Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9488
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Vega Escobar, Laura Stella | - |
dc.contributor.author | Castro Ospina, Andrés Eduardo | - |
dc.contributor.author | Duque Muñoz, Leonardo | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-07-14T14:02:55Z | - |
dc.date.available | 2021-07-14T14:02:55Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Vega-Escobar L.S., Castro-Ospina A.E., Duque-Muñoz L. (2018) Individual Finger Movement Recognition Based on sEMG and Classification Techniques. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_13 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9488 | - |
dc.description.abstract | Hand gesture recognition is an active research area of human machine interfaces in which the person performs a hand gesture and a machine recognize the actual movement. However, the gestures can be seen as combination of individual finger movements, and recognizing the individual finger movements could improve the gesture recognition. This work presents a framework for finger movement recognition based on the feature extraction of the superficial electromiographic signals generated in the arm. We acquired a dataset with 54 subjects, and eight signals (channels) per subject. Then, features extracted in three types of domains were analized namely, time, frequency, and time-frequency forming a feature set of 720 features. A subset of features were selected and a support vector machine and k-NN classifiers were trained with a 10- fold cross-validation to prevent overfitting. We reached an accuracy over 90% implying that our proposed framework facilitates the finger movement recognition. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.subject | ACQUISITION | en_US |
dc.subject | CLASSIFICATION | en_US |
dc.subject | FEATURE SELECTION FINGER MOVEMENT RECOGNITION | en_US |
dc.subject | sEMG | en_US |
dc.subject | VALIDATION | en_US |
dc.title | Individual Finger Movement Recognition Based on sEMG and Classification Techniques | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_13 | - |
dc.source.initialpage | 113 | en_US |
dc.source.endpage | 121 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A037.pdf | 118.79 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.