Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9488
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVega Escobar, Laura Stella-
dc.contributor.authorCastro Ospina, Andrés Eduardo-
dc.contributor.authorDuque Muñoz, Leonardo-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T14:02:55Z-
dc.date.available2021-07-14T14:02:55Z-
dc.date.issued2018-
dc.identifier.citationVega-Escobar L.S., Castro-Ospina A.E., Duque-Muñoz L. (2018) Individual Finger Movement Recognition Based on sEMG and Classification Techniques. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_13en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9488-
dc.description.abstractHand gesture recognition is an active research area of human machine interfaces in which the person performs a hand gesture and a machine recognize the actual movement. However, the gestures can be seen as combination of individual finger movements, and recognizing the individual finger movements could improve the gesture recognition. This work presents a framework for finger movement recognition based on the feature extraction of the superficial electromiographic signals generated in the arm. We acquired a dataset with 54 subjects, and eight signals (channels) per subject. Then, features extracted in three types of domains were analized namely, time, frequency, and time-frequency forming a feature set of 720 features. A subset of features were selected and a support vector machine and k-NN classifiers were trained with a 10- fold cross-validation to prevent overfitting. We reached an accuracy over 90% implying that our proposed framework facilitates the finger movement recognition.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectACQUISITIONen_US
dc.subjectCLASSIFICATIONen_US
dc.subjectFEATURE SELECTION FINGER MOVEMENT RECOGNITIONen_US
dc.subjectsEMGen_US
dc.subjectVALIDATIONen_US
dc.titleIndividual Finger Movement Recognition Based on sEMG and Classification Techniquesen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_13-
dc.source.initialpage113en_US
dc.source.endpage121en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A037.pdf118.79 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.