Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9467
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCalvo, Hiram-
dc.contributor.authorRivera Camacho, Ramón-
dc.contributor.authorBarrón Fernández, Ricardo-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T14:18:01Z-
dc.date.available2021-07-13T14:18:01Z-
dc.date.issued2018-
dc.identifier.citationCalvo H., Rivera-Camacho R., Barrón-Fernndez R. (2018) Semantic Loss in Autoencoder Tree Reconstruction Based on Different Tuple-Based Algorithms. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_20en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9467-
dc.description.abstractCurrent natural language processing analysis is mainly based on two different kinds of representation: structured data or word embeddings (WE). Modern applications also develop some kind of processing after based on these latter representations. Several works choose to structure data by building WE-based semantic trees that hold the maximum amount of semantic information. Many different approaches have been explores, but only a few comparisons have been performed. In this work we developed a compatible tuple base representation for Stanford dependency trees that allows us to compared two different ways of constructing tuples. Our measures mainly comprise tree reconstruction error, mean error over batches of given trees and performance on training stage.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectSEMANTIC RECONSTRUCTIONen_US
dc.subjectPARSINGen_US
dc.subjectSTRUCTURING WORD EMBEDDINGSen_US
dc.titleSemantic Loss in Autoencoder Tree Reconstruction Based on Different Tuple-Based Algorithmsen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_20-
dc.source.initialpage174en_US
dc.source.endpage181en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A023.pdf100.07 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.