Véra Kurkova - Yannis Manolopoulos
Barbara Hammer - Lazaros Iliadis
Ilias Maglogiannis (Eds.)

Artificial Neural Networks
and Machine Learning -
ICANN 2018

27th International Conference on Artificial Neural Networks
Rhodes, Greece, October 4-7, 2018
Proceedings, Part |

LNCS 11139

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

11139

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Véra Kuarkova - Yannis Manolopoulos
Barbara Hammer - Lazaros Iliadis
Ilias Maglogiannis (Eds.)

Artificial Neural Networks
and Machine Learning —

ICANN 2018

27th International Conference on Artificial Neural Networks
Rhodes, Greece, October 47, 2018
Proceedings, Part 1

@ Springer

Editors

Véra Kirkova Lazaros Iliadis

Czech Academy of Sciences Democritus University of Thrace
Prague 8 Xanthi

Czech Republic Greece

Yannis Manolopoulos Ilias Maglogiannis

Open University of Cyprus University of Piraeus

Latsia Piraeus

Cyprus Greece

Barbara Hammer
CITEC Bielefeld University

Bielefeld

Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-01417-9 ISBN 978-3-030-01418-6 (eBook)

https://doi.org/10.1007/978-3-030-01418-6
Library of Congress Control Number: 2018955577
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Technological advances in artificial intelligence (Al) are leading the rapidly changing
world of the twenty-first century. We have already passed from machine learning to
deep learning with numerous applications. The contribution of Al so far to the
improvement of our quality of life is profound. Major challenges but also risks and
threats are here. Brain-inspired computing explores, simulates, and imitates the struc-
ture and the function of the human brain, achieving high-performance modeling plus
visualization capabilities.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). It features the
main tracks “Brain-Inspired Computing” and “Machine Learning Research,” with
strong cross-disciplinary interactions and applications. All research fields dealing with
neural networks are present.

The 27th ICANN was held during October 4-7, 2018, at the Aldemar Amilia Mare
five-star resort and conference center in Rhodes, Greece. The previous ICANN events
were held in Helsinki, Finland (1991), Brighton, UK (1992), Amsterdam, The
Netherlands (1993), Sorrento, Italy (1994), Paris, France (1995), Bochum, Germany
(1996), Lausanne, Switzerland (1997), Skovde, Sweden (1998), Edinburgh, UK
(1999), Como, Italy (2000), Vienna, Austria (2001), Madrid, Spain (2002), Istanbul,
Turkey (2003), Budapest, Hungary (2004), Warsaw, Poland (2005), Athens, Greece
(2006), Porto, Portugal (2007), Prague, Czech Republic (2008), Limassol, Cyprus
(2009), Thessaloniki, Greece (2010), Espoo-Helsinki, Finland (2011), Lausanne,
Switzerland (2012), Sofia, Bulgaria (2013), Hamburg, Germany (2014), Barcelona,
Spain (2016), and Alghero, Italy (2017).

Following a long-standing tradition, these Springer volumes belong to the Lecture
Notes in Computer Science Springer series. They contain the papers that were accepted
to be presented orally or as posters during the 27th ICANN conference. The 27th
ICANN Program Committee was delighted by the overwhelming response to the call
for papers. All papers went through a peer-review process by at least two and many
times by three or four independent academic referees to resolve any conflicts. In total,
360 papers were submitted to the 27th ICANN. Of these, 139 (38.3%) were accepted as
full papers for oral presentation of 20 minutes with a maximum length of 10 pages,
whereas 28 of them were accepted as short contributions to be presented orally in 15
minutes and for inclusion in the proceedings with 8 pages. Also, 41 papers (11.4%)
were accepted as full papers for poster presentation (up to 10 pages long), whereas 11
were accepted as short papers for poster presentation (maximum length of 8 pages).

The accepted papers of the 27th ICANN conference are related to the following
thematic topics:

AI and Bioinformatics
Bayesian and Echo State Networks
Brain-Inspired Computing

VI Preface

Chaotic Complex Models

Clustering, Mining, Exploratory Analysis
Coding Architectures

Complex Firing Patterns

Convolutional Neural Networks

Deep Learning (DL)

— DL in Real Time Systems
— DL and Big Data Analytics
— DL and Big Data

— DL and Forensics

— DL and Cybersecurity

— DL and Social Networks

Evolving Systems — Optimization
Extreme Learning Machines
From Neurons to Neuromorphism
From Sensation to Perception
From Single Neurons to Networks
Fuzzy Modeling

Hierarchical ANN

Inference and Recognition
Information and Optimization
Interacting with the Brain
Machine Learning (ML)

— ML for Bio-Medical Systems

— ML and Video-Image Processing
— ML and Forensics

— ML and Cybersecurity

— ML and Social Media

— ML in Engineering

Movement and Motion Detection

Multilayer Perceptrons and Kernel Networks
Natural Language

Object and Face Recognition

Recurrent Neural Networks and Reservoir Computing
Reinforcement Learning

Reservoir Computing

Self-Organizing Maps

Spiking Dynamics/Spiking ANN

Support Vector Machines

Swarm Intelligence and Decision-Making
Text Mining

Theoretical Neural Computation

Time Series and Forecasting

Training and Learning

Preface VII

The authors of submitted papers came from 34 different countries from all over the
globe, namely: Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Cyprus,
Egypt, Finland, France, Germany, Greece, India, Iran, Ireland, Israel, Italy, Japan,
Luxembourg, The Netherlands, Norway, Oman, Pakistan, Poland, Portugal, Romania,
Russia, Slovakia, Spain, Switzerland, Tunisia, Turkey, UK, USA.

Four keynote speakers were invited, and they gave lectures on timely aspects of Al

We hope that these proceedings will help researchers worldwide to understand and
to be aware of timely evolutions in Al and more specifically in artificial neural net-
works. We believe that they will be of major interest for scientists over the globe and
that they will stimulate further research.

October 2018 Véra Kurkova
Yannis Manolopoulos

Barbara Hammer

Lazaros Iliadis

Ilias Maglogiannis

General Chairs

Véra Karkova
Yannis Manolopoulos

Program Co-chairs

Barbara Hammer
Lazaros Iliadis
Ilias Maglogiannis

Steering Committee

Vera Kurkova
(President of ENNS)

Cesare Alippi

Guillem Ant6 i Coma

Jeremie Cabessa

Wlodzislaw Duch

Petia Koprinkova-Hristova

Jaakko Peltonen

Yifat Prut

Bernardete Ribeiro

Stefano Rovetta

Igor Tetko

Alessandro Villa
Paco Zamora-Martinez

Publication Chair

Antonis Papaleonidas

Communication Chair

Paolo Masulli

Program Committee

Najem Abdennour

Organization

Czech Academy of Sciences, Czech Republic
Open University of Cyprus, Cyprus

Bielefeld University, Germany
Democritus University of Thrace, Greece
University of Piracus, Greece

Czech Academy of Sciences, Czech Republic

Universita della Svizzera Italiana, Switzerland

Pompeu Fabra University, Barcelona, Spain

Université Paris 2 Panthéon-Assas, France

Nicolaus Copernicus University, Poland

Bulgarian Academy of Sciences, Bulgaria

University of Tampere, Finland

The Hebrew University, Israel

University of Coimbra, Portugal

University of Genoa, Italy

German Research Center for Environmental Health,
Munich, Germany

University of Lausanne, Switzerland

das-Nano, Spain

Democritus University of Thrace, Greece

Technical University of Denmark, Denmark

Higher Institute of Computer Science and Multimedia
(ISIMG), Gabes, Tunisia

X Organization

Tetiana Aksenova
Zakhriya Alhassan
Tayfun Alpay

Ioannis Anagnostopoulos
Cesar Analide
Annushree Bablani
Costin Badica

Pablo Barros

Adam Barton

Lluis Belanche
Bartlomiej Beliczynski
Kostas Berberidis

Ege Beyazit

Francisco Elanio Bezerra
Varun Bhatt

Marcin Blachnik

Sander Bohte

Simone Bonechi

Farah Bouakrif

Meftah Boudjelal

Andreas Bougiouklis
Martin Butz

Jeremie Cabessa

Paulo Vitor Campos Souza

Angelo Cangelosi
Yanan Cao

Francisco Carvalho
Giovanna Castellano
Jheymesson Cavalcanti
Amit Chaulwar

Sylvain Chevallier
Stephane Cholet

Mark Collier

Jorg Conradt

Adriana Mihaela Coroiu
Paulo Cortez

David Coufal

Juarez Da Silva

Vilson Luiz Dalle Mole
Debasmit Das
Bodhisattva Dash

Eli David
Konstantinos Demertzis

Atomic Energy Commission (CEA), Grenoble, France

Durham University, UK

University of Hamburg, Germany

University of Thessaly, Greece

University of Minho, Portugal

National Institute of Technology Goa, India

University of Craiova, Romania

University of Hamburg, Germany

University of Ostrava, Czech Republic

Polytechnic University of Catalonia, Spain

Warsaw University of Technology, Poland

University of Patras, Greece

University of Louisiana at Lafayette, USA

University Ninth of July, Sao Paolo, Brazil

Indian Institute of Technology, Bombay, India

Silesian University of Technology, Poland

National Research Institute for Mathematics
and Computer Science (CWI), The Netherlands

University of Siena, Italy

University of Jijel, Algeria

Mascara University, Algeria

National Technical University of Athens, Greece

University of Tiibingen, Germany

Université Paris 2, France

Federal Center for Technological Education of Minas

Gerais, Brazil
Plymouth University, UK
Chinese Academy of Sciences, China
Federal University of Pernambuco, Brazil
University of Bari, Italy
University of Pernambuco, Brazil
Technical University Ingolstadt, Germany
University of Versailles St. Quentin, France
University of Antilles, Guadeloupe
Trinity College, Ireland
Technical University of Munich, Germany
Babes-Bolyai University, Romania
University of Minho, Portugal
Czech Academy of Sciences, Czech Republic
University of Vale do Rio dos Sinos, Brazil
Federal University of Technology Parana, Brazil
Purdue University, USA
International Institute of Information Technology,
Bhubaneswar, India
Bar-Ilan University, Israel
Democritus University of Thrace, Greece

Antreas Dionysiou
Sergey Dolenko
Xiao Dong
Shirin Dora
Jose Dorronsoro
Ziad Doughan
Wilodzislaw Duch
Gerrit Ecke
Alexander Efitorov
Manfred Eppe
Deniz Erdogmus
Rodrigo Exterkoetter
Yingruo Fan
Maurizio Fiasché
Lydia Fischer
Andreas Fischer
Qinbing Fu
Ninnart Fuengfusin
Madhukar Rao G.
Mauro Gaggero
Claudio Gallicchio
Shuai Gao
Artur Garcez
Michael Garcia Ortiz
Angelo Genovese
Christos Georgiadis
Alexander Gepperth
Peter Gergel
Daniel Gibert
Eleonora Giunchiglia
Jan Philip Goepfert
George Gravanis
Ingrid Grenet
Jiri Grim
Xiaodong Gu
Alberto Guillén
Tatiana Valentine Guy
Myrianthi
Hadjicharalambous
Petr Hajek
Xue Han
Liping Han

Wang Haotian
Kazuyuki Hara
Ioannis Hatzilygeroudis

Organization XI

University of Cyprus, Cyprus
Lomonosov Moscow State University, Russia
Chinese Academy of Sciences, China
University of Amsterdam, The Netherlands
Autonomous University of Madrid, Spain
Beirut Arab University, Lebanon
Nicolaus Copernicus University, Poland
University of Tiibingen, Germany
Lomonosov Moscow State University, Russia
University of Hamburg, Germany
Northeastern University, USA
LTrace Geophysical Solutions, Florianopolis, Brazil
The University of Hong Kong, SAR China
Polytechnic University of Milan, Italy
Honda Research Institute Europe, Germany
University of Fribourg, Germany
University of Lincoln, UK
Kyushu Institute of Technology, Japan
Indian Institute of Technology, Dhanbad, India
National Research Council, Genoa, Italy
University of Pisa, Italy
University of Science and Technology of China, China
City University of London, UK
Aldebaran Robotics, France
University of Milan, Italy
University of Macedonia, Thessaloniki, Greece
HAW Fulda, Germany
Comenius University in Bratislava, Slovakia
University of Lleida, Spain
University of Genoa, Italy
Bielefeld University, Germany
Democritus University of Thrace, Greece
University of Cote d’Azur, France
Czech Academy of Sciences, Czech Republic
Fudan University, China
University of Granada, Spain
Czech Academy of Sciences, Czech Republic
KIOS Research and Innovation Centre of Excellence,

Cyprus
University of Pardubice, Czech Republic
China University of Geosciences, China
Nanjing University of Information Science

and Technology, China
National University of Defense Technology, China
Nihon University, Japan
University of Patras, Greece

XII Organization

Stefan Heinrich

Tim Heinz

Catalina Hernandez
Alex Hernandez Garcia
Adrian Horzyk

Wenjun Hou
Jian Hou

Haigen Hu

Amir Hussain
Nantia Iakovidou
Yahaya Isah Shehu
Sylvain Jaume
Noman Javed
Maciej Jedynak
Qinglin Jia

Na Jiang
Wenbin Jiang

Zongze Jin

Jacek Kabzinski
Antonios Kalampakas
Jan Kalina

Ryotaro Kamimura
Andreas Kanavos
Savvas Karatsiolis
Kostas Karatzas
Toannis Karydis
Petros Kefalas

Nadia Masood Khan
Gul Muhammad Khan

Sophie Klecker

Taisuke Kobayashi

Mario Koeppen

Mikko Kolehmainen
Stefanos Kollias

Ekaterina Komendantskaya
Petia Koprinkova-Hristova
Irena Koprinska

Dimitrios Kosmopoulos
Costas Kotropoulos
Athanasios Koutras
Konstantinos Koutroumbas

University of Hamburg, Germany

University of Siegen, Germany

District University of Bogota, Colombia

University of Osnabriick, Germany

AGH University of Science and Technology
in Krakow, Poland

China Agricultural University, China

Bohai University, China

Zhejiang University of Technology, China

University of Stirling, UK

King’s College London, UK

Coventry University, UK

Saint Peter’s University, Jersey City, USA

Namal College Mianwali, Pakistan

University of Grenoble Alpes, France

Peking University, China

Beihang University, China

Huazhong University of Science and Technology,
China

Chinese Academy of Sciences, China

Lodz University of Technology, Poland

American University of the Middle East, Kuwait

Czech Academy of Sciences, Czech Republic

Tokai University, Japan

University of Patras, Greece

University of Cyprus, Cyprus

Aristotle University of Thessaloniki, Greece

Ionian University, Greece

University of Sheffield, International Faculty City
College, Thessaloniki, Greece

University of Engineering and Technology Peshawar,
Pakistan

University of Engineering and Technology, Peshawar,
Pakistan

University of Luxembourg, Luxembourg

Nara Institute of Science and Technology, Japan

Kyushu Institute of Technology, Japan

University of Eastern Finland, Finland

University of Lincoln, UK

Heriot-Watt University, UK

Bulgarian Academy of Sciences, Bulgaria

University of Sydney, Australia

University of Patras, Greece

Aristotle University of Thessaloniki, Greece

TEI of Western Greece, Greece

National Observatory of Athens, Greece

Giancarlo La Camera
Jarkko Lagus

Luis Lamb

Angel Lareo

René Larisch

Nikos Laskaris

Ivano Lauriola
David Lenz

Florin Leon

Guangli Li

Yang Li

Hongyu Li

Diego Ettore Liberati
Aristidis Likas
Annika Lindh

Junyu Liu

Ji Liu

Doina Logofatu
Vilson Luiz Dalle Mole

Sven Magg

Tlias Maglogiannis
George Magoulas
Christos Makris
Kleanthis Malialis
Kristina Malinovska
Konstantinos Margaritis
Thomas Martinetz
Gonzalo Martinez-Muiioz
Boudjelal Meftah

Stefano Melacci

Nikolaos Mitianoudis
Hebatallah Mohamed
Francesco Carlo Morabito
Giorgio Morales

Antonio Moran
Dimitrios Moschou
Cristhian Motoche
Phivos Mylonas
Anton Nemchenko
Roman Neruda

Amy Nesky

Hoang Minh Nguyen

Giannis Nikolentzos

Organization XTI

Stony Brook University, USA

University of Helsinki, Finland

Federal University of Rio Grande, Brazil

Autonomous University of Madrid, Spain

Chemnitz University of Technology, Germany

Aristotle University of Thessaloniki, Greece

University of Padua, Italy

Justus Liebig University, Giessen, Germany

Technical University of Iasi, Romania

Chinese Academy of Sciences, China

Peking University, China

Zhongan Technology, Shanghai, China

National Research Council, Rome, Italy

University of Ioannina, Greece

Dublin Institute of Technology, Ireland

Huiying Medical Technology, China

Beihang University, China

Frankfurt University of Applied Sciences, Germany

Federal University of Technology — Parana (UTFPR),
Campus Toledo, Spain

University of Hamburg, Germany

University of Piraeus, Greece

Birkbeck College, London, UK

University of Patras, Greece

University of Cyprus, Cyprus

Comenius University in Bratislava, Slovakia

University of Macedonia, Thessaloniki, Greece

University of Liibeck, Germany

Autonomous University of Madrid, Spain

University Mustapha Stambouli, Mascara, Algeria

University of Siena, Italy

Democritus University of Thrace, Greece

Roma Tre University, Italy

Mediterranean University of Reggio Calabria, Italy

National Telecommunications Research and Training
Institute (INICTEL), Peru

University of Leon, Spain

Aristotle University of Thessaloniki, Greece

National Polytechnic School, Ecuador

Ionian University, Greece

UCLA, USA

Czech Academy of Sciences, Czech Republic

University of Michigan, USA

Korea Advanced Institute of Science and Technology,
South Korea

Ecole Polytechnique, Palaiseau, France

XIV Organization

Dimitri Nowicki
Stavros Ntalampiras
Luca Oneto
Mihaela Oprea
Sebastian Otte

Jun Ou

Basil Papadopoulos
Harris Papadopoulos
Antonios Papaleonidas
Krzysztof Patan
Jaakko Peltonen
Isidoros Perikos
Alfredo Petrosino
Duc-Hong Pham
Elias Pimenidis
Vincenzo Piuri
Mirko Polato

Yifat Prut

Jielin Qiu

Chhavi Rana
Marina Resta
Bernardete Ribeiro
Riccardo Rizzo
Manuel Roveri
Stefano Rovetta

Araceli Sanchis de Miguel

Marcello Sanguineti
Kyrill Schmid
Thomas Schmid
Friedhelm Schwenker
Neslihan Serap

Will Serrano
Jivitesh Sharma
Rafet Sifa

Sotir Sotirov
Andreas Stafylopatis
Antonino Staiano
Ioannis Stephanakis
Michael Stiber
Catalin Stoean
Rudolf Szadkowski
Mandar Tabib
Kazuhiko Takahashi
Igor Tetko

Yancho Todorov

National Academy of Sciences, Ukraine
University of Milan, Italy

University of Genoa, Italy

University Petroleum-Gas of Ploiesti, Romania
University of Tubingen, Germany

Beijing University of Technology, China
Democritus University of Thrace, Greece
Frederick University, Cyprus

Democritus University of Thrace, Greece
University of Zielona Gora, Poland
University of Tampere, Finland

University of Patras, Greece

University of Naples Parthenope, Italy
Vietnam National University, Vietnam
University of the West of England, UK
University of Milan, Italy

University of Padua, Italy

The Hebrew University, Israel

Shanghai Jiao Tong University, China
Maharshi Dayanand University, India
University of Genoa, Italy

University of Coimbra, Portugal

National Research Council, Rome, Italy
Polytechnic University of Milan, Italy
University of Genoa, Italy

Charles IIT University of Madrid, Spain
University of Genoa, Italy

University of Munich, Germany

University of Leipzig, Germany

Ulm University, Germany

Sengor Istanbul Technical University, Turkey
Imperial College London, UK

University of Agder, Norway

Fraunhofer TAIS, Germany

University Prof. Dr. Asen Zlatarov, Burgas, Bulgaria
National Technical University of Athens, Greece
University of Naples Parthenope, Italy
Hellenic Telecommunications Organisation, Greece
University of Washington Bothell, USA
University of Craiova, Romania

Czech Technical University, Czech Republic
SINTEF, Norway

Doshisha University, Japan

Helmholtz Center Munich, Germany

Aalto University, Espoo, Finland

César Torres-Huitzil

Athanasios Tsadiras
Nicolas Tsapatsoulis
George Tsekouras

Matus Tuna

Theodoros Tzouramanis
Juan Camilo Vasquez Tieck
Nikolaos Vassilas

Petra Vidnerova
Alessandro Villa
Panagiotis Vlamos

Thanos Voulodimos

Roseli Wedemann

Stefan Wermter

Zhihao Ye

Hujun Yin

Francisco Zamora-Martinez
Yongxiang Zhang

Liu Zhongji

Rabiaa Zitouni

Sarah Zouinina

Organization

National Polytechnic Institute, Victoria, Tamaulipas,

Mexico
Aristotle University of Thessaloniki, Greece
Cyprus University of Technology, Cyprus
University of the Aegean, Greece
Comenius University in Bratislava, Slovakia
University of the Aegean, Greece
FZI, Karlsruhe, Germany
ATEI of Athens, Greece
Czech Academy of Sciences, Czech Republic
University of Lausanne, Switzerland
Ionian University, Greece
National Technical University of Athens, Greece
Rio de Janeiro State University, Brazil
University of Hamburg, Germany
Guangdong University of Technology, China
University of Manchester, UK
Veridas Digital Authentication Solutions, Spain
Sun Yat-Sen University, China
Chinese Academy of Sciences, China
Tunis El Manar University, Tunisia
Université Paris 13, France

Keynote Talks

Cognitive Phase Transitions in the Cerebral
Cortex — John Taylor Memorial Lecture

Robert Kozma

University of Massachusetts Amherst

Abstract. Everyday subjective experience of the stream of consciousness sug-
gests continuous cognitive processing in time and smooth underlying brain
dynamics. Brain monitoring techniques with markedly improved spatio-
temporal resolution, however, show that relatively smooth periods in brain
dynamics are frequently interrupted by sudden changes and intermittent dis-
continuities, evidencing singularities. There are frequent transitions between
periods of large-scale synchronization and intermittent desynchronization at
alpha-theta rates. These observations support the hypothesis about the cinematic
model of cognitive processing, according to which higher cognition can be
viewed as multiple movies superimposed in time and space. The metastable
spatial patterns of field potentials manifest the frames, and the rapid transitions
provide the shutter from each pattern to the next. Recent experimental evidence
indicates that the observed discontinuities are not merely important aspects of
cognition; they are key attributes of intelligent behavior representing the cog-
nitive “Aha” moment of sudden insight and deep understanding in humans and
animals. The discontinuities can be characterized as phase transitions in graphs
and networks. We introduce computational models to implement these insights
in a new generation of devices with robust artificial intelligence, including
oscillatory neuromorphic memories, and self-developing autonomous robots.

On the Deep Learning Revolution
in Computer Vision

Nathan Netanyahu

Bar-Ilan University, Israel

Abstract. Computer Vision (CV) is an interdisciplinary field of Artificial
Intelligence (AI), which is concerned with the embedding of human visual
capabilities in a computerized system. The main thrust, essentially, of CV is to
generate an “intelligent” high-level description of the world for a given scene,
such that when interfaced with other thought processes can elicit, ultimately,
appropriate action. In this talk we will review several central CV tasks and
traditional approaches taken for handling these tasks for over 50 years. Noting
the limited performance of standard methods applied, we briefly survey the
evolution of artificial neural networks (ANN) during this extended period, and
focus, specifically, on the ongoing revolutionary performance of deep learning
(DL) techniques for the above CV tasks during the past few years. In particular,
we provide also an overview of our DL activities, in the context of CV, at
Bar-Ilan University. Finally, we discuss future research and development
challenges in CV in light of further employment of prospective DL innovations.

From Machine Learning to Machine
Diagnostics

Marios Polycarpou

University of Cyprus

Abstract. During the last few years, there have has been remarkable progress in
utilizing machine learning methods in several applications that benefit from
deriving useful patterns among large volumes of data. These advances have
attracted significant attention from industry due to the prospective of reducing
the cost of predicting future events and making intelligent decisions based on
data from past experiences. In this context, a key area that can benefit greatly
from the use of machine learning is the task of detecting and diagnosing
abnormal behaviour in dynamical systems, especially in safety-critical,
large-scale applications. The goal of this presentation is to provide insight into
the problem of detecting, isolating and self-correcting abnormal or faulty
behaviour in large-scale dynamical systems, to present some design method-
ologies based on machine learning and to show some illustrative examples. The
ultimate goal is to develop the foundation of the concept of machine diagnostics,
which would empower smart software algorithms to continuously monitor the
health of dynamical systems during the lifetime of their operation.

Multimodal Deep Learning in Biomedical
Image Analysis

Sotirios Tsaftaris

University of Edinburgh, UK

Abstract. Nowadays images are typically accompanied by additional informa-
tion. At the same time, for example, magnetic resonance imaging exams typi-
cally contain more than one image modality: they show the same anatomy under
different acquisition strategies revealing various pathophysiological information.
The detection of disease, segmentation of anatomy and other classical analysis
tasks, can benefit from a multimodal view to analysis that leverages shared
information across the sources yet preserves unique information. It is without
surprise that radiologists analyze data in this fashion, reviewing the exam as a
whole. Yet, when aiming to automate analysis tasks, we still treat different
image modalities in isolation and tend to ignore additional information. In this
talk, I will present recent work in learning with deep neural networks, latent
embeddings suitable for multimodal processing, and highlight opportunities and
challenges in this area.

Contents — Part 1

CNN/Natural Language

Fast CNN Pruning via Redundancy-Aware Training

Xiao Dong, Lei Liu, Guangli Li, Peng Zhao, and Xiaobing Feng

Two-Stream Convolutional Neural Network for Multimodal Matching.

Youcai Zhang, Yiwei Gu, and Xiaodong Gu

Kernel Graph Convolutional Neural Networks

Giannis Nikolentzos, Polykarpos Meladianos,
Antoine Jean-Pierre Tixier, Konstantinos Skianis,
and Michalis Vazirgiannis

A Histogram of Oriented Gradients for Broken Bars Diagnosis

in Squirrel Cage Induction Motors

Luiz C. Silva, Cleber G. Dias, and Wonder A. L. Alves

Learning Game by Profit Sharing Using Convolutional Neural Network

Nobuaki Hasuike and Yuko Osana

Detection of Fingerprint Alterations Using Deep Convolutional

Neural Networks.o e

Yahaya Isah Shehu, Ariel Ruiz-Garcia, Vasile Palade, and Anne James

A Convolutional Neural Network Approach for Modeling Semantic

Trajectories and Predicting Future Locations.

Antonios Karatzoglou, Nikolai Schnell, and Michael Beigl

Neural Networks for Multi-lingual Multi-label Document Classification.

Jirt Martinek, Ladislav Lenc, and Pavel Kral

Multi-region Ensemble Convolutional Neural Network for Facial

Expression Recognition

Yingruo Fan, Jacqueline C. K. Lam, and Victor O. K. Li

Further Advantages of Data Augmentation on Convolutional

Neural Networks.o e

Alex Hernandez-Garcia and Peter Konig

DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict

Drug-Target Interactions

Xiaoping Zheng, Song He, Xinyu Song, Zhongnan Zhang,
and Xiaochen Bo

14

22

33

43

51

61

73

84

95

XXIV Contents — Part 1

Hierarchical Convolution Neural Network for Emotion Cause Detection
on Microblogs 115
Ying Chen, Wenjun Hou, and Xiyao Cheng

Direct Training of Dynamic Observation Noise with UMarineNet. 123
Stefan Oehmcke, Oliver Zielinski, and Oliver Kramer

Convolutional Soft Decision Trees 134
Alper Ahmetoglu, Ozan Irsoy, and Ethem Alpaydin

A Multi-level Attention Model for Text Matching. 142
Qiang Sun and Yue Wu

Attention Enhanced Chinese Word Embeddings 154
Xingzhang Ren, Leilei Zhang, Wei Ye, Hang Hua, and Shikun Zhang

Balancing Convolutional Neural Networks Pipeline in FPGAs 166
Mark Cappello Ferreira de Sousa, Miguel Angelo de Abreu de Sousa,
and Emilio Del-Moral-Hernandez

Generating Diverse and Meaningful Captions: Unsupervised Specificity

Optimization for Image Captioning 176
Annika Lindh, Robert J. Ross, Abhijit Mahalunkar, Giancarlo Salton,
and John D. Kelleher

Assessing Image Analysis Filters as Augmented Input to Convolutional

Neural Networks for Image Classification 188
K. Delibasis, Ilias Maglogiannis, S. Georgakopoulos, K. Kottari,
and V. Plagianakos

Spiking

Balanced Cortical Microcircuitry-Based Network for Working Memory 199
Hui Wei, Zihao Su, and Dawei Dai

Learning Continuous Muscle Control for a Multi-joint Arm by Extending

Proximal Policy Optimization with a Liquid State Machine 211
Juan Camilo Vasquez Tieck, Marin Viastelica Pogancic¢, Jacques Kaiser,
Arne Roennau, Marc-Oliver Gewaltig, and Riidiger Dillmann

A Supervised Multi-spike Learning Algorithm for Recurrent Spiking
Neural Networks. 222
Xianghong Lin and Guoyong Shi

Artwork Retrieval Based on Similarity of Touch Using Convolutional
Neural Network 235
Takayuki Fujita and Yuko Osana

Contents — Part 1 XXV

Microsaccades for Neuromorphic Stereo Vision 244
Jacques Kaiser, Jakob Weinland, Philip Keller, Lea Steffen,
J. Camilo Vasquez Tieck, Daniel Reichard, Arne Roennau,
Jorg Conradt, and Riidiger Dillmann

A Neural Spiking Approach Compared to Deep Feedforward Networks
on Stepwise Pixel Erasement 253
René Larisch, Michael Teichmann, and Fred H. Hamker

Sparsity Enables Data and Energy Efficient Spiking Convolutional
Neural Networks. 263
Varun Bhatt and Udayan Ganguly

Design of Spiking Rate Coded Logic Gates for C. elegans Inspired
Contour Tracking 273
Shashwat Shukla, Sangya Dutta, and Udayan Ganguly

Gating Sensory Noise in a Spiking Subtractive LSTM. 284
Isabella Pozzi, Roeland Nusselder, Davide Zambrano, and Sander Bohté

Spiking Signals in FOC Control Drive. 294
L. M. Grzesiak and V. Meganck

Spiking Neural Network Controllers Evolved for Animat Foraging Based
on Temporal Pattern Recognition in the Presence of Noise on Input 304
Chama Bensmail, Volker Steuber, Neil Davey, and Borys Wrobel

Spiking Neural Networks Evolved to Perform Multiplicative Operations 314
Muhammad Aamir Khan, Volker Steuber, Neil Davey, and Borys Wrobel

Very Small Spiking Neural Networks Evolved for Temporal Pattern
Recognition and Robust to Perturbed Neuronal Parameters. 322
Muhammad Yaqoob and Borys Wrobel

Machine Learning/Autoencoders

Machine Learning to Predict Toxicity of Compounds 335
Ingrid Grenet, Yonghua Yin, Jean-Paul Comet, and Erol Gelenbe

Energy-Based Clustering for Pruning Heterogeneous Ensembles 346
Javier Cela and Alberto Sudrez

Real-Time Hand Gesture Recognition Based on Electromyographic
Signals and Artificial Neural Networks 352
Cristhian Motoche and Marco E. Benalcdzar

XXVI Contents — Part 1

Fast Communication Structure for Asynchronous Distributed ADMM
Under Unbalance Process Arrival Pattern. 362
Shuqging Wang and Yongmei Lei

Improved Personalized Rankings Using Implicit Feedback 372
Josef Feigl and Martin Bogdan

Cosine Normalization: Using Cosine Similarity Instead of Dot Product

in Neural Networks. 382
Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren,
and Qiang Yang

Discovering Thermoelectric Materials Using Machine Learning:

Insights and Challenges 392
Mandar V. Tabib, Ole Martin Lovwvik, Kjetil Johannessen,
Adil Rasheed, Espen Sagvolden, and Anne Marthine Rustad

Auto-tuning Neural Network Quantization Framework for Collaborative

Inference Between the Cloud and Edge 402
Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao,
and Xiaobing Feng

GraphVAE: Towards Generation of Small Graphs
Using Variational Autoencoderst 412
Martin Simonovsky and Nikos Komodakis

Generation of Reference Trajectories for Safe Trajectory Planning. 423
Amit Chaulwar, Michael Botsch, and Wolfgang Utschick

Joint Application of Group Determination of Parameters and of Training

with Noise Addition to Improve the Resilience of the Neural Network

Solution of the Inverse Problem in Spectroscopy to Noise in Data 435
Igor Isaev, Sergey Burikov, Tatiana Dolenko, Kirill Laptinskiy,
Alexey Vervald, and Sergey Dolenko

Learning

Generating Natural Answers on Knowledge Bases and Text
by Sequence-to-Sequence Learning 447
Zhihao Ye, Ruichu Cai, Zhaohui Liao, Zhifeng Hao, and Jinfen Li

Mitigating Concept Drift via Rejection. 456
Jan Philip Gopfert, Barbara Hammer, and Heiko Wersing

Strategies to Enhance Pattern Recognition in Neural Networks Based
on the Insect Olfactory System. 468
Jessica Lopez-Hazas, Aaron Montero, and Francisco B. Rodriguez

Contents — Part 1 XXVII

HyperNets and Their Application to Learning Spatial Transformations. 476
Alexey Potapov, Oleg Shcherbakov, Innokentii Zhdanov,
Sergey Rodionov, and Nikolai Skorobogatko

Catastrophic Forgetting: Still a Problem for DNNs 487
B. Pfiilb, A. Gepperth, S. Abdullah, and A. Kilian

Queue-Based Resampling for Online Class Imbalance Learning 498
Kleanthis Malialis, Christos Panayiotou, and Marios M. Polycarpou

Learning Simplified Decision Boundaries from Trapezoidal Data Streams ... 508
Ege Beyazit, Matin Hosseini, Anthony Maida, and Xindong Wu

Improving Active Learning by Avoiding Ambiguous Samples 518
Christian Limberg, Heiko Wersing, and Helge Ritter

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble
of Neural Networks. 528
Zheng Wang and Irena Koprinska

Using Bag-of-Little Bootstraps for Efficient Ensemble Learning 538
Pablo de Viiia and Gonzalo Martinez-Murioz

Learning Preferences for Large Scale Multi-label Problems 546
Ivano Lauriola, Mirko Polato, Alberto Lavelli, Fabio Rinaldi,
and Fabio Aiolli

Affinity Propagation Based Closed-Form Semi-supervised Metric
Learning Framework 556
Ujjal Kr Dutta and C. Chandra Sekhar

Online Approximation of Prediction Intervals Using Artificial

Neural Networks. 566
Myrianthi Hadjicharalambous, Marios M. Polycarpou,
and Christos G. Panayiotou

Classification

Estimation of Microphysical Parameters of Atmospheric Pollution
Using Machine Learning 579
C. Llerena, D. Miiller, R. Adams, N. Davey, and Y. Sun

Communication Style - An Analysis from the Perspective
of Automated Learning 589
Adriana Mihaela Coroiu, Alina Delia Calin, and Maria Nufu

Directional Data Analysis for Shape Classification 598
Adrian Murioz and Alberto Sudrez

XXVIII Contents — Part 1

Semantic Space Transformations for Cross-Lingual
Document Classification. i 608
Jiri Martinek, Ladislav Lenc, and Pavel Kral

Automatic Treatment of Bird Audios by Means of String Compression
Applied to Sound Clustering in Xeno-Canto Database 617
Guillermo Sarasa, Ana Granados, and Francisco B. Rodriguez

FROD: Fast and Robust Distance-Based Outlier Detection
with Active-Inliers-Patterns in Data Streams. 626
Zongren Li, Yijie Wang, Guohong Zhao, Li Cheng, and Xingkong Ma

Unified Framework for Joint Attribute Classification

and Person Re-identification. 637
Chenxin Sun, Na Jiang, Lei Zhang, Yuehua Wang, Wei Wu,
and Zhong Zhou

Associative Graph Data Structures Used for Acceleration
of K Nearest Neighbor Classifiers. 648
Adrian Horzyk and Krzysztof Gotdon

A Game-Theoretic Framework for Interpretable Preference
and Feature Learning. 659
Mirko Polato and Fabio Aiolli

A Dynamic Ensemble Learning Framework for Data Stream Analysis
and Real-Time Threat Detection, 669
Konstantinos Demertzis, Lazaros Iliadis, and Vardis-Dimitris Anezakis

Fuzzy/Feature Selection

Gaussian Kernel-Based Fuzzy Clustering with Automatic

Bandwidth Computation. 685
Francisco de A. T. de Carvalho, Lucas V. C. Santana,
and Marcelo R. P. Ferreira

Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance
and Entropy Regularization for Interval-Valued Data. 695
Sara Inés Rizo Rodriguez and Francisco de Assis Tenorio de Carvalho

Input-Dependably Feature-Map Pruning. 706
Atalya Waissman and Aharon Bar-Hillel

Thermal Comfort Index Estimation and Parameter Selection
Using Fuzzy Convolutional Neural Network. 714
Anirban Mitra, Arjun Sharma, Sumit Sharma, and Sudip Roy

Contents — Part 1 XXIX

Soft Computing Modeling of the Illegal Immigration Density
in the Borders of Greece i 725
Serafeim Koutsomplias and Lazaros Iliadis

Fuzzy Implications Generating from Fuzzy Negations 736
Georgios Souliotis and Basil Papadopoulos

Facial/Emotion Recognition

Improving Ensemble Learning Performance with Complementary
Neural Networks for Facial Expression Recognition 747
Xinmin Zhang and Yingdong Ma

Automatic Beautification for Group-Photo Facial Expressions
Using Novel Bayesian GANS 760
Ji Liu, Shuai Li, Wenfeng Song, Liang Liu, Hong Qin, and Aimin Hao

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests. . .. 771
Maxime Sazadaly, Pierre Pinchon, Arthur Fagot, Lionel Prevost,
and Myriam Maumy Bertrand

Gender-Aware CNN-BLSTM for Speech Emotion Recognition. 782
Linjuan Zhang, Longbiao Wang, Jianwu Dang, Lili Guo, and Qiang Yu

Semi-supervised Model for Emotion Recognition in Speech. 791
Ingryd Pereira, Diego Santos, Alexandre Maciel, and Pablo Barros

Real-Time Embedded Intelligence System: Emotion Recognition
on Raspberry Pi with Intel NCS 801
Y. Xing, P. Kirkland, G. Di Caterina, J. Soraghan, and G. Matich

Short Papers

Improving Neural Network Interpretability via Rule Extraction. 811
Stéphane Gomez Schnyder, Jérémie Despraz,
and Carlos Andrés Pefia-Reyes

Online Multi-object Tracking Exploiting Pose Estimation and Global-Local
Appearance Features 814
Na Jiang, Sichen Bai, Yue Xu, Zhong Zhou, and Wei Wu

Author Index e 817

Contents — Part 11

ELM/Echo State ANN

Rank-Revealing Orthogonal Decomposition in Extreme Learning
Machine Design
Jacek Kabzinski

An Improved CAD Framework for Digital Mammogram Classification

Using Compound Local Binary Pattern and Chaotic Whale

Optimization-Based Kernel Extreme Learning Machine
Figlu Mohanty, Suvendu Rup, and Bodhisattva Dash

A Novel Echo State Network Model Using Bayesian Ridge Regression
and Independent Component Analysis
Hoang Minh Nguyen, Gaurav Kalra, Tae Joon Jun, and Daeyoung Kim

Image Processing

A Model for Detection of Angular Velocity of Image Motion Based

on the Temporal Tuning of the Drosophila.
Huatian Wang, Jigen Peng, Paul Baxter, Chun Zhang, Zhihua Wang,
and Shigang Yue

Local Decimal Pattern for Pollen Image Recognition.
Liping Han and Yonghua Xie

New Architecture of Correlated Weights Neural Network for Global
Image Transformations,
Stawomir Golak, Anna Jama, Marcin Blachnik, and Tadeusz Wieczorek

Compression-Based Clustering of Video Human Activity Using

an ASCII Encoding. oo
Guillermo Sarasa, Aaron Montero, Ana Granados,
and Francisco B. Rodriguez

Medical/Bioinformatics

Deep Autoencoders for Additional Insight into Protein Dynamics
Mihai Teletin, Gabriela Czibula, Maria-Iuliana Bocicor, Silvana Albert,
and Alessandro Pandini

XXXII Contents — Part 11

Pilot Design of a Rule-Based System and an Artificial Neural

Network to Risk Evaluation of Atherosclerotic Plaques

in Long-Range Clinical Research 90
Jiri Blahuta, Tomas Soukup, and Jakub Skacel

A Multi-channel Multi-classifier Method for Classifying Pancreatic

Cystic Neoplasms Based on ResNet 101
Haigen Hu, Kangjie Li, Qiu Guan, Feng Chen, Shengyong Chen,
and Yicheng Ni

Breast Cancer Histopathological Image Classification via Deep Active
Learning and Confidence Boosting 109
Baolin Du, Qi Qi, Han Zheng, Yue Huang, and Xinghao Ding

Epileptic Seizure Prediction from EEG Signals Using Unsupervised

Learning and a Polling-Based Decision Process 117
Lucas Aparecido Silva Kitano, Miguel Angelo Abreu Sousa,
Sara Dereste Santos, Ricardo Pires, Sigride Thome-Souza,
and Alexandre Brincalepe Campo

Classification of Bone Tumor on CT Images Using Deep Convolutional
Neural Network e 127
Yang Li, Wenyu Zhou, Guiwen Lv, Guibo Luo, Yuesheng Zhu, and Ji Liu

DSL: Automatic Liver Segmentation with Faster R-CNN and DeepLab 137
Wei Tang, Dongsheng Zou, Su Yang, and Jing Shi

Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta

Analysis with Ultrasound L 148
Nicolo Savioli, Silvia Visentin, Erich Cosmi, Enrico Grisan,
Pablo Lamata, and Giovanni Montana

An Original Neural Network for Pulmonary Tuberculosis Diagnosis

in Radiographs 158
Junyu Liu, Yang Liu, Cheng Wang, Anwei Li, Bowen Meng,
Xiangfei Chai, and Panli Zuo

Computerized Counting-Based System for Acute Lymphoblastic Leukemia
Detection in Microscopic Blood Images. 167
Karima Ben-Suliman and Adam Krzyzak

Right Ventricle Segmentation in Cardiac MR Images Using U-Net
with Partly Dilated Convolution 179
Gregory Borodin and Olga Senyukova

Contents — Part II XXXIII

Model Based on Support Vector Machine for the Estimation of the Heart

Rate Variability 186
Catalina Maria Hernandez-Ruiz, Sergio Andrés Villagran Martinez,
Johan Enrique Ortiz Guzman, and Paulo Alonso Gaona Garcia

High-Resolution Generative Adversarial Neural Networks Applied
to Histological Images Generation. 195
Antoni Mauricio, Jorge Lopez, Roger Huauya, and Jose Diaz

Kernel

Tensor Learning in Multi-view Kernel PCA 205
Lynn Houthuys and Johan A. K. Suykens

Reinforcement

ACM: Learning Dynamic Multi-agent Cooperation via Attentional
Communication Model. 219
Xue Han, Hongping Yan, Junge Zhang, and Lingfeng Wang

Improving Fuel Economy with LSTM Networks
and Reinforcement Learning. 230
Andreas Bougiouklis, Antonis Korkofigkas, and Giorgos Stamou

Action Markets in Deep Multi-Agent Reinforcement Learning 240
Kyrill Schmid, Lenz Belzner, Thomas Gabor, and Thomy Phan

Continuous-Time Spike-Based Reinforcement Learning for
Working Memory Tasks 250
Marios Karamanis, Davide Zambrano, and Sander Bohté

Reinforcement Learning for Joint Extraction of Entities and Relations 263
Wenpeng Liu, Yanan Cao, Yanbing Liu, Yue Hu, and Jianlong Tan

Pattern Recognition/Text Mining/Clustering

TextNet for Text-Related Image Quality Assessment. 275
Hongyu Li, Junhua Qiu, and Fan Zhu

A Target Dominant Sets Clustering Algorithm 286
Jian Hou, Chengcong Lv, Aihua Zhang, and Xu E.

