Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9463
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLoza, Carlos A.-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-13T13:44:14Z-
dc.date.available2021-07-13T13:44:14Z-
dc.date.issued2018-
dc.identifier.citationLoza C.A. (2018) Robust K-SVD: A Novel Approach for Dictionary Learning. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_21en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9463-
dc.description.abstractA novel criterion to the well-known dictionary learning technique, K-SVD, is proposed. The approach exploits the L1-norm as the cost function for the dictionary update stage of K-SVD in order to provide robustness against impulsive noise and outlier input samples. The optimization algorithm successfully retrieves the first principal component of the input samples via greedy search methods and a parameterfree implementation. The final product is Robust K-SVD, a fast, reliable and intuitive algorithm. The results thoroughly detail how, under a wide range of noisy scenarios, the proposed technique outperforms KSVD in terms of dictionary estimation and processing time. Recovery of Discrete Cosine Transform (DCT) bases and estimation of intrinsic dictionaries from noisy grayscale patches highlight the enhanced performance of Robust K-SVD and illustrate the circumvention of a misplaced assumption in sparse modeling problems: the availability of untampered, noiseless, and outlier-free input samples for training.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectDICTIONARY LEARNINGen_US
dc.subjectK- SVDen_US
dc.subjectROBUST ESTIMATIONen_US
dc.titleRobust K-SVD: A Novel Approach for Dictionary Learningen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_21-
dc.source.initialpage185en_US
dc.source.endpage192en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A021.pdf100.65 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.