Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9453
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorClavel Quintero, Yisel-
dc.contributor.authorArco García, Leticia-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-06-30T14:14:57Z-
dc.date.available2021-06-30T14:14:57Z-
dc.date.issued2018-
dc.identifier.citationClavel Quintero Y., Arco García L. (2018) Irony Detection Based on Character Language Model Classifiers. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_18en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9453-
dc.description.abstractWith the development of social networks and e-commerce, these media became regular spaces for ironic or sarcastic opinions. The detection of ironic opinions can help companies and government to improve products and services. Reliably identifying sarcasm and irony in text can improve the performance of natural language processing techniques applied to opinion mining, sentiment analysis and summarization. There are two main ways to detect irony in texts: features based classification and text classification without features. Most researchers focus their studies on the features creation that characterizes irony. However, there are new approaches that classify irony directly without feature creation. In this paper, we propose a new approach to detect irony by applying character language model classifiers without any feature engineering. We evaluated some algorithms from API LingPipe on Twitter and Amazon datasets including the SemEval-2018 Task 3 dataset for irony detection of English tweets. Several experiments were developed for analyzing the performance of each algorithm per each balanced and unbalanced collections created from the original datasets. The proposal obtained competitive values of accuracy, precision, recall and F1-measure.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectIRONY CLASSIFICATIONen_US
dc.subjectMACHINE LEARNINGen_US
dc.subjectSUPERVISED LEARNINGen_US
dc.titleIrony Detection Based on Character Language Model Classifiersen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_18-
dc.source.initialpage158en_US
dc.source.endpage165en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A046.pdf101.88 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.