

Facultad de Ciencia Informática y Tecnología

Tableros de Información para el análisis de las ventas en la Empresa BLS Industria y Tecnología

Trabajo de diploma para optar por el título de Ingeniero en Ciencias Informáticas

Autor: Daniel Yanes Matos

Tutora: Ing. Irela Gonzalez Piñera

La Habana, mayo de 2023 "Año 65 de la Revolución"

DECLARACIÓN DE AUTORÍA

El autor del trabajo de diploma con título "Tablero de Información para el análisis de las ventas en la Empresa BLS Industria y Tecnología" concede a la Universidad de las Ciencias Informáticas los derechos patrimoniales de la investigación, con carácter exclusivo. De forma similar se declara como único autor de su contenido. Para que así conste firma la presente a los <día> días del mes de <mes> del año <año>.

<nombre autor="" del=""></nombre>	<nombre autor="" del=""></nombre>
Firma del Autor	Firma del Autor
<nombre del="" tutor=""></nombre>	<nombre del="" tutor=""></nombre>
Firma del Tutor	Firma del Tutor

DATOS DE CONTACTO

<Curriculum e información de contacto del tutor: nombre y apellidos, títulos académicos, formación de postgrado recibida, lugar de trabajo, responsabilidades laborales asumidas, experiencia profesional, líneas de trabajo y/o investigación, correo electrónico, perfiles en redes profesionales>

<Curriculum e información de contacto del asesor: nombre y apellidos, títulos académicos, formación de postgrado recibida, lugar de trabajo, responsabilidades laborales asumidas, experiencia profesional, líneas de trabajo y/o investigación, correo electrónico, perfiles en redes profesionales>

<Curriculum e información de contacto del consultante: nombre y apellidos, títulos académicos, formación de postgrado recibida, lugar de trabajo, responsabilidades laborales asumidas, experiencia profesional, líneas de trabajo y/o investigación, correo electrónico, perfiles en redes profesionales>

1

AGRADECIMIENTOS

<Insertar agradecimientos a personas naturales o jurídicas que hayan contribuido de forma directa al desarrollo de la investigación y sin cuya participación no hubiera sido posible su ejecución. No deben confundirse con la sección "Dedicatoria" que tiene otros objetivos. Debe ser breve sin necesidad de argumentar el por qué del agradecimiento; por cuanto se sobre entiende que la mención corresponde al apoyo ofrecido en la realización del trabajo que se presenta. Esta sección es totalmente opcional y de no utilizarse se suprime del documento. Puede utilizarse un formato de letra distinto al que oficialmente se establece para el resto del documento, aunque pudiera esta selección producir un contraste no favorable para la lectura y legibilidad de la obra. No pueden exceder una cuartilla en su extensión>

DEDICATORIA

<Insertar dedicatoria a personas naturales o jurídicas a las que se desee dedicar especialmente el trabajo, bien por vínculos afectivos, familiares, o de membresía. No deben confundirse con la sección "Agradecimientos" que tiene otros objetivos. Debe ser breve y de argumentarse la razón de inclusión, debe mantenerse un lenguaje respetuoso y científico. Esta sección es totalmente opcional y de no utilizarse se suprime del documento. Puede utilizarse un formato de letra distinto al que oficialmente se establece para el resto del documento, aunque pudiera esta selección producir un contraste no favorable para la lectura y legibilidad de la obra. No pueden exceder una cuartilla en su extensión>