Input Pattern Complexity Determines Specialist and Generalist Populations
in Drosophila Neural Network 296
Aaron Montero, Jessica Lopez-Hazas, and Francisco B. Rodriguez

XXXIV Contents — Part II

A Hybrid Planning Strategy Through Learning from Vision for

Target-Directed Navigation. 304
Xiaomao Zhou, Cornelius Weber, Chandrakant Bothe,
and Stefan Wermter

Optimization/Recommendation

Check Regularization: Combining Modularity and Elasticity
for Memory Consolidation 315
Taisuke Kobayashi

Con-CNAME: A Contextual Multi-armed Bandit Algorithm for
Personalized Recommendations. 326
Xiaofang Zhang, Qian Zhou, Tieke He, and Bin Liang

Real-Time Session-Based Recommendations Using LSTM
with Neural Embeddings 337
David Lenz, Christian Schulze, and Michael Guckert

Imbalanced Data Classification Based on MBCDK-means Undersampling
and GA-ANN. . . . 349
Anping Song and Quanhua Xu

Evolutionary Tuning of a Pulse Mormyrid Electromotor Model to Generate
Stereotyped Sequences of Electrical Pulse Intervals. 359
Angel Lareo, Pablo Varona, and F. B. Rodriguez

An Overview of Frank-Wolfe Optimization for Stochasticity Constrained
Interpretable Matrix and Tensor Factorization. 369
Rafet Sifa

Computational Neuroscience

A Bio-Feasible Computational Circuit for Neural Activities Persisting
and Decaying 383
Dai Dawei, Weihui, and Su Zihao

Granger Causality to Reveal Functional Connectivity in the Mouse Basal
Ganglia-Thalamocortical Circuit 393
Alessandra Lintas, Takeshi Abe, Alessandro E. P. Villa,
and Yoshiyuki Asai

A Temporal Estimate of Integrated Information for Intracranial

Functional Connectivity 403
Xerxes D. Arsiwalla, Daniel Pacheco, Alessandro Principe,
Rodrigo Rocamora, and Paul Verschure

Contents — Part 11

SOM/SVM

Randomization vs Optimization in SVM Ensembles

Maryam Sabzevari, Gonzalo Martinez-Munioz, and Alberto Sudrez

An Energy-Based Convolutional SOM Model with

Self-adaptation Capabilities

Alexander Gepperth, Ayanava Sarkar, and Thomas Kopinski

A Hierarchy Based Influence Maximization Algorithm in Social Networks. . .

Lingling Li, Kan Li, and Chao Xiang

Convolutional Neural Networks in Combination with Support Vector

Machines for Complex Sequential Data Classification

Antreas Dionysiou, Michalis Agathocleous, Chris Christodoulou,
and Vasilis Promponas

Classification of SIP Attack Variants with a Hybrid

Self-enforcing Network

Waldemar Hartwig, Christina Kliiver, Adnan Aziz,
and Dirk Hoffstadt

Anomaly Detection/Feature Selection/Autonomous Learning

Generalized Multi-view Unsupervised Feature Selection.

Yue Liu, Changqging Zhang, Pengfei Zhu, and Qinghua Hu

Performance Anomaly Detection Models of Virtual Machines for Network

Function Virtualization Infrastructure with Machine Learning

Juan Qiu, Qingfeng Du, Yu He, YiQun Lin, Jiaye Zhu, and Kanglin Yin

Emergence of Sensory Representations Using Prediction

in Partially Observable Environments

Thibaut Kulak and Michael Garcia Ortiz

Signal Detection

Change Detection in Individual Users’ Behavior.

Parisa Rastin, Guénaél Cabanes, Basarab Matei, and Jean-Marc Marty

Extraction and Localization of Non-contaminated Alpha and Gamma
Oscillations from EEG Signal Using Finite Impulse Response, Stationary

Wavelet Transform, and Custom FIR.

Najmeddine Abdennour, Abir Hadriche, Tarek Frikha, and Nawel Jmail

XXXV

XXXVI Contents — Part II

Long-Short Term Memory/Chaotic Complex Models

Chaotic Complex-Valued Associative Memory with Adaptive

Scaling Factor.
Daisuke Karakama, Norihito Katamura, Chigusa Nakano,
and Yuko Osana

Computation of Air Traffic Flow Management Performance with Long
Short-Term Memories Considering Weather Impact.
Stefan Reitmann and Michael Schultz

Wavelet/Reservoir Computing

A Study on the Influence of Wavelet Number Change in the Wavelet

Neural Network Architecture for 3D Mesh Deformation Using Trust

Region Spherical Parameterization.
Naziha Dhibi, Akram Elkefai, and Chokri Ben Amar

Combining Memory and Non-linearity in Echo State Networks.
Eleonora Di Gregorio, Claudio Gallicchio, and Alessio Micheli

A Neural Network of Multiresolution Wavelet Analysis.
Alexander Efitorov, Viadimir Shiroky, and Sergey Dolenko

Similarity Measures/PSO - RBF

Fast Supervised Selection of Prototypes for Metric-Based Learning
Lluis A. Belanche

Modeling Data Center Temperature Profile in Terms of a First Order

Polynomial RBF Network Trained by Particle Swarm Optimization.
loannis A. Troumbis, George E. Tsekouras, Christos Kalloniatis,
Panagiotis Papachiou, and Dias Haralambopoulos

Incorporating Worker Similarity for Label Aggregation in Crowdsourcing . . .
Jiyi Li, Yukino Baba, and Hisashi Kashima

NoSync: Particle Swarm Inspired Distributed DNN Training
Mihailo Isakov and Michel A. Kinsy

Superkernels for RBF Networks Initialization (Short Paper)
David Coufal

Author Index e

Contents — Part II1

Recurrent ANN

Policy Learning Using SPSA 3
R. Ramamurthy, C. Bauckhage, R. Sifa, and S. Wrobel

Simple Recurrent Neural Networks for Support Vector Machine Training . . . 13
Rafet Sifa, Daniel Paurat, Daniel Trabold, and Christian Bauckhage

RNN-SURV: A Deep Recurrent Model for Survival Analysis. 23
Eleonora Giunchiglia, Anton Nemchenko, and Mihaela van der Schaar

Do Capsule Networks Solve the Problem of Rotation Invariance
for Traffic Sign Classification? 33
Jan Kronenberger and Anselm Haselhoff

Balanced and Deterministic Weight-Sharing Helps Network Performance. . . . 41
Oscar Chang and Hod Lipson

Neural Networks with Block Diagonal Inner Product Layers 51
Amy Nesky and Quentin F. Stout

Training Neural Networks Using Predictor-Corrector Gradient Descent 62
Amy Nesky and Quentin F. Stout

Investigating the Role of Astrocyte Units in a Feedforward Neural Network. . . 73
Peter Gergel’ and Igor Farkas

Interactive Area Topics Extraction with Policy Gradient. 84
Jingfei Han, Wenge Rong, Fang Zhang, Yutao Zhang, Jie Tang,
and Zhang Xiong

Implementing Neural Turing Machines 94
Mark Collier and Joeran Beel

A RNN-Based Multi-factors Model for Repeat Consumption Prediction. 105
Zengwei Zheng, Yanzhen Zhou, Lin Sun, and Jianping Cai

Practical Fractional-Order Neuron Dynamics for Reservoir Computing. 116
Taisuke Kobayashi

An Unsupervised Character-Aware Neural Approach to Word

and Context Representation Learning. 126
Giuseppe Marra, Andrea Zugarini, Stefano Melacci,
and Marco Maggini

XXXVIIT Contents — Part III

Towards End-to-End Raw Audio Music Synthesis. 137
Manfred Eppe, Tayfun Alpay, and Stefan Wermter

Real-Time Hand Prosthesis Biomimetic Movement Based on

Electromyography Sensory Signals Treatment and Sensors Fusion. 147
Jodo Olegdario de Oliveira de Souza, José Vicente Canto dos Santos,
Rodrigo Marques de Figueiredo, and Gustavo Pessin

An Exploration of Dropout with RNNs for Natural Language Inference. 157
Amit Gajbhiye, Sardar Jaf, Noura Al Moubayed, A. Stephen McGough,
and Steven Bradley

Neural Model for the Visual Recognition of Animacy

and Social Interaction 168
Mohammad Hovaidi-Ardestani, Nitin Saini, Aleix M. Martinez,
and Martin A. Giese

Attention-Based RNN Model for Joint Extraction of Intent and Word

Slot Based on a Tagging Strategy 178
Dongjie Zhang, Zheng Fang, Yanan Cao, Yanbing Liu, Xiaojun Chen,
and Jianlong Tan

Using Regular Languages to Explore the Representational Capacity
of Recurrent Neural Architectures 189
Abhijit Mahalunkar and John D. Kelleher

Learning Trends on the Fly in Time Series Data Using Plastic CGP
Evolved Recurrent Neural Networks 199
Gul Mummad Khan and Durr-e-Nayab

Noise Masking Recurrent Neural Network for Respiratory

Sound Classificationt 208
Kirill Kochetov, Evgeny Putin, Maksim Balashov, Andrey Filchenkov,
and Anatoly Shalyto

Lightweight Neural Programming: The GRPU 218
Felipe Carregosa, Aline Paes, and Gerson Zaverucha

Towards More Biologically Plausible Error-Driven Learning
for Artificial Neural Networks 228
Kristina Malinovskd, Ludovit Malinovsky, and Igor Farkas

Online Carry Mode Detection for Mobile Devices with Compact RNNs 232
Philipp Kuhlmann, Paul Sanzenbacher, and Sebastian Otte

Contents — Part III XXXIX

Deep Learning

Deep CNN-ELM Hybrid Models for Fire Detection in Images 245
Jivitesh Sharma, Ole-Christopher Granmo, and Morten Goodwin

Siamese Survival Analysis with Competing Risks 260
Anton Nemchenko, Trent Kyono, and Mihaela Van Der Schaar

A Survey on Deep Transfer Learning 270
Chuangi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang,
and Chunfang Liu

Cloud Detection in High-Resolution Multispectral Satellite Imagery
Using Deep Learning. 280
Giorgio Morales, Samuel G. Huamdn, and Joel Telles

Metric Embedding Autoencoders for Unsupervised Cross-Dataset
Transfer Learning 289
Alexey Potapov, Sergey Rodionov, Hugo Latapie, and Enzo Fenoglio

Classification of MRI Migraine Medical Data Using 3D Convolutional

Neural Network 300
Hwei Geok Ng, Matthias Kerzel, Jan Mehnert, Arne May,
and Stefan Wermter

Deep 3D Pose Dictionary: 3D Human Pose Estimation from Single
RGB Image Using Deep Convolutional Neural Network 310
Reda Elbasiony, Walid Gomaa, and Tetsuya Ogata

FiLayer: A Novel Fine-Grained Layer-Wise Parallelism Strategy
for Deep Neural Networks 321
Wenbin Jiang, Yangsong Zhang, Pai Liu, Geyan Ye, and Hai Jin

DeepVol: Deep Fruit Volume Estimation. 331
Hongyu Li and Tiangi Han

Graph Matching and Pseudo-Label Guided Deep Unsupervised
Domain Adaptation. 342
Debasmit Das and C. S. George Lee

fNIRS-Based Brain—Computer Interface Using Deep Neural Networks
for Classifying the Mental State of Drivers. 353
Gauvain Huve, Kazuhiko Takahashi, and Masafumi Hashimoto

Research on Fight the Landlords’ Single Card Guessing Based
on Deep Learning 363
Saisai Li, Shuqin Li, Meng Ding, and Kun Meng

XL Contents — Part III

Short-Term Precipitation Prediction with Skip-Connected PredNet. 373
Ryoma Sato, Hisashi Kashima, and Takehiro Yamamoto

An End-to-End Deep Learning Architecture for Classification of Malware’s
Binary Content.ttt e 383
Daniel Gibert, Carles Mateu, and Jordi Planes

Width of Minima Reached by Stochastic Gradient Descent is Influenced

by Learning Rate to Batch Size Ratio 392
Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas,
Asja Fischer, Yoshua Bengio, and Amos Storkey

Data Correction by a Generative Model with an Encoder and its
Application to Structure Design 403
Takaya Ueda, Masataka Seo, and Ikuko Nishikawa

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks
with Balance Control. e 414
Xia Xiao and Sanguthevar Rajasekaran

Modular Domain-to-Domain Translation Network 425
Savvas Karatsiolis, Christos N. Schizas, and Nicolai Petkov

OrieNet: A Regression System for Latent Fingerprint Orientation

Field Extraction 436
Zhenshen Qu, Junyu Liu, Yang Liu, Qiuyu Guan, Chunyu Yang,
and Yuxin Zhang

Avoiding Degradation in Deep Feed-Forward Networks by Phasing
Out SKip-Connectionsu v ittt ettt et et e 447
Ricardo Pio Monti, Sina Tootoonian, and Robin Cao

A Deep Predictive Coding Network for Inferring Hierarchical Causes
Underlying Sensory Inputs. 457
Shirin Dora, Cyriel Pennartz, and Sander Bohte

Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data

Using Deep Learning Models. 468
Zakhriya Alhassan, A. Stephen McGough, Riyad Alshammari,
Tahani Daghstani, David Budgen, and Noura Al Moubayed

A Deep Learning Approach for Sentence Classification
of Scientific Abstracts e 479
Sergio Gongalves, Paulo Cortez, and Sérgio Moro

Weighted Multi-view Deep Neural Networks for Weather Forecasting 489
Zahra Karevan, Lynn Houthuys, and Johan A. K. Suykens

Contents — Part III XLI

Combining Articulatory Features with End-to-End Learning

in Speech Recognition. 500
Leyuan Qu, Cornelius Weber, Egor Lakomkin, Johannes Twiefel,
and Stefan Wermter

Estimation of Air Quality Index from Seasonal Trends Using Deep
Neural Network e 511
Arjun Sharma, Anirban Mitra, Sumit Sharma, and Sudip Roy

A Deep Learning Approach to Bacterial Colony Segmentation 522
Paolo Andreini, Simone Bonechi, Monica Bianchini,
Alessandro Mecocci, and Franco Scarselli

Sparsity and Complexity of Networks Computing
Highly-Varying Functions 534
Vera Kiirkova

Deep Learning Based Vehicle Make-Model Classification 544
Burak Satar and Ahmet Emir Dirik

Detection and Recognition of Badgers Using Deep Learning 554
Emmanuel Okafor, Gerard Berendsen, Lambert Schomaker,
and Marco Wiering

SPSA for Layer-Wise Training of Deep Networks. 564
Benjamin Wulff, Jannis Schuecker, and Christian Bauckhage

Dipolar Data Aggregation in the Context of Deep Learning 574
Leon Bobrowski and Magdalena Topczewska

Video Surveillance of Highway Traffic Events by Deep
Learning Architectures.ttt e 584
Matteo Tiezzi, Stefano Melacci, Marco Maggini, and Angelo Frosini

Augmenting Image Classifiers Using Data Augmentation
Generative Adversarial Networks L ... 594
Antreas Antoniou, Amos Storkey, and Harrison Edwards

DeepEthnic: Multi-label Ethnic Classification from Face Images. 604
Katia Huri, Eli (Omid) David, and Nathan S. Netanyahu

Handwriting-Based Gender Classification Using End-to-End Deep
Neural Networks.o 613
Evyatar Illouz, Eli (Omid) David, and Nathan S. Netanyahu

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 622
Gerson Vizcarra, Antoni Mauricio, and Leonidas Mauricio

XLII Contents — Part III

Location Dependency in Video Prediction
Niloofar Azizi, Hafez Farazi, and Sven Behnke

Brain Neurocomputing Modeling

State-Space Analysis of an Ising Model Reveals Contributions of Pairwise

Interactions to Sparseness, Fluctuation, and Stimulus Coding of Monkey

VINEUIONS . . . o oo e
Jimmy Gaudreault and Hideaki Shimazaki

Sparse Coding Predicts Optic Flow Specifities of Zebrafish

Pretectal Neurons
Gerrit A. Ecke, Fabian A. Mikulasch, Sebastian A. Bruijns,
Thede Witschel, Aristides B. Arrenberg, and Hanspeter A. Mallot

Brain-Machine Interface for Mechanical Ventilation

Using Respiratory-Related Evoked Potential
Sylvain Chevallier, Guillaume Bao, Mayssa Hammami,
Fabienne Marlats, Louis Mayaud, Djillali Annane, Frédéric Lofaso,
and Eric Azabou

Effectively Interpreting Electroencephalogram Classification Using
the Shapley Sampling Value to Prune a Feature Tree.
Kazuki Tachikawa, Yuji Kawai, Jihoon Park, and Minoru Asada

EEG-Based Person Identification Using Rhythmic Brain Activity
During Sleepot
Athanasios Koutras and George K. Kostopoulos

An STDP Rule for the Improvement and Stabilization of the Attractor
Dynamics of the Basal Ganglia-Thalamocortical Network
Jérémie Cabessa and Alessandro E. P. Villa

Neuronal Asymmetries and Fokker-Planck Dynamics
Vitor Tocci F. de Luca, Roseli S. Wedemann, and Angel R. Plastino

Robotics/Motion Detection

Learning-While Controlling RBF-NN for Robot Dynamics Approximation
in Neuro-Inspired Control of Switched Nonlinear Systems
Sophie Klecker, Bassem Hichri, and Peter Plapper

A Feedback Neural Network for Small Target Motion Detection
in Cluttered Backgrounds.
Hongxin Wang, Jigen Peng, and Shigang Yue

Contents — Part III XLIIT

De-noise-GAN: De-noising Images to Improve RoboCup Soccer
Ball Detection. 738
Daniel Speck, Pablo Barros, and Stefan Wermter

Integrative Collision Avoidance Within RNN-Driven Many-Joint
Robot ArmsS 748
Sebastian Otte, Lea Hofmaier, and Martin V. Butz

An Improved Block-Matching Algorithm Based on Chaotic Sine-Cosine
Algorithm for Motion Estimation 759
Bodhisattva Dash and Suvendu Rup

Terrain Classification with Crawling Robot Using Long Short-Term
Memory Network e 771
Rudolf J. Szadkowski, Jan Drchal, and Jan Faigl

Mass-Spring Damper Array as a Mechanical Medium for Computation 781
Yuki Yamanaka, Takaharu Yaguchi, Kohei Nakajima,
and Helmut Hauser

Kinematic Estimation with Neural Networks for Robotic Manipulators 795
Michail Theofanidis, Saif Iftekar Sayed, Joe Cloud, James Brady,
and Fillia Makedon

Social Media

Hierarchical Attention Networks for User Profile Inference in Social

Media SYStemMS . . . o vttt e e 805
Zhezhou Kang, Xiaoxue Li, Yanan Cao, Yanmin Shang,
Yanbing Liu, and Li Guo

A Topological k-Anonymity Model Based on Collaborative

Multi-view CIUSteringt e 817
Sarah Zouinina, Nistor Grozavu, Younés Bennani,
Abdelouahid Lyhyaoui, and Nicoleta Rogovschi

A Credibility-Based Analysis of Information Diffusion in Social Networks. . .. 828
Sabina-Adriana Floria, Florin Leon, and Doina Logofditu

Author Index e 839

CNN/Natural Language

®

Check for
updates

Fast CNN Pruning via
Redundancy-Aware Training

Xiao Dong"?, Lei Liu'®), Guangli Li’»?, Peng Zhao'2, and Xiaobing Feng'

! State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
{dongxiao,liulei,liguangli,zhaopeng,fxb}@ict.ac.cn

Abstract. The heavy storage and computational overheads have
become a hindrance to the deployment of modern Convolutional Neural
Networks (CNNs). To overcome this drawback, many works have been
proposed to exploit redundancy within CNNs. However, most of them
work as post-training processes. They start from pre-trained dense mod-
els and apply compression and extra fine-tuning. The overall process is
time-consuming. In this paper, we introduce redundancy-aware training,
an approach to learn sparse CNNs from scratch with no need for any
post-training compression procedure. In addition to minimizing training
loss, redundancy-aware training prunes unimportant weights for sparse
structures in the training phase. To ensure stability, a stage-wise prun-
ing procedure is adopted, which is based on carefully designed model
partition strategies. Experiment results show redundancy-aware train-
ing can compress LeNet-5, ResNet-56 and AlexNet by a factor of 43.8x,
7.9%x and 6.4x, respectively. Compared to state-of-the-art approaches,
our method achieves similar or higher sparsity while consuming signifi-
cantly less time, e.g., 2.3x—18x more efficient in terms of time.

Keywords: In-training pruning - Model compression
Convolutional neural networks - Deep learning

1 Introduction

In recent years, convolutional neural networks (CNNs) have been playing an
important role in the remarkable improvements achieved in a wide range of
challenging computer vision tasks such as large-scale image classification [11],
object detection [3], and segmentation [6]. Deploying CNN models in real-world
applications has attracted increasing interests.

However, the state-of-the-art accuracy delivered by these CNNs comes at
the cost of significant storage and computational overheads. For instance,
AlexNet [11] has 61 million parameters, takes up more than 243 MB of storage
and requires 1.4 billion floating point operations to classify a 224 x 224 image.
© Springer Nature Switzerland AG 2018

V. Kirkové et al. (Eds.): ICANN 2018, LNCS 11139, pp. 3-13, 2018.
https://doi.org/10.1007/978-3-030-01418-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_1&domain=pdf

4 X. Dong et al.

As a result, deploying CNNs on devices with limited resources, such as mobile
phones and wearable devices, could be infeasible.

Since large CNNs are highly over-parameterized [2], many methods have been
proposed to compress them. Pruning methods have attracted much attention
due to its simplicity and effectiveness. However, most of these methods work as
post-training processes. Based on dense pre-trained models, unimportant con-
nections and neurons are pruned to reduce the model size and the computational
complexity. The following fine-tuning step is responsible for compensating the
accuracy loss. The pruning and fine-tuning steps may be repeated several times
for a good balance between accuracy and sparsity (the ratio of pruned weights).
Some methods introduce sparsity-inducing regularizers to learn sparse structures
from a pre-trained dense model. The overall process consumes significant time
to get sparse models, resulting in poor time efficiency as summarized in Table 1.

In this paper, we propose redundancy-aware training, which can exploit
redundancy efficiently by learning both sparse meural network structures and
weight values from scratch. Besides minimizing training loss, it prunes unimpor-
tant connections for sparse structures. Varying structure may bring difficulty
in achieving good accuracy. Redundancy-aware training solves this problem by
adopting a stage-wise pruning procedure. It leverages novel partition strategies
to divide the network into layer classes. The pruning starts from one class in
the first stage and extends to the left classes in following stages. Our train-
ing method yields sparse and accurate models when it finishes. Evaluations
on several datasets, including MNIST, CIFAR10 and ImageNet, demonstrate
our redundancy-aware training can achieve state-of-the-art compression results.
Meanwhile, our method is much more efficient in terms of time as it requires
neither extending normal training iterations nor any post-training compression
procedure.

Table 1. Time breakdown of some pruning methods. For post-training methods, we
show epochs spent in the training phase (Training) and the post-training phase (Post-
Training). For in-training pruning methods (denoted by *), we report the epochs taken
by the method (7Training) and the normal training epochs (Normal).

Method CNN Dataset | Training | Post-training | Normal
DC [5] AlexNet ImageNet | 90 >960

DNS [4] |LeNet-5 MNIST 11 17

NISP [18] | GoogLeNet | ImageNet | 60 60

LSN* [14] | LeNet-5 MNIST | 200 11
NSN* [10] | ResNet-56 | CIFAR10 | 205 164

Fast CNN Pruning via Redundancy-Aware Training 5

2 Related Work

According to whether pre-trained models are required, we divide existing pruning
methods into two categories: post-training methods and in-training methods.

Post-training Pruning. Deep compression [5] prunes trained CNNs through
a magnitude-based weight pruning method, showing a significant reduction
in model size. DNS [4] improves deep compression [5] by allowing the recov-
ery of pruned weights. NISP [18] prunes unimportant neurons based on its
neuron importance estimation. SSL [17] makes use of group lasso regulariza-
tion to remove groups of weights, e.g., channels, filters, and layers, in CNNs.
Compression-aware training [1] takes post-training compression into account in
the training phase. A regularizer is added to encourage the weights to have lower
rank. These methods often suffer from poor time efficiency. Table 1 lists time
taken by some pruning methods. We can see the post-training compression pro-
cedure takes considerable time. Redundancy-aware training adopts in-training
pruning, thus improving the time efficiency significantly.

In-training Pruning. AL [15] introduces binary parameters to prune neu-
rons and layers. A binarizing regularizer is used to attract them to 0 or 1.
Similar approach as [15] is adopted to prune weights in [16]. The above two
methods only evaluate the in-training compression ability on small datasets.
Method attempting to use Ly regularization to directly learn sparse structures is
proposed in [14]. To enable gradient-based optimizations, approximation of the
non-differentiable Ly norm is added to the loss. But more training iterations are
required (See Table 1). Redundancy-aware training adopts pruning approach to
remove redundant weights. By incorporating stage-wise pruning within training
process, our method outperforms other in-training pruning works in terms of
both compression results and time efficiency.

0.15 | -0.09 | -0.23

0.21 | -0.14 | 0.22

0.02 | 0.17 | 0.07

(b)

Fig. 1. Pruning (b) with v = 0.2 and | = 0.1. Weights marked red are pruned. The
pruning states of the last iteration and this iteration are shown in (a) and (c¢) respec-
tively. (Color figure online)

6 X. Dong et al.

Algorithm 1. Redundancy-Aware Training
Input: CNN to train network
the maximum number of training iterations maz_iterations
the interval of extending pruning to the next class extending_interval
Output: network trained by redundancy-aware training
1: divide network into layer classes based on the partition strategies:
classes — {ci,c2,...,cm}

2: 10

3: pruning_classes — {}

4: initialize network

5: while i < maz_iterations do

6: if mod(i, extending_interval) = 0 then
7 ¢ « classes.pop()

8: append c¢ to pruning_classes

9: end if
10: forward and backward through network
11: update weights in network
12: for each class c in pruning_classes do
13: for each layer [in ¢ do
14: pruning layer [
15: end for
16: end for
17: t—1i+1

18: end while

3 Redundancy-Aware Training

In this section, we introduce our redundancy-aware training method. The
overview of the proposed method is displayed in Algorithm 1. For a given CNN,
redundancy-aware training first divides it into layer classes based on the partition
strategies. In each training iteration, it prunes layers in pruning_classes after
the update of weights. More classes will be appended into the pruning_classes as
training proceeds. We first introduce how to prune unimportant weights during
training. Then, we present the model partition strategies.

3.1 Pruning Weights During Training

As the pruning works on each layer independently, we take pruning one layer as
an example to illustrate the in-training pruning.

Let us denote the parameters of a layer by K. Redundancy-aware training
adopts a magnitude-based pruning approach. Specifically, two thresholds u and [
are introduced. In each iteration, weights with absolute value below [are pruned,
while others with magnitude above u are kept. Weights with absolute value in
the range of [l,u] are skipped in this iteration and their pruning states stay
unchanged. To reduce the risk of pruning important weights wrongly, we use
the update scheme in [4] where pruned weights can also be updated in the

Fast CNN Pruning via Redundancy-Aware Training 7

back-propagation. This scheme enables the recovery of wrongly pruned weights.
Figure 1 shows an example.

To avoid tuning v and [for each layer manually, we choose to compute them
based on K as shown in Eq.1. p and o represent the mean and the standard
variation of K, respectively. Two hype-parameters range and € are introduced to
provide more flexibility. Increasing range will make [larger, resulting in pruning
more weights from network. € is a small positive value and controls the difference
between u and I. We analyze how p and o influence the compression results in

Sect. 4.2.
u = max(p + o(range + €),0)

(1)

I = maz(p + o(range — €), 0).

sensitivity

0 10 2 30 a0 0 0 0 10 20 30 0
layer layer

(a) layer sparsity (b) sensitivity

Fig. 2. Sparsity and sensitivity of layers in ResNet-56. The shapes of sparsity lines of
different training time are quite similar, indicating the difference of sparsity between
layers stays stable during training. Based on the sensitivity, ResNet-56 is divided into
three classes as shown by the black vertical lines in (b).

3.2 Model Partition

In-training pruning allows learning sparse structures during the training phase.
However, pruning all layers in network simultaneously causes instability and
slows down the learning process, resulting in difficulty in reaching as good accu-
racy as the normal training.

Redundancy-aware training adopts a stage-wise pruning procedure. The
pruning scope in each stage is orchestrated by our model partition strategies.
When layers within the pruning scope are being pruned, the left layers can adapt
to it and alleviate the impact through updating their weight values. Formally,
we call the unit of adjusting the pruning scope ‘class’. A class contains several
consecutive layers. Based on our model partition strategies, redundancy-aware
training divides the CNN into classes. Then, the in-training pruning starts from
the first class and extends to one more class at the beginning of each of the
following stages. Both layer by layer pruning and pruning all layers together are
special cases of our approach.

8 X. Dong et al.

Partition Strategy. We propose two heuristic strategies for two different types
of CNN. The first type is called simple CNN, which refers to networks composed
of stacked convolution layers and several fully-connected layers. LeNet-5 [12] and
AlexNet [11] fall into this category. For simple CNN, the partition strategy is:

Strategyl: Layers with the same type are divided into the same class.

Thus, simple CNNs will be divided into two classes. The first class contains
convolution layers and fully-connected layers belong to the second class. Strat-
egyl is not applicable to recently designed CNNs, which tend to avoid using
fully-connected layers. For example, ResNet [7] has only one fully-connected
layer to produce the possibilities over given number of classes. Inspired by [13]
which prunes filters based on the analysis of layer sensitivity to pruning, we
propose the second strategy for these CNNs:

Algorithm 2. Partition Strategy2
Input: sensitivity difference threshold §
layers’ sensitivity to pruning s|...]
layers in given network layers]...]
Output: the partition result of network
1: ¢ — {layers[1]}
2: s_avg «— s[1]
3: for [— 2 to layers.size do
4 dif f — abs(s[l] — s_avg)
5 if dif f > 6 then
6 set ¢ a new partition class
7: end if
8
9
10:

add layers[l] to ¢
update s_avg to the average sensitivity of layers in ¢
end for

Strategy?2: Divide model at layers which are quite sensitive to pruning.

Algorithm 2 illustrates how this strategy works. The sensitivity to pruning is
determined through our proposed ‘probe’ phase which is described in the next
section. We also analyze the impact of § in Sect. 4.2.

Determine Layer’s Sensitivity Efficiently. The in-training pruning zeros
out unimportant weights. Layers with relatively low sparsity should be impor-
tant and sensitive to pruning. Thus, we define layer’s sensitivity as the reciprocal
of its sparsity achieved by the in-training pruning. A naive but inefficient app-
roach to determine the sensitivity works as follows. We train the CNN with all
layers under in-training pruning and use the layer’s sparsity after training to
compute the sensitivity. Based on a key observation, we propose a more efficient
approach. Figure 2a shows the sparsity of ResNet-56 at different time of training.
The relative sparsity between layers is actually quite stable in training. As the
partition result only depends on the difference of sparsity between layers, we can
use the sparsity at early training time to obtain the partition result.

Fast CNN Pruning via Redundancy-Aware Training 9

More precisely, we introduce a probe phase where the CNN is trained with all
layers under the in-training pruning. When the probe phase finishes, we compute
layer’s sensitivity based on its sparsity, which is then used by the strategy2. In our
experiments, we find tenth of the training time is sufficient for the probe phase.
Figure 2b shows the sensitivity of layers in ResNet-56. It’s noticeable that layers
of residual blocks where the number of output channels changes are sensitive to
pruning. This discovery is consistent with the results reported in [13].

Table 2. Comparison to other compression works. Results of our method are denoted
by RA-range-e. The result of DC for ResNet-56 is provided in [10]. The result of PF is
based on our implementation. The scratch-train models show notable accuracy drops,
demonstrating the difficulty of training a sparse network from scratch.

Network |In-training Baseline Accuracy Sparsity|Post-training /Baseline Accuracy Sparsity
methods accuracy |change methods accuracy |change

LeNet-5 |[LNA [15] 99.3% —0.23% 90.5% |SSL [17] 99.1% —0.1% 75.1%
LSN [14] 99.1% 0 90.7% |DC [5] 99.2% +0.03% 92%
TSNN [16] 99.2% —0.01% 95.8% |DNS [4] 99.1% 0 99.91%
RA-2-0.1 99.1% 0 97.7% |Scratch-train|99.1% —1.5% 97.7%

ResNet-56NCP [10] 93.4% —0.5% 50% |CP [8] 92.8% —1.0% 50%
NWP [10] 93.4% —0.6% 66.7% |PF [13] 92.4% —1.04% 62%
RA-1.8-0.1 92.4% —0.1% 87.4% |DC [5] 93.4% —0.8% 66.7%
RA-3.0-0.1 92.4% —1.0% 92.1% |Scratch-train|92.4% —2.8% 87.4%

4 Evaluation

In this section, we evaluate redundancy-aware training on MNIST, CIFARI10,
and ImageNet with LeNet-5, ResNet-56, and AlexNet, respectively. First, we
compare the compression result and the time efficiency with state-of-the-art
compression methods. The compression result includes achieved sparsity and
accuracy loss. Sparsity is defined as the percentage of the zeroed out weights. We
compare the time efficiency based on the number of iterations or epochs required
to obtain sparse models. Then, we analyze the effectiveness of the model partition
and the effect of hyper-parameters in Sect.4.2. We implement our method in

Caffe [9].

4.1 Compression Result and Time Efficiency

The comparison to other methods on LeNet-5 and ResNet-56 is summarized
in Table2. We also train models with the same sparsity as the models trained
through redundancy-aware training from scratch (the scratch-train).

10 X. Dong et al.

LeNet-5. Redundancy-aware training reduces the model size of LeNet-5 by
43.8x without accuracy loss and outperforms all in-training methods by a
notable margin, validating its ability to reduce redundancy in the training phase.
Compared to post-training methods, redundancy-aware training achieves higher
or similar sparsity. Our method prunes more weights in every layer than [14]
and [5]. As for time efficiency, our method only takes 11 epochs which is equal
to the normal training time and is about 18x more efficient than the in-training
method in [14] and 2.5x more efficient than the method in [4].

ResNet-56. Based on the strategy2 in Sect. 3.2, ResNet-56 is divided into
three classes. We extend the in-training pruning at 10k and 20k iterations.
Redundancy-aware training achieves a 7.9x reduction with only 0.1% top-1
accuracy drop. Importantly, our method achieves this without any post-training
procedures. By using a larger range, we can achieve a 12.6x compression at the
cost of 1.13% accuracy loss, which can be reduced to 1% after a fine-tuning of 20k
iterations. As far as we know, our method achieves state-of-the-art compression
result for ResNet-56. In terms of time-efficiency, our method takes 70k iterations
(64k for training and 6k for the probe phase), which is about 2.3x more efficient
than NWP in [10] and PF in [13].

Table 3. Layer-by-layer comparison to deep compression on AlexNet.

Method/layer | convl | conv2 | conv3 | conv4 | conv5 | fcl |fc2 |fc3 | Total
DC 16% |62% |65% |63% |63% |91% |91% |75% |89%
Ours 31% |65% |69% 63% |61% |88% 81% |80% 84%

AlexNet. Finally, we experiment with AlexNet on ImageNet. We train the
bvlc_alexnet in Caffe and get 78.65% top-5 accuracy on validation dataset with
single-view testing. Redundancy-aware training reduces the model size by 6.4 x
with 0.36% accuracy loss. We further fine-tune it for 45k iterations and obtain a
model with 78.54% accuracy. We display sparsity achieved by our method and
DC [5] in Table3. Our method takes 99 epochs in total, which is 9.69x more
efficient in terms of time.

4.2 Ablation Study

Hyper-parameter Sensitivity. We make use of ResNet-56 to measure the
impact of varying range and e. The result is shown in Fig. 3.

Increasing range leads to larger [and more weights will be pruned in training.
Thus we can make trade-offs between the sparsity and the accuracy through
adjusting range. Note the accuracy does not drop dramatically (2.2% drop)
when range increases from 0 to 3.5. Since increasing € makes [smaller, weights

Fast CNN Pruning via Redundancy-Aware Training 11

sparsity

(a) range (b) €

Fig. 3. Impact of hyper-parameters range and e. The model is divided into three
partition classes.

are less likely to be pruned and the sparsity decreases. We can observe that the
accuracy does not change drastically for a wide range of .

Table 4. Accuracy with varying 4.

) +o0o | 0.5*s_avg | 0.4 * s_avg | 0.3*s_avg
partition classes | 1 2 3 5
Accuracy 91.3% | 91.7% 92.3% 90.2%

092

50915
5 0989 £
g E

0958

007k 7 0.905F =

0.986 0,
08 082 084 08 088 09 092 094 096 098 1 0.82 084 0.86 0.88 09 092 0.94

sparsity sparsity

(a) LeNet-5 (b) ResNet-56

Fig. 4. Effect of partition with varying ranges.

Effectiveness of Partition Strategies. We first analyze the impact on accu-
racy with different number of partition classes. To this end, we fix range = 1.8
and € = 0.1 and vary § to change the partition result. Results are shown in
Table 4. When § is set to 400, all layers belong to the same class and the net-
work is pruned all through the training phase, which shows a 1.1% accuracy drop.
Dividing ResNet-56 into two or three classes improves accuracy. The model with
five classes has inferior accuracy, implicating too many classes result in insuffi-
cient training iterations in each stage.

We also verify the effectiveness of model partition with varying ranges.
Results are shown in Fig. 4. The model partition helps to improve accuracy over
a wide scope of ranges, confirming the benefit of our model partition approach
in stabilizing training and helping in good convergence.

12 X. Dong et al.

5 Conclusion

In this paper, we propose an in-training compression method, redundancy-aware
training. Our method can learn both sparse connections and weight values from
scratch. We highlight our redundancy-aware training achieves state-of-the-art
compression results without any post-training compression procedures and con-
sumes significantly less time when compared to other methods.

