Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9470
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPérez, Gabriela-
dc.contributor.authorBello, Marilyn-
dc.contributor.authorNápoles, Gonzalo-
dc.contributor.authorGarcía, María Matilde-
dc.contributor.authorBello, Rafael-
dc.contributor.authorVanhoof, Koen-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T14:29:57Z-
dc.date.available2021-07-13T14:29:57Z-
dc.date.issued2018-
dc.identifier.citationPérez G., Bello M., Nápoles G., García M.M., Bello R., Vanhoof K. (2018) Expanding MLkNN Using Extended Rough Set Theory. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_28en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9470-
dc.description.abstractMulti-label classification refers to the problem of associating an object with multiple labels. This problem has been successfully addressed from the perspective of problem transformation and adaptation of algorithms. MultiLabel k-Nearest Neighbour (MLkNN) is a lazy learner that has reported excellent results, still there is room for improvements. In this paper we propose a modification to the MLkNN algorithm for the solution to problems of multilabel classification based on the Extended Rough Set Theory. More explicitly, the key modifications are focused in obtaining the relevance of the attributes when computing the distance between two instances, which are obtained using a heuristic search method and a target function based on the quality of the similarity. Experimental results using synthetic datasets have shown promising prediction rates. It is worth mentioning the ability of our proposal to deal with inconsistent scenarios, a main shortcoming present in most state-of-the-art multi-label classification algorithms.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectMULTI- LABEL CLASSIFICATIONen_US
dc.subjectK-NEAREST NEIGHBOURen_US
dc.subjectEXTENDED ROUGH SET THEORYen_US
dc.subjectMEASURE QUALITY OF SIMILARITYen_US
dc.titleExpanding MLkNN Using Extended Rough Set Theoryen_US
dc.typeconferenceObjecten_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_28-
dc.source.initialpage247en_US
dc.source.endpage254en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A024.pdf126.03 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.