RESUMEN

La siguiente investigación surge por la necesidad existente de proponer un sistema de Visualización de tableros de información para la PYME BLS¹ de Industria y Tecnología, que permita visualizar y analizar el comportamiento de indicadores que sean introducidos al sistema por los directivos. En la actualidad no tienen ningún sistema para mostrar la información almacenada en tableros logrando que muchas veces el resumen de esos datos recopilados y analizados no abarquen toda la información requerida por los directivos para la toma de decisiones. Llegando solo a mostrar resultados estadísticos con los cuales se llega a un consenso entre los directivos para tomar la mejor decisión, lo que conlleva a que veces pueden equivocarse al seleccionar la decisión. Por tanto, es necesario incorporar toda la información que existe en la a PYME BLS de Industria y Tecnología a este sistema, para garantizar el análisis y visualización de esos indicadores que permitan agilizar el proceso de toma de decisiones. Durante la investigación se analizaron los sistemas homólogos a nivel nacional e internacional definiendo los principales aspectos que pudieran emplearse en el desarrollo del sistema. El proceso de desarrollo estuvo guiado por la metodología de desarrollo propuesta de metodología para el diseño de dashboard, y se emplearon como principales tecnologías: el software *Pentaho* para el análisis e integración de los datos, Grafana para la visualización de los tableros y Visual Paradigm como herramienta para el modelado. A partir de la aplicación de las pruebas de software de tipo unitaria, de integración, de sistema y de aceptación se constató que el sistema implementado permite la correcta visualización de los indicadores provistos por la PYME BLS de Industria y Tecnología.

Palabras clave: análisis, indicadores, sistema, tableros, visualización.

_

¹ **Pyme** es el acrónimo de pequeña y mediana empresa. Se trata de la empresa mercantil, industrial o de otro tipo que tiene un número reducido de trabajadores y que registra ingresos moderados.

ABSTRACT

The following research arises from the existing need to propose an information board display system for the SME BLS [SME is the acronym for small and medium-sized enterprise. This is a commercial, industrial or other type of company that has a small number of workers and records moderate income.

] of Industry and Technology, which allows the visualization and analysis of the behavior of indicators that are introduced into the system by managers. Currently, they do not have any system to display the information stored in dashboards, which means that many times the summary of the collected and analyzed data does not cover all the information required by managers for decision making. Only showing statistical results with which a consensus is reached among managers to make the best decision, which means that they can sometimes make mistakes when selecting the decision. Therefore, it is necessary to incorporate all the information that exists in the SME BLS of Industry and Technology into this system, to guarantee the analysis and visualization of these indicators that allow streamlining the decision-making process. During the research, homologous systems at a national and international level were analyzed, defining the main aspects that could be used in the development of the system. The development process was guided by the proposed development methodology for the dashboard design, and the main technologies were used: the Pentaho software for data analysis and integration, Grafana for the visualization of the dashboards and Visual Paradim as modeling tool. From the application of unitary, integration, system and acceptance software tests, it was found that the implemented system allows the correct visualization of the indicators provided by the SME BLS of Industry and Technology.

Keywords: analysis, indicators, system, dashboards, visualization.

TABLA DE CONTENIDOS

INTRODUCCIÓN	1
CAPÍTULO I: FUNDAMENTOS TEÓRICO-METODOLÓGICOS SOBRE LOS TABLEROS DI	E
INFORMACIÓN	6
1.1 Inteligencia del negocio	6
1.1.2 Antecedentes de los tableros de información	7
1.1.3 Definición, características y requisitos de un tablero de información	
1.1.4 Ventajas y Desventajas de los tableros de información	10
1.2 Estado del arte	
1.2.1 Sistemas internacionales	
1.2.2 Sistemas nacionales	
1.3 Metodología, tecnologías y herramientas	
1.4 Proceso de Integración	
1.5 Herramientas a utilizar	
1.5.1 Herramienta de Modelado	
1.5.2 Lenguaje de modelado	
1.5.4 Herramientas para la visualización de información	
1.6 Sistema gestor de Base de Datos	
Conclusiones del capítulo	
CAPÍTULO II: DISEÑO DE LA SOLUCIÓN PROPUESTA AL PROBLEMA CIENTÍFICO	27
2.1 Propuesta de solución	
2.2 Especificación de Requisitos	
2.2.1 Requisitos de Información	
2.2.2 Requisitos Funcionales	
2.2.3 Requisitos No funcionales	
2.3 Reglas del Negocio	
2.4 Arquitectura del Sistema 2.5 Análisis y Diseño del sistema	
2.5.1 Diseño del Subsistema de Almacenamiento	
2.5.2 Modelo de Datos Diagrama Entidad Relación	
2.6 Diseño del Subsistema de Integración	
2.6.2 Estrategias Generales de Integración de Datos	35
2.7 Diseño del subsistema de visualización	36
2.7.1 Arquitectura de la Información	36
2.7.2 Diseño del tablero de información	37
2.8 Esquema de Seguridad	38
Conclusiones Parciales	40
CAPÍTULO III: IMPLEMENTACIÓN Y VALIDACIÓN DE LA SOLUCIÓN PROPUESTA	41
3.2 Implementación del Subsistema de Integración	42