Acknowledgments. This work is supported by National Key R&D Program of China
under Grant No. 2017YFB0202002, Science Fund for Creative Research Groups of the
National Natural Science Foundation of China under Grant No. 61521092 and the Key
Program of National Natural Science Foundation of China under Grant Nos. 61432018,
61332009, U1736208.

References

1. Alvarez, J.M., Salzmann, M.: Compression-aware training of deep networks. In:
Advances in Neural Information Processing Systems, pp. 856-867 (2017)

2. Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al.: Predicting parameters in deep
learning. In: Advances in Neural Information Processing Systems, pp. 2148-2156
(2013)

3. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, 7-13 December 2015, pp. 1440-1448 (2015)

4. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In:
Advances in Neural Information Processing Systems, pp. 1379-1387 (2016)

5. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: Proceedings of
the International Conference on Learning Representations, ICLR (2016)

6. He, K., Gkioxari, G., Dollar, P., Girshick, R.B.: Mask R-CNN. In: IEEE Interna-
tional Conference on Computer Vision, pp. 2980-2988 (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778 (2016)

8. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1389-1397 (2017)

9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675—
678. ACM (2014)

10. Kim, E., Ahn, C., Oh, S.: Learning nested sparse structures in deep neural net-
works. arXiv preprint arXiv:1712.03781 (2017)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

13. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
ConvNets. In: Proceedings of the International Conference on Learning Represen-
tations, ICLR (2017)

http://arxiv.org/abs/1712.03781

14.

15.

16.

17.

18.

Fast CNN Pruning via Redundancy-Aware Training 13

Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
1.0 regularization. In: Proceedings of the International Conference on Learning
Representations, ICLR (2018)

Srinivas, S., Babu, R.V.: Learning neural network architectures using backprop-
agation. In: Proceedings of the British Machine Vision Conference. BMVA Press
(2016)

Srinivas, S., Subramanya, A., Babu, R.V.: Training sparse neural networks. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops, pp. 455462 (2017)

Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in Neural Information Processing Systems, pp.
2074-2082 (2016)

Yu, R., et al.: NISP: pruning networks using neuron importance score propagation.
arXiv preprint arXiv:1711.05908 (2017)

http://arxiv.org/abs/1711.05908

q

Check for
updates

Two-Stream Convolutional Neural
Network for Multimodal Matching

Youcai Zhang, Yiwei Gu, and Xiaodong Gu®™)

Department of Electronic Engineering, Fudan University, Shanghai 200433, China
xdgu@fudan.edu.cn

Abstract. Mulitimudal matching aims to establish relationship across
different modalities such as image and text. Existing works mainly focus
on maximizing the correlation between feature vectors extracted from
the off-the-shelf models. The feature extraction and the matching are
two-stage learning process. This paper presents a novel two-stream con-
volutional neural network that integrates the feature extraction and the
matching under an end-to-end manner. Visual and textual stream are
designed for feature extraction and then are concatenated with multiple
shared layers for multimodal matching. The network is trained using an
extreme multiclass classification loss by viewing each multimodal data
as a class. Then a finetuning step is performed by a ranking constraint.
Experimental results on Flickr30k datasets demonstrate the effectiveness
of the proposed network for multimodal matching.

Keywords: Multimodal matching - Two-stream network
Convolutional neural network

1 Introduction

Multimodal analysis has received ever-increasing research focus due to the explo-
sive growth of multimodal data such as image, text, video and audio. A core
problem for multimodal analysis is to mine the internal correlation across differ-
ent modalities. In this paper, we focus on the image-text matching. For example,
given a query image, our aim is to retrieve the relevant texts in the database
that best illustrate the image. There are two major challenges in multimodal
matching: (1) effectively extracting the feature from the multimodal data; (2)
inherently correlating the feature across different modalities.

Previous works for multimodal matching prefered to adopt off-the-shelf mod-
els to extract the features rather than learn modality-specific features. For the
image, some well-known hand-crafted feature extraction techniques such as SIFT
[1], GIST [2] were widely used. Inspired by recent breakthroughs of convolu-
tional neural network (CNN) in visual recognition, CNN visual features were
also introduced to multimodal matching [14]. For the text, latent Dirichlet allo-
cation (LDA) [3] and word2vec [18] models were two typical choices for vec-
torization. Despite their contributions to the multimodal matching, off-the-shelf

© Springer Nature Switzerland AG 2018
V. Kuarkov4 et al. (Eds.): ICANN 2018, LNCS 11139, pp. 14-21, 2018.
https://doi.org/10.1007/978-3-030-01418-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_2&domain=pdf

Two-Stream Convolutional Neural Network for Multimodal Matching 15

models suffer from some weaknesses. They are not specific designed for the task
of multimodal matching. That is, these features are not discriminative enough,
which limits the final matching performance.

Image Feature o]
Image CNN O
\ (@]
B Ranking Loss | i |Softmax
i N Classifier
A female tennis ‘~ | /
player in a white
shirt and black Text CNN | | o
tennis skirt getting L Text Feature 1©]

ready to swing.

Fig. 1. Overview of the proposed two-stream convolutional neural network.

Another challenge is to correlate these multimodal features. Most deep learn-
ing based methods [4,5] are highly dependent on the categorical information for
network training. However, such high-level semantic information is absent in
most scenarios and requires much manual labels. Furthermore, the explosive
increase of data makes it unrealistic to label each data with a certain category.
Luckily, co-occurred data usually delivers correlated information (i.e. image-text
pair information). The pair information is relatively easy to be obtained via the
web crawler and should be fully explored for multimodal matching.

To address above issues, we propose a novel two-stream convolutional neural
network as shown in Fig. 1, which extracts visual and textual representations and
simultaneously performs the task of multimodal matching. Thus the similarity
between images and texts can be measured directly according to the learned
representations. More specifically, CNN is the backbone to extract the feature
from the raw images and texts respectively. The outputs of the two stream
are concatenated and followed by several shared fully connected layers. The
final output of the network is the class probabilities after a softmax regression.
To train the network, we adopt an extreme multiclass classification loss and a
ranking loss both based on the pair information.

The remainder of this paper is structured as follows. Section 2 reviews the
related work. Section 3 presents our two-stream network for multimodal match-
ing and its learning process, followed by experimental results in Sect. 4. Section 5
draws an overall conclusion.

2 Related Work

The core issue for multimodal matching is to learn discriminative and joint
image-text representations. Canonical correlation analysis (CCA) [7] and cross-

16 Y. Zhang et al.

modal factor analysis (CFA) [8] were two classic methods. They linearly pro-
jected vectors from the two views into a shared correlation maximum space.
Andrew et al. proposed deep CCA [12] to learn the nonlinear transformation
through two deep networks, whose outputs are maximally correlated. Yan et al.
[13] further introduced DCCA into image-text matching.

Inspired by recent breakthroughs in visual recognition, CNN was also widely
employed in multimodal matching. Wei et al. [14] provided a new baseline for
cross-modal retrieval with CNN visual features instead of traditional SIFT [1]
and GIST [2] features. CNN has also shown its powerful abilities in natural lan-
guage processing. Hu et al. [10] proposed a sentence matching model based on
CNN that represented the sentence and captured the matching relation simul-
taneously. In [9], convolutional architectures were first employed to learn the
correlation between image and sentence by encoding their separate representa-
tions into a joint one.

There are also some deep models related to our work. In [6], a three-stream
deep convolutional network was proposed to generate a shared representation
across image, text, and sound modality. Wang et al. [15] presented a two-branch
network to learn the image-text joint embedding. The network was trained by an
extended ranking constraint and only received the input of feature vectors. Mao
et al. [16] proposed a multimodal Recurrent Neural Network (m-RNN) model for
image captioning and cross-modal retrieval. [17] presented a selective multimodal
network that incorporated attention and recurrent selection mechanism based
on long short term memory.

3 Two-Stream CNN

3.1 Network Architecture

Overall Architecture. As exhibited in Fig. 1, the overall architecture of the
proposed network contains two parts. The color part with two streams focuses
on the feature extraction from the raw image and text. The gray one integrates
the feature vectors from different modalities with shared weights and fully con-
nected layers for further multimodal matching. In general, to generate a joint
representation, the color part is specific to modality but gray one is shared across
modalities.

Image Stream. We adopt a 50-layer ResNet model [11] pretrained on ImageNet
classification tasks as the visual CNN. We discard the top fully connected layer
designed for ImageNet. Thus, given a raw image resized to 224 x 224, a 2048-
dim vector considered as the image representation is produced by the model
after average pooling.

Text Stream. Since each image can be represented by a fixed-length vector
with CNN, we also design a textual CNN with three convolutional layers to
vectorize the text as shown in Fig. 2. Text is first encoded into a 1 X n X d

Two-Stream Convolutional Neural Network for Multimodal Matching 17

1X32X256 1X32%512 1X32x1024
8 g g
o E o E o %
X' X x¢
2 g 3 3 5
A female tennis .g O ° 19} P 9] o 2 o
player in a white e g S g S 2
shirtand black 2 L 2 {2 &
tennis..... _Fg 2 ‘é § g 5
g g 8] O o (0] 5 =
3 S 1S 2 [
=1 « 3 5
e LY L
1X32x300 S 1X32X512 3 1X32X1024 S 1x32x2048 12048
1X32X256 1X32X512 1X32x1024

Fig. 2. Overview of the textual CNN stream.

numerical matrix T, where n is the length of the sentence and d is the size of
the vocabulary. The vocabulary contains all tokens appeared in the corpus. Let
w; be the i-th word in the vocabulary, thus w; can be converted into a one-hot
high-dimensional sparse vector v; where the i-th element is set to be 1 and rests
to be 0. Then the embedding layer turns each v; into a low-dimensional dense
word embedding e; with the length of k via a lookup table. Thus, each sentence
is encoded into a 1 X n x k matrix.

Though embedding layer encodes the semantic information of each word into
vectors, simply concatenating word vectors ignores many subtleties of a possible
good representation, e.g. consideration of word ordering. Therefore, following
convolutional layers are employed to extract the word sequence information of
the words. In each convolutional layer, the context in the sentence is modeled
using two convolution kernels of size 1 x 2 and 1 x 3, respectively. And the
outputs of two convolutional operations are concatenated directly, fed into fol-
lowing layers. At the end of network, a pooling layer with dropout is used to
produce final output, which matches the size of image features. Convolutional
layers combined with word embedding ensure that the output feature contains
most necessary information to effectively represent sentences for further multi-
modal matching.

3.2 Network Learning

Objective Function. Supervised semantic labels usually play an important
role in deep neural network learning. However, the lack of labels poses a unique
challenge to multimodal matching: how to effectively utilize the only image-text
pair information. In this paper, we transform the multimodal matching into an
extreme multiclass classification task where the matching becomes accurately
classifying a specific data among tens of thousands classes. Here, each mul-
timodal document including an image and corresponding text is viewed as a
pseudo class. Given an instance z, we apply the softmaz function to the output
of the network z € R*" (n is the number of multimodal document). Thus, we

18 Y. Zhang et al.

can obtain the posterior probability of the instance being classified into the right
category c. It can be formally written as Eq. (1).

Zc

€

D€

Then we minimize the negative log-likelihood P(c|x?), defined as Eq. (2).

P(c|z®) = softmax(z) = (1)

Leis = —log(P(c|z?)). (2)

To obtain more discriminative representations, we also performed a metric
learning based on a ranking constraint. Pair of distances in the feature space
between xP and x™ against the anchor £ should be pulled apart up to a margin
a (o = 0.1 in our case) as d(z% zP) + a < d(z®,2"). Instances sharing the
same pseudo class with z® are defined as zP, otherwise, . We compute the
cosine distance between the feature vectors (v;,v;) of two instances (x%,27) as
d(z',27) = 1— m We further define the bi-directional ranking constraint
with a hinge loss for the given image reference (xf,,,, 4y, ¥7,;) and the text

reference (2f,;, 27, Th,,) Tespectively as Eq. (3).

Lyank = mal’{oa d(x?mg7 $fxt) - d(x?mg7 1{;1&) + Oé}

—i—max{O, d(xgwﬂ xfmg) - d(xga:w x?mg) + O[}.

3)

The final objective function is a weighted combination of the classification
loss and ranking loss as Eq. (4).

L=)\chls +)\ZLranlv (4)

Training Scheme. Network training is done in three steps. Firstly, we fix the
image stream and train the remaining part using the classification loss (A2 = 0,
only text data is used). The reason behind is that pre-trained weights on Ima-
genet can be used for image stream but weights of the remaining part have to
be learned from scratch. Secondly, we update the weights of the entire network
after step 1 converges (A2 = 0, both text and image data are used). Considering
that ranking loss usually converges very slowly or even does not converge espe-
cially in two-stream network learning, we fine-tune the entire network using the
combination of the classification loss and ranking loss (A; = 1, A2 = 1) only in
the last step.

4 Experiment

4.1 Datasets and Evaluation Metrics

We choose widely-used Flickr30k [19] for experiments. Flickr30k contains 31,783
images collected from website Flickr. Each image is described with five sen-
tences. We follow the partition scheme in [16,17], where 29,783, 1,000, and 1,000

Two-Stream Convolutional Neural Network for Multimodal Matching 19

images are used for training, validation, and test respectively. R@k and Med r
are adopted as evaluation metrics. R@k is the average recall rate over all queries
in the test set. Specifically, given a query, the recall rate will be 1 if at least one
ground truth occurs in the top-k returned results and 0 otherwise. Med r is the
median rank of the closest ground truth in the ranking list.

4.2 Implementation Details

For Flickr30k, the vocabulary size d is 20,074, and each word is encoded into a
300-dim dense vector. To ensure that each input sentence has the same length
of 32, we use 0 vectors as paddings for those short sentenses. And we use the
pre-trained vectors of the word2vec [18] model to initialize our embedding layer.
The network is optimized by backpropagation and mini-batch stochastic gradient
descent with the momentum fixed to 0.9. For the three training steps, learning
rate is set to 0.001. 0.0001 and 0.00005 respectively. The maximum epochs are
set to 180, 60 and 20 accordingly. In our experiments, we observe convergence
within 150, 30, 10 epochs.

4.3 Experimental Results

We consider two basic multimodal tasks: Img2Txt (an image query to retrieve
texts) and Txt2Img (a text query to retrieve images). Table 1 presents the exper-
imental results of different methods in terms of R@k and Med r. The proposed
network outperforms other methods in the Img2Txt task with the highest RQ1
of 48.4%. In the Txt2Img task, R@I obtained by our method is only 0.7% lower
than the best method RBF-Net [20]. The results indicate that the learned fea-
tures are effective for multimodal matching. The superiority of our network can
be explained by the following two aspects: (1) We simultaneously perform fea-
ture extraction and multimodal matching. Compared with off-the-Shelf models,
the learned features are more targeted for the matching task instead of previous
generic representations; (2) We fully explore the image-text pair information via
the classification and ranking loss to generate more discriminative representa-
tions.

We also conduct experiments to analyze the effect of the training scheme.
Step 1 only trains the text stream using the classification loss and directly
adopts the image features extracted from pre-trained ResNet-50. Step2 trains
the entire network using the classification loss, which encourages instance from
the same document to fall into one category. Thus, results obtained from step
2 gains a great increase of about 10%, 6% on R@1 in the bidirectional retrieval
respectively. Step 3 combines ranking constraints to further finetune the network,
which provides a higher performance for the final model.

Another issue to be noticed is that the improvement brought by step 2 is not
as impressive as that by step 3. On the one hand, that illustrates the effectiveness
of posing multimodal matching as a classification problem. On the other hand,
considering the effectiveness of ranking loss in previous works, there could be
space for improvement in our network especially the weakness of R@5 and R@10.

20 Y. Zhang et al.

Table 1. Bidirectional image and text retrieval results on Flickr30K.

Methods Img2Txt Txt2Img
R@1 |R@5 |R@Q10 Med r | R@1 | R@5 | R@10 | Med r

DCCA [13] 16.7 139.3 |52.9 |8 12.6 |131.0 [43.0 |15
m-CNN [9] 33.6 1641 749 |3 26.2 | 56.3 169.6 |4
m-RNN [16] 354 163.8 [73.7 |3 22.8 150.7 163.1 |5
2-branch [15] |40.3 |68.9 |79.9 - 29.7 160.1 |72.1 |-
sm-LSTM [17] | 42.5 |71.9 |81.5 |2 30.2 1604 723 |3
RBF-Net [20] |47.6 |77.4|87.1 |- 35.4 68.3 79.9 |-
Ours (step 1) |38.4 684 |79.3 2 28.4 |56.1 | 68.2 |4
Ours (step 2) |46.8 |75.7 |85.6 |2 33.5 |163.0 |749 |3
Ours (step 3) |48.4|77.2 |85.9 |2 34.7 1649 |764 |3

Ranking loss requires a careful triplet sampling strategy from the extremely
unbalanced positive and negative ones, which points out the direction of our
future work.

5 Conclusion

This paper mainly addresses the issue of multimodal matching via a novel two-
stream convolutional neural network. The proposed network can extract the
features from the raw image and text. To guarantee the features shared between
different modalities, a classifier and ranking constraint are adopted for network
learning by utilizing the pair information. Experimental results on Flickr30k
datasets demonstrate the effectiveness of viewing each multimodal document as
a discrete class. For further research, the ranking constraint will be polished to
perform a more effective metric learning. Also, more detailed experiments on the
Microsoft COCO datasets will be conducted to further validate the validity of
our network.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grants No. 61771145 and No. 61371148.

References

1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91-110 (2004)

2. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42(3), 145-175 (2001)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993-1022 (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Two-Stream Convolutional Neural Network for Multimodal Matching 21

Wang, B., Yang, Y., Xu, X., Hanjalic, A., Shen, H. T.: Adversarial cross-modal
retrieval. In: ACM International Conference on Multimedia Conference, pp. 154—
162 (2017)

Huang, X., Peng, Y.: Cross-modal deep metric learning with multi-task regular-
ization. In: IEEE International Conference on Multimedia and Expo, pp. 943-948
(2017)

Aytar, Y., Vondrick, C., Torralba, A.: See, hear, and read: deep aligned represen-
tations. arXiv preprint arXiv:1706.00932 (2017)

Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an
overview with application to learning methods. Neural Comput. 16(12), 2639-2664
(2004)

Li, D., Dimitrova, N., Li, M., Sethi, [.K.: Multimedia content processing through
cross-modal association. In: ACM International Conference on Multimedia, pp.
604-611 (2003)

Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for
matching image and sentence. In: IEEE International Conference on Computer
Vision, pp. 2623-2631 (2015)

Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. In: Advances in Neural Information Process-
ing Systems, pp. 2042-2050 (2014)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778
(2016)

Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis.
In: International Conference on Machine Learning, pp. 1247-1255 (2013)

Yan, F., Mikolajczyk, K.: Deep correlation for matching images and text. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3441-3450 (2015)
Wei, Y., et al.: Cross-modal retrieval with CNN visual features: a new baseline.
IEEE Trans. Cybern. 47(2), 449-460 (2017)

Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text
embeddings. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp- 5005-5013 (2016)

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with
multimodal recurrent neural networks (m-RNN). arXiv preprint arXiv:1412.6632
(2014)

Huang, Y., Wang, W., Wang, L.: Instance-aware image and sentence matching
with selective multimodal LSTM. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2310-2318 (2017)

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111-3119 (2013)

Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazeb-
nik, S.: Flickr30k entities: collecting region-to-phrase correspondences for Richer
image-to-sentence models. In: IEEE International Conference on Computer Vision,
pp. 2641-2649 (2015)

Liu, Y., Guo, Y., Bakker, E.M., Lew, M.S.: Learning a recurrent residual fusion
network for multimodal matching. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4107-4116 (2017)

http://arxiv.org/abs/1706.00932
http://arxiv.org/abs/1412.6632

q

Check for
updates

Kernel Graph Convolutional Neural
Networks

Giannis Nikolentzos!(®

Konstantinos Skianis®, and Michalis Vazirgiannis

, Polykarpos Meladianos?, Antoine Jean-Pierre Tixier!,
1,2

1 Ecole Polytechnique, Palaiseau, France
{nikolentzos,anti5662,kskianis,mvazirg}@lix.polytechnique.fr
2 Athens University of Economics and Business, Athens, Greece
pmeladianos@aueb.gr

Abstract. Graph kernels have been successfully applied to many graph
classification problems. Typically, a kernel is first designed, and then
an SVM classifier is trained based on the features defined implicitly by
this kernel. This two-stage approach decouples data representation from
learning, which is suboptimal. On the other hand, Convolutional Neu-
ral Networks (CNNs) have the capability to learn their own features
directly from the raw data during training. Unfortunately, they cannot
handle irregular data such as graphs. We address this challenge by using
graph kernels to embed meaningful local neighborhoods of the graphs in
a continuous vector space. A set of filters is then convolved with these
patches, pooled, and the output is then passed to a feedforward network.
With limited parameter tuning, our approach outperforms strong base-
lines on 7 out of 10 benchmark datasets. Code and data are publicly
available (https://github.com/giannisnik/cnn-graph-classification).

1 Introduction

Graphs are powerful structures that can be used to model almost any kind
of data. Social networks, textual documents, the World Wide Web, chemical
compounds, and protein-protein interaction networks, are all examples of data
that are commonly represented as graphs. As such, graph classification is a very
important task, with numerous significant real-world applications. However, due
to the absence of a unified, standard vector representation of graphs, graph
classification cannot be tackled with classical machine learning algorithms.

Kernel methods offer a solution to those cases where instances cannot be
readily vectorized. The trick is to define a suitable object-object similarity func-
tion (known as a kernel function). Then, the matrix of pairwise similarities can
be passed to a kernel-based supervised algorithm such as the Support Vector
Machine to perform classification. With properly crafted kernels, this two-step
approach was shown to give state-of-the-art results on many datasets [12], and
has become standard and widely used. One major limitation of the graph kernel
-+ SVM approach, though, is that representation and learning are two indepen-
dent steps. In other words, the features are precomputed in separation from the
training phase, and are not optimized for the downstream task.

© Springer Nature Switzerland AG 2018
V. Kuarkov4 et al. (Eds.): ICANN 2018, LNCS 11139, pp. 22-32, 2018.
https://doi.org/10.1007/978-3-030-01418-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_3&domain=pdf
https://github.com/giannisnik/cnn-graph-classification

Kernel Graph Convolutional Neural Networks 23

Conversely, Convolutional Neural Networks (CNNs) learn their own features
from the raw data during training, to maximize performance on the task at
hand. CNNs thus provide a very attractive alternative to the aforementioned
two-step approach. However, CNNs are designed to work on regular grids, and
thus cannot process graphs.

We propose to address this challenge by extracting patches from each input
graph via community detection, and by embedding these patches with graph
kernels. The patch vectors are then convolved with the filters of a 1D CNN and
pooling is applied. Finally, to perform graph classification, a fully-connected layer
with a softmax completes the architecture. We compare our proposed method
with state-of-the-art graph kernels and a recently introduced neural architecture
on 10 bioinformatics and social network datasets. Results show that our Kernel
CNN model is very competitive, and offers in many cases significant accuracy
gains.

2 Related Work

Graph Kernels. A graph kernel is a kernel function defined on pairs of graphs.
Graph kernels can be viewed as graph similarity functions, and currently serve
as the dominant tool for graph classification. Most graph kernels compute the
similarity between two networks by comparing their substructures, which can
be specific subgraphs [13], random walks [16], cycles [6], or paths [2], among
others. The Weisfeiler-Lehman framework operates on top of existing kernels
and improves their performance by using a relabeling procedure based on the
Weisfeiler-Lehman test of isomorphism [12]. Recently, two other frameworks were
presented for deriving variants of popular graph kernels [18,19]. Inspired by
recent advances in NLP, they offer a way to take into account substructure sim-
ilarity. Some graph kernels not restricted to comparing substructures of graphs
but that also capture their global properties have also been proposed. Exam-
ples include graph kernels based on the Lovasz number and the corresponding
orthonormal representation [7], the pyramid match graph kernel that embeds ver-
tices in a feature space and computes an approximate correspondence between
them [11], and the Multiscale Laplacian graph kernel, which captures similarity
at different granularity levels by considering a hierarchy of nested subgraphs [9].

Graph CNNs. Extending CNNs to graphs has experienced a surge of interest
in recent years. A first class of methods use spectral properties of graphs. An
early generalization of the convolution operator to graphs was based on the
eigenvectors of the Laplacian matrix [3]. A more efficient model using Chebyshev
polynomials approximation to represent the spectral filters was later presented
[4]. All of these methods, however, assume a fixed graph structure and are thus
not applicable to our setting. The model of [4] was then simplified by using a
first-order approximation of the spectral filters [8], but within the context of
a node classification problem (which again, differs from our graph classification
setting). Unlike spectral methods, spatial methods [10,15] operate directly on the

24 @G. Nikolentzos et al.

Convolutional

| Max-pooling Fully-Connected
ayer

Network

Fig. 1. Overview of our Kernel Graph CNN approach.

topology of the graph. Finally, some other techniques rely on node embeddings
obtained as an unsupervised pre-processing step, like [14], in which graphs are
represented as stacks of bivariate histograms and passed to a classical 2D CNN
for images.

The work closest to ours is probably [10]. To extract a set of patches from the
input graph, the authors (1) construct an ordered sequence of vertices from the
graph, (2) create a neighborhood graph of constant size for each selected vertex,
and (3) generate a vector representation (patch) for each neighborhood using
graph labeling procedures such that nodes with similar structural roles in the
neighborhood graph are positioned similarly in the vector space. The extracted
patches are then fed to a 1D CNN. In contrast to the above work, we extract
neighborhoods of varying sizes from the graph in a more direct and natural way
(via community detection), and use graph kernels to normalize our patches. We
present our approach in more details in the next section.

3 Proposed Approach

In what follows, we present the main ideas and building blocks of our model.
The overarching process flow is illustrated in Fig. 1.

3.1 Patch Extraction and Normalization

Many types of real-world data are regular grids, and can thus be decomposed
into units that are inherently ordered along spatial dimensions. This makes the
task of patch extraction easy, and normalization unnecessary. For example, in
computer vision (2D), meaningful patches are given by instantiating a rectangle
window over the image. Furthermore, for all images, pixels are uniquely ordered
along width and height, so there is a correspondence between the pixels in each

Kernel Graph Convolutional Neural Networks 25

patch, given by the spatial coordinates of the pixels. This removes the need for
normalization. Likewise, in NLP, words in sentences are uniquely ordered from
left to right, and a 1D window applied over text provides again natural regions.
However, graphs do not exhibit such an underlying grid-like structure. They are
irregular objects for which there exist no canonical ordering of the elementary
units (nodes). Hence, generating patches from graphs, and normalizing them so
that they are comparable and combinable, is a very challenging problem. To
address these challenges, our approach leverages community detection and graph
kernels.

Patch Extraction with Community Detection. There is a large variety of
approaches for sampling from graphs. We can extract subgraphs for all vertices
(which may be computationally intractable for large graphs) or for only a subset
of them, such as the most central ones according to some metric. Furthermore,
subgraphs may contain only the hop-1 neighborhood of a root vertex, or vertices
that are further away from it. They may also be walks passing through the root
vertex. A more natural way is to capitalize on community detection algorithms
[5], as the clusters correspond to meaningful graph partitions. Indeed, a commu-
nity typically corresponds to a set of vertices that highly interact with each other,
as expressed by the number and weight of the edges between them, compared to
the other vertices in the graph. In this paper, we employ the Louvain clustering
algorithm, which extracts non-overlapping communities of various sizes from a
given graph [1]. This multilevel algorithm aggregates each node with one of its
neighbors such that the gain in modularity is maximized. Then, the groupings
obtained at the first step are turned into nodes, yielding a new graph. The pro-
cess iterates until a peak in modularity is attained and no more change occurs.
Note that since our goal here is only to sample relevant local neighborhoods from
the graph, we could have used any other state-of-the-art community detection
algorithm. We opted for Louvain as it is very fast and scalable.

Patch Normalization with Graph Kernels. After extracting the subgraphs
(communities) from a given input graph, standardization is necessary before
being able to pass them to a CNN. We can define this step as that of patch
normalization. To this purpose, we leverage graph kernels, as described next.
Note that since the steps below do not depend on the way the subgraphs were
obtained, we use the term subgraph (or patch) rather than community in what
follows, to highlight the generality of our approach.

Let G = {G1,Ga,...,GN} be the collection of input graphs. Let
S1,82,...,Sn be the sets of subgraphs extracted from graphs G1,Gs,...,Gy
respectively. Since the number of subgraphs extracted from each graph may
depend on the graph (like in our case with the Louvain community detection
algorithm), these sets vary in size.

Furthermore, let S? be the j'" element of S; (i.e., the j** subgraph extracted
from G;), and P; be the size of S; (i.e., the total number of subgraphs extracted
from G;). Let then S = {57 : i € {1,2,...,N},j € {1,2,..., P;}} be the set of
subgraphs extracted from all the graphs in the collection, and P its cardinality.
Let finally K € RP*P be the symmetric positive semidefinite kernel matrix

26 @G. Nikolentzos et al.

constructed from S using a graph kernel k. Since the total number P of subgraphs
for all the graphs in the collection is very large, populating the full kernel matrix
K and factorizing it to obtain low-dimensional representations of the subgraphs
is O(P?). Fortunately, the Nystrom method [17] allows us to obtain Q € RF*P
(with p < P) such that K ~ QQ" at the reduced cost of O(p?P), by using only
a small subset of p columns (or rows) of the kernel matrix. The rows of @ are
low-dimensional representations of the subgraphs and serve as our normalized
patches.

3.2 Graph Processing

1D Convolution. To process a given input graph, many filters are convolved
with the normalized representations of the patches contained in the graph. For
example, for a given filter w € RP, a feature ¢; is generated from the 4t patch
of graph G; 2] as:
c;=a(w'z)

where o is an activation function. In this study, we used the identity function
o(c) = ¢, as we observed no difference in results compared to nonlinear activa-
tions. Therefore, when applied to a patch z/, the convolution operation corre-
sponds to the inner product (w, zzj). We will show next that any filter w with

[|lw|] < oo learned by our network belongs to the Reproducing Kernel Hilbert
Space (RKHS) H of the employed graph kernel k.

Theorem 1. The filters live in the RKHS of the kernel k that was used to
normalize the patches.

Proof. Given two subgraphs Sf and Sg,/ extracted from G; and G} and their

associated normalized patches zf and zf,/, it holds that:

(=], 23y = k(S7,5%) = (6(57), 6(S2))

Let Z2 = {zf cie {1,2,...,N},j € {1,2,...,P;}} be the set containing all
patches of the input graphs. Then, Span(Z) is either the space of all vectors in
RP if the rank of the kernel matrix is P or the space of all vectors in R” whose
last ¢ components are zero if the rank of the kernel matrix is P —¢ where ¢ > 0.
Then, given a patch z], vector w is contained in Span(Z), hence:

N P
o(w'z])=(w,z]) = a2

i'=1 j/—l

—ZZQ, 2, 2l) ZZaijZ,,SJ

i=1j5'=1 i'=1j5'=1

which shows that the filters live in the RKHS associated to graph kernel k. For
other smooth activation functions, one can also show that the filters will be
contained in the corresponding RKHS of the kernel function [20].

Kernel Graph Convolutional Neural Networks 27

Note that the proposed approach can be thought of as a CNN that works directly
on graphs. In computer vision, convolution corresponds to the element-wise mul-
tiplication between part of an image and a filter followed by summation. Con-
volution can thus be viewed as an inner-product where the output is a single
feature. In our setting, convolution corresponds to the inner-product between
part of a graph (i. e. a patch) and a filter (i.e. a graph). Such an inner-product is
implicitly computed using a graph kernel, and the output is also a single feature.

By convolving w with all the normalized patches of the graph, the following
feature map is produced:

c=ler,co,..iep,.]

where P, = max(P; : i € {1,2,...,N}) is the largest number of patches
extracted from any given graph in the collection. For graphs featuring less than
Pp.q0 patches, zero-padding is employed.

Note that this approach is similar to concatenating all the vector represen-
tations of the patches contained in a given graph (padding if necessary), thus
obtaining a single vector representation of the graph, and sliding over it a unidi-
mensional filter of size the length of a single patch vector, without overspanning
patches (i.e., with stride equal to filter size).

Pooling. We then apply a max-pooling operation over the feature map, thus
retaining only the maximum value of ¢, max(cy,¢a,...,¢p,,..), as the signal
associated with w. The intuition is that some subgraphs of a graph are good
indicators of the class the graph belongs to, and that this information will be
picked up by the max-pooling operation.

3.3 Processing New Graphs

When provided with a never-seen graph (at test time), we first sample subgraphs
from it (here, via community detection), and then project them to the feature
space of the subgraphs in the training set. Given a new subgraph S/, its pro-
jection can be computed as 27 = QTv where QT € RP*F is the pseudoinverse of
Q € RP*P and v € R is the vector containing the kernel value between S7 and
all P subgraphs in the training set (those contained in set S). The dimension-
ality p of the emerging vector is the same as that of the normalized patches in
the training set. Thus, this vector can be convolved with the filters of the CNN
as previously described.

3.4 Channels

Rather than selecting one graph kernel in particular to normalize the patches,
several kernels can be jointly used. The different representations provided by
each kernel can then be passed to the CNN through different channels, or depth
dimensions. Intuitively, this can be very beneficial, as each kernel might capture
different, complementary aspects of similarity between subgraphs. We experi-
mented with the following popular kernels:

28 @G. Nikolentzos et al.

e Shortest path kernel (SP) [2]: to compute the similarity between two
graphs, this kernel counts how many pairs of shortest paths have the same
source and sink labels, and identical length, in the two graphs. The runtime
complexity for a pair of graphs featuring n; and ny nodes is O(n1%ns?).

¢ Weisfeiler-Lehman subtree kernel (WL) [12]: for a certain number h of
iterations, this kernel performs an exact matching between the compressed
multiset labels of the two graphs, while at each iteration it updates these

labels. It requires O(hm) time for a pair of graphs with m edges.

This gave us two single channel models (KCNN SP, KCNN WL), and one
model with two channels (KCNN SP + WL).

4 Experimental Setup

4.1 Synthetic Dataset

Dataset. As previously mentioned, the intuition is that our proposed KCNN
model is particularly well suited for settings where some regions in the graphs are
highly discriminative of the class the graph belongs to. To empirically verify this
claim, we created a dataset featuring 1000 synthetic graphs generated as follows.
First, we generate an Erdos-Rényi graph with number of vertices sampled from
ZN [100, 200] with uniform probability, and edge probability equal to 0.1. We
then add to the graph either a 10-clique or a 10-star graph by connecting the
vertices with probability 0.1. The first class of the dataset is made of the graphs
containing a 10-clique, while the second class features the graphs containing a
10-star subgraph. The two classes are of equal size (500 graphs each).

Baselines. We compared our model against the shortest-path kernel (SP)
[2], the Weisfeiler-Lehman subtree kernel (WL) [12], and the graphlet kernel
(GR) [13].

Configuration. We performed 10-fold cross-validation. The C' parameter of
the SVM (for all graph kernels) and the number of iterations (for the WL kernel
baseline) were optimized on a 90/10 split of the training set of each fold. For the
graphlet kernel, we sampled 1000 graphlets of size up to 6 from each graph. For
our proposed KCNN, we used an architecture with one convolution-pooling block
followed by a fully connected layer with 128 units. The ReLU activation was used,
and regularization was ensured with dropout (0.5 rate). A final softmax layer
was added to complete the architecture. The dimensionality of the normalized
patches (number of columns of Q) was set to p = 100, and we used 256 filters (of
size p, as explained in Subsect. 3.2). Batch size was set to 64, and the number of
epochs and learning rate were optimized by performing 10-fold cross-validation
on the training set of each fold. All experiments were run on a single machine
consisting of a 3.4 GHz Intel Core i7 CPU with 16 GB of RAM and an NVidia
GeForce Titan Xp GPU.

Results. We report in Table 1 average prediction accuracies of our three mod-
els in comparison to the baselines. Results validated the hypothesis that our

Kernel Graph Convolutional Neural Networks 29

Table 1. Classification accuracy of state-of-the-art graph kernels: shortest path (SP),
graphlet (GR), and Weisfeiler-Lehman subtree (WL); and the single and multichannel
variants of our approach (KCNN), on the synthetic dataset.

SP GR | WL | KCNN SP|KCNN WL | KCNN SP + WL
75.47 | 69.34 | 65.88 | 98.20 97.25 98.40

proposed model (KCNN) can identify those areas in the graphs that are most
predictive of the class labels, as its three variants achieved accuracies greater
than 98%. Conversely, the baseline kernels failed to discriminate between the
two categories. Hence, it is clear that in such settings, our model is more effec-
tive than existing methods.

4.2 Real-World Datasets

Datasets. We also evaluated the performance of our approach on five bioinfor-
matics (ENZYMES, NCI1, PROTEINS, PTC-MR, D&D) and five social net-
work datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI-5K, COLLAB)!. Notice that the bioinformatics datasets are labeled
(labels on vertices), while the social interaction datasets are not.

Baselines. We evaluated our model in comparison with the shortest-path kernel
(SP) [2], the random walk kernel (RW) [16], the graphlet kernel (GR) [13], the
Weisfeiler-Lehman subtree kernel (WL) [12], the best kernel from the deep graph
kernel framework (Deep Graph Kernels) [19], and a recently proposed graph
CNN (PSCN k = 10) [10]. Since the experimental setup is the same, we report
the results of [19] and [10].

Configuration. Same as Subsect. 4.1 above.

Results. The 10-fold cross-validation average test set accuracy of our approach
and the baselines is reported in Table2. Our approach outperforms all base-
lines on 7 out of the 10 datasets. In some cases, the gains in accuracy over
the best performing competitors are considerable. For instance, on the IMDB-
MULTI, COLLAB, and D&D datasets, we offer respective absolute improve-
ments of 2.23%, 2.33%, and 2.56% in accuracy over the best competitor, the
state-of-the-art graph CNN (PSCN k£ = 10). Finally, it should be noted that
on the IMDB-MULTTI dataset, every variant of our architecture outperforms all
baselines.

Interpretation. Overall, our Kernel CNN model reaches better performance
than the classical graph kernels (SP, GR, RW, and WL), showing that the ability
of CNNs to learn their own features during training is superior to disjoint feature
computation and learning. It is true that our approach also comprises two disjoint
steps. However, the first step is only a data preprocessing step, where we extract

! The datasets, further references and statistics are available at https://ls11-www.cs.
tu-dortmund.de/staff/morris/graphkerneldatasets.

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

30 G. Nikolentzos et al.
Table 2. 10-fold cross validation average classification accuracy (+ standard deviation)
of the proposed models and the baselines on the bioinformatics (top) and social network

(bottom) datasets. Best performance per dataset in bold, among the variants of our
Kernel CNN model underlined.

Method Dataset

ENZYMES NCI1 PROTEINS PTC-MR D&D
SP 40.10 (+ 1.50) [73.00 (£ 0.51) [75.07 (& 0.54) 58.24 (4 2.44) >3 days
GR 26.61 (£ 0.99) [62.28 (£ 0.29) |71.67 (£ 0.55) 57.26 (£ 1.41) 78.45 (£ 0.26)
RW 24.16 (+ 1.64) >3 days 74.22 (4 0.42) 57.85 (+ 1.30) >3 days
WL 53.15 (£ 1.14) |80.13 (£ 0.50) |72.92 (& 0.56) 56.97 (+ 2.01) 77.95 (£ 0.70)
Deep Kernels |53.43 (£ 0.91) |80.31 (& 0.46)[75.68 (+ 0.54) 60.08 (+ 2.55) NA
PSCN k=10 |NA 76.34 (+ 1.68) |75.00 (£ 2.51) 62.29 (+ 5.68) 76.27 (+ 2.64)
KCNN SP 46.35 (+ 0.39) [75.70 (£ 0.31) [74.27 (£ 0.22) 62.94 (+ 1.69) 76.63 (+ 0.09)
KCNN WL 43.08 (£ 0.68) |75.83 (£ 0.25) |75.76 (+ 0.28) 61.52 (£ 1.41) 75.80 (£ 0.07)

KCNN SP + WL

48.12 (+ 0.23)

77.21 (£ 0.22)

73.79 (& 0.29)

62.05 (+ 1.41)

78.83 (£ 0.29)

IMDB BINARY

IMDB MULTI

REDDIT BINARY]

REDDIT MULTI-5K

COLLAB

GR 65.87 (£ 0.98) |43.89 (4 0.38) |77.34 (& 0.18) 41.01 (£ 0.17) 72.84 (4 0.28)
Deep GR 66.96 (£ 0.56) |44.55 (4 0.52) |78.04 (& 0.39) 41.27 (+ 0.18) 73.09 (& 0.25)
PSCN k=10 |71.00 (+ 2.29) [45.23 (4 2.84) 86.30 (+ 1.58) |49.10 (+ 0.70) 72.60 (% 2.15)
KCNN SP 69.60 (+ 0.44) [45.99 (+ 0.23) [77.23 (£ 0.15) 44.86 (4 0.24) 70.78 (4 0.12)
KCNN WL 70.46 (4 0.45) |46.44 (+ 0.24) |81.85 (+ 0.12) |50.04 (4 0.19) 74.93 (+ 0.14)

KCNN SP + WL

71.45 (4 0.15)

47.46 (4 0.21)

78.35 (4 0.11)

44.63 (4 0.18)

74.12 (£ 0.17)

neighborhoods from the graphs, and normalize them with graph kernels. The
features used for classification are then learned during training by our neural
architecture, unlike the GK + SVM approach, where the features, given by the
kernel matrix, are computed in advance, independently from the downstream
task.

