are among the hardest and
the most complex in the ANN field, has been used in order to test the optimality of
MD PSO evolution process, i.e., to see whether or not MD PSO can evolve to the
few (near-) optimal configurations present in the limited AS, R1, which mostly
contains shallow MLPs. In this section we shall test the generalization capability
of the proposed method and perform comparative evaluations against the most
promising, state-of-the-art evolutionary techniques, over a benchmark dataset,
which is partitioned into three sets: training, validation and testing. There are
several techniques [37] to use training and validation sets individually to prevent
over-fitting and thus improve the classification performance in the test data.
However, the use of validation set is not needed for EA-based techniques since the
latter perform a global search for a solution [38]. Although all competing methods
presented in this section use training and validation sets in some way to maximize
their classification rate over the test data, we simply combine the validation and
training sets to use for training.

From Proben1 repository [32], we selected three benchmark classification
problems, breast cancer, heart disease and diabetes, which were commonly used
in the prior work such as PSO–PSO [29], PSO–PSO:WD [26], IPSONet [28],
EPNet [24], GA (basic) [38], and GA (Connection Matrix) [39]. These are medical
diagnosis problems, which mainly present the following attributes:

• All of them are real-world problems based on medical data from human patients.
• The input and output attributes are similar to those used by a medical doctor.
• Since medical examples are expensive to get, the training sets are quite limited.

We now briefly describe each classification problem before presenting the
performance evaluatio.

1. Breast Cancer

The objective of this dataset is to classify breast lumps as either benign or
malignant according to microscopic examination of cells that are collected by
needle aspiration. There are 699 exemplars of which 458 are benign and 241 are
malignant and they are originally partitioned as 350 for training, 175 for valida-
tion, and 174 for testing. The dataset consists of 9 input and 2 output attributes.
The dataset [32] was created and made public at University of Wisconsin Madison
by Dr. William Wolberg.

2. Diabetes

This dataset is used to predict diabetes diagnosis among Pima Indians. All
patients reported are females of at least 21 years old. There are total of 768
exemplars of which 500 are classified as diabetes negative and 268 as diabetes

200 7 Evolutionary Artificial Neural Networks

positive. The dataset is originally partitioned as 384 for training, 192 for valida-
tion, and 192 for testing. It consists of 8 input and 2 output attributes.

3. Heart Disease

The initial dataset consists of 920 exemplars with 35 input attributes, some of
which are severely missing. Hence a second dataset is composed using the cleanest
part of the preceding set, which was created at Cleveland Clinic Foundation by Dr.
Robert Detrano. The Cleveland data is called as ‘‘heartc’’ in Proben1 repository
and contains 303 exemplars but 6 of them still contain missing data and hence
discarded. The rest is partitioned as 149 for training, 74 for validation, and 74 for
testing. There are 13 input and 2 output attributes. The purpose is to predict the
presence of the heart disease according to the input attributes.

The input attributes of all datasets are scaled to between 0 and 1 by a linear
function. Their output attributes are encoded using a 1-of-c representation using
c classes. The winner-takes-all methodology is applied so that the output of the
highest activation designates the class. The experimental setup is identical for all
methods and thus fair comparative evaluations can now be made over the clas-
sification error rate of the test data. In all experiments in this section we mainly use
R1 that is specified by the range arrays, R1

min ¼ fNI ; 1; 1; NOg and R1
max ¼

NI ; 8; 4;N0f g containing the simplest 1-, 2-, or 3-layer MLPs where NI and NO, are
determined by the number of input and output attributes of the classification
problem. In order to collect some statistics about the results, we perform 100 MD
PSO runs, each using 250 particles (S = 250) and terminating at the end of 200
epochs (E = 200).

Before presenting the classification results over the test data, there are some
crucial points worth mentioning. First of all, the aforementioned ambiguity over
the decision of ‘‘optimality’’ is witnessed over the (training) datasets, Diabetes and
particularly the Breast Cancer, as the majority of networks in R1 can achieve
similar performances. Figure 7.7 demonstrates this fact by two error statistics plots
from the exhaustive BP training (K = 500, k ¼ 0:05) with 5,000 epochs. Note that
most of the networks trained over both datasets result in minimum MSE values
that are within a narrow range and it is rather difficult to distinguish or separate one
from the other.

Contrary to the two datasets, the Heart Disease dataset gives rise to four distinct
sets of network configurations, which can achieve training mMSEs below 10�2 as
shown in Fig. 7.8. The corresponding indices (dimensions) to these four optimal
sets are located in the lower vicinity of the indices: dbest = 9, 25, 32, and 41,
where MD PSO managed to evolve either to them or to those neighboring con-
figurations. Note that the majority of MD PSO runs ([50 %) to evolve the simplest
MLPs with single hidden layer (i.e., from Table 4, dbest = 9 is for the MLP
13 9 8 9 2) although BP achieved slightly lower mMSEs over other three (near-)
optimal configurations. The main reason is the fact that MD PSO or PSO in
general performs better in low dimensions and recall that premature convergence
problem might also occur when the search space is in high dimensions [40].

7.2 Evolutionary Neural Networks by MD PSO 201

Therefore, MD PSO naturally favors a low-dimension solution when it exhibits a
competitive performance with a high dimension counterpart. Such a natural ten-
dency eventually leads the evolution process to compact network configurations in
the AS rather than the complex ones, as long as the optimality prevails.

Fig. 7.7 Error statistics from exhaustive BP training over Breast Cancer (top) and Diabetes
(bottom) datasets

Fig. 7.8 Error statistics from exhaustive BP training (top) and dbest histogram from 100 MD
PSO evolutions (bottom) over the Heart Disease dataset

202 7 Evolutionary Artificial Neural Networks

Table 7.1 presents the classification error rate statistics of MD PSO and other
methods from the literature. The error rate in the table refers to the percentage of
wrong classification over the test dataset of a benchmark problem. It is straight-
forward to see that the best classification performance is achieved with the MD
PSO technique over the Diabetes and Breast Cancer datasets. Particularly on the
latter set, roughly half of the MD PSO runs resulted in zero (0 %) error rate,
meaning that perfect classification is achieved. MD PSO exhibits a competitive
performance on the Heart Disease dataset. However, note that both IPSONet and
EPNet (marked as * in Table 7.1), showing slightly better performances, used a
subset of this set (134 for training, 68 for validation, and 68 for testing), excluding
27 entries overall. In [24] this is reasoned as, ‘‘27 of these were retained in case of
dispute, leaving a final total of 270’’.

7.2.5 Parameter Sensitivity and Computational Complexity
Analysis

First we shall demonstrate the effects of network architecture properties on the
classification performance. To do so, a broader AS, R2, is defined with larger and
deeper MLPs with the following range arrays, R2 : R2

min ¼ fNI ; 6; 6; 3;NOg and
R2

max ¼ fNI ; 12; 10; 5; NOg using Lmin ¼ 1; Lmax ¼ 4. The second AS has 148 MLP
configurations as shown in Table 7.2 where NI ¼ 13 and NO ¼ 2. Table 7.3 presents
the classification error rate statistics from both ASs, R1 and R2 for a direct com-
parison. From the table, it is obvious that classification performances with both R1

and R2 are quite similar. This is indeed an expected outcome since all classification
problems require only the simplest MLPs with a single hidden layer for a (near-)
optimal performance. Therefore, no significant performance gain is observed when
deeper and more complex MLPs in R2 are used for these problems and furthermore,

Table 7.1 Mean lð Þ and standard deviation rð Þ of classification error rates (%) over test datasets

Algorithm Dataset

Breast cancer Diabetes Heart disease

l r l r l r

MD PSO 0.39 0.31 20.55 1.22 19.53 1.71
PSO–PSO 4.83 3.25 24.36 3.57 19.89 2.15
PSO–PSO:WD 4.14 1.51 23.54 3.16 18.1 3.06
IPSONet 1.27 0.57 21.02 1.23 18.14* 3.42
EPNet 1.38 0.94 22.38 1.4 16.76* 2.03
GA [38] 2.27 0.34 26.23 1.28 20.44 1.97
GA [39] 3.23 1.1 24.56 1.65 23.22 7.87
BP 3.01 1.2 29.62 2.2 24.89 1.71

7.2 Evolutionary Neural Networks by MD PSO 203

MD PSO’s evolution process among those complex networks might be degraded by
the limited number of iterations (iterNo = 200) used for training and high dimen-
sionality/modality of the solution spaces encountered in R2.

Table 7.2 A sample
architecture space with range
arrays, R2

min ¼ f13; 6; 6; 3; 2g
and R2

max ¼ f13; 12; 10; 5; 2g

Dim. Configuration

1 13 9 2
2 13 9 6 9 2
3 13 9 7 9 2
4 13 9 8 9 2
5 13 9 9 9 2
6 13 9 10 9 2
7 13 9 11 9 2
8 13 9 12 9 2
9 13 9 6 9 6 9 2
10 13 9 7 9 6 9 2
11 13 9 8 9 6 9 2
12 13 9 9 9 6 9 2
13 13 9 10 9 6 9 2
14 13 9 11 9 6 9 2
15 13 9 12 9 6 9 2
16 13 9 6 9 7 9 2
17 13 9 7 9 7 9 2
18 13 9 8 9 7 9 2
19 13 9 9 9 7 9 2
… …
138 13 9 9 9 9 9 5 9 2
139 13 9 10 9 9 9 5 9 2
140 13 9 11 9 9 9 5 9 2
141 13 9 12 9 9 9 5 9 2
142 13 9 6 9 10 9 5 9 2
143 13 9 7 9 10 9 5 9 2
144 13 9 8 9 10 9 5 9 2
145 13 9 9 9 10 9 5 9 2
146 13 9 10 9 10 9 5 9 2
147 13 9 11 9 10 9 5 9 2
148 13 9 12 9 10 9 5 9 2

Table 7.3 Classification error rate (%) statistics of MD PSO when applied to two architecture
spaces

Error rate statistics Breast cancer Diabetes Heart disease

R1 R2 R1 R2 R1 R2

l 0.39 0.51 20.55 20.34 19.53 20.21
r 0.31 0.37 1.22 1.19 1.71 1.90

204 7 Evolutionary Artificial Neural Networks

During a MD PSO process, at each iteration and for each particle, first the
network parameters are extracted from the particle and input vectors are (forward)
propagated to compute the average MSE at the output layer. Therefore, it is not
feasible to accomplish a precise computational complexity analysis of the MD
PSO evolutionary process since this mainly depends on the networks that the
particles converge and in a stochastic process such as PSO this cannot be deter-
mined. Furthermore, it also depends on the AS selected because MD PSO can only
search for the optimal network within the AS. This will give us a hint that the
computational complexity also depends on the problem in hand because particles
eventually tend to converge to those near-optimal networks after the initial period
of the process. Yet we can count certain attributes which directly affects the
complexity, such as the size of the training dataset (T), swarm size (S), and number
of epochs to terminate the MD PSO process (E). Since the computational com-
plexity is proportional with the total number of forward propagations performed,
then it can be in the order of OðSETltÞ where lt is an abstract time for the
propagation and MSE computation over an average network in the AS. Due to the
aforementioned reasons, lt cannot be determined a priori and therefore, the
abstract time can be defined as the expected time to perform a single forward
propagation of an input vector. Moreover the problem naturally determines T, yet
the computational complexity can still be controlled by S and E settings.

7.3 Evolutionary RBF Classifiers for Polarimetric SAR
Images

In this section, we shall draw the focus on evolutionary radial basis function (RBF)
network classifiers that will be evolved to classify terrain data in polarimetric
synthetic aperture radar (SAR) images. For the past few decades image and data
classification techniques have played an important role in the automatic analysis
and interpretation of remote sensing data. Particularly polarimetric SAR data poses
a challenging problem in this field due to the complexity of measured information
from its multiple polarimetric channels. Recently, a number of applications which
use data provided by the SAR systems having fully polarimetric capability have
been increasing. Over the past decade, there has been extensive research in the
area of the segmentation and classification of polarimetric SAR data. In the lit-
erature, the classification algorithms for polarimetric SAR can be divided into
three main classes: (1) classification based on physical scattering mechanisms
inherent in data [41, 42], (2) classification based on statistical characteristics of
data [43, 44], and (3) classification based on image processing techniques [45–47].
Additionally, there has been several works using some combinations of the above
classification approaches [41, 43]. While these approaches to the polarimetric SAR
classification problem can be based on either supervised or unsupervised methods,

7.2 Evolutionary Neural Networks by MD PSO 205

their performance and suitability usually depend on applications and the avail-
ability of ground truth.

As one of the earlier algorithms, Kong et al. [48] derived a distance measure
based on the complex Gaussian distribution and used it for maximum likelihood
(ML) classification of single-look complex polarimetric SAR data. Then, Lee et al.
[49] used the statistical properties of a fully polarimetric SAR to perform a
supervised classification based on complex Wishart distribution. Afterwards,
Cloude and Pottier [50] proposed an unsupervised classification algorithm based
on their target decomposition theory. Target entropy (H) and target average
scattering mechanism (scattering angle, a) calculated from this decomposition
have been widely used in polarimetric SAR classification. For multilook data
represented in covariance or coherency matrices, Lee et al. [43] proposed a new
unsupervised classification method based on a combination of polarimetric target
decomposition [50] and the maximum likelihood classifier using the complex
Wishart distribution. The unsupervised Wishart classifier has an iterative proce-
dure based on the well-known K-means algorithm, and has become a preferred
benchmark algorithm due to its computational efficiency and generally good
performance. However, this classifier still has some significant drawbacks since it
entirely relies on K-means for actual clustering, such as it may converge to local
optima, the number of clusters should be fixed a priori, its performance is sensitive
to the initialization and its convergence depends on several parameters. Recently, a
two-stage unsupervised clustering based on the EM algorithm [51] was proposed
for classification of polarimetric SAR images. The EM algorithm estimates
parameters of the probability distribution functions which represent the elements
of a 9-dimensional feature vector, consisting of six magnitudes and three angles of
a coherency matrix. Markov random field (MRF) clustering based method
exploiting the spatial relation between adjacent pixels in polarimetric SAR images
was proposed in [45, 49], a new wavelet-based texture image segmentation
algorithm was successfully applied to unsupervised SAR image segmentation
problem.

More recently, neural network based approaches [53, 54] for the classification
of polarimetric SAR data have been shown to outperform other aforementioned
well-known techniques. Compared with other approaches, neural network classi-
fiers have the advantage of adaptability to the data without making a priori
assumption of a particular probability distribution. However, their performance
depends on the network structure, training data, initialization, and parameters. As
discussed earlier, designing an optimal ANN classifier structure and its parameters
to maximize the classification accuracy is still a crucial and challenging task. In
this section, another feed-forward ANN type, the RBF network classifier which is
optimally designed by MD PSO, is employed. For this task, RBFs are purposefully
chosen due to their robustness, faster learning capability compared with other
feed-forward networks, and superior performance with simpler network architec-
tures. Earlier work on RBF classifiers for polarimetric SAR image classification
has demonstrated a potential for performance improvement over conventional
techniques [55]. The polarimetric SAR feature vector presented in this section

206 7 Evolutionary Artificial Neural Networks

includes: full covariance matrix, the H/a/A decomposition based features com-
bined with the backscattering power (Span), and the gray level co-occurrence
matrix (GLCM)-based texture features as suggested by the results of previous
studies [56, 57]. The performance of the evolutionary RBF network based clas-
sifier is evaluated using the fully polarimetric San Francisco Bay and Flevoland
datasets acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (AIR-
SAR) at L-band [57–59]. The classification results measured in terms of confusion
matrix, overall accuracy and classification map are compared with other classifiers.

7.3.1 Polarimetric SAR Data Processing

Polarimetric radars often measure the complex scattering matrix, [S], produced by
a target under study with the objective to infer its physical properties. Assuming
linear horizontal and vertical polarizations for transmitting and receiving, [S] can
be expressed as,

S ¼ Shh Shv

Svh Svv

� �

ð7:1Þ

Reciprocity theorem applies in a monostatic system configuration, Shv ¼ Svh:
For coherent scatterers only, the decompositions of the measured scattering matrix
[S] can be employed to characterize the scattering mechanisms of such targets.
One way to analyze coherent targets is the Pauli decomposition [43], which

expresses [S] in the so-called Pauli basis S½ �a¼ 1ffiffi
2
p 1 0

0 1

� �	

; S½ �b¼

1ffiffi
2
p 1 0

0 �1

� �

; S½ �c¼ 1ffiffi
2
p 0 1

1 0

� �

as,

S ¼ Shh Shv

Svh Svv

� �

¼ a S½ �aþb S½ �bþc S½ �c ð7:2Þ

where a ¼ Shh þ Svvð Þ=
ffiffiffi
2
p

; b ¼ Shh � Svvð Þ=
ffiffiffi
2
p

; c ¼
ffiffiffi
2
p

Shv: Hence by means of
the Pauli decomposition, all polarimetric information in [S] could be represented

in a single RGB image by combining the intensities aj j2; bj j2 and cj j2; which
determine the power scattered by different types of scatterers such as single- or
odd-bounce scattering, double- or even-bounce scattering, and orthogonal polari-
zation returns by volume scattering. There are several other coherent decompo-
sition theorems such as the Krogager decomposition [60] the Cameron
decomposition [61], and SDH (Sphere, Diplane, Helix) decomposition [61] all of
which aim to express the measured scattering matrix by the radar as the combi-
nation of scattering responses of coherent scatterers.

Alternatively, the second order polarimetric descriptors of the 3 9 3 average
polarimetric covariance C½ �h i and the coherency T½ �h i matrices can be derived

7.3 Evolutionary RBF Classifiers for Polarimetric SAR Images 207

from the scattering matrix and employed to extract physical information from the
observed scattering process. The elements of the covariance matrix, [C], can be
written in terms of three unique polarimetric components of the complex-valued
scattering matrix:

C11 ¼ ShhS�hh;
C22 ¼ ShvS�hv;
C33 ¼ SvvS�vv;

C21 ¼ S�hhShv

C32 ¼ S�hvSvv

C31 ¼ S�hhSvv

ð7:3Þ

For single-look processed polarimetric SAR data, the three polarimetric com-
ponents (HH, HV, and VV) have a multivariate complex Gaussian distribution and
the complex covariance matrix form has a complex Wishart distribution [49]. Due
to the presence of speckle noise and random vector scattering from surface or
volume, polarimetric SAR data are often multi-look processed by averaging
n neighboring pixels. By using the Pauli-based scattering matrix for a pixel i,
ki ¼ Shh þ Svv; Shh � Svv; 2Shv½ �T=

ffiffiffi
2
p

, the multi-look coherency matrix, T½ �h i, can
be written as,

Th i ¼ 1
n

Xn

i¼1

kik
�T
i ð7:4Þ

Both coherency T½ �h i and covariance C½ �h iare 3 9 3 Hermitian positive semi-
definite matrices, and since they can be converted into one another by a linear
transform, both are equivalent representations of the target polarimetric
information.

The incoherent target decomposition theorems such as the Freeman decom-
position, the Huynen decomposition, and the Cloude-Pottier (or H/a/A) decom-
position employ the second order polarimetric representations of PolSAR data
(such as covariance matrix or coherency matrix) to characterize distributed scat-
terers. The H/a/A decomposition [62] is based on eigenanalysis of the polarimetric
coherency matrix, T½ �h i:

Th i ¼ k1e1e�T1 þ k2e2e�T2 þ k3e3e�T3 ð7:5Þ

where k1 [k2 [k3� 0 are real eigenvalues, e�1 implies complex conjugate of e1

and eT
1 is the transpose of e1. The corresponding orthonormal eigenvectors ei

(representing three scattering mechanisms) are,

ei ¼ eiui cos ai; sin ai cos bie
idi ; sin ai sin bie

ici
� �T ð7:6Þ

Cloude and Pottier defined entropy H, average of set of four angles �a, �b, �d, and
�c, and anisotropy A for analysis of the physical information related to the scattering
characteristics of a medium:

H ¼ �
X3

i¼1

pi log3pi where pi ¼
ki

P3
i¼1 ki

; ð7:7Þ

208 7 Evolutionary Artificial Neural Networks

�a ¼
X3

i¼1

piai; �b ¼
X3

i¼1

pibi;
�d ¼

X3

i¼1

pidi; �c ¼
X3

i¼1

pici; ð7:8Þ

A ¼ p2 � p3

p2 þ p3
: ð7:9Þ

For a multi-look coherency matrix, the entropy, 0�H� 1; represents the
randomness of a scattering medium between isotropic scattering (H = 0) and fully
random scattering (H = 1), while the average alpha angle can be related to target
average scattering mechanisms from single-bounce (or surface) scattering �a � 0ð Þ
to dipole (or volume) scattering �a � p=4ð Þ to double-bounce scattering �a � p=2ð Þ.
Due to basis invariance of the target decomposition, H and �a are roll invariant
hence they do not depend on orientation of the target about the radar line of sight.
Additionally, information about the target’s total backscattered power can be
determined by the span as,

span ¼
X3

i¼1

ki ð7:10Þ

Entropy (H), estimate of the average alpha angle (�a), and span calculated by the
above noncoherent target decomposition method have been commonly used as
polarimetric features of a scatterer in many target classification schemes [43, 63].

7.3.2 SAR Classification Framework

The first operation for SAR classification is naturally the feature extraction. The
SAR feature extraction process presented herein utilizes the complete covariance
matrix information, the GLCM-based texture features, and the backscattering
power (span) combined with the H/a/A decomposition [50]. The feature vector
from the Cloude–Pottier decomposition includes entropy (H), anisotropy (A),
estimates of the set of average angles (�a, �b, �d, and �c), three real eigenvalues
(k1; k2; k3), and span. As suggested by the previous studies [53, 56] appropriate
texture measures for SAR imagery based on the gray level co-occurrence proba-
bilities are included in the feature set to improve its discrimination power and
classification accuracy. In this study, contrast, correlation, energy, and homoge-
neity features are extracted from normalized GLCMs which are calculated using
interpixel distance of 2 and averaging over four possible orientation settings
(h ¼ 0	; 45	; 90	; 135). To reduce the dimensionality (and redundancy) of input
feature space, the principal components transform is applied to these inputs and the
most principal components (which contain about 95 % of overall energy in the
original feature matrix) are then selected to form a resultant feature vector for each
imaged pixel. Dimensionality reduction of input feature information improves
efficiency of learning for a neural network classifier due to a smaller number of

7.3 Evolutionary RBF Classifiers for Polarimetric SAR Images 209

input nodes (to avoid curse of dimensionality) [64] and reduces computation time.
For the purpose of normalizing and scaling the feature vector, each feature
dimension is first normalized to have a zero mean and unity standard deviation
before principal component analysis (PCA) is applied, and following the PCA
outputs are linearly scaled into [-1, 1] interval.

In this section, two distinct training methods for RBF network classifiers, the
traditional back-propagation (BP), and particle swarm optimization (PSO) are
investigated. The RBF networks and the training algorithm BP are introduced in
Sect. 3.4.3.1. For the BP algorithm, RPROP enhancement is used when training
RBF networks. The main difference in RPROP is that it modifies the update-values
for each parameter according to the sequence of signs of partial derivatives. This
only leads to a faster convergence, while the problems of a hill climbing algorithm
are not solved. Further details about BP and RPROP can be found in [65, 66],
respectively. In order to determine (near-) optimal network architecture for a given
problem, we apply exhaustive BP training over every network configuration in the
AS defined. For the training based on MD PSO, first the dynamic clustering based
on MD PSO is applied to determine the optimal (with respect to minimizing a
given cost function for the input–output mapping) number of Gaussian neurons
with their correct parameters (centroids and variances). Afterwards, a single run of
BP can conveniently be used to compute the remaining network parameters,
weights (w), and bias (h) of the each output layer neuron. Note that once the
number of Gaussian networks and their parameters are found, the rest of the RBF
network resembles a SLP where BP training results in a unique solution of weights
and biases. The overview of the classifier framework for polarimetric SAR images
is shown in Fig. 7.9.

Pre-Processing

[C]
Covariance Matrix

Cloude-Pottier
Decomposition

+
Span

Lee Speckle
Filter

GLCM Texture
Features

Feature Extraction

P
C

A
 Transform

Post-Processing

{μ, σ, Ν, ω, θ}

Expert
Labeling

Tr
ai

ni
ng

 S
et

MD PSO Dynamic
Clustering

RBFN Classifier Classification Map
[T]

Coherency Matrix

Fig. 7.9 Overview of the evolutionary RBF network classifier design for polarimetric SAR
image

210 7 Evolutionary Artificial Neural Networks

http://dx.doi.org/10.1007/978-3-642-37846-1_3

7.3.3 Polarimetric SAR Classification Results

In this section, two test images of an urban area (San Francisco Bay, CA) and an
agricultural area (Flevoland, the Netherlands), both acquired by the NASA/Jet
Propulsion Laboratory’s AIRSAR at L-band, were chosen for performance eval-
uation of the RBF network classifier. Both datasets have been widely used in the
polarimetric SAR literature over the past two decades [57–59], and distributed as
multi-look processed and publicly available through the polarimetric SAR data
processing and educational tool (PolSARpro) by ESA [22]. The original four-look
fully polarimetric SAR data of the San Francisco Bay, having a dimension of
900 9 1,024 pixels, provides good coverage of both natural (sea, mountains,
forests, etc.) and man-made targets (buildings, streets, parks, golf course, etc.) with
a more complex inner structure. For the purpose of comparing the classification
results with the Wishart [43] and the NN-based [53] classifiers, the subarea
(Fig. 7.10) with size 600 9 600 is extracted and used. The aerial photographs for
this area which can be used as ground truth are provided by the TerraServer Web
site [67]. In this study, no speckle filtering is applied to originally four-look
processed covariance matrix data and before GLCM-based texture feature gen-
eration to retain the resolution and to preserve the texture information. However,
additional averaging, such as using the polarimetry preserving refined Lee filter
[68] with 5 9 5 window, of coherency matrix should be performed prior to the
Cloude-Pottier decomposition [50]. For MD PSO based clustering algorithm, the
typical internal PSO parameters (c1; c2 and w) are used as in [69], also explained
in [70]. For all experiments in this section, the two critical PSO parameters, swarm
size (S), and number of iterations (IterNo), are set as 40 and 1,000, respectively.

Fig. 7.10 Pauli image of 600 9 600 pixel subarea of San Francisco Bay (left) with the 5 9 5
refined Lee filter used. The training and testing areas for three classes are shown using red
rectangles and circles respectively. The aerial photograph for this area (right) provided by the
U.S. Geological Survey taken on Oct, 1993 can be used as ground-truth

7.3 Evolutionary RBF Classifiers for Polarimetric SAR Images 211

To test the performance of the RBF classifier and compare its classification
results, the same training and testing areas for the three classes from the sub San
Francisco area (as shown on the Pauli-based decomposition image in Fig. 7.10),
the sea (15,810, 6723 pixels, respectively), urban areas (9,362, 6,800), and the
vegetated zones (5,064, 6,534), which are manually selected in an earlier study
[53], are used. The confusion matrix of the evolutionary RBF classifier on the
training and testing areas are given in Table 7.4. The classification accuracy values
are averaged over 10 independent runs. From the results, the main drawback of this
classifier is the separation of vegetated zones from urban areas. Compared to two
other competing techniques, this classifier is able to differentiate better the uniform
areas corresponding to main classes of scattering such as the ocean, vegetation,
and building areas. In Table 7.5, the overall accuracies in training and testing areas
for the RBF classifier trained using the BP and MD PSO algorithms and two
competing methods, the Wishart maximum likelihood (WML) classifier [43] and
the NN-based classifier [53], are compared. The average accuracies over 10
independent runs for the best configuration of the RBF-BP and RBF-MDPSO
classifiers are reported. The RBF classifier trained by the global PSO algorithm is
superior to the NN-based, WML, and RBF-BP-based methods with higher accu-
racies in both training (99.50 %) and testing (98.96 %) areas. Figure 7.11 shows
the classification results on the whole subarea image for the RBF-MDPSO based
classifier. The classification map of the whole San Francisco Bay image produced
by the same classifier is given in Fig. 7.12 for a qualitative (visual) performance
evaluation. The evolutionary RBF classifier has the structure of 11 input neurons,
21 Gaussian neurons which the cluster centroids and variance (lk and rk) are
determined by MD PSO-based dynamic clustering the training data, and 3 output
neurons.

The classification results in Table 7.5 have been produced by using a high
percentage (60 %) of total (training and testing combined) pixels for training. The
RBF network classifier is also tested by limiting the percentage of total pixels
which were used for classifier training to less than 1 % of the total pixels to be
classified. The results over the same testing dataset are shown in Table 7.6. In this
case, the classifier trained by the BP or MD PSO algorithms performed still at a
high level, achieving accuracies over 95 and 98 %, respectively. Generally, a
relatively smaller training dataset can avoid over-fitting and improve generaliza-
tion performance of a classifier over larger datasets.

Table 7.4 Summary table of pixel-by-pixel classification results of the RBF-MDPSO classifier
over the training and testing area of San Francisco Bay dataset

Training data Test data

Sea Urban Vegetation Sea Urban Vegetation

Sea 14,264 4 0 6,804 0 0
Urban 11 9,422 22 10 6,927 23
Vegetation 10 87 4,496 21 162 6,786

212 7 Evolutionary Artificial Neural Networks

In order to test robustness of the RBF network classifier trained by the MD
PSO-based dynamic clustering, 20 independent runs are performed over the San
Francisco area image and the resulting cluster number histogram is plotted in
Fig. 7.13. Additionally, the plots of a typical run showing the fitness score and
dimension versus number of iterations for MD PSO operation are presented in the
left side of Fig. 7.13. Based on overall clustering results, it is found that the
number of clusters (the optimal number of Gaussian neurons) and their centroids
extracted from the MD PSO-based dynamic clustering are generally consistent,
indicating the technique is robust (or repeatable).

Next, the evolutionary RBF classifier with this feature set has been applied to
the polarimetric image of the Flevoland site, an agricultural area (consists of
primarily crop fields and forested areas) in The Netherlands. This original four-
look fully polarimetric SAR data has a dimension of 750 9 1024 pixels with 11

Table 7.5 Overall performance comparison (in percent) for San Francisco Bay dataset

Method Training area Testing area

RBF-BP 98.00 95.70
WML [43] 97.23 96.16
NN [53] 99.42 98.64
RBF-MDPSO 99.50 98.96

Fig. 7.11 The classification results of the RBF-MDPSO classifier over the 600 9 600 sub-image
of San Francisco Bay (black denotes sea, gray urban areas, white vegetated zones)

7.3 Evolutionary RBF Classifiers for Polarimetric SAR Images 213

identified crop classes {stem beans, potatoes, lucerne, wheat, peas, sugar beet, rape
seed, grass, forest, bare soil, and water}. The available ground truth for 11 classes
can be found in [71]. To compare classification results the same 11 training and
testing sets are used with those of the NN-based [53], wavelet-based [59], and
ECHO [72] classifiers. In Table 7.7, the overall accuracies in training and testing
areas of the Flevoland dataset for the RBF classifier trained using the BP and MD
PSO algorithms and three state-of-the-art methods, the ECHO [71], wavelet-based
[59], and NN-based [53] classifiers, are shown. The overall classification accu-
racies of the RBF-based classifier framework are quite high. The percentage of
correctly classified training and testing pixels in the Flevoland L-band image for
the evolutionary (MD PSO) RBF method are given in Table 7.8. Figure 7.14 shows
the classification results of the proposed evolutionary RBF classifier for the
Flevoland image.

Fig. 7.12 The classification results of the RBF-MDPSO technique for the original (900 9 1024)
San Francisco Bay image (black denotes sea, gray urban areas, white vegetated zones)

Table 7.6 Overall performance (in percent) using smaller training set (\%1 of total pixels) for
San Francisco Bay dataset

Method Training area Testing area

RBF-BP 100 95.60
RBF-MDPSO 100 98.54

214 7 Evolutionary Artificial Neural Networks

The computational complexity of the evolutionary RBF classifier depends on
the following distinct processes: the pre-processing stage, feature extraction, post-
processing, and RBF network classifier with MD PSO dynamic clustering-based
training. Computation times of the first three stages are deterministic while a
precise computational complexity analysis for the RBF training stage is not fea-
sible as the dynamic clustering technique based on MD PSO is in stochastic nature.
All experiments in this section are performed on a computer with P-IV 2.4 GHz
CPU and 1 GB RAM. Based on the experiments, for the data of San Francisco Bay
area with a dimension of 900 9 1024 data points (D = 921,600), it takes 30 min
to perform feature extraction and necessary pre- and post-processing stages. Most
of this time is used to extract the GLCM and four texture features calculated from
it. For computational complexity of RBF classifier training using MD PSO pro-
cess, there are certain attributes which directly affect the complexity such as
swarm size (S), the number of iteration (IterNo) to terminate the MD PSO process,
and the dimensions of data space (D). While the problem determines D, the
computational complexity can still be controlled by S and IterNo settings. For the
same dataset, the average (over 10 runs) processing time to perform evolutionary
RBF classifier training is found to be 30 min.

Fig. 7.13 Fitness score (left top) and dimension (left bottom) plots vs. iteration number for a
typical MD PSO run. The resulting histogram plot (right) of cluster numbers which are
determined by the MD PSO method

Table 7.7 Overall performance comparison (in percent) for Flevoland dataset

Method Training area Testing area

ECHO [72] – 81.30
Wavelet-based [59] – 88.28
RBF-BP 95.50 92.05
NN [53] 98.62 92.87
RBF-MDPSO 95.55 93.36

7.3 Evolutionary RBF Classifiers for Polarimetric SAR Images 215

T
ab

le
7.

