Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9456
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMartinez Cañete, Yadisbel-
dc.contributor.authorCano Ortiz, Sergio Daniel-
dc.contributor.authorLombardía Legrá, Lienys-
dc.contributor.authorRodríguez Fernández, Ernesto-
dc.contributor.authorVeranes Vicet, Liette-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-06-30T14:24:45Z-
dc.date.available2021-06-30T14:24:45Z-
dc.date.issued2018-
dc.identifier.citationMartinez-Cañete Y., Cano-Ortiz S.D., Lombardía-Legrá L., Rodríguez-Fernández E., Veranes-Vicet L. (2018) Data Mining Techniques in Normal or Pathological Infant Cry. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_16en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9456-
dc.description.abstractThe infant cry is the only means of communication of a baby and carries information about its physical and mental state. The analysis of the acoustic infant cry waveform opens the possibility of extracting this information, useful in supporting the diagnosis of pathologies since the first days of birth. In order to obtain this useful information, it is first necessary to acquire and to process the cry signal, being the latter an arduous and tedious process if performed manually. Because of this, it is necessary to develop a system that allows the extraction of the information present in the cry, automatically, that greatly facilitates the work of pediatricians and specialist doctors. The present work evaluates some data mining techniques in standard configurations, for the classification of normal or pathological infant cry in support of the diagnosis of diseases in the Central Nervous System. Evaluation is performed comparing seven classifiers: Naïve Bayes, Simple Logistic, SMO, IBk, Decision Table, J48 and Random Forest, on acoustic attributes Linear Prediction Coefficients and Mel Frequency Cepstral Coefficients and two different testing options: 10-fold cross-validation, and Supplied test set. Best results are obtained with the IBk and Random Forest methods, with receiver operating charac- teristics (ROC) areas of .923 and .956, respectively.en_US
dc.language.isospaen_US
dc.publisherSpringeren_US
dc.subjectINFANT CRY ANALYSISen_US
dc.subjectDATA MININGen_US
dc.subjectMFCCen_US
dc.subjectSUPERVISED CLASSIFICATIONen_US
dc.subjectLPCen_US
dc.titleData Mining Techniques in Normal or Pathological Infant Cryen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_16-
dc.source.initialpage141en_US
dc.source.endpage148en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A019.pdf103.82 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.