Our two single-channel architectures perform comparably on the bioinfor-
matics datasets, while the KCNN WL variant was superior on the social net-
work datasets. On the REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB
datasets, KCNN WL also outperforms the multichannel architecture, with quite
wide margins. The multi-channel architecture (KCNN SP + WL) leads to better
results on 5 out of the 10 datasets, showing that capturing subgraph similarity
from a variety of angles sometimes helps.

Table 3. 10-fold cross validation runtime of proposed models on the 10 real-world

graph classification datasets.

ENZYMESNCI1 PROTEINSPTC-MRD&D [IMDB IMDB REDDIT REDDIT |COLLAB
BINARY MULTI |[BINARY |MULTI-5K
KCNN SP [28” 4’ 267427 227 54”7 367 1’ 417 5’ 29” 15’ 27 7 2”
KCNN WL|53” 4’ 54748” 227 1’ 337417 58” 57 227 14’ 23”7 8’ 58”
KCNN SP |17 137 5 17 537 25”7 1’ 467457 1’ 447 9’ 577 24’ 28”7 10’ 24”7
+ WL

Kernel Graph Convolutional Neural Networks 31

Runtimes. We also report the time cost of our three models in Table 3. Runtime
includes all steps of the process: patch extraction, path normalization, and 10-
fold cross validation procedure. We can see that the computational complexity
of the proposed models is not high. Our most computationally intensive model
(KCNN SP + WL) takes less than 25min to perform the full 10-fold cross
validation procedure on the largest dataset (REDDIT-MULTI-5K). Moreover,
in most cases, the running times are lower or comparable to the ones of the
state-of-the-art Graph CNN and Deep Graph Kernels models [10,19].

5 Conclusion

In this paper, we proposed a method that combines graph kernels with CNNs
to learn graph representations and to perform graph classification. Our Kernel
Graph CNN model (KCNN) outperforms 6 state-of-the-art graph kernels and
graph CNN baselines on 7 datasets out of 10.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. JSTAT 2008(10), 1-12 (2008)

2. Borgwardt, K.M., Kriegel, H.: Shortest-path kernels on graphs. In: ICDM, pp.
74-81 (2005)

3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: ICLR (2014)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NIPS, pp. 3837-3845 (2016)

5. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.
659, 1-44 (2016)

6. Horvath, T., Gartner, T., Wrobel, S.: Cyclic Pattern Kernels for Predictive Graph
Mining. In: KDD, pp. 158-167 (2004)

7. Johansson, F., Jethava, V., Dubhashi, D., Bhattacharyya, C.: Global graph kernels
using geometric embeddings. In: ICML, pp. 694-702 (2014)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

9. Kondor, R., Pan, H.: The multiscale laplacian graph kernel. In: NIPS, pp. 2982—
2990 (2016)

10. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: ICML (2016)

11. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: AAAI, pp. 2429-2435 (2017)

12. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. JMLR 12, 2539-2561 (2011)

13. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.M.:
Efficient graphlet kernels for large graph comparison. In: AISTATS, pp. 488-495
(2009)

14. Tixier, A., Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Classifying graphs as
images with convolutional neural networks. arXiv:1708.02218 (2017)

http://arxiv.org/abs/1708.02218

32

15.

16.

17.

18.

19.

20.

@G. Nikolentzos et al.

Vialatte, J.C., Gripon, V., Mercier, G.: Generalizing the convolution operator to
extend CNNs to irregular domains. arXiv preprint arXiv:1606.01166 (2016)
Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. JMLR 11, 1201-1242 (2010)

Williams, C.K., Seeger, M.: Using the Nystrom method to speed up kernel
machines. In: NIPS, pp. 661-667 (2000)

Yanardag, P., Vishwanathan, S.: A structural smoothing framework for robust
graph comparison. In: NIPS, pp. 2125-2133 (2015)

Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD, pp. 1365-1374
(2015)

Zhang, Y., Liang, P., Wainwright, M.J.: Convexified convolutional neural networks.
In: ICML, pp. 4044-4053 (2017)

http://arxiv.org/abs/1606.01166

q

Check for
updates

A Histogram of Oriented Gradients for Broken
Bars Diagnosis in Squirrel Cage Induction
Motors

Luiz C. Silva®® , Cleber G. Dias@®, and Wonder A. L. Alves

Informatics and Knowledge Management Graduate Program,
Universidade Nove de Julho, Sdo Paulo, SP, Brazil
lumaleo2016@gmail. com

Abstract. The three-phase induction motors are widely used in a lot of
applications both industry and other environments. Although this electrical
machine is robust and reliable for industrial tasks, for example, conditioning
monitoring techniques have been investigated during the last years to identify
some electrical and mechanical faults in induction motors. In this sense, broken
rotor bars is a typical fault related to the induction machine damage and the
current technical solutions have shown some drawbacks for this kind of failure
diagnosis, particularly when motor is running at very low slip. Therefore, this
paper proposes a new use of Histogram of Oriented Gradients, usually applied in
computer vision and image processing, for broken bars detection, using data
from only one phase of the stator current of the machine. The intensity gradients
and edge directions of each time-window of the stator signal have been applied
as inputs for a neural network classifier. This method has been validated using
some experimental data from a 7.5 kW squirrel cage induction machine running
at distinct load levels (slip conditions).

Keywords: Induction motors - Broken rotor bars - Stator current
Neural network classifier

1 Introduction

During the past decades, conditioning monitoring techniques have been applied by
several researchers for failure detection in induction motors (IM), as well as in pre-
dictive maintenance programs at industry. Today, the induction motors are responsible
for many load drivers and also capable of applying its power in a variety of energy
conversion processes [1]. However, the IMs have some technical limitations, such as
mechanical stresses or electromagnetic strengths that are usually related to damages in
stator and rotor cage [2]. For larger machines, for example, longer downtime per failure
usually occurred with induction motors starting more than once per day, or in appli-
cations of pulsating load or direct on-line startups [3].

A noninvasive technique, called motor current signature analysis (MCSA), is
currently applied for broken bars detection and has been used over the last decades,
particularly due to its noninvasive characteristic and attractive applications in industrial
environment, but MCSA has some drawbacks related to rotor failures diagnosis, such

© Springer Nature Switzerland AG 2018
V. Kirkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 33-42, 2018.
https://doi.org/10.1007/978-3-030-01418-6_4

http://orcid.org/0000-0001-8423-731X
http://orcid.org/0000-0002-4232-2409
http://orcid.org/0000-0003-0430-950X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_4&domain=pdf

34 L. C. Silva et al.

as detection at very low slip (low load or no load) and nonadjacent broken bars, as cited
by [4-6]. The sideband frequencies (features extracted from stator current) which are
related to MCSA are usually near the fundamental frequency for a motor running at
low load, thus it is quite difficult to distinguish between a healthy and failure rotor.
Therefore, in many cases MCSA is responsible for both false positive and negative
alarms in the rotor broken bars evaluation [4].

Other signal processing and feature extraction methods have been used for failure
diagnosis on induction motors using time and/or frequency domain data, such as
described by [7-11]. In general, such works have disclosed the use of Fast Fourier
Transform (FFT), Hilbert Transform (HT), Esprit and Empirical Mode Decomposition
(EMD) to extract some information from stator current and other signals from a IM
with broken bars. However, most of them require a long data acquisition time and a
high frequency resolution to ensure the failure detection efficiency.

In addition, other studies have demonstrated the use of some machine learning and
artificial intelligence approaches to detect no only broken rotor bars, but also other
types of failures in induction motors as cited by [12—15]. A recent work published by
[16], for example, has disclosed the current methods used for fault diagnosis on rotating
machinery, such as artificial neural networks, clustering algorithms, deep learning and
hybrid techniques.

Based on the aforementioned state of the art, the present work proposes a new
approach for broken rotor bars diagnosis, using histogram oriented gradients
(HOG) method [17], using only one single phase data of the stator current. The main
features of stator current data have been extracted from the intensity gradients and edge
directions for a multilayer perceptron classifier (MLP). In addition, this paper discusses
the present approach for broken bars detection when induction motors are operating at
reduced load or low slip.

2 Theoretical Background

An analog signal is a physical process that depends on time and can be modeled by a
real function on a variable real that representing time.

In this paper, this function models the stator current from an induction motor which
represents a sinusoidal and periodic signal of the electrical machine. The amplitude of
this signal depends on the load torque applied to the shaft of the motor. The stator
current signals can be digitized by a process called sampling which approximate the
stator current signals taken at regular time intervals.

Thus, the digital stator current signals is represented by a functionu : D C Z — R,
in which a sample x € D is an integer number representing a discrete instance in a
sampled time of T seconds. In addition, this signal, which is periodic, can be divided
into cycles with duration of 1/f seconds, since f is the fundamental frequency set to
60 Hz. Thus, we consider W = {W,, W, ---, Wy, } a partition on D such that for any
1 <i< Ty, follows that a time-window W; contains the samples of some complete
cycles of signal u. Thus, the time-window W; contains W, complete cycles with
% X Weycie samples of a sample time Ty = Weyee X % x Tw seconds. Note that, W is a
set non-empty, its elements are disjoint and the union of its time-windows is W.

A Histogram of Oriented Gradients for Broken Bars Diagnosis 35

2.1 The Histogram of Oriented Gradients as a Feature Descriptor

The HOG is a feature descriptor, introduced by Dalal and Triggs, for the detection of
pedestrians in photographs [17] and later used for other object detection problems, as
the solutions disclosed by [18] and [19]. The HOG is a technique for describing the
original signal u through a histogram of the gradient direction. The gradient V(u) can
be computed by a simple difference schema, as follows:

v € D, [V(u)](x) = X1t D (1)

The gradient direction 0(V («)) at point x € D is expressed as an angle in intervals
of [0, 2] radians and can be computed, as follows:

Vx € D, [0(V(u))](x) = tan™' (V (u)) (2)

Then, each sample x € D contributes to the histogram with a value proportional to
its gradient magnitude that can obtained by:

Wx € D, [p(V(u))](x) = / V(u)’ 3)

The histogram is constructed for a small number np;,; of bins corresponding to
regular intervals of gradient direction. Besides that, a sample x localized in k-th bin can
contribute to two angle range in the histogram according to the distance ratio between
the bin angle center 0; and the sample angle [0(V(u))](x). This proportion is given as
follows:

(4)

CM@M%QPWWMMM—MH

Npins

Therefore, we compute a histogram HOG for each time-window W; € W as follows:

[HOG (u, W)](k) = Y " an(x)p(x), for k= 1,2, nying (5)

xeW;

where wy(x) is defined in Eq. (4) and p(x) is defined in Eq. (3).

3 The HOG-MLP Method for Broken Bars Detection

The proposed method is based on divide-to-conquer approach. The idea is to divide the
problem into sub-problems and then the sub-problem solutions are combined to give a
solution to the original problem. In this sense, our original problem is to classify broken
rotor bars through the stator current signal. So, we divide the stator current signal into
time-windows given by the partition W. Then, each time-window W; is classified
through a multilayer perceptron. Thus, we combine the results of the MLP into a single
classification through the bayesian classifier.

36 L. C. Silva et al.

The proposed method for the diagnosis of broken rotor bars consists of six stages
(see Fig. 1) which comprise: (i) Acquisition of stator current signal; (ii) Signal sim-
plification; (iii) Signal segmentation in cycles; (iv) Feature extraction; (v) Classification
of time-window; and (vi) Fault detection.

Induction Stator Signal Signal

motor : o . :
current simplification segmentation
acquisition (filtering) in cycles
“ Current

sensor Fault Classification of Feature
(cn detection [*— signalcycles |« extraction

r (ANN) (HOG)

Fig. 1. Squematic view for broken bars detection using HOG and MLP.

Acquisition of Stator Current Signal: A table representing the function
u:D CZ — R, is constructed from the stator current data. These data have been
collected from motor running at four distinct load torque conditions, i.e., the braking
system has been supplied with 40 V (slip = 0.66%), 50 V (slip = 0.077%), 60 V
(slip = 1%) and 70 V (slip = 1.16%), thus the motor was running at very low slip in all
cases (close to or lower than 1%). It is important to highlight that large motors usually
run at low slip even for rated load, and small motors often operate at below rated load
in many industrial applications. The slip s can be defined as the difference between the
flux speed Ns and the rotor speed Nr and is usually expressed as a percentage of
synchronous speed (Ns), i.e., s = % x 100%. The stator current was sampled at a
time of 10 s (i.e., Ty = 10 s), thus, considering the fundamental frequency of 60 Hz and
a sample frequency of 10 kHz.

Signal Simplification: After collecting the data from motor, the stator current was
filtered to reduce the noise and to contribute for signal processing in the time domain.
A Butterworth sixth order low pass filter was used in a cutoff frequency of 200 Hz,
since this value was able to extract the waveform distortion according to the rotor
failure. It is important to highlight that the distortion of the sinusoidal wave (stator
current) is greater in the presence of broken bars, since this failure produces harmonic
components with higher amplitudes (rotor slots harmonics).

Signal Segmentation in Cycles: As the sample time is 10 s, the fundamental fre-
quency is 60 Hz and sampled frequency is 10 kHz. Then, each sample time has 600
cycles and each cycle contains 167 samples. In addition, the partition W is constructed
in the following ways: either 600 time-windows of a single cycle each (i.e., Weyee = 1)
or 20 time-windows with 30 cycles each (i.e., Weye = 30).

Feature Extraction: The feature extraction was performed for each time-window of
partition W and thus it was constructed a set of feature vectors from a stator current
signals u, i.e., k(u) = {HOG(u, W;) : W; € W}. From the descriptors extracted from
the stator current signals we constructed the training and validation datasets, in which
6400 labeled examples were used for the training dataset.

A Histogram of Oriented Gradients for Broken Bars Diagnosis 37

Moreover, the datasets were constructed using balanced samples, that is, both
classes contain the same amount of samples. It is worth remembering that we have
constructed a pair training/validation dataset for each of our approach parameters that is
discussed in Sect. 4.

Classification of Time-Window: A typical MLP classifier is built to using a training
set S = {(pr,cx) € R™» x {0,1} : k=1,2,---,60 x Ty} of labeled feature vectors.
The features vector is given by HOG(u, W;) € k(u) of a time-window W; € W of a
stator current signal u into time-window of a healthy stator current signal (labeled “0”)
or time-window of an unhealthy stator current signal (labeled “17), i.e.,
MLB : R™» — {0,1}.

The ANN was trained with 37 input features extracted from HOG, using the
Levenberg-Marquardt algorithm and only one hidden layer was used in its topology.
The training error obtained for the MLP classifier is about 1.7 x 107> using the tra-
ditional k-fold-cross-validation (with k = 10) technique to evaluate the classifier
performance.

Fault Detection: The last stage comprises the combining each time-window classifi-
cation for the rotor fault detection. This procedure is performed using bayesian clas-
sifier. Thus, given a stator current signal u, we detected the rotor condition as follows:

Bayesian Classifier = failure, . i PO N () > Py = Olk(u))
non—failure, otherwise

failure, —if Py = 1}k(u)) > P(y = Olk(x))

non—failure, otherwise

Bayesian Classifier = { (6)

where the posterior probabilities P(y = 1|k(u)) > P(y = 0|k(u)) are designed using
MLP classifier as follows:

PO= 1) = Y T)

Xi€ k(u)

and P(y=0|k(u)) =1— P(y = 1]k(u)). The priori probabilities P(y=1) and
P(y = 0) are discussed in Sect. 4.

4 Experimental Results

As mentioned before, a current sensor (CT - current transform) was used to measure the
stator current from a 7.5 kW squirrel cage induction motor (rated speed = 1800 rpm).
This signal has been collected using a PC and an USB digital Oscilloscope Hantek,
model HT6022BE, with bandwidth in 20 MHz and maximum real-time sample rate of
48 MS/s. The data was collected from some tests performed at laboratory, considering
the motor running at rated frequency (60 Hz) and under distinct load levels. Figure 2
shows the experimental setup of the induction motor.

38 L. C. Silva et al.

-
Current sensor } 2000
T TN QRS T T 7Y

==

TR anse

Healthy rotor

o

Stator core

PC computer
(Data stored)

.‘

One broken bar

Rotor with one broken bar

Rotor with one broken bar

(a) Experimental setup (b) Healthy rotor and rotor with one broken bar

Fig. 2. (a) Experimental setup and (b) Two rotor conditions.

For experimental tests and rotor evaluation, the stator current data have been col-
lected from motor running at four distinct load torque conditions, i.e., the braking
system has been supplied with voltage equal to 40 V, 50 V, 60 V and 70 V. The stator
current was sampled at a sampled time of 10 s (i.e., Tg = 10 s). Thus, considering the
fundamental frequency of 60 Hz and a sample frequency of 10 kHz, each sampled time
has 600 cycles. The classification error and the accuracy were obtained using a 10-fold-
cross-validation, by considering some stator signal parameters variation. The perfor-
mance of the MLP classifier is better described as follows.

4.1 Analysis of Parameters for the Proposed Method

In this subsection we show an analysis based on receiver operating characteristic
(ROC) to find of the best parameters for ours approach. The parameters studied were
(1) the angle range of HOG, i.e., the parameter ny;,,; (2) the time-window length, i.e.,
the parameter W,,.; and (3) the threshold value for output classification.

We study the gradient directions used in the HOG and we realized that the angles
are in intervals of —90°, +90° giving a total of 37 angles. Thus, we analyzed the
parameter n;, varying of [1, 5] the quantity of angle by bin of HOG using a ROC
curve. Analogously, we analyzed the parameter W, for some time-window lengths.
Figure 3 shows respectively the ROC curve results for a time-window of only one
cycle and also for 30 cycles, according to the HOG bin angle variation.

o1 02 03 01 o5 o8 o7) 7] P) o1 oz [0 os o8 o7 02

(a) ROC Curve using W, = 1 (b) ROC Curve using Wy = 30

Fig. 3. Analysis of ROC curves to determine the better W, and ny;,, parameters.

A Histogram of Oriented Gradients for Broken Bars Diagnosis 39

It is possible to note that the ROC curves generated from a stator signal processed
with 30 cycles has demonstrated a better performance than those obtained for only one
cycle, even for distinct HOG angles, thus, in this paper the time-window of 30 cycles
(i.e., 0.5 s) was chosen for broken rotor bar detection using MLP classifier. As men-
tioned by [20], the more the ROC curve is to the upper left corner the better the
classifier performance is. Using the parameters selected, a typical bin angle distribution
for a healthy motor and a damaged rotor is shows in Fig. 4. It is possible to note some
HOG bin angle amplitudes variation according to the two classes conditions (healthy
and faulted rotor).

Amplitude of each bin angle

Healthy rotor Damaged rotor
Bin angle of HOG

Fig. 4. Typical HOG for a healthy motor and a damaged rotor.

4.2 Fault Detection Using HOG, MLP and Bayesian Approach

In this work, the HOG angle of 5° was chosen as the best value for histogram descriptor
distribution. It should be noted that, the MLP has been trained with 60 stator current
signals. In the previous section, the MLP topologies were trained to defined the best
parameters for rotor fault detection using HOG (threshold of sigmoid neuron is 0.7,
Npins = 37 and Weye. = 30). The input layer is related to the number of 7y, thus the
input of each MLP topology was built with 37 bin angles. In this paper, a single hidden
layer with 50 neurons was used for rotor fault detection.

Table 1 shows the results obtained for four load conditions of the rotor evaluation,
after applying MLP classifier. These results are true positive values (TP), false negative
(FN), true negative values (TN), false positive values (FP), specificity (SP), sensitivity
(SN) and accuracy for both learning and validation datasets. In this case, the experi-
ments numbered between 41 and 70 have been used for validation purposes.In the last
stage, the rotor fault detection was performed using time-window classification and
Bayesian classifier, as mentioned in Sect. 3.

40 L. C. Silva et al.

Table 1. Results for time-window classification after applying MLP classifier.

Load condition TP |FN |TN |FP |SP |SN |Samples | Experiments | Acc (%)
All loads (training data) | 3128 | 723137 | 63|0.98|0.97 | 6400 320 0.98
All loads (validation data) | 2129 | 271 | 2100 | 300 | 0.87 | 0.88 | 4800 240 0.88
40 V (validation data) 513| 87| 528 | 72/0.88|0.85| 1200 60 0.87
50 V (validation data) 537| 63| 529| 71/0.88|0.90| 1200 60 0.89
60 V (validation data) 556 | 44| 505| 95/0.84]0.93|1200 60 0.88
70 V (validation data) 591 9| 561| 39/0.93]0.98| 1200 60 0.96

For find the priori probabilities P(y = 1) and P(y =0) we performed a ROC
analysis and thus P(y = 1) = 0.5 was considered the best value for rotor condition
diagnosis. Table 2 show the classification (i.e., either faulted or a healthy condition for
rotor structure) of the experiments after applying the Bayesian classifier. For load
scenarios, i.e., by feeding the braking system of the induction motor between 40 V and
70 V, the MLP and Bayesian classifier were able to distinguish between a healthy rotor
and a damaged structure (one broken bar) in all cases (accuracy around 94%).

Table 2. Results for broken bars detection after MLP and Bayesian classification.

Load condition TP |FN|TN |FP|SP |SN |Samples | Experiments | Acc (%)
All loads (40 Vto 70 V) (112 |8 [114|6 | 0.93|0.95 4800 240 0.94
40V 2713 2911]0.96(0.90 1200 60 0.93
50 vV 291 291]0.97(0.97 1200 60 0.97
60 V 28 |2 27|13 10.93]0.93|1200 60 0.91
70V 2812 291]0.93(0.93 1200 60 0.95

5 Conclusions

This paper proposes a new approach for broken rotor bars detection in squirrel cage
induction motors, by using a histogram of oriented gradients (HOG). A HOG bin angle
variation was evaluated for a healthy motor and a damaged rotor with one broken bar,
using only stator current as a measurement signal from electrical machine. The
amplitude of each bin angle, after applying HOG on each time-window, has been used
as inputs for a Multilayer Perceptron Neural Network to detect fully broken rotor bars.
For better failure classification, a bayesian classifier was applied to detect each
experiment after time-window subset MLP evaluation. The experimental results have
shown a good accuracy (around 94%) for failure diagnosis, even when IM was running
at low load condition, thus at very low slip (close to 1%). Therefore, this time-domain
approach, using HOG instead of other frequency domain techniques, could be very
interesting for a rotor failure detection in the future. Further researches are going on to
better detect the broken bars for other load conditions and also to evaluate the fault
severity (more broken bars).

A Histogram of Oriented Gradients for Broken Bars Diagnosis 41

Acknowledgments. The authors would like to thank UNINOVE and FAPESP - Sao Paulo
Research Foundation (Process 2016/02547-5 and 2016/02525-1) by financial support.

References

10.

11.

12.

13.

14.

15.

16.

Zhang, P., Du, Y., Habetler, T.G., Lu, B.: A survey of condition monitoring and protection
methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 47, 3446 (2011)
Bonnett, A.H., Soukup, G.C.: Cause and analysis of stator and rotor failures in three-phase
squirrel-cage induction motors. IEEE Trans. Ind. Appl. 28, 921-937 (1992)

Thorsen, O.V., Dalva, M.: Failure identification and analysis for high-voltage induction
motors in the petrochemical industry. IEEE Trans. Ind. Appl. 35, 810-818 (1999)

Lee, S.B., et al.: Identification of false rotor fault indications produced by online MCSA for
medium-voltage induction machines. IEEE Trans. Ind. Appl. 52, 729-739 (2016)
Riera-Guasp, M., Cabanas, M.F., Antonino-Daviu, J.A., Pineda-Sanchez, M., Garcia, C.H.
R.: Influence of nonconsecutive bar breakages in motor current signature analysis for the
diagnosis of rotor faults in induction motors. IEEE Trans. Energy Convers. 25, 80-89 (2010)
Sizov, G.Y., Sayed-Ahmed, A., Yeh, C.-C., Demerdash, N.A.O.: Analysis and diagnostics
of adjacent and nonadjacent broken-rotor-bar faults in squirrel-cage induction machines.
IEEE Trans. Ind. Electron. 56, 4627-4641 (2009)

Puche-Panadero, R., et al.: Improved resolution of the MCSA method via Hilbert transform,
enabling the diagnosis of rotor asymmetries at very low slip. IEEE Trans. Energy Convers.
24, 52-59 (2009)

Xu, B., Sun, L., Xu, L., Xu, G.: Improvement of the Hilbert method via ESPRIT for
detecting rotor fault in induction motors at low slip. IEEE Trans. Energy Convers. 28, 225—
233 (2013)

Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., Kanovi¢,
7.: Low-cost diagnosis of rotor asymmetries in induction machines working at a very low
slip using the reduced envelope of the stator current. IEEE Trans. Energy Convers. 30,
1409-1419 (2015)

Valles-Novo, R., de Jesus Rangel-Magdaleno, J., Ramirez-Cortes, J.M., Peregrina-Barreto,
H., Morales-Caporal, R.: Empirical mode decomposition analysis for broken-bar detection
on squirrel cage induction motors. IEEE Trans. Instrum. Meas. 64, 1118-1128 (2015)
Dias, C.G., Chabu, LE.: Spectral analysis using a Hall effect sensor for diagnosing broken
bars in large induction motors. IEEE Trans. Instrum. Meas. 63, 2890-2902 (2014)
Sadeghian, A., Ye, Z., Wu, B.: Online detection of broken rotor bars in induction motors by
wavelet packet decomposition and artificial neural networks. IEEE Trans. Instrum. Meas. 58,
2253-2263 (2009)

Singh, H., Seera, M., Abdullah, M.Z.: Detection and diagnosis of broken rotor bars and
eccentricity faults in induction motors using the Fuzzy Min-Max neural network. In: The
2013 International Joint Conference on Neural Networks (IJCNN), pp. 1-5 (2013)
Carbajal-Hernandez, J.J., Sénchez-Fernandez, L.P., Landassuri-Moreno, V.M., de Jesus
Medel-Juarez, J.: Misalignment identification in induction motors using orbital pattern
analysis. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259,
pp. 50-58. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41827-3_7
Chandralekha, R., Jayanthi, D.: Diagnosis of Faults in Three Phase Induction Motor using
Neuro Fuzzy Logic. Int. J. Appl. Eng. Res. 11, 5735-5740 (2016)

Lei, Y.: Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating
Machinery. Butterworth-Heinemann (2016)

http://dx.doi.org/10.1007/978-3-642-41827-3_7

42

17.

18.

19.

20.

L. C. Silva et al.

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005,
vol. 1, pp. 886-893 (2005)

Yu, Y., Cao, H,, Liu, S., Yang, S., Bai, R.: Image-based damage recognition of wind turbine
blades. In: 2017 2nd International Conference on Advanced Robotics and Mechatronics
(ICARM), pp. 161-166 (2017)

Meng, L., Wang, Z., Fujikawa, Y., Oyanagi, S.: Detecting cracks on a concrete surface using
histogram of oriented gradients. In: 2015 International Conference on Advanced Mecha-
tronic Systems (ICAMechS), pp. 103-107 (2015)

Martin-Diaz, 1., et al.: An experimental comparative evaluation of machine learning
techniques for motor fault diagnosis under various operating conditions. IEEE Trans. Ind.
Appl. 54(3), 2215-2224 (2018)

®

Check for
updates

Learning Game by Profit Sharing Using
Convolutional Neural Network

Nobuaki Hasuike and Yuko Osana(®

Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo 192-0982, Japan
osana@stf.teu.ac.jp

Abstract. In this paper, Profit Sharing using convolutional neural net-
work is realized. In the proposed method, action value in Profit Sharing
is learned by convolutional neural network. This is a method that learns
the value function of Profit Sharing instead of the value function of Q
Learning used in the Deep Q-Network. By changing to an error func-
tion based on the value function of Profit Sharing which can acquire
probabilistic policy in a shorter time, the proposed method is able to
learn in a shorter time than the conventional Deep Q-Network. Com-
puter experiments were carried out on Asterix of Atari 2600, and the
proposed method was compared with the conventional Deep Q-Network.
As a result, we confirmed that the proposed method can learn from the
earlier stage than Deep Q-Network and can obtain higher score finally.

Keywords: Profit Sharing - Convolutional neural network

1 Introduction

In recent years, as a method which shows better performance than the conven-
tional method in the field of image recognition and speech recognition, the deep
learning has been drawing attention. Deep learning is a hierarchical neural net-
work with many layers, and the Convolutional Neural Network (CNN) [1] is one
of the representative models.

On the other hand, various studies on reinforcement learning are being con-
ducted as learning methods to acquire appropriate policies through interaction
with the environment [2]. In reinforcement learning, learning can proceed by
repeating trial and error even in an unknown environment by appropriately set-
ting rewards.

The Deep Q-Network [5] is based on the convolutional neural network which
is a representative method of deep learning and the Q Learning [4] which is a
representative method of reinforcement learning. In the Deep Q-Network, when
the game screen (observation) is given as an input to the convolutional neural
network, the action value in Q Learning for each action is output. This method
can realize learning that acquires a score equal to or higher than that of a human
in plural games. The combination of deep learning and reinforcement learning
is called Deep Reinforcement Learning, most of which is based on Q Learning.

© Springer Nature Switzerland AG 2018
V. Kuarkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 43-50, 2018.
https://doi.org/10.1007/978-3-030-01418-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_5&domain=pdf

44 N. Hasuike and Y. Osana

As a deep reinforcement learning using a method other than Q Learning, we
have proposed a Deep Q-Network using reward distribution [6]. This method
learns to not take wrong actions, by distributing negative rewards in the same
way as Profit Sharing [3]. Although this method can perform learning with the
same degree of precision and speed as Deep Q-Network, it shows that the score
that can be finally obtained is same level as Deep Q-Network.

In this paper, we propose a Profit Sharing using convolutional neural network.
In the proposed method, action value in Profit Sharing is learned by convolu-
tional neural network. This is a method that learns the value function of Profit
Sharing instead of the value function of Q Learning used in the Deep Q-Network.
By changing to an error function based on the value function of Profit Sharing
which can acquire probabilistic policy in a shorter time, the proposed method
is able to learn in a shorter time than the conventional Deep Q-Network. Com-
puter experiments were carried out on Asterix of Atari 2600, and the proposed
method was compared with the conventional Deep Q-Network. As a result, we
confirmed that the proposed method can learn from the earlier stage than Deep
Q-Network and can obtain higher score finally.

2 Deep Q-Network

Here, we explain the Deep Q-Network [5] that is the basis of the proposed
method. The Deep Q-Network is based on the convolutional neural network [1]
and the Q Learning [4]. In the Deep Q-Network, when the game screen (observa-
tion) is given as an input to the convolutional neural network, the action value
in Q Learning for each action is output. This method can realize learning that
acquires a score equal to or higher than that of a human in plural games.

2.1 Structure

The structure of Deep Q-Network is shown in Fig. 1. As seen in Fig. 1, the Deep
Q-Network is a model based on the convolutional neural network, consisting
of three convolution layers and two fully connected layers. The play screen of
the game (observation) is input to the convolutional neural network, and the
action value for each action corresponding to the observation is outputted. For
the first to fourth layers, rectified linear function is used as an output function.
The number of neurons in the last finally connected layer which is the output
layer is the same as the number of actions that can be taken in the problem to
be handled. Since the problem learned by Deep Q-Network can be regarded as
a regression problem to learn the relationship between each observation and the
action value of each action in the observation, the output function of the output
layer is an identity mapping function.

Learning Game by Profit Sharing Using Convolutional Neural Network 45

2.2 Learning

Since the action value in Q Learning is used as the output, the following error
function used in learning is given by

2
B=g (ret s alored) = alorar) 1)

a’'€C4(0r41)

where 7, is the reward at the time 7, C“*(0,,1) is the set of actions that an
agent can take at the observation 0,41, 7 is the discount factor, ¢(o,,a,) is the
value of taking action a, at observation o.

When the game screen o, is given to the Deep Q-Network, the value of
all actions in observation o, is output in the output layer. Based on the out-
put action value, action is determined by the e-greedy method. In the e-greedy
method, one action is selected randomly with the probability ¢ (0 <e < 1), the
action whose value is highest with the probability of 1 —e.

The probability to select the action a in observation o,, P(o,,a) is given by

(1—¢)+ |;—A‘ (if a = argmax ¢(or, a’)>

a’'eCA
(otherwise)

P(os,a) =
|C4]
(2)

where, |C4| is the number of action types that the agent can take, which is the
same as the number of neurons in the output layer of the Deep Q-Network.

The selected action a, is executed, and the state transits to the next state
0 taut1- Also, by taking the action a,, the reward r, is given based on the score,
game state and so on.

Learning is unstable merely by approximating the action value of Q Learning
using the convolutional neural network, so in the learning of the Deep Q-Network,
some ideas called Experience Replay, Fixed Target Q-Network, Reward Clipping
are introduced.

Observation
Convolu!on Layer
Convolu!on Layer
Convolut*lon Layer

‘ Fully Conn:cted Layer ‘
‘ Fully Conn:cted Layer ‘
Actlo!Value
(Q Learning)

Fig. 1. Structure of Deep Q-Network.

46 N. Hasuike and Y. Osana

3 Profit Sharing Using Convolutional Neural Network

Here, the proposed Profit Sharing using Convolutional Neural Network is
explained.

3.1 Outline

In the proposed method, action value in Profit Sharing is learned by convolu-
tional neural network. This is a method that learns the value function of Profit
Sharing instead of the value function of Q Learning used in the Deep Q-Network.
By changing to an error function based on the value function of Profit Sharing
which can acquire probabilistic policy in a shorter time, the proposed method
is able to learn in a shorter time than the conventional Deep Q-Network. How-
ever, in the Profit Sharing, since temporally continuous data is meaningful in
episodes, experience replay used in the Deep Q-Network is not used in the pro-
posed method. The Q Learning uses fixed target Q-Network because the value
of other rules is also used when updating the value of the rule. In contrast, the
Profit Sharing uses the value of the rule included in the episode in updating the
connection weights. Therefore, the proposed method does not use fixed target
Q-Network.

3.2 Structure

The structure of the convolutional neural network used in the proposed method
is shown in Fig. 2. As similar as the conventional Deep Q-Network, the convolu-
tional neural network used in the proposed method consists of three convolution
layers and two full-connected layers. The input to the convolutional neural net-
work is the play screen of the game. The output of the convolutional neural
network is value of each action for that state.

Observation
Convolu!on Layer
Convolu!on Layer
Convolutfon Layer

‘ Fully Conntcted Layer ‘
‘ Fully Conntcted Layer ‘
Actlo!VaIue
(Profit Sharing)

Fig. 2. Structure of convolutional neural network used in proposed method.

Learning Game by Profit Sharing Using Convolutional Neural Network 47

3.3 Learning

In the proposed method, the convolutional neural network learns to output the
value of each action corresponding to the play screen of the game (observation)
which is given as input. Here, the action value is updated based on the Profit
Sharing. So, the error function F is given by

1
E = o9 (r-F(7) — q(oT,aT))Q (3)
where r is reward, ¢(o,,a;) is the value of taking action a, at observation o,.

F(7) is the reinforcement function at the time 7 and is given by

1

O ey

(4)

where C4 is the set of actions that an agent can take at the observation, |C4|
is the number of actions that an agent can take, W is the length of an episode.

The action is selected based using the e-greedy as similar as the conventional
Deep Q-Network.

4 Computer Experiment Results

To demonstrate the effectiveness of the proposed method, computer experiments
were conducted on a game of Atari 2600 (Asterix). The results are shown below.

4.1 Task

Asterix is an action game shown in Fig. 3. A player can operate own machine up
and down, left and right. From the left and right of the screen, jars and harps
fly. You can score 50 points by taking a jar. Taking the harp will reduce the
remaining machines. At the start of the game, there are three machines. When
the remaining machine runs out, the game ends. The score of the game is the
sum of the scores acquired by the end of the game.

The actions of the agent are five kinds of movement; moving to up, down, left
and right, and not moving. The agent gets a positive reward (1) when it gains
score. In addition, the agent acquires a negative reward (—1) when a remaining
machine decreases.

4.2 Experimental Conditions

Table 1 shows the conditions for the convolutional neural network used in the
proposed method and the conventional Deep Q-Network. The game screen used
in this research is an RGB image of 400 x 500. In the experiment, the RGB image
is grayscaled, reduced to 84 x 84 pixels, and an image grouped for 4 frames is
used as input.

48 N. Hasuike and Y. Osana

Fig. 3. Asterix.

Table 2 shows other conditions related to learning. An action is selected by
e-greedy. At the start of learning, ¢ is set to 1 so that actions are randomly
selected. After that, ¢ is decreased until it becomes 1/10° every action (one
step). The agent gradually emphasizes the action value and selects an action.

In the proposed method, since Profit Sharing is used, as the length of the
episode becomes longer, the value of the denominator on the right side of Eq. (4)
becomes too large and the reward can not be distributed sufficiently. Therefore,
only five steps before acquisition of the score are regarded as episodes.

4.3 Transition of Obtained Scores

Here, a game of atari 2600 (Asterix) are learned by the proposed Profit Sharing
using convolutional neural network, and we compared the transition of the score
with the conventional Deep Q-Network.

Figure 4 shows the transition of obtained scores in each method. This figure
is the average of scores every 50 thousand times.

Table 1. Experimental conditions (1).

Filter size|Stride | Output size Output function
Input - - 84 X 84 x 4 -
Convolution layer 1 8 x 8 4 20 X 20 x 32 ReLU
Convolution layer 2 4 x4 2 9 %X 9 Xx 64 ReLU
Convolution layer 3 3x3 1 7TX7Xx64 ReLU
Full-connected layer 1|— - 512 ReLU

Full-connected layer 2| — - 5 (the number of actions) | Identity function

Learning Game by Profit Sharing Using Convolutional Neural Network 49

Table 2. Experimental conditions (2)

The number of learning steps 1.0 x 107
Initial value of € Eini 1
Decrease amount of € Er 1 / 108
Minimum of & Emin 0.1

€ in evaluation episodes e’ 0.05

Size of replay memory Dinas | 108

Size of mini batch M 32
Discount Rate o1 0.99
Update interval of target network | Thypdate 10*

M Propcsed Method

- ;.) } ‘W“))
I |N~i w‘“ M‘ f\ f'\\\
,m,”w '

Score

AN

Conventional Deep Q-Network

L . |
0 2000000 4000000 6000000 8000000 1000000
The Number of Steps

Fig. 4. Transition of obtained scores.

Asterix is a problem which is considered to be difficult to learn on the con-
ventional Deep Q-Network, and the acquired score is not stable up to 5 million
steps. However, after that, the acquired score rises, and the average score of
acquisition at 10 million steps is about 90 points. In the proposed method, the
score increases up to the first 5 million steps, and after that, it is able to obtain
a high score stably. € in the e-greedy method is set to be the minimum value
(0.1) at the time of 5 million steps. Considering that the score is stable in both
methods after 5 million steps, we think that it may be possible that the progress
of learning may change by changing the way of decreasing €. According to the
result of Fig.4, we confirmed that learning can be done from the earlier stage
than the conventional Deep Q-Network in the proposed method and the score
obtained finally becomes high.

5 Conclusions

In this paper, we have proposed the Profit Sharing using convolutional neural
network. In the proposed method, action value in Profit Sharing is learned by

50 N. Hasuike and Y. Osana

convolutional neural network. This is a method that learns the value function of
Profit Sharing instead of the value function of Q Learning used in the Deep Q-
Network. By changing to an error function based on the value function of Profit
Sharing which can acquire probabilistic policy in a shorter time, the proposed
method is able to learn in a shorter time than the conventional Deep Q-Network.

Computer experiments were carried out on Asterix of Atari 2600, and the
proposed method was compared with the conventional Deep Q-Network. As a
result, we confirmed that the proposed method can learn from the earlier stage
than Deep Q-Network and can obtain higher score finally.

References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

3. Grefenstette, J.J.: Credit assignment in rule discovery systems based on genetic
algorithms. Mach. Learn. 3, 225-245 (1988)

4. Watkins, C.J.C.H., Dayan, P.: Technical note: Q-learning. Mach. Learn. 8, 55-68
(1992)

5. Mnih, V.: Human-level control through deep reinforcement learning. Nature 518,
529-533 (2015)

6. Nakaya, Y., Osana, Y.: Deep Q-network using reward distribution. In: Rutkowski,
L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M.
(eds.) ICAISC 2018. LNCS (LNATI), vol. 10841, pp. 160-169. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91253-0_16

https://doi.org/10.1007/978-3-319-91253-0_16

q

Check for
updates

Detection of Fingerprint Alterations Using
Deep Convolutional Neural Networks

Yahaya Isah Shehul(@), Ariel Ruiz—GarCial, Vasile Paladel,
and Anne James’

' Faculty of Engineering, Environment and Computing, Coventry University,
Priory Street, Coventry CV1 5FB, UK
{shehuy2, ariel. ruiz-garcia,
vasile. palade}@coventry. ac.uk
2 Faculty of Science and Technology, Nottingham Trent University,
Clifton Campus, Nottingham NG11 8NS, UK
anne. james@ntu. ac. uk

Abstract. Fingerprint alteration is a challenge that poses enormous security
risks. As a result, many research efforts in the scientific community have
attempted to address this issue. However, non-existence of publicly available
datasets that contain obfuscation and distortion of fingerprints makes it difficult
to identify the type of alteration. In this work we present the publicly available
Sokoto-Coventry Fingerprints Dataset (SOCOFing), which provides ten fin-
gerprints for 600 different subjects, as well as gender, hand and finger name for
each image, among other unique characteristics. We also provide a total of
55,249 images with three levels of alteration for Z-cut, obliteration and central
rotation synthetic alterations, which are the most common types of obfuscation
and distortion. In addition, this paper proposes a Convolutional Neural Network
(CNN) to identify these alterations. The proposed CNN model achieves a
classification accuracy rate of 98.55%. Results are also compared with a residual
CNN model pre-trained on ImageNet, which produces an accuracy of 99.88%.