8
S

um
m

ar
y

ta
bl

e
of

pi
xe

l-
by

-p
ix

el
cl

as
si

fi
ca

ti
on

re
su

lt
s

(i
n

pe
rc

en
t)

of
th

e
R

B
F

-M
D

P
S

O
cl

as
si

fi
er

ov
er

th
e

tr
ai

ni
ng

an
d

te
st

in
g

da
ta

of
F

le
vo

la
nd

T
ra

in
in

g
(t

es
ti

ng
)

da
ta

W
at

er
F

or
es

t
S

te
m

B
ea

ns
P

ot
at

oe
s

L
uc

er
ne

W
he

at
P

ea
s

S
ug

ar
B

ee
t

B
ar

e
S

oi
l

G
ra

ss
R

ap
e

S
ee

d

W
at

er
99

(9
8)

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

1(
2)

F
or

es
t

0(
0)

95
(9

7)
0(

0)
0(

0)
1(

0)
0(

0)
1(

0)
1(

0)
0(

0)
2(

3)
0(

0)
S

te
m

B
ea

ns
0(

0)
0(

0)
95

(9
7)

0(
0)

5(
2)

0(
1)

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

P
ot

at
oe

s
0(

0)
0(

0)
0(

0)
99

(9
6)

0(
0)

0(
0)

0(
0)

1(
4)

0(
0)

0(
0)

0(
0)

L
uc

er
ne

0(
0)

0(
0)

2(
2)

0(
0)

98
(9

7)
0(

0)
0(

0)
0(

0)
0(

0)
0(

1)
0(

0)
W

he
at

0(
0)

0(
0)

0(
0)

0(
0)

2(
4)

91
(8

6)
4(

4)
1(

3)
0(

0)
2(

3)
0(

0)
P

ea
s

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

1(
0)

94
(8

8)
2(

7)
0(

0)
0(

0)
3(

5)
S

ug
ar

B
ee

t
0(

0)
0(

0)
0(

0)
0(

0)
0(

0)
0(

2)
0(

1)
95

(9
1)

0(
0)

4(
5)

1(
1)

B
ar

e
S

oi
l

0(
0)

0(
0)

0(
0)

0(
0)

0(
0)

0(
2)

0(
0)

0(
0)

99
(9

7)
0(

0)
1(

1)
G

ra
ss

0(
0)

0(
0)

0(
0)

0(
0)

1(
0)

0(
1)

0(
0)

2(
4)

0(
0)

97
(9

5)
0(

0)
R

ap
e

S
ee

d
2(

2)
0(

0)
0(

0)
0(

0)
0(

0)
2(

2)
1(

2)
3(

2)
3(

7)
0(

0)
89

(8
5)

216 7 Evolutionary Artificial Neural Networks

7.4 Summary and Conclusions

In this chapter, we drew the focus on evolutionary ANNs by the MD PSO with the
following innovative properties:

• With the proper adaptation, MD PSO can evolve to the optimum network within
an AS for a particular problem. Additionally, it provides a ranked list of all other
potential configurations, indicating that any high rank configuration may be an
alternative to the optimum one, yet some with low ranking, on contrary, should
not be used at all.

• The evolutionary technique is generic and applicable to any type of ANNs in an
AS with varying size and properties, as long as a proper hash function enu-
merates all configurations in the AS with respect to their complexity into proper
hash indices representing the dimensions of the solution space over which MD
PSO seeks for optimality.

• Due to the MD PSO’s native feature of having better and faster convergence to
optimum solution in low dimensions, its evolution process in any AS naturally
yields to compact networks rather than large and complex ones, as long as the
optimality prevails.

Experimental results over synthetic datasets and particularly over several
benchmark medical diagnosis problems show that all the aforementioned

Fig. 7.14 The classification results on the L-band AIRSAR data over Flevoland

7.4 Summary and Conclusions 217

properties and capabilities are achieved in an automatic way and as a result, ANNs
(MLPs) evolved by MD PSO alleviates the need of human ‘‘expertise’’ and
‘‘knowledge’’ for designing a particular network; instead, such virtues may still be
used in a flexible way to define only the size and perhaps some crucial properties
of the AS. In this way further efficiency in terms of speed and accuracy over global
search and evolution process can be achieved.

We then perform MD PSO evolution over another type of feed-forward ANNs,
namely the RBF networks. For the evaluation purposes in a challenging applica-
tion domain, we present a new polarimetric SAR image classification framework,
which is based on an efficient formation of covariance matrix elements, H=a=A
decomposition with the backscattered power (span) information, and GLCM-based
texture features, and the RBF network classifier. Two different learning algo-
rithms, the classical BP and MD PSO, were applied for the proposed classifier
training/evolution. In addition to determining the correct network parameters, MD
PSO also finds the best RBF network architecture (optimum number of Gaussian
neurons and their centroids) within an AS and for a given input data space. The
overall classification accuracies and qualitative classification maps for the San
Francisco Bay and Flevoland datasets demonstrate the effectiveness of the clas-
sification framework using the evolutionary RBF network classifier. Based on the
experimental results using real polarimetric SAR data, the classifier framework
performs well compared to several state-of-the-art classifiers, however, more
experiments using large volume of SAR data should be done for a general
conclusion.

7.5 Programming Remarks and Software Packages

ClassifierTestApp is the major MD PSO test-bed application for classification and
syntheses. It is a console application without a GUI over which dedicated MD PSO
applications, mostly based on evolutionary classifiers and feature syntheses are
implemented. In this section, its programming basics and application of the
standalone evolutionary ANNs over the benchmark machine learning problems
will be introduced while keeping the details of two individual applications, col-
lective network of binary classifiers (CNBC), and evolutionary feature syntheses
(EFS) to the following chapters. ClassifierTestApp is a single-thread application,
and the source file ClassifierTestApp.cpp has two entry point main() functions
separated with a compiler switch _CNBC_TEST. If defined, the test-bed appli-
cation for CNBC will be active within the first main() function; otherwise, the
standalone classifier implementation of evolutionary ANNs will be enabled within
the second main() function. In this chapter, we shall only deal with the latter and
the CNBC and EFS applications will be covered in Chaps. 9 and 10. Therefore, the
switch _CNBC_TEST is not defined and the global Boolean variable bSynthesis,
which enables EFS-based on evolutionary ANNs is set to false.

218 7 Evolutionary Artificial Neural Networks

http://dx.doi.org/10.1007/978-3-642-37846-1_9
http://dx.doi.org/10.1007/978-3-642-37846-1_10

The ClassifierTestApp application contains four types of basic classifiers:
Feed-forward ANNs (or MLPs), Radial Basis Function networks (RBFs), Support
Vector Machines (SVMs), and finally, random forest (RF). Each of them is
implemented in an individual static library: MLPlibX, RBFlibX, SVMlibX, and
RFlibX. In this chapter the focus is drawn only on the MLPlibX using which a
single MLP can be created, trained and used for classification. This library has
been designed with three levels of hierarchy: neuron (implemented in class
CMLPneuron), layer (implemented in class CMLPlayer) and finally the MLP
network (implemented in class CMLPnet). This is a natural design since an MLP
contains one or more layers and a layer contains one or more neurons. A
CMLPnet object, therefore, can be created and initiated with certain number of
layers, and neurons within, and with a particular activation function (and its
corresponding derivative). As shown in Table 7.9, the constructor of the
CMLPnet object has these as the input. The member function, backpropagate ()
can train the MLP network and another function, propagate () can propagate an
input (feature) vector to obtain the actual output (class) vector.

An important property of this MLP library is the ability to encode the entire
MLP parameters (the weights and biases that are stored within each CMLPneuron
object) into an external buffer. Table 7.10 presents the function initializePa-
rameters(),which assigns the externally allocated memory space (with the pointer

Table 7.9 Some members and functions of CMLPnet class

7.5 Programming Remarks and Software Packages 219

*pW) for all MLP parameters. In this way, any MLP network can be represented
(for storage and easy initialization purposes) with a single buffer and the buffer
alone will be sufficient to revive it. This is the key property to store an entire MLP
AS within a single buffer and/or a binary file.

The class CDimHash is responsible of performing the hash function for any AS
from a family of MLP networks. Recall that for a particular AS, a range is defined
for the minimum and maximum number of layers, Lmin; Lmaxf g and number of
neurons for hidden layer l, Nl

min;N
l
max

� �
. As presented in Table 7.11, the con-

structor of the class CDimHash receives these inputs as the variables: int
min_noL, int max_noL, int *min_noN, int *max_noN and hashes the entire AS
by the pointer array, CENNdim** m_pDim. Each m_pDim[] element stores a
distinct MLP configuration in a CENNdim object, which basically stores the
number of layers (m_noL) and number of neurons in each layer (m_pNoN[]).
Therefore, once the AS is hashed, the dth entry (MLP configuration) can be
retrieved by simply calling GetEntry(int d) function. The CDimHash object can
also compute the buffer size of each individual MLP configuration in order to
allocate the memory space for its parameters. This is basically needed to compute
the overall buffer size needed for the entire AS and then the memory space for
each consecutive MLP network can be allocated within the entire buffer. Once the
evolution process is over, the evolved MLPs (their parameters) in the AS can then
be stored in a binary file.

The ClassifierTestApp application primarily uses the static library Classifi-
erLib, to perform evolution (training) and classification over a dataset, which is
partitioned into training and test sets. The library, ClassifierLib, then uses one of
the four static libraries MLPlibX, RBFlibX, SVMlibX, and RFlibX to

Table 7.10 Some members and functions of CMLPnet class

220 7 Evolutionary Artificial Neural Networks

accomplish the task. Therefore, it is the controller library which contains six
primary classes: CMLP_BP, CMLP_PSO, CRBF_BP, CRBF_PSO, CRan-
domForest, and CSVM. The first four are the evolutionary ANNs (MLP and RBF
networks) with the two evolutionary techniques: MD PSO (CMLP_PSO and
CRBF_PSO) and exhaustive BP (CMLP_BP and CRBF_BP). The last two
classes are used to train RF and the network topology of the SVMs. In this chapter,
we shall focus on evolutionary ANNs and particular on MLPs, therefore,
CMLP_PSO and CRBF_PSO will be detailed herein. Besides these six classes
for individual classifiers, the ClassifierLib library also has classes for imple-
menting CNBC topology: CNBCglobal and COneNBC, which can use any of the
six classes (classifier/evolution) as its binary classifier implementation. The pro-
gramming details of CNBC will be covered in Chap. 9.

The classes implementing six classifiers are all inherited from the abstract base
class CGenClassifier, which defines the API member functions and variables.
Table 7.12 presents some of the member functions and variables of the CGen-
Classifier. The evolutionary technique will be determined by the choice of the
class, CMLP_PSO or CMLP_BP. The evolution (training) parameters for either
technique are then conducted by the Init (train_params tp) function with the
train_params variable. Once the evolutionary MLP is initialized as such, it then
becomes ready for the underlying evolutionary process via calling the
Train(class_params cp) function.

Table 7.11 CDimHash class members and functions

7.5 Programming Remarks and Software Packages 221

http://dx.doi.org/10.1007/978-3-642-37846-1_9

Recall that the standalone classifier implementation of evolutionary ANNs is
enabled within the second main() function, that is given in Table 7.13. The initial
dataset, which is partitioned into train and test is loaded within the function calls:

TrainProben1 (‘‘D:\\MSVC6.0\\Source\\proben1\\diabetes\\’’, ‘‘diabetes1.dt’’);//
Arrange Training I/O..
//TrainFunc ();//Function approximation..
//TrainParity (9);//n-bit parity problem..

TrainFunc() is for function approximation where any function can be used.
TrainProben1() loads a data file (*.dt), which is nothing but a text file with a
simple header. In the data file, the train and test datasets’s feature vectors (FVs)
along with their class vectors (CVs) with 1-to-n encoding, are separately stored.
Recall that there are three Proben1 datasets: Breast Cancer, Diabetes, and Heart
Disease each of which reside in a particular folder, which is the first variable of the
function call TrainProben1(). The second variable is the name of the dataset and
there are three alternatives (e.g., ‘‘diabetes1.dt’’, ‘‘diabetes2.dt’’, or

Table 7.12 CGenClassifier class members and functions

222 7 Evolutionary Artificial Neural Networks

‘‘diabetes3.dt’’) each with a random shuffling of train and test partitions. Any of
these functions call basically loads them into following global variables:

float **train_input, **test_input;
float **train_output, **test_output;
int in_size, out_size, train_size, test_size = 0;

The first row of double arrays store the FVs whereas the second row of double
arrays store the target CVs for the train and test datasets, respectively. The vari-
ables in the third row are the size of the FVs and CVs (in_size, out_size) of each
individual data entry, and the size of the train, and test datasets (train_size,
test_size). Once they are loaded from the data file (or from the function), they are
stored into a train_params object, one_cp, along with the rest of the training
parameters. Recall that this object will then be passed to the CMLP_PSO or
CMLP_BP object by calling the Init (train_params tp) function, where the ANN
evolution will be performed by the MD PSO process accordingly. Recall that the
AS is defined by the minimum and maximum number of layers, Lmin; Lmaxf g and
the two range arrays, Rmin ¼ N1;N1

min; . . .;NLmax�1
min ;NO

� �
and

Table 7.13 The main entry function for evolutionary ANNs and classification

7.5 Programming Remarks and Software Packages 223

Rmax ¼ N1;N1
max; . . .;NLmax�1

max ;NO

� �
, one for minimum and the other for maximum

number of neurons allowed for each layer of a MLP. Letting Lmin ¼ 2, these
parameters (called as classifier parameters as they define the AS for ANN clas-
sifiers), are then assigned into a class_params object, one_cp, by calling:

//Put Classifier params..
one_cp.minNoN = minNoN; one_cp.maxNoN = maxNoN;
one_cp.max_noL = MAX_NOL;

After both one_tp and one_cp objects are fully prepared, the classifier object
can be created with the underlying evolution technique, initialized (with the
training parameters), and evolution process can be initiated. Once it is completed,
the object can then be cleaned and destroyed. As shown in Table 7.13, all of these
are accomplished by calling the following code:

pOneClassifier = new CMLP_PSO(); // Create a MLP classifier..
pOneClassifier->Init(one_tp); // this for training..
pOneClassifier->SetActivationMode(aMode); // act. mode for MLPs..
pOneClassifier->Train(one_cp); // Start Evolution..…
…
pOneClassifier->Exit(); delete pOneClassifier; // Clean up..

Note that there is a piece of test code that is discarded from the compilation.
The first part of this code is to test the I/O functions of the classifier, i.e., first to
retrieve the AS buffer (pOneClassifier->GetClassBuffer(size);) and then to save
it into a file (with the name: *_buf.mlp). The second part involves creating a new
classifier object with the AS buffer obtained from the current evolution process.
Recall that the AS buffer is the best solution found by the underlying evolutionary
search process, in this case MD PSO since the classifier object was CMLP_PSO.
Note that this is not a re-evolution process from scratch, rather a new MD PSO
process where the previous best solution (stored within the AS buffer) is injected
into the process (by calling: pTest->Train(buf);). Thus, the new MD PSO process
will take the previous best solution into account to search for an ‘‘even-better’’
one. Finally, the last part of the code loads the AS from the file, which was saved
earlier with the pTest->Save(dir, tit); function call and as in the previous process,
is injected into the new MD PSO process. Note that all three test code examples
cleans up the internal memory by calling the pTest->Exit();

As mentioned earlier, there are two types of evolutionary processes; one is the
ANN evolution as initiated with the pOneClassifier->Train(one_cp) call and
another with the injection of the last best solution as initiated with pTest-
>Train(buf); call. We shall now cover the former implementation over the object
CMLP_PSO (MD PSO evolutionary process over an AS of MLPs). The Reader
will find it straightforward to see the similar kind of approach on the other
implementation and for other objects.

Table 7.14 presents the function CMLP_PSO::Train(class_params cp) where
the MD PSO evolutionary process over an AS of MLPs is implemented. Recall

224 7 Evolutionary Artificial Neural Networks

that the evolution (training) parameters are already fed into the CMLP_PSO
object and several function calls can be made each with a different AS
(class_params), which is immediately stored within the object and used to create
the AS object with the call:

CSolSpace<float>::s_pDimHash = new CDimHash(min_noL, max_noL,
minNoN, maxNoN);

Note that the AS object is a static pointer of the CSolSpace class since it is
primarily needed by the MD PSO process to find the true solution space dimension
(the memory space needed for weights and biases for that particular MLP con-
figuration) from the hash function. There can be several MD PSO runs (i.e.,
no_run) and within the loop of each run, a new MD PSO object is first created,
initialized with the MD PSO parameters (and SPSA parameters if needed) and the
PropagateENN() is set as the fitness function. Note that the dimensional range,
Dmin; Dmax½ �, is set to [0, no_conf], where no_conf is the number of configurations

within the AS. The dimension 0 corresponds to an SLP and the highest dimension,

Table 7.14 The function evolving MLPs by MD PSO

7.5 Programming Remarks and Software Packages 225

no_conf-1, corresponds to the MLP with maximum number of hidden layers and
neurons within.

The member Boolean parameter, bRandParams, determines if there is an AS
buffer already present within the object, from an earlier run. If so, then the AS
buffer, which is nothing but the best solution found in the previous run is then
injected into the current MD PSO object via pPSO->Inject(m_pArSp-
Buf+m_hdrAS) call.

Table 7.15 presents the fitness function PropagateENN() in the CMLP_PSO
class. Recall that the position, pPos, of each MD PSO particle in its current
dimension, pPos->GetDim(), represents the potential solution, i.e., the MLP with
a configuration corresponding to that dimension. The configuration of the MLP can
be retrieved from the AS object by calling:

CENNdim* pConf = CSolSpace<float>::s_pDimHash->GetEntry(pPos->Get-
Dim());//get conf..

A new MLP is then created with the configuration stored in pConf and the
parameters of the MLP are assigned from the MD PSO particle position by calling:

CMLPnet *net = new CMLPnet (pConf->m_pNoN, pConf->m_noL);
net->initializeParameters(pPos->GetPos(), pPos->GetSize());

The rest of the function simply performs the forward propagation of the features
of the training dataset and computes the average training MSE, which is the fitness

Table 7.15 The fitness function of MD PSO process in the CMLP_PSO class

226 7 Evolutionary Artificial Neural Networks

to be minimized by the MD PSO process by seeking the best (optimal) MLP
configuration.

The MD PSO library is almost identical to the one in PSOTestApp application
except the CSolSpace class implementation. Table 7.16 shows the two con-
structors of the CSolSpace class. It is evident that the dimension of an MD PSO
particle within the dimensional range is used as the hash index (m_hDim) and the
true solution space dimension, m_nDim, is equivalent to the total memory space
for all MLP parameters (weights and biases). This is where the AS object
(CSolSpace<float>::s_pDimHash) is used to retrieve the number of neurons in
each layer and use them to compute m_nDim as in the for loop. As a common
operation with the earlier CSolSpace class implementation, once the space is
allocated for the positional component of the CSolSpace object, then it is ran-
domized within the positional range passed as variable: [min, max].

References

1. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 7, 115–133 (1943)

2. Y. Chauvin, D.E. Rumelhart, Back Propagation: Theory, Architectures, and Applications
(Lawrence Erlbaum Associates Publishers, Muhwah, 1995)

Table 7.16 The constructors of the CSolSpace class

7.5 Programming Remarks and Software Packages 227

3. S.E. Fahlman, An empirical study of learning speed in back-propagation. Technical report,
CMU-CS-88-162, Carnegie-Mellon University, Pittsburgh, 1988

4. R.S. Sutton, Two problems with back-propagation and other steepest-descent learning
procedures for networks, in Proceedings of the 8th Annual Conference Cognitive Science
Society, Erlbaum, Hillsdale, 1986, pp. 823–831

5. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice hall, Englewood Cliffs,
1998)

6. M.N. Jadid, D.R. Fairbairn, Predicting moment-curvature parameters from experimental data.
Eng. Appl. Artif. Intell. 9(3), 309–319 (1996)

7. T. Masters, Practical Neural Network Recipes in C++ (Academic Press, Boston, 1994)
8. R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, 1990)
9. N. Burgess, A constructive algorithm that converges for real-valued input patterns. Int.

J. Neural Sys. 5(1), 59–66 (1994)
10. M. Frean, The upstart algorithm: A method for constructing and training feed-forward neural

networks. Neural Comput. 2(2), 198–209 (1990)
11. Y. LeCun, J.S. Denker, S.A. Solla, Optimal brain damage. Adv. Neural Inf. Process. Syst. 2,

598–605 (1990)
12. R. Reed, Pruning algorithms—a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)
13. P.J. Angeline, G.M. Sauders, J.B. Pollack, An evolutionary algorithm that constructs

recurrent neural networks. IEEE Trans. Neural Netw. 5, 54–65 (1994)
14. G.F. Miller, P.M. Todd, S.U. Hegde, Designing neural networks using genetic algorithms, in

Proceedings of the 3rd International Conference Genetic Algorithms Their Applications,
1989, pp. 379–384

15. A. Antoniou, W.-S. Lu, Practical Optimization, Algorithms and Engineering Applications
(Springer, New York, 2007)

16. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-
Wesley, Reading, 1989), pp. 1–25

17. J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT Press, Cambridge, MA, 1992)

18. T. Back, F. Kursawe, Evolutionary algorithms for fuzzy logic: a brief overview, in Fuzzy
Logic and Soft Computing, World Scientific, Singapore, 1995, pp. 3–10

19. U.M. Fayyad, G.P. Shapire, P. Smyth, R. Uthurusamy, Advances in Knowledge Discovery
and Data Mining (MIT Press, Cambridge, 1996)

20. P. Bartlett, T. Downs, Training a neural network with a genetic algorithm, Technical report,
Department of Electrical Engineering, University Queensland, Jan 1990

21. J.V. Hansen, R.D. Meservy, Learning experiments with genetic optimization of a generalized
regression neural network. Decis. Support Syst. 18(3–4), 317–325 (1996)

22. V.W. Porto, D.B. Fogel, L.J. Fogel, Alternative neural network training methods. IEEE
Expert 10, 16–22 (1995)

23. D.L. Prados, Training multilayered neural networks by replacing the least fit hidden neurons,
in Proceedings of IEEE SOUTHEASTCON’ 92, (1992), pp. 634–637

24. X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural networks. IEEE
Trans. Neural Netw. 8(3), 694–713 (1997)

25. R.K. Belew, J. McInerney, N.N. Schraudolph, Evolving networks: using genetic algorithm
with connectionist learning, Technical report CS90-174 revised, Computer Science
Engineering Department, University of California-San Diego, Feb 1991

26. M. Carvalho, T.B. Ludermir, Particle swarm optimization of neural network architectures and
weights, in Proceedings of the 7th International Conference on Hybrid Intelligent Systems,
Washington DC, 17–19 Sep 2007, pp. 336–339

27. M. Meissner, M. Schmuker, G. Schneider, Optimized particle swarm optimization (OPSO)
and its application to artificial neural network training. BMC Bioinform. 7, 125 (2006)

28. J. Yu, L. Xi, S. Wang, An Improved Particle Swarm Optimization for Evolving Feed-forward
Artificial Neural Networks. Neural Process. Lett. 26(3), 217–231 (2007)

228 7 Evolutionary Artificial Neural Networks

29. C. Zhang, H. Shao, An ANN’s evolved by a new evolutionary system and its application, in
Proceedings of the 39th IEEE Conference on Decision and Control, vol. 4 (2000),
pp. 3562–3563

30. J. Salerno, Using the particle swarm optimization technique to train a recurrent neural model,
in Proceedings of IEEE Int. Conf. on Tools with Artificial Intelligence, (1997), pp. 45–49

31. M. Settles, B. Rodebaugh, T. Soule, Comparison of genetic algorithm and particle swarm
optimizer when evolving a recurrent neural network. Lecture Notes in Computer Science
(LNCS) No. 2723, in Proceedings of the Genetic and Evolutionary Computation Conference
2003 (GECCO 2003), (Chicago, IL, USA, 2003), pp. 151–152

32. L. Prechelt, Proben1—a set of neural network benchmark problems and benchmark rules,
Technical report 21/94, Fakultät für Informatik, Universität Karlsruhe, Germany, Sept 1994

33. S. Guan, C. Bao, R. Sun, Hierarchical incremental class learning with reduced pattern
training. Neural Process. Lett. 24(2), 163–177 (2006)

34. J. Zhang, J. Zhang, T. Lok, M.R. Lyu, A hybrid particle swarm optimization-back-
propagation algorithm for feed forward neural network training. Appl. Math. Comput. 185,
1026–1037 (2007)

35. K.J. Lang, M.J. Witbrock, Learning to tell two spirals apart, in Proceedings of the 1988
Connectionist Models Summer School, San Mateo, 1988

36. E. Baum, K. Lang, Constructing hidden units using examples and queries, in Advances in
Neural Information Processing Systems, vol. 3 (San Mateo, 1991), pp. 904–910

37. M.H. Hassoun, Fundamentals of Artificial Neural Networks (MIT Press, Cambridge, 1995)
38. R.S. Sexton, R.E. Dorsey, Reliable classification using neural networks: a genetic algorithm

and back propagation comparison. Decis. Support Syst. 30, 11–22 (2000)
39. E. Cantu-Paz, C. Kamath, An empirical comparison of combinations of evolutionary

algorithms and neural networks for classification problems. IEEE Trans. Syst. Man Cybern.
Part B, 35, 915–927 (2005)

40. G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, H.-J. Zhang, Image Classification with kernelized
spatial-context. IEEE Trans. Multimedia, 12(4), 278–287 (2010). doi:10.1109/
TMM.2010.2046270

41. E. Pottier, J.S. Lee, Unsupervised classification scheme of PolSAR images based on the
complex Wishart distribution and the H/A/a. Polarimetric decomposition theorem, in
Proceedings of the 3rd European Conference on Synthetic Aperture Radar (EUSAR 2000),
(Munich, Germany, 2000), pp. 265–268

42. J.J. van Zyl, Unsupervised classification of scattering mechanisms using radar polarimetry
data. IEEE Trans. Geosci. Remote Sens. 27, 36–45 (1989)

43. J.S. Lee, M.R. Grunes, T. Ainsworth, L.-J. Du, D. Schuler, S.R. Cloude, Unsupervised
classification using polarimetric decomposition and the complex Wishart classifier. IEEE
Trans. Geosci. Remote Sens. 37(5), 2249–2257 (1999)

44. Y. Wu, K. Ji, W. Yu, Y. Su, Region-based classification of polarimetric SAR images using
Wishart MRF. IEEE Geosci. Rem. Sens. Lett. 5(4), 668–672 (2008)

45. Z. Ye, C.-C. Lu, Wavelet-Based Unsupervised SAR Image Segmentation Using Hidden
Markov Tree Models, in Proceedings of the 16th International Conference on Pattern
Recognition (ICPR’02), (2002), pp. 729–732

46. C.P. Tan, K.S. Lim, H.T. Ewe, Image processing in polarimetric SAR images using a hybrid
entropy decomposition and maximum likelihood (EDML), in Proceedings of the
International Symposium on Image and Signal Processing and Analysis (ISPA), Sep 2007,
pp. 418–422

47. T. Ince, Unsupervised classification of polarimetric SAR image with dynamic clustering: an
image processing approach. Adv. Eng. Softw. 41(4), 636–646 (2010)

48. J.A. Kong, A.A. Swartz, H.A. Yueh, L.M. Novak, R.T. Shin, Identification of terrain cover
using the optimum polarimetric classifier. J. Electromagn. Waves Applicat. 2(2), 171–194
(1988)

49. J.S. Lee, M.R. Grunes, R. Kwok, Classification of multi-look polarimetric SAR imagery
based on complex Wishart distribution. Int. J. Rem. Sens. 15(11), 2299–2311 (1994)

References 229

http://dx.doi.org/10.1109/TMM.2010.2046270
http://dx.doi.org/10.1109/TMM.2010.2046270

50. S.R. Cloude, E. Pottier, An entropy based classification scheme for land applications of
polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 35, 68–78 (1997)

51. K.U. Khan, J. Yang, W. Zhang, Unsupervised classification of polarimetric SAR images by
EM algorithm. IEICE Trans. Commun. 90(12), 3632–3642 (2007)

52. T.N. Tran, R. Wehrens, D.H. Hoekman, L.M.C. Buydens, Initialization of Markov random
field clustering of large remote sensing images. IEEE Trans. Geosci. Remote Sens. 43(8),
1912–1919 (2005)

53. Y.D. Zhang, L.-N. Wu, G. Wei, A new classifier for polarimetric SAR images, Progress in
Electromagnetics Research, PIER 94 (2009), pp. 83–104

54. L. Zhang, B. Zou, J. Zhang, Y. Zhang, Classification of polarimetric SAR image based on
support vector machine using multiple-component scattering model and texture features,
Eurasip J. Adv. Sig. Process. (2010). doi:10.1155/2010/960831

55. T. Ince, Unsupervised classification of polarimetric SAR image with dynamic clustering: an
image processing approach. Adv. Eng. Softw. 41(4), 636–646 (2010)

56. D.A. Clausi, An Analysis of Co-occurrance Texture Statistics as a Function of Grey Level
Quantization. Canadian J. Remote Sens. 28(1), 45–62 (2002)

57. K. Ersahin, B. Scheuchl, I. Cumming, Incorporating texture information into polarimetric
radar classification using neural networks, in Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, Anchorage, USA, Sept 2004, pp. 560–563

58. L. Ferro-Famil, E. Pottier, J.S. Lee, Unsupervised classification of multifrequency and fully
polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci.
Remote Sens. 39(11), 2332–2342 (2001)

59. S. Fukuda, H. Hirosawa, A wavelet-based texture feature set applied to classification of
multifrequency polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 37(5),
2282–2286 (1999)

60. E. Krogager, J. Dall, S. Madsen, Properties of sphere, diplane and helix decomposition, in
Proceedings of the 3rd International Workshop on Radar Polarimetry, 1995

61. J.-S. Lee, E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, in Optical
Science and Engineering, vol. 142 (CRC Press, Boca Raton, 2009)

62. S.R. Cloude, E. Pottier, A review of target decomposition theorems in radar polarimetry.
IEEE Trans. Geosci. Remote Sens. 34(2), 498–518 (1996)

63. C. Fang, H. Wen, W. Yirong, An improved Cloude–Pottier decomposition using h/a/span and
complex Wishart classifier for polarimetric SAR classification, in Proceedings of CIE, Oct
2006, pp. 1–4

64. S. Pittner, S.V. Kamarthi, Feature extraction from wavelet coefficients for pattern recognition
tasks. IEEE Trans. Pattern Anal. Machine Intell. 21, 83–88 (1999)

65. Y. Chauvin, D.E. Rumelhart, Back propagation: Theory, architectures, and applications,
(Lawrence Erlbaum Associates Publishers, UK, 1995)

66. M. Riedmiller, H. Braun, A direct adaptive method for faster back propagation learning: the
RPROP algorithm, in Proceedings of the IEEE International Conference on Neural
Networks, 1993, pp. 586–591

67. U.S. Geological Survey Images [Online], http://terraserver-usa.com/
68. J.S. Lee, M.R. Grunes, G. de Grandi, Polarimetric SAR speckle filtering and its implications

for classification. IEEE Trans. Geosci. Remote Sens. 37(5), 2363–2373 (1999)
69. Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in Proceedings of the IEEE

Congress on Evolutionary Computation, 1998, pp. 69–73
70. S. Kiranyaz, T. Ince, A. Yildirim, M. Gabbouj, Evolutionary artificial neural networks by

multi-dimensional particle swarm optimization. Neural Netw. 22, 1448–1462. doi:10.1016/
j.neunet.2009.05.013, Dec. 2009

71. T.L. Ainsworth, J.P. Kelly, J.-S. Lee, Classification comparisons between dual-pol, compact
polarimetric and quad-pol SAR imagery. ISPRS J. Photogram. Remote Sens. 64, 464–471 (2009)

72. E. Chen, Z. Li, Y. Pang, X. Tian, Quantitative evaluation of polarimetric classification for
agricultural crop mapping. Photogram. Eng. Remote Sens. 73(3), 279–284 (2007)

230 7 Evolutionary Artificial Neural Networks

http://dx.doi.org/10.1155/2010/960831
http://terraserver-usa.com/
http://dx.doi.org/10.1016/j.neunet.2009.05.013
http://dx.doi.org/10.1016/j.neunet.2009.05.013

Chapter 8
Personalized ECG Classification

Science is the systematic classification of experience.
George Henry Lewes

Each individual heartbeat in the cardiac cycle of the recorded electrocardiogram
(ECG) waveform shows the time evolution of the heart’s electrical activity, which
is made of distinct electrical depolarization–repolarization patterns of the heart.
Any disorder of heart rate or rhythm, or change in the morphological pattern is an
indication of an arrhythmia, which could be detected by analysis of the recorded
ECG waveform. Real-time automated ECG analysis in clinical settings is of great
assistance to clinicians in detecting cardiac arrhythmias, which often arise as a
consequence of a cardiac disease and may be life-threatening and require imme-
diate therapy.

