Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9474
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCurra Sosa, Dagnier Antonio-
dc.contributor.authorPérez Rodríguez, Roberto-
dc.contributor.authordel Risco Alfonso, Ricardo-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T15:32:05Z-
dc.date.available2021-07-13T15:32:05Z-
dc.date.issued2018-
dc.identifier.citationCurra-Sosa DA., Pérez-Rodríguez R., Del-Risco-Alfonso R. (2018) Predictive Model for Specific Energy Consumption in the Turning of AISI 316L Steel. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_6en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9474-
dc.description.abstractThis article presents an approach for the simulation of machining operations through Artificial Intelligence, which guarantees an automatic learning of the distinctive features in the processes of metal cutting. In the research, an Artificial Neural Network was designed, which establishes the relationships between the parameters of cutting regime and the technological indexes of machining, based on the information generated in real experimentation. For the conception of suitable cutting strategies, the following magnitudes were considered for the input of the model: lubrication regime, cutting speed, feed rate and machining time; which determined the behavior of the cutting forces in the turning of the AISI 316L steel, in order to obtain the cutting powers that define the specific energy consumption. Several designs were considered according to the features of Multi-Layer Perceptron architecture and the selected model was evaluated according to the mean square error and the regression coefficient R2, reflecting high precision in the approximation. The deviation for the error made in the estimation of the cutting force values represents approximately 2% of the average value. These results showed a good level of reliability in the prediction of energy consumption under various machining conditions, in order to adopt relevant saving measures.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectSPECIFIC ENERGY COMSUPTIONen_US
dc.subjectTURNINGen_US
dc.subjectAISI 316L STEELen_US
dc.subjectPREDICTIVE MODELen_US
dc.subjectARTIFICIAL NEURAL NETWORKen_US
dc.titlePredictive Model for Specific Energy Consumption in the Turning of AISI 316L Steelen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_6-
dc.source.initialpage51en_US
dc.source.endpage58en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A026.pdf102.74 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.