Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9450
Título : An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures
Autor : Siegmund, Dirk
Prajapati, Ashok
Kirchbuchner, Florian
Kuijper, Arjan
Palabras clave : STAIN DEFECTS;TRANSFER LEARNING;ADDING DEPTH INFORMATION;DISPARTY MAP;RELU ACTIVATION FUNCTION
Fecha de publicación : 2018
Editorial : Springer
Citación : Siegmund D., Prajapati A., Kirchbuchner F., Kuijper A. (2018) An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_9
Resumen : This paper presents a comprehensive defect detection method for two common fabric defects groups. Most existing systems require textiles to be spread out in order to detect defects. This method can be applied when the textiles are not spread out and does not require any pre- processing. The deep learning architecture we present is based on transfer learning and localizes and recognizes cuts, holes and stain defects. Classification and localization is combined into a single system combining two different networks. The experiments this paper presents show that even without adding depth information, the network was able to distinguish between stain and shadow. This method has been successful even for textiles in voluminous shape and is less computationally intensive than other state-of-the-art methods.
URI : https://repositorio.uci.cu/jspui/handle/123456789/9450
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A041.pdf100.26 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.