In this chapter, first a generic and patient-specific classification system designed
for robust and accurate detection of ECG heartbeat patterns is presented. An
overview of this system is shown in Fig. 8.1. An extensive feature extraction will
be presented which utilizes morphological wavelet transform features, which are
projected onto a lower dimensional feature space using principal component
analysis (PCA), and temporal features from the ECG data. Due to its time–fre-
quency localization properties, the wavelet transform is an efficient tool for ana-
lyzing nonstationary ECG signals which can be used to decompose such an ECG
signal according to scale, thus allowing separation of the relevant ECG waveform
morphology descriptors from the noise, interference, baseline drift, and amplitude
variation of the original signal. For the pattern recognition unit, as detailed in the
previous chapter, feedforward and fully connected ANNs, which are optimally
designed for each patient by MD PSO evolutionary search technique, are
employed. This is indeed a great advantage in terms of classification accuracy,
although many promising ANN-based techniques have been applied to ECG signal
classification, these classifier systems have not performed well in practice and their
results have generally been limited to relatively small datasets mainly because
such systems have in general static (fixed) network structures for the classifiers. On
the other hand, the approach discussed in this chapter which is based on patient-
specific architecture by means of an evolutionary classifier design will show a
significant performance improvement over such conventional global classifier

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_8, � Springer-Verlag Berlin Heidelberg 2014

231

systems. By using relatively limited common and patient-specific training data,
this evolutionary classification system can adapt to significant inter-patient vari-
ations in ECG patterns by training the optimal network structure, and thus can
achieve a high accuracy over large datasets. The classification experiments, which
will be discussed in Sect. 8.1.3.2, over a benchmark database will demonstrate that
this system achieves such average accuracies and sensitivities better than most of
the current state of the art algorithms for detection of ventricular ectopic beats
(VEBs) and supra-VEBs (SVEBs). Finally, due to its parameter–invariant nature,
this system is highly generic, and thus applicable to any ECG dataset.

The second half of the chapter presents a personalized long-term ECG classi-
fication framework, which addresses the problem within a long-term ECG signal,
known as Holter register, recorded from an individual patient. Due to the massive
amount of ECG beats in a Holter register, visual inspection is quite difficult and
cumbersome, if not impossible. Therefore, the presented system helps profes-
sionals to quickly and accurately diagnose any latent heart disease by examining
only the representative beats (the so-called master key-beats) each of which is
automatically extracted from a time frame of homogeneous (similar) beats. In
order to accomplish this, dynamic clustering in high dimensional data/feature
spaces is conducted as an optimization problem and we naturally use MD PSO
with FGBF as detailed in Chap. 6 for finding the optimal (number of) clusters, with
respect to a given validity index function. As a result, this unsupervised classifi-
cation system helps professionals to quickly and accurately diagnose any latent
heart disease by examining only the representative beats.

Dimension
Reduction

(PCA)

Expert
Labeling

Beat
Detection

Data Acquisition

Morph.
Feature

Extraction
(TI-DWT)

Patient-specific data:
first 5 min. beats

MD PSO:
Evolution + Training

Common data: 200 beats

Training Labels per beat

B
e
a
t C

la
ss T

yp
e

Patient X

Temporal Features

ANN
Space

Fig. 8.1 Patient-specific ECG classification system

232 8 Personalized ECG Classification

http://dx.doi.org/10.1007/978-3-642-37846-1_6

8.1 ECG Classification by Evolutionary Artificial
Neural Networks

8.1.1 Introduction and Motivation

Automated classification of ECG beats is a challenging problem as the morpho-
logical and temporal characteristics of ECG signals show significant variations for
different patients and under different temporal and physical conditions [1]. Many
algorithms for automatic detection and classification of ECG heartbeat patterns
have been presented in the literature including signal processing techniques such
as frequency analysis [2], wavelet transform [3, 4], and filter banks [5], statistical
[6] and heuristic approaches [7], hidden Markov models [8], support vector
machines [9], artificial neural networks (ANNs) [1], and mixture of experts
method [10]. In general, ECG classifier systems based on past approaches have not
performed well in practice because of their important common drawback of having
an inconsistent performance when classifying a new patient’s ECG waveform.
This makes them unreliable to be widely used clinically, and causes severe deg-
radation in their accuracy and efficiency for larger datasets, [11, 12]. Moreover, the
Association for the Advancement of Medical Instrumentation (AAMI) provides
standards and recommended practices for reporting performance results of auto-
mated arrhythmia detection algorithms [13]. However, despite quite many ECG
classification methods proposed in the literature, only few [10, 14, 15] have in fact
used the AAMI standards as well as the complete data from the benchmark MIT-
BIH arrhythmia database.

The performance of ECG pattern classification strongly depends on the char-
acterization power of the features extracted from the ECG data and on the design
of the classifier (classification model or network structure and parameters). Due to
its time–frequency localization properties, the wavelet transform is an efficient tool
for analyzing nonstationary ECG signals [16]. The wavelet transform can be used
to decompose an ECG signal according to scale, allowing separation of the rele-
vant ECG waveform morphology descriptors from the noise, interference, baseline
drift, and amplitude variation in the original signal. Several researchers have
previously used wavelet transform coefficients at appropriate scales as morpho-
logical feature vectors rather than the original signal time series and achieved good
classification performance [4, 17]. Accordingly, in the current work the utilized
feature extraction technique employs the translation-invariant dyadic wavelet
transform (TI-DWT) in order to extract effectively the morphological information
from ECG data. Furthermore, the dimension of the input morphological feature
vector is reduced by projecting it onto a lower dimensional feature space using
PCA in order to significantly reduce redundancies in such a high dimensional data
space. The lower dimensional morphological feature vector is then combined with
two critical temporal features related to inter-beat time interval to improve
accuracy and robustness of the classification as suggested by the results of pre-
vious studies [14].

8.1 ECG Classification by Evolutionary Artificial Neural Networks 233

As discussed in the previous chapters, ANNs are powerful tools for pattern
recognition as they have the capability to learn complex, nonlinear surfaces among
different classes, and such ability can therefore be the key for ECG beat recognition
and classification [18]. Although many promising ANN-based techniques have
been applied to ECG signal classification, [17–20], the global classifiers based on a
static (fixed) ANN have not performed well in practice. On the other hand, algo-
rithms based on patient–adaptive architecture have demonstrated significant per-
formance improvement over conventional global classifiers [10, 12, 15]. Among
all, one particular approach, a personalized ECG heartbeat pattern classifier based
on evolvable block-based neural networks (BbNN) using Hermite transform
coefficients [15], achieved such a performance that is significantly higher than the
others. Although this recent work clearly demonstrates the advantage of using
evolutionary ANNs, which can be automatically designed according to the problem
(patient’s ECG data), serious drawbacks and limitations still remain. For instance,
there are around 10–15 parameters/thresholds that need to be set empirically with
respect to the dataset used and this obviously brings about the issue of robustness
when it is used for a different dataset. Another drawback can occur due to the
specific ANN structure proposed, i.e., the BbNN, which requires equal sizes for
input and output layers. Even more critical is the back propagation (BP) method,
used for training, and genetic algorithm (GA), for evolving the network structure,
both have certain deficiencies [21]. Recall in particular that, BP is likely to get
trapped into a local minimum, making it entirely dependent on the initial (weight)
settings.

As demonstrated in the previous chapter, in order to address such deficiencies
and drawbacks, MD PSO technique can be used to search for the optimal network
configuration specifically for each patient and according to the patient’s ECG data.
On the contrary to the specific BbNN structure used in [15] with the aforemen-
tioned problems, MD PSO is used to evolve traditional ANNs and so the focus is
particularly drawn on automatic design of the MLPs. Such an evolutionary
approach makes this system generic, that is no assumption is made about the
number of (hidden) layers and in fact none of the network properties (e.g., feed-
forward or not, differentiable activation function or not, etc.) is an inherent con-
straint. Recall that as long as the potential network configurations are transformed
into a hash (dimension) table with a proper hash function where indices represent
the solution space dimensions of the particles, MD PSO can then seek both
positional and dimensional optima in an interleaved PSO process. This approach
aims to achieve a high level of robustness with respect to the variations of the
dataset, since the system is designed with a minimum set of parameters, and in
such a way that their significant variations should not show a major impact on the
overall performance. Above all, using standard ANNs such as traditional MLPs,
instead of specific architectures (e.g., BbNN in [15]) further contributes to the
generic nature of this system and in short, all these objectives are meant to make it
applicable to any ECG dataset without any modifications (such as tuning the
parameters or changing the feature vectors, ANN types, etc.).

234 8 Personalized ECG Classification

8.1.2 ECG Data Processing

8.1.2.1 ECG Data

In this section, the MIT-BIH arrhythmia database [22] is used for training and
performance evaluation of the patient-specific ECG classifier. The database con-
tains 48 records, each containing two-channel ECG signals for 30-min duration
selected from 24-h recordings of 47 individuals. Continuous ECG signals are
band-pass filtered at 0.1–100 Hz and then digitized at 360 Hz. The database
contains annotation for both timing information and beat class information verified
by independent experts. In the current work, so as to comply with the AAMI
ECAR-1987 recommended practice [13], we used 44 records from the MIT-BIH
arrhythmia database, excluding 4 records which contain paced heartbeats. The first
20 records (numbered in the range of 100–124), which include representative
samples of routine clinical recordings, are used to select representative beats to be
included in the common training data. The remaining 24 records (numbered in the
range of 200–234), contain ventricular, junctional, and supraventricular arrhyth-
mias. A total of 83,648 beats from all 44 records are used as test patterns for
performance evaluation. AAMI recommends that each ECG beat be classified into
the following five heartbeat types: N (beats originating in the sinus mode),
S (supraventricular ectopic beats), V (ventricular ectopic beats), F (fusion beats),
and Q (unclassifiable beats). For all records, we used the modified-lead II signals
and the labels to locate beats in ECG data. The beat detection process is beyond
the scope of this chapter, as many highly accurate ([99 %) beat detection algo-
rithms have been reported in the literature, [16, 23].

8.1.2.2 Feature Extraction Methodology

As suggested by the results from numerous previous works [10, 14, 23], both
morphological and temporal features are extracted and combined into a single
feature vector for each heartbeat to improve accuracy and robustness of the
classifier. The wavelet transform is used to extract morphological information
from the ECG data. The time-domain ECG signatures were first normalized by
subtracting the mean voltage before transforming into time-scale domain using the
dyadic wavelet transform (DWT). According to the wavelet transform theory, the
multiresolution representation of the ECG signal is achieved by convolving the
signal with scaled and translated versions of a mother wavelet. For practical
applications, such as processing of sampled and quantized raw ECG signals, the
discrete wavelet transform can be computed by scaling the wavelet at the dyadic
sequence 2 jð Þj2Z and translating it on a dyadic grid whose interval is proportional

to 2�j: The discrete WT is not only complete but also nonredundant unlike the
continuous WT. Moreover, the wavelet transform of a discrete signal can be
efficiently calculated using the decomposition by a two-channel multirate filter

8.1 ECG Classification by Evolutionary Artificial Neural Networks 235

bank (the pyramid decomposition). However, due to the rate-change operators in
the filter bank, the discrete WT is not time invariant but actually very sensitive to
the alignment of the signal in time [25].

To address the time-varying problem of wavelet transforms, Mallat proposed a
new algorithm for wavelet representation of a signal, which is invariant to time
shifts [26]. According to this algorithm, which is called a TI-DWT, only the scale
parameter is sampled along the dyadic sequence 2 jð Þj2Z and the wavelet transform
is calculated for each point in time. TI-DWTs pioneered by Mallat have been
successfully applied to pattern recognition [26]. The fast TI-DWT algorithm,
whose computational complexity is OðN log NÞ; can be implemented using a
recursive filter tree architecture [26]. In this study, we selected a quadratic spline
wavelet with compact support and one vanishing moment, as defined in [26]. The
same wavelet function has already been successfully applied to QRS detection in
[16], achieving a 99.8 % QRS detection rate for the MIT-BIH arrhythmia data-
base. In the presented ECG classification system, using a wavelet-based beat
detector such as in [16] allows the same wavelet transform block to operate
directly on the raw input ECG signal for beat detection and then morphological
feature extraction, thus making the system more efficient and robust.

Figure 8.2 shows sample beat waveforms, including Normal (N), PVC (V), and
APC (S) AAMI heartbeat classes, selected from record 201, modified-lead II from
the MIT-BIH arrhythmia database and their corresponding TI-DWT decomposi-
tions computed for the first five scales. While wavelet-based morphological fea-
tures provide effective discrimination capability between normal and some

Fig. 8.2 Sample beat waveforms, including normal (N), PVC (V), and APC (S) AAMI heartbeat
classes, selected from record 201 modified-lead II from the MIT/BIH arrhythmia database and
corresponding TI-DWT decompositions for the first five scales

236 8 Personalized ECG Classification

abnormal heartbeats (i.e., PVC beats), two temporal features (i.e., the R–R time
interval and R–R time interval ratio) contribute to the discriminating power of
wavelet-based features, especially in discriminating morphologically similar
heartbeat patterns (i.e., Normal and APC beats).

In Fig. 8.3 (top), the estimated power spectrum of windowed ECG signal
(a 500 ms long Hanning window is applied before FFT to suppress high-frequency
components due to discontinuities in the end-points) from record 201 for N, V, and
S beats is plotted, while equivalent frequency responses of FIR filters, QjðwÞ; for
the first five scales at the native 360 Hz sampling frequency of the MIT-BIH data
are illustrated at the bottom part of the figure. After analyzing the DWT decom-
positions of different ECG waveforms in the database, and according to the power
spectra of ECG signal (the QRS complex, the P- and T-waves), noise, and artifact
in [28], we selected W24 f (at scale 24) signal as morphological features of each
heartbeat waveform. Based on the -3 dB bandwidth of the equivalent Q4ðwÞ filter
(3.9–22.5 Hz) in Fig. 8.3 (bottom), W24 f signal is expected to contain most of QRS
complex energy and the least amount of high-frequency noise and low-frequency
baseline wander. The fourth scale decomposition together with RR-interval timing
information was previously shown to be the best performing feature set for DWT-
based PVC beat classification in [4]. Therefore, a 180-sample morphological
feature vector is extracted per heartbeat from DWT of the ECG signal at scale 24

Fig. 8.3 Power spectrum of windowed ECG signal from record 201 for normal (N), PVC (V),
and APC (S) AAMI heartbeat classes, and equivalent frequency responses of FIR digital filters for
a quadratic spline wavelet at 360 Hz sampling rate

8.1 ECG Classification by Evolutionary Artificial Neural Networks 237

by selecting a 500 ms window centered at the R-peak (found by using the beat
annotation file). Each feature vector is then normalized to have a zero mean and a
unit variance to eliminate the effect of dc offset and amplitude biases.

8.1.2.3 Preprocessing by Principal Component Analysis

The wavelet-based morphological features in the training set are post-processed
using PCA to reduce dimensionality (and redundancy) of input feature vectors.
PCA, also known as the Karhunen–Loéve transform (KLT), is a well-known
statistical method that has been used for data analysis, data compression, redun-
dancy and dimensionality reduction, and feature extraction. PCA is the optimal
linear transformation, which finds a projection of the input pattern vectors onto a
lower dimensional feature space that retains the maximum amount of energy
among all possible linear transformations of the pattern space. To describe the
basic procedure of PCA, let F be a feature matrix of size K 9 N, whose rows are
wavelet features of size 1 9 N each belonging to one of K heartbeats in the
training data. First, the covariance matrix CF of this feature matrix is computed as,

CF ¼ E F � mð Þ F � mð Þt
� �

; ð8:1Þ

where m is the mean pattern vector. From the eigen-decomposition of CF, which is
a K 9 K symmetric and positive-definite matrix, the principal components taken
as the eigenvectors corresponding to the largest eigenvalues are selected, and the
morphological feature vectors are then projected onto these principal components
(KL basis functions). In this work, 9 principal components which contain about
95 % of the overall energy in the original feature matrix are selected to form a
resultant compact morphological feature vector for each heartbeat signal. In this
case, the PCA reduced the dimensionality of morphological features by a factor of
20. Figure 8.4 shows a scatter plot of Normal, PVC, and APC beats from record
201 in terms of the first and third principal components and inter-beat time
interval. It is worth noting that dimensionality reduction of the input information
improves efficiency of the learning for a NN classifier due to a smaller number of
input nodes [29].

The data used for training the individual patient classifier consist of two parts:
Global (common to each patient) and local (patient-specific) training patterns.
While patient-specific data contain the first 5 min segment of each patient’s ECG
record and is used as part of the training data to perform patient adaptation, the
global dataset contains a relatively small number of representative beats from each
class in the training files and helps the classifier learn other arrhythmia patterns
that are not included in the patient-specific data. This practice conforms to the
AAMI recommended procedure allowing the usage of at most a 5 min section
from the beginning of each patient’s recording for training [13].

238 8 Personalized ECG Classification

8.1.3 Experimental Results

First, we shall demonstrate the optimality of the networks (with respect to the
training MSE), which are automatically evolved by the MD PSO method
according to the training set of an individual patient record in the benchmark
database. We shall then present the overall results obtained from the ECG clas-
sification experiments and perform comparative evaluations against several state-
of-the-art techniques in this field. Finally, the robustness of this system against
variations of major parameters will be evaluated.

8.1.3.1 MD PSO Optimality Evaluation

In order to determine which network architectures are optimal (whether it is global
or local) for a particular problem, exhaustive BP training is applied over every
network configuration in the architecture space defined. As mentioned earlier, BP
is a gradient descent algorithm and thus for a single run, it is susceptible to get
trapped in the nearest local minimum. However, performing it a large number of
times (e.g., K = 500) with randomized initial parameters eventually increases the
chance of converging to (a close vicinity of) the global minimum of the fitness
function. Note that even though K is kept quite high, there is still no guarantee of
converging to the global optimum with BP; however, the idea is to obtain the
‘‘trend’’ of best performances achievable with every configuration under equal

Fig. 8.4 Scatter plot of normal (N), PVC (V), and APC (S) beats from record 201 in terms of the
first and third principal components and RRi time interval

8.1 ECG Classification by Evolutionary Artificial Neural Networks 239

training conditions. In this way, the optimality of the networks evolved by MD
PSO can be justified under the assumed criterion.

Due to the reasoning given earlier, the architecture space is defined over MLPs
(possibly including one SLP) with the following activation function: hyperbolic

tangent tanhðxÞ ¼ ex�e�x

exþe�x

� �
: The input and output layer sizes are determined by

the problem. A learning parameter for BP k ¼ 0:001 is used and the number of
iterations is 10,000. The default PSO parameters for MD PSO are used here,
specifically, the swarm size, S = 100, and velocity ranges Vmax ¼ �Vmin ¼
Xmax=2; and VDmax ¼ �VDmin ¼ Dmax=2: The dimension range is determined by
the architecture space defined and the position range is set as Xmax ¼ �Xmin ¼ 2:
Unless stated otherwise, these parameters are used in all experiments presented in
this section.

In order to show the optimality of the network configurations evolved by MD
PSO with respect to the MSE criterion, the ‘‘limited’’ architecture space is used
first. Recall that this AS involves 41 ANNs (R1 : R1

min ¼ fNI ; 1; 1; NOg and
R1

max ¼ NI ; 8; 4; NOf g) containing the simplest 1-, 2-, or 3-layer MLPs with
L1

min ¼ 1; L1
max ¼ 3; and NI ¼ 11; NO ¼ 5: Then, one of the most challenging

records is selected among the MIT-BIH arrhythmia database, belonging to the
patient record 222. For this record, 100 MD PSO runs are performed with 100
particles, each of which terminates at the end of 1,000 epochs (iterations). At the
end of each run, the best fitness score (minimum MSE) achieved, f xŷdbest

� �
; by the

particle with the index gbest(dbest) at the optimum dimension dbest is retained.
The histogram of dbest, which is a hash index indicating a particular network
configuration in R1, eventually identifies the (near-) optimal configuration(s).

Figure 8.5 shows dbest histogram and the error statistics plot from the
exhaustive BP training data of patient record 222. From the minimum mean-square
error (mMSE) plot of the exhaustive BP training on top, it is clear that only four
distinct sets of network configurations can achieve training mMSEs below 0.1. The
corresponding indices (dimensions) of these four optimal networks are dbest = 9,
25, 33, and 41, where MD PSO managed to evolve either exactly to them or comes
to a neighboring configuration, i.e., a near-optimal solution. MD PSO can in fact
achieve the best (lowest) training MSEs for two sets of configurations: dbest = 33
and 41 (including their 3 close neighbors). These are 3-layer MLPs; dbest = 33 is
for 11 9 8 9 3 9 5 and dbest = 41 is for 11 9 8 9 4 9 5. All MD PSO runs
evolved either to dbest = 25 (corresponding to configuration 11 9 8 9 2 9 5) or
to its neighbors with a slightly worse than the best configurations. MD PSO runs,
which evolved to the simplest MLPs with a single hidden layer (i.e., dbest = 8 and
9 are for the MLPs 11 9 7 9 5 and 11 9 8 9 5) achieved the worst mMSE, about
15 % higher than for dbest = 33 and 41. The reason of MD PSO evolutions to
those slightly worse configurations (for dbest = 25 and particularly for dbest = 9)
is that MD PSO or PSO in general performs better in low dimensions. Further-
more, premature convergence is still a problem in PSO when the search space is in
high dimensions. Therefore, MD PSO naturally favors a low-dimension solution

240 8 Personalized ECG Classification

when it exhibits a competitive performance compared to a higher dimension
counterpart. Such a natural tendency eventually yields the evolution process to
compact network configurations in the architecture space rather than the complex
ones, as long as optimality prevails.

8.1.3.2 Classification Performance

We performed classification experiments on 44 records of the MIT-BIH arrhyth-
mia database, which includes a total of 100,389 beats to be classified into five
heartbeat types following the AAMI convention. For the classification experiments
in this section, the common part of the training dataset contains a total of 245
representative beats, including 75 from each type N, -S, and -V beats, and all (13)
type-F and (7) type-Q beats, randomly sampled from each class from the first 20
records (picked from the range 100 to 124) of the MIT-BIH database. The patient-
specific training data includes the beats from the first 5 min of the corresponding
patient’s ECG record. Patient-specific feedforward MLP networks are trained with
a total of 245 common training beats and a variable number of patient-specific

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Min. Error

Mean Error
Median Error

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

18

Fig. 8.5 Error (MSE) statistics from exhaustive BP training (top) and dbest histogram from 100
MD PSO evolutions (bottom) for patient record 222

8.1 ECG Classification by Evolutionary Artificial Neural Networks 241

beats depending on the patient’s heart rate, so only less than 1 % of the total beats
are used for training each neural network. The remaining beats (25 min) of each
record, in which 24 out of 44 records are completely new to the classifier, are used
as test patterns for performance evaluation.

Table 8.1 summarizes beat-by-beat classification results of ECG heartbeat
patterns for all test records. Classification performance is measured using the four
standard metrics found in the literature [10]: Classification accuracy (Acc), sen-
sitivity (Sen), specificity (Spe), and positive predictivity (Ppr). While accuracy
measures the overall system performance over all classes of beats, the other
metrics are specific to each class and they measure the ability of the classification
algorithm to distinguish certain events (i.e., VEBs or SVEBs) from nonevents (i.e.,
nonVEBs or nonSVEBs). The respective definitions of these four common metrics
using true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) are as follows: Accuracy is the ratio of the number of correctly classified
patterns to the total number of patterns classified, Acc = (TP ? TN)/
(TP ? TN ? FP ? FN); Sensitivity is the rate of correctly classified events among
all events, Sen = TP/(TP ? FN); Specificity is the rate of correctly classified
nonevents among all nonevents, Spe = TN/(TN ? FP); and Positive Predictivity
is the rate of correctly classified events in all detected events, Ppr = TP/
(TP ? FP). Since there is a large variation in the number of beats from different
classes in the training/testing data (i.e., 39,465/50,354 type-N, 1,277/5,716 type-V,
and 190/2,571 type-S beats), sensitivity, specificity, and positive predictivity are
more relevant performance criteria for medical diagnosis applications.

The system presented in this section is compared with three state-of-the-art
methods, [10, 14] and [15], which comply with the AAMI standards and use all
records from the MIT-BIH arrhythmia database. For comparing the performance
results, the problem of VEB and SVEB detection is considered individually. The
VEB and SVEB classification results over all 44 records are summarized in
Table 8.2. The performance results for VEB detection in the first four rows of
Table 8.2 are based on 11 test recordings (200, 202, 210, 213, 214, 219, 221, 228,
231, 233, and 234) that are common to all four methods. For SVEB detection,
comparison results are based on 14 common recordings (with the addition of records
212, 222, and 232) between the presented system and the methods in [14] and [15].

Table 8.1 Summary table of beat-by-beat classification results for all 44 records in the MIT/BIH
arrhythmia database

Ground truth Actual Classification Results

N S V F Q

N 73,019 (40,532) 991 (776) 513 (382) 98 (56) 29 (20)
S 686 (672) 1,568 (1,441) 205 (197) 5 (5) 6 (5)
V 462 (392) 333 (299) 4,993 (4,022) 79 (75) 32 (32)
F 168 (164) 28 (26) 48 (46) 379 (378) 2 (2)
Q 8 (6) 1 (0) 3 (1) 1 (1) 1 (0)

Classification results for the testing dataset only (24 records from the range 200 to 234) are shown
in parenthesis

242 8 Personalized ECG Classification

Several interesting observations can be made from these results. First, for SVEB
detection, sensitivity and positive predictivity rates are comparably lower than VEB
detection, while a high specificity performance is achieved. The reason for the worse
classifier performance in detecting SVEBs is that SVEB class is under-represented
in the training data and hence more SVEB beats are misclassified as normal beats.
Overall, the performance of the presented system in VEB and SVEB detection is
significantly better than [10] and [14] for all measures and is comparable to the
results obtained with evolvable BbNNs in [15]. Moreover, it is observed that this
system achieves comparable performance over the training and testing set of patient
records. It is worth noting that the number of training beats used for each patient’s
classifier was less than 2 % of all beats in the training dataset and the resulting
classifiers designed by the MD PSO process have improved generalization ability,
i.e., the same low number of design parameters are used for all networks.

8.1.3.3 Robustness

In order to investigate the robustness of the ECG classification system presented in
this chapter against the variations of the few PSO parameters used, such as the
swarm size, S, the iteration number I, and to evaluate the effect of the architecture
space (and hence the characteristics of the ANNs used), we performed four
classification experiments over the MIT-BIH arrhythmia database (I–IV) and their
classification accuracy results per VEB and SVEB, are presented in Table 8.3.
Experiments I–III are performed over the same architecture space, with 1-, 2-. and
3-layer MLP architectures defined by R1

min ¼ f11; 8; 4; 5g R1
min ¼ f11; 16; 8; 5g:

Between I and II, the swarm size, and between II and III, the iteration number is
changed significantly, whereas in IV an entirely different architecture space con-
taining 4-layer MLPs is used. From the table, it is quite evident that the effects of
such major variations over the classification accuracy are insignificant. Therefore,

Table 8.2 VEB and SVEB classification performance of the presented method and comparison
with the three major algorithms from the literature

Methods VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Hu et al. [10]1 94.8 78.9 96.8 75.8 N/A N/A N/A N/A
Chazal et al. [14]1 96.4 77.5 98.9 90.6 92.4 76.4 93.2 38.7
Jiang and Kong [15]1 98.8 94.3 99.4 95.8 97.5 74.9 98.8 78.8
Presented1 97.9 90.3 98.8 92.2 96.1 81.8 98.5 63.4
Jiang and Kong [15]2 98.1 86.6 99.3 93.3 96.6 50.6 98.8 67.9
Presented2 97.6 83.4 98.1 87.4 96.1 62.1 98.5 56.7
Presented3 98.3 84.6 98.7 87.4 97.4 63.5 99.0 53.7
1 The comparison results are based on 11 common recordings for VEB detection and 14 common
recordings for SVEB detection
2 The VEB and SVEB detection results are compared for 24 common testing records only
3 The VEB and SVEB detection results of the presented system for all training and testing records

8.1 ECG Classification by Evolutionary Artificial Neural Networks 243

any set of common PSO parameters within a reasonable range can be conveniently
used. Furthermore, for this ECG database, the choice of the architecture space does
not affect the overall performance, yet any other ECG dataset containing more
challenging ECG data might require the architecture spaces such as in IV, in order
to obtain a better generalization capability.

8.2 Classification of Holter Registers

Holter registers [27] are ambulatory ECG recordings with a typical duration of
24–48 h and they are particularly useful for detecting some heart diseases such as
cardiac arrhythmias, silent myocardial ischemia, transient ischemic episodes, and
for arrhythmic risk assessment of patients, all of which may not be detected by a
short-time ECG [31]. Yet any process that requires humans or even an expert
cardiologist to examine more than small amount of data can be highly error prone.
A single record of a Holter register is usually more than 100,000 beats, which make
the visual inspection almost infeasible, if not impossible. Therefore, the need for
automatic techniques for analyzing such a massive data is imminent and in that, it is
crucial not to leave out significant beats since the diagnosis may depend on just a
few of them. However, the dynamic nature and intra-signal variation in a typical
Holter register is quite low and the abnormal beats, which may indicate the pres-
ence of a potential disease, can be scattered along the signal. So utilizing a dynamic
clustering technique based on MD PSO with FGBF, a systematic approach is
developed, which can summarize a long-term ECG record by discovering the
so-called master key-beats that are the representative or the prototype beats from
different clusters. With a great reduction in effort, the cardiologist can then perform
a quick and accurate diagnosis by examining and labeling only the master key-
beats, which in duration are no longer than few minutes of ECG record. The expert
labels over the master key-beats are then back propagated over the entire ECG
record to obtain a patient-specific, long-term ECG classification. As the main
application of the current work, this systematic approach is then applied over a real
(benchmark) dataset, which contains seven long-term ECG recordings [32].

Table 8.3 VEB and SVEB classification accuracy of the classification system for different PSO
parameters and architecture spaces

Percentage (%) I II III IV

VEB 98.3 98.2 98.3 98.0
SVEB 97.4 97.3 97.1 97.4
I: R1

min ¼ f11; 8; 4; 5g; R1
min ¼ f11; 16; 8; 5g; S = 100, I = 500

II: R1
min ¼ f11; 8; 4; 5g; R1

min ¼ f11; 16; 8; 5g; S = 250, I = 200

III: R1
min ¼ f11; 8; 4; 5g; R1

min ¼ f11; 16; 8; 5g; S = 80, I = 200

IV: R1
min ¼ f11; 6; 6; 3; 5g; R1

min ¼ f11; 12; 10; 5; 5g; S = 400, I = 500

244 8 Personalized ECG Classification

8.2.1 The Related Work

ECG analysis has proven to be an important method routinely used in clinical
practice for continuous monitoring of cardiac activities. ECG analysis can be used
to detect cardiac arrhythmias, which often arise as a consequence of a cardiac
disease and may be life-threatening and require immediate therapy. According to
Kushner and Yin [30], with an estimated 300 million of ECGs performed every
year, there is clearly a need for accurate and reliable ECG interpretation. Computer
analysis of ECG data can be of great assistance to the experts in detecting cardiac
abnormalities both for real time clinical monitoring and long-term (24–48 h)
monitoring in intensive care unit (ICU) and ambulatory settings. Many computer-
based methods have been proposed for automated analysis and interpretation of
ECGs. However, automated classification of ECG beats is a challenging problem
as the morphological and temporal characteristics of ECG signals show significant
variations for different patients and under different temporal and physical condi-
tions [1]. This is the reason in practice for underperformance of many fully
automated ECG processing systems, which hence make them unreliable to be
widely used clinically [12]. Additionally, it is known that both accuracy and
efficiency of these systems degrade significantly for larger datasets [11].

Long-term continuous ECG monitoring and recording, also known as Holter
ECG or Holter register [27], is needed for detection of some diseases, such as
cardiac arrhythmias, transient ischemic episodes and silent myocardial ischemia,
and for arrhythmic risk assessment of patients [31]. Since visual analysis of long-
term recordings of the heart activity, with more than 100,000 ECG beats in a single
recording, is difficult to diagnose and can be highly error prone, automated
computer analysis is of major importance. In the past, a number of methods have
been proposed for feature extraction from ECG signals including heartbeat tem-
poral intervals [14], time-domain morphological features [14], frequency domain
features [2], wavelet transform features [4], and Hermite transform coefficients
[33]. Accordingly, several techniques have been developed by researchers for
long-term ECG data analysis. In [33], a method for unsupervised characterization
of ECG signals is presented. Their approach involves Hermite function repre-
sentation of ECG beats (specifically QRS complex) and self-organized neural
networks (SOMs) for beat clustering. Application to all (48) 30-min records from
the MIT-BIH arrhythmia database results in 25 clusters and by classifying each
cluster according to an expert’s annotation of one typical beat a total misclassi-
fication error of 1.5 % is achieved. The method proposed in [34] consists of
nonlinear temporal alignment, trace segmentation as feature extraction and
k-medians as clustering algorithm. Its primary goal is to extract accurately sig-
nificant beats, which can be examined by a physician for the diagnosis. From the
results of experimental studies using 27 registers (of total 27,412 beats) from the
MIT-BIH database, k-medians performs better than the Max–Min clustering
algorithm achieving a clustering error of *7 % in the best case. The work in [7]
describes a new approach for analyzing large amounts of cardiovascular data, for

8.2 Classification of Holter Registers 245

example multiple days of continuous high-resolution ECG data, based on symbolic
representations of cardiovascular signals and morphology-based Max–Min clus-
tering. It was tested over cardiologist-annotated ECG data (30 min. recordings)
from 48 patients from the MIT-BIH arrhythmia database achieving 98.6 % overall
correct classification. This approach has the advantage of using no a priori
knowledge about disease states allowing for discovery of unexpected events
(patterns). The goal of the work in [36] is to achieve better clustering analysis of
ECG complexes using an ant colony optimization (ACO) based clustering algo-
rithm. In this study, time-dependent morphological parameters extracted from two
consecutive periods of an ECG signal are used as specific features. The method is
tested using a total of 8,771 ECG periods taken from the MIT-BIH database
resulting in a total sensitivity of 94.4 % to all six arrhythmia types.