Tabla de Contenidos

3.3 Implementación del Subsistema de Visualización	
3.4 Pruebas de Software	
3.4.1 Calidad del Software	45
3.4.2 Pruebas	
3.4.3 Casos de Prueba	
3.4.4 Resultados de las Pruebas	
Conclusiones parciales	
CONCLUSIONES FINALES	50
RECOMENDACIONES	51
REFERENCIAS BIBLIOGRÁFICAS	52
ÍNDICE DE TABLAS	
Tabla 1 Resumen de los sistemas estudiados. Elaboración propia	13
Tabla 2 Ventajas y desventajas de las herramientas de visualización de datos	22
Tabla 3 : Esquema de Seguridad Subsistema de almacenamiento.	
Tabla 4 : Esquema de Seguridad Subsistema de visualización.	
Tabla 5 Esquema y tablas	

ÍNDICE DE FIGURAS

Imagen 1 Fases de la Propuesta de metodología para el diseño de dashboard (tomado de la Revista Cubana de	
Transformación Digital 44)	16
Imagen 2 : Arquitectura del Sistema de Visualización de tableros de información	31
Imagen 3 : Entidad Cliente	32
Imagen 4 : Entidad Producto	32
Imagen 5 : Entidad Registro de Ventas	33
Imagen 6 : Diagrama Entidad Relación	34
Imagen 7 : Distribución del tipo de dato	35
Imagen 10 : Estructura de los tableros de información en Grafana	37
Imagen 11 : Diseño del tablero de información	38
Imagen 12 : Transformación de los datos a insertar en la tabla registro_ventas	43
Imagen 13 : Arquitectura de la Información del sistema de visualización	44
Imagen 14 : tablero de información referente al requisito de información (RI1)	44
Imagen 15 : Modelo V	46
Imagen 16 : Caso de Prueba del requisito de información "Mostrar Indicadores Seleccionados de la tabla registro_ven	tas" 47
Imagen 18 : Resultados de los Casos de Pruebas (No conformidades)	48

OPINIÓN DEL(OS) TUTOR(ES)

<Contenido de la opinión de los tutores>

AVAL DEL CLIENTE

<Contenido del aval del cliente sobre la solución desarrollada>

INTRODUCCIÓN

En el actual ámbito de los negocios a nivel mundial, las Tecnologías de la Información y Comunicación (TIC) son un factor indispensable para el éxito de las organizaciones, pues resultan ser un elemento estratégico para su crecimiento, maduración y transformación. Se han convertido en eje fundamental para la gestión empresarial, dado que la información que surge en ellas permite apoyar a la toma de decisiones y los procesos básicos del negocio, siendo clave para la supervivencia en cualquier tipo de organización.

En la mayoría de las empresas u organizaciones el volumen y variedad de datos que se encuentran almacenados en bases de datos digitales ha crecido exponencialmente en las últimas décadas, de forma tal que las empresas y organizaciones en el mundo se han visto ocasionalmente abarrotadas de datos que no pueden aprovechar al máximo. Estos datos, bien tratados y analizados pueden ser convertidos en información y reportar beneficios a las organizaciones, por lo que se ha hecho necesario la creación de tecnologías que permitan su organización, orden y procesamiento, posibilitando extraer conocimiento útil de los datos almacenados.

El uso adecuado de la información permite adquirir nuevos conocimientos, facilitando la toma de decisiones, incrementando la efectividad de cualquier negocio. Para lograrlo se ha hecho necesario el uso de la *Business Intelligence* (BI), término que afirmaba que mediante el uso de la BI se logra unir el mundo de los datos y el de los negocios ya que "incluye un conjunto de conceptos y metodologías cuya misión consiste en mejorar el proceso de toma de decisiones en los negocios basándose en hechos y sistemas que trabajan con hechos". (Howard², 1989)

Las herramientas de BI permiten realizar consultas y análisis sobre los datos que se encuentran en una base de datos o archivo *dataset*³; con soluciones como por ejemplo: almacenes de datos, mercados de datos y tableros o *dashboard*. Los tableros de información, muestran información relevante, presentada en una manera que permite hacer un

² **Howard Dresner**: Conocido en el mundo informático desde la década del 80. Autor en las áreas de inteligencia de negocios. Director de investigaciones de Dresner Advisory Services.

