Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9462
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMéndez Hernández, Beatriz M.-
dc.contributor.authorCoto Palacio, Jessica-
dc.contributor.authorMartínez Jiménez, Yailen-
dc.contributor.authorNowé, Ann-
dc.contributor.authorRodríguez Bazan, Erick D.-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-06-30T14:53:32Z-
dc.date.available2021-06-30T14:53:32Z-
dc.date.issued2018-
dc.identifier.citationMéndez-Hernández B.M., Coto Palacio J., Martínez Jiménez Y., Nowé A., Rodríguez Bazan E.D. (2018) A Reinforcement Learning Approach for the Report Scheduling Process Under Multiple Constraints. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_26en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9462-
dc.description.abstractScheduling problems appear on a regular basis in many real life situations, whenever it is necessary to allocate resources to perform tasks, optimizing one or more objective functions. Depending on the problem being solved, these tasks can take different forms, and the objectives can also vary. This research addresses scheduling in manufacturing environments, where the reports requested by the customers have to be scheduled in a set of machines with capacity constraints. Additionally, there is a set of limitations imposed by the company that must be taken into account when a feasible solution is built. To solve this problem, a general algorithm is proposed, which initially distributes the total capacity of the system among the existing resources, taking into account the capacity of each them, after that, each resource decides in which order it will process the reports assigned to it. The experimental study performed shows that the proposed approach allows to obtain feasible solutions for the report scheduling problem, improving the results obtained by other scheduling methods.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectREPORTS SCHEDULINGen_US
dc.subjectREINFORCEMENT LEARNINGen_US
dc.subjectPARALLEL MACHINESen_US
dc.subjectDISPATCHING RULESen_US
dc.titleA Reinforcement Learning Approach for the Report Scheduling Process Under Multiple Constraintsen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_26-
dc.source.initialpage228en_US
dc.source.endpage235en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A039.pdf102.6 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.