Most of these techniques mainly suffer from the usage of suboptimal clustering
algorithms, such as Max–Min in [7], k-medians in [34] and SOMs in [33], some of
which require a priori setting of some thresholds or parameters, such as h = 50 in
[7]. Particularly, the performance of the approach in [33] is limited by the ability
of small number of Hermite expansion coefficients used for the approximation of
the heartbeats. It is worth noting that although all these techniques claim to address
the problem of long-term (Holter) ECG classification, none has really been applied
to a real Holter register, probably due to such limitations.

8.2.2 Personalized Long-Term ECG Classification:
A Systematic Approach

The section presents the systematic approach for personalized classification of
long-term ECG data. As the overview shown in Fig. 8.6, such an approach
addresses the problem within the entire lifetime of a long-term ECG signal recorded
from an individual patient, i.e., starting with acquisition and pre-processing, to the
temporal segmentation, followed with a master key-beat extraction with 2-pass
dynamic clustering, and finally classification of the entire ECG data by back
propagating the expert cardiologist labels over the master key-beats. As a per-
sonalized approach, the objective is to minimize the amount of data from each
individual patient by selecting the most relevant data, which will be subject to
manual classification, as much as possible so that the cardiologist can quickly and
accurately diagnose any latent disease by examining only the representative beats
(the master key-beats) each from a cluster of homogeneous (similar) beats. This
justifies the application of the dynamic clustering technique based on MD PSO with
FGBF, which is designed to extract the optimal (number of) clusters within a
diverse dataset. Recall that optimality here can only be assessed according to the
validity index function, the feature extraction (data representation), and the dis-
tance (similarity) metric used. Therefore, the performance of the clustering tech-
nique can be further improved by using better alternatives than the basic and simple

246 8 Personalized ECG Classification

ones used in the current work with the purpose of demonstrating the basic
performance level of this systematic approach. For both passes, the dynamic
clustering operation is performed using the same validity index given in Eq. (6.1)
with a ¼ 1: Recall that this is the simplest form, which is entirely parameter free
and in addition, L2 Minkowski norm (Euclidean) is used as the distance metric in the
feature space.

As shown in Fig. 8.6, after the data acquisition is completed, the pre-processing
stage basically contains beat detection and feature extraction of the sampled and
quantized ECG signal. Before beat detection, all ECG signals are filtered to
remove baseline wander, unwanted power-line interference and high-frequency
noise from the original signal. This filtering unit can be utilized as part of heartbeat
detection process (for example, the detectors based on wavelet transforms [16]).
For all records, we used the modified-lead II signals and utilized the annotation
information (provided with the MIT-BIH database [22]) to locate beats in ECG
signals. Beat detection process is beyond the scope of this chapter, as many beat
detection algorithms achieving over 99 % accuracy have been reported in the
literature, e.g., [16] and [24]. Before feature extraction, the ECG signal is nor-
malized to have a zero mean and unit variance to eliminate the effect of dc offset
and amplitude biases. After the beat detection over quasiperiodic ECG signals by
using RR-intervals, morphological and temporal features are extracted for each
beat as suggested in [14] and combined into a single characteristic feature vector
for each heartbeat. As shown in Fig. 8.7, temporal features relating to heartbeat
fiducial point intervals and morphology of the ECG signals are extracted by
sampling the signals. They are calculated separately for the first lead signals for
each heartbeat. Since the detection of some arrhythmia (such as Bradycardia,
Tachycardia, and premature ventricular contraction) depends on the timing
sequence of two or more ECG signal periods [35], four temporal features are
considered in our study. They are extracted from heartbeat fiducial point intervals
(RR-intervals), as follows:

Back
Propagation

ECG Data
&

Labels

Expert
Labeling

Feature
ExtractionBeat

Detection
Data Acqusition Temporal

Segmentation

Key-Beat
Extraction

Master Key-Beat
Extraction

1st Pass

2nd Pass

Clustering by
MD PSO + FGBF

Pre-Processing

Classification

Fig. 8.6 The overview of the systematic approach for long-term ECG classification

8.2 Classification of Holter Registers 247

http://dx.doi.org/10.1007/978-3-642-37846-1_6

1. pre-RR-interval the RR-interval between a given heartbeat and the previous
heartbeat,

2. post-RR-interval the RR-interval between a given heartbeat and the following
heartbeat,

3. local average RR-interval the average of the ten RR-intervals surrounding a
heartbeat,

4. average-RR interval the mean of the RR-intervals for an ECG recording.

In addition to temporal features, ECG morphology features are extracted from
two sampling windows in each heartbeat formation. The sampling windows are
formed based on the heartbeat fiducial points (maximum of R-wave or minimum
of S-wave in Fig. 8.7). Specifically, the morphology of the QRS complex is
extracted using a 150-ms window and 60-Hz sampling rate, resulting in nine ECG
samples as features. The eight ECG samples representing the low-frequency
T-wave morphology are extracted using a 350-ms window and 20-Hz sampling
rate. The final feature vector for each heartbeat is then formed by combining 17
morphological and 4 temporal interval features.

Once the 21 dimensional (21-D) feature vectors composed from the temporal
and morphological characteristics of ECG beats are extracted, the entire ECG data
is temporally segmented into fixed size frames (segments) for achieving mainly
two objectives. On the one hand, the massive size of ECG data makes it almost
infeasible to perform an efficient clustering and on the other hand, outliers, which
are significantly different from the typical (normal) beats and thus may indicate the

Fig. 8.7 Sample beat waveforms, including normal (N), PVC (V), and APC (S) AAMI [13]
heartbeat classes from the MIT-BIH database. Heartbeat fiducial point intervals (RR-intervals)
and ECG morphology features (samples of QRS complex and T-wave) are extracted

248 8 Personalized ECG Classification

presence of an abnormal heart activity, may get lost due to their low frequency of
occurrences. Therefore, we adopt a typical approach, which is frequently per-
formed in audio processing, that is, temporally segmenting data into homogeneous
frames.

Due to the dynamic characteristics of an audio signal, the frame duration is
typically chosen between 20 and 50 ms in order to get as a homogeneous signal as
possible, i.e., [6]. Accordingly, for a Holter register with 24–48 h long, we choose
*5 min long (300 beats) duration for time segments since the intra-segment
variation along the time axis is often quite low. So performing a clustering
operation within such homogeneous segments will yield only one or few clusters
except perhaps the transition segments where a change, morphological or tem-
poral, occurs on the normal form of the ECG signal. No matter how minor or
insignificant duration this abnormal change might take, in such a limited time
segment, the MD PSO-based dynamic clustering technique can separate those
‘‘different’’ beats from the normal ones and group them into a distinct cluster. One
key-beat, which is the closest to the cluster centroid with respect to the distance
metric used in 21-D feature space, is then chosen as the ‘‘prototype’’ to represent
all beats in that cluster. Since the optimal number of clusters is extracted within
each time segment, only necessary and sufficient number of key-beats is thus used
to represent all 300 beats in a time segment. Note that the possibility of missing
outliers is thus reduced significantly with this approach since one key-beat is
equally selected either from an outlier or a typical cluster without considering their
size. Yet redundancy among the key-beats of consecutive segments still exists,
since it is highly probable that similar key-beats shall occur among different
segments. This is the main reason for having the second pass, which performs
dynamic clustering over key-beats to obtain finally the master key-beats. They are
basically the ‘‘elite’’ prototypes representing all possible physiological heart
activities occurring during a long-term ECG record.

Since this is a personalized approach, each patient has, in general, normal beats
with possibly one or few abnormal periods, indicating a potential heart disease or
disorder. Therefore, ideally speaking only a few master key-beats would be
expected at the end, each representing a cluster of similar beats from each type.
For instance, one cluster may contain ventricular beats arising from ventricular
cavities in the heart and another may contain only junctional beats arising from
atrioventricular junction of the heart. Yet, due to the lack of discrimination power
of the morphological or temporal features or the similarity (distance) metric used,
the dynamic clustering operation may create more than one cluster for each
anomaly. Furthermore, the normal beats have a broad range of morphological
characteristics [7] and within a long time span of 24 h or longer, it is obvious that
the temporal characteristics of the normal beats may significantly vary too.
Therefore, it is reasonable to represent normal beats with multiple clusters rather
than only one. In short, several master key-beats may represent the same physi-
ological type of heart activity. The presentation of the master key-beats to the
expert cardiologist can be performed with any appropriate way as this is a visu-
alization detail, and hence beyond the scope of this work. Finally, the overall

8.2 Classification of Holter Registers 249

classification of the entire ECG data can be automatically accomplished by back
propagating the master key-beats’ labels in such a way that a beat closest to a
particular master key-beat (using the same distance metric in 21-D feature space)
is assigned to its label.

8.2.3 Experimental Results

The systematic approach presented in this section is applied to long-term ECG
data in the Physionet MIT-BIH long-term database [22], which contains six two-
channel ECG signals sampled at 128 Hz per channel with 12-bit resolution, and
one three-channel ECG sampled at 128 Hz per channel with 10-bit resolution. The
duration of the 7 recordings changes from 14 to 24 h each and a total of 668,486
heartbeats in the whole database are used in this study. The database contains
annotation for both timing and beat class informations manually reviewed by
independent experts. The WFDB (Waveform Database) software package with
library functions (from PhysioToolkit [35]) is used for reading digitized signals
with annotations. In this study, for all records, we used the first lead signals and
utilized the annotation to locate beats in ECG signals. The CVI, the feature
extraction, and the distance metric are already presented in Sect. 8.2.2 and the
typical PSO parameters used are as follows. Due to the massive size of data, to
speed up the process we set iterNo = 500 and S = 100, respectively. Due to the
same reason mentioned earlier the use of cutoff error as a termination criterion is
avoided. The positional range, Xmin;Xmax½ � is automatically set to �1; 1½ �; as the
range of the feature normalization, �1; and the rest of the range limits are same as
in the previous section.

Following the preprocessing that consists of formation of heartbeats using the
RR-intervals and the feature extraction thereafter, the patient’s long-term ECG
data is temporally segmented into homogenous frames of 300 beats (*5 min
duration) as described in Sect. 8.2.2. The dynamic clustering is then performed in
21-D feature space to extract optimal number of clusters within each time frame.
The number of clusters, that is identical to the number of key-beats found auto-
matically for each frame depends on distinct physiological heartbeat types in each
patient’s ECG record. Figures 8.8 and 8.9 present excerpts from patients 14,046
and 14,172 showing a short sequence of ECG and the extracted key-beats. Note
that in each case, the key-beats selected by the clustering algorithm show distinct
morphological and temporal heartbeat interval characteristics. In addition, sig-
nificant morphological (and possibly temporal interval) differences between the
same type of beats from one patient’s ECG to another are also visible. As a result,
this systematic approach by temporal segmentation and the dynamic clustering
technique produces such key-beats that represent all possible physiological heart
activities in patient’s ECG data. Therefore, finding the true number of clusters by
the systematic approach is the key factor that makes a major difference from some

250 8 Personalized ECG Classification

earlier works such as [34] and [7], both of which iteratively determines this
number by an empirical threshold parameter.

Table 8.4 shows the overall results of the systematic approach over all patients
from the MIT-BIH ong-term ECG database. Labels manually annotated by the
experts are used only for the master key-beats selected by the system. The clas-
sification of the entire ECG data, or in other words, the labeling of all beats
contained therein is then automatically accomplished by the BP of the master key-
beat labels, as explained in Sect. 8.2.2. The performance results tabulated in
Table 8.4 are calculated based on the differences between the labels generated by
the systematic approach presented and the expert supplied labels provided with the
database. The AAMI provides standards and recommended practices for reporting

4534 4536 4538 4540 4542 4544 4546 4548 4550 4552

-0.3

-0.2

-0.1

0

0.1

0.2

S

N

V

Time (s)

V
ol

ta
ge

(m
V

)

f(n): sample beats from patient record 14172, first-lead signal

key-beats

RR
i+15

=1.06RR
i
=0.67

RR
i+1

=1.14

RR
i+16

=0.62

Fig. 8.9 Excerpt of raw ECG data from patient record 14,172 in the MIT-BIH long-term
database. The key-beats extracted by the systematic approach are indicated

120 121 122 123 124 125 126 127
-1

-0.5

0

0.5

1

1.5

Time (s)

V
ol

ta
ge

(m
V

)
f(n): sample beats from patient record 14046, first-lead signal

V

NN

RR
i+1

=0.898

RR
i+2

RR
i+3

=0.742

RR
i
=0.633

key-beats

=0.703

Fig. 8.8 Excerpt of raw ECG data from patient record 14,046 in the MIT-BIH long-term
database. The three key-beats, having morphological and RR-interval differences, are chosen by
the systematic approach presented

8.2 Classification of Holter Registers 251

performance results of automated arrhythmia detection algorithms [13]. In this
study, according to the AAMI recommended practice, each ECG beat is classified
into the following five heartbeat types: N (beats originating in the sinus mode), S
(supraventricular ectopic beats), V (ventricular ectopic beats), F (fusion beats), and
Q (unclassifiable beats). For this study, the systematic approach labeled heartbeats
consistent with the cardiologist supplied annotations over *99.5 % of the time for
a total of 668,486 beats.

From the results in Table 8.4, the systematic approach performed with a high
accuracy for detection of normal (N) and ventricular (V) groups of beats. Spe-
cifically, accurate detection of premature ventricular contractions (PVCs) from the
ventricular group (V) in long-term ECG data is essential for patients with heart
disease, since it may lead to possible life-threatening cardiac conditions [35]. On
the other hand, for supraventricular ectopic (S) beats and some cases of fusion of
ventricular and normal (F) beats, the systematic approach presented did not form a
separate cluster corresponding to each type of beat due to the fact that their
morphological and temporal features are indeed quite similar to normal (N) beats.
Therefore, we can conclude that a more accurate separation of both supraven-
tricular and fusion beats from the normal beats requires a more effective feature
extraction technique than the one used in the current work. The (average) clas-
sification error, *0.5 %, can further be divided into critical and noncritical errors,
which can be defined as follows: All normal (N) beats that are misclassified as one
of the anomaly classes (S, V, or F) contribute to noncritical error because the
expert cardiologist, who is false alerted by the presence of such beats that indicate
a potential cardiac disease, can review them and correct the classification. This is
also true for such misclassification among the anomaly classes since those beats
are anyway classified as not normal, but with a wrong class type and thus they
shall be all subject to expert’s attention following with a manual correction. The
critical errors occur when a beat in one of the anomaly classes is misclassified as
normal since this is the case where the expert is not alerted and kept unnoticed by
the presence of a potential heart disease. So the consequences of such critical

Table 8.4 Overall results for each patient in the MIT-BIH long-term database using the
systematic approach presented

Patient N S V F Q Accuracy (%)

14,046 105,308/105,405 0/1 9,675/9,765 34/95 0/0 99.79
14,134 38,614/38,766 0/29 9,769/9,835 641/994 0/0 98.80
14,149 144,508/144,534 0/0 235/264 0/0 0/0 99.96
14,157 83,340/83,412 6/244 4,352/4,368 53/63 0/0 99.62
14,172 58,126/58,315 77/1003 6,517/6,527 0/1 0/0 98.41
14,184 77,946/78,096 0/39 23,094/23,383 2/11 0/0 99.53
15,814 91,532/91,617 6/34 9,680/9,941 1,427/1,744 0/0 99.32
Total 599,374/600,145 89/1350 63,322/64,083 2,157/2,908 0/0
Weighted average 99.48

For each class, the number of correctly detected beats is shown relative to the total beats
originally present

252 8 Personalized ECG Classification

errors might be fatal. According to the overall confusion matrix given in Table 8.5,
the (average) critical error level is below 0.3 % where major part of critical errors
occurred for the beats within class S due to the above-mentioned reasons specific
to the feature extraction method used in this study.

Since MD PSO is in stochastic nature, to test the repeatability and robustness of
the systematic approach presented, we performed 10 independent runs on patient
record 14,172, from which we obtained the lowest performance with the average
classification accuracy 98.41 %. All runs led to similar accuracy levels with only a
slight deviation of 0.2 %. It is also worth mentioning that with an ordinary
computer, the extraction of key-beats in a *5 min. time frame typically takes less
than 1.5 min. Therefore, this systematic approach is quite suitable for a real-time
application, that is, the key-beats can be extracted in real time with a proper
hardware implementation during the recording of a Holter ECG.

8.3 Summary and Conclusions

In this chapter, we presented an automated patient-specific ECG heartbeat clas-
sifier, which is based on an efficient formation of morphological and temporal
features from the ECG data and evolutionary neural network processing of the
input patterns individually for each patient. The TI-DWT and the PCA are the
principal signal processing tools employed in the feature extraction scheme. The
wavelet-based morphology features are extracted from the ECG data and are
further reduced to a lower dimensional feature vector using PCA technique. Then,
by combining compact morphological features with the two critical temporal
features, the resultant feature vector to represent each ECG heartbeat is finally
obtained with a proper normalization. In the core of the patient-specific approach
lies the evolutionary ANNs which are introduced in the previous chapter, that is,
for each individual patient, an optimal feedforward ANN will be evolved using the
MD PSO technique.

The results of the classification experiments, which are performed over the
benchmark MIT-BIH arrhythmia database show that the such a patient-specific
approach can achieve average accuracies and sensitivities better than most of the
existing algorithms for classification of ECG heartbeat patterns according to the

Table 8.5 The overall confusion matrix

Truth Classification results

N S V F Q

N 599,374 254 280 237 0
S 1,256 89 5 0 0
V 456 3 63,322 302 0
F 221 0 530 2,157 0
Q 0 0 0 0 0

8.2 Classification of Holter Registers 253

AAMI standards. An overall average accuracy of 98.3 % and an average sensi-
tivity of 84.6 % for VEB detection, and an average accuracy of 97.4 % and an
average sensitivity of 63.5 % for SVEB detection were achieved over all 44
patient records from the MIT-BIH database. The overall results promise a sig-
nificant improvement over other major techniques in the literature with the
exception of the BbNN-based personalized ECG classifier in [15], which gave
comparable results over the test set of 24 records. However, recall that it used
many critical parameters, BP method to train the classifier, which has certain
drawbacks, and a specific ANN architecture, which may not suit feature vectors in
higher dimensions. The approach presented in this chapter is based only on well-
known, standard techniques such as DWT and PCA, while using the most typical
ANN structure, the MLPs. Experimental results approve that its performance is not
affected significantly by variations of the few parameters used. Therefore, the
resulting classifier successfully achieves the main design objectives, i.e., main-
taining a robust and generic architecture with superior classification performance.
As a result it can be conveniently applied to any ECG database ‘‘as is’’, alleviating
the need of human ‘‘expertise’’ and ‘‘knowledge’’ for designing a particular ANN.

In the second part of the chapter, the dynamic clustering scheme based on MD
PSO with FGBF is used in the core of a long term, personalized ECG classification
system. Such a systematic approach basically addresses the inspection and
infeasibility problems within the entire lifetime of a long-term ECG signal
recorded from an individual patient and it is tested over a real (benchmark)
database containing a total of 668,486 (manually) labeled heartbeats. To our
knowledge, this is the first work ever applied to a real Holter database, since most
of the earlier works tested only over 30 min regular ECG records from MIT-BIH
arrhythmia database. Again, as a personalized approach with manual labeling of
only a few minutes long ECG data from each patient, we achieved an average of
99.5 % classification accuracy. In a typical Holter register of 24 h long, selection
of the right prototype beats, which can yield such a high accuracy level and a great
reduction in effort, is mainly due to two key operations. The first one, the so-called
temporal segmentation, partitions the entire data into homogenous time segments
that can be represented by minimal amount of key-beats. The following two-pass
dynamic clustering operation first extracts the true number of key-beats and then
the master key-beats among them. In both operations, such delicate classification
accuracy indicates that, the utilized dynamic clustering technique is able to extract
the optimal (number of) clusters in a 21-D feature (data) space. Although the
underlying optimization technique (MD PSO) is stochastic in nature, repeating the
classification process several times over the benchmark dataset yields almost
identical accuracy levels with insignificant variations (*0.2 %), thus indicating a
high level of robustness for finding the optimal solutions.

Moreover, such a systematic approach apparently promises a high level of
insensitivity to the length (duration) of the data since the duration of the time
segments is fixed and the number of clusters (master key-beats) found in the
second pass is not related at all with the number of key-beats in the first pass.
Although this system is intended and purposefully developed for long-term data to

254 8 Personalized ECG Classification

help professionals focus on the most relevant data, it can also provide efficient and
robust solutions for much shorter ECG datasets too. Besides classification, with
some proper annotation, master key-beats can also be used for the summarization
of any long-term ECG data for a fast and efficient visual inspection, and they can
further be useful for indexing Holter databases, for a fast and accurate information
retrieval. On the other hand, 0.5 % error rate, although may seem quite insignif-
icant for a short ECG dataset, can still be practically high for Holter registers
because it corresponds to several hundreds of misclassified beats, some of which
might be important for a critical diagnosis. Yet, recall that the optimality of the
clustering algorithm depends on the CVI, the feature extraction method and the
distance metric, in that, we use simple and typical ones so as to obtain a basic or
unbiased performance level. Therefore, by using for instance a more efficient CVI
and better alternatives for distance metric may further improve the performance.

8.4 Programming Remarks and Software Packages

As discussed in Sect. 7.5, ClassifierTestApp is the major MD PSO test-bed
application for evolutionary ANNs. The patient-specific ECG classification can
thus be performed using this application with the same data format, i.e., the ‘‘*.dt’’
files for each patient. In overall, there are 44 data files (patients) with the naming
convention, ‘‘ECGfeatures2_pID.dt’’ where ID corresponds to the patient index.

On the other hand, the classification of Holter registers is a typical case of
feature clustering in N-D feature space. As discussed in Sect. 6.4, the MD PSO
test-bed application, PSOTestApp, is used to perform feature clustering for Holter
register classification. The CPSOcluster class has already been described in detail
in Sects. 4.4.2 and 6.4 (with the FGBF application). Recall that this class was for
2-D clustering over simple 2-D synthetic data spaces. For the N-D clustering
operations over data files, the option: ‘‘6. N-D Clustering over *.dt (data) files…’’,
should be selected from the main GUI of the application, and the main dialog
object from CPSOtestAppDlg class will then use the object from CPSOclu-
sterND class in void CPSOtestAppDlg::OnDopso() function to perform N-D
clustering. Both classes, CPSOcluster and CPSOclusterND, have almost an
identical class structure with the same API functions besides the few differences
such as data classes (CPixel2D and CVectorNDopt) and temporal data segmen-
tation performed for CPSOclusterND class where clustering is individually (and
independently) performed for each time segment. Since the data classes (the
template class represented by class X) are different, this makes the main difference
over the template-based MD PSO object, CPSO_MD<T,X> and the solution
space object, CSolSpace<X>. The MD PSO object declaration is as follows:

CPSO_MD<CSolSpace<CVectorNDopt>, CVectorNDopt>*m_pPSO; // The
current MDPSO obj…

8.3 Summary and Conclusions 255

http://dx.doi.org/10.1007/978-3-642-37846-1_7
http://dx.doi.org/10.1007/978-3-642-37846-1_6
http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_6

Besides these differences, the clustering operation is pretty much same as
explained in Sects. 4.4.2 and 6.4. There are again two CVI functions (identical to
their 2-D counterparts) implemented: ValidityIndex() and ValidityIndex2()
where the latter is again in use. For each time segment, the N-D feature vectors are
read from the (next) data file in the file queue, and stored in the static pointer array,
s_pVectorArr, and once the clustering operation has been performed, the cluster
centroids, the so-called key beats’ FVs, are stored in the *_KEY[segmID].dt files.
Table 8.6 presents the CPSOclusterND::PSOThread() function with its basic
blocks. Note that there are a total of no_segm segments each of which contains a
fixed number (SEGM_SIZE or less) of beat FVs. The segmID corresponds to the
member variable m_segm. The key beats, once extracted by the MD PSO object,
are then retrieved and stored in the local member function, GetResults() in that
there is a sample code for K-means clustering method, which is repeated by
numerous times (defined by KMEANS_REP) among which the best achieved
fitness score is then compared with the clustering result of the MD PSO operation.
For an unbiased comparison, the parameter K is obviously set to the optimum
number of clusters found in the MD PSO operation.

Table 8.6 The function CPSOclusterND::PSOThread()

256 8 Personalized ECG Classification

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_6

References

1. R. Hoekema, G.J.H. Uijen, Oosterom van A, Geometrical aspects of the interindividual
variability of multilead ECG recordings. IEEE Trans Biomed Eng 48(5), 551–559 (2001)

2. K. Minami, H. Nakajima, T. Toyoshima, Real-Time discrimination of ventricular
tachyarrhythmia with Fourier-transform neural network. IEEE Trans Biomed Eng 46(2),
179–185 (1999)

3. L.Y. Shyu, Y.H. Wu, W.C. Hu, Using wavelet transform and fuzzy neural network for VPC
detection from the holter ECG. IEEE Trans Biomed Eng 51(7), 1269–1273 (2004)

4. O.T. Inan, L. Giovangrandi, G.T. Kovacs, Robust neural-network based classification of
PVCs using wavelet transform and timing interval features. IEEE Trans Biomed Eng 53(12),
2507–2515 (2006)

5. X. Alfonso, T.Q. Nguyen, ECG beat detection using filter banks. IEEE Trans Biomed Eng
46(2), 192–202 (1999)

6. J.L. Willems, E. Lesaffre, Comparison of multigroup logisitic and linear discriminant ECG
and VCG classification. J. Electrocardiol. 20, 83–92 (1987)

7. Z. Syed, J. Guttag, C. Stultz, Clustering and symbolic analysis of cardiovascular signals:
discovery and visualization of medically relevant patterns in long-term data using limited
prior knowledge. EURASIP J. Appl. Sign. Proces. pp. 1–16 (2007). Article ID 67938.
doi:10.1155/2007/67938

8. D.A. Coast, R.M. Stern, G.G. Cano, S.A. Briller, An approach to cardiac arrhythmia analysis
using hidden Markov models. IEEE Trans Biomed Eng 37(9), 826–836 (1990)

9. S. Osowski, L.T. Hoai, T. Markiewicz, Support vector machine based expert system for
reliable heartbeat recognition. IEEE Trans Biomed Eng 51(4), 582–589 (2004)

10. Y. Hu, S. Palreddy, W.J. Tompkins, A patient-adaptable ECG beat classifier using a mixture
of experts approach. IEEE Trans Biomed Eng 44(9), 891–900 (1997)

11. S.C. Lee, Using a Translation-Invariant Neural Network to Diagnose Heart Arrhythmia, in
IEEE Proceedings of Conference Neural Information Processing Systems, Nov 1989

12. P. de Chazal, R.B. Reilly, A patient-adapting heartbeat classifier using ECG morphology and
heartbeat interval features. IEEE Trans Biomed Eng 53(12), 2535–2543 (2006)

13. Recommended practice for testing and reporting performance results of ventricular
arrhythmia detection algorithms, Association for the Advancement of Medical
Instrumentation. (Arlington, VA, 1987)

14. P. de Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG
morphology and heartbeat interval features. IEEE Trans Biomed Eng 51(7), 1196–1206 (2004)

15. W. Jiang, S.G. Kong, Block-based neural networks for personalized ECG signal
classification. IEEE Trans. Neural Networks, 18(6), 1750–1761 (2007)

16. C. Li, C.X. Zheng, C.F. Tai, Detection of ECG characteristic points using wavelet transforms.
IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

17. R. Silipo et al., ST-T segment change recognition using artificial neural networks and
principal component analysis, in Computers in Cardiology, 1995, pp. 213–216

18. R. Silipo, C. Marchesi, Artificial neural networks for automatic ECG analysis. IEEE Trans
Sign Proces 46(5), 1417–1425 (1998)

19. L.Y. Shyu, Y.H. Wu, W.C. Hu, Using wavelet transform and fuzzy neural network for VPC
detection from the holter ECG. IEEE Trans. Biomed. Eng. 51(7), 1269–1273 (2004)

20. X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural networks. IEEE
Trans Neural Networks 8(3), 694–713 (1997)

21. R. Mark, G. Moody, MIT-BIH arrhythmia database directory [Online], http://ecg.mit.edu/
dbinfo.html

22. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3),
230–236 (1985)

23. Y.H. Hu, W.J. Tompkins, J.L. Urrusti, V.X. Afonso, Applications of artificial neural
networks for ECG signal detection and classification. J. Electrocardiol. pp. 66–73 (1994)

References 257

http://dx.doi.org/10.1155/2007/67938
http://ecg.mit.edu/dbinfo.html
http://ecg.mit.edu/dbinfo.html

24. S.G. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic Press, San Diego,
1999)

25. S.G. Mallat, S. Zhong, Characterization of signals from multiscale edges. IEEE Trans Pattern
Anal Machine Intell 14, 710–732 (1992)

26. N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex power spectra for
design of a QRS filter. IEEE Trans Biomed Eng BME-31, 702–705 (1984)

27. M. Paoletti, C. Marchesi, Discovering dangerous patterns in long-term ambulatory ECG
recordings using a fast QRS detection algorithm and explorative data analysis. Comput.
Methods Progr. Biomedicine 82, 20–30 (2006)

28. S. Pittner, S.V. Kamarthi, Feature extraction from wavelet coefficients for pattern recognition
tasks. IEEE Trans Pattern Anal Machine Intell 21, 83–88 (1999)

29. N.J. Holter, New methods for heart studies. Science 134(3486), 1214–1220 (1961)
30. M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. Sörnmo, Clustering ECG

complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng.
47(7), 838–848 (2000)

31. PhysioBank, MIT-BIH long-term database directory [Online], http://www.physionet.org/
physiobank/database/ltdb/

32. P. Mele, Improving electrocardiogram interpretation in the clinical setting, J. Electrocardiol.
(2008). doi:10.1016/j.jelectrocard.2008.04.003

33. D. Cuesta-Frau, J.C. Pe’rez-Corte’s, G. Andreu-Garci’a, Clustering of electrocardiograph
signals in computer-aided Holter analysis. Comput Methods Programs Biomed 72(3),
179–196 (2003)

34. M. Korurek, A. Nizam, A new arrhythmia clustering technique based on ant colony
optimization, J. Biomed. Inform. (2008). doi:10.1016/j.jbi.2008.01.014

35. PhysioToolkit, The WFDB software package [Online], http://www.physionet.org/
physiotools/wfdb.shtml

36. W.J. Tompkins, J.G. Webster, Design of microcomputer-based medical instrumentation
(Prentice Hall Inc, Englewood Cliffs, 1981), pp. 398–3999. ISBN 0-13-201244-8

258 8 Personalized ECG Classification

http://www.physionet.org/physiobank/database/ltdb/
http://www.physionet.org/physiobank/database/ltdb/
http://dx.doi.org/10.1016/j.jelectrocard.2008.04.003
http://dx.doi.org/10.1016/j.jbi.2008.01.014
http://www.physionet.org/physiotools/wfdb.shtml
http://www.physionet.org/physiotools/wfdb.shtml

Chapter 9
Image Classification and Retrieval
by Collective Network of Binary
Classifiers

It is not the strongest of the species that survives, nor the most
intelligent that survives. It is the one that is the most adaptable
to change.

Charles Darwin

Multimedia collections are growing in a tremendous pace as the modus operandi
for information creation, exchange, and storage in our modern era. This creates an
urgent need for means and ways to manage them efficiently. Earlier attempts such
as text-based indexing and information retrieval systems show drastic limitations
and require infeasible laborious work. The efforts are thus focused on a content-
based management approach; yet, we are still at the early stages of the develop-
ment of techniques to guarantee efficiency and effectiveness in content-based
multimedia systems. The peculiar nature of multimedia information, such as dif-
ficulty of semantic indexing, complex multimedia identification, and difficulty of
adaptation to different applications are the main factors hindering breakthroughs in
this area.

