

Calcified Plaque Detection in IVUS Sequences: Preliminary Results Using Convolutional Nets

Simone Balocco^{1,2} Mauricio González¹ Ricardo Ñanculef³ Petia Radeva¹ Gabriel Thomas⁴

¹Department of Mathematics and Informatics, University of Barcelona, Barcelona, Spain. balocco.simone@gmail.com ²Computer Vision Center, Bellaterra, Spain

³Department of Informatics, Federico Santa María Technical University, Valparaíso, Chile. jnancu@inf.utfsm.cl ⁴Department of Computer Science, University of Manitoba, Winnipeg, Canada. gabriel.thomas@umanitoba.ca

Abstract

The manual inspection of intravascular ultrasound (IVUS) images to detect clinically relevant patterns is a difficult and laborious task performed routinely by physicians. In this paper, we present a framework based on convolutional nets for the quick selection of IVUS frames containing arterial calcification, a pattern whose detection plays a vital role in the diagnosis of atherosclerosis. Preliminary experiments on a dataset acquired from eighty patients show that convolutional architectures improve detections of a shallow classifier in terms of F_1 -measure, precision and recall.

Keywords: Intravascular ultrasound images, Convolutional nets Deep learning, Medical image analysis

Disponible en https://www.springer.com/gp/book/9783030011314

1