Keywords: Central rotation - Convolutional neural networks - Distortion
Fingerprint alteration - Obfuscation - Obliteration - Z-cut

1 Introduction

The field of forensic science is the use of applied science and technical approaches to
provide answers to issues in criminal, civil and administrative law. Fingerprints can be
altered through abrading [1], cutting [2], burning [3] and distortions, such as skin
grafting [4], where an unusual and unnatural change in the patterns of the friction ridge
occurs. The most common alteration types are in the form of Z-cut, central rotation and
obliteration. In this paper, we present a novel fingerprint dataset with unique attributes,
such as gender, finger type (like index finger, thumb, ring finger, middle finger and
little finger) for both left and right hand of the subject, respectively. Furthermore, we
present preliminary experimental results on the detection of the alteration type using a
deep CNN and a residual CNN model. The two presented models classify the

© Springer Nature Switzerland AG 2018
V. Kirkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 51-60, 2018.
https://doi.org/10.1007/978-3-030-01418-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_6&domain=pdf

52 Y. L. Shehu et al.

fingerprint images into Z-cut, central rotation, obliteration and real, i.e. non-altered
fingerprint. The real fingerprints from our SOCOFing dataset [5], with a total number
of 6000 fingerprints from 600 subjects, were synthetically altered to central rotation, Z-
cut and obliteration, which are the common types of alteration, resulting in a total of
55249 altered fingerprints. The SOCOFing dataset is publically available for replication
and further experimental research work with the sole aim of improving upon the
security of biometric fingerprints, such that criminals in the watch list could be iden-
tified and apprehended even if their fingerprints have been altered.

2 Related Works

Boarder Control is one of the major beneficiaries of biometrics, where fingerprints are
used to detect and recognise individuals. Those that are having past criminal records
and those that have committed high profile crimes used to undergo certain alterations of
their fingerprints to avoid detection, especially in refugee and asylum seeker camps [6].
Such mutilations come in either burning the fingers or using surgery to cut some part of
the fingers or body and place them onto another finger (‘grafting), some come in a Z-
shape, rotated centrally or obliterated, just to evade detection or linking the individual
with their past [6]. Fingerprints of a little proportion of visitors visiting foreign
countries are matched against a database of well-known criminals or terrorists. Bio-
metrics has helped in identifying and apprehending over 1600 wanted individuals for
felony crimes [7]. This is a sign that those wanting to hide their identity in pursuit of
their criminal motives may alter their fingerprints in order to break border and enter into
any country without their true identity being detected. However, it is essential to detect
such alteration types and link the altered fingerprint images to their original ones.
Furthermore, determining the alteration type is an essential first step to reveal a sub-
jects’ identity.

Fingerprints can be obliterated or mutilated to systematically evade identification
by the biometric system [2]. Fingerprint can as well be altered or grafted to various
patterns, shapes, sizes, via surgical operation which comes in either a Z-cut or central
rotation. Other types of alteration can be achieved by burning the fingerprints ‘oblit-
eration’, which in turn changes the fingerprint patterns that the biometric system uses to
match and identify individuals based on what was previously stored as the original
fingerprint [8]. Various software application and hardware solutions are proposed [9,
10] to tackle this situation. However, the authors focus on spoofing and distortion by
rotating fingers on the scanner. Obfuscation is the purposeful exertion of an individual
of concealing their identity by altering ridge patterns of their fingerprint [3]. Generally
the alterations are categorised into three fundamental classes in view of the changes
made to the ridge patterns of the fingerprint (i) obliteration or decimation (ii) distortion
or bending and (iii) imitation or impersonation of fingerprint [3]. The most common
alteration types based on the examination of ridge patterns presented by [3] are
obliteration and distortion, which make up 89% and 10% of such alterations, respec-
tively, whereas only 1% is reported as imitation. This shows that most of the alterations
are either obliteration or distortion, which we seek to address in this paper. In [3], the
proposed algorithm and reported technique identify and detect such fingerprint

Detection of Fingerprint Alterations Using Deep CNN 53

alterations with an accuracy of 66.4%. They also emphasize on the lack of public
available databases that comprise obliterated and distorted fingerprints, to be used for
experimentation purposes to improve upon the detection alteration algorithms. The
datasets used by the authors in [3] is not publically available as it is highly secured due
to the sensitivity of the data and is mostly owned by law enforcement agency. This
makes it difficult for the research community to proffer better solutions and robust
detection or matching algorithms that can detect with high accuracy.

The authors in [11], proposed various methods to generate synthetically altered
fingerprint images, which also include a variety of noise such as scar or blurring in
order to create a more realistic fingerprints. The authors utilised these dataset to
develop a framework for detection or matching of altered fingerprints, where the
alterations are obliteration, central rotation and Z-cut. The authors of [2] focused on the
position of the alteration which is often chosen at random, since the main objective is to
avoid being identified [2]. This alteration can be achieved by a publically available tool
proposed by [12]; SynThetic fingeRprint AlteratioNs GEnerator (STRANGE).

Based on previous studies in the area of fingerprints alteration, analysis and
detection, significant gap in knowledge was identified. In Yoon et al. (2012), a case
study compilation with automatic detection, classification and evaluation of altered
fingerprints is done with the view of reducing the number of individual wanting to
evade identification. This study extends [3] in determining alteration types automati-
cally as well as introducing a new fingerprint dataset comprising real fingerprints and
altered fingerprints for experimental purposes and replication of other academic
researches on fingerprint alteration detection algorithms. The dataset also has some
attributes that can open more research avenues due to its uniqueness in identifying
gender, fingers name and either a left hand or a right hand, which has received little or
no attention in the past. These form the current research contribution to addressing
alterations of fingerprints, using the specific sets of fingerprints dataset in addition to
determining the alteration type.

3 Dataset

SOCOFing dataset comprises a total of 6,000 real fingerprints collected from 600
subjects, are provided for experimental and other academic research purposes. We used
the STRANGE tool to alter fingerprints by applying Easy, Medium, and Hard settings
according to a quality threshold during fingerprint comparison [11]. The quality
threshold is determined by the image resolution which by default is set to 500 dbi.
These categories are parameters that are tuned according to the performance drop
during fingerprint comparison. Furthermore, each category mentioned above is divided
into three types of synthetic alteration, i.e. obliteration, central rotation and Z-cut. Each
image will have three types of alteration in the three categories; hence each image was
presented with nine altered images.

The dataset is divided into altered and real fingerprints. A total of 5977 real fin-
gerprints are altered using easy parameter setting while 5689 real fingerprints are
altered as medium and finally a total of 4758 fingerprints real images are altered with
hard parameter settings. Each of the three real fingerprint parameter settings produced

54 Y. I. Shehu et al.

three types of alteration: obliteration, central rotation and Z-cut. For instance 5977 real
images produced 5977 obliterated fingerprints, 5977 central rotation and 5977 Z-cut
alteration. This means that for 5977 real fingerprints there is going to be 17931 altered
fingerprints presented as fake in easy category. Likewise in medium category a total
number of 17067 are presented as altered and, finally, 14274 fingerprints are altered in
the hard category. However, for the purpose of training and testing of the convolutional
model, the alteration types of the fingerprint images are combined together irrespective
of the settings. A total of 55249 fingerprint images were randomly divided into 50%
training set and 50% testing set. Note that the STRANGE tool did not find some
fingerprint images fit for alterations with specific parameters; hence the altered images
for each category are less than the total number of real images. Figure 1 below shows a
sample of real fingerprint from a left hand of one subject.

Fig. 1. Sample of real left hand of one subject.

After applying the STRANGE tool for the three types of alterations, Fig. 2 below
displays the altered fingerprint of the left hand of the same subject in Fig. 1.

Fig. 2. Sample of altered left hand fingerprint into Z-cut, obliteration and central rotation,
respectively, of the same subject.

4 Methodology and Experimental Setup

In this paper, we propose a deep CNN for feature extraction and classification. Deep
CNNs have proven to be efficient in image processing related tasks and, therefore, are
suitable for detecting fingerprints alteration types. We train and evaluate this model on
the real and synthetically altered images of the SOCOFing dataset described above.

Detection of Fingerprint Alterations Using Deep CNN 55

Each class, including real images, is randomly split into 50% training and 50% testing
subsets. The images are also resized to 200 x 200 using bipolar interpolation.

4.1 Convolutional Neural Network Model

Convolutional neural networks retain spatial information through filter kernels. In this
work, we exploit this unique ability of CNNss to train a model to classify images from
the SOCOFing into four categories: central rotation, obliteration, Z-cut and real, where
real images are those without any alteration.

The deep CNN model has five convolutional layers with 20 3 x 3, 40 3 x 3, 60
3 x 3, 80 3 x 3 filter kernels. All convolutional layers use a stride of one and zero
padding of size two. Moreover, the output of every convolutional layer is shaped by a
rectifier linear unit (ReLU) function. Max pooling is applied to the first three convo-
lutional layers for dimensionality reduction. The convolutional layers are followed by
two fully connected layers with 1000 and 100 hidden units, respectively. Furthermore,
we employ batch normalization to standardize the distribution of each input feature
across all the layers and thus speed up training and avoid exploding gradients [13].

The deep CNN is trained using stochastic gradient decent (SGD) and with Nesterov
momentum of 0.5. We trained on min-batches of size 70 and set the learning rate, LR,
to 0.01. LR was decayed with a factor of 0.01 according to:

2
= wx0 (M)

where 4 denotes the initial LR, o the decay factor and 6 the current epoch. The loss is
defined by a SoftMax operator and the cross-entropy y is determined according to:

y = —x.+ log (Z, exp(xj)) (2)

where c is the class ground-truth. Training was done for 100 epochs as further training
led to overfitting.

4.2 Residual Convolutional Neural Network Model

Residual Neural Networks (ResNets) have demonstrated to be exceptionally effective
models on image classification [14]. ResNets have an identity shortcut connection that
allows for very deep architectures to be trained and, therefore, more complex features
to be learned, leading to improved classification performance. For this reason we
decided to compare our model with a ResNetl8, that is, with 18 parametrized con-
volutional layers, provided by [15, 16].

This network was originally trained and evaluated on ImageNet [17]. The authors
also provide deeper architectures, of up to 200 layers, pre-trained on the same dataset.
However, because fingerprint images have a relatively smaller number of features and
the nature of the problem being addressed here is not as complex as classifying Ima-
geNet which has 1000 classes, we did not consider deeper architectures.

56 Y. L. Shehu et al.

The ResNetl8 model is fine-tuned on the training subset of the SOCOFing pre-
sented in this paper for only 5 epochs. No modifications were done to the network other
than the replacement of the output layer to only predict four classes. Training was also
done using SGD, a Nesterov momentum of 0.75 and a learning rate of 0.001. This
ResNet model is then evaluated on the test subset.

5 Results and Discussion

The confusion matrices below show the total number of each alteration types detected
and also the number of fingerprint images misclassified. The results are presented in
Tables 1 and 2 with the three types of alteration, the real fingerprint images and the
percentage accuracy of the detection of the alteration types.

Table 1. Confusion matrix of our CNN.

Central rotation | Obliteration | Real |Z-cut | Accuracy (%)
7995 33 0 183 97.37

19 8148 0 44 99.23

0 0 2988 |0 100

116 6 0 8089 98.51
98.34% 99.52% 100% | 97.27% | 98.55

Table 2. Confusion Matrix of the pre-trained and fine-tuned ResNet18.

Central rotation | Obliteration | Real Z-cut | Accuracy (%)
8206 1 1 3 99.94
0 8195 15 1 99.81
0 0 2986 2 99.93
4 0 11 8196 99.82
99.95% 99.98% 99.10% | 99.93% | 99.86

As indicated in Table 1, 2988 cases of real fingerprint images are correctly clas-
sified as real fingerprints. The proposed model was able to detect and classify 100% of
the entire real fingerprints correctly. However, 98.55% of the overall predictions across
all four classes are correct. In addition, 183 altered fingerprint images in central rotation
are mixed up with Z-cut alteration and 116 Z-cut altered fingerprint images are mixed
up as central rotation. This can be explained because some of the angles in the
parameter setting of the tool used rotate the altered part of the images in a similar
pattern coupled with the ridges pattern, radial and ulnar loop. Radial loop is a loop that
comes from the side of the thumb and looped out to the pinky side of the hand, while
ulnar is the opposite, i.e., from the pinky side of the hand towards the thumb of the
fingerprint images [18]. These angle rotation contributed to the misclassification of the
alteration between the central rotation and Z-cut, which results in getting a high number

Detection of Fingerprint Alterations Using Deep CNN 57

of up to 183 and 116 altered fingerprint images presented as Z-cut and central rotation,
respectively.

Table 2 shows the pre-trained confusion matrix for the ResNet-18 model that
achieves a global accuracy of 99.86%. It misclassifies two real fingerprint images as Z-
cut, while the proposed CNN model classifies all the real fingerprint images correctly.
Furthermore, 15 of the obliterated fingerprint images are misclassifies as real, while 11
Z-cut altered fingerprint are also misclassifies as real. This may be because some of the
real images are not of good quality and appear as obliteration. However, some loop
ridges in the fingerprint when rotated to some certain degrees might result into some
pattern changes that might look like Z-cut shape, hence classify them as Z-cut. In
addition, there exist some natural cut in some of the fingerprints, which the models
equally detect as a Z-cut shown in Fig. 3 central rotation classified as Z-cut. Some
fingerprints also appeared to look blurring and haze, which the model classified as
obliteration, indicated in Fig. 4 where central rotation are misclassified as obliteration.
Figure 5 shows altered Z-cut fingerprint classified as obliteration because of the
blurring defect of the real fingerprint at the top most of the images. As some of the
images are from female fingers, we cannot also ruled out the possibility of them
wearing henna as shown in the last image of Fig. 5.

Evaluating the confusion matrixes above, we found that the accuracy rate of central
rotation is 97.37% and 99.94% of the pre-trained model. This shows that the pre-
trained model performs better in terms of detecting altered images with central rotation
alteration type. Likewise, it also does better in the recall, with 99.95% against 98.34%.
The pre-trained ResNet-18 model performs better in almost all the categories. How-
ever, even though the detection accuracy is high on real images, with a precision of
99.93% and recall of 99.10%, the CNN model we proposed does better with 100%
detection for both precision and recall scores.

The two CNN models achieved a high accuracy in the classification of altered
fingerprint. Nevertheless, some images are still misclassified, particularly the altered
fingerprint images.

Fig. 4. Central rotation misclassified as obliteration.

58 Y. L. Shehu et al.

Fig. 5. Z-cut misclassified as obliteration.

From the misclassified fingerprints illustrated in Figs. 3 and 4, we can see that the
easy alteration category fingerprints are misclassified more by the CNN model because
they physically appeared with little proportion of the fingerprints altered, then followed
by the medium category. The hard category fingerprints are less misclassified unless in
the case of patterns rotational degrees that mixed central rotation with Z-cut.

Selvarani et al. [19] use singular points to distinguish between real fingerprints and
altered ones, by extracting sets of features from the ridge orientation field of an input
fingerprint and then apply a fuzzy classifier to classify it into real or altered ‘Z-cut’.
Similarly, [20, 21] introduced a classifier that detects altered fingerprint images with Z-
cut and central rotation only using extracted features and a support vector classifier.
This was tested using synthetic fingerprints and achieved 92% accuracy above the well-
known fingerprint quality software, NFIQ, as it only recognised 20% of the altered
fingerprints. We cannot therefore provide a comparison on other alterations, since, to
the best of our knowledge, no prior work has been done on detecting these three types
of alterations together.

One of the main advantages of the deep CNN proposed in this work is that the
ResNet18 was pre-trained on the ImageNet dataset, which has over one million images
spanning over 100 classes, compared to our model, which was only trained on our
dataset and for only 100 epochs. Our model also has a significantly smaller number of
convolutional layers, and thus an exponentially smaller number of hyperparameters.
Moreover, because the CNN proposed here has a precision and recall rate of 100% on
real images, it can be more suitable for use in applications where detecting whether a
fingerprint has been altered or not is most important. Furthermore, the performance of
the ResNet models provided by [15] heavily relies on the image pre-processing steps,
such as aspect ratio resizing and luminance adjustments.

6 Conclusion

Fingerprint alteration detection is still an issue that requires more attention in detecting
and identifying altered fingerprints. In this paper, we have introduced a novel finger-
prints dataset, SOCOFing, for wider research accessibility. We highlighted the
importance of fingerprint alteration research and the need for digital automatic detec-
tion of altered fingerprints. We also discussed the most common types of obfuscation
and distortion: central rotation, obliteration and Z-cut. The presented dataset includes
three different levels of alterations for each one of these types. Furthermore, the novel
dataset presented in this paper has a number of unique attributes, such as the name of
the fingers, which hand does the fingers belong to as well as the gender of the

Detection of Fingerprint Alterations Using Deep CNN 59

fingerprint owner. We have also proposed a CNN model that is not only able to detect
whether a fingerprint has been altered or not but also detect the type of alteration. The
proposed CNN achieved an accuracy rate of 98.55% on the testing subset of the
SOCOFing dataset. This was compared against a ResNetl8 model pre-trained on
ImageNet and fine-tuned and tested on our dataset, achieving a state-of-the-art accuracy
rate of 99.86%. One of the main differences in performance for our model and the
ResNet18 model was that even though the ResNetl18 slightly outperformed our model,
our model achieved a precision and recall rate of 100% on real images, thus it can be
more suitable for real-time applications.

To the best of the authors’ knowledge, no prior work has addressed these three
types of alterations. However, one of the limitations of this work is that the proposed
CNN was evaluated on synthetically altered images due to the lack of publicly
available datasets containing actual altered images. Nonetheless, we hope that the
results presented in this work can serve as a benchmark in identifying fingerprint
alterations and that the novel presented dataset can assist the research community in
developing more robust biometric fingerprint technology for the automatic detection of
altered fingerprints.

Future work will also investigate the reasons why the ResNet18 model confuses
non-altered fingerprints with altered ones. Moreover, we will also test our model on
different datasets, with different alteration types, to see if it retains 100% precision and
recall rates on real images.

References

1. Burks Jr., J.W.: The effect of dermabrasion on fingerprints. AMA Arch. Dermatol. 77, 8-11
(1958)

2. Cummins, H.: Attempts to alter and obliterate finger-prints. Am. Inst. Crim. L. & Criminol.
25, 982 (1934)

3. Yoon, S., Feng, J., Jain, A.K.: Altered fingerprints: analysis and detection. IEEE Trans.
Pattern Anal. Mach. Intell. 34(3), 451-464 (2012)

4. Wertheim, K.: An extreme case of fingerprint mutilation. J. Forensic Identif. 48(4), 466
(1998)

5. Shehu, Y.L, Ruiz-Garcia, A., Palade, V., James, A.: Sokoto coventry fingerprint dataset.
arXiv preprint arXiv:1807.10609 (2018)

6. Petrovici, A.: Simulating alteration on fingerprint images. In: IEEE Workshop on Biometric
Measurements and Systems for Security and Medical Applications, BIOMS, pp. 1-5. IEEE,
September 2012

7. Salter, M.B.: Passports, mobility, and security: how smart can the border be? Int. Stud.
Perspect. 5(1), 71-91 (2004)

8. Feng, J., Jain, AK., Ross, A.: Detecting altered fingerprints. In: 20th International
Conference on Pattern Recognition, ICPR, pp. 1622-1625. IEEE, August 2010

9. Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: Fake finger detection by skin distortion
analysis. IEEE Trans. Inf. Forensics Secur. 1(3), 360-373 (2006)

10. Nixon, K.A., Rowe, R.K.: Multispectral fingerprint imaging for spoof detection. In:
Biometric Technology for Human Identification II, vol. 5779, pp. 214-226. International
Society for Optics and Photonics, March 2005

http://arxiv.org/abs/1807.10609

60

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Y. L. Shehu et al.

Papi, S., Ferrara, M., Maltoni, D., Anthonioz, A.: On the generation of synthetic fingerprint
alterations. In: International Conference of the Biometrics Special Interest Group, BIOSIG,
pp. 1-6. IEEE, September 2016

Biolab.csr.unibo.it: Biometric System Laboratory (2018). http://biolab.csr.unibo.it/research.
asp?organize=Activities&select=&selObj=211&pathSubj=111%7C%7C21%7C%TC211&
R eq=&. Accessed 3 Apr 2018

Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

Szegedy, C., loffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the
impact of residual connections on learning. In: AAAIL vol. 4, p. 12, February 2017

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770—
778 (2016)

Facebook: facebook/fb.resnet.torch (2018). https://github.com/facebook/fb.resnet.torch.
Accessed 29 Apr 2018

Krizhevsky, A., Sutskever, L., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097-1105
(2012)

Maio, D., Maltoni, D.: A structural approach to fingerprint classification. In: Proceedings of
the 13th International Conference on Pattern Recognition, vol. 3, pp. 578-585. IEEE,
August 1996

Selvarani, S.M.C.A., Jebapriya, S., Mary, R.S.: Automatic identification and detection of
altered fingerprints. In: 2014 International Conference on Intelligent Computing Applica-
tions, ICICA, pp. 239-243. IEEE, March 2014

Feng, J., Jain, A.K., Ross, A.: Detecting altered fingerprints. In: 2010 20th International
Conference on Pattern Recognition, ICPR, pp. 1622-1625. IEEE, August 2010

Yoon, S., Zhao, Q., Jain, A.K.: On matching altered fingerprints. In: 2012 5th IAPR
International Conference on Biometrics, ICB, pp. 222-229. IEEE, March 2012

http://biolab.csr.unibo.it/research.asp%3forganize%3dActivities%26select%3d%26selObj%3d211%26pathSubj%3d111%257C%257C21%257C%257C211%26Req%3d%26
http://biolab.csr.unibo.it/research.asp%3forganize%3dActivities%26select%3d%26selObj%3d211%26pathSubj%3d111%257C%257C21%257C%257C211%26Req%3d%26
http://biolab.csr.unibo.it/research.asp%3forganize%3dActivities%26select%3d%26selObj%3d211%26pathSubj%3d111%257C%257C21%257C%257C211%26Req%3d%26
http://arxiv.org/abs/1502.03167
https://github.com/facebook/fb.resnet.torch

®

Check for
updates

A Convolutional Neural Network
Approach for Modeling Semantic
Trajectories and Predicting Future
Locations

Antonios Karatzoglou?(®) | Nikolai Schnell', and Michael Beigl"

! Karlsruhe Institute of Technology, Karlsruhe, Germany
{antonios.karatzoglou,michael.beigl}@kit.edu,
nikolai.schnell@student.kit.edu
2 Robert Bosch, Corporate Sector Research and Advance Engineering,
Stuttgart, Germany
antonios.karatzoglou@de.bosch.com

Abstract. In recent years, Location Based Service (LBS) providers rely
increasingly on predictive models in order to offer their users timely
and tailored solutions. Current location prediction algorithms go beyond
using plain location data and show that additional context information
can lead to a higher performance. Moreover, it has been shown that using
semantics and projecting GPS trajectories on so called semantic trajec-
tories can further improve the model. At the same time, Artificial Neural
Networks (ANNs) have been proven to be very reliable when it comes
to modeling and predicting time series. Recurrent network architectures
show a particularly good performance. However, very little research has
been done on the use of Convolutional Neural Networks (CNNs) in
connection with modeling human movement patterns. In this work, we
introduce a CNN-based approach for representing semantic trajectories
and predicting future locations. Furthermore, we included an additional
embedding layer to raise the efficiency. In order to evaluate our app-
roach, we use the MIT Reality Mining dataset and use a Feed-Forward
(FFNN) -, a Recurrent (RNN) - and a LSTM network to compare it
with on two different semantic trajectory levels. We show that CNNs
are more than capable of handling semantic trajectories, while providing
high prediction accuracies at the same time.

Keywords: Convolutional Neural Networks + Semantic trajectories
Location prediction + Embedding layer

1 Introduction

With the rise in the use of smartphones, wearables and other IoT devices over
the past decade, applications that use location data have become increasingly
popular. In addition, in recent years, providers attempt progressively to predict

© Springer Nature Switzerland AG 2018
V. Kuarkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 61-72, 2018.
https://doi.org/10.1007/978-3-030-01418-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_7&domain=pdf

62 A. Karatzoglou et al.

the locations to be visited next by the users, in order to be able to offer them
timely and personalised services. This makes the location prediction research
particularly important. Patterns mined from location data can provide a deep
insight into the behaviour of mobile users. The usage of semantic knowledge
helps diving even deeper into their behaviour. So called semantic trajectories
encapsulate additional knowledge that can be crucial for the predictive model.

The purpose of our paper is to present and evaluate a Convolutional Neural
Network (CNN) architecture in a semantic location prediction scenario. First, we
describe some related work that has been done in the realms of semantic location
prediction, semantic location mining and CNNs. Next, we elaborate on the way
CNNs work, by providing some relevant term definitions at the same time. In
Sect. 4 we outline our own architecture together with some basic implementation
details. Finally, in Sects.5 and 6, we discuss our evaluation outcome and draw
our final conclusions with regard to our findings.

2 Related Work

Spaccapietra et al. depict as one of the first in their work [12] the importance of
viewing trajectories of moving objects in a conceptual manner. They show that,
by defining and adding semantic information, such as the notion of application-
specific stops and moves, to the raw trajectories, they can significantly enhance
the analysis of movement patterns, and provide further insights into object
behaviour. Elragal et al. depict in [5] the benefits of integrating semantics into
trajectories as well. It is shown that semantic trajectories help improve both pat-
tern extraction and decision-making processes in contrast to raw trajectories. For
this reason, several papers have emerged in recent years presenting approaches
to transforming raw location data into so called semantic locations (Sect.3.1).
Alvares et al. for instance introduce a semantic enrichment model aiming at sim-
plifying the query and analysis of moving objects [1]. Bogorny et al. [2] extend
the previous approach by introducing a more general and sophisticated model,
capable of handling more complex queries, while providing different semantic
granularities at the same time.

The notion of semantic trajectories has also grown in importance in the field
of location prediction during the last years. Ying et al. [13] for example present a
location prediction framework based on previously mined semantic trajectories
from the users’ raw geo-tracking data. Their prefix tree decision based algorithm
shows good performance, especially in terms of recall, f-score and efficiency.

In their recent work, Karatzoglou et al. [7], explore the modeling and pre-
diction performance of various artificial neural network (ANN) architectures,
e.g., Feed-Forward (FFNN), Recurrent (RNN) and Long-Short-Term-Memory
(LSTM) network on semantic trajectories. Similar to Ying et al. they evaluate
their models using the MIT Reality Mining dataset [4], with the LSTM achieving
the best results with up to 76% in terms of accuracy and outscoring the other
methods on f-score and recall as well. In addition, they investigate the role of
the semantic granularity of the considered trajectories in the overall performance

Convolutional Neural Networks for Modeling Semantic Trajectories 63

of the networks. They show that the higher the semantic level, the better the
modeling quality of the networks.

Lv et al. explore in [10] the possibility of using Convolutional Neural Net-
works (CNNs) (Sect.3.2) to predict taxi trajectories. Their approach projects
past trajectories upon a map and models them in turn as 2D images, on which
the CNN is finally applied to estimate about future trajectories. By modeling
trajectories as 2D images, they are able to make use of the inherent advantage of
CNNs, namely their good performance in image analysis. This is also confirmed
by their results. However, their approach is applied on raw, non-semantic GPS
trajectories.

To our knowledge, there is no work exploring the performance of CNNs on
semantic trajectories. Moreover, it seems that there is no work using trajecto-
ries (semantic or non-semantic ones) in combination with CNNs directly, e.g.,
without transforming them in an intermediate step into 2D images, but handling
them in their raw form instead, as 1D vectors. In the presented work, we exam-
ine exactly these two points in terms of prediction performance in a semantic
location prediction scenario. For this purpose, we focused on the Natural Lan-
guage Processing (NLP) use case where, similar to our case, the data are also 1D
and some work has already been done in combination with CNNs. Particularly
interesting is the work of Collobert et al. [3], who propose a CNN architecture for
solving several NLP problems including named entity recognition and semantic
role labelling. Their framework features an unsupervised training algorithm for
learning internal representations, e.g., by using an embedding layer and learn-
ing low-dimensional feature vectors of given words through backpropagation,
yielding a good performance both in terms of accuracy and speed. The benefit
of using embeddings has been recently shown also in connection with modeling
human trajectories by Gao et al. in [6].

3 Theoretical Background

In this section, we give a brief insight into the fundamental components of our
work.

3.1 Semantic Trajectories

Movement patterns, so called trajectories, describe sequences of consecutive loca-
tion points visited by some object or person. In ubiquitous and mobile com-
puting, trajectories refer usually to GPS sequences like the one displayed in
Eq. 1, whereby long;, lat; and t; refers to longitude, latitude and point of time
respectively.

(long1,laty,t1), (longs, lata, ta), . .., (long;, lat;, t;) (1)

In the attempt to add more meaning when modeling movement, researchers
like Spaccapietra et al. [12] and Alvares et al. [1] went beyond such numeri-
cal sequences and lay focus on conceptual, semantically enriched trajectories,

64 A. Karatzoglou et al.

so called semantic trajectories. A semantic trajectory is defined as a sequence
of semantically significant locations (semantic locations, e.g., “home”, “burger
joint”, etc.) as follows:

(SemLocy, t1), (SemLoca, t2), . .., (SemLoc;, t;) (2)

A significant location usually refers to a location at which a user stays more
than a certain amount of time, e.g. 20 min. Some researchers add further thresh-
olds, like popularity, in order to extract the most significant common or public
locations (see [13]). Locations can be described hierarchically over a number of
various semantic levels, e.g., “restaurant” — “fast food restaurant” — “burger
joint”. In this work, we evaluate the modeling performance of CNNs on two
different semantic levels.

3.2 Convolutional Neural Networks (CNNs)

The most popular application area of Convolutional Neural Networks (CNNs)
is the image classification and recognition [9]. However, CNNs can be applied
to other areas as well, such as speech recognition and time series [8]. A CNN
example architecture concerning the image classification use case can be seen in

Fig. 1.
E — CAR
— TRUCK
— VAN
O O
FULLY

’/ \J — BICYCLE
INPUT \cowownor«muu POOLING CONVOLUTION + RELU POOLING / (LAITEN CcoNNECTEp SOFTMAX Y

Y Y

FEATURE LEARNING CLASSIFICATION

Fig. 1. Typical CNN architecture for Image Classification (source: [11]).

Here, the CNN first receives an image, which is supposed to classify, as its
input. Next, a set of convolution operations takes place in order to for the fea-
tures to be extracted. These operations are realised by filter kernels of fixed size,
containing learnable weights, which are sled over the input image to “search”
for certain features. Each convolution filter output results in a new layer that
contains the findings of that filter in the input image. These layers are then fur-
ther processed by a pooling operation set. Pooling operations combine multiple
outputs from filter kernels in a feature layer into a single value (e.g. by taking
the average or maximum value of the outputs in question). The resulting pooled

Convolutional Neural Networks for Modeling Semantic Trajectories 65

layers can then be further processed, as shown here, by more Convolution +
Pooling operations and as such features of a higher level can be extracted. The
last pooled layer is flattened i.e. transformed into a single long vector containing
all of its weights. These are then connected to a fully connected layer, which is
further connected to the output of the network, which in this case is a Softmax
layer, containing a field for every classifiable object, and as such representing
the classification estimation of the network for the given input.

4 CNNs for Semantic Trajectories - Our Approach

As already mentioned, our network (CNN) takes semantic trajectories as input,
like the ones defined in Sect.3.1. For this purpose, each semantic location is
given a unique index. After being fed into the CNN, each index value in the tra-
jectory gets passed to a hash table (embedding layer) which assigns each index,
and as such each semantic location, a k-dimensional feature vector (embedding),
whereby k represents a hyperparameter set by us (Sect. 5). At the very beginning,
our feature vectors in the lookup table are randomly initialized. These vectors
are then trained on the available training data via backpropagation in order to
become optimal task-specific representations. In tangible terms, for our case, this
means that we give our model the freedom to find the optimal semantic location
representation by itself. The resulting representations will be used as input for
our core model. A similar idea was proposed by Collobert et al. in [3] to learn
feature vectors that represent words in a text corpus for solving NLP problems.
After the hash table operation, our semantic location set, initially represented
by a n x 1 vector, becomes n X k matrix. This can be seen on the left in Fig. 2
and as self.embedded_locs_expanded in Listing 1.1.

Home
Work
Restaurant
Work
Home

Friends Home

Bar
Club

Home

[] |

n x k representation of Convolutional Layer Fully Connected Layer
trajectory

Fig. 2. An abstracted view on the core layers of our CNN.

In the next step, a set of convolutional filters is applied on the resulting
matrix. These filters span along the entire feature vector dimension and across
multiple locations of the trajectory as can be seen in Fig.2. The number of

66 A. Karatzoglou et al.

filters is a hyperparameter that can be also set by the user. Like the size k of
the embeddings dimension described above, it can affect the performance of the
prediction.

The outputs of the filters are then concatenated and flattened (self.h_pool_flat
in Listing1.1) to make up a fully connected layer, linked to a Softmax output
layer, which provides the final prediction about the next semantic location to be
visited by a user. We decided against using pooling layers on the filter ouputs,
since this led to the loss of significant feature information (e.g., locations in the
latter part of the trajectory being more important to location prediction as the
older ones).

In order to train our model, we used backpropagation with the Adam opti-
mizer. The Adam optimizer maintains an individual learning rate for each net-
work weight and adapts them separately. This is especially effective since our
data is quite sparse compared to other more typical problems addressed by CNNs
such as image recognition. We used Python and the Tensorflow! library to imple-
ment our model. To prevent overfitting, dropout is used on this flattened vector
as shown in Listing 1.1 in line 14.

Listing 1.1. Convolution output and flattened layer.

Convolution Layer

self .convl = tf.layers.conv2d(
inputs=self.embedded_locs_expanded ,
filters=num _filters ,
kernel_size=[filter_size , embedding_size],
padding="VALID” ,
name="convl”)

Combine all the features

filter_outputs_total = num_filters * ((sequence_length —
filter_size) + 1)
self . h_pool_flat = tf.reshape(self.convl, [-1,

filter_outputs_total])

Add dropout
self .h_drop = tf.nn.dropout(self.h_pool_flat, self.
dropout_keep_prob)

Listing 1.2 illustrates the implementation of the fully connected layer. W
and b represent the weights and the offset respectively. Furthermore we used
Tensorflow’s nn.softmaz_cross_entropy_with_logits and reduce_mean functions to
calculate the loss. The calculated loss is used by the Adam optimizer to adjust
the weights of the Tensorflow graph, and as such to complete a single training
step.

! https://www.tensorflow.org.

https://www.tensorflow.org

Convolutional Neural Networks for Modeling Semantic Trajectories 67

Listing 1.2. Fully connected layer and loss calculation.

Final (unnormalized) scores and predictions

W= tf.get_variable(
”W’,
shape=[filter_outputs_total , num_classes],
initializer=tf.contrib.layers.xavier_initializer ())

b = tf.Variable(tf.constant (0.1, shape=[num_classes]), name="b
”)

self .scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores”
)

self.predictions = tf.argmax(self.scores, 1, name="predictions
7?)

Calculate mean cross—entropy loss

losses = tf.nn.softmax_cross_entropy-with_logits(logits=self.
scores , labels=self.input._y)

self.loss = tf.reduce_mean(losses)

5 Evaluation

In order to evaluate our approach, we used the MIT Reality Mining dataset [4],
which contains the semantically enriched tracking data of approximately 100
users over a period of 9 months. Filtering the inconsistencies out and keeping
the most consistent annotators left us with the two-semantic-level evaluation
dataset of 26 users of [7]. Figure3 illustrates the overall location distribution.
We then extracted trajectories of a fixed length and considered the subsequent
location to be the ground truth prediction label (see Fig.4). We shuffled the
resulting (trajectories, label) pairs and took 90% of them for training and 10%
for testing. We trained and evaluated both the separated single-user models, as
well as a multi-user model that contained the trajectories of all users. In the

Shopping
Street_Area
City

Friends home
Center
Pleasure
Other
Education

0 1000 2000 3000 4000
Occurrence

Fig. 3. Distribution of high-level semantic locations.

68 A. Karatzoglou et al.

Trajectory 1 Label 1

[Home [Work [Restaurant][Work [Home]

Trajectory 2 Label 2

Fig. 4. Data Extraction exemplified with a trajectory length of 3.

case of the multi-user model, a single trajectory composed of all the available
single-user trajectories was fed into the model as if it came from a single user.
We further used the FFNN, the RNN and the LSTM from [7] as our baseline. In
addition, since there is a timestamp present for every location visit in the Reality
Mining data, we also tested the performance of our model when we include time
as an extra feature. For this purpose we aggregated the available timestamps into
hourly time slots. Finally, we evaluate a version of our model with the embedding
layer missing. All models were evaluated in terms of Accuracy, Accuracy@k,
Precision, Recall, and F-Score.

We tested several trajectory lengths (2, 5, 10 and 20) on different configura-
tions of the following hyperparameters:

Filter Size: Width of the filter kernel, i.e. how many trajectories it encompasses.
Number of Filters: The number of different filters the CNN learns.
Embedding Dimension: The dimension of the learned location features.
Dropout Probability: The percentage of neurons in the fully connected layer
that are dropped (used to minimize overfitting).

At the same time, we did a grid search to find the following optimal parameters
as well: Learning Rate, Number of training Epochs and Batch Size. Both
the results and the corresponding optimal parameter set can be found in Fig. 5.

In general, it seems that the longer the trajectory the better our model
performs with regard to almost all of our metrics, e.g., accuracy, precision, recall
and F-Score. However, if they get too long, e.g., >10, the performance drops.
Especially in terms of recall and F-Score. This could be attributed to the fact
that human movement is characterized, up to a certain length, by a long-term
behaviour and thus raising the considered trajectory length in the model leads
to an improved predictive performance.

In Fig. 6 we can see the results of our model, with and without an embedding
layer. Both CNNs, with and without embedding layer, outperform the FFNN
of [7] (used here as reference) with regard to all of our metrics. Additionally,
the Embedding Layer seems to be giving a slight performance boost. Figure 7
contains the average outcome (over all users) of our model in the single-user
model case in contrast to the FFNN, RNN and LSTM architecture. Our CNN
outperforms the other ANNs in terms of accuracy by 7-8%, but falls a bit short in
terms of precision, recall and F-Score. This could be interpreted as an indication
that the CNN is worse at predicting location transitions that show up sparsely

Convolutional Neural Networks for Modeling Semantic Trajectories
Trajectory Length|Accuracy|Accuracy@4|Accuracy@10|Precision|Recall|F-Score
2 0.783 0.976 0.994 0.455 0.433 |0.443
5 0.790 0.973 0.995 0.466 0.439|0.451
10 0.792 0.971 0.994 0.467 0.435 [0.45
20 0.788 0.968 0.993 0.454 0.425 |0.438

69

Fig. 5. Impact of trajectory length. Filter Size: 2, Embedding Dimension: 100, Num-
ber of Filters: 50, Dropout Probability: 0.4, Batch Size: 100, Learning Rate: 0.001,
Number of Epochs: 10.

1
09
0.8
0.7
0.6
0.5

Accuracy

Precision Recall

0.4

0.3

0.2

Alalnle
0

F-Score

m FFNN

CNN no Embedding

m CNN

Fig. 6. Comparison of evaluation results of our architecture with and without embed-

ding layer vs. FFNN.

in a dataset (in our case the respective single-user datasets) compared to the
other ANNs. On the higher semantic level the accuracy discrepancy between
the various models is similar to the low semantic version. However, in terms of
precision, recall and F-Score the CNN seems to perform much worse than on
the lower semantic version. It seems to disregard locations that occur relatively
seldom in the dataset almost completely, which leads us to this result. In both

1
09
0.8
0.7
0.6
05
0.4
0.3

Accuracy

Precision Recall

0.2
[
0

F-Score

m FFNN*
= RNN*
LSTM*

CNN no Embedding

m CNN

Fig. 7. Comparison of evaluation results of our architecture (CNN) vs. Karatzoglou et
al. [7] (*) on the low semantic level (single user).

70 A. Karatzog

versions of the dataset (low- and high semantic level) the embedding layer seemed

lou et al.

to make a small, but still significant difference.