This chapter focuses primarily on content-based image retrieval (CBIR) and
classification. For classifying and indexing a large image content data reserve, the
key questions are: (1) how to select certain features so as to achieve the highest
discrimination over certain classes, (2) how to combine them in the most effective
way, (3) which distance metric to apply, (4) how to find the optimal classifier
configuration for the classification problem at hand, and (5) how to scale/adapt the
classifier if a large number of classes/features are present and finally, (6) how to
train the classifier efficiently to maximize the classification accuracy. These
questions still remain unanswered. The current state-of-the-art classifiers such as
SVMs, RF, ANNs, etc., cannot cope with such requirements since a single clas-
sifier, no matter how powerful and well-trained it can be, cannot discriminate
efficiently a vast amount of classes, over an indefinitely large set of features, where
both classes and features are not static, but rather dynamic such as the case of
media content repositories. Therefore, in order to address these problems and to
maximize the classification accuracy which will in turn boost the retrieval per-
formance, we shall focus on a global framework design that embodies a collective
network of evolutionary classifiers. In this way, we shall achieve as compact
classifiers as possible, which can be evolved in a much more efficient way than a

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_9, � Springer-Verlag Berlin Heidelberg 2014

259

single but complex classifier, and the optimum classifier for the classification
problem at hand can be searched with the underlying evolutionary technique. At a
given time, this allows the creation and designation of a dedicated classifier for
discriminating a certain class type from the others based on a single feature. Each
incremental evolution session will ‘‘learn’’ from the current best classifier and can
improve it further. Moreover, with each incremental evolution, new classes/fea-
tures can also be introduced which signals the collective classifier network to
create new corresponding networks and classifiers within to adapt dynamically to
the change. In this way the collective classifier network will be able to dynamically
scale itself to the indexing requirements of the media content data reserve while
striving for maximizing the classification and retrieval accuracies for a better user
experience.

9.1 The Era of CBIR

The CBIR has been an active research field for which several feature extraction,
classification, and retrieval techniques have been proposed up to date. However,
when the database size varies in time and usually grows larger, it is a common fact
that the overall classification and retrieval performance significantly deteriorates.
Due to the reasoning given earlier, the current state-of-the-art classifiers such as
support vector machines (SVMs) [1, 2], Bayesian Classifiers, random forests (RFs)
[3], and artificial neural networks (ANNs) cannot provide optimal or even feasible
solutions to this problem. This fact drew the attention toward classifier networks
(or ensembles of classifiers). An earlier ensemble of classifier type of approach,
Learn++ [4], incorporates an ensemble of weak classifiers, which can perform
incremental learning of new classes; however, albeit at a steep cost, i.e., learning
new classes requires an increasingly large number of classifiers for each new class
to be learned. The resource allocating network with long-term memory (RAN-
LTM) [5] can avoid this problem by using a single RBF network, which can be
incrementally trained by ‘‘memory items’’ stored in a long-term memory. How-
ever, RAN-LTM has a fixed output structure and thus, is not able to accommodate
a varying number of classes. For the incremental learning problem when new
classes are dynamically introduced, some hierarchical techniques such as [6] and
[7] have been proposed. They basically separate a single class from the previous
classes within each hierarchical step, which builds up on its previous step. One
major drawback of this approach is parallelization since the addition of N new
classes will result in N steps of adding one class at a time. Furthermore, the
possible removal of an existing class is not supported and hence requires retraining
of the entire classifier structure from scratch. None of the ensemble of classier
methods proposed so far can support feature scalability and thus a new feature
extraction will eventually make the current classifier ensemble obsolete and
require a new design (and re-training) from scratch.

260 9 Image Classification and Retrieval by Collective Network

Another major question that still remains in CBIR is how to narrow the
‘‘Semantic Gap’’ between the low-level visual features that are automatically
extracted from images and the high-level semantics and content-description by
humans. Among a wide variety of features proposed in the literature, none can
really address this problem alone. So the focus has been drawn on fusing several
features in the most effective way since whatever type of classifiers is used, the
increased feature space may eventually cause the ‘‘Curse of Dimensionality’’
phenomenon that significantly degrades the classification accuracy. In [8], three
MPEG-7 visual features, color layout descriptor (CLD), scalable color descriptor
(SCD), and edge histogram descriptor (EHD) are fused to train several classifiers
(SVMs, KNN, and Falcon-ART) for a small database with only two-classes and 767
images. This work has clearly demonstrated that the highest classification accuracy
has been obtained with the proper feature fusion. This is indeed an expected out-
come since each feature may have a certain level of discrimination for a particular
class. In another recent work [9], this fact has been, once again, confirmed where
the authors fused three MPEG-7 features: SCD, Homogenous Texture Descriptor
and EHD and trained SVM over the same database. Basic color (12 dominant
colors) and texture (DWT using quadrature mirror filters) features were used in [10]
to annotate image databases using ensemble of classifiers (SVMs and Bayes Point
Machines). Although the classification is performed over a large image database
with 25 K images and 116 classes from Corel repository, the authors used above
80 % of the database for training and another database to evaluate and manually
optimize various kernel and classifier parameters. In [11] SVMs together with 2-D
Hidden Markov Model (HMM) are used to discriminate image classes in an inte-
grated model. Two features, 50-D SIFT (with a dimension reduction by PCA) and
9-D color moments (CM) are used individually in two datasets using 80 % of the
images for training, and the classification accuracies are compared. In all these
image classification works and many alike, besides the aforementioned key prob-
lems there are other drawbacks and limitations, e.g., they can work with only a
limited feature set to avoid the ‘‘Curse of Dimensionality’’ and they used the major
part of the database, some as high as 80 % or even higher, for training to sustain a
certain level of classification accuracy. They are all image classification methods
for static databases assuming a fixed GTD and fixed set of features where feature
and class scalability and dynamic adaptability have not been considered.

In order to address these problems and hence to maximize the classification
accuracy which will in turn boost the CBIR performance, in this chapter, we shall
focus on a global framework design that embodies a collective networks of
(evolutionary) binary classifiers (CNBC). In this way, we shall demonstrate that
one can achieve as compact classifiers as possible, which can be evolved and
trained in a much more efficient way than a single but complex classifier, and the
optimum classifier for the classification problem in hand can be searched with an
underlying evolutionary technique, e.g., as described in Chap. 7. At a given time,
this allows the creation and designation of a dedicated classifier for discriminating
a certain class type from the others based on a single feature. The CNBC can
support varying and large set of visual features among which it optimally selects,

9.1 The Era of CBIR 261

http://dx.doi.org/10.1007/978-3-642-37846-1_7

weights, and fuses the most discriminative ones for a particular class. Each NBC is
devoted to a unique class and further encapsulates a set of evolutionary binary
classifiers (BCs), each of which is optimally chosen within the architecture space
(AS), discriminating the class of the NBC with a unique feature. For instance for
an NBC evolved for the sunset class, it will most likely select and use mainly color
features (rather than texture and edge features) and the most descriptive color
feature elements (i.e., color histogram bins) for discriminating this particular class
(i.e., red, yellow, and black), are weighted higher than the others.

The CNBC framework is primarily designed to increase the retrieval accuracy
in CBIR on ‘‘dynamic databases’’ where variations do occur at any time in terms
of (new) images, classes, features, and users’ relevance feedback. Whenever a
‘‘change’’ occurs, the CNBC dynamically and ‘‘optimally’’ adapts itself to the
change by means of its topology and the underlying evolutionary method.
Therefore, it is not a ‘‘just another classifier’’ as no static (or fixed) classifier
including the state-of-the-art competitors such as ANNs, SVMs, and RF can really
do that, e.g., if (a) new feature(s) or class(es) are introduced, one needs to reform
and retrain a new (static) classifier from scratch—which is a waste of time and
information so far accumulated. This topology shall prove useful for dynamic,
content/data adaptive classification in CBIR. In that sense, note that comparative
evaluations against SVMs and RFs are performed only in ‘‘static databases’’ to
show that the CNBC has a comparable or better performance –despite of the fact
that neither CBIR nor classification in static databases is not the primary objective.
Furthermore, the CNBC is not an ‘‘ensemble of classifiers’’ simply because: At any
time t, (1) it contains an individual network of classifier (NBC) for each class, (2)
each NBC contains several evolving classifiers, each is optimally selected among a
family of classifiers (the so-called architecture space, AS) and their number is
determined by the number of features present at that time, (3) the number of NBCs
is also determined by the number of classes at time t. So the entire CNBC body is
subject to change whenever there is a need for it. The ensemble of classifiers
usually contains a certain number of ‘‘static’’ classifiers and their input/output
(features and classes) must be fixed in advance; therefore, similar to standalone
static classifiers, they cannot be used for dynamic databases.

9.2 Content-Based Image Classification and Retrieval
Framework

This section describes in detail the image classification framework; the collective
network of (evolutionary) binary classifiers (CNBC), which uses user-defined
ground truth data (GTD) as the train dataset1 to configure its internal structure and

1 As a common term, we shall still use ‘‘train dataset’’ or ‘‘train partition’’ to refer to the dataset
over which the CNBC is evolved.

262 9 Image Classification and Retrieval by Collective Network

to evolve its binary classifiers (BCs) individually. Before going into details of
CNBC, a general overview for this novel classification topology will be introduced
in Sect. 9.2.1.

9.2.1 Overview of the Framework

The image classification framework is designed to dynamically adapt (or scale) to
any change and update in an image database. As shown in Fig. 9.1, new image(s)
can be inserted into the database for which the user may introduce new class(es)
via relevance feedbacks, and/or new feature(s) can be extracted, at any convenient
time. As long as the user provides new ground-truth data (GTD) for the new
classes, the existing classifier body, CNBC, can incrementally be evolved if the

Ground-Truth Data
New Classes
New Features

Feature
Extraction

Norm.

Visual Features

Incremental Evolution
CNBC(t) CNBC(t+1)

FVs
CNBC(t+1)

Feature
Extraction

Norm.

New Image(s)

Visual Features

Query
Result

Query
By

Example

An Image

Incremental CNBC Evolution Classification & CBIR

Class
Vectors

User

FVs

Image
Database

Class
Vectors

Fig. 9.1 The overview of the CBIR framework

9.2 Content-Based Image Classification and Retrieval Framework 263

need arises, i.e., if the existing CNBC (or some NBCs in it) fails to classify these
new classes accurately enough.

MUVIS system [12] is used to extract a large set of low-level visual features
that are properly indexed in the database along with the images. Unit normalized
feature vectors (FVs) formed from those features are fed into the input layer of the
CNBC where the user provided GTD is converted to target class vectors (CVs) to
perform an incremental evolution operation. The user can also set the number of
evolutionary runs or the desired level of classification. Any CNBC instance can
directly be used to classify a new image and/or to perform content-based image
queries, the result of which can be evaluated by the user who may introduce new
class(es), yielding another incremental evolution operation, and so on. This is an
ongoing cycle of human-classifier interaction, which gradually adapts CNBC to
the user’s class definitions. New low-level features can also be extracted to
improve the discrimination among classes, which signals CNBC to adapt to the
change simultaneously. In short, dynamic class and feature scalability are the key-
objectives aimed within the CNBC design. Before going into the details of the
CNBC framework, Sect. 9.2.2 will first introduce the evolutionary update mech-
anism that keeps the best classifier networks in the AS during numerous incre-
mental evolutionary runs.

9.2.2 Evolutionary Update in the Architecture Space

Since the evolutionary technique, MD PSO, is a stochastic optimization method, in
order to improve the probability of convergence to the global optimum, several
evolutionary runs can be performed. Let NR be the number of runs and NC be the
number of configurations in the architecture space (AS). For each run the objective
is to find the optimal classifier within AS with respect to a pre-defined criterion.
Note that along with the best classifier, all other configurations in AS are also
subject to evolution and therefore, they are continuously re-trained with each run.
So during this ongoing process, between any two consecutive runs, any network
configuration can replace the current best one in AS if it improves the fitness
function. This is also true for the alternative exhaustive search, i.e., each network
configuration in AS is trained by NR back-propagation (BP) runs and the same
evolutionary update rule applies.

Figure 9.2 demonstrates an evolutionary update operation over a sample AS
containing 5 MLP configurations. The tables in the figure show the training MSE
which is the criterion used to select the optimal configuration at each run. The best
runs for each configuration are highlighted and the best configuration in each run is
tagged with ‘*’. Note that at the end of the three runs, the overall best network with
MSE = 0.10 has the configuration: 15 9 2 9 2 and thus used as the classifier
until another configuration beats it in a future run during an evolutionary update. In
this way, each binary classifier configuration in AS can only evolve to a better
state, which is the main purpose of this evolutionary update mechanism.

264 9 Image Classification and Retrieval by Collective Network

9.2.3 The Classifier Framework: Collective Network
of Binary Classifiers

9.2.3.1 The Topology

To achieve scalability with respect to a varying number of classes and features, a
dedicated framework encapsulating NBCs is developed, where NBCs can evolve
continuously with the ongoing evolution sessions, i.e., cumulating the user sup-
plied GTD for images and thus forming the train dataset. Each NBC corresponds
to a unique image class while striving to discriminate only that class from the rest
of the classes in the database. Moreover, each NBC shall contain a varying number
of evolutionary BCs in the input layer where each BC performs binary classifi-
cation using a single feature. Each FV of a particular feature is only fed to its
corresponding binary classifier in each NBC. Therefore, whenever a new feature is
extracted, its corresponding binary classifier will be created, evolved (using the
available GTD), and inserted into each NBC, yet keeping each of the other binary
classifiers ‘‘as is’’. On the other hand, whenever an existing feature is removed, the
corresponding binary classifier is simply removed from each NBC in the CNBC. In
this way scalability with respect to a varying number of features is achieved and
the overall system can adapt to the change without requiring re-forming and re-
evolving from scratch.

Each NBC has a ‘‘fuser’’ binary classifier in the output layer, which collects and
fuses the binary outputs of all binary classifiers in the input layer and generates a
single binary output, indicating the relevancy of each FV of an image belonging to

Feature + Class
Vectors (FV+CV)

C
lass V

ectors

0.22
0.13

AS
15x2

15x1x2
15x2x2
15x3x2
15x4x2

Configuration

0.24
0.13

0.12 *
0.19
0.19

0.22
0.21

0.10 *
0.20
0.21

0.25
0.16
0.18
0.14

0.12 *

Run #1 Run #3Run #2
15x2

15x1x2
15x2x2
15x3x2
15x4x2

Configuration

0.10
0.14
0.12

15x2x2

FV

CV

Architecture Space with
 5 MLP configurations

Evolution
Process

The best BC

AS

FV

CV

Fig. 9.2 Evolutionary update in a sample AS for MLP configuration arrays Rmin ¼ 15; 1; 2f g
and Rmax ¼ 15; 4; 2f g where NR ¼ 3 and NC ¼ 5. The best runs for each configurations are
highlighted and the best configuration in each run is tagged with ‘*’

9.2 Content-Based Image Classification and Retrieval Framework 265

the NBC’s corresponding class. Furthermore, CNBC is also scalable to any
number of classes since whenever a new class is defined by the user, a new
corresponding NBC can simply be created (and evolved) only for this class
without requiring any need for change in the other NBCs as long as they can
accurately discriminate the new class from their corresponding classes. This allows
the overall system to adapt dynamically to the varying number of classes. As
shown in Fig. 9.3, the main idea in this approach is to use as many classifiers as
necessary, so as to divide a large-scale learning problem into many NBC units
along with the binary classifiers within, and thus prevent the need of using com-
plex classifiers as the performance of both training and evolution processes
degrade significantly as the complexity rises due to the well-known curse of
dimensionality phenomenon. A major benefit of this approach with respect to
efficient evolution process is that the configurations in the AS can be kept as
compact as possible avoiding unfeasibly large storage and training time require-
ments. This is a significant advantage especially for the training methods per-
forming local searches, such as BP since the amount of deceiving local minima is
significantly lower in the error space for such simple and compact ANNs. Espe-
cially, when BP is applied exhaustively, the probability of finding the optimum
solution is significantly increased. Also note that evolving CNBC may reduce the
computation time significantly since it contains simple and compact classifier
networks, each of which can be individually evolved by a separate CPU and hence
the overall computation time can be reduced as much as desired. This in practice
leads to a significantly less complex classifier compared to training a single but
more complex ANN classifier.

In order to increase the classification accuracy, a dedicated class selection
technique is applied in CNBC. A 1-of-n encoding scheme is used in all BCs,

0CV

1−NBC
0BC 1BC

0FV 1FV 1−NFV

0NBC
Fuser

1−CCV

1−NBC
0BC 1BC

0FV 1FV 1−NFV

1−CNBCFuser

1CV

1−NBC
0BC 1BC

0FV 1FV 1−NFV

1NBC
Fuser

0FV 1FV 1−NFV

Dataset Features

},...,,{ 110 −NFVFVFV

Class Selection

}{ *c

CNBC

Fig. 9.3 Topology of the CNBC framework with C classes and N FVs

266 9 Image Classification and Retrieval by Collective Network

therefore, the output layer size of all binary classifiers is always two. Let CVc;1 and
CVc;2 be the first and second output of the cth BC’s class vector (CV). The class
selection in 1-of-n encoding scheme can simply be performed by comparing the
individual outputs, e.g., say a positive output if CVc;2 [CVc;1, and vice versa for
negative output. This is also true for the fuser BC, whose output is the output of its
NBC. The FVs of each dataset item are fed into each NBC in the CNBC. Each FV
drives through (via forward propagation) its corresponding binary classifier in the
input layer of the NBC. The outputs of these binary classifiers are then fed into the
fuser binary classifier of each NBC to produce class vectors (CVs). The class
selection block shown in Fig. 9.3 collects these outputs and selects the positive
class(es) of the CNBC as the final outcome. This selection scheme, first of all,
differs with respect to the dataset class type, i.e., the dataset can be called ‘‘uni-
class’’, if an item in the dataset can belong to only one class, otherwise it is called
‘‘multi-class’’. Therefore, in a uni-class dataset there must be only one class, c�,
selected as the positive outcome whereas in a multi-class dataset, there can be one
or more NBCs, fc�g, with a positive outcome. In the class selection scheme the
winner-takes-all strategy is utilized. Assume without loss of generality that a CV
of {0, 1} or {-1, 1} corresponds to a positive outcome where CVc;2 � CVc;1 is
maximum. Therefore, for uni-class datasets, the positive class index, c�, (‘‘the
winner’’) is determined as follows:

c� ¼ arg max
c2½0;C�1�

ðCVc;2 � CVc;1Þ ð9:1Þ

In this way the erroneous cases (false negative and false positives) where no or
more than one NBC exists with a positive outcome can be properly handled.
However, for multi-class datasets the winner-takes-all strategy can only be applied
when no NBC yields a positive outcome, i.e., CVc;2�CVc;1 8c 2 0;C � 1½ �,
otherwise for an input set of FVs belonging to a dataset item, multiple NBCs with
positive outcome may indicate multiple true-positives and hence cannot be further
pruned. As a result, for a multi-class dataset the (set of) positive class indices,
fc�g, is selected as follows:

fc�g ¼
arg

c2½0;C�1�
max ðCVc;2 � CVc;1Þ if CVc;2�CVc;1 8c 2 0;C � 1½ �

f arg
c2½0;C�1�

ðCVc;2 [CVc;1Þg else

0

B
@

1

C
A

ð9:2Þ

9.2.3.2 Evolution of the CNBC

The evolution of a subset of the NBCs or the entire CNBC is performed for each
NBC individually with a two-phase operation, as illustrated in Fig. 9.4. As
explained earlier, using the FVs and the target class vectors (CVs) of the training

9.2 Content-Based Image Classification and Retrieval Framework 267

dataset, the evolution process of each binary classifier in a NBC is performed
within the current AS in order to find the optimal binary classifier configuration
with respect to a given criterion (e.g., training/validation MSE or classification
error, CE). During the evolution, only NBCs associated with those classes rep-
resented in the training dataset are evolved. If the training dataset contains new
classes, which does not yet have a corresponding NBC, a new NBC is created for
each, and evolved using the training dataset.

In Phase 1, see top of Fig. 9.4, the binary classifiers of each NBC are first
evolved given an input set of FVs and a target CV. Recall that each CV is
associated with a unique NBC and the fuser binary classifiers are not used in this
phase. Once an evolution session is over, the AS of each binary classifier is then
recorded so as to be used for potential (incremental) evolution sessions in the
future.

Recall further that each evolution process may contain several runs and
according to the aforementioned evolutionary update rule, the best configuration
achieved will be used as the classifier. Hence once the evolution process is
completed for all binary classifiers in the input layer (Phase 1), the best binary
classifier configurations are used to forward propagate all FVs of the items in the
training dataset to compose the FV for the fuser binary classifier from their output
CVs, so as to evolve the fuser binary classifier in the second phase. Apart from the
difference in the generation of the FVs, the evolutionary method (and update) of
the fuser binary classifier is same as any other binary classifier. In this phase, the

Feature + Class
Vectors

C
lass V

ectors

1NBC0BC 1BC

0FV 1FV 1NFV

0NBC

1NBC0BC 1BC

0FV 1FV 1NFV

1NBC

1NBC0BC 1BC

0FV 1FV 1NFV

1CNBC

Architecture Spaces
for BCs

0 1 0 1 0 1 0 1 0 1 0 11 0 1 0 1 0
0CV

Fuser

1CV

Fuser

1CCV

Fuser

100CV 011CV 101CCV

CNBC Evolution Phase 1
(Evolution of BCs in the 1st Layer)

CNBC Evolution Phase 2
(Evolution of Fuser BCs)

1NBC
0BC 1BC

0FV 1FV 1NFV

0NBC

1NBC
0BC 1BC

0FV 1FV 1NFV

1CNBC

1NBC
0BC 1BC

0FV 1FV 1NFV

1NBC

100CV

Fuser

011CV

Fuser

101CCV

Fuser

Best (so far) Classifiers in
Architecture Spaces

C
lass V

ectors

− − −

−

−

−

−−−

− − −

−

−

− −

= = =

===

Fig. 9.4 Illustration of the two-phase evolution session over BCs’ architecture spaces in each
NBC

268 9 Image Classification and Retrieval by Collective Network

fuser binary classifier learns the significance of each individual binary classifier
(and its feature) for the discrimination of that particular class. This can be viewed
as the adaptation of the entire feature space to discriminate a specific class in a
large dataset. Alternatively, this can be viewed as an efficient feature selection
scheme over the set of FVs, by selecting the most discriminative FVs for a given
class. The fuser BC, if properly evolved and trained, can then ‘‘weight’’ each
binary classifier (with its FV), accordingly. In this way the feature (and its BC)
shall optimally be ‘‘fused’’ according to its discrimination power with respect to
each class. In short the CNBC, if properly evolved, shall learn the significance (or
the discrimination power) of each FV and its individual components.

In this chapter, the image databases are considered as uni-class where one
sample can belong to only one class, and during the evolution process, each
positive sample of one class can be used as a negative sample for all others.
However, if there is a large number of classes, an uneven distribution of positive
and negative samples per class, may bias the evolution process. In order to prevent
this, a negative sample selection is performed in such a way that for each positive
sample, the number of negative samples (per positive sample) will be limited
according to a predetermined positive-to-negative ratio (PNR). The selection of
negative samples is performed with respect to the closest proximity to the positive
sample so that the classifier can be evolved by discriminating those negative
samples (from the positive one) which have the highest potential for producing a
false-positive. Therefore, if properly trained, the classifier can draw the ‘‘best
possible’’ boundary between positive and negative samples, which shall in turn
improve the classification accuracy. The features of those selected items and the
classes will form the FVs of the training dataset, over which the CNBC body can
be created and evolved.

9.2.3.3 Incremental Evolution of the CNBC

Incremental evolution is the ability to evolve each classifier in the network
dynamically so as to cope with changes that may occur at any time in a dynamic
database. To achieve this, the CNBC framework is designed to carry out contin-
uous ‘‘incremental’’ evolution sessions where each session may further improve
the classification performance of each binary classifier using the advantage of the
‘‘evolutionary updates’’. The main difference between the initial and the sub-
sequent (incremental) evolution sessions is the initialization of the evolution
process: the former uses random initialization whereas the latter starts from the last
AS parameters of each classifier in each BC. Note that the training dataset used for
the incremental evolution sessions may be different from the previous ones, and
each session may contain several runs. Thus, the evolutionary update rule com-
pares the performance of the last recorded and the current (after the run) network
over the current training dataset.

During each incremental evolution phase, existing NBCs are incrementally
evolved only if they cannot accurately classify the training samples of the new

9.2 Content-Based Image Classification and Retrieval Framework 269

classes. In that, an empirical threshold level (e.g., 95 %) is used to determine the
level of classification accuracy required for the new GTD encountered. The NBCs
for the new classes are directly evolved without such verification and they use the
available (or log) GTD (the positive samples) of the existing NBCs during their
evolution process as negative samples. Therefore, for each evolution session new
and log GTD are individually fused to evolve both new (initially) and existing
NBCs (incrementally).

Consequently, the MD PSO evolutionary technique used for evolving MLPs is
initialized with the current AS parameters of the network. That is the swarm
particles are randomly initialized (as in the initial evolutionary step) except that
one of the particles (without loss of generality, we assume the first particle with
a = 0) has its personal best set to the optimal solution found in the previous
evolutionary session. For MD PSO evolution over MLPs, this can be expressed as,

xyd
0ð0Þ Wd fw0

jkg; fw1
jkg; fh

1
kg; fw2

jkg; fh
2
kg; . . .; fwo�1

jk g; fh
o�1
k g; fh

o
kg

n o
8d

2 ½1;NC�
ð3Þ

where wl
jk

n o
and hl

k

� �
represent the sets of weights and biases of layer l of the

MLP network, Wd , which is the dth (MLP) configuration retrieved from the last AS
record. It is expected that especially at the early stages of the MD PSO run, the first
particle is likely to be the gbest particle in every dimension, guiding the swarm
toward the last solution otherwise keeping the process independent and uncon-
strained. Particularly, if the training dataset is considerably different in the
incremental evolution sessions, it is quite probable that MD PSO can converge to a
new solution while taking the past solution (experience) into account.

For the alternative evolutionary technique, the exhaustive search via repetitive
BP training of each network in the AS, the first step of an incremental training will

simply be the initialization of the weights wl
jk

n o
and biases hl

k

� �
with the

parameters retrieved from the last record of the AS of that BC. Starting from this
as the initial point, and using the current training dataset with the target CVs, the
BP algorithm can then perform its gradient descent in the error space.

9.3 Results and Discussions

During the classification and CBIR experiments in this section, three major
properties of the CNBC will be demonstrated: (1) the (incremental) evolutionary
and dynamic adaptability virtues. For instance, when new classes and features are
introduced, whether or not it can adapt itself to the change with a ‘‘minimal’’
effort, i.e., the (incremental) evolution is applied only if there is a need for it and if

270 9 Image Classification and Retrieval by Collective Network

so, it uses the advantage of the previous (accumulated) knowledge, (2) the com-
petitive performance level with the state-of-the-art classifiers (SVMs and RFs) on
static databases and to demonstrate its parameter independence as the default
parameters are used for CNBC evolution while the best possible internal param-
eters are searched and used for the competitors for training, and finally, (3) the
application of the classifier to improve CBIR performance on dynamically varying
image databases (the main objective). On the other hand, since CBIR is the main
application domain, designing a classifier network for massive databases with
millions of images is not our objective due to the well-known ‘‘semantic gap’’
phenomenon. Note that this cannot be achieved only with the classifier design
since the low-level features have extremely limited or in practice no discrimination
power on such magnitudes. Obviously, designing such highly discriminative fea-
tures that can provide the description power needed is beyond the scope of this
chapter; however, in some cases, CNBC can also achieve a superior classification
performance thanks to its ‘‘Divide and Conquer’’ approach. For instance, in a
synthetic aperture radar (SAR) classification [13] where the SAR features have
indeed a high degree of discrimination, CNBC was evolved using the GTD only
from 0.02 % of SAR image pixels with a total number exceeding a million and
achieved higher than 99.6 % classification accuracy.

9.3.1 Database Creation and Feature Extraction

MUVIS framework [12], is used to create and index the following two image
databases by extracting 14 features for each image.

(1) Corel_10 Image Database: There are 1,000 medium resolution (384 9 256
pixels) images obtained from Corel repository [14] covering 10 diverse
classes: 1—Natives, 2—Beach, 3—Architecture, 4—Bus, 5—Dino Art, 6—
Elephant, 7—Flower, 8—Horse, 9—Mountain, and 10—Food.

(2) Corel_Caltech_30 Image Database: There are 4,245 images from 30 diverse
classes that are obtained from both Corel and Caltech [15] image repositories.

As detailed in Table 9.1, some of the basic color (e.g., MPEG-7 Dominant
Color Descriptor, HSV color histogram and Color Structure Descriptor [16]),
texture (e.g. Gabor [17], Local Binary Pattern [18], and Ordinal Co-occurrence
Matrix [19]), and edge (e.g., Edge Histogram Direction [16]) features, are
extracted. Some of them are created with different parameters to extract several
features and the total feature dimension is obtained as 2,335. Such a high feature
space dimension can thus give us an opportunity to test the performance of the
CNBC framework against the ‘‘curse-of-dimensionality’’ and the scalability with
respect to the varying number of features.

9.3 Results and Discussions 271

9.3.2 Classification Results

Both databases are partitioned in such a way that the majority (55 %) of the items
is spared for testing and the rest was used for evolving the CNBC. The evolution
(and training) parameters are as follows: For MD PSO, we use the termination
criteria as the combination of the maximum number of iterations allowed
(iterNo = 100) and the cut-off error (eC ¼ 10�4). Other parameters were empiri-
cally set as: the swarm size, S = 50, Vmax ¼ xmax=5 ¼ 0:2 and VDmax ¼ 5. For
exhaustive BP, the learning parameter is set as k ¼ 0:01 and the iteration number
is 20. We use the typical activation function: hyperbolic tangent (tanhðxÞ ¼ ex�e�x

exþe�x).
For the AS, we used simple configurations with the following range arrays: Rmin ¼
fNi; 8; 2g and Rmax ¼ fNi; 16; 2g, which indicate that besides the single layer
perceptron (SLP), all MLPs have only a single hidden layer, i.e., Lmax ¼ 2, with no
more than 16 hidden neurons. Besides the SLP, the hash function enumerates all
MLP configurations in the AS, as shown in Table 9.2. Finally, for both evolution
methods, the exhaustive BP and MD PSO, NR ¼ 10 independent runs are per-
formed. Note that for exhaustive BP, this corresponds to 10 runs for each con-
figuration in the AS.

9.3.2.1 Feature Scalability and Comparative Evaluations

In order to demonstrate the feature scalability property of the CNBC, we evolved
three CNBCs individually using 7 FVs (FVs 1, 3, 5, 11, 12, 13, and 14 in Table 9.1
with a total dimension of 188), 10 FVs (those 7 plus FVs 6, 7, and 8 with total

Table 9.1 14 Features extracted per MUVIS database

FV Feature Parameters Dim.

1 HSV color histogram H = 6, S = 2, V = 2
H = 8, S = 4, V = 4
Nmax

DC ¼ 6;TA ¼ 2 %; TS ¼ 15

24

2 Nmax
DC ¼ 8;TA ¼ 2 %; TS ¼ 15 128

3 Dominant color descriptor 27
4 35
5 Color structure descriptor 32 bins 32
6 64 bins 64
7 128 bins 128
8 256 bins 256
9 512 bins 512

10 1024 bins 1,024
11 Local binary pattern 16
12 Gabor Scale = 4, orient. = 6 48
13 Ordinal co-occurence d = 3, o = 4 36
14 Edge histogram dir. 5

272 9 Image Classification and Retrieval by Collective Network

dimension of 636) and 14 FVs (all FVs with a total dimension of 2,335) features.
Therefore, the first CNBC has 7 ? 1 = 8, the second one has 10 ? 1 = 11, and
finally the third one has 14 ? 1 = 15 binary classifiers in each NBC. As for the
competing methods, we selected the two most powerful classifier networks,
namely SVMs and RF despite the fact that they are static classifiers that cannot
adapt dynamically to the changes in features, classes, and any update in training
dataset. Therefore, as the features are populated from 7 to 14, new SVM networks
and RFs are trained whereas CNBC dynamically adapts itself as mentioned earlier.
For SVM networks, we employ the libSVM library [2] using the one-against-one
topology [1]. Since in the CNBC framework, the optimal binary classifier con-
figuration within each NBC is determined by the underlying evolutionary method,
in order to provide a fair comparison, all possible classifier kernels and parameters
are also determined for the SVMs and RFs. For SVMs, all standard kernel types
such as linear, polynomial, radial basis function (RBF), and sigmoid, are indi-
vidually used while searching for the best internal SVM parameters, e.g., the
respectable penalty parameter, C = 2n; for n = 0,..,3 and parameter c = 2-n; for
n = 0,..,3, whenever applicable to the kernel type. For the RF, the best number of
trees within the forest is also searched from 10 to 50 in steps of 10.

Table 9.3 presents the average classification performances achieved by 10-fold
random train/test set partitions in Corel_10 database by the competing techniques
against the CNBC that is evolved by both evolutionary methods (exhaustive BP
and MD PSO) over the sample AS given in Table 9.2. It is evident that all SVM
networks with different kernels and RF suffered from the increased feature space
dimension, as a natural consequence of ‘‘Curse of Dimensionality’’. Particularly,
SVMs with RBF and sigmoid kernels cannot be trained properly and thus exhibits
severe classification degradation in the test set. Henceforth with 14 features, the
best classification accuracy has been achieved by the CNBC evolved with the
exhaustive BP. We can thus foretell that the performance gap may even get
widened if more features are involved. Between two evolutionary techniques, the
results indicate that MD PSO achieves the lowest MSE and classification error
levels (and hence the best results) within the training set whereas the opposite is
true for the exhaustive BP within the test set. CNBC in general demonstrates a
solid improvement against the major feature dimension increase [i.e., from 7 (188-
D) to 14 subfeatures (2335-D)] since the classification performance does not show
any deterioration, on the contrary, with both evolutionary techniques a better

Table 9.2 The architecture space used for MLPs

Dim. Conf. Dim. Conf. Dim. Conf.