³ Un **dataset**, o conjunto de datos, es una colección estructurada de información que se utiliza para analizar patrones, realizar investigaciones, entrenar modelos de aprendizaje automático y respaldar decisiones basadas en datos.

seguimiento de lo que está ocurriendo en un instante de tiempo. Para servir a su propósito y maximizar sus prestaciones, deben mostrar abundante información en una pequeña cantidad de espacio, de manera que se comunique con claridad e inmediatez. Esto requiere un diseño que se nutra y aproveche el poder de la percepción visual para lograr el procesamiento de grandes cúmulos de información.

Cuba, no ha quedado aislada de dicho avance tecnológico ya que a principios de esta década comenzaron a implementarse en las empresas cubanas diferentes sistemas informáticos para la administración de las empresas. Aunque todavía no es una aplicación tan conocida entre las empresas cubanas en el año 2003 la empresa Intermar Cienfuegos tenía un tablero de información para la gestión empresarial. Más tarde otras empresas como: Empresa de Servicios Informáticos Especializados (GET) Varadero (2004), Empresa de Servicios Especializados de Protección, S.A (SEPSA Cienfuegos 2004), Empresa de Servicios Técnicos de Defectoscopía y Soldadura (CENEX 2005), Empresa de Diseño Ciudad Habana (DCH 2007), han incorporado a su sistema empresarial tableros de información para la toma de decisiones. Se estima que más de cincuenta empresas en el país están utilizando tableros de información para su gestión.

La Universidad de las Ciencias Informáticas (UCI) es uno de los centros abanderados en el trabajo con las tecnologías de BI. Tiene 14 centros de desarrollo de software, entre los que se encuentra el Centro de Representación y Análisis de datos (CREAD).

El CREAD juega un rol significativo en soluciones integrales, productos y servicios relacionados con las Tecnologías de Gestión de Datos, así como el procesamiento de Señales Digitales y la Geoinformática. Tiene entre sus objetivos desarrollar bienes y servicios informáticos relacionados con esta temática. Estos sistemas brindan soporte a los procesos de toma de decisiones, planificación y control en instituciones del país. Especialmente para la gestión estadística, el CREAD ha desarrollado el Sistema Integrado de Gestión Estadística, actualmente en su versión 3.0 (SIGE v3.0), el cual es una aplicación web que permite la automatización de los procesos de captura de información estadística en entidades y organismos del país. Además existen proyectos también del centro, de almacenes de datos que constituyen productos u herramientas BI en donde se analizan y visualizan indicadores.

2

La PYME BLS Industria y Tecnología en una empresa que se dedica a la fabricación y venta de productos para la construcción. La dirección comercial perteneciente a dicha empresa se encarga de gestionar la información referente de las ventas de estos productos.

Todos los datos referente a las ventas son almacenados en diferentes archivos en formato Excel lo que torna engorroso el proceso del manejo de los mismos por los especialistas de la empresa y le impide la realización del análisis estadístico de la manera más rápida y efectiva para la toma de decisiones en la entidad; ya que la información no se encuentra ni integrada, ni estandarizada todo ello provoca que resulte difícil realizar análisis certeros que contribuyan positivamente con las decisiones respecto a la gestión de las ventas de los productos de la empresa.

Por los elementos antes mencionados se identifica el siguiente **problema de investigación**: ¿Cómo contribuir al análisis de la información a partir de los datos captados de las ventas de productos en la PYME BLS Industria y Tecnología?

Para dar solución a la situación anterior, la siguiente investigación toma como **objeto de estudio**: Inteligencia de negocio, delimitándose como **campo de acción**, tableros de información. Se propone como objetivo general: Desarrollar tableros de información para el análisis de los indicadores de las ventas en la empresa BLS Industria y Tecnología.