Figure9 contains the comparison results between the single-user and the
multi-user modeling method. While the multi-user evaluation achieves much
lower accuracies (as expected), it outperforms by far the single-user dataset in
terms of precision, recall and F-Score. This can be attributed to the fact that
the additional user information in the multi-user model fills the gap of missing
locations and trajectories that can be often found in the single-user models

(Fig. 8).

1
09
0.8
0.7
0.6
05
0.4

Accuracy

Fig. 8. Comparison of evaluation results of our Architecture (CNN) vs. Karatzoglou

Precision

03 mCNN
0.2
0.1 I I I

0

m FFNN*

= RNN*
LST™*
CNN no Embedding

Recall F-Score

et al. [7] (*) on the high semantic level (single user).

Dataset 2 type|Accuracy|Accuracy@2|Accuracy@5|Precision|Recall|F-Score
Multi User 0.688 0.885 0.969 0.53 0.428(0.474
Single User 0.78 0.919 0.993 0.149 0.151 |0.149

Fig. 9. Comparison of our multi- and single-user CNN models.

0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

0

0.689

" 0.656

Accuracy

H Dataset 2 (low
level) without
time
Dataset 2 (low

0.225 0.221 level) with time

F-Score

Fig. 10. Impact of time in the case of the low-level semantic representation.

Convolutional Neural Networks for Modeling Semantic Trajectories 71

Finally, in Fig. 10 it can be seen how adding time as an additional training
feature affects the behaviour of our models. Similar to the results of [7], time
seems to be having a negative influence on the prediction performance of our
CNN model, both in terms of accuracy and F-Score.

6 Conclusion

In this paper, we investigate the performance of CNNs and embeddings in terms
of modeling semantic trajectories and predicting future locations in a location
prediction scenario. We evaluate our approach on a real-world dataset, using a
FFNN, a RNN and a LSTM network as a baseline. We show that our CNN-based
model outperforms all the above reference systems in terms of accuracy and is
thus capable of modeling semantic trajectories and predicting future human
movement patterns. However, our approach seems to be sensitive to sparse data.
In addition, we show that, similar to the outcomes of [7], both the semantic
representation level and the overall number of users considered for training the
model can have a significant impact on the performance, especially with regard
to precision and recall. In our future work, we plan to explore further the use of
CNNs in the location prediction scenario by feeding additional semantic infor-
mation into the model such as the users’ activity and their current companion.

References

1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman,
A.: A model for enriching trajectories with semantic geographical information. In:
Proceedings of the 15th Annual ACM International Symposium on Advances in
Geographic Information Systems, p. 22. ACM (2007)

2. Bogorny, V., Renso, C., Aquino, A.R., Lucca Siqueira, F., Alvares, L.O.: Constant-
a conceptual data model for semantic trajectories of moving objects. Trans. GIS
18(1), 66-88 (2014)

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493-2537 (2011)

4. Eagle, N.,; Pentland, A.S.: Reality mining: sensing complex social systems. Pers.
Ubiquit. Comput. 10(4), 255-268 (2006)

5. Elragal, A., El-Gendy, N.: Trajectory data mining: integrating semantics. J. Enterp.
Inf. Manag. 26(5), 516-535 (2013). https://doi.org/10.1108/JEIM-07-2013-0038

6. Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying human
mobility via trajectory embeddings. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1689-1695. AAAT Press (2017)

7. Karatzoglou, A., Sentiirk, H., Jablonski, A., Beigl, M.: Applying artificial neural
networks on two-layer semantic trajectories for predicting the next semantic loca-
tion. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN
2017. LNCS, vol. 10614, pp. 233-241. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68612-7_27

8. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10
(1995)

https://doi.org/10.1108/JEIM-07-2013-0038
https://doi.org/10.1007/978-3-319-68612-7_27
https://doi.org/10.1007/978-3-319-68612-7_27

72

10.

11.

12.

13.

A. Karatzoglou et al.

LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 253-256. IEEE (2010)

Lv, J., Li, Q., Wang, X.: T-CONV: a convolutional neural network for multi-scale
taxi trajectory prediction. arXiv preprint arXiv:1611.07635 (2016)

Mathworks: Convolutional neural network (2018). https://www.mathworks.com/
discovery/convolutional-neural-network.html. Accessed 19 Feb 2018
Spaccapietra, S., Parent, C., Damiani, M.L., de Macédo, J.A.F., Porto, F.,
Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126-146
(2008). https://doi.org/10.1016/j.datak.2007.10.008

Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for
location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 34-43. ACM
(2011)

http://arxiv.org/abs/1611.07635
https://www.mathworks.com/discovery/convolutional-neural-network.html
https://www.mathworks.com/discovery/convolutional-neural-network.html
https://doi.org/10.1016/j.datak.2007.10.008

®

Check for
updates

Neural Networks for Multi-lingual
Multi-label Document Classification

Jiff Martinek'2, Ladislav Lenc'2, and Pavel Kral':2(=)

! Department of Computer Science and Engineering, Faculty of Applied Sciences,
University of West Bohemia, Plzen, Czech Republic
{jimar,llenc,pkral}@kiv.zcu.cz
2 NTIS - New Technologies for the Information Society, Faculty of Applied Sciences,
University of West Bohemia, Plzen, Czech Republic

Abstract. This paper proposes a novel approach for multi-lingual multi-
label document classification based on neural networks. We use popular
convolutional neural networks for this task with three different config-
urations. The first one uses static word2vec embeddings that are let as
is, while the second one initializes it with word2vec and fine-tunes the
embeddings while learning on the available data. The last method initial-
izes embeddings randomly and then they are optimized to the classifica-
tion task. The proposed method is evaluated on four languages, namely
English, German, Spanish and Italian from the Reuters corpus. Experi-
mental results show that the proposed approach is efficient and the best
obtained F-measure reaches 84%.

Keywords: Convolutional neural network - CNN
Document classification - Multi-label - Multi-lingual

1 Introduction

Nowadays the importance of multi-lingual text processing increases significantly
due to the extremely rapid growth of data available in several languages particu-
larly on the Internet. Without multi-lingual systems it is not possible to acquire
information across languages. Multi-label classification is also often beneficial
because, in the case of real data, one sample usually belongs to more than one
class.

This paper focuses on the multi-lingual multi-label document classification in
a frame of a real application designed for handling texts from different sources in
various languages. There are several possibilities how to perform a classification
in multiple languages. Most of them learn one model in a mono-lingual space
and then use some transformation method to pass across the languages. The
usual document representation are word embeddings created for instance by the
word2vec approach [8]. Contrary to this idea, we suggest one general model
trained on all available languages. Therefore, this model is able to classify more
languages without any transformation.

© Springer Nature Switzerland AG 2018
V. Kuarkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 73-83, 2018.
https://doi.org/10.1007/978-3-030-01418-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_8&domain=pdf

74 J. Martinek et al.

We use popular convolutional networks for this task with three different
settings. The first one uses static word2vec embeddings that are not trained.
The second one initializes the embeddings with word2vec and fine-tunes it on
the available data. The last method initializes embeddings randomly and then
they are, as in the previous case, optimized to the given task using available
data. All these methods use the same vocabulary.

To the best of our knowledge, there is no previous study, which uses one clas-
sifier on multi-lingual multi-label data as proposed in this paper. The proposed
approach is evaluated on four languages (English, German, Spanish and Italian)
from the standard Reuters corpus.

2 Related Work

This section first presents the usage of neural networks for document classifica-
tion and then focuses on multi-linguality.

Feed-forward neural networks were used for multi-label document classifica-
tion in [16]. The authors have modified the standard backpropagation algorithm
for multi-label learning which employs a novel error function. This approach is
evaluated on functional genomics and text categorization.

Le and Mikolov propose [8] so called Paragraph Vector, an unsupervised
algorithm that addresses the issue of necessity of a fixed-legth document repre-
sentation. This algorithm represents each document using a dense vector. This
vector is trained to predict words in the document. The authors obtain new state
of the art results on several text classification and sentiment analysis tasks.

A recent study on the multi-label text classification was presented by Nam
et al. [12]. The authors use the cross-entropy algorithm instead of ranking loss
for training and they also further employ recent advances in deep learning field,
e.g. the rectified linear units activation and AdaGrad learning with dropout
[11,14]. Tf-idf representation of documents is used as a network input. The multi-
label classification is done by thresholding of the output layer. The approach
is evaluated on several multi-label datasets and reaches results comparable or
better than the state of the art.

Another method [7] based on neural networks leverages the co-occurrence of
labels in the multi-label classification. Some neurons in the output layer cap-
ture the patterns of label co-occurrences, which improves the classification accu-
racy. The architecture is basically a convolutional network and utilizes word
embeddings as inputs. The method is evaluated on the natural language query
classification in a document retrieval system.

An alternative multi-label classification approach is proposed by Yang and
Gopal [15]. The conventional representations of texts and categories are trans-
formed into meta-level features. These features are then utilized in a learning-
to-rank algorithm. Experiments on six benchmark datasets show the abilities of
this approach in comparison with other methods.

Recent work in the multi-lingual text representations field is usually based on
word-level alignments. Klementiev et al. [5] train simultaneously two language

Neural Networks for Multi-lingual Multi-label Document Classification 75

models based on neural networks. The proposed method uses a regularization
which ensures that pairs of frequently aligned words have similar word embed-
dings. Therefore, this approach needs parallel corpora to obtain the word-level
alignment. Zou et al. [17] propose an alternative approach based on neural net-
work language models using different regularization.

Kovéisky et al. [6] propose a bilingual word representations approach based
on a probabilistic model. This method simultaneously learns alignments and dis-
tributed representations from bilingual data. This method marginalizes out the
alignments, thus captures a larger bilingual semantic context. Sarath Chandar
et al. [1] investigate an efficient approach based on autoencoders that uses word
representations coherent between two languages. This method is able to obtain
high-quality text representations by learning to reconstruct the bag-of-words of
aligned sentences without any word alignments.

Coulmance et al. [2] introduce an efficient method for bilingual word repre-
sentations called Trans-gram. This approach extends popular skip-gram model
to multi-lingual scenario. This model jointly learns and aligns word embeddings
for several languages, using only monolingual data and a small set of sentence-
aligned documents.

3 Multi-lingual Document Classification

3.1 Multi-lingual Document Representation

The documents are represented as sequences of word indexes in a shared vocab-
ulary V' which is constructed in a following way. Let N be a number of the
available languages. V,, represents the vocabulary of most frequent words in the
given language. The shared vocabulary V is then constructed by the following
equation

N
V=" (1)

The convolutional network we use for classification requires that the inputs
have the same dimensions. Therefore, the documents with fewer words than
a specified limit are padded, while the longer ones must be shortened. This is
different from Kim’s approach [3] where documents are padded to the length
of the longest document in the training set. We are working with much longer
documents where the lengths vary significantly. Therefore, the shortening of some
documents and thus losing some information is inevitable in our case. However,
based on our preliminary experiments, the influence of document shortening is
insignificant to document classification score.

3.2 Neural Network Architecture

Neural network learns a function f : d — Cy4 which maps document d € D to
a set of categories Cy C C. D is the set of classified documents and C is the
set of all possible categories.

76 J. Martinek et al.

We use a CNN architecture that was proposed in [9]. This architecture uti-
lizes one-dimensional convolutional kernels which is the main difference from the
network proposed by Kim in [3] where 2D kernels over the entire width of the
word embeddings are used. The input of our network is a vector of word indexes
of the length M where M is the number of words used for document represen-
tation. The second layer is an embedding layer which represents a look-up table
for the word vectors. It translates the word indexes into word vectors of length
E. The document is then represented as a matrix with M rows and E columns.
The next layer is the convolutional one. We use N convolution kernels of the
size K x 1 which means we do 1D convolution over one position in the embed-
ding vector over K input words. The following layer performs a max-pooling
over the length M — K + 1 resulting in N¢o 1 x E vectors. The output of this
layer is then flattened and connected to a fully-connected layer with E nodes.
The output layer contains |C| nodes where |C| is the cardinality of the set of
classified categories.

The output of the network is then thresholded to get the final results. The
values greater than a given threshold indicate the labels that are assigned to the
classified document. The architecture of the network is depicted in Fig. 1. This
figure shows the processing of two documents in different languages (English and
German) by our network. Each document is handled in one training step. The
key concept is the shared vocabulary and the corresponding shared embedding
layer.

4 Experiments

4.1 Reuters RCV1/RCV2 Dataset

The Reuters RCV1 dataset [10] contains a large number of English documents.
The RCV2 is a multi-lingual corpus that contains news stories in 13 languages.
The distribution of the document lengths is shown in Fig.2. We use four lan-
guages, namely English, German, Spanish and Italian. We prepare two settings:
single- and multi-label ones.

Single-Label Configuration. The single-label setting was prepared so that we
can compare the proposed approach with the state of the art. Similarly as the
other studies, we follow the set-up proposed by Klementiev et al. [5]. Four main
categories are used in this setting: Corporate/industrial — CCAT, Economics —
ECAT, Government/social — GCAT and Markets — MCAT.

Documents containing more than one or zero main categories are filtered
out. In total we randomly sample 15,000 documents for each language. 10,000
documents are used for training while the remaining 5,000 is reserved for testing.

Multi-label Configuration. In this setting we use all 103 topic codes available
in the English documents. The number of documents for each language corre-
sponds to the minimal number across the utilized languages which is Spanish

Neural Networks for Multi-lingual Multi-label Document Classification

Der 4
Dollar 66
hat 87
am 17,
Dienstag
an 54|
den 7
Méarkten 14
des 29|
Fernen
53]
Ostens s
PADDING
0
Input
layer
BankAmerica |16
Corp 6
Is 19
Not regl
65
Under 8]
Pressure L
To |1
Act 11
Quickly 99|
On 5]
Its]
55|
roposed [
prop R
[8]

Embedding

layer

| 2D document :

‘ representation g;g\r/?l\lllijtﬂonal
N filters
of size Kx 1

===

: -

77
Fully-connected
layer, size D
Max-pooling
Output layer
layer with C nodes
Final
result
| | C J

Thresholding

Fig. 1. The architecture of the CNN network used for multi-lingual classification. Two
example documents are used as network input. Each document is handled in one train-

ing step.

Number of documents

15,000

10,000

5,000

DDD:]:,.:._:]

200 400

600 800

Documentlength(words)

1000

Fig. 2. Distribution of the document lengths in word tokens.

78 J. Martinek et al.

in our case. Therefore we have 18,655 documents for each language where three
fifths are used for training and the remaining two fifths for development and test
set respectively.

4.2 Neural Network Set-Up

In all experiments with multi-label classification we use the same configuration
of the CNN. We use 20,000 most frequent words from each language to create
the vocabulary. The document length is adjusted to M = 100 words with regard
to the distribution of the document lengths according to Fig. 2. The embedding
length F is set to 300 which allows a direct usage of pre-trained word2vec vectors.
The number of convolutional kernels N¢ is 40 and its shape is set to 16 x 1. We
use a wvalid mode for the convolutions. The number of neurons in the fully-
connected layer is 256. Before the output layer and before the fully-connected
one we add dropout layers with the probabilities set to 0.2 in both cases. Relu
activation function is used in all layers except the output one. The output layer
employs sigmoid function in the multi-label classification scenario. The model is
optimized using Adaptive moment estimation (Adam) [4] algorithm and cross-
entropy loss function. The data is shuffled in all experiments. We set the number
of epochs to 10 in all experiments.

The single-label model is nearly the same as the multi-label one. The only
difference is that softmax activation function is used in the output layer.

4.3 Single-Label Results

Table 1 summarizes the results of the single-label classification experiments. We
use the standard Precision (Prec), Recall (Rec), F-measure (F'1) and Accuracy
(ACC) metrics [13] and the confidence interval is +0.3% at the confidence level
of 0.95.

We present all three possible settings of the embedding layer. The first
one uses static word2vec embeddings (Word emb notrain), the second one uses
word2vec embeddings which are fine-tuned during the network training (Word
emb train) and the last one uses randomly initialized vectors that are trained
(Random init).

The results show that the training of the embeddings is beneficial and allows
achieving significantly higher recognition scores. However, the usage of static pre-
trained embeddings also reaches reasonable accuracy while dramatically lowering
the time needed for the network training.

Table 2 compares the accuracies of the proposed methods with the state-
of-the-art. As the other studies we use the standard accuracy metric in this
experiment.

This table clearly shows that our methods outperform significantly all the
other approaches. This is particularly evident in the case of English language
where the increase of accuracy is almost by 20%. We must note that the set-up
of the other approaches slightly differ. However, the reported methods are the

Neural Networks for Multi-lingual Multi-label Document Classification 79

Table 1. Results of the single-label classification experiments [in %)].

Word emb notrain Word emb train Random init

Prec | Rec |F1 | ACC | Prec|Rec |F1 |ACC | Prec|Rec |[F1 |ACC
en |93.0 89.7/91.3/90.2 |96.1 /93.9/95.0/94.4 |96.6 96.3|96.4|96.3
de [95.3 194.8/95.1/95.0 |97.0 196.9/96.9/96.8 |96.6 96.3|96.4|96.3
es |98.798.1/98.4/98.3 [99.9 199.9/99.9/99.9 /99.9 199.9/99.9|99.9
it |88.8 86.7|87.8/86.9 [91.9 |91.6/91.7/90.7 |91.5 91.2|91.3|90.6
avg | 94.0 1 92.3/93.2|92.6 [96.2 |95.6 1 95.9|95.5 |96.2 |95.9/96.0|95.8

most similar set-ups we found. Moreover, to the best of our knowledge, there are
no studies with exactly the same configuration as we use.

Table 2. Comparison with the state of the art [accuracy in %)].

Method [ACC in %] de |en

Klementiev et al. [5] 776 | 71.1
Kovéisky et al. [6] 83.1 |76.0
Sarath Chandar et al. [1] | 91.8 | 74.2
Coulmance et al. [2] 91.1 |78.7
Word emb notrain 95.0 190.2
Word emb train 96.8 | 94.4
Random init 96.3 |96.3

4.4 Multi-label Results

Table 3 shows the results of our network in the multi-label scenario. We use
the standard Precision (Prec), Recall (Rec), F-measure (F'1) metrics in this
experiment. The confidence interval is +£0.35% at the confidence level of 0.95.

We can summarize the results in this table in a similar way as the previous
one for the single-label classification. The training of the embeddings improves
the obtained classification results. However, the training of randomly initial-
ized vectors has worse results than the fine-tuned word2vec vectors. The best
obtained F-measure 86.8% is, as in the previous case, for Spanish using word2vec
initialized embeddings with a further training.

4.5 Word Similarity Experiment

The last experiment analyzes the quality of the resulting embeddings obtained
by the three neural network settings.

80 J. Martinek et al.

Table 3. Precision (Prec), Recall (Rec), F-measure (F'1) of the multi-label classifica-
tion [in %].

Word emb notrain | Word emb train | Random init

Prec | Rec | F1 Prec | Rec | F1 | Prec|Rec |F1
en |84.3 |62.7|/71.9 85.4 189.2/82.2 83.6 |75.1|79.2
de |84.2 69.8|76.3 87.5 |81.2|84.2 |86.5 | 77.3|81.6
es [90.4 |77.1|83.2 89.4 1 84.3/86.8 89.4 81.5|85.3
it |84.9 68.4|75.8 86.5 | 81.2|83.8 85.2 | 77.8|81.3
avg | 86.0 |69.5 | 76.8 87.2 |81.5|84.3 86.2 |77.9|81.9

Table 4. Ten closest words to the English word “accident” based on the cosine simi-
larity; English translation in brackets including the language of the given word.

Word emb notrain Word emb train Random init

Word Cos sim | Word Cos sim | Word Cos sim

accidents 0.860 accidente 0.685 ruehe 0.248

incident 0.740 ungliick (de, 0.632 bloccando (es, |0.239
misfortune) blocking)

accidente (es, | 0.600 estrelld (es, 0.609 compelled 0.236

accident) crashed)

incidents 0.574 accidents 0.599 numerick 0.219

accidentes (es, |0.546 geborgen (de, 0.585 fiduciary 0.217

accidents) secure)

disaster 0.471 absturz 0.584 barriles (es, 0.216

barrels)

explosions 0.461 ungliicks (de, 0.576 andhra 0.214
misfortunes)

incidence 0.452 abgestiirzt (de, |0.567 touring 0.212
crashed)

personnel 0.452 triimmern (de, 0.560 versicherers 0.209
rubble) (de, insurers)

unfall (de, 0.450 ungliicksursache |0.551 oppositioneller | 0.203

accident) (de, ill cause) (de,

oppositional)

Table 4 shows 10 most similar words to the English word “accident” across
all languages based on the cosine similarity. These words are mainly in English
when word2vec initialization without any training is used (the first column). Fur-
ther training of the embeddings (middle column) causes that also German and
Spanish words with a similar meaning are shifted closer to the word “accident”
in the embedding space. On the other hand, when training from randomly ini-
tialized vectors, the ten most similar words have often quite a different meaning.
However, as shown in the classification results, this fact has nearly no impact
on the resulting F-measure. We can conclude that word2vec initialization is not

Neural Networks for Multi-lingual Multi-label Document Classification 81

necessary for the classification task. This table further shows that the similarity
between Germanic (English and German) languages is clearly visible.

Table 5 shows 10 most similar words to the English word “czech” using the
cosine similarity. The table is very similar to the previous one. For instance,
if we take a look at the Word emb train column, we observe that there is (as
in the previous case) a significant decrease of the cosine similarity. However on
the other hand, some new words, which are more related to the word “czech”,
are included. The inapplicability to find similar words of randomly initialized
embeddings has been confirmed. It is worth noting that although the Czech
language is not a part of our corpus, some Czech words (praha, dnes, fronta)
are also included due to the Czech citations available.

Table 5. Ten closest words to the word “czech” based on the cosine similarity; English
translation in brackets including the language of the given word.

Word emb notrain Word emb train Random init
Word Cos sim | Word Cos sim | Word Cos sim
czechoslovakia 0.757 czechoslovakia 0.399 festakt (de, 0.273
ceremony)
slovakia 0.634 praga (es, prague) 0.335 val 0.250
polish 0.569 republic 0.329 provence 0.235
hungary 0.539 brno (cz, brno - 0.315 sostiene (es, hold) | 0.222
czech city)
hungarian 0.537 slovak 0.314 larry 0.216
prague 0.533 praha (cz, prague) 0.313 kopfigen (de, 0.212
headed)
slovak 0.509 dnes (cz, today) 0.307 iiberschreiten (de, | 0.206
exceed)
praha (cz, praha) | 0.509 checa (es, czech) 0.307 aktienindex (de, |0.205
share index)
austrian 0.506 fronta (cz, queue) 0.304 councils 0.205
lithuanian 0.496 tschechoslowakei (de, | 0.297 bancario (it, 0.205
czechoslovakia) banking)

5 Conclusions

In this paper we presented a novel approach for the multi-label document clas-
sification in multiple languages. The proposed method builds on the popular
convolutional networks. We added a simple yet efficient extension that allows
using one network for classifying text documents in more languages.

We evaluated our method on four languages from the Reuters corpus in both
multi- and single-label classification scenarios. We showed that the proposed
approach is efficient and the best obtained F-measure in multi-label scenario
reaches 84%. We also showed that our methods outperform significantly in the

82

J. Martinek et al.

single-label settings all the other approaches. Another added value of this app-
roach is also that no language identification is needed as in the case of the use
of the single networks.

Acknowledgements. This work has been partly supported from ERDF “Research
and Development of Intelligent Components of Advanced Technologies for the Pilsen
Metropolitan Area (InteCom)” (no.: CZ.02.1.01/0.0/0.0/17-048/0007267), by Cross-
border Cooperation Program Czech Republic - Free State of Bavaria ETS Objective
2014-2020 (project no. 211) and by Grant No. SGS-2016-018 Data and Software Engi-
neering for Advanced Applications.

References

10.

11.

12.

13.

. Sarath Chandar, A.P.; et al.: An autoencoder approach to learning bilingual word

representations. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27,
pp. 1853-1861. Curran Associates, Inc. (2014)

Coulmance, J., Marty, J.M., Wenzek, G., Benhalloum, A.: Trans-gram, fast cross-
lingual word-embeddings. arXiv preprint arXiv:1601.02502 (2016)

Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Klementiev, A., Titov, 1., Bhattarai, B.: Inducing crosslingual distributed repre-
sentations of words. In: Proceedings of COLING 2012, pp. 1459-1474 (2012)
Kocisky, T., Hermann, K.M., Blunsom, P.: Learning bilingual word representations
by marginalizing alignments. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp.
224-229 (2014)

Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label clas-
sification with better initialization leveraging label co-occurrence. In: Proceedings
of NAACL-HLT, pp. 521-526 (2016)

Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML 2014, pp. 1188-1196 (2014)

Lenc, L., Kral, P.: Deep neural networks for Czech multi-label document classifica-
tion. In: Gelbukh, A. (ed.) CICLing 2016. LNCS, vol. 9624, pp. 460-471. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75487-1_36

Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5(Apr), 361-397 (2004)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807-814 (2010)

Nam, J., Kim, J., Loza Mencia, E., Gurevych, 1., Firnkranz, J.: Large-scale multi-
label text classification - revisiting neural networks. In: Calders, T., Esposito, F.,
Hillermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp.
437-452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-
9.28

Powers, D.: Evaluation: from precision, recall and f-measure to ROC, informedness,
markedness & correlation. J. Mach. Learn. Technol. 2(1), 37-63 (2011)

http://arxiv.org/abs/1601.02502
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-75487-1_36
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28

14.

15.

16.

17.

Neural Networks for Multi-lingual Multi-label Document Classification 83

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Yang, Y., Gopal, S.: Multilabel classification with meta-level features in a learning-
to-rank framework. Mach. Learn. 88(1-2), 47-68 (2012)

Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10),
1338-1351 (2006)

Zou, W.Y., Socher, R., Cer, D., Manning, C.D.: Bilingual word embeddings for
phrase-based machine translation. In: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pp. 1393-1398 (2013)

)

Check for
updates

Multi-region Ensemble Convolutional
Neural Network for Facial Expression
Recognition

Yingruo Fan®) | Jacqueline C. K. Lam, and Victor O. K. Li

Department of Electrical and Electronic Engineering,
The University of Hong Kong, Pokfulam, Hong Kong
yrfan@hku.hk, {jcklam,vli}@eee.hku.hk

Abstract. Facial expressions play an important role in conveying the
emotional states of human beings. Recently, deep learning approaches
have been applied to image recognition field due to the discriminative
power of Convolutional Neural Network (CNN). In this paper, we first
propose a novel Multi-Region Ensemble CNN (MRE-CNN) framework
for facial expression recognition, which aims to enhance the learning
power of CNN models by capturing both the global and the local fea-
tures from multiple human face sub-regions. Second, the weighted pre-
diction scores from each sub-network are aggregated to produce the final
prediction of high accuracy. Third, we investigate the effects of differ-
ent sub-regions of the whole face on facial expression recognition. Our
proposed method is evaluated based on two well-known publicly avail-
able facial expression databases: AFEW 7.0 and RAF-DB, and has been
shown to achieve the state-of-the-art recognition accuracy.

Keywords: Expression recognition + Deep learning
Convolutional Neural Network - Multi-region ensemble

1 Introduction

Facial expression recognition (FER) has many practical applications such as
treatment of depression, customer satisfaction measurement, fatigue surveillance
and Human Robot Interaction (HRI) systems. Ekman et al. [2] defined a set of
prototypical facial expressions (e.g. anger, disgust, fear, happiness, sadness, and
surprise). Since Convolutional Neural Network (CNN) has already proved its
excellence in many image recognition tasks, we expect that it can show bet-
ter results than already existing machine learning methods in facial expression
prediction problems. A well-designed CNN trained on millions of images can
parameterize a hierarchy of filters, which capture both low-level generic features
and high-level semantic features. Moreover, current Graphics Processing Units
(GPUs) expedite the training process of deep neural networks to tackle big-data
problems. However, unlike large scale visual object recognition databases such
© Springer Nature Switzerland AG 2018

V. Kiirkové et al. (Eds.): ICANN 2018, LNCS 11139, pp. 84-94, 2018.
https://doi.org/10.1007/978-3-030-01418-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_9&domain=pdf

Multi-region Ensemble CNN for Facial Expression Recognition 85

Original image

-

Face Detection Face Alignment

- Angry Disgust Fear Happy Sad SurpriseNeutral

Fig. 1. An overview of our approach: Multi-Region Ensemble CNN (MRE-CNN) frame-
work.

as ImageNet [10], existing facial expression recognition databases do not have
sufficient training data, resulting in overfitting problems.

CNN approaches topped the three slots in the 2014 ImageNet challenge [10]
for object recognition task, with the VGGNet [11] architecture achieving a
remarkably low error rate. With a review of previous CNNs, AlexNet [5] demon-
strated the effectiveness of CNN by introducing convolutional layers followed by
Max-pooling layers and Rectified Linear Units (ReLUs). AlexNet significantly
outperformed the runner-up with a top-5 error rate of 15.3% in the 2012 Ima-
geNet challenge [10]. In our proposed framework, one of the network structures
is based on AlexNet and the other one VGG-16 is a deeper network based on
VGGNet [11].

The goal of automatic FER is to classify faces in static images or dynamic
image sequences as one of the six basic emotions. However, it is still a challeng-
ing problem due to head pose, image resolution, deformations, and illumination
variations. This paper is the first attempt to exploit the local characteristics
of different parts of the face by constructing different sub-networks. Our main
contributions are three-fold and can be summarized as follows:

— A novel Multi-Region Ensemble CNN framework is proposed for facial expres-
sion recognition, which takes full advantage of both global information and
local characteristics of the whole face.

— Based on the weighted sum operation of the prediction scores from each sub-
network, the final recognition rate can be improved compared to the original
single network.

86 Y. Fan et al.

— Our MRE-CNN framework achieves a very appealing performance and out-
performs some state-of-the-art facial expression methods on AFEW 7.0
Database [1] and RAF-DB [6].

2 Related Work

Several studies have proposed different architectures of CNN in terms of FER
problems. Hu et al. [4] integrated a new learning block named Supervised Scoring
Ensemble (SSE) into their CNN model to improve the prediction accuracy. This
has inspired us to incorporate other well-designed learning strategies to existing
mainstream networks bring about accuracy gains. [8] followed a transfer learning
approach for deep CNNs by utilizing a two-stage supervised fine-tuning on the
pre-trained network based on the generic ImageNet [10] datasets. This implies
that we can narrow down the overfitting problems due to limited expressions
data via transfer learning. In [7], inception layers and the network-in-network
theory were applied to solve the FER problem, which focuses on the network
architecture. However, most of the previous methods have processed the entire
facial region as the input of their CNN models, paying less attention to the
sub-regions of human faces. To our knowledge, few works have been done by
directly cropping the sub-regions of facial images as the input of CNN in FER.
In this paper, each sub-network in our MRE-CNN framework will process a pair
of facial regions, including a whole-region image and a sub-region image.

3 The Proposed Method

The overview of our proposed MRE-CNN framework is shown in Fig. 1. We will
start with the data preparation, and then describe the detailed construction for
our MRE-CNN framework.

3.1 Data Pre-processing

Datasets. Recently, Real-world Affective Faces Database! (RAF-DB)[6], which
contains about 30000 real-world facial images from thousands of individuals,
is released to encourage more research on real-world expressions. The images
(12271 training samples and 3068 testing samples) in RAF-DB were downloaded
from Flickr, after which humans were asked to pick out images related with the
six basic emotions, plus the neutral emotion. The other database, Acted Facial
Expressions in the Wild (AFEW 7.0)[1], was established for the 2017 Emotion
Recognition in the Wild Challenge? (EmotiW). AFEW 7.0 consists of training
(773), validation (383) and test (653) video clips, where samples are labeled with
seven expressions: angry, disgust, fear, happy, sad, surprise and neutral (Fig. 2).

! http://www.whdeng.cn/RAF /modell.html.
2 https:/ /sites.google.com /site/emotiwchallenge/.

http://www.whdeng.cn/RAF/model1.html
https://sites.google.com/site/emotiwchallenge/

Multi-region Ensemble CNN for Facial Expression Recognition 87

Fig. 2. The first row displays cropped faces extracted from images in RAF-DB, and
the second row represents faces sampled across video clips in AFEW 7.0.

Face Detection and Alignment. For each video clip in AFEW 7.0, after
using a face tracker [3], we sample at 3-10 frames that have clear faces with an
adaptive frame interval. To extract and align faces both from original images
in RAF-DB and frames of videos in AFEW 7.0, we use a C++ library, Dlib3
face detector to locate the 68 facial landmarks. As shown in Fig.3, based on
the coordinates of localized landmarks, aligned and cropped whole-region and
sub-regions of the face image can be generated in a uniform template with a
affine transformation. In this stage, we align and crop regions of the left eye,
regions of the nose, regions of the mouth, as well as the whole face. Then three
pairs of images are all resized into 224 x 224 pixels.

Face image Face landmarks

Whole-region Sub-region

Fig. 3. The processing of the cropped whole-region and sub-regions of the facial image.

3.2 Multi-Region Ensemble Convolutional Neural Network

Our framework is illustrated in Fig. 1. We take three significant sub-regions of the
human face into account: the lefteye, the nose and the mouth. Each particular
sub-region will be accompanied by its corresponding whole facial image, forming

3 dlib.net.

88 Y. Fan et al.

a double input subnetwork in Multi-Region Ensemble CNN (MRE-CNN) frame-
work. Afterwards, based on the weighted sum operation of three prediction scores
from each sub-network, we get a final accurate prediction.

Particularly, to encourage intra-class compactness and inter-class separabil-
ity, each subnet adopts the softmax loss function which is given by

m gT (1)

Loss(0) = —— ZZl{y D=t log——F—

=1 j=1 Z 9Tac(v (1)
where z(¥) denotes the features of the i-th sample, taken from the final hidden
layer before the softmax layer, m is the number of training data, and k is the
number of classes. We define the i-th input feature () € R? with the predicted
label ;. 6 is the parameter matrix of the softmax function Loss(#). Here I{-}
means [{a true statement} = 1 or [{a false statement} = 0.

Data Augmentation. Despite the training size of RAF-DB; it is still insuf-
ficient for training a designed deep network. Therefore we utilize both offline
data augmentation and on-the-fly data augmentation techniques. The number
of training samples increases fifteen-fold after introducing methods including
image rotation, image flips and Gaussian distribution random perturbations.
Besides, on-the-fly data augmentation is embedded in the deep learning frame-
work, Caffe, by randomly cropping the input images and then flipping them
horizontally.

3.3 The Sub-networks in MRE-CNN Framework

As Fig. 4 shows, we adopt 13 convolutional layers and 5 max pooling layers and
concatenate the outputs from two pool5 layers before going through the first
fully connected layer. The final softmax layer gives the prediction scores. When
employing VGG-16 [11], we finetune the pre-trained model with the training set
of AFEW 7.0 and RAF-DB, respectively, in the following experiments.

1
'\r\P‘JK o 2
o 00\1 €orN

2 o
| 00 0 &
1% poo\a o poo\A LU“\IB pao\‘;
[\ C glig., =

224*224 1124112 56*56 2828 14*14 77 f8 softmax

t Wb
o’ o 1 m\‘at
poo\ o «

I 3
2 otV
f % B 5
| C C &0\ f QCO(‘M T POO\S 7

224%224 112*112 56*56 28+28 14*14 77 4096 4096

Fig. 4. The VGG-16 sub-network architecture in MRE-CNN framework.

Multi-region Ensemble CNN for Facial Expression Recognition 89

To validate the proposed MRE-CNN framework, our modified AlexNet archi-
tecture do not use any pre-trained models during its training process. For
AlexNet sub-network, we use 5 convolutional layers and 3 max pooling lay-
ers, the same as in the traditional CNN architecture. Different from the original
AlexNet, the last two fully connected layers have 64 outputs and 7 outputs,
respectively, making it possible to retrain a deep network with limited data. The
following experiment results indicate its effectiveness in the MRE-CNN frame-
work structure, despite its simplified network architecture.

Finally, we combine the three predictions from three sub-networks by con-

ducting the weighted sum operation. The predicted emotion Pyrp_cnn iS
defined as

eGTI(i)
eGQTa:(i’)

PryrE-onN = g an g SE ogreo || (2)
i=1 l GT)

where ., denotes the weight for a single sub-network and z is equal to 3 as we
utilize three sub-networks. Other parameters are the same as those in Eq. 1.

4 Experiments

4.1 Experimental Setup

All training and testing processes were performed on NVIDIA GeForce GTX
1080Ti 11G GPUs. We developed our models in the deep learning framework
Caffe. On the Ubuntu linux system equipped with NVIDIA GPUs, training a
single model in MRE-CNN took 4-6 hours depending on the architecture of the
sub-network.

4.2 Implementation Details

In data augmentation stage, we augment the set of training images in RAF-DB
and frames in AFEW 7.0 by flipping, rotating each with +4° and £6°, and
adding Gaussian white noises with variances of 0.001, 0.01 and 0.015. We then
train our VGG-16 sub-networks for 20k iterations with the following parameters:
learning rate 0.0001-0.0005, weight decay 0.0001, momentum 0.9, batch size 16
and linear learning rate decay in stochastic gradient descent (SGD) optimizer.
For AlexNet sub-networks, we train them for 30k iterations with the batch size of
64 and the learning rate begins from 0.001. In the ensemble prediction stage, the
specific weights of MRE-CNN (VGG-16 Sub-network) are 4/7 (lefteye weight),
2/7 (mouth weight) and 1/7 (nose weight) and those of MRE-CNN (AlexNet
Sub-network) are 2/5 (lefteye weight), 2/5 (mouth weight) and 1/5 (nose weight),
respectively.

90 Y. Fan et al.

4.3 Results on RAF-DB

RAF-DB is split into a training set and a test set with the idea of five-fold cross-
validation and we performed the 7-class basic expression classification bench-
mark experiment. In the RAF-DB test protocol, the ultimate metric is the mean
diagonal value of the confusion matrix rather than the accuracy due to imbal-
anced distribution in expressions. In this experiment, we directly train our deep
learning models with our processed training samples from RAF-DB, without
using other databases. In details, after filtering the non-detected face images
and applying data augmentation techniques, 95465 cropped face images are gen-
erated, accompanied by lefteye images, mouth images and nose images.

Table 1. Confusion matrix for RAF-DB based on MRE-CNN (VGG-16 sub-network).
The term Real represents the true labels (0 = Angry, 1 = Disgust, 2 = Fear, 3 =
Happy, 4 = Sad, 5 = Surprise, 6 = Neutral) and Pred represents the predicted value.

Real | Pred
0 1 2 3 4 5 6

0 0.0088 | 0.0632 |0.0000 | 0.0221 |0.0706 |0.0338 | 0.8015
1 0.0213 |0.0182 |0.0334 | 0.0030 |0.0122 |0.8602 0.0517
2 0.0209 | 0.0565 |0.0084 |0.0167 | 0.7992|0.0105 |0.0879
3 0.0110 | 0.0211 |0.0051 |0.8878 0.0127 |0.0110 |0.0515
4 0.0811 | 0.0000 |0.6081 0.0270 | 0.0676 |0.1757 |0.0405
5 0.1125 | 0.5750|0.0063 |0.0813 | 0.0750 |0.0187 |0.1313
6 0.8395 | 0.0802 |0.0185 |0.0185 |0.0123 |0.0062 |0.0247

Analyzing the confusion matrix based on MRE-CNN (VGG-16 Sub-network)
in Table 1, our proposed model performs well when classifying happy, surprise
and angry emotions, with accuracy of 88.78%, 86.02%, 83.95%, respectively.
For comparison, in Table 2 we show the results of the trained DCNN models fol-
lowed by different classifiers which are proposed in [6]. We find that our proposed
MRE-CNN (VGG-16) framework outperforms all of the existing state-of-the-art
methods evaluated on RAF-DB. In addition, the MRE-CNN (AlexNet) frame-
work also achieves a very appealing performance although we retrain the AlexNet
sub-networks with limited data.

Furthermore, we separated the sub-network modules from MRE-CNN frame-
work and demonstrated their individual results on the test set of RAF-DB.
Results can be viewed in Table 3. The result of the first row shows the average
accuracy of Face+LeftEye while applying VGG-16 sub-network in MRE-CNN
framework, and they are higher than that of Face+Mouth. Thus we assign higher
weights to Face+LeftEye subnet when combining the three predictions with an
appropriate ensemble method. Face+Nose subnet is slightly less effective, prob-
ably due to less information related to emotions; Nevertheless, it is still superior
to the VGG-FACE model given in Table2 with only the whole face region as
input.

Multi-region Ensemble CNN for Facial Expression Recognition 91

Table 2. Performance of different methods on RAF-DB (The metric is the mean
diagonal value of the confusion matrix).