0 Ni 9 2 6 Ni 9 6 9 2 12 Ni 9 12 9 2
1 Ni 9 1 9 2 7 Ni 9 7 9 2 13 Ni 9 13 9 2
2 Ni 9 2 9 2 8 Ni 9 8 9 2 14 Ni 9 14 9 2
3 Ni 9 3 9 2 9 Ni 9 9 9 2 15 Ni 9 15 9 2
4 Ni 9 4 9 2 10 Ni 9 10 9 2 16 Ni 9 16 9 2
5 Ni 9 5 9 2 11 Ni 9 11 9 2

9.3 Results and Discussions 273

performance is achieved, thus demonstrating an enhanced generalization ability.
This is an expected outcome since CNBC can benefit from the additional dis-
crimination capability of each new feature.

Table 9.4 presents the confusion matrix of the best classification result over the
test set, i.e., achieved by the exhaustive BP method using 14 features. It is worth
noting that the major source of error results from the confusion between the 2nd
(Beach) and 9th (Mountain) classes where low-level features cannot really dis-
criminate the content due to excessive color and texture similarities among those
classes. This is also true for the 6th class (Elephant) from which the background of
some images share a high similarity with both classes (2nd and 9th).

9.3.2.2 Incremental CNBC Evolutions

The CNBC evolutions so far performed are much alike to the (batch) training of
traditional classifiers where the training data (the features) and (number of) classes
are all fixed and the entire GTD is used during the training (evolution). As detailed
earlier, incremental evolutions can be performed whenever new features/classes

Table 9.3 Average classification performance of each evolution method per feature set by 10-
fold random train/test set partitions in Corel_10 database

Feature set Classifier Train MSE Train CE Test MSE Test CE

7 sub-features SVM (Linear) 0 0 3.56 13.76
SVM (Polynom.) 0.28 0 3.53 13.8
SVM (RBF) 0 0 4.35 16.87
SVM (SIGMOID) 3.51 12.78 4.96 18.07
Random Forest 0.04 0.2 4.96 17.58
CNBC (MD PSO) 0.52 2.42 1.33 16.49
CNBC (BP) 0.47 5.56 1.21 16.44

10 sub-features SVM (Linear) 0 0 3.48 13.84
SVM (Polynom.) 0.16 0.58 3.87 14.65
SVM (RBF) 0 0 6.92 29.87
SVM (SIGMOID) 16.15 83.22 16.99 86.86
Random Forest 0.06 0.3 4.82 16.33
CNBC (MD PSO) 0.88 5.56 5.43 15.91
CNBC (BP) 0.36 4.22 1.19 14.43

14 sub-features SVM (Linear) 0 0 3.59 14.8
SVM (Polynom.) 0 0 3.59 14.56
SVM (RBF) 0 0 10.55 40.45
SVM (SIGMOID) 19.25 88.7 20.43 91.07
Random Forest 0.09 0.47 4.76 17.09
CNBC (MD PSO) 0.44 5.52 6.33 14.41
CNBC (BP) 0.37 4.56 1.21 13.43

The best classification performances in the test set are highlighted

274 9 Image Classification and Retrieval by Collective Network

can be introduced and the CNBC can dynamically create new binary classifiers
and/or NBCs as the need arises. In order to evaluate the incremental evolution
performance, a fixed set of 10 features (FVs with indices 1, 2, 3, 4, 5, 6, 11, 12, 13,
and 14 in Table 9.1 with a total dimension of 415) are used, and the GTD is
divided into three distinct partitions, each of which contains 5 (classes 1–5), 3
(classes 6–8), and 2 (classes 9 and 10) classes, respectively. Therefore, three stages
of incremental evolutions have been performed where at each stage except the first
one, the CNBC is further evolved using the new and the log GTD. During the
second phase, three out of five existing NBCs failed the verification test (per-
formed below 95 % classification accuracy with the new GTD of classes 6–8) and
thus they were incrementally evolved. Finally at the third phase, 4 out of 8 existing
NBCs did not undergo for incremental evolution since they passed the verification
test over the training dataset of those new classes (9 and 10) while the others failed
and had to be incrementally evolved.

Table 9.5 presents the confusion matrices achieved at each incremental evo-
lution stage over the test sets of the GTD partitions involved. It is worth noting that
the major source of error results from the confusion between the 2nd (Beach), 3rd
(Architecture), and 9th (Mountain) classes where low-level features cannot really
discriminate the classes due to excessive color and texture similarities among
them. This is the reason class 2 and class 3 have undergone incremental evolution
at each stage; however, a significant lack of discrimination still prevailed. On the
other hand, at the end of stage 3, high classification accuracies are achieved for
classes 1, 4, and particularly 5 (and also for 7, 8, and 10).

Table 9.6 presents the final classification performance of each evolution
method per feature set. The results indicate only slight losses on both training and
test classification accuracies, which can be expected since the incremental evo-
lution was purposefully skipped for some NBCs whenever they surpass 95 %
classification accuracy over the training dataset of the new classes. This means, for
instance, some NBCs (e.g., the one corresponds to class 4, the Bus) evolved with
only over a fraction of the entire training dataset.

Table 9.4 Confusion matrix of the evolution method, which produced the best (lowest) test
classification error in Table 9.3

Actual 1 2 3 4 5 6 7 8 9 10

Truth 1 42 2 1 1 0 5 0 0 1 3
2 2 37 4 1 0 0 0 1 9 1
3 2 3 46 1 0 1 0 0 1 1
4 2 0 0 53 0 0 0 0 0 0
5 0 0 0 0 55 0 0 0 0 0
6 2 4 2 0 0 37 0 1 8 1
7 1 0 0 0 0 0 53 1 0 0
8 0 0 0 0 0 0 0 55 0 0
9 0 8 1 0 0 0 0 0 46 0
10 1 1 0 1 1 2 1 0 2 46

9.3 Results and Discussions 275

9.3.2.3 CNBC Class Scalability

Finally, the CNBC evolution for Corel_Caltech_30 database allows testing and
evaluation of its classification performance when the number of classes along with
the database size is significantly increased. For both evolution techniques, we used
the same parameters as presented earlier except that the number of epochs

Table 9.5 Test dataset confusion matrices for evolution stages 1 (top), 2 (middle) and 3 (bottom)

Actual 1 2 3 4 5

Truth 1 47 3 2 1 2
2 1 49 5 0 0
3 1 14 36 4 0
4 2 3 1 49 0
5 0 0 0 0 55

Actual 1 2 3 4 5 6 7 8

Truth 1 44 2 3 0 1 1 3 1
2 1 43 8 0 1 1 0 1
3 3 4 41 2 0 2 3 0
4 1 3 2 48 0 0 1 0
5 0 0 0 0 55 0 0 0
6 2 11 3 0 2 32 5 0
7 1 0 1 1 0 0 52 0
8 0 0 0 0 1 0 0 54

Actual 1 2 3 4 5 6 7 8 9 10

Truth 1 38 0 0 1 2 3 0 1 3 7
2 3 23 2 0 0 1 0 1 24 1
3 8 0 22 1 0 2 1 0 19 2
4 1 2 0 39 0 1 0 0 10 2
5 0 0 0 0 55 0 0 0 0 0
6 4 2 0 0 3 38 0 0 8 0
7 0 1 0 0 1 1 50 0 2 0
8 0 0 0 0 1 0 0 54 0 0
9 1 5 2 1 0 3 0 0 43 0
10 0 1 0 0 3 0 0 0 0 51

Table 9.6 Final classification performance of the 3-stage incremental evolution for each evo-
lution method and feature set for Corel_10 database

Feature set Evol. method Train MSE Train CE Test MSE Test CE

7 sub-features MD PSO 1.36 6.89 2.61 28.63
Exhaustive BP 0.82 4.22 1.85 21.63

14 sub-feature MD PSO 1.23 6.66 2.39 26.36
Exhaustive BP 0.91 7.55 1.83 20.81

276 9 Image Classification and Retrieval by Collective Network

(iterations) for BP and MD PSO were increased to 200 and 500. Table 9.7 presents
the classification performances of each evolution method per feature set. As
compared with the results from Corel_10 database in Table 9.3, it is evident that
both evolution methods achieved a similar classification performance over the
training set (i.e., similar train classification errors) while certain degradation
occurs in the classification performance in the test set (i.e., 10–15 % increase in
the test classification errors). This is an expected outcome since the lack of dis-
crimination within those low-level features can eventually yield a poorer gener-
alization especially when the number of classes is tripled. This eventually brought
the fact that higher discrimination power with the addition of new powerful fea-
tures is needed so as to achieve a similar test classification performance in large
image databases.

9.3.3 CBIR Results

The traditional retrieval process in MUVIS is based on the query by example
(QBE) paradigm. The (sub-) features of the query item are used for (dis-) simi-
larity measurement among all the features of the visual items in the database.
Ranking the database items according to their similarity distances yields the
retrieval result. The traditional (dis-) similarity measurement in MUVIS is
accomplished by applying a distance metric such as L2 (Euclidean) between the
FVs of the query and each database item. When CNBC is used for the purpose of
retrieval, the same (L2) distance metric is now applied to the class vectors at the
output layer of the CNBC (10 9 2 = 20-D for Corel_10 and 30 9 2 = 60-D for
Corel_Caltech_30 databases). In order to evaluate the retrieval performances with
and without CNBC, we use average precision (AP) and an unbiased and a limited
formulation of the Normalized Modified Retrieval Rank (NMRR(q)), which is
defined in MPEG-7 as the retrieval performance criteria per query (q). It combines
both of the traditional hit-miss counters; Precision—Recall, and further takes the
ranking information into account as given in the following expression:

Table 9.7 Classification performance of each evolution method per feature set for Corel_Cal-
tech_30 database

Feature set Evol. method Train MSE Train CE Test MSE Test CE

7 subfeatures MD PSO 0.54 8.1 2.3 33.40
Exhaustive BP 0.24 2.95 2.16 34.67

14 subfeature MD PSO 0.33 5.47 2.52 36.33
Exhaustive BP 0.074 1.31 2.69 33.86

9.3 Results and Discussions 277

AVR(qÞ ¼

PNðqÞ

k¼1
RðkÞ

NðqÞ and W ¼ 2NðqÞ

NMRR(qÞ ¼ 2AVRðqÞ � NðqÞ � 1
2W � NðqÞ þ 1

� 1

ANMRR ¼

PQ

q¼1
NMRR(qÞ

Q
� 1

ð4Þ

where N(q) is the minimum number of relevant (via ground-truth) images in a set
of Q retrieval experiments, R(k) is the rank of the kth relevant retrieval within a
window of W retrievals, which are taken into consideration for each query, q. If
there are less than N(q) relevant retrievals among W then a rank of W ? 1 is
assigned for the remaining (missing) ones. AVR(q) is the average rank obtained
from the query, q. Since each query item is selected within the database, the first
retrieval will always be the item queried and this obviously yields a biased
NMRR(q) calculation and it is, therefore, excluded from ranking. Hence the first
relevant retrieval (R(1)) is ranked by counting the number of irrelevant images
beforehand and note that if all N(q) retrievals are relevant, then NMRR(q) = 0,
achieving the best retrieval performance. On the other hand, if none of the relevant
items can be retrieved among W then NMRR(q) = 1, indicating the worst case.
Therefore, the lower NMRR(q) is the better (more relevant) the retrieval is, for the
query, q. Both performance criteria are computed by querying all images in the
database (i.e., batch query) and within a retrieval window equal to the number of
ground truth images, N(q) for each query q. This henceforth makes the average
precision AP identical to the average recall.

Over each database, six batch queries are performed to compute the average
retrieval performances, four with and two without using CNBC. Whenever used,
CNBC is evolved with the MD PSO and the exhaustive BP, the former with 7 and
the latter with 14 subfeatures, respectively. As listed in Table 9.8, it is evident that
the CNBC can significantly enhance the retrieval performance regardless of the
evolution method, the feature set, and the database size. The results (without
CNBC) in the table also confirm the enhanced discrimination obtained from the

Table 9.8 Retrieval performances (%) of the four batch queries in each MUVIS databases

Feature set Retrieval method Corel_10 Corel_Caltech_30

ANMRR AP ANMRR AP

7 subfeatures CNBC (MD PSO) 31.09 65.01 43.04 54.47
CNBC (BP) 23.86 74.26 46.44 52.21
Traditional 55.81 42.15 60.21 37.80

14 subfeature CNBC (MD PSO) 29.84 67.93 33.29 61.12
CNBC (BP) 22.21 76.20 32.00 65.37
Traditional 47.19 50.38 62.94 34.92

278 9 Image Classification and Retrieval by Collective Network

larger feature set, which led to better classification performance and in turn, leads
to a better retrieval performance.

For visual evaluation, Fig. 9.5 presents four typical retrieval results with and
without CNBC. All query images are selected among the test set and the query is
processed within the entire database. Table 9.9 presents the retrieval performances
obtained from each batch query operation of the CNBCs that are incrementally
evolved where the corresponding confusion matrices at each stage are presented in
Table 9.5. It is evident that the final CNBC (at the end of stage 3) can significantly
enhance the retrieval performance compared to traditional query method. It is also
interesting to note that this is also true for the immature CNBC at stage 2, which
demonstrates a superior performance even though it is not yet fully evolved with
all the classes in the database.

Figure 9.6 presents two sample retrievals of two queries from classes 2 (Beach)
and 6 (Elephants) where each query operation is performed at the end of each
incremental evolution stage. In the first query (qA), at stage 1 CNBC failed to
retrieve relevant images since it is not yet evolved with the GTD of this class

Traditional With CNBCqA

Traditional With CNBCqB

Traditional With CNBCqC

Traditional With CNBCqD

Fig. 9.5 8 sample queries in Corel_10 (qA and qB), and Corel_Caltech_30 (qC and qD)
databases with and without CNBC. The top-left image is the query image

Table 9.9 Retrieval performances per incremental evolution stage and traditional (without
CNBC) method

Stage—1 Stage—2 Stage—3 Traditional

ANMRR (%) 54.5 33.36 24.13 46.32
AP (%) 44.07 65.42 73.91 51.23

9.3 Results and Discussions 279

(class 6). At stage 2, a precision level of, P = 59 %, is achieved where there are still
several irrelevant retrievals as shown in the figure. Only after the last incremental
evolution at stage 3, a high precision level of 85 % is achieved without any irrelevant
image in the first 12 retrievals. In the second query (qB), the retrieval performance
improves smoothly with each incremental evolutionary stage. It is evident that
despite the NBC corresponding to class 2 has been initially evolved in stage 1, it can
only provide a limited retrieval performance (P = 42 %) for such queries like the
one shown in the figure; while it takes 2 more incremental evolution sessions to
gather the maturity level for a reasonable retrieval (P = 80 %).

9.4 Summary and Conclusions

In this chapter, a collective network of binary classifiers (CNBC) framework is
introduced to address the problem of adaptive content-based image classification
within large and dynamic image databases. CNBC adopts a Divide and Conquer
approach, which reduces both feature and class vector dimensions for individual
classifiers significantly, thus enabling the use of compact classifiers. The optimum
classifier configuration for each classification problem at hand and for each feature

Stage -1(P= 3%) Stage -3 (P= 85%)Stage -2 (P= 59%) qA

Stage -1(P= 42%) Stage -3 (P= 80%)Stage -2 (P= 66%) qB

Fig. 9.6 Two sample retrievals of sample queries qA and qB, performed at each stage from
classes 2 and 6. The top-left is the query image

280 9 Image Classification and Retrieval by Collective Network

is searched individually and at a given time, this allows to create a dedicated
classifier for discriminating a certain class type from the others with the use of a
single feature. Each (incremental) evolution session ‘‘learns’’ from the current best
classifier and can improve it further using the new ground-truth data (GTD),
possibly finding another configuration in the architecture space (AS) as the new
‘‘optimal’’ classifier. Such an evolutionary update mechanism ensures that the AS
containing the best configurations, is always kept intact and that only the best
configuration at any given time is used for classification and retrieval. Experi-
mental results demonstrated that this classifier framework provides an efficient
solution for the problems of dynamic adaptability by allowing both feature space
dimensions and the number of classes in a database to vary. Whenever CNBC is
evolved in a ‘‘batch’’ mode, it can compete and even surpass other classifiers such
as support vector machine (SVM) networks with different kernels (such as RBFs or
polynomials), and RF especially when the feature space dimension is quite large.
This is an expected outcome since the CNBC framework can take advantage of
any feature as long as it has some discrimination power for one or few classes.

9.5 Programming Remarks and Software Packages

As presented in Sect. 7.5, recall that the ClassifierTestApp is a single-thread
application, and the source file ClassifierTestApp.cpp has two entry point main()
functions separated with a compiler switch _CNBC_TEST. If defined, the test-bed
application for CNBC will be active within the first main() function. Besides the
CNBC, other network types and topologies such as SVM (one-against-one or one
against all) can also be tested by simply assigning the global function pointer
variable TrainFn to one of the appropriate functions, i.e.,

inline void TrainCNBC(int);
inline void TrainSVM(int);
inline void TrainRF(int);
typedef void (*TrainFunction) (int);
…
TrainFunction TrainFn = TrainCNBC;//The classifier body..
ClassifierType CNBCclasstype = _MLP_BP;//Classifier type for CNBC..

When TrainFn = TrainCNBC then the BC type can be set by assigning
CNBCclasstype = _MLP_BP. Otherwise, this option is irrelevant for other types
of classifiers. The other BC types are enumerated in GenClassifier.h file, as
follows:

enum ClassifierType
{

_MLP_BP = 0,
_MLP_PSO,

9.4 Summary and Conclusions 281

http://dx.doi.org/10.1007/978-3-642-37846-1_7

_RBF_BP,
_RBF_PSO,
_SVM, //Support Vector Machines..
_RF,
_BC, //Bayesian Class..
_HMM, //Hidden Markov Models..
_RANDOM = 1000

};

There are other global variables that are used to assign the training and classifier
parameters, as follows:

CNBCtrain_params cnbc_tp;
CNBCclass_params cnbc_cp;
one_class_data *train_new = NULL, *test_new = NULL;
float **train_input, **test_input;
float **train_output, **test_output;
int in_size, out_size, train_size, test_size = 0;
int *one_index;
int *clip_index = NULL, *kfs = NULL, *table = NULL;
int train_clip_no, test_clip_no;
#define TRAIN_RATE .65
#define TRAIN_RUNS 500//No of training epochs..
#define LEARNING_PARAM 0.01
#define REPEAT_NO 2//Max. no. of REPEATITIONS per MLP conf. training..
PSOparam _psoDef = {80, 201, 0.001, -10, 10, -.2, .2, FAST};//default param-
eters MD PSO..
SPSAparam _saDef = {1, 1, .602, .2, .101};//default SPSA parameters, a, A,
alpha, c, gamma, for SAD..
#define MAX_NOL 3//Max. no. of layers in ENN
#define RF_MAX_NOL 4//Max. no. of parameters for RF
#define SVM_MAX_NOL 5//Max. no. of parameters for SVM
int minNoN[MAX_NOL] = {-1, 8, 2};//Min. No. of Layers for ANNs..
int maxNoN[MAX_NOL] = {-1, 16, 2};//Max. No. of Layers ANNs..
int svmMaxNoN[SVM_MAX_NOL] = {-1, 4, 3, 1, 2};//Max. index for SVM
Kernel..
int svmMinNoN[SVM_MAX_NOL] = {-1, 1, 0, 0, 2};//Min. index for SVM
Kernel..
int svmMaxNoN[SVM_MAX_NOL] = {-1, 1, 0, 1, 2};//Max. index for SVM
Kernel..
int rfMinNoN[RF_MAX_NOL] = {-1, 1, 1, 2};//Min. index arr for RF conf..
int rfMaxNoN[RF_MAX_NOL] = {-1, 2, 3, 2};//Min. index arr for RF conf..
//int newClassNo[] = {5, 3, 2};//SET the no. of classes per training stage here..
int newClassNo[] = {1000};//SET the no. of classes per training stage here..
bool bUniClass = 0, bEvaluateOnly = 0, bEvaluateAll = 0;//true if the database
is uni-class and true if only evaluation performed..

282 9 Image Classification and Retrieval by Collective Network

Note that several of the training and classifier parameters shown above are
described earlier, such as PSOparam, SPSAparam, and AS parameters such as
int min_noL, int max_noL, int *min_noN, int *max_noN. Moreover, the
training constants such as TRAIN_RATE (database partition for training),
TRAIN_RUNS (number of epochs for BP), LEARNING_PARAM (learning
parameter for BP), and REPEAT_NO (number of repetitions for each BC train-
ing/evolution).These are all related to each individual BC training and BC con-
figuration. There are three Boolean parameters. The first one should be set
according to the dataset type: true for uni-class (or uni-label) or false for multi-
class (or multi-label). The second Boolean, bEvaluateOnly, is set to true only to
test (evaluate the performance) of an existing CNBC without (incremental)
training/evolution. If there is no CNBC yet evolved, then this parameter should be
set to false. An important data structure where the information such as positive and
negative item lists, class index, and some operators are stored in one_class_data.
When the GTD of a dataset is loaded, the individual class information for train and
test datasets is stored using this data structure. Finally, there are two CNBC-related
data structures and their global variables: CNBCtrain_params, and CNBC-
class_params cnbc. As the other variables, they are also all declared in the header
file, GenClassifier.h file. Table 9.10 presents these three important data structures.

The entry function, main() is quite straightforward:

int main(int argc, char* argv[])
{

memset(&cnbc_cp, 0, sizeof(CNBCclass_params));//init..
//RunDTfiles();
RunFeXfiles(-1);
return 0;

}

In this application, a CNBC can be evolved either data (*.dt) by calling the
function: RunDTfiles() or a MUVIS feature (or the so-called FeX) file by calling
the function: RunFeXfiles(-1). In this section we shall describe the latter process;
however, the former is also quite similar and simpler than the latter since data files
contain both features and GTD in a single file. In a MUVIS image database, there
is a folder called ‘‘\Images\’’ where all the raw data, the images, reside. There is
also an image database descriptor file, ‘‘*.idbs’’ where database properties (such as
date and time of creation, version, number of images, features, and their
descriptions) are stored. For instance consider the sample image database file,
‘‘dbsMC.idbs’’ (under the folder ‘‘\dbs60mc\’’), as follows:
v 1.8
20:41:02, Thursday, January 12, 2012
IS = NONE
noIm = 60 visF = 1 nSEG = 0
CNBC 1 19

9.5 Programming Remarks and Software Packages 283

7.000000 6.000000 2.000000 2.000000 6.000000 10.000000 0.020000

0.010000 0.010000 1.000000 5.000000 32.000000 4.000000 11.000000

6.000000 4.000000 3.000000 4.000000 2.000000

Table 9.10 The CBNC specific data structures

284 9 Image Classification and Retrieval by Collective Network

This database has an internal MUVIS version 1.8, with the creation date below.
Number of images (noIM = 60) is 60, number of visual features (visF = 1) is 1
and finally no segmentation method is applied (nSEG = 0). The fifth line (CNBC
1 19) indicates that the feature extracted for this database is CNBC, which
encapsulates either 7, 10, or 14 distinct low level features. For this database, 7
features have been extracted (the first number of the 19 parameters given below).
Note that under the same folder, there is a file called ‘‘dbsMC_FeX.CNBC’’, which
contains the FVs of these 7 features within a single file. Moreover, the GTD for
this database reside in the so-called Query-Batch-File (*.qbf), with the name
‘‘dbsMC CNBC.qbf’’. This is a simple text file with the following entries:

DATABASE dbsMC
QUERY_TYPE visual
CLASS_NO 5
DBGOUT 1
Put any nonzero number to enable DbgOut signals..
QUERY 0 - 59
this basically means to query ALL items in the database..
% this is a 5-class database with some Corel images.
CLASS 0 0 - 9
CLASS 1 10 - 19
CLASS 2 20 - 29
class 3 30 - 39
CLASS 4 40 - 59
% From now on put the multi-class entries..
CLASS 0 20 - 29, 42, 44
class 4 0, 1, 3, 8, 9, 16

The self-explanatory text tokens (e.g. ‘‘DATABASE’’, ‘‘CLASS’’, etc.) indicate
that the database (dbsMC) has 5 classes, where the image indices per class are
given below. For instance the first class (CLASS 0) contains images 0, 1, 2, …, 9
and 20, 21, 22, …, 29, 42 and 44 as well.

Table 9.11 presents the function RunFeXfiles(). The database filename and
folder are indicated by variables dir[] and tit_base[]. Then all training parameters
are stored within the cnbc_tp whereas all classifier parameters are stored in
cnbc_cp variables, respectively. Since this is a multiclass database, the function
call CreateCNBCDataFeXgen(fname) will load the qbf file and according to the
TRAIN_RATE, it will fill the class entries in train and test datasets (into the
one_class_data varibles of train_new and test_new). Once the GTD is loaded,
then the function call LoadCNBCFex(dir, tit_base) will load the FVs in the FeX
file of the database which will be pointed by the pointer, cnbc_tp.inputFV with a
total size of cnbc_tp.sizeFV. Finally, the function call IncrementalEvolu-
tion(run), will simulate a multi-stage CNBC evolution session where in each stage
certain number of new classes will be introduced and the CNBC will be incre-
mentally evolved. The number of new classes for each stage can be defined in the

9.5 Programming Remarks and Software Packages 285

global array of newClassNo[]. For example, the following definition for a 10-class
database:

int newClassNo[] = {5, 3, 2};//SET the no. of classes per training stage here..

will introduce GTD of the images, first from the 5 classes, then (in the 2nd
stage) from the 3 classes and finally, from the 2 classes. This is to test if the CNBC
can adapt to new class entries. If a batch training is desired, then a single entry
should be given with the total number of classes in the database (or higher), i.e.,
int newClassNo[] = {1000};. Then the function call IncrementalEvolution(run)
will directly copy the entries cnbc_cp.train_new and cnbc_cp.test_new from the
global one_class_data varibles of train_new and test_new. This will yield a
single (batch) CNBC evolution session by the function call: TrainFn(run); with
all the GTD available and the classification performance will be computed over
both train and test datasets.

In each of the training functions, the appropriate classifier object should be
created and used for training and testing. Table 9.12 presents the training function

Table 9.11 The function: RunFeXfiles(int run)

286 9 Image Classification and Retrieval by Collective Network

for CNBC: TrainCNBC(int run). The global CNBCglobal object, pCNBC, is
created and loads the existing CNBC body from the NBC files—if any—by
calling:

pCNBC- > CreateDistributed(cnbc_cp.dir, cnbc_cp.title, CNBCclasstype,
run);

Then the CNBC evolution can be initiated by, pCNBC- > TrainDistribut-
ed(cnbc_cp, cnbc_tp, run), where the GTD, FVs and all other training and test
parameters are conducted by variables cnbc_cp, and cnbc_tp. Recall that if some
NBCs or the entire CNBC is available, this means that there will be an incremental
evolution over them; otherwise, this will be the very first evolution session. The
CNBC topology consists of a 3-layer class hierarchy:

CNBCglobal, ? COneNBC ? CGenClassifier (CMLP_BP, CMLP_PSO,
CRBF_BP, CRBF_PSO, CRandomForest and CSVM). The CNBCglobal is the
main CNBC class, which creates the CNBC (from the file), propagate a FV,
perform (incremental) evolution, compute the classification performance (for both
train and test datasets), and some other high-level I\O routines.

Table 9.13 presents the class CNBCglobal. Note that it encapsulates a list of
individual NBCs, by the queue object m_qNBC. The two main API functions have
two forms: standalone (Create() and Train())and distributed (CreateDistributed
() and TrainDistributed ()). The only difference lies on the file format of the
CNBC; the former keeps a single CNBC file whereas the latter has a distributed
format, which keeps each NBC in a separate file. The former format is now
abandoned because the latter allows parallel computation for CNBC evolution

Table 9.12 The function: TrainCNBC(int run)

9.5 Programming Remarks and Software Packages 287

where multiple ClassifierTestApp instances can now evolve multiple NBCs in
parallel (and independent from each other) with a proper semaphore
implementation.

Table 9.14 presents the code for the function, TrainDistributed() with the in-
builts semaphore structure. Whenever called, the function first creates the NBC
list—if not created earlier, e.g., by the function call: CreateDistributed(). Then in
a for-loop, the function asks for the first ‘‘idle’’ NBC slot by calling:

int c = GetNextNBCno(cp, cold);//Get the next available nbc no..

Table 9.13 The class: CNBCglobal

288 9 Image Classification and Retrieval by Collective Network

This function call will verify and retrieve the next available NBC slot (from a
log file) for the current process. If there is no log file present (for the first run of
ClassifierTestApp), it will create the one dedicated to the current database and
initially set all the NBC slots as ‘‘idle’’. It will then retrieve the NBC index of the
first idle slot back so that the evolution/training process can begin for it. In the
same time it will change its ‘‘idle’’ status to ‘‘started’’ status so that other Clas-
sifierTestApp instances will not attempt any further processing on this particular
NBC. Whenever the evolution process is completed, the same function will then
change its ‘‘started’’ status to ‘‘completed’’ status. The ClassifierTestApp
instances, which cannot find any more NBCs with an ‘‘idle’’ status, will simply

Table 9.14 The member function TrainDistributed() of the class CNBCglobal

9.5 Programming Remarks and Software Packages 289

sleep until all the NBCs are evolved (all NBC slots are turned to ‘‘completed’’
status), and the log file is deleted by the last process active. This will eventually
break the for-loop and for each process, the few internal NBCs evolved will be
deleted (clean-up) and instead the entire CNBC will be loaded (by the Create-
Distributed() call) and its performance is evaluated by the EvaluatePerfor-
mance() call.

On the other hand, if an NBC has already been created (and evolved) by a past
process and loaded in the current process, then it may undergo to an incremental
evolution only if it fails to verification test. This is clear in the following code:

if(!pNBC)
{
…
} else if(pNBC- > Verify(cp, tp, c))
{

cold = c;
continue;//this NBC discriminates well between pos. and neg. items.. So NOGO
for train..

}//else if..

If it does not fail the verification test (the pNBC- > Verify(cp, tp, c) returns
true), then this means that there is no need for further training or incremental
evolution. The process simply continues with the next NBC.

Table 9.15 presents the class COneNBC in the second layer hierarchy. As its
name implies, each object of this class represents a single NBC, and thus
encapsulates one or many BCs within. Recall that each NBC is dedicated to an
individual class in the database. Therefore, besides evolving/training its BCs,
performing verification tests, propagating a FV to return a CV, it is the also task of
this class to separate positive and negative items for the first layer BCs (via the
function: SelectFeatures()) and for the fuser BC (via the function: SelectFu-
serFeatures()). Moreover, it performs the selection of the negative samples with
respect to the predetermined positive-to-negative ratio (PNR) by the function:
NegativeFeatureSelection(). Once the positive and negative item lists are selected
for the current NBC, for a proper training especially when BP is used, it also
shuffles them by calling the function, RandomizeFeatures().

Table 9.16 presents the code for the function, Train(), which creates and train
the BC(s) of the current NBC. Recall that the first layer of each NBC has a number
of BCs equivalent to the number of the database features. If there are two or more
BCs, then a fuser BC is also created (and evolved) to fuse the outputs of the first
layer BCs. So if this is the first time the current NBC is created, then a BC pointer
array (m_pBC) of CGenClassifier is created where each pointer is spared per BC.
Next, within the for-loop, first each pointer in the array will be allocated to one of
the six classifiers according to the classifier-training choice within cp.cp.ctype.
Then the function call, SelectFeatures(cp, tp, bc, nbc), selects the train and test
datasets’ FVs for the current BC according to the class of the NBC. Recall that all

290 9 Image Classification and Retrieval by Collective Network

FVs are stored in a single chunk of memory pointed by the pointer, cnbc_tp.in-
putFV. So this function basically assigns the train and test dataset input FV
pointers within cnbc_tp.inputFV and output FV pointers to a static outcome
according to positive and negative item lists. The following code piece is taken
from this function to accomplish this. Note that the first for-loop basically assigns
to input and output FVs of the positive items of the training dataset whereas the
second one does the same for the negative items. A similar piece of code exists for
the test set too.

for (int n = 0 ; n < train_data->pos_item_no ; ++n)
{
int ptr = tp.sizeFV * train_data- > pos_item_list[n] + tp.ptrSF[bc];//ptr of the
bc.th feature vector within inputFV..
tp.tp.train_input[n] = tp.inputFV + ptr;//bc.th feature vector of the item poin-
ted by train_data- [pos_item_list[n]
tp.tp.train_output[n] = CGenClassifier::outV[0];//positive outcome..
}//for..

Table 9.15 The class: COneNBC

9.5 Programming Remarks and Software Packages 291

for (n = 0; n < train_data->neg_item_no; ++n)
{
int ptr = tp.sizeFV * train_data->neg_item_list[n] + tp.ptrSF[bc];//ptr of the
bc.th feature vector within inputFV..
tp.tp.train_input[n + train_data->pos_item_no] = tp.inputFV+ptr;//bc.th fea-
ture vector of the item pointed by train_data- [neg_item_list[n]
tp.tp.train_output[n + train_data- > pos_item_no] = CGenClassifi-
er::outV[1];//negative outcome…
}//for..

Table 9.16 The member function Train() of the class COneNBC

292 9 Image Classification and Retrieval by Collective Network

Once the training dataset FVs for both positive and negative item list are
assigned, the function call, SelectFeatures(cp, tp, bc, nbc), then performs the
selection of the negative samples with respect to the predetermined positive-to-
negative ratio (PNR) by the function call, NegativeFeatureSelection().