Con el propósito de cumplir con el objetivo general planteado fueron formulados los siguientes **tareas de investigación**:

- Fundamentación teórica metodológica del marco teórico conceptual y el estado del arte referente a soluciones basadas en la Inteligencia de Negocio y definición de tableros de información.
- 2. Selección de las herramientas y tecnologías necesarias para la realización del sistema de visualización de tableros de información.
- 3. Diseño del sistema de visualización de tableros de información para el análisis de las ventas en la PYME BLS Industria y Tecnología.
- Implementación del sistema de visualización de tableros de información para el análisis las ventas en la PYME BLS Industria y Tecnología.
- 1. Validación por medio de pruebas el sistema implementado.

Métodos Teóricos:

Histórico-lógico: Se utiliza para realizar la valoración de tableros existentes en cuanto a ventajas, desventajas, antecedentes y características de los mismos, y así conocer el funcionamiento y estructura, tomándolos como referencia para los resultados y conclusiones de la solución planteada.

Análisis y síntesis: Se utiliza para el análisis de documentos, materiales y temas relacionados con el desarrollo de tableros de información. Permite definir los conceptos fundamentales del tema y especificar la metodología a utilizar, así como los elementos que conforman un tablero de información.

Modelación: Permite diseñar los modelos correspondientes al ciclo de vida de desarrollo del tablero de información para la PYME BLS Industria y Tecnología.

Métodos Empíricos:

Entrevista: Se utiliza a profundidad para obtener información por medio de preguntas acerca del área de ventas en la PYME BLS Industria y tecnología, sus procesos y sus necesidades. Mediante este método se definen los requisitos funcionales del sistema, en una entrevista con el cliente.

Una vez cumplido el objetivo general se espera el siguiente resultado: un sistema de visualización de tableros de información que contribuya al análisis de la información del registro de datos recogidos de las ventas en la empresa BLS Industria y Tecnología.

Estructura del trabajo de diploma:

El documento se encuentra estructurado de la forma siguiente: introducción, tres capítulos, conclusiones generales, recomendaciones, referencias bibliográficas, bibliográfía y anexos.

✓ Capítulo 1: Fundamentación Teórica

Se exponen los principales conceptos asociados a soluciones basadas en inteligencia de negocio, en específico los tableros de información, proporcionando un entendimiento claro y preciso para el desarrollo de la investigación. Se incluyen los resultados del análisis realizado al estado del arte de los tableros de información y se describen las principales características

4

de las tecnologías, la metodología y herramientas a utilizar para dar solución al problema planteado.

✓ Capítulo 2: Análisis y Diseño de los tableros de información

En este capítulo se identifican las necesidades del cliente como entrada para la documentación de los productos de trabajos realizados en las disciplinas Requisitos y Análisis y diseño de la metodología seleccionada proponiendo la estructura del sistema a partir de diagramas.

✓ Capítulo 3: Implementación y Pruebas de los tableros de información

El contenido que se aborda en este capítulo está relacionado con la descripción de la implementación del sistema, se define el estándar de codificación y se especifican los resultados obtenidos al aplicar una estrategia de pruebas para evaluar la calidad de la propuesta de solución desarrollada.

CAPÍTULO I: FUNDAMENTOS TEÓRICO-METODOLÓGICOS SOBRE LOS TABLEROS DE INFORMACIÓN.

El presente capitulo comprende los fundamentos teóricos de la investigación, exponiendo los principales conceptos asociados a soluciones basadas en inteligencia de negocio, específicamente los tableros de información, proporcionando un entendimiento claro y preciso para el desarrollo de la investigación. Se incluyen los resultados del análisis realizado al estado del arte de tableros de información y describen las principales características de las tecnologías, la metodología y herramientas a utilizar para dar solución al problema planteado.

1.1 Inteligencia del negocio

Según Bernabéu⁴ a Inteligencia de negocio se puede definir como:

Un concepto que integra por un lado el almacenamiento y por otro el procesamiento de grandes cantidades de datos, con el principal objetivo de transformarlos en conocimiento y en decisiones en tiempo real, a