Angry | Disgust | Fear | Happy | Sad Surprise | Neutral | Average
DLP-CNN+mSVM [6] 71.60 | 52.15 62.16 | 92.83 80.13 | 81.16 80.29 74.20
DLP-CNN+LDA [6] 77.51 | 55.41 52.50 | 90.21 73.64 | 74.07 73.53 70.98
AlexNet+mSVM [6] 58.64 | 21.87 39.19 | 86.16 60.88 | 62.31 60.15 55.60
AlexNet+LDA [6] 43.83 | 27.50 37.84 | 75.78 | 39.33 | 61.70 48.53 47.79
VGG+mSVM [6] 68.52 | 27.50 35.13 | 85.32 64.85 | 66.32 59.88 58.22
VGG+LDA [6] 66.05 | 25.00 37.84 | 73.08 51.46 | 53.49 47.21 50.59
Singe VGG-FACE 82.19 | 56.62 55.41 | 86.38 79.52 | 83.93 71.18 73.60
Our MRE-CNN (AlexNet) | 77.78 | 65.62 58.11 | 87.75 75.73 | 81.16 77.21 74.78
Our MRE-CNN (VGG-16) | 83.95 | 57.50 60.81 | 88.78 79.92 | 86.02 80.15 76.73

Table 3. Sub-region comparison (the metric is the mean diagonal value of the confusion
matrix).

Architecture Average
Face+LeftEye (Single VGG-16 sub-network) | 76.52
Face+Nose (Single VGG-16 sub-network) 75.64
Face+Mouth (Single VGG-16 sub-network) |76.13
Our MRE-CNN (VGG-16) 76.73

Table 4. Comparisons with the state-of-the-art methods on AFEW 7.0 (the metric is
the average accuracy of all validation videos).

Network architecture Training data Validation (%)
C3D [9] 16 frames for each video | 35.20
Resnet-LSTM [9] 16 frames for each video | 46.70
VGG-LSTM [9] 16 frames for each video | 47.40
Trajectory+ SVM [13] 30 frames for each video | 37.37
VGG-BRNN [13] 40 frames for each video | 44.46
C3D-LSTM [12] Detected face frames 43.20
Our MRE-CNN (AlexNet) Detected face frames 40.11
Our MRE-CNN (VGG-16) | Detected face frames 47.43

4.4 Results on AFEW 7.0

To validate the performance of our models, we also conduct experiments on the
validation set of AFEW 7.0. The task is to assign a single expression label from
seven candidate categories to each video clip from the validation set (383 video
clips). Note that all our CNN models in MRE-CNN framework are trained on
the given training data (773 video clips) only without applying any outside data.
Considering the temporally disappearance or occlusion in some videos, we only
use detected face frames for training and prediction. In our experiments, the

92 Y. Fan et al.

predicted emotion scores of each video are calculated by averaging the scores of
all its detected face frames. We can see from Table4, for the validation set of
AFEW 7.0, our MRE-CNN (VGG-16) framework gets great results which are
superior to some state-of-the-art methods.

4.5 Discussions

A series of feature maps are shown in Fig.5 for VGG-16 sub-network in our
MRE-CNN framework, which can reflect the differences in the filters of the
first three convolutional layers. It can be observed that shallower layer outputs
capture more profile information while deeper layer outputs encode the seman-
tic information. Shallower layers can learn rich low-level features that can help
refine the irregular features from deeper layers. Furthermore, by combining fea-
tures from the whole region and sub-regions of the human face, the resulting
architecture provides more rich feature maps, which raises the recognition rate
for FER problems.

Fig. 5. Visualization of the feature maps of the first three convolutional layers for the
input image on the left of each row.

Generally, our method explicitly inherits the advantage of information gath-
ered from multiple local regions from face images, acting as a deep feature
ensemble with two single CNN architectures, and hence it naturally improves
the final predication accuracy. The disadvantage of our approach is that we use
grid searching to determine the contribution portions of individual sub-networks,
which is relatively computationally expensive. We shall utilize ensemble meth-
ods like Adaboost to determine the best weights for different subnets. Although
facial expression recognition based on face images can achieve promising results,
facial expression is only one modality in realistic human behaviors. Combining
facial expressions with other modalities, such as audio information, physiologi-
cal data and thermal infrared images can provide complementary information,
further enhancing the robustness of our models. Therefore, it is a promising
research direction to incorporate facial expression models with other dimension
models into a high-level framework.

Multi-region Ensemble CNN for Facial Expression Recognition 93

5 Conclusion

We have proposed a novel Multi-Region Ensemble CNN framework in this study,
which takes full advantage of different regions of the whole human face. By
assigning different weights to three sub-networks in MRE-CNN, we have com-
bined the predictions of three separate networks. Besides, we have investigated
the effects of three different facial regions, each providing different local infor-
mation. As a result, our MRE-CNN framework has achieved a very appealing
performance on RAF-DB and AFEW 7.0, as compared to other state-of-the-art
methods.

Acknowledgements. This research is supported in part by the Theme-based
Research Scheme of the Research Grants Council of Hong Kong, under Grant No.
T41-709/17-N.

References

1. Dhall, A., Goecke, R., Lucey, S., Gedeon, T., et al.: Collecting large, richly
annotated facial-expression databases from movies. IEEE Multimed. 19(3), 34—
41 (2012)

2. Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J.
Person. Soc. Psychol. 17(2), 124 (1971)

3. He, Z., Fan, Y., Zhuang, J., Dong, Y., Bai, H.: Correlation filters with weighted
convolution responses. In: 2017 IEEE International Conference on Computer Vision
Workshop (ICCVW), pp. 1992-2000. IEEE (2017)

4. Hu, P., Cai, D., Wang, S., Yao, A., Chen, Y.: Learning supervised scoring ensemble
for emotion recognition in the wild. In: Proceedings of the 19th ACM International
Conference on Multimodal Interaction, pp. 553-560. ACM (2017)

5. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

6. Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learn-
ing for expression recognition in the wild. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2584-2593. IEEE (2017)

7. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression
recognition using deep neural networks. In: 2016 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 1-10. IEEE (2016)

8. Ng, HW., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion
recognition on small datasets using transfer learning. In: Proceedings of the 2015
ACM on International Conference on Multimodal Interaction, pp. 443-449. ACM
(2015)

9. Ouyang, X., et al.: Audio-visual emotion recognition using deep transfer learning
and multiple temporal models. In: Proceedings of the 19th ACM International
Conference on Multimodal Interaction, pp. 577-582. ACM (2017)

10. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211-252 (2015)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

http://arxiv.org/abs/1409.1556

94 Y. Fan et al.

12. Vielzeuf, V., Pateux, S., Jurie, F.: Temporal multimodal fusion for video emotion
classification in the wild. In: Proceedings of the 19th ACM International Conference
on Multimodal Interaction, pp. 569-576. ACM (2017)

13. Yan, J., Zheng, W., Cui, Z., Tang, C., Zhang, T., Zong, Y.: Multi-cue fusion for
emotion recognition in the wild. In: Proceedings of the 18th ACM International
Conference on Multimodal Interaction, pp. 458-463. ACM (2016)

®

Check for
updates

Further Advantages of Data
Augmentation on Convolutional Neural
Networks

Alex Hernéndez-Garcia®™) and Peter Konig

Institute of Cognitive Science, University of Osnabriick, Osnabriick, Germany
{ahernandez,pkoenig}Q@uos.de

Abstract. Data augmentation is a popular technique largely used to
enhance the training of convolutional neural networks. Although many of
its benefits are well known by deep learning researchers and practitioners,
its implicit regularization effects, as compared to popular explicit regu-
larization techniques, such as weight decay and dropout, remain largely
unstudied. As a matter of fact, convolutional neural networks for image
object classification are typically trained with both data augmentation
and explicit regularization, assuming the benefits of all techniques are
complementary. In this paper, we systematically analyze these techniques
through ablation studies of different network architectures trained with
different amounts of training data. Our results unveil a largely ignored
advantage of data augmentation: networks trained with just data aug-
mentation more easily adapt to different architectures and amount of
training data, as opposed to weight decay and dropout, which require
specific fine-tuning of their hyperparameters.

Keywords: Data augmentation - Regularization - CNNs

1 Introduction

Data augmentation in machine learning refers to the techniques that synthet-
ically expand a data set by applying transformations on the existing exam-
ples, thus augmenting the amount of available training data. Although the new
data points are not independent and identically distributed, data augmentation
implicitly regularizes the models and improves generalization, as established by
statistical learning theory [31].

Data augmentation has been long used in machine learning [27] and it has
been identified as a critical component of many models [6,21,22]. Nonetheless,
the literature lacks, to our knowledge, a systematic analysis of the implicit regu-
larization effect of data augmentation on deep neural networks compared to the
most popular regularization techniques, such as weight decay [12] and dropout
[29], which are typically used all together.

In a thought-provoking paper [34], Zhang et al. concluded that explicit regu-
larization may improve generalization performance, but is neither necessary nor

© Springer Nature Switzerland AG 2018
V. Kuarkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 95-103, 2018.
https://doi.org/10.1007/978-3-030-01418-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_10&domain=pdf

96 A. Hernandez-Garcia and P. Konig

by itself sufficient for controlling generalization error. They observed that remov-
ing weight decay and dropout does not prevent the models from generalizing.
Although they performed some ablation studies with data augmentation, they
considered it just another explicit regularization technique. In a follow up study
[16], it is argued that data augmentation should not be considered an explicit
regularizer and it is shown that explicit regularization may not only be unneces-
sary, but data augmentation alone can achieve the same level of generalization.

Here, we build upon the ideas from [16] and, using the same methodology,
we extend the analysis of data augmentation in contrast to weight decay and
dropout. In particular, we focus here on the capability of data augmentation
to adapt to deeper and shallower architectures as well as to successfully learn
from fewer examples. We find that networks trained with data augmentation,
but no explicit regularizers, outperform the networks trained with all techniques,
as is common practice in the literature. We hypothesize that weight decay and
dropout require fine-tuning of their hyperparameters in order to adapt to new
architectures and amount of training data, whereas the new samples generated by
data augmentation schemes are useful regardless of the new training conditions.

1.1 Related Work

Data augmentation was already used in the late 80’s and early 90’s for handwrit-
ten digit recognition [27] and it has been identified as a very important element
of many modern successful models, like AlexNet [21], AIl-CNN [28] or ResNet
[15], for instance. In some cases, heavy data augmentation has been applied with
successful results [32]. In domains other than computer vision, data augmenta-
tion has also been proven effective, for example in speech recognition [19], music
source separation [30] or text categorization [24].

Bengio et al. [3] focused on the importance of data augmentation for recog-
nizing handwritten digits through greedy layer-wise unsupervised pre-training
[4]. Their main conclusion was that deeper architectures benefit more from data
augmentation than shallow networks. Zhang et al. [34] included data augmenta-
tion in their analysis of the role of regularization in the generalization of deep
networks, although it was considered an explicit regularizer similar to weight
decay and dropout. The observation that data augmentation alone outperforms
explicitly regularized models for few-shot learning was also made by Hilliard
et al. in [18]. Only few works reported the performance of their models when
trained with different types of data augmentation levels, as is the case of [11].

Recently, the deep learning community seems to have become more aware of
the importance of data augmentation. New techniques have been proposed [7,8§]
and, very interestingly, models that automatically learn useful data transforma-
tions have also been published lately [2,13,23,26]. Another study [25] analyzed
the performance of different data augmentation techniques for object recognition
and concluded that one of the most successful techniques so far is the traditional
transformations carried out in most studies. Finally, a preliminary analysis of
the implicit regularization effect of data augmentation was presented in [16],
showing that data augmentation alone provides at least the same generalization

Further Advantages of Data Augmentation on CNNs 97

performance as weight decay and dropout. The present work follows up on those
results and extends the analysis.

2 Experimental Setup

This section describes the procedures we follow to explore the potential advan-
tages of data augmentation to adapt to changes in the amount of training
data and the network architecture, compared to the popular explicit regular-
izers weight decay and dropout. We build upon the methodology already used
in [16].

2.1 Network Architectures

We test our hypotheses with two well-known network architectures that achieve
successful results in image object recognition: the all convolutional network, All-
CNN [28]; and the wide residual network, WRN [33].

All Convolutional Net. The original architecture of All-CNN consists of 12
convolutional layers and has about 1.3 M parameters. In our experiments to
compare data augmentation and explicit regularization in terms of adaptability
to changes in the architecture, we also test a shallower version, with 9 layers and
374K parameters, and a deeper version, with 15 layers and 2.4 M parameters.
The three architectures can be described as follows:

2x96C3(1)-96C3(2)-2x 192C3(1)-192C3(2)-192C3(1)-192C1(1)

Original —N.CIl.C1(1)-Gl.Avg.—Softmax

Shallower 2x96C3(1)-96C3(2)-192C3(1)-192C1(1)
—N.CL.C1(1)-Gl.Avg.—Softmax

Deeper 2% 96C3(1)-96C3(2)-2x 192C3(1)-192C3(2)-2x 192C3(1)

~192C3(2)-192C3(1)-192C1(1)-N. CLC1(1)-CGl. Avg.~Softmax

where KCD(S) is a D x D convolutional layer with K channels and stride S,
followed by batch normalization and a ReLU non-linearity. N.Cl. is the number
of classes and Gl.Avg. refers to global average pooling. The network is identical
to the All-CNN-C architecture in the original paper, except for the introduction
of batch normalization. We set the same training parameters as in the original
paper in the cases they are reported. Specifically, in all experiments the All-
CNN networks are trained using stochastic gradient descent (SGD) with batch
size of 128, during 350 epochs, with fixed momentum 0.9 and learning rate of
0.01 multiplied by 0.1 at epochs 200, 250 and 300. The kernel parameters are
initialized according to the Xavier uniform initialization [9].

98 A. Hernandez-Garcia and P. Konig

Wide Residual Network. WRN is a residual network [15] with more units per
layer than the original ResNet, that achieves better performance with a smaller
number of layers. In our experiments we use the WRN-28-10 version, with 28
layers and about 36.5 M parameters. The details of the architecture are the
following:

16C3(1)-4x 160R-4x320R-4x 640R-BN-ReLU-Avg.(8)-FC-Softmax

where KR is a residual block with residual function BN—-ReLU-KC3(1)-BN-
ReLU-KC3(1). BN is batch normalization, Avg.(8) is spatial average pooling
of size 8 and FC is a fully connected layer. The stride of the first convolution
within the residual blocks is 1 except in the first block of the series of 4, where
it is 2 to subsample the feature maps. As before, we try to replicate the training
parameters of the original paper: we use SGD with batch size of 128, during 200
epochs, with fixed Nesterov momentum 0.9 and learning rate of 0.1 multiplied
by 0.2 at epochs 60, 120 and 160. The kernel parameters are initialized according
to the He normal initialization [14].

2.2 Data

We train the above described networks on both CIFAR-10 and CIFAR-100 [20].
CIFAR-10 contains images of 10 different classes and CIFAR-100 of 100 classes.
Both data sets consist of 60,000 32 x 32 color images split into 50,000 for train-
ing and 10,000 for testing. In all our experiments, the input images are fed into
the network with pixel values in the range [0, 1] and floating precision of 32 bits.
Every network architecture is trained with three data augmentation schemes: no
augmentation, light and heavier augmentation. The light scheme only performs
horizontal flips and horizontal and vertical translations of 10% of the image size,
while the heavier scheme performs a larger range of affine transformations, as
well as contrast and brightness adjustment. We use identical schemes as in [16],
where more details are given in an appendix. It is important to note though, that
the light scheme is adopted from previous works such as [10,28], while the heav-
ier scheme was first defined in [16], without aiming at designing a particularly
successful scheme, but rather a scheme with a large range of transformations.

2.3 Training and Testing

We train every model with the original explicit regularization, that is weight
decay and dropout, as well as with no explicit regularization. Besides, we test
both models with the three data augmentation schemes: light, heavier and no
augmentation. The test accuracy we report results from averaging the softmax
posteriors over 10 random [light augmentations.

All the experiments are performed on the neural networks API Keras [5] on
top of TensorFlow [1] and on a single GPU NVIDIA GeForce GTX 1080 Ti.

Further Advantages of Data Augmentation on CNNs 99

3 Results

In this section we present and analyze the performance of the networks trained
with different data augmentation schemes and with the regularizers on and off.
We are interested in comparing data augmentation and explicit regularization
regarding two different aspects: the performance when the training data set is
reduced to 50% and 10% of the available examples and the performance when
the architecture is shallower and deeper than the original. The presentation
of the results in Figs.1 and 2 aims at enabling an easy comparison between
the performance of a given network on a particular data set, when it has been
trained with weight decay and dropout and when it has no explicit regularization
(red and purple bars, respectively). The figures also allow a comparison of the
performance between the different levels of regularization (color saturation).

3.1 Reduced Training Sets

The performance of All-CNN and WRN trained with only 50 and 10% of the
available data is presented in Fig.1. From a quick look at the accuracy bars it

WRN none light heavier
10% NoReg. Wi m =
WD+Dropout N HEE B

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 8 8 84 8 8 87 8 8 90 91 92

CIFAR-10

WRN
50%

All-CNN
10%

WRN
10%

none light heavier
NoReg. i N BN
WD+Dropout il N NN

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 S0 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

CIFAR-100

|

Fig. 1. Test performance of the models trained with weight decay and dropout (red)
and the models trained without explicit regularization (purple) when the amount of
available training data is reduced. In general, the latter outperform the regularized
counterparts and the differences become larger as the amount of training data decreases.
(Color figure online)

100 A. Herndndez-Garcia and P. Konig

already becomes clear that the models trained without any explicit regularization
(purple bars) outperform the models trained with weight decay and dropout
(red bars). This is true for almost all the models trained with heavier data
augmentation (darkest bars). Only in the case of WRN trained with 50% of
CIFAR-10, the accuracy of the regularized model is marginally better (<0.001).
Otherwise, it seems that turning off the explicit regularizers not only does not
degrade the performance, but it helps achieve even better generalization.

The differences become even greater as the amount of training examples
gets smaller, in view of the results of training with only 10% of the data. In
these cases, the non-regularized models clearly outperform their counterparts.
We hypothesize that this may occur because the value of the hyperparameters of
weight decay and dropout, which were tuned to achieve state-of-the-art results
with 100% of the data in the original publications, are not suitable anymore
when the training data changes. It may be possible to improve the performance
of the regularized models by adapting the value of the hyperparameters, but
that would require a considerable amount of time and effort. On the contrary, it
seems that the same data augmentation scheme helps generalize even when the
training data set gets smaller.

The great implicit regularization effect of data augmentation becomes evident
by looking at the large performance gap between the light scheme and no data
augmentation. It seems that just a small set of simple transformations help

none light heavier

Original NoReg. i N BN

WD+Dropout N N BN
Deepe'—

Shallower

CIFAR-10

Original

Deeper

none light heavier
Shallower No Reg. i N W
WD+Dropout N N N

67 68 69 70 71 72 73

&
&
a
g
a
a
o
8
&
€
a
a
g
o
g
8
a@
3
P
8
®
3
@
3
@
8
@
R
>
&
°
8

CIFAR-100

Fig. 2. Test performance of the models trained with weight decay and dropout (red)
and the models trained without explicit regularization (purple) on shallower and larger
versions of AIl-CNN. In all the models trained with weight decay and dropout, the
change of architecture results in a dramatic drop in the performance, compared to the
models with no explicit regularization. (Color figure online)

Further Advantages of Data Augmentation on CNNs 101

the networks reduce the generalization gap by a large margin. In all cases the
regularization effect is much larger than the one of weight decay and dropout.

3.2 Shallower and Deeper Architectures

Figure 2 shows the accuracy of All-CNN when we increase or reduce the depth
of the architecture. If no explicit regularization is included (purple bars), we
observe that the deeper architecture improves the results of the original network
on both data sets, while the shallower architecture suffers a slight drop in the
performance. In the case of the models with weight decay and dropout (red bars),
not only is the performance much worse than their non-regularized counterparts,
but even the deeper architectures suffer a dramatic performance drop. This seems
to be another sign that the value of hyperparameters of weight decay and dropout
largely depend on the architecture and any modification requires the fine-tuning
of the regularization parameters. That is not the case of data augmentation,
which again seems to easily adapt to the new architectures because its potential
depends mostly on the type of training data.

4 Discussion and Conclusion

This work has extended the insights from [16] about the futility of using weight
decay and dropout for training convolutional neural networks for image object
recognition, provided enough data augmentation is applied. In particular, we
have focused on further exploring the advantages of data augmentation over
explicit regularization, in terms of its adaptability to changes in the network
architecture and the size of the training set.

Our results show that explicit regularizers, such as weight decay and dropout,
cause significant drops in performance when the size of the training set or the
architecture changes. We believe that this is due to the fact that their hyper-
parameters are highly fine-tuned to some particular settings and are extremely
sensitive to variations of the initial conditions. On the contrary, data augmenta-
tion adapts more naturally to the new conditions because its hyperparameters,
that is the type of transformations, depend on the type of training data and
not on the architecture or the amount of available data. For example, a model
without neither weight nor dropout slightly improves its performance when more
layers are added and therefore the capacity is increased. However, with explicit
regularization, the performance even decreases.

These findings contrast with the standard practice in the convolutional net-
works literature, where the use of weight decay and dropout is almost ubiquitous
and believed to be necessary for enabling generalization. Furthermore, data aug-
mentation is sometimes regarded as a hack that should be avoided in order to
test the potential of a newly proposed architecture. We believe instead that these
roles should be switched, because in addition to the results presented here, data
augmentation has a number of other advantages: it increases the robustness of
the models against input variability without reducing the effective capacity and

102 A. Herndndez-Garcia and P. Konig

may also enable learning more biologically plausible features [17]. We encour-
age future work to shed more light on the benefits of data augmentation and
the handicaps of ubiquitously using explicit regularization, specially on research
projects, by testing new architectures and data sets.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 641805.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). http://tensorflow.org/

2. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340 (2017)

3. Bengio, Y., et al.: Deep learners benefit more from out-of-distribution examples.
In: International Conference on Artificial Intelligence and Statistics, pp. 164-172
(2011)

4. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training

of deep networks. In: Advances in Neural Information Processing Systems, pp.

153-160 (2007)

Chollet, F., et al.: Keras (2015). https://github.com/fchollet /keras

6. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple
neural nets excel on handwritten digit recognition. Neural Comput. 22(12), 3207—
3220 (2010)

7. DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. In: International
Conference on Learning Representations (2017)

8. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and Statis-
tics, vol. 9, pp. 249-256, May 2010

10. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout
networks. In: International Conference on Machine Learning, pp. 1319-1327 (2013)

11. Graham, B.: Fractional max-pooling. arXiv preprint arXiv:1412.6071 (2014)

12. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction
with back-propagation. In: Advances in Neural Information Processing Systems,
pp. 177-185 (1989)

13. Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher, J., Hansen, L.: Dreaming more
data: class-dependent distributions over diffeomorphisms for learned data augmen-
tation. In: Artificial Intelligence and Statistics, pp. 342-350 (2016)

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: IEEE International Conference
on Computer Vision, pp. 1026-1034 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778
(2016)

16. Hernéndez-Garcia, A., Konig, P.: Do deep nets really need weight decay and
dropout? arXiv preprint arXiv:1802.07042 (2018)

o

http://tensorflow.org/
http://arxiv.org/abs/1711.04340
https://github.com/fchollet/keras
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1412.6071
http://arxiv.org/abs/1802.07042

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Further Advantages of Data Augmentation on CNNs 103

Hernédndez-Garcia, A., Mehrer, J., Kriegeskorte, N., Konig, P., Kietzmann, T.C.:
Deep neural networks trained with heavier data augmentation learn features closer
to representations in hIT. In: Conference on Cognitive Computational Neuroscience
(2018)

Hilliard, N.; Phillips, L., Howland, S., Yankov, A., Corley, C.D., Hodas, N.O.:
Few-shot learning with metric-agnostic conditional embeddings. arXiv preprint
arXiv:1802.04376 (2018)

Jaitly, N., Hinton, G.E.: Vocal tract length perturbation (VTLP) improves speech
recognition. In: ICML Workshop on Deep Learning for Audio, Speech and Lan-
guage, pp. 625-660 (2013)

Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, University of Toronto (2009)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436444
(2015)

Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation-learning an optimal
data augmentation strategy. IEEE Access 5, 5858-5869 (2017)

Lu, X., Zheng, B., Velivelli, A., Zhai, C.: Enhancing text categorization with
semantic-enriched representation and training data augmentation. J. Am. Med.
Inf. Assoc. 13(5), 526-535 (2006)

Perez, L., Wang, J.: The effectiveness of data augmentation in image classification
using deep learning. arXiv preprint arXiv:1712.04621 (2017)

Ratner, A.J., Ehrenberg, H.R., Hussain, Z., Dunnmon, J., Ré, C.: Learning to
compose domain-specific transformations for data augmentation. In: Advances in
Neural Information Processing Systems, pp. 3239-3249 (2017)

Simard, P., Victorri, B., LeCun, Y., Denker, J.: Tangent prop-a formalism for
specifying selected invariances in an adaptive network. In: Advances in Neural
Information Processing Systems, pp. 895-903 (1992)

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. In: International Conference on Learning Represen-
tations (2014)

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Uhlich, S., et al.: Improving music source separation based on deep neural net-
works through data augmentation and network blending. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 261-265 (2017)
Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory Probab. Appl. 16(2), 264—280 (1971)
Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image
recognition. arXiv preprint arXiv:1501.02876 (2015)

Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference, BMVC, pp. 87.1-87.12 (2016)

Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: International Conference on Learn-
ing Representations, ICLR, arXiv:1611.03530 (2017)

http://arxiv.org/abs/1802.04376
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1501.02876
http://arxiv.org/abs/1611.03530

)

Check for
updates

DTI-RCNN: New Efficient Hybrid Neural
Network Model to Predict Drug-Target
Interactions

Xiaoping Zheng', Song He?, Xinyu Song?, Zhongnan Zhangl(m),

and Xiaochen Bo>®?

! Software School, Xiamen University, Xiamen 361005, China
zhongnan_zhang@xmu. edu. cn
2 Beijing Institute of Radiation Medicine, Beijing 100850, China
boxiaoc@l63. com

Abstract. Drug-target interactions (DTIs) are a critical step in the technology
of new drugs discovery and drug repositioning. Various computational algo-
rithms have been developed to discover new DTIs, whereas the prediction
accuracy is not very satisfactory. Most existing computational methods are
based on homogeneous networks or on integrating multiple data sources,
without considering the feature associations between gene and drug data. In this
paper, we proposed a deep-learning-based hybrid model, DTI-RCNN, which
integrates long short term memory (LSTM) networks with convolutional neural
network (CNN) to further improve DTIs prediction accuracy using the drug data
and gene data. First, we extracted potential semantic information between gene
data and drug data via a LSTM network. We then constructed a CNN to extract
the loci knowledge in the LSTM outputs. Finally, a fully connected network was
used for prediction. The results comparison shows that the proposed model
exhibits better performance. More importantly, DTI-RCNN is stable and effi-
cient in predicting novel DTIs. Therefore, it should help select candidate DTIs,
and further promote the development of drug repositioning.

Keywords: DTIs - Hybrid model - LSTM - CNN - Drug repositioning

1 Introduction

In the technology of new drugs discovery and drug repositioning, a critical step is the
prediction of drug-target interactions (DTIs). Although the technology of biological
experiments has made great progress, the discovery of new DTIs is still a challenging
work [1]. The currently known DTIs account for a very small proportion of the total
DTI data [2], so finding an efficient method of screening effective new DTIs from a
large number of drug-target data is a very meaningful task.

The first two authors should be regarded as Joint First Authors.

© Springer Nature Switzerland AG 2018
V. Kirkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 104-114, 2018.
https://doi.org/10.1007/978-3-030-01418-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_11

DTI-RCNN: New Efficient Hybrid Neural Network Model 105

In the past decade, machine learning methods have been adopted to the discovery
of DTTs. The importance of structured knowledge and collective classification for drug-
target prediction was discussed by Fakhraei et al. [3]. Bleakley and Yamanishi used a
support vector machine framework to predict DTIs based on a bipartite local model
(BLM) [4]. Mei et al. further improved this framework by introducing a neighbor-based
interaction-profile inferring (NII) procedure into BLM (called BLMNII), which can
extract DTI features from neighbors and predict interactions for new drug or target
candidates [5]. Laarhoven et al. proposed a Gaussian interaction profile (GIP) kernel to
represent the interactions between drugs and targets, and they combined RLS with the
GIP kernel for DTI prediction problems [6, 7]. Wang and Zeng proposed a method
based on the RBM model that could be used to predict multi-type associations and has
shown its powerful performance in multi-type DTI prediction [8]. These prediction
methods mainly focus on exploiting information from homogeneous networks and
have performed well in some datasets. Recently, a number of computational strategies
based on deep learning have also been introduced to address the problem. For example,
Wen et al. extended the RBM to deep learning by creating a DBN called DeepDTIs,
that can predict interactions from different data sources including chemical structures
and protein sequence features [8, 9]. Unterthiner et al. combined multi-task learning
with deep networks, which was applied to good effect on the ChEMBL database [10,
11]. These methods use a variety of data sources, but the associations between drug and
gene data were less considered. Xie et al. developed a deep neural network to predict
new DTIs based on the L1000 database [12] and obtained good performance [13].
However, Xie’s model only combined drug with gene data simply, and did not consider
the connection between these two features.

In this study, we proposed a deep-learning-based hybrid model, named DTI-
RCNN, that integrates a long short term memory (LSTM) networks with a convolu-
tional neural network (CNN) to further improve DTIs prediction accuracy using drug
and gene data. The main novelty lies in that we introduce the LSTM network to obtain
the relationship between the drug and gene data. Then, the features of the LSTM
network output are input into the CNN to extract the knowledge between different loci.
With this hybrid architecture, DTI-RCNN has excellent prediction performance. Fur-
thermore, it can provide a practical tool for predicting unknown DTIs from the L1000
database, providing new insights for drug discovery or repositioning and understanding
of drug action mechanisms.

2 Methods

2.1 Data Source

The Library of Integrated Network-based Cellular Signatures (LINCS) project is a
Common Fund program administrated by the U.S. National Institutes of Health (NIH).
The funds for this project enabled the generation of approximately one million gene
expression profiles using the L1000 technology [14]. It reduces the number of gene
expressions that need to be measured from more than 20,000 to 978. We can obtain a
unified and extensive source of transcriptome data from this database. For the work

106 X. Zheng et al.

described in this paper, we collected drug perturbation and gene knockout perturbation
data from the following seven cell lines: A375, A549, HA1E, HCC515, HEPG2, PC3,
VCAP.

The DrugBank database is a comprehensive drug data source, that records chem-
ical, pharmacological, and pharmaceutical feature [15]. In order to obtain the complete
DTI data, the PubChem ID was used as a drug identifier.

2.2 Construction of Positive and Negative Samples

In this study, we modeled the DTI prediction problem as a binary classification task and
applied DTI-RCNN to it. From the L1000 and DrugBank databases we were able to
obtain drug perturbation, gene knockout trails, and DTI pairs for the above listed seven
cell lines. Some of gene knockout trails are target proteins while others are not. We
treat each drug target reaction pair as a positive sample while considering the com-
bination of drug data and non-target protein gene data as a negative sample. In order to
avoid the fact that too many negative samples lead the final training model to be more
inclined to predict the sample as negative, we extracted negative samples uniformly to
keep the ratio of the positive to the negative samples as 1:2.

As mentioned above, the dimension of the gene expression profile obtained by the
L1000 biotechnology is 978, and a sample includes both drug perturbation and gene
knockout trail. However, unlike other methods, we do not directly concatenate drug
data with gene knockout trail into one vector. Instead, we place gene disturbance data
and drug data in order to form a 2 x 978 matrix, so that the LSTM network can fully
learn the semantic correlation information between the gene knockout trail and drug
data. The feature matrix for each input sample is denoted as follows:

X = gllaglza7g1]77g:l (1)
dl.l, diz,..., d,...d

where x; denotes the i™ sample, gl’ and dij represent the j™ drug feature and the /™ gene
feature of the i™ sample respectively, and n is the dimension of the drug and gene
features.

2.3 Hybrid Model Construction

In this paper, we developed a hybrid model DTI-RCNN, integrating a LSTM network
and a CNN to solve the DTIs prediction problem. Figure 1 shows the architecture of
our DTI-RCNN, which is a two-part network structure. The first part is a simplified
version of the LSTM network, and the second part is a CNN.

When the positive and negative samples were generated, the input feature of each
sample collected was a gene-drug pair, which is a 2 x 978 matrix. To deal with the
semantic relationship between genes and drug characteristics, the recurrent units in the
recurrent neural network (RNN) were replaced by the LSTM network, allowing the
gene and drug information to fully fuse. In the LSTM network, the hidden layer
contains multiple memory cells. Since the units of hidden layer also play a role in
encoding features, the number of units (N) is generally smaller than the dimensions of

DTI-RCNN: New Efficient Hybrid Neural Network Model 107

the input features. A gene-drug pair is input into the LSTM network as a short sequence
of two, so gene feature is processed first, followed by drug feature. It should be noted
that when gene and drug features enter the LSTM network, they will be multiplied by
the same set of parameter matrices, that is, their parameters are shared. The output of
the gene feature after the LSTM process will be input into the network together with the
drug feature. It is because of this operation that we can analyze the semantic infor-
mation between gene and drug features. Finally, each of the gene and the drug features
will output one vector after the LSTM process. We then combine the two vectors
together to form a 2 x N matrix and use it as input to the CNN.

LST™M

Semantic Information

Gene-Drug pair —> Integrated Features Convolution layer

0.35 0.26 "< Pooling layer
-0.43 | -0.94
— 0.35 0.02 |
+ — 0.23 0.33
0.14 0.57
] 0.22 0.29

Convolution

() output layer
Kernels

0.08 0.54

Semantic Information Learning Loci Information Extracting and Predicting

Fig. 1. DTI-RCNN architecture.

2.4 Learning Semantic Information via a LSTM Network

Recurrent neural networks (RNNs) are a variant of neural networks in which units are
connected along a sequence [16]. RNNs were proposed to process sequence infor-
mation. The specific manifestation is that the network will memorize the previous
information and apply it to the calculation of the current output, that is, the units
between the hidden layers are connected, and the input of the hidden layer includes
both the output of the input layer and the output of hidden layers at the last moment.
Considering the characteristics of RNNs, we used a RNN to learn the relationship
between drug and gene data.

In standard RNNs, the recurrent hidden module has only a very simple structure
that is a non-linear activation function. Given a sequential sample x; = (g;, d;), RNNs
will update its hidden state s; by

s1=f(Ug:)
{Sg :f(Ud,"FgWSl) (2)

108 X. Zheng et al.

where U is the hidden layer parameter matrix of the current input feature, and W is the
parameter matrix of the hidden-layer output s; in the last time step, and f(-) is generally
a non-linear activation function, such as tanh or a ReLU function.

However, from the Eq. (2) we can see that the fusion of gene and drug data is only
achieved through simple dot multiplication and addition operation that are similar to
the calculation after a simple splicing operation, and cannot learn the correlation
between the drug and the data thoroughly. A LSTM network, first proposed in Ref.
[17], can fully integrate the prior information and the current input data in the hidden-
layer module because of its special hidden-layer structure. Unlike a single neural
network layer, a LSTM network’s hidden-layer has four network layers that interact in
a very special way. Simultaneously, it introduces a new hidden layer state named cell
state c¢;. The LSTM network updates information to the cell state to realize the fusion of
information at different times. The operations are summarized in [17], and are

fr= o (W51, d] + by) G)
i =0c(W;.[s1, d] + b;)

{ &a 2: tanh(W,. . Esl, d;| + b.) @

o=/ % c1+iy * G (3)
p2=0c(W,.[s1, d] + by)

{ ’ Sy =po x ianh(cz) ©

where () denotes a sigmoid function with an output between 0 and 1, b is a bias term,
d; is the drug feature of the i sample, s; is the state of the hidden layer at the last
moment whose only input is only gene feature g;, and W is the parameter matrix of s;
and d;.

In the LSTM network calculation process, all parameter matrices are shared
regardless of whether the input are gene features or drug features.

2.5 Extracting Loci Information Through a CNN

A CNN is a deep network structure that has been widely used in the fields of computer
vision, speech recognition, text processing and other artificial intelligence processes. In
recent years, it has also been used in drug-drug interactions prediction tasks [18]. The
purpose of using a CNN is to fuse the same locus features.

For the context feature generated by a LSTM network, we designed a convolutional
layer and a pooling layer according to the dimension of the matrix. In the convolutional
layer, we designed multiple convolution kernels as encoders to fully extract the infor-
mation of the features in multiple perspectives. The convolution process plays a role in
re-encoding that can reduce the error caused by the redundant information and can
enhance the effect of effective information. As mentioned above, the context feature
output after passing through the LSTM network is a 2 x N matrix. Based on this, we
design the convolution kernel of size 2 x L as the encoders, with a value of L greater

DTI-RCNN: New Efficient Hybrid Neural Network Model 109

than 2 and less than N. In the end, each convolution kernel is assigned a set of
(N — L+ 1) x 1vectors. The value of each cell y in the vector is calculated as follows:

Yk = Z; ijl LijSkvi-t1y (7)

where 1 <k <N — L+ 1. In this paper, we set up M different convolution kernels, and
then the result of the convolution is a matrix of (N — L+1) x M.

The convolutional layer generally is followed by the pooling operation. CNNs in
computer vision generally use a max-pooling layer to guarantee the translation
invariance of the image. Instead, we use mean-pooling operation to fuse features
extracted from the convolutional layer in the pooling layer.

2.6 Assessment of the Model Performance

For binary classification tasks, the indicators used to evaluate the performance of the
model mainly include AUC and Precision, which are also adopted in this paper.
AUC is the area under the receiver operating characteristic (ROC) curve. It can well
measure the overall performance of the model. The higher the AUC value, the better
the classification performance of the model.
Unlike AUC, Precision focuses on valuation of the accuracy of prediction models
for positive samples.

3 Results

We sampled the positive and negative samples from the seven cell lines uniformly at a
ratio of 1:2, and placed them in the model for training and testing. The performance of
the model under different parameters was mainly discussed, and the best model
parameters were obtained in each experiment according to the tenfold cross-validation
method. Finally, the model with the best performance after training was used for DTIs
prediction.

3.1 The Impact of Hyper Parameters on Model Performance

Here, we discuss the effects of several hyper-parameters on the performance of the
model. In order to find high-performance model parameters, we designed multiple sets
of different experiments for each parameter to verify the prediction results. For all
experimental results reported in Figs. 2 and 3 we used the same network structure
summarized in Table 1 except for the number of neurons in the LSTM hidden layer and
the size of the convolution kernel.

The LSTM hidden layer can extract association information associated between
gene and drug data. In addition, it can encode gene and drug features. Considering that
the features of the gene and drug put into the model are represented as a vector of
length 978, and the number of units in the hidden layer is generally smaller than the
number of input features, we designed seven different numbers of LSTM hidden-layer
units, fully considering the effect of the LSTM hidden-layer units in different quantities

110 X. Zheng et al.

Table 1. Parameter settings for hybrid model

Parameters Range

LSTM neurons [100, 200, 300, 400, 500, 600, 700]
Number of LSTM layers 2

Convolution kernel size [5, 10, 15, 20, 25, 30, 35]

Number of convolution kernel | 300

Fully connected neurons 10

Epoch 80

Batch size 64

Optimizer Adam

Learning rate 0.001

on model performance. In this group of experiments, we set the size of the convolution
kernel to 30. The experimental results are shown in Fig. 2.

As show in Fig. 2, when the number of LSTM hidden-layer units is equal to 400,
DTI-RCNN can achieve the best classification performance in most cell lines. For most
cell lines, the model’s classification performance was enhanced with increasing number
of neurons, but when the number exceeds a certain threshold, the classification per-
formance gradually degrades. We speculate this is because when the number of neu-
rons increases, the model can better learn the correlation information between gene and
drug features. However, when the number of neurons is too large, the LSTM model
cannot extract the high dimensional features of gene and drug data, and too much
redundant information blurs the association between them. When the number of neu-
rons is equal to 100, DTI-RCNN in some cell lines can also learn higher dimensional
correlation information and feature representations.

AUC . Precision

095 =g = A375 —@— A549 —@— HAIE = # = A375 —@— A549 —@— HAIE
= #& = HCC515 —@— HEPG2 -—@— PC3 = %« = HCC515 —@— HEPG2 -—@— PC3
= #& = VCAP _ = & = VCAP

100 200 300 400 500 600 700 100 200 300 400 500 600 700

Fig. 2. Impact of the number of LSTM hidden-layer units. The abscissa is the number of LSTM
hidden-layer units. The number of LSTM hidden-layer units is set in the range [100, 200, 300,
400, 500, 600, 700].

Since different sizes of convolution kernels can learn different feature representa-
tions, we tested the model performance of multiple 2 X k convolution kernels. Con-
sidering that the feature dimension of the LSTM network output is above 100, we set
the initial value of & to be relatively large, i.e., equal to 5. Meanwhile, in order to obtain

DTI-RCNN: New Efficient Hybrid Neural Network Model 111

more suitable parameters, we gradually increase the size of the convolution kernel, and
carried out experiments for k in the range [5, 35]. The number of LSTM hidden-layer
units is 400 in these experiments. The effect of different £ values on model performance
is shown in Fig. 3. We can see that different convolution kernels influence the model
performance. When the k value is equal to 30, DTI-RCNN achieves the best classifi-
cation results in the four cell lines (A375, A549, HEPG2, and PC3).

For cell lines HA1E and VCAP, the model achieved the maximum AUC and
Precision when £ is equal to 25, and the best classification is obtained when & is equal
to 20 for cell line HCC515.