After the train and test datasets’ FVs are selected and pointed by, tp.tp.trai-
n_input, tp.tp.train_output, and tp.tp.test_input, tp.tp.test_output, the function
call, RandomizeFeatures(tp.tp);, shuffles the entries of the train dataset for
proper training. They are then fed to the BC by calling: m_pBC[bc]->Init(tp.tp).
Finally, with the rest of the training parameters (tp.tp), the training/evolution of
the BC is initiated by: m_pBC[bc]->Train(cp.cp) with the classifier parameters
(cp.cp). When completed, the pointers for the current BC’s training FVs are
cleaned and the process is then repeated in the for-loop for the next BC, until all
BCs in the first layer are trained/evolved. If there are two or more BCs present in
the NBC, then the fuser BC is created, its FVs are selected from the CVs of the
first layer BCs for both train and test datasets. Besides this difference, the training/
evolution of the fuser BC is identical to any first layer BC’s.

The I\O routines of the NBCs are quite straightforward. In any time, the NBC
can be saved to or read from a binary file. As can be seen in the COne-
NBC::Save() function, with a simple preceding header covering NBC information
such as number of BCs, the NBC index and the activation function used, the
architecture spaces of all BCs are then stored to the file in a sequential order, with
the last one for the fuser BC. To load an NBC from the file via COne-
NBC::Create(char* dir, char* title, ClassifierType ctype) function, the binary
file header is simply read to assign the NBC parameters, and each BC is initialized
with their AS buffers. Recall that the entire AS information is needed for any
incremental evolution session and the best configuration in the AS will always be
used for classification (forward propagation of FVs).

Finally, the third hierarchical class layer is the CGenClassifier (CMLP_BP,
CMLP_PSO, CRBF_BP, CRBF_PSO, CRandomForest, and CSVM) for which
the programming details were covered in Sect. 7.5. Note that such a morphological
structure of the base classifiers that are all inherited from the CGenClassifier class
enables us to integrate other classifiers in the future with the common API and data
structures defined within the base class.

References

1. U. Kressel, Pairwise Classification and Support Vector Machines, in Advances in Kernel
Methods—Support Vector Learning (1999)

2. C.C. Chang, C.J. Lin, LIBSVM : a library for support vector machines (2001). Available at
http://www.csie.ntu.edu.tw/*cjlin/libsvm

3. T. Zou, W. Yang, D. Dai, H. Sun, Polarimetric SAR image classification using multifeatures
combination and extremely randomized clustering forests. EURASIP J. Adv. Signal Process.
2010, Article ID 465612, 9 (2010)

9.5 Programming Remarks and Software Packages 293

http://dx.doi.org/10.1007/978-3-642-37846-1_7
http://www.csie.ntu.edu.tw/~cjlin/libsvm

4. R. Polikar, L. Udpa, S. Udpa, V. Honavar, Learn ++: an incremental learning algorithm for
supervised neural networks. IEEE Trans. Syst. Man Cybern. (C) 31(4), 497–508 (2001).
(Special Issue on Knowledge Management)

5. T. Ojala, M. Pietikainen, D. Harwood, A comparative study of texture measures with
classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)

6. S. Guan, C. Bao, R. Sun, Hierarchical incremental class learning with reduced pattern
training. Neural Process. Lett. 24(2), 163–177 (2006)

7. H. Jia, Y. Murphey, D. Gutchess, T. Chang, Identifying knowledge domain and incremental
new class learning in SVM. IEEE Int. Joint Conf. Neural Netw. 5, 2742–2747 (2005)

8. S. Smale, On the average number of steps of the simplex method of linear programming.
Math Program 27(3), 241–262 (1983)

9. H. Chen, Z. Gao, G. Lu, S. Li, A novel support vector machine fuzzy network for image
classification using MPEG-7 visual descriptors. International conference on multimedia and
information technology, MMIT ‘08, pp. 365–368, 30–31 Dec 2008 doi:10.1109/
MMIT.2008.199

10. E. Chang, K. Goh, G. Sychay, W. Gang, CBSA: content-based soft annotation for multimodal
image retrieval using Bayes point machines. IEEE Trans. Circuits Syst. Video Technol.
13(1), 26–38 (2003) doi:10.1109/TCSVT.2002.808079

11. G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, H.-J. Zhang, image classification with kernelized spatial-
context. IEEE Trans. Multimedia 12(4), 278–287 (2010) doi:10.1109/TMM.2010.2046270

12. MUVIS http://muvis.cs.tut.fi/
13. S. Kiranyaz, T. Ince, S. Uhlmann, M. Gabbouj, Collective network of binary classifier

framework for polarimetric SAR image classification: an evolutionary approach. IEEE Trans.
Syst. Man Cybern.—Part B (in Press)

14. Corel Collection/Photo CD Collection (www.corel.com)
15. L. Fei–Fei, R. Fergus, P. Perona, Learning generative visual models from few training

examples: an incremental Bayesian approach tested on 101 object categories. IEEE CVPR
Workshop Generative-Model Based Vision 12, 178 (2004)

16. S.G. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic Press, San Diego,
1999)

17. B. Manjunath, P. Wu, S. Newsam, H. Shin, A texture descriptor for browsing and similarity
retrieval. J. Signal Process. Image Commun. 16, 33–43 (2000)

18. T. Ojala, M. Pietikainen, D. Harwood, A comparative study of texture measures with
classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)

19. M. Partio, B. Cramariuc, M. Gabbouj, An Ordinal co-occurrence matrix framework for
texture retrieval. EURASIP J. Image Video Process. 2007, Article ID 17358 (2007)

294 9 Image Classification and Retrieval by Collective Network

http://dx.doi.org/10.1109/MMIT.2008.199
http://dx.doi.org/10.1109/MMIT.2008.199
http://dx.doi.org/10.1109/TCSVT.2002.808079
http://dx.doi.org/10.1109/TMM.2010.2046270
http://muvis.cs.tut.fi/
http://www.corel.com

Chapter 10
Evolutionary Feature Synthesis

Science is spectral analysis. Art is light synthesis.
Karl Kraus

Multimedia content features (also called descriptors) play a central role in many
computer vision and image processing applications. Features are various types of
information extracted from the content and represent some of its characteristics or
signatures. However, especially these low-level features, which can be extracted
automatically usually lack the discrimination power needed for accurate content
representation especially in the case of a large and varied media content data
reserve. Therefore, a major objective in this chapter is to synthesize better dis-
criminative features using an evolutionary feature synthesis (EFS) framework,
which aims to enhance the discrimination power by synthesizing media content
descriptors. The chapter presents an EFS framework, which applies a set of linear
and nonlinear operators in an optimal way over the given features in order to
synthesize highly discriminative features in an optimal dimensionality. The opti-
mality therein is sought by the multidimensional particle swarm optimization (MD
PSO) along with the fractional global best formation (FGBF) presented in Chaps. 4
and 5, respectively. We shall further demonstrate that the features synthesized by
the EFS framework that is applied over only a minority of the original feature
vectors exhibit a major increase in the discrimination power between different
classes and a significant content-based image retrieval (CBIR) performance
improvement can thus be achieved.

10.1 Introduction

In content-based image retrieval (CBIR) systems, features used to describe the
image content play a key role. Low-level features automatically extracted from
images must be discriminative enough to enable the highest possible distinction
among images belonging to different classes in order to maximize the retrieval
accuracy. A lot of work has been done to develop more descriptive features, but it
is a well-known fact that there is no such feature extractor that could automatically
extract features always matching the human visual perception of the image sim-
ilarity, since two images belonging to the same class may be visually different and

S. Kiranyaz et al., Multidimensional Particle Swarm Optimization for Machine Learning
and Pattern Recognition, Adaptation, Learning, and Optimization 15,
DOI: 10.1007/978-3-642-37846-1_10, � Springer-Verlag Berlin Heidelberg 2014

295

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_5

only a higher level understanding of the image content can reveal that they should
be classified into the same class. Efficient CBIR systems require a decisive solu-
tion for this well-known ‘‘Semantic Gap’’ problem. Most current general purpose
attempts to solve this problem gather knowledge of human perception of image
similarity directly from the users. For example, user labeling of the images may be
exploited to select the most appropriate ones among the vast number of available
feature extraction techniques or to define a discriminative set of features best
matching to the human visual perception.

The efforts addressing the aforementioned problem can be categorized into two
feature transformation types: feature selection and feature synthesis. The former
does not change the original features; instead selects a particular sub-set of them to
be used in CBIR. So no matter how efficient the feature selection method may be
the final outcome is nothing but a subset of the original features and may still lack
the discrimination power needed for an efficient retrieval. The latter performs a
linear and/or nonlinear transformation to synthesize new features. Both transfor-
mation types require searching for an optimal set of new features among a large
number of possibilities in a search space probably containing many local optima
and, therefore, evolutionary algorithms (EAs) [1] such as Genetic Algorithm (GA)
[2] and Genetic Programming (GP) [3] are mainly used. Recall from the earlier
chapters that the common point of all EAs is that they are stochastic population-
based optimization methods that can avoid being trapped in a local optimum. Thus
they can find the optimal solutions; however, this is never guaranteed. In addition
to the limitations of EA-based algorithms discussed in earlier chapters, another
critical drawback of the existing EA-based EFS methods is that they work only in
a search space with an a priori fixed dimensionality. Therefore, the optimal
dimensionality for the synthesized features remains unknown.

In order to address these problems, in this chapter, we shall present an EFS
technique which is entirely based on MD PSO with FGBF. The main objective is
to maximize the discrimination capability of low-level features so as to achieve the
best possible retrieval performance in CBIR. Recall that MD PSO can search for
the optimal dimensionality of the solution space and hence voids the need of fixing
the dimensionality of the synthesized features in advance. MD PSO can also work
along with the FGBF to avoid the premature convergence problem. With the
proper encoding scheme that encapsulates several linear and nonlinear operators
(applied to a set of optimally selected features), and their scaling factors (weights),
MD PSO particles can, therefore, perform an evolutionary search to determine the
optimal feature synthesizer to generate new features with the optimal dimen-
sionality. The optimality therein can be defined via such a fitness measure that
maximizes the overall retrieval (or classification) performance.

296 10 Evolutionary Feature Synthesis

10.2 Feature Synthesis and Selection: An Overview

EFS is still in its infancy as there are only few successful methods proposed up to
date. There are some applications of PSO to feature selection. In [4] binary PSO
was successfully used to select features for face recognition and in many earlier
studies PSO-based feature selection has been shown to produce good classification
results when combined with different classification methods (e.g., logistic
regression classifier [5], K-nearest neighbor method [6], SVMs [7, 8], and back-
propagation networks [9]) and applied for different classification problems (e.g.,
UCI Machine Learning Repository classification tasks [5, 7, 8], gene expression
data classification [6], and microcalcifications in mammograms [9]).

Most existing feature synthesis systems are based on genetic programming (GP)
[3]. In [10] and [11], GP is used to synthesize features for face expression rec-
ognition. The genes are composite operators represented by binary trees whose
internal nodes are primitive operators and leaf nodes are primitive features. The
primitive features are generated by filtering the original images using a Gabor filter
bank with 4 scales and 6 orientations (i.e., 24 images per original image) and the
primitive operators are selected among 37 different options. The fitness of the
composite operators is evaluated in terms of the classification accuracy (in the
training set) of a Bayesian classifier learned simultaneously with the composite
operator. Finally, the best composite operator found is used to synthesize a feature
vector for each image in the database and the corresponding Bayesian classifier is
then used to classify the image into one of 7 expressions types. The expression
recognition rate was slightly improved compared to similar classification methods
where no feature synthesis was applied.

In [7], co-evolutionary genetic programming (CGP) is used to synthesize fea-
tures for object recognition in synthetic aperture radar (SAR) images. The
approach is similar to the one in [10] and [11], but separate sub-populations are
utilized to produce several composite operators. However, the primitive features
used in this application are only 1-dimensional properties computed from the
images and thus each composite operator only produces a single 1-dimensional
composite feature. The final feature vector is formed by combining the composite
features evolved by different sub-populations. Although both the number of
primitive features (20) and the number of classes to be recognized (B5) were low,
the classification accuracy obtained using the synthesized features was only
occasionally better than the classification accuracy obtained directly with the
primitive features.

In [12], a similar CGP approach was applied for image classification and
retrieval. The original 40-D feature vectors were reduced to 10-D feature vectors.
The results were compared in terms of classification accuracy against 10-D feature
vectors obtained using multiple discriminant analysis (MDA) and also against a
support vector machine (SVM) classifier using the original 40-D feature vectors.
The databases used for testing consisted of 1,200–6,600 images from 12 to 50
classes. In all cases, the classification results obtained using the features

10.2 Feature Synthesis and Selection: An Overview 297

synthesized by CGP were superior compared to features produced by MDA.
Compared to the SVM classifier the results were similar or better in the case where
the database classes consisted of multiple clusters in the original feature space.
Also the retrieval performance was compared using CGP and MDA generated
features and the CGP features were observed to yield better retrieval results than
MDA features.

In [13] and [14], the CGP-based features synthesis method and the expectation–
maximization (EM) algorithm were combined into co-evolutionary feature syn-
thesized expectation–maximization (CFS-EM). The main idea is to first use a
minor part of the training data to reduce the feature space dimensionality and
simultaneously to learn an initial Bayesian classifier using the CGP-based feature
synthesis method and then to refine the classifier by applying the EM algorithm on
the whole training data (the rest of which may be unlabeled) synthesized into the
lower dimensionality. The classification and retrieval results obtained by CFS-EM
were both improved compared to the pure CGP approach.

In CBIR it is often not meaningful to compare the similarity of extracted
features using the Euclidean distance, but a specific similarity measure is required
to match the human perception of similarity. In [15], it is pointed out that com-
bining features requiring different similarity measures (and then comparing the
similarity of the synthesized features with the Euclidean distance) may not pro-
duce the desired results. Therefore, instead of synthesizing new features, they
apply GP to synthesize new similarity measures. During the retrieval, the distances
are first computed using the original features and similarity measures, then these
distances are given as input to the synthesized similarity measure, which will
determine the final distance between the images. The report a superior retrieval
performance using this technique.

In a broader sense, also well-known classifiers such as Artificial Neural Net-
works (ANNs) and SVMs can be thought as a special kind of feature synthesizers.
Commonly ANNs used as classifiers take the original feature vector as an input
and, when the 1-of-C encoding is used, their output in an optimal case is a vector
corresponding to the image class (e.g., for class c = 1, the corresponding vector is
{1, 0, …, 0}). Thus ANNs try to learn a feature synthesizer that transforms each
feature vector in a certain class to one corner of the C-dimensional cube (where
C is the number of classes). The simplest ANNs, Single-layer Perceptrons (SLPs),
synthesize the original input features by forming in each neuron a weighted sum of
all the input vector elements and passing it through a bounded nonlinear function
(e.g., tangent hyperbolic or sigmoid) to give one of the output vector elements.
Only the weights of each input feature (and a bias) are optimized via the training
algorithm used (e.g., back-propagation), while the synthesis follows a fixed path,
otherwise. There is no feature selection involved and the only arithmetic opera-
tions applied are the summation and the bounding with a nonlinear function. In
Multi-layer Perceptrons (MLPs) such feature synthesis is repeated several times,
but the principal approach remains the same. SVMs, on the other hand, with a
proper choice of the kernel used, can transform the original, linearly non-separable
features of a two-class problem into a higher dimensionality where linear

298 10 Evolutionary Feature Synthesis

separation is possible. There is no feature selection involved and the performance
is directly dependent on the choice of the kernel function and the dimensionality.

10.3 The Evolutionary Feature Synthesis Framework

10.3.1 Motivation

As mentioned earlier, the motivation behind the EFS technique is to maximize the
discrimination power of low-level features so that CBIR performance can be
improved. Figure 10.1 illustrates an ideal EFS operation where 2D features of a 3-
class database are successfully synthesized in such a way that significantly
improved CBIR and classification performances can be achieved. Unlike in the
figure, the feature vector dimensionality is also allowed to change during the
feature synthesis if more discriminative features can be obtained.

The features synthesized by the existing FS methods based on GP produce only
slightly improved (or in some cases even worse) results compared to original
features. These methods have several limitations and the results may be signifi-
cantly improved if those limitations can be properly addressed. First of all, the
synthesized feature space dimensionality is kept quite low to avoid increasing the
computational complexity. Also the dimensionality is fixed a priori which further
decreases the probability of finding optimal synthesized features with respect to the
problem at hand. In order to maximize the discrimination among classes, also the
dimensionality into which the new features are synthesized should be optimized by
the evolutionary search technique. Most existing systems also use only few
(non)linear operators in order to avoid a high search space dimensionality due to
the fact that the probability of getting trapped into a local optimum significantly
increases in higher dimensionalities. Furthermore, the methods are quite dependent
on a number of parameters, which must be set manually.

ANNs, which may also be seen as feature synthesizers, similarly suffer from the
pre-set dimensionality of the synthesized features (e.g., C for a C-class case).
Simultaneously, the limited set of operators (only summation and nonlinear

EFS

class-1
class-2
class-3

Fig. 10.1 An illustrative EFS, which is applied to 2D feature vectors of a 3-class dataset

10.2 Feature Synthesis and Selection: An Overview 299

bounding) may prevent the ANNs from finding a successful feature synthesizer for
a particular set of feature vectors. The most problematic limitation is the lack of
feature selection. When the dimensionality of the input feature vector rises, the
number of weights to be optimized increases exponentially and the task of finding
proper weights soon becomes difficult and perhaps infeasible for any training
method due to the well-known ‘‘curse of dimensionality’’ phenomenon.

With SVM classifiers, a major drawback is the critical choice of the (non)linear
kernel function along with its intrinsic parameters that may not be a proper choice
for the problem at hand. Consider for instance, two sample feature synthesizers
(FS-1 and FS-2) illustrated in Fig. 10.2, where for illustration purposes features are
only shown in 1-D and 2-D, and only two-class problems are considered. In the
case of FS-1, a SVM with a polynomial kernel in quadratic form can make the
proper transformation into 3-D so that the new (synthesized) features are linearly
separable. However, for FS-2, a sinusoid with a proper frequency, f, should be used
instead for a better class discrimination. Therefore, searching for the right trans-
formation (and hence for the linear and nonlinear operators within) is of paramount
importance, which is not possible for static (or fixed) ANN and SVM
configurations.

The primary objective of the EFS framework presented in this chapter is to
address all the above-mentioned deficiencies simultaneously and to achieve the
highest possible discrimination between image features belonging to different

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

(1,0)

1x

2x 21
2
2

2
1 2,, xxxx

2D 3D

(1,0)
2y

1y

class-1
class-2

)2sin(fx

1D 1D
0 1

(FS-1)

class-1
class-2

(FS-2)

π

Fig. 10.2 Two sample feature synthesis performed on 2-D (FS-1) and 1-D (FS-2) feature spaces

300 10 Evolutionary Feature Synthesis

classes. As a summary, the aim is to design an EFS framework that is able to
simultaneously:

1. perform an optimal feature selection,
2. search for optimal arithmetic, linear or nonlinear, operators,
3. search for optimal weights for each feature selected,
4. search for the optimal output feature vector dimensionality,
5. use any given fitness function to measure the quality of the solution,
6. reduce the computational complexity of feature synthesis compared to ANN-

based methods.

10.3.2 Evolutionary Feature Synthesis Framework

10.3.2.1 Overview

As shown in Fig. 10.3, the EFS can be performed in one or several runs where each
run can further synthesize the features generated from the previous run. The number
of runs, R, can be specified in advance or adaptively determined, i.e., runs are
carried out until a point where the fitness improvement is no longer significant. The
EFS dataset can be the entire image database or a certain subset of it where the
ground truth is available. If there is more than one Feature eXtraction (FeX)
module, an individual feature synthesizer can be evolved for each module and once
completed, each set of features extracted by an individual FeX module can then be
passed through the individual synthesizers to generate new features for CBIR.

10.3.2.2 Encoding of the MD PSO Particles

The position of each MD PSO particle in a dimension, d 2 Dmin; Dmax½ �, represents a
potential solution, e.g., a feature synthesizer, which generates a d-dimensional fea-
ture vector using a set of applied operators over some selected features within the N-
dimensional source (original) feature vector. Therefore, the jth component
(dimension) of the position of particle a, in dimension d and at an iteration t,
xxd

a;jðtÞ; j 2 0; d � 1½ �, synthesizes the jth feature of the d-dimensional feature vector.

FV

Image
Database

FeX

MD-PSO based
Feature Synth. Fitness

Eval.
(1-AP)

Synt.
FV (1)Ground Truth

MD-PSO based
Feature Synth.

Synt.
FV (R)

Synt.
FV (R-1)

Fig. 10.3 The block diagram of Feature eXtraction (FeX) and the EFS technique with R runs

10.3 The Evolutionary Feature Synthesis Framework 301

Along with the operators and the feature selection, encoding of the MD PSO
particles is designed to enable a feature scaling mechanism with the proper
weights. As illustrated in Fig. 10.4, xxd

a;jðtÞ; j 2 0; d � 1½ � is a 2 K ? 1 dimen-
sional vector encapsulating:

0x

1x

x

x

x

α1

β 1

β2

βK
x

−1Nx

w

w

w

α 1

β1

β2

βKw

1Θ 2Θ KΘ

0
y

1
y

j
y

−1d
y

Original FV

(N -dimensional)
Synthesized FV

(d -dimensional)

Fig. 10.4 Encoding jth dimensional component of the particle a in dimension d for K-depth
feature synthesis

302 10 Evolutionary Feature Synthesis

1) The selection of K ? 1 (input) features (with feature indices,
a1; b1; . . .; bK 2 0;N � 1½ �),

2) Their weights (0�wa1; wbi \1) and,
3) K operators (via indices, hi2 1;K½ � enumerated in Table 10.1). As a result of this

K-depth feature synthesis, the jth element of the d-dimensional feature vector
can be generated as,

yj ¼ HK wbKxbK ; HK�1 . . .;H2 wb2xb2;H1 wb1xb1; wa1xa1
� �� �

. . .
� �� �

ð10:1Þ

In other words, the inner most operator H1, is first applied to the scaled features xb1

and xa1 then operator H2 is applied to the result of the first operation and the scaled
feature xb2, and so on until the last (outer most) operator HK is applied to the result
of the previous operations and the scaled feature xbK .

Note that letting K = N+1 and fixing the operator HK to a typical activation
function such as sigmoid or tangent hyperbolic, and the rest, Hi2 1;K�1½ �, to ‘‘+’’
operator (Operator(6) in Table 10.1) makes the feature synthesis technique
equivalent to a basic feed-forward ANN (or single-layer perceptron, SLP). Simi-
larly, if more than one EFS runs are performed (R [1), the overall scheme is
equivalent to a typical MLP. In short, feed-forward ANNs are indeed a special case
of the EFS technique, yet the most complex one due to the usage of all input
features (K = N+1), which voids feature selection. Moreover, ANNs make it the
most limited case, since it uses only two operators among many possibilities.
Therefore, the focus is drawn to achieve a low complexity by selecting only a
reasonable number of features (with a low K value) and performing as few MD
PSO runs as necessary (with a low R value).

10.3.2.3 The Fitness Function

Since the main objective is to maximize the CBIR performance, a straightforward
fitness function (to be minimized) is the inverse average precision (-AP or 1-AP) or
alternatively, the average normalized modified retrieval rank (ANMRR), both of
which can directly be computed by querying all images in the ground truth dataset
and averaging individual precision or NMRR scores. This, however, may turn out

Table 10.1 A sample set of F = 18 operators used in evolutionary synthesis

hi Formula hi Formula hi Formula

0 -A 7 10(A ? B) 14 tan(100p A*B)
1 -B 8 A-B 15 tan(100p (A ? B))
2 max(A,B) 9 A*B 16 0.5*exp(-(A-B)*(A-B))
3 min(A,B) 10 10(A*B) 17 0.5*exp(-(A ? B)*(A ? B))
4 A*A 11 A/B
5 B*B 12 sin(100p (A ? B))
6 A ? B 13 cos(100p (A ? B))

10.3 The Evolutionary Feature Synthesis Framework 303

to be a costly operation especially for large databases with many classes. An
alternative fitness function that seeks to maximize discrimination among distinct
classes can be a clustering validity index (CVI) where each cluster corresponds to
a distinct class in the database. CVI can be formed with respect to two widely used
criteria in clustering: intra-cluster compactness and inter-cluster separation.

For each potential EFS encoded in a MD PSO particle, the CVI computed over
the d-dimensional synthesized features, Z ¼ fzp; zp 2 cjg, for each class,
ci; i 2 0;C � 1½ �, can be computed as in Eq. (10.1).

f ðlc;R; ZÞ ¼ FP ðlc;R; ZÞ þ Qeðlc;R; ZÞ=dminðlc;RÞ
� �

where Qeðlc;R; ZÞ ¼
1
C

XC

i¼1

P

8zp2ci

lc;i � zp

�
�

�
�

cik k

ð10:2Þ

where lc;Ris the centroid vector computed for all classes, and Qeðlc;R; ZÞ is the
quantization error (or the average intra-cluster distance). dmin is the minimum
centroid (inter-cluster) distance among all classes and FP ðlc;R; ZÞ is the number of
false positives i.e., synthesized feature vectors which are closer to another class
centroid than their own. So the minimization of the validity index f ðlc;R; ZÞ will
simultaneously try to minimize the intra-cluster distances (for better compactness)
and maximize the inter-cluster distance (for better separation), both of which lead
to a low FP ðlc;R; ZÞ value or in the ideal case FP ðlc;R; ZÞ ¼ 0, meaning that each
synthesized feature is in the closest proximity of its own class centroid, thus
leading to the highest discrimination.

In the second approach we adapt a similar methodology to the one used in
ANNs, i.e., target vectors are assigned to synthesize the features from each class,
the EFS system searches for a proper synthesis to get to this desired output, and the
fitness is evaluated in terms of the mean square error (MSE) between the syn-
thesized output vectors and the target output vectors. However, we do not want to
fix the output dimensionality to C as in ANNs, but instead let the EFS system
search for an optimal output dimensionality. Therefore, target output vectors are
generated for all dimensionalities within the range of {Dmin,…,Dmax}. While
generating the target vector table, the two criteria are applied for a good error
correcting output code (ECOC) suggested in [16], i.e.,

• Row separation: Each target vector should be well-separated in the sense of
Hamming distance from each of the other target vectors.

• Column separation: Each column in the vector table should be well-separated in
the sense of Hamming distance from each of the other columns.

Large row separation allows the final synthesized vectors to somewhat differ
from the target output vectors without losing the discrimination between classes.
Each column of the target vector table can be seen as a different binary classifi-
cation i.e., those original classes with value 1 in the specific column form the first
metaclass and those original classes with value -1 in that column form the second

304 10 Evolutionary Feature Synthesis

metaclass. Depending on the similarity of the original classes, some binary clas-
sification tasks are likely to be notably easier than others. Since the same target
output vectors should be used with any given input classes, it is beneficial to keep
the binary classification tasks as different as possible i.e., maximize the column
separation.

There is no simple and fast method available to generate target vectors with
maximal row and column separation, but the following simple approach is used to
create target output vectors with row and column separations which are satisfac-
tory for this purpose:

1. Assign MinBits as the minimum number of bits needed to represent C classes.
2. Form a bit table with MinBits rows where each row is the binary representation

of the row number.
3. Assign the first MinBits target vector values for each class ci equal to the ith

row in the bit table.
4. Move the first row of the bit table to the end of the table and shift the other rows

up by one row.
5. Assign the next MinBits target vector values for each class ci equal to the ith

row in the bit table.
6. Repeat the previous two steps until Dmax target vector values have been

assigned.
7. Replace the first C values in each target vector by a 1-of-C coded section.

This procedure will produce different binary classification tasks until the bit
table is rotated back to its original state (large column separation) and simulta-
neously the row separation is notably increased compared to using only the 1-of-
C coded section. While step 7 reduces the row separation, it has been observed that
for distinct classes it is often easiest to find a synthesizer that discriminates a single
class from the others and, therefore, conserving the 1-of-C coded section at the
beginning generally improves the results. The target vectors for dimensionalities
below Dmax can then be obtained by simply discarding a sufficient number of
elements from the end of the target vector for dimensionality Dmax. Since the
common elements in the target vectors of different lengths are thus identical, the
FGBF methodology for EFS can still freely combine elements taken from particle
positions having different dimensionalities.

The target output vector generation for a 4-class case is illustrated in
Table 10.2. For clarity, the elements set to -1 are shown as empty boxes. Dmax is
set to 10 and for four classes MinBits is 2. Note that the 1-of-C coding is used for

Table 10.2 A sample target vector encoding for 4 classes, c1,…, c4

tc1 1 1 1 1
tc2 1 1 1 1
tc3 1 1 1
tc4 1 1 1 1 1

10.3 The Evolutionary Feature Synthesis Framework 305

the first four elements, while the remaining elements are created from the (shifted)
rows of a 2-bit representation table.

When the target outputs are created as described above, the fitness of the jth
element of a synthesized vector (and thus the corresponding fractional fitness
score, fj(Zj)) can simply be computed as the MSE between the synthesized output
vectors and the target vectors belonging to their classes, i.e.,

fj Zj

� �
¼
XC

k¼1

X

8z2ck

tjck � zj

� �2
: ð10:3Þ

where tjck denotes the jth element of the target output vector for class ck and zj is
the jth element of a synthesized output vector. The most straightforward way to
form the actual fitness score f(Z) would be to sum up the fractional fitness scores
and then normalize the sum with respect to the number of dimensions. However,
we noticed that since the first C elements with 1-of-C coding are usually easiest to
synthesize successfully, the MD PSO usually favors dimensionalities not higher
than C, indicating a crucial local optimum for dimensionality d = C. In order to
address this drawback efficiently, the elements from 1 to C in the target vector are
handled separately and moreover, the normalizing divisor used for the rest of the
elements is strengthened, i.e., with the power of a[1, to slightly increase the
probability of finding better solutions in higher dimensionalities, d [C. As a
result, the fitness function is formulated as follows,

f Zð Þ ¼ 1
C

XC

j¼1

XC

k¼1

X

8z2ck

tjck � zj

� �2 þ 1
d � Cð Þa

Xd

j¼Cþ1

XC

k¼1

X

8z2ck

tjck � zk

� �2
: ð10:4Þ

with this fitness function, Dmin will not be set below C ? 1.

10.4 Simulation Results and Discussions

MUVIS framework [17] is used to create and index a Corel image database to be
used in the experiments in this section. The database contains 1,000 medium
resolution (384 9 256 pixels) images obtained from Corel image collection [18]
covering 10 classes (natives, beach, architecture, busses, dinosaurs, elephants,
roses, horses, mountains, and food). In order to demonstrate the efficacy of the EFS
technique for CBIR, we used well-known low-level descriptors that have a limited
discrimination power and a severe deficiency for a proper content description. The
descriptors used are 64-bins unit normalized RGB and YUV color histograms and
57-D Local Binary Pattern (LBP) and 48-D Gabor texture descriptors. The syn-
thesis depth, K, was set to 7 meaning that only 7 operators and 8 features were
used to compose each element of the new feature vector. The parameter a in Eq.
(10.4) was set to 1.1. Unless stated otherwise, the set of 18 empirically selected
operators given in Table 10.1 was used within the EFS. All numerical results

306 10 Evolutionary Feature Synthesis

(discrimination measure, classification error, ANMRR, AP, output dimensionality)
are presented in terms of basic statistics such as the mean and best value obtained
during 10 separate EFS runs.

In all the experiments MD PSO parameters were set as follows: The swarm
size, S, was set to 200 and the number of iterations, iterNo, to 2000. The positional
search space range, {Xmin,…,Xmax}, was set according to the number of operators
in use, T, and the number of features in the input feature vectors, F. The positional
velocity range, {Vmin,…,Vmax}, was empirically set to {-(Xmax - Xmin)/10,…,
(Xmax - Xmin)/10}. The dimensionality range, {Dmin,…,Dmax}, was set to
{11,…,40} and the dimensional velocity range {VDmin,…,VDmax}, to {-4,…,4}.

10.4.1 Performance Evaluations with Respect
to Discrimination and Classification

Let us first concentrate on demonstrating the capability of EFS to improve the
discrimination power of the original (low-level) features. The discrimination
ability is evaluated in terms of the discrimination measure (DM) given in Eq.
(10.2) (DM = f ðlc;R; ZÞ) and the same function is used as the fitness function in
EFS. The DM along with the number of false positives (FP) for the original
features is presented in Table 10.3. DM and FP statistics, when EFS is performed
over the entire database, are presented in Table 10.4.

The results clearly indicate a significant improvement in the discrimination
power achieved by EFS. Since the entire database was used as the EFS dataset,
these results also represent the maximal capability of EFS to improve the dis-
crimination power. However, in real life, the ground truth information of the entire
database is rarely available; only a mere fraction of it is usually known. In this
case, EFS is still expected to have a high level of generalization ability, i.e., its
performance (over the entire database) should be as close as possible to the one
obtained when the whole database ground truth data is used for evolving the EFS.
In order to evaluate this EFS is now evolved by using the ground truth data over
only a part of the database (45 %). The corresponding DM and FP statistics
(computed over the whole database) are given in Table 10.5. The results indicate
reasonably good generalization ability since the deterioration from DM and FP
measures are limited within the range of 7–27 % and the synthesized features still
achieve a superior discrimination compared to the original features. Henceforth in
the rest of the experiments presented in this section, only 45 % of the ground truth
data of the database shall be used.