AUC Precision

= o = A375 —@— A549 —@— HAIE
= & = HCC515 —e@— HEPG2 -—@— PC3 = d = HCCH15 —@— HEPG2 —8— PC3
= # = VCAP = = VCAP

= = A375 —@— AG49 —8— HAIE
5 10 15 20 25 30 35 5 10 15 20 25 30 35

Fig. 3. Impact of the convolution kernel size. The abscissa is the size of the convolution kernel,
which is set in the range [5, 10, 15, 20, 25, 30, 35].

It can be seen that the hybrid model classification ability is enhanced with
increasing k value, but after k exceeds a certain threshold, the performance of the model
starts to degrade. In general, when the & value is between 20 and 30, the convolutional
network can well learn both the global and the local features of the LSTM output
features. When the k value is less than this range, the amount of feature information
extracted by the convolutional network is insufficient; when it is larger than this range,
the convolutional network will focus on learning the high-dimensional global infor-
mation; while ignoring the information of the same locus between the gene and the
drug data. This leads to a decrease in the classification performance of the model.

3.2 Comparison with Other Models

Based on the above experimental results, we have found a set of parameters that exhibit
relatively good classification performance. These parameters are listed in Table 1. And
according to Figs. 2 and 3, we set the number of LSTM hidden layer units of the hybrid
model to 400 and the convolution kernel size to 30.

In addition, we compared DTI-RCNN with other deep learning methods, including
DNN and RNN. The prediction results of the three methods are shown in Table 2.

From Table 2, the AUC and Precision indicators of the simple RNN model for the
seven cell lines are better than those of the DNN, indicating that the RNN can well
learn the potential relationship between gene and drug data. The classification per-
formance of DTI-RCNN is better than that of RNN, indicating that the CNN can indeed

112

Table 2. Comparison of prediction results of three deep learning algorithms (the results of the

X. Zheng et al.

algorithm proposed in this paper are rendered in bold type).

Cell lines DNN RNN DTI-RCNN
A375 AUC 0.8892 £ 0.015 [0.9329 £ 0.0165 | 0.9429 £ 0.0076
Precision | 0.8036 & 0.0164 | 0.8775 4 0.0066 | 0.9377 + 0.0145
A549 AUC 0.891 £ 0.01 0.9202 £ 0.0134 | 0.9371 £ 0.0176
Precision | 0.8339 £ 0.0166 | 0.9168 £ 0.0068 | 0.9261 + 0.0098
HAIE |AUC 0.8817 £ 0.0203 | 0.9116 £ 0.0181 | 0.9358 £ 0.0149
Precision | 0.8714 4 0.0105 | 0.9042 4 0.007 |0.936 £ 0.0095
HCC515 | AUC 0.8812 £ 0.0101 | 0.9433 £ 0.0138 | 0.9613 £ 0.0163
Precision | 0.8093 % 0.0179 | 0.9325 4 0.0192 | 0.9515 + 0.0128
HEPG2 | AUC 0.8699 £ 0.0185|0.9091 £ 0.0185 |0.9249 £ 0.0198
Precision | 0.8405 4 0.0106 | 0.9065 & 0.0026 | 0.9118 + 0.0076
PC3 AUC 0.9097 £ 0.0112 {0.9326 £ 0.0175 | 0.968 £ 0.0117
Precision | 0.846 4+ 0.0127 |0.9248 & 0.0135 | 0.9522 + 0.017
VCAP |AUC 0.9061 £ 0.0061 | 0.9328 £ 0.0138 | 0.9537 £ 0.0047
Precision | 0.8977 4 0.0119 | 0.9055 4 0.0184 | 0.9163 + 0.0078
IS
8 -
o |
2 »
2 o
o <
Q
E 8-
g g
e -
o -

T T
20 40

60

T T T
80 100

120 140

Bin index

Fig. 4. Overlap between DTIs predicted by hybrid model and DTIs recorded by CTD database.

learn the locus information between gene and drug features. The results show that the
proposed DTI-RCNN is superior to other deep learning models.

3.3 Prediction of Novel DTIs

We used DTI-RCNN to predict novel DTIs. Using the predicted DTIs in the PC3 cell
lines as example, we examined the novel DTIs using the CTD database, which is a
comprehensive database including chemical-gene interactions [19]. We ranked all
novel DTIs by predicted score and computed overlapping pairs between the novel DTI

DTI-RCNN: New Efficient Hybrid Neural Network Model 113

predicted by DTI-RCNN and the interactions from the CTD database. Next, we
counted the number of overlapping pairs in the sliding bins of 1,000 consecutive
interactions (Fig. 4). In addition, we used the hypergeometric test to investigate the
statistical significance of the overlap between predicted DTIs and those (P Value =
1.75 x 1071%). The result indicates that DTI-RCNN could indeed discover a certain
part of novel DTIs validated by known experiments.

4 Conclusions

In this work, we proposed a DTIs prediction framework, designated DTI-RCNN, which
is based on the RNN-CNN hybrid model, and used the drug perturbation transcriptome
data and gene knockout trails in the L1000 database to train the model. DTI-RCNN can
learn the associated semantic information between gene and drug data effectively, and
can make full use of its locus feature to predict the data. The results show that the
proposed model’s classification performance is superior to that of other deep learning
methods and has the ability to discovery more reliable DTIs. The data from multiple
cell lines demonstrate the superiority and robustness of DTI-RCNN. This also suggests
that our hybrid model can effectively integrate gene and drug transcriptome data and
effectively shorten the DTIs prediction process within the drug discovery process.

Acknowledgements. This work was supported by the Science and Technology Guiding Project
of Fujian Province, China (2016H0035).

References

1. Whitebread, S., Hamon, J., Bojanic, D., et al.: Keynote review: in vitro safety pharmacology
profiling: an essential tool for successful drug development. Drug Discov. Today 10(21),
1421-1433 (2005)

2. Dobson, C.M.: Chemical space and biology. Nature 432(7019), 824-828 (2005)

3. Fakhraei, S., Huang, B., Raschid, L., et al.: Network-based drug-target interaction prediction
with probabilistic soft logic. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 775-787
(2014)

4. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite
local models. Bioinformatics 25(18), 2397-2403 (2009)

5. Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drug-target interaction prediction by learning from
local information and neighbors. Bioinformatics 29(2), 238-245 (2013)

6. Van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian Interaction Profile Kernels for
Predicting Drug-Target Interaction. Oxford University Press, Oxford (2011)

7. Laarhoven, T.V., Marchiori, E.: Predicting drug-target interactions for new drug compounds
using a weighted nearest neighbor profile. PLoS ONE 8(6), e66952 (2013)

8. Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines.
Bioinformatics 29(13), 126-134 (2013)

9. Wen, M., Zhang, Z., Niu, S., et al.: Deep-learning-based drug-target interaction prediction.
J. Proteome Res. 16(4), 1401 (2017)

114

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

X. Zheng et al.

Unterthiner, T., Mayr, A., Klambauer, G., et al.: Deep learning for drug target prediction. In:
Conference Neural Information Processing Systems Foundation, NIPS 2014, Workshop on
Representation and Learning Methods for Complex Outputs (2014)

Gaulton, A., Bellis, L.J., Bento, A.P., et al.: ChEMBL.: a large-scale bioactivity database for
drug discovery. Nucleic Acids Res. 40(Database issue), 1100-1107 (2012)

Duan, Q., Flynn, C., Niepel, M., et al.: LINCS Canvas Browser: interactive web app to
query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res.
42(Web Server issue), W449 (2014)

Xie, L., Zhang, Z., He, S., et al.: Drug—Target interaction prediction with a deep-learning-
based model. In: IEEE International Conference on Bioinformatics and Biomedicine,
pp. 469-476. IEEE Computer Society (2017)

Peck, D., Crawford, E.D., Ross, K.N., et al.: A method for high-throughput gene expression
signature analysis. Genome Biol. 7(7), R61 (2006)

Law, V., Knox, C., Djoumbou, Y., et al.: DrugBank 4.0: shedding new light on drug
metabolism. Nucleic Acids Res. 42(Database issue), 1091-1097 (2014)

Medsker, L.R., Jain, L.C.: Recurrent Neural Networks. Design and Applications, vol. 5.
CRC Press, Boca Raton (2001)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735-1780
(1997)

Liu, S., Tang, B., Chen, Q., et al.: Drug-drug interaction extraction via convolutional neural
networks. Comput. Math. Methods Med. 2016, Article no. 6918381 (2016)

Davis, A.P., King, B.L., Mockus, S., et al.: the comparative toxicogenomics database: update
2011. Nucleic Acids Res. 41(Database issue), D1104-D1114 (2011)

q

Check for
updates

Hierarchical Convolution Neural Network
for Emotion Cause Detection on Microblogs

Ying Chen™, Wenjun Hou, and Xiyao Cheng

College of Information and Electrical Engineering,
China Agricultural University, Beijing 100083, China
{chenying, houwenjun, chengxiyao}@cau. edu. cn

Abstract. Emotion cause detection which recognizes the cause of an emotion
in microblogs is a challenging research issue in Natural Language Processing
field. In this paper, we propose a hierarchical Convolution Neural Network
(Hier-CNN) for emotion cause detection. Our Hier-CNN model deals with the
feature sparse problem through a clause-level encoder, and handles the less
event-based information problem by a subtweet-level encoder. In the clause-
level encoder, the representation of a word is augmented with its context. In the
subtweet-level encoder, the event-based features are extracted in term of
microblogs. Experimental results show that our model outperforms several
strong baselines and achieves the state-of-the-art performance.

Keywords: Hierarchical model - Convolution Neural Network
Emotion cause detection

1 Introduction

Emotions are one of the most fundamental feelings of human experiences, thus emotion
analysis has great value in a wide range of real-life applications. In the research
community of Natural Language Processing (NLP), there are mainly two kinds of
emotion analyses: emotion classification and emotion cause detection. The former
focuses on the category of an emotion and the latter works on the cause of an emotion.
In this paper, we work on the emotion cause detection task of Cheng et al. (2017).

A microblog focuses on an event, and a clause in a microblog often contains only
some information about the event, so the extraction of event-based features for a clause
needs to access the focused event in the microblog. In this paper, we propose a
hierarchical approach which contains two steps (clause-level and subtweet-level) to
extract event-based features. Given a Chinese microblog, a clause-level encoder
combines several neural networks to extract local features in each clause. Then, a
subtweet-level encoder treats those local features as a sequence and then extracts
sequence features for each clause through Convolution Neural Networks (CNNs; Kim
2014). Moreover, because of the feature sparse problem in our small-scaled experi-
mental data, our clause-level encoder extracts two kinds of local features to comple-
ment each other: salient features from CNN and weighted features from attention
network.

© Springer Nature Switzerland AG 2018
V. Kirkova et al. (Eds.): ICANN 2018, LNCS 11139, pp. 115-122, 2018.
https://doi.org/10.1007/978-3-030-01418-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_12

116 Y. Chen et al.

The contributions of this paper are summarized as follows:

e We propose a hierarchical model to extract event-based features, which uses a
clause-level encoder to extract rich local features in a clause and then use a
subtweet-level encoder to extract sequence features of the whole microblog.

e We propose a context-aware attention encoder to address the feature sparse prob-
lem, which uses context-based representations of words to learn word weights.

2 Related Work

Due to the increasing attention to emotion cause detection recently, there are a few
emotion cause corpora available. Most of them are manually annotated, either for
formal texts (Lee et al. 2010; Gui et al. 2016; Xu et al. 2017) or for informal texts (Gui
et al. 2014; Gao et al. 2015; Cheng et al. 2017). Based on these emotion cause corpora,
intensive studies have explored the extraction of effective features for two kinds of
emotion causes: explicit causes which are expressed with explicit connectives (e.g. “to
cause”, “for”), and implicit causes which are inferred from the given texts. In the
former case, different linguistic rules are proposed to extract linguistic expression
patterns using the context of the current clause (Chen ez al. 2010; Xu et al. 2017; Ghazi
et al. 2015). In the latter case, different event-based features which reflect the causal
relation are examined, such as the convolutional deep memory network (ConvMS-
Memnet; Gui et al. 2017), Long Short-Term Memory Network (LSTM; Cheng et al.
2017) and so on. Because implicit emotion causes play a dominant role in Chinese
microblogs (Cheng et al. 2017), we focus on event-based feature extraction for implicit
emotion cause detection in this paper.

3 Our Approach

3.1 Task Definition

In this paper, we use the emotion cause corpus provided by Cheng et al. (2017) as our
experimental data, in which emotion causes in Chinese microblogs are manually
labeled (namely Cheng emotion cause corpus). Moreover, to better explain our work,
we adopt twitter’s terminology used in Cheng et al. (2017).

In Cheng emotion cause corpus, a tweet can be considered as a sequence of
subtweets ordered by their published time. E.g. in Fig. 1, there are five subtweets
sequentially published by five users (I'm Jay, Desdis Yun, I'm eggette, Little Koala,
and the owner of the tweet) in the example. Furthermore, given an emotion keyword in
a subtweet, Cheng et al. (2017) found that the corresponding emotion causes usually
locate either in the current subtweet or in the original subtweet. Therefore, there are two
emotion cause detection tasks: current-subtweet-based emotion cause detection and
original-subtweet-based emotion cause detection. The experimental result of Cheng
et al. (2017) showed that the current-subtweet-based emotion cause detection task is
more challenging, and thus we focus on this emotion cause detection task in this paper.

Hier-CNN for Emotion Cause Detection on Microblogs 117

Chinese: MRHK... @/ RE: TH L% 7 I L~ Oing /@ AGEF: &
ll@Desdis#]: WIETHRI &7 LA

URih@B EJay: A ANERHE B A LRI ~~

English Translation: Oh yeah... /@Little Koala: Salary is increased, salary is in-
creased~~happying //@I’m eggette: <& //@Desdis Yun: It is awkward for me who was re-

signed just now//!/

[original subtweet] @I’m Jay: Nothing even exam fails can compare my message hahaha~~

Fig. 1. An example of a tweet.

In order to extract features from the perspective of the whole subtweet, an instance
is a pair of (X, Y), where the input X consists of an emotion keyword (EmoKW) and a
sequence of clauses in a subtweet, and the output Y is a sequence of binary labels which
indicates the causal relation between a clause and the emotion keyword. E.g. in Fig. 1,
there are two clauses in the current subtweet for “awkward” (the emotion keyword): “It
is”, and “for me who was resigned just now”. The corresponding labels for the two
clauses are ‘0’ and ‘1’. Furthermore, in order to provide complemental information to a
clause, each clause in the input X is attached with a context (i.e. the text between
EmoKW and the current clause). Finally, the input text of an instance includes an

EmoKW, a sequence of clauses (ClauseSeq) and a sequence of contexts (ContextSeq).

3.2 Overview

Our emotion cause detection approach is based on a neural network which mainly
includes two components: an encoder which extracts a feature representation and a
decoder which assigns a label to each clause according to the representation. As shown
in Fig. 2, a hierarchical CNN encoder is applied to each input sequence (ClauseSeq or
ContextSeq) and generates a sequence of hierarchical features (Mpjer ciause OF
Rhier _context)- Then, the final representation of each clause is the concatenation of the
feature of EmoKW (hgme.xw) and the two hierarchical features separately from
Phier _Clause AN Ppier _conrexe- In the classification decoder, a linear layer takes the final
representation as the input, and generates a label with softmax function.

To better explain the hierarchical CNN encoder in the following section, we assume
the input sequence is the sequence of clauses ClauseSeq = (Cy,..., Cy), where C; is the
i-th clause. As shown in Fig. 2, there are two-level sub-encoders in the hierarchical
CNN: a clause-level encoder which extracts local features (AjocaiContext OF Riocal_Clause)
for C; based on the words in the clause, and a subtweet-level encoder which extracts the
hierarchical feature (hpier_contexr OF Rhier_clause) for C; based on all local features in the
subtweet. Each sub-encoder is a combination of several encoder layers. Given an input
sequence X, an encoder layer yields a middle representation h through Eq. 1.

h = encoder(X) (1)

118 Y. Chen et al.

Classify
Concat

i

Subtweet-level Encoder

Subtweet-level Encoder

Hierarchical CNN
Encoder

hlocaI_Context hIocaI_CIause

Clause-level Encoder
i

ClauseSeq

CNN Encoder Clause-level Encoder

Fig. 2. Overview of our hierarchical emotion cause detection model.

Local Salient Feature

7§>
EmoKW —L& Local Weighted Feature|

Clause-level { Subtweet-level

Subtweet-level

Subtweet-level

Max Pooling

Fig. 3. Tllustration of our hierarchical CNN encoder with the clause-level encoder and subtweet-
level encoder. G is the Gated Linear Unit.

3.3 The Clause-Level Encoder

As shown in Fig. 3, the clause-level encoder sequentially uses different kinds of
encoder layers to extract two local features for C; (i = 1...... 7). In order to alleviate the
feature sparse problem, CNN is used to extract abstractive features over the focused
clause. In the clause-level CNN, convolutional filters are used to extract high-level
features from the sequence of words in C; and then in order to further handle the
feature sparse problem, two ways are used to extract the two local features for C;: a
max-pooling layer with rectifier linear unit activation function (ReLU; Glorot et al.
2011) to obtain a local salient feature, and a context-aware attention network which
learns the weights of words to obtain a local weighted feature.

In the context-aware attention network, Gated Linear Unit (Dauphin et al. 2017) is
used to generate a representation of the context of each word and produce a context-
based representation for the word, and then an attention layer (Ma et al. 2017) is
applied to obtain a weighted feature for C;. In this attention layer, the weight of the j-th
wordw; (j=1...... N) in C; is obtained through Eq. 2, where h,, is the representation of

Hier-CNN for Emotion Cause Detection on Microblogs 119

word wj, hpmoxw is the representation of EmoKW, [;] is the concatenation between
matrices, W, and v, are the weight matrices. Secondly, the weights are normalized to
construct a probability distribution over the words (see Eq. 3). Lastly, the local
weighted feature of C; (i.e. h4,) is a weighted summation over the representations of all
words in C; (see Eq. 4).

e = Ugtanh(wa [hEmOKW; hwj]) (2)

_exp(e)
G =N
Zk:l exp(ex)

N
ha =) ajh (4)

3.4 The Subtweet-Level Encoder

Based on all local features in a subtweet, which are either local salient features or local
weighted features, the subtweet-level encoder uses two CNNs to extract a hierarchical
feature. Firstly, the local salient features (or the local weighted features) are ordered
into a sequence according to their corresponding clauses, and then subtweet-level
CNN; with ReLU is used to extract hierarchical salient features (or hierarchical
weighted features) over the sequence of local features. Secondly, a clause is represented
by a set of features: a local salient feature, a local weighted feature, a hierarchical
salient feature, and a hierarchical weighted feature. The sets of features are ordered into
a sequence according to their corresponding clauses, and then subtweet-level CNN,
with ReLU and max-pooling layer are used to extract the final features (/. ¢ in
Fig. 3).

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. As mentioned in Sect. 3.1, Cheng emotion cause corpus is
used in our experiments, which contains ~ 4,300 instances and ~ 12,600 clauses. We
use S5-fold cross-validation to evaluate all the methods. Because a subtweet often
contains several emotion keywords, the instances containing one of the emotion key-
words have overlaps in their input texts. Therefore, when creating the folds, we ensure
instances from the same subtweet are not shared between the folds. This is important as
repeating subtweets in both the train and the test sets could potentially make a model
performs better than it actually does. Similar to previous work (Cheng et al. 2017; Gui
et al. 2017), only the precision, recall and Fl-score of label ‘1’ are reported as eval-
uation metrics.

120 Y. Chen et al.

Model Settings and Training Details. The dimension of word vector in our model is
20; the kernel widths of the clause-level CNN and subtweet-level CNN; are 3, and the
kernel numbers are 128. The kernel widths of subtweet-level CNN, are 1 and 4, and the
kernel numbers are both 64. Dropout is set to 0.5 and is only applied to the final
representation. Adam optimizer (Kingma and Ba 2015) is used to optimize the
parameters, the learning rate is 0.001, the weight decay is 0.0001, and the batch size is
20. All the parameters are initialized with Xavier Initialization (Glorot and Bengio
2010).

Baselines. We compare our hierarchical CNN approach (Hier-CNN) with the fol-
lowing baselines which use different approaches to encode an instance, where CNN
and ConvMS-Memnet use the emotion keyword and the current clause as input, and
LSTM uses the same input as Cheng et al. (2017) (i.e. local text defined in Sect. 2).

e CNN: the CNN-based encoder is applied to obtain the representation of local text.

e LSTM: it is the emotion cause detection approach proposed by Cheng et al. (2017).

e ConvMS-Memnet: it is the state-of-the-art emotion cause detection approach pro-
posed by Gui et al. (2017).

4.2 Method Comparison

Table 1 shows the performances of different emotion cause detection approaches. From
Table 1, we observe that our hierarchical CNN approach (Hier-CNN) significantly
outperforms the three baselines and yields the highest performance. Compared with the
two state-of-the-art emotion cause detection approaches (LSTM and ConvMS-
Memnet), our hierarchical CNN encoder chooses a multi-channel structure to sepa-
rately use three sequences of input words in local text (the emotion keyword, the
current clause and the context), and uses a hierarchical CNN encoder to effectively
extract event-based features for the emotion cause detection on Chinese microblogs.

Table 1. The performances of different methods for the emotion cause detection.

Encoder Precision | Recall | F1

CNN 48.2 572 523
LSTM 51.5 63.4 | 56.7
Convs-Memnet 414 61.0 |49.2
MChanCNN 54.0 62.8 |58.0
MChanLSTM 52.9 64.7 |58.1
MChanLSTM-ATT 53.1 619 |57.1
MChan Convs-Memnet | 54.7 47.1 |50.5
Hier-CNN 52.9 68.8 |59.7

Hier-CNN for Emotion Cause Detection on Microblogs 121

4.3 Model Analysis

In this section, we make an in-depth analysis of our hierarchical CNN encoder in terms
of two lines: the multi-channel structure and the components of our hierarchical CNN
encoder.

Multi-channel. We integrate the multi-channel structure with one of the three baseline
encoder (CNN, LSTM and ConvMS-Memnet), and list their performances in Table 1
(MChanCNN, MChanLLSTM, and MChan ConvMS-Memnet). When the multi-channel
structure is applied to each baseline encoder, the performance is improved. E.g. the F1-
score is increased by 5.7% for CNN, 1.4% for LSTM, and 1.3% for ConvMS-Memnet.
This indicates that the multi-channel structure can effectively detect the causal relation
between an emotion and an event through separately using the information in the
current clause and the complemental information in the context. Moreover, the slight
improvement for LSTM and ConvMS-Memnet shows that these encoders suffer the
feature sparse problem in Chinese microblogs.

Table 2. The detailed performances of our hierarchical model.

Encoder | Precision | Recall | F1

Hier-CNN | 52.9 68.8 |59.7
R-HF 51.7 65.9 |57.3
R-LF 52.8 61.3 |56.5
R-WF 52.9 67.6 |59.1

Components. In Table 1, although LSTM significantly outperforms CNN (56.7% vs.
523% in Fl-score), the performance difference between MChanCNN and
MChanLSTM is rather small (58.0% vs. 58.1% in Fl1-score). CNN and LSTM have
different advantages in terms of feature extractions: CNN outperforms in capturing high-
level features and LSTM is advantageous for capturing sequence features. Moreover, we
observe that applying attention mechanism to MChanLSTM (MChanLSTM-ATT) does
not improve the performance (58.1% vs. 57.1% in F1-score).

Compared with MChanCNN and MChanLSTM, Hier-CNN achieves the best
performance (59.7% in Fl-score). This indicates that the hierarchical CNN encoder can
effectively integrate the clause-level information and subtweet-level information.
Moreover, in terms of attention mechanism, Hier-CNN significantly outperforms the
MChanLSTM-ATT (59.7% vs. 57.1 in Fl-score). This indicates that Hier-CNN can
better capture the key information of a clause.

In order to investigate the effect of local salient features (SF), local weighted
features (WF) and hierarchical features (HF), we build another three classifiers listed in
Table 2, where R-HF, R-FL and R-WF are the Hier-CNN whose HF, LF and WF are
removed respectively. As shown in Table 2, if LF is removed, the recall drops sig-
nificantly, which directly pulls down the overall performance. Moreover, if WF is
removed, the recall drops slightly. This indicates that combining LF and WF, the
feature sparse problem can be effectively alleviated. Furthermore, it can be observed

122 Y. Chen et al.

that, after removing the HF, the overall performance degrades. This indicates that the
subtweet-level information of a clause can effectively augment event-based features
from local clauses, and thus improve the performances.

5 Conclusion

In this paper, in order to extract more event-based features for emotion cause detection
on Chinese microblogs, we propose a hierarchical CNN approach, which extract the
rich local features using the clause-level encoder and more event-based features using
the subtweet-level encoder. We show that our hierarchical CNN approach can effec-
tively utilize information in a subtweet for emotion cause detection.

References

Chen, Y., Lee, S., Li, S., Huang, C.: Emotion cause detection with linguistic constructions. In:
Proceedings of COLING (2010)

Cheng, X., Chen, Y., Cheng, B., Li, S., Zhou, G.: An emotion cause corpus for Chinese
microblogs with multiple-user structures. ACM Trans. Asian Low-Resour. Lang. Inf. Process.
TALLIP 17(1), 6 (2017)

Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional
networks. In: Proceedings of ICML (2017)

Gao, K., Xu, H., Wang, J.: A rule-based approach to emotion cause detection for Chinese micro-
blogs. Expert Syst. Appl. 42(2015), 4517-4528 (2015)

Ghazi, D., Inkpen, D., Szpakowicz, S.: Detecting emotion stimuli in emotion-bearing sentences.
In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 152-165. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18117-2_12

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of AISTATS (2010)

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of
AISTATS (2011)

Gui, L., Yuan, L., Xu, R., Liu, B., Lu, Q., Zhou, Y.: Emotion cause detection with linguistic
construction in Chinese weibo text. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Natural
Language Processing and Chinese Computing. CCIS, vol. 496, pp. 457-464. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9_42

Gui, L., Wu, D., Xu, R., Lu, Q., Zhou, Y.: Event-driven emotion cause extraction with corpus
construction. In: Proceedings of EMNLP (2016)

Gui, L., Hu, J., He, Y., Xu, R., Lu, Q., Du, J.: A question answering approach to emotion cause
extraction. In: Proceedings of EMNLP (2017)

Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of EMNLP
(2014)

Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)

Lee, S.Y.M., Chen, Y., Huang, C.-R.: A text-driven rule-based system for emotion cause
detection. In: Proceedings of NAACL (2010)

Ma, F., ChittSa, R., Zhou, J.: Dipole: diagnosis prediction in healthcare via attention-based
bidirectional recurrent neural networks. In: Proceedings of KDD (2017)

Xu, R., Hu, J., Lu, Q., Wu, D., Gui, L.: An ensemble approach for emotion cause detection with
event extraction and multi-kernel SVMs. Tsinghua Sci. Technol. 22(6), 646—-659 (2017)

http://dx.doi.org/10.1007/978-3-319-18117-2_12
http://dx.doi.org/10.1007/978-3-662-45924-9_42

®

Check for
updates

Direct Training of Dynamic Observation
Noise with UMarineNet

Stefan Oehmcke!®™) | Oliver Zielinski2, and Oliver Kramer?

1 Computational Intelligence Group, Department of Computing Science,
University of Oldenburg, Oldenburg, Germany
2 Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Oldenburg, Germany
{stefan.oehmcke,oliver.zielinski,oliver.kramer}@uni-oldenburg.de

Abstract. Accurate uncertainty predictions are crucial to assess the
reliability of a model, especially for neural networks. Part of this uncer-
tainty is the observation noise, which is dynamic in our marine virtual
sensor task. Typically, dynamic noise is not trained directly, but approx-
imated through terms in the loss function. Unfortunately, this noise loss
function needs to be scaled by a trade-off-parameter to achieve accurate
uncertainties. In this paper we propose an upgrade to the existing archi-
tecture, which increases interpretability and introduces a novel direct
training procedure for dynamic noise modelling. To that end, we train
the point prediction model and the noise model separately. We present a
new loss function that requires Monte Carlo runs of the model to directly
train for the uncertainty prediction accuracy. In an experimental eval-
uation, we show that in most tested cases the uncertainty prediction
is more accurate than the manually tuned trade-off-parameter. Because
of the architectural changes we are able to analyze the importance of
individual parts of the time series of our prediction.

Keywords: CNN - LSTM - Predictive uncertainty + Time series

1 Introduction

Recent research proposed the combination of dropout and Monte Carlo (MC)
runs to approximate the predictive uncertainty for regression and classifica-
tion tasks [3,4]. Instead of predicting a single point, the model expresses its
uncertainty through intervals. This is particularly useful for tasks that want to
evaluate the prediction in terms of reliability and robustness, e.g. mixing the
measured and predicted uncertainty state to control a robot [13]. We apply
this predictive uncertainty method to the marine virtual sensor task based on
the combined Biodiversity-Ecosystem Functioning across marine and terrestrial
ecosystems (BEFmate) [2] and the Time Series Station Spiekeroog (TSS) [1]
real-world dataset [14]. The goal is to replace a real sensor that failed due to the
harsh environmental conditions in the Wadden sea, such as the daily tidal forces,
© Springer Nature Switzerland AG 2018

V. Kiirkové et al. (Eds.): ICANN 2018, LNCS 11139, pp. 123-133, 2018.
https://doi.org/10.1007/978-3-030-01418-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_13&domain=pdf

124 S. Oehmcke et al.

salt water exposure, and occasional storms. This replacement sensor is virtual
and represents a nowcasting task in which current values of different origin are
used as input to predict the current target value. In our case, surrounding sen-
sors are used to model a missing sensor at the same time step. For comparison,
forecasting tasks predicts future target values based on current values, e.g. room
temperature forecasts [16].

Previous work introduces the MarineNet architecture [14], which combines
convolutional as well as recurrent layers, incorporates input quality information,
and employs the above mentioned uncertainty prediction method. It assumes
heteroscedastic, or dynamic uncertainty in the observations, which is reflected by
varying noise in the data. The original method [3,14] trains this observation noise
through approximation by tuning a hyper-parameter that cannot be learned
directly. Moreover, MarineNet applies a unique time dimensionality reduction
approach, exPAA, which splits a time series into parts that aggregate different
amounts of time steps. An importance analysis of these exPAA parts for the
final prediction is difficult, but could be useful for the prediction.

In this work, we propose to address the shortcomings of MarineNet with:

1. an architectural upgrade, allowing to analyze exPAA parts and
2. a novel training procedure to directly learn the dynamic observation noise.

The first contribution is achieved by replacing the last fully connected (dense)
layer with a convolutional layer followed by averaging over the time series and
more residual connections. We also adjusted the number of neurons of individual
layers and finally require less weights to achieve similar performance. The second
contribution is attained by separating prediction and observation noise training.
We introduce a new loss function for the noise training that directly compares the
predicted and the actual uncertainty of the model. In an experimental evaluation,
we achieve equal or better performance with the proposed changes and are able
to analyze the exPAA parts.

The paper is structured as follows. Section 2 introduces the MarineNet archi-
tecture with the most relevant mythological concepts. In Sect. 3 we describe our
upgrade to the architecture as well as the new direct training of the observation
noise. These upgrades are evaluated in Sect. 4. Finally, we draw conclusions in
Sect. 5.

2 Original MarineNet

The MarineNet is a neural network architecture utilizing multiple concepts [14].
A macroarchitectural overview is presented in the upper part of Fig.1. Con-
volutional layers filter the time series to create useful temporal features with
kernel sizes of one and three (convl and conv3). These are grouped into four
fire modules from SqueezeNet [10]. Then, the exPAA layer [15] follows, which
creates ¢’ parts from ¢ time steps, whereby the number of time steps per part is
decreasing over time, depending on a hyper-parameter exponent e. Consequently,
earlier parts aggregate more time steps, while more information are retained in

Direct Training of Dynamic Observation Noise with UMarineNet 125

later steps. Next, the biLSTM layer [6,8] is fed the aggregated time series, which
is then processed by a dense layer. Finally, the sensor output and the dynamic
noise is predicted in final linear regression layers.

The dropout mechanism [5,17], where multiple neurons are deactivated for
one iteration, is employed before each trainable layer. It acts as a regularizer and
helps to avoid overfitting. Batch normalization [11] is applied after the activation
function and if applicable after dropout to further reduce overfitting and to speed
up convergence.

Another important part is the implementation of predictive uncertainty via
MC dropout inspired by Gal [3,4]. Predictive uncertainty is the confidence of
our model about its current prediction and consists of two parts. First, the data
uncertainty, which is reflected in the training distribution, e.g. predictions are
unreliable if an unseen sample is on the far end of the training distribution
or the available data is noisy. Second, the model uncertainty that affects the
internal structure and expression of weights. For example, if a model weight is
greater for one or another input and thus give it more importance. The predictive
uncertainty can be expressed as an interval around the point prediction. To
create this interval, multiple forward passes of MarineNet are calculated with
different dropout realizations. These MC dropouts are conducted at test time
and give two outputs, a predictive mean E[y] with variance Var[y;] of m MC
model runs f; € F:

]~ %Zfi(wo

Var[y;] Zgz xy) + fi(ze)? — Elye)®. (1)

With a higher number m of MC runs, the approximation is stabilizing. The
standard uncertamty interval is represented by squaring the predictive variance
(e.g. Var[y,]? is the 68.27% uncertainty interval).

The observation noise ¢ is modeled dynamically, because in the employed
marine application varying noise is introduced, inter alia, by tides and seasons.
This noise is equal to the inversion of the models’ precision and represents a
function g(a;), which is part of the loss function during training:

L:=a-(y — (@) (9(ze) +1) — (1 - a) - log(g(z)), (2)

with the trade-off variable o € [0,1] to calibrate the uncertainty scale. Since
the noise is not allowed to be smaller than or equal to zero, softplus is used as
activation function.

Lastly, the qDrop layer [14] adapts the dropout chance per input dimension
after the input layer depending on the current time step and sensor quality. The
sensor quality results from the number of consecutively imputed values, since the
imputation quality decreases with the length of the data gap. This has direct
impact on the uncertainty predictions at test time. For example, when we drop
some of the inputs due to low quality, we increase the uncertainty if the dropped

126 S. Oehmcke et al.

Fig. 1. The macroarchitectural view of MarineNet (top) and UMarineNet (down).

features are important for the prediction. During the training phase, less reliable
features are automatically dropped more often based on their quality and thus
the network learns to favor trustworthy features to a greater extent.

3 MarineNet Upgrade

We found two shortcomings of MarineNet. First, there is no easy way to analyze
the importance of individual exPAA parts. If these information were available,
the time series aggregation could be adapted to focus on the more crucial time
steps. Second, the scaling of the observation noise greatly depends on the hand-
tuned parameter o in Eq.2. To address these shortcomings, we updated the
architecture to return explainable time step impact. Further, we change the
training process of MarineNet to acquire accurate uncertainty predictions with-
out calibration of «.

3.1 Changes to the Architecture

The architectural changes to MarineNet are shown on the lower part of Fig. 1.
As a first change, we substitute the only dense layer by a convolutional layer
with kernel size of one (convl layer), followed by an averaging of the outputs
over the steps, but not the neurons. We drew inspiration for this change from
multiple publications [7,10,12], who apply this technique to images instead of
time series data. Instead of returning only the last time step output, the bLSTM
layer now passes on its complete output over all time steps. This was avoided
in MarineNet, because the dense layer would have needed significantly more
weights (number of neurons times exPAA parts). Since the convl kernel is not
tied to the length of the input series, the computational cost did not increase
substantially with the complete bLSTM output. Further, the output from this
convl layer offers insight into which parts are most important, as only averaging
and linear combinations are employed afterwards.

Because of the change to the bLSTM output, it is now possible to add more
residual connections [7]. We create compatibility between the outputs by apply-
ing exPAA to acquire the same time resolution and a convl layer to adjust
for differences in neuron count. More residual connections are added inside the
fire-modules, after the single convl layers. Another change is that each residual

Direct Training of Dynamic Observation Noise with UMarineNet 127

connection also uses all compatible residual connections before them. ThTese
kind of dense residuals are introduced by Zhang et al. [18] and Huang et al. [9].

Through changes to the number of neurons and layer compositions, our
UMarineNet requires 3.04 times less weights, which amounts to 376188 com-
pared to previously 1145072 weights. We increased the number of neurons for
the first convl layer in fire modules from 48 to 64. In the bLSTM layer, now
192 instead of 512 neurons are employed. The convl layer that replaces the
dense layer keeps its 512 neurons, but the weight matrix shrinks because of the
smaller input from the bLSTM layer. All normal dropout layers utilize a 50%
keep chance.

3.2 Automatic Training of Accurate Uncertainty Predictions

The loss function in Eq.2 employs two counteracting mechanisms to learn the
model noise: scaling the original error, which minimizes for small values and the
negative logarithm of this noise that minimizes for large values. Depending on
the scaling of the target variable and underlying processes, the negative loga-
rithm can be a poor choice to train the noise. The trade-off parameter « partly
mitigates this effect, but needs to be tuned separately. We are not optimizing
directly for the uncertainty, since it would require the MC prediction during
training, which is computationally costly at training time with the complete
network.

We propose to completely remove this hyper-parameter o by altering the
training process to directly learn the accurate noise function. In the beginning,
we ignore the dynamic noise function g and train UMarineNet to create accurate
point predictions f by minimizing MSE loss. Thereafter, the optimizer is not
allowed to change the weights of the network anymore, it is frozen. Only the
linear layer of the noise function is not frozen. This layer is then minimizing the
following loss function:

2
Lync '= 2 -max (A(%) . (% - acc(%))) 0)
98 i i i V)2
+ Xicse Algs) - (100 —aceliig))” | (3)
2
2 (A (et)0

(=}

with actual accuracy acc(j) and A(j) being the difference between the absolute
prediction error and the uncertainty interval at percent accuracy j:

40G) = 5 3 (1Bl = wl = Varly] - V27 () (1)

t=1

with predictive mean E[y], predictive variance Var[y], batch size 1, and inverse
Gauss error function erf'. This actual accuracy at the desired accuracy j €
(0,1) over 72 samples is calculated by:

128 S. Oehmcke et al.

acc(j) = %Z (|yt — Ely]| </ Varly,] - \@'erf_l(j)> 7 ®)

t=1

with the logical operator < returning 0 for false and 1 for true. This loss function
requires multiple MC forward passes through the network during one iteration
to acquire the predictive mean E[y] and variance Var[y], but due to the frozen
layers, only the gradient for the noise layer has to be computed. We only update
the weights to optimize for the noise g in only one of the MC runs. This avoids too
much change to the weights in one iteration and saves on computing resources
by calculating the gradient only once.

By utilizing multiple A-function calls, we train the noise function g to con-
verge between these desired accuracy levels between 51% and 99%. The scaling
of these A calls by the difference between the desired and the actual accuracy,
helps the convergence of the noise model. Ideally, one would only optimize for
this difference, but because the logical operator < is not differentiable. Conse-
quently, this term only acts as a fixed value.

We define the first and third row of Eq. 3 as outer bounds. They only increase
their loss value if they fall below or exceed their desired accuracy of either 51%
or 99%. Since these bounds are critical for our uncertainty prediction, they are
doubled. Further, the second row of Eq.3 can be seen as support points for the
actual accuracy to reach the desired accuracy.

The separation of learning prediction and noise can also be seen as a network
for noise on top of a prediction network, enabling already trained networks to
acquire reliable noise observations afterwards. Also, more complex layer struc-
tures could be employed if the noise seems to be a non-linear process.

4 Experimental Evaluation

The following experiments verify that the changes to the architecture can give
insight to the importance of individual parts of the input and that the direct
learning of the noise function is at least as good as tuning the trade-off param-
eter o beforechand. We compare the results of the original MarineNet and the
UMarineNet with and without direct training of the observation noise.

4.1 Combined TSS and BEFmate Dataset

The training set cover the time from 2014-09-18 15:00 to 2015-03-31 22:40:00
in a 10-minute resolution, which amounts to 49867 time steps of 57 different
sensors by the TSS and BEFmate project [14,15]. Since the target sensor mostly
measured at high tide, when the sensor is in the water, only 11633 target sensor
time steps are available for the same time frame. We employ a 60-40% train-
ing/testing split. For training, 6979 steps of the target sensors and 24922 steps
of the surrounding sensors are available. To utilize the surplus time steps from
the surrounding sensor, we append up to 24 h (144 steps) of data to each target
input step. We optimize the hyper-parameters by dividing the training set into

Direct Training of Dynamic Observation Noise with UMarineNet 129

a 70/30%-split for training/validation. The complete training set is used after
the hyper-parameter optimization. Table 1 shows the hyper-parameter settings
for exPAA’s original steps d, reduced parts §’, and exponent e as well as gDrop’s
exponent ¢ value of UMarineNet. The remaining 40%, 4654 target sensor steps
and 19946 surrounding sensor steps of the dataset represent the test set. Just
as the original MarineNet, we create a model for each of the five target sensors,
which are: Speed, Temp, Conductivity, Pressure, and Direction.

Table 1. Choice of optimized hyper-parameter settings for the UMarineNet.

sensor #steps 6 | #parts &’ | exponent e | quality exp.e
Speed 72 4 2.0 0.25000
Temp 36 4 2.0 0.06250
Conductivity |