Table 10.3 Discrimination measure (DM) and the number of false positives (FP) for the original
features

Corel RGB YUV LBP Gabor

DM 431.2 384.6 984.2 462.7
FP 357 334 539 378

10.4 Simulation Results and Discussions 307

While our main objective is to improve CBIR results, EFS can also be used for
other purposes as long as a proper fitness function can be designed. A possible
application may be the synthesis of such features that can be classified more
efficiently. To demonstrate this potential of EFS, a K-means classifier is trained by
computing the class centroids using 45 % of the database, and the test samples are
then classified according to the closest class centroid. When it is applied over the
original and synthesized features, the classification errors presented in Tables 10.6
and 10.7 are obtained. The results clearly indicate a clear improvement in the
classification accuracy, leading to the conclusion that when EFS is evolved with a
proper fitness function, it can synthesize such features that can be classified more
efficiently and accurately.

Table 10.4 Statistics of the discrimination measure (DM), the number of false positives (FP) and
the corresponding output dimensionalities for features synthesized by the first run of EFS over the
entire database

Corel RGB YUV LBP Gabor

Min/mean DM 179.9/203.9 187.2/201.3 306.8/334.7 299.2/309.5
Min/mean FP 161/181.7 167/179.9 281/307.5 272/283.4
Best/mean dim. 37/32.6 36/33.7 26/24.7 37/28.8

Table 10.5 Statistics of the DM, FP and the corresponding output dimensionalities for features
synthesized by the first run of the EFS evolved with the ground truth data over 45 % of the
database

Corel RGB YUV LBP Gabor

Min/Mean DM 245.8/259.1 239.2/261.7 384.5/408.4 336.6/363.9
Min/Mean FP 223/237.5 218/239.5 357/372.3 303/330.6
Best/Mean Dim. 33/33.4 37/31.4 30/24.0 31/29.4

Table 10.6 Test CEs for the original features

Corel RGB YUV LBP Gabor

Test CE 0.420 0.371 0.560 0.433

Table 10.7 Test CE statistics and the corresponding output dimensionalities for features syn-
thesized by a single run of the EFS with 45 % EFS dataset

Corel RGB YUV LBP Gabor

Min/mean
test CE

0.293/0.312 0.285/0.307 0.402/0.422 0.327/0.367

Best/mean dim. 33/34.4 37/31.4 30/24.0 29/29.4

308 10 Evolutionary Feature Synthesis

10.4.2 Comparative Performance Evaluations on Content-
Based Image Retrieval

In the following experiments, image features are synthesized using the ground truth
data of only part of the image database (45 %). Then ANMRR and AP are computed
by the batch query, i.e., querying all images in the database. In order to evaluate the
baseline performance, ANMRR and AP performance measures obtained using the
original low-level features are first computed, as given in Table 10.8.

Recall that a single run of EFS can be regarded as a generalization of a SLP.
Therefore, to perform a comparative evaluation under equal terms, a SLP is first
trained using PSO and used as a feature synthesizer in which the low-level image
features are propagated to create the output (class) vectors that are used to compute
(dis) similarity distances during a query process. Performing batch queries over
class vectors, the final ANMRR and AP statistics are given in Table 10.9. It can be
seen that, even though the SLP output dimensionality is notably lower than the
vector dimensionalities of the original low-level features, ANMRR and AP sta-
tistics for the synthesized LBP and Gabor features exhibit a significant performance
improvement. This is also true but somewhat limited for RGB and YUV histo-
grams. It is, therefore, clear that feature synthesis performed by SLP improves the
discrimination between classes, which in turn leads to a better CBIR performance.

To demonstrate the significance of each property of EFS, a series of experi-
ments are conducted enabling the properties one by one and evaluating their
individual impact. Let us start with a single run of the most restricted EFS version
that has the highest resemblance to a SLP. In this version, fixing the output
dimensionality to C, the same 1-of-C coding for target (class) vectors and the same
MSE fitness function are used. As in SLP, PSO (with FGBF) process in this limited
EFS searches for only the feature weights, selecting only between addition or
subtraction operators (in SLP the weights are limited between [-1, 1], i.e., we
need also subtraction operation to compensate for the negative weights).

Table 10.8 ANMRR and AP measures using original low-level features. ‘‘All’’ refers to all
features are considered

Corel RGB YUV LBP Gabor All

ANMRR 0.589 0.577 0.635 0.561 0.504
AP 0.391 0.405 0.349 0.417 0.473

Table 10.9 ANMRR and AP statistics obtained by batch queries over the class vectors of the
single SLP

Corel RGB YUV LBP Gabor All

Min/mean
ANMRR

0.542/
0.573

0.526/
0.554

0.544/
0.555

0.482/
0.495

0.367/
0.390

Max/
mean AP

0.446/
0.414

0.463/
0.434

0.443/
0.432

0.503/
0.490

0.611/
0.589

10.4 Simulation Results and Discussions 309

Furthermore, the combined features are then bounded using tanh function. The
bias used in SLP is mimicked by complementing each input feature vector with a
constant ‘1’ value. Thus note that, the only property different from the SLP is the
feature selection of only 8 (K = 7) features for composing each element of
the output vector. The retrieval result statistics obtained from the batch queries are
presented in Table 10.10.

Even though the feature synthesis process is essentially similar to the one
applied by the SLP with the only exception that the number of input features used
to synthesize each output feature is notably reduced as a result of the feature
selection, the retrieval performance statistics for synthesized RGB and YUV
histograms are quite similar. This leads to the conclusion that, in these low-level
features, the original feature vectors have many redundant or irrelevant elements
for the discrimination of the classes, which is a well-known limitation of color
histograms. The feature selection, therefore, removes this redundancy while
operating only on the essential feature elements and as a result leads to a signif-
icant reduction in computational complexity. The statistics for the synthesized
LBP features are close to the ones obtained from the original LBP features, while
for the synthesized Gabor features they are somewhat inferior. This suggests that
with these descriptors, and especially with the Gabor features, most of the original
feature vector elements are indeed essential to achieve maximal discrimination
between classes. However, feature selection is also essential to achieve the
objective of reducing the overall optimization complexity and it may hence be a
prerequisite for applying feature synthesis on larger databases. In the following
experiments, it will be demonstrated that the feature selection no longer presents a
disadvantage whenever used along with the other properties of EFS.

In the following experiment, the significance of having several operators and
operator selection in EFS is examined. All operators are now used in the EFS
process. The retrieval performance statistics are given in Table 10.11. Note that

Table 10.10 ANMRR and AP statistics for features synthesized by a single run of the EFS when
the output dimensionality is fixed to C = 10 and operator selection is limited to addition and
subtraction

Corel RGB YUV LBP Gabor All

Min/mean
ANMRR

0.564/
0.580

0.540/
0.548

0.636/
0.651

0.598/
0.623

0.482/
0.487

Max/
mean AP

0.419/
0.404

0.447/
0.439

0.350/
0.334

0.385/
0.360

0.498/
0.492

Table 10.11 ANMRR and AP statistics for features synthesized by a single run of the EFS when
the output dimensionality is fixed to C = 10 and all operators are used

Corel RGB YUV LBP Gabor All

Min/mean
ANMRR

0.550/
0.587

0.517/
0.562

0.499/
0.509

0.486/
0.516

0.380/
0.398

Max/
mean AP

0.432/
0.394

0.468/
0.423

0.487/
0.477

0.498/
0.467

0.597/
0.578

310 10 Evolutionary Feature Synthesis

ANMRR and AP statistics for synthesized RGB and YUV histograms are quite
similar with and without operator selection, while for LBP and Gabor features a
significant improvement can be observed with operator selection.

In the next experiment, EFS is allowed to optimize the output dimensionality
and the fitness function given in Eq. (10.4) is used; i.e., now all the properties of
EFS are in use but only in a single EFS run. ANMRR and AP statistics along with
the corresponding statistics of the output dimensionality (best/mean) of the syn-
thesized feature vector (dbest) are presented in Table 10.12.

ANMRR scores obtained with the single run of the EFS are better than to the
ones obtained with the original features and the features (class vectors) synthesized
by the SLP. The only exception is the synthesized Gabor features for which the
statistics are slightly worse than the ones synthesized with the SLP. As discussed
earlier, this indicates the relevance of each element of the Gabor feature vector and
selecting a limited subset may yield a slight disadvantage in this case.

Finally, several runs of the EFS (without exceeding 25) are performed until the
performance improvement is no longer significant. The ANMRR and AP statistics
and along with the corresponding statistics of the output dimensionality (best/
mean) of the final synthesized feature vector (dbest) are presented in Table 10.13.
The average numbers of EFS runs for the synthesis of the RGB, YUV, LBP, and
Gabor features were 19.6, 18.7, 22.8, and 24.5, respectively.

Note that when EFS is performed with all the properties enabled, the retrieval
performance of the synthesized features has been significantly improved compared
to EFS with a single run. It can be also observed that the average dimensionalities
of the final synthesized feature vectors (dbest) become lower. This is not surprising
since repeated applications of consecutive arithmetic operators can achieve a
similar discrimination capability with fewer output feature elements. Dimension-
ality reduction in the synthesized features is also a desired property that makes the

Table 10.12 ANMRR and AP statistics and the corresponding output dimensionalities for the
synthesized features by a single EFS run using the fitness function in Eq. (10.4)

Corel RGB YUV LBP Gabor All

Min/meanANMRR 0.485/0.500 0.475/0.505 0.507/0.519 0.506/0.520 0.346/0.357
Max/
mean AP

0.494/0.478 0.507/0.477 0.477/0.465 0.479/0.464 0.630/0.619

Best/mean dim. 34/35.7 25/34.7 37/35.3 14/27.0

Table 10.13 Retrieval performance statistics and the corresponding output dimensionalities for
the final synthesized features by several EFS runs using the fitness function in Eq. (10.4)

Corel RGB YUV LBP Gabor All

Min/mean
ANMRR

0.365/
0.385

0.369/
0.397

0.372/
0.396

0.408/
0.428

0.258/
0.280

Max/
mean AP

0.616/
0.596

0.610/
0.584

0.613/
0.589

0.577/
0.559

0.716/
0.694

Best/mean dim. 12/12.4 18/17.8 11/11.2 11/11.0

10.4 Simulation Results and Discussions 311

retrieval process faster. However, we noticed that the best retrieval results were
usually obtained when a higher output dimensionality was maintained for several
runs. This suggests that it could be beneficial to set the value of power a in Eq.
(10.4) to a higher value than now used 1.1 in order to favor higher dimensionalities
even more. However, this may not be a desired property especially for large-scale
databases.

Figure 10.5 illustrates four sample queries each of which is performed using the
original features, features synthesized by a single EFS run, and the features syn-
thesized by four EFS runs. It is obvious that multiple EFS runs improve the
discrimination power of the original features and, consequently, an improved
retrieval performance is achieved.

In order to perform comparative evaluations against evolutionary ANNs, fea-
tures are synthesized using feed-forward ANNs since several EFS runs are con-
ceptually similar to MLPs or especially to multiple concatenated SLPs. For ANNs,
MD PSO is used to evolve the optimal MLP architecture in an architecture space,
Rmin = {Ni, 8, 4, No}, Rmax = {Ni, 16, 8, No}. Such 3-layer MLPs correspond to 3
EFS runs. The number of hidden neurons in the first/second hidden layer corre-
sponds to the output dimensionality of the first/second EFS run (with MLPs the
number of hidden neurons must be limited more to keep the training feasible).
Naturally, the number of output neurons is fixed to C = 10, according to the 1-to-
C encoding scheme. In order to provide a fair comparison, the number of MD PSO
iterations is now set to 3 9 2,000 = 6,000 iterations. Table 10.14 presents the
retrieval performance statistics for the features synthesized by the best MLP
configuration evolved by MD PSO.

It is fairly clear that except for RGB histograms, the retrieval performance
statistics for features synthesized by EFS even with a single run are better than the
ones achieved by the best MLP. This basically demonstrates the significance of the
feature and operator selection.

As each EFS run is conceptually similar to a SLP, the EFS with multiple runs in
fact corresponds to the synthesis obtained by the concatenation of the multiple
SLPs (i.e., the output of the previous SLP is fed as the input of the next one similar
to the block diagram shown in Fig. 10.3). The retrieval performance statistics
obtained for the features synthesized by the concatenated SLPs are given in
Table 10.15.

Compared to the retrieval result statistics given in Table 10.9 for the batch
queries over the class vectors of a single SLP, slightly better retrieval perfor-
mances are obtained. However, similar to the results for evolutionary MLPs, they
are also significantly inferior to the ones obtained by EFS, as given in Table 10.13.
Therefore, similar conclusions can be drawn for the significance of the three major
properties of EFS presented in this chapter, i.e., feature and operator selection and
searching for the optimal feature dimensionality. Furthermore, EFS provides a
higher flexibility and better feature (or data) adaptation than regular ANNs, since
1) it has the capability to select the most appropriate linear/nonlinear operators
among a large set of candidates, 2) it has the advantage of selecting proper features

312 10 Evolutionary Feature Synthesis

Fig. 10.5 Four sample queries using original (left) and synthesized features with single (middle)
and four (right) runs. Top-left is the query image

10.4 Simulation Results and Discussions 313

that in turn reduces the complexity of the solution space, and 3) it synthesizes
features in an optimal dimensionality.

Note that the application of EFS is not limited to CBIR, but it can directly be
utilized to synthesize proper features for other application areas such as data
classification or object recognition, and perhaps even speech recognition. With
suitable fitness functions, synthesized features can be optimized for the application
at hand. To further improve performance, different feature synthesizers may be
evolved for different classes, since the features essential for the discrimination of a
certain class may vary.

10.5 Programming Remarks and Software Packages

Recall that the major MD PSO test-bed application is PSOTestApp where several
MD PSO applications, mostly based on data (or feature) clustering, are imple-
mented. The basics of MD PSO operation is described in Sect. 4.4.2 and FGBF in
Sect. 6.4 whereas in Sect. 8.4, N-D feature clustering application for Holter reg-
ister classification is explained. In this section, we shall describe the programming
details for performing MD PSO-based EFS operation. For this, the option: ‘‘8.
Feature Synthesis..,’’ should be selected from the main GUI of the PSOTestApp
application, and the main dialog object from CPSOtestAppDlg class will then use
the object from CPSOFeatureSynthesis class in void CPSOtestAppDlg::
OnDopso() function to perform EFS operation over MUVIS low-level features
stored in FeX files.

The API of this class is identical to the other major classes in the PSOTestApp
application. The thread function, PSOThread(), is again called in a different
thread where the EFS operations are performed. The class structure is also quite

Table 10.14 ANMRR and AP statistics for the features synthesized by the best MLP configu-
ration evolved by MD PSO

Corel RGB YUV LBP Gabor All

Min/mean
ANMRR

0.392/
0.442

0.527/
0.558

0.513/
0.545

0.490/
0.547

0.307/
0.348

Max/
mean AP

0.594/
0.543

0.465/
0.433

0.445/
0.475

0.498/
0.442

0.673/
0.633

Best ANN {Ni,9,5,No} {Ni,9,5,No} {Ni,8,6,No} {Ni,14,5,No}

Table 10.15 ANMRR and AP statistics for the features synthesized by the concatenated SLPs

Corel RGB YUV LBP Gabor All

Min/mean
ANMRR

0.498/
0.535

0.495/
0.525

0.494/
0.503

0.459/
0.474

0.346/
0.365

Max/
mean AP

0.491/
0.454

0.493/
0.463

0.493/
0.485

0.527/
0.512

0.634/
0.615

314 10 Evolutionary Feature Synthesis

http://dx.doi.org/10.1007/978-3-642-37846-1_4
http://dx.doi.org/10.1007/978-3-642-37846-1_6
http://dx.doi.org/10.1007/978-3-642-37846-1_8

similar to CPSOclusterND class where there are several fitness functions are
implemented each for different EFS objective. Table 10.16 presents the class
CPSOFeatureSynthesis. The input file for this application is a MUVIS image
database file in the form of ‘‘*.idbs.’’ Using the database handling functions, a
MUVIS database file from which its low-level features are retrieved, is loaded. For
each low-level feature, an individual EFS operation (with multiple repetitions if
required) is performed and the synthesized features are then saved into the original
FeX file, while the FeX file with low-level features is simply renamed with the
‘‘FeX0’’ enumeration at the end. If there are more than one EFS blocks (runs), then
the synthesized features from the latest run is saved into the original FeX file while
the previous runs outcomes are saved into enumerated FeX files with ‘‘FeX1,’’
‘‘_FeX2,’’ etc. For example, let Corel_FeX.RGB be the FeX file for the Corel
database where RGB color histogram features are stored. Assume that 2 EFS runs

Table 10.16 The class CPSOFeatureSynthesis

10.5 Programming Remarks and Software Packages 315

are performed where each run can be repeated more than one time and the EFS
with the best fitness score is only kept while the others are simply discarded. At the
end of 2 EFS runs, the following files are generated:

• Corel_FeX0.RGB (The original low-level features)
• Corel_FeX1.RGB (The synthesized features after the first EFS run)
• Corel_FeX.RGB (The synthesized features after the second –last– EFS run)

In this way, the synthesized features of the last EFS run can directly be used for
a CBIR operation in MUVIS while the features from the previous runs as well as
the original features are still kept for backup purpose.

Recall that EFS has certain similarities to a classification operation. For
instance, the EFS is also evolved over the training dataset (the GTD) of a database
and tested over the test dataset. Therefore the function, Load_qbf(), loads the
GTD for this purpose and another function, SeparateTrainingFeatures(), sepa-
rates the FVs of the training dataset.

Table 10.17 presents the first part of the function, CPSOFeatureSynthe-
sis::PSOThread() with its basic blocks. Note that the first operation is to load the
database (‘‘*.idbs’’) file, and the ‘‘*.qbf’’ file where the entire GTD resides. Once
they are loaded, the EFS operation is performed for each feature in the database
(i.e., the first for-loop) while for each EFS operation, there can be one or more EFS
runs concatenated (as shown in Fig. 10.3). For each EFS run, first the current
features (either low-level features if this is the first EFS run, or the features
synthesized by the previous EFS run) are loaded by the Load_FeX() function.
Then the training dataset features that are used to evolve the synthesizer, are
separated by the function, SeparateTrainingFeatures(). Then the MD PSO
parameters, internal and static variables/pointers are all set, created and/or allo-
cated. Finally, the EFS operation by the MD PSO process is performed and
repeated by m_psoParam._repNo times. As mentioned earlier, the synthesizer,
best_synthesis, obtained from the best MD PSO run in terms of the fitness score is
kept in an encoded form by a CVectorNDopt array of dimension, best_dim,
which is the dbest converged by the MD PSO swarm. Figure 10.4 illustrates the
encoding of the best_synthesis, in an array format.

Table 10.18 presents the second part of the function, CPSOFeatureSynthe-
sis::PSOThread() where the EFS, best_synthesis, is tested against the previous
synthesizer or the original features in terms of the fitness score achieved, i.e., it
will be kept only if there is an improvement on the fitness score. To accomplish the
test, first a dummy synthesizer is created (pOrigFeatures), which creates an
identical FV as the original one and then the fitness score is computed by simply
calling the fitness function, FitnessFnANN(pOrigFeatures, s_v_size). The fol-
lowing if statement compares both fitness scores and if there is an improvement,
then the synthesizer, best_synthesis, generates new features in a pointer array,
SF[], and saves them into the FeX file while renaming the previous one with an
enumerated number. Note that at this stage the synthesizer is applied over the
entire database, not only over the training dataset. Therefore, it is still unknown

316 10 Evolutionary Feature Synthesis

whether or not the CBIR performance is improved by the synthesized features, and
this can then be verified by performing batch queries using this feature alone.

Table 10.19 presents the current fitness function used, FitnessFnANN(pOri-
gFeatures, s_v_size). This corresponds to the second approach, which adapts a
similar methodology to the one used in ANNs, i.e., using the ECOC scheme. The
first step is to apply the synthesis with the potential synthesizer stored in the MD

Table 10.17 The function: CPSOFeatureSynthesis::PSOThread() (part-1)

10.5 Programming Remarks and Software Packages 317

PSO particle’s position, pPos in dimension, nDim. The function call, ApplyFS-
adaptive(true, true, SynthesizedFeatures, pCC, nDim), will synthesize features
stored in the static variable, SynthesizedFeatures. The fitness score is the nor-
malized mean square error (MSE) between the synthesized features and the ECOC
code in this dimension stored in the static variable, mean_vec[c][d]. While cal-
culating the MSE in the last for-loop, note that the MSE per dimension is also
stored as the individual dimensional fitness scores that are used for the FGBF
operation.

Table 10.20 presents the feature synthesizer function, CPSOFeatureSynthe-
sis::ApplyFSadaptive(), which synthesizes either the FVs of the entire database,
s_pInputFeatures or the training dataset, s_pTrainFeatures. Recall that nDim is
the dimension of the MD PSO particle, and also corresponds to the dimension of
the synthesized feature (FV). Therefore, the particle’s position vector is in
dimension nDim and each dimensional component holds an individual synthesizer
encoded in an array of fixed length, FS_DEPTH. As shown in Fig. 10.4, within

Table 10.18 The function: CPSOFeatureSynthesis::PSOThread() (part-2)

318 10 Evolutionary Feature Synthesis

the for-loop of each dimension, the elements of each synthesizer array is decoded
into FV component indices, operator indices, weights, and biases. For instance,

int feature1 = ((int) pCC[j].m_pV[0]) ? feat_min;
float weight1 = ABS(pCC[j].m_pV[0] - ((int) pCC[j].m_pV[0]));

The variable, feature1, is the index of the first FV component (of the original
feature) and the variable, weight1, is its weight. Note that within the following for-
loop, the FV component index and the weight of the second FV are also decoded
as well as the first operator index, FSoperator. Then for the entire dataset, the (jth)
dimensional component of the synthesized features are computed using the
associated operator, oFn[FSoperator], as,

Note that the first term, SynthesizedFeatures[i][j], was already assigned to the
scaled (with weight1) version of the first feature, feature1. Therefore, the first
term of the operator will always be the output of the previous operator, and the
second term will be the new scaled (with weight2) component of the original FV.
The final synthesized feature may then be passed through the activation function,
tanh, to scale it within [-1, 1] range.

Table 10.19 The function: CPSOFeatureSynthesis::FitnessFnANN()

10.5 Programming Remarks and Software Packages 319

The MD PSO operation for EFS is identical to the one for N-D feature clus-
tering, as for both operation, the task is to find out certain number of (dbest) N-D
arrays (for EFS carrying synthesizers in encoded form) or FVs (for N-D clustering,
carrying the N-D cluster centroids). However, the FGBF operations differ entirely.
As explained in Sect. 6.4.1, the FGBF operation for clustering operation is handled
in the FGBF_CLFn() function whereas the other function, FGBF_FSFn(), is for

Table 10.20 The function: CPSOFeatureSynthesis::ApplyFSadaptive()

320 10 Evolutionary Feature Synthesis

http://dx.doi.org/10.1007/978-3-642-37846-1_6

EFS. Note that this is the basic FGBF operation as explained in Sect. 5.5.1 and the
implementation is identical to the one presented in Table 5.17.

References

1. A. Antoniou, W.-S. Lu, Practical optimization, algorithms and engineering applications
(Springer, USA, 2007)

2. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-
Wesley, Reading, MA, 1989), pp. 1–25

3. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,
671–680 (1983)

4. K. Price, R. M. Storn, J. A. Lampinen, Differential Evolution: A Practical Approach to
Global Optimization (Springer, 2005) ISBN 978-3-540-20950-8

5. A. Unler, A. Murat, A discrete particle swarm optimization method for feature selection in
binary classification problems. Eur. J. Oper. Res. 206(3), 528–539 (2010)

6. L.-Y. Chuang, H.W. Chang, C.J. Tu, C.H. Yang, Improved binary PSO for feature selection
using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

7. Y. Lin, B. Bhanu, Evolutionary Feature Synthesis for Object Recognition. IEEE Trans. Man
Cybern: Part C 35(2), 156–171 (2005)

8. Y. Liu, Z. Qin, Z. Xu, X. He, Feature selection with particle swarms computational and
information science. Lect. Notes Comput. Sci. 3314, 425–430 (2005)

9. K. Geetha, K. Thanushkodi, A. Kishore kumar, New Particle Swarm Optimization for
Feature Selection and Classification of Microcalcifications in Mammograms, in Proceedings
of IEEE International Conference on Signal Processing, Communications and Networking,
pp. 458–463, Chennai, India, Jan. 2008

10. B. Bhanu, J. Yu, X. Tan, Y. Lin, ‘‘Feature Synthesis using Genetic Programming for Face
Expression Recognition’’, Genetic and Evolutionary Computation (GECCO 2004). Lect.
Notes Comput. Sci. 3103, 896–907 (2004)

11. J. Yu, B. Bhanu, Evolutionary feature synthesis for facial expression recognition. Pattern
Recogn. Lett. 27, 1289–1298 (2006)

12. A. Dong, B. Bhanu, Y. Lin, Evolutionary Feature Synthesis for Image Databases, in
Proceedings of 7th IEEE Workshop on Applications of Computer Vision, Breckenridge, CO,
USA, Jan. 2005

13. R. Li, B. Bhanu, A. Dong, Coevolutionary Feature Synthesized EM Algorithm for Image
Retrieval, in Proceedings of 13th Ann. ACM Internation Conference on Multimedia (MM’05),
pp. 696–705, Singapore, Nov. 2005

14. R. Li, B. Bhanu, A. Dong, Feature Synthesized EM Algorithm for Image Retrieval. ACM
Trans. Multimedia, Commun. Appl. 4(2), article 10, May 2008

15. R.S. Torres, A.X. Falcao, M.A. Goncalves, R.A.C. Lamparelli, A genetic programming
framework for content-based image retrieval. Pattern Recogn. 42(2), 283–292 (2009)

16. T.G. Dietterich, G. Bakiri, Solving Multiclass Learning Problems via Error-Correcting
Output Codes. J Artif Intell Res 2, 263–286 (1995)

17. MUVIS. http://muvis.cs.tut.fi/
18. Corel Collection/Photo CD Collection (www.corel.com)

10.5 Programming Remarks and Software Packages 321

http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://dx.doi.org/10.1007/978-3-642-37846-1_5
http://muvis.cs.tut.fi/
http://www.corel.com

	Preface
	Abstract
	Contents
	Acronyms
	Tables
	Figures
	1 Introduction
	1.1…Optimization Era
	1.2…Key Issues
	1.3…Synopsis of the Book
	References

	2 Optimization Techniques: An Overview
	2.1…History of Optimization
	2.2…Deterministic and Analytic Methods
	2.2.1 Gradient Descent Method
	2.2.2 Newton--Raphson Method
	2.2.3 Nelder--Mead Search Method

	2.3…Stochastic Methods
	2.3.1 Simulated Annealing
	2.3.2 Stochastic Approximation

	2.4…Evolutionary Algorithms
	2.4.1 Genetic Algorithms
	2.4.2 Differential Evolution

	References

	3 Particle Swarm Optimization
	3.1…Introduction
	3.2…Basic PSO Algorithm
	3.3…Some PSO Variants
	3.3.1 Tribes
	3.3.2 Multiswarms

	3.4…Applications
	3.4.1 Nonlinear Function Minimization
	3.4.2 Data Clustering
	3.4.3 Artificial Neural Networks
	3.4.3.1 An Overview
	3.4.3.2 BP versus PSO: Comparative Performance Evaluation Over Medical Datasets

	3.5…Programming Remarks and Software Packages
	References

	4 Multi-dimensional Particle Swarm Optimization
	4.1…The Need for Multi-dimensionality
	4.2…The Basic Idea
	4.3…The MD PSO Algorithm
	4.4…Programming Remarks and Software Packages
	4.4.1 MD PSO Operation in PSO_MDlib Application
	4.4.2 MD PSO Operation in PSOTestApp Application

	References

	5 Improving Global Convergence
	5.1…Fractional Global Best Formation
	5.1.1 The Motivation
	5.1.2 PSO with FGBF
	5.1.3 MD PSO with FGBF
	5.1.4 Nonlinear Function Minimization

	5.2…Optimization in Dynamic Environments
	5.2.1 Dynamic Environments: The Test Bed
	5.2.2 Multiswarm PSO
	5.2.3 FGBF for the Moving Peak Benchmark for MPB
	5.2.4 Optimization over Multidimensional MPB
	5.2.5 Performance Evaluation on Conventional MPB
	5.2.6 Performance Evaluation on Multidimensional MPB

	5.3…Who Will Guide the Guide?
	5.3.1 SPSA Overview
	5.3.2 SA-Driven PSO and MD PSO Applications
	5.3.2.1 First SA-Driven PSO Approach: gbest Update by SPSA
	5.3.2.2 Second SA-driven PSO Approach: aGB Formation by SPSA

	5.3.3 Applications to Non-linear Function Minimization

	5.4…Summary and Conclusions
	5.5…Programming Remarks and Software Packages
	5.5.1 FGBF Operation in PSO_MDlib Application
	5.5.2 MD PSO with FGBF Application Over MPB

	References

	6 Dynamic Data Clustering
	6.1…Dynamic Data Clustering via MD PSO with FGBF
	6.1.1 The Theory
	6.1.2 Results on 2D Synthetic Datasets
	6.1.3 Summary and Conclusions

	6.2…Dominant Color Extraction
	6.2.1 Motivation
	6.2.2 Fuzzy Model over HSV-HSL Color Domains
	6.2.3 DC Extraction Results
	6.2.3.1 Comparative Evaluations Against MPEG-7 DCD
	6.2.3.2 Robustness and Parameter Insensitivity
	6.2.3.3 Computational Complexity Analysis

	6.2.4 Summary and Conclusions

	6.3…Dynamic Data Clustering via SA-Driven MD PSO
	6.3.1 SA-Driven MD PSO-Based Dynamic Clustering in 2D Datasets
	6.3.2 Summary and Conclusions

	6.4…Programming Remarks and Software Packages
	6.4.1 FGBF Operation in 2D Clustering
	6.4.2 DC Extraction in PSOTestApp Application
	6.4.3 SA-DRIVEN Operation in PSOTestApp Application

	References

	7 Evolutionary Artificial Neural Networks
	7.1…Search for the Optimal Artificial Neural Networks: An Overview
	7.2…Evolutionary Neural Networks by MD PSO
	7.2.1 PSO for Artificial Neural Networks: The Early Attempts
	7.2.2 MD PSO-Based Evolutionary Neural Networks
	7.2.3 Classification Results on Synthetic Problems
	7.2.4 Classification Results on Medical Diagnosis Problems
	7.2.5 Parameter Sensitivity and Computational Complexity Analysis

	7.3…Evolutionary RBF Classifiers for Polarimetric SAR Images
	7.3.1 Polarimetric SAR Data Processing
	7.3.2 SAR Classification Framework
	7.3.3 Polarimetric SAR Classification Results

	7.4…Summary and Conclusions
	7.5…Programming Remarks and Software Packages
	References

	8 Personalized ECG Classification
	8.1…ECG Classification by Evolutionary Artificial Neural Networks
	8.1.1 Introduction and Motivation
	8.1.2 ECG Data Processing
	8.1.2.1 ECG Data
	8.1.2.2 Feature Extraction Methodology
	8.1.2.3 Preprocessing by Principal Component Analysis

	8.1.3 Experimental Results
	8.1.3.1 MD PSO Optimality Evaluation
	8.1.3.2 Classification Performance
	8.1.3.3 Robustness

	8.2…Classification of Holter Registers
	8.2.1 The Related Work
	8.2.2 Personalized Long-Term ECG Classification: A Systematic Approach
	8.2.3 Experimental Results

	8.3…Summary and Conclusions
	8.4…Programming Remarks and Software Packages
	References

	9 Image Classification and Retrieval by Collective Network of Binary Classifiers
	9.1…The Era of CBIR
	9.2…Content-Based Image Classification and Retrieval Framework
	9.2.1 Overview of the Framework
	9.2.2 Evolutionary Update in the Architecture Space
	9.2.3 The Classifier Framework: Collective Network of Binary Classifiers
	9.2.3.1 The Topology
	9.2.3.2 Evolution of the CNBC
	9.2.3.3 Incremental Evolution of the CNBC

	9.3…Results and Discussions
	9.3.1 Database Creation and Feature Extraction
	9.3.2 Classification Results
	9.3.2.1 Feature Scalability and Comparative Evaluations
	9.3.2.2 Incremental CNBC Evolutions
	9.3.2.3 CNBC Class Scalability

	9.3.3 CBIR Results

	9.4…Summary and Conclusions
	9.5…Programming Remarks and Software Packages
	References

	10 Evolutionary Feature Synthesis
	10.1…Introduction
	10.2…Feature Synthesis and Selection: An Overview
	10.3…The Evolutionary Feature Synthesis Framework
	10.3.1 Motivation
	10.3.2 Evolutionary Feature Synthesis Framework
	10.3.2.1 Overview
	10.3.2.2 Encoding of the MD PSO Particles
	10.3.2.3 The Fitness Function

	10.4…Simulation Results and Discussions
	10.4.1 Performance Evaluations with Respect to Discrimination and Classification
	10.4.2 Comparative Performance Evaluations on Content-Based Image Retrieval

	10.5…Programming Remarks and Software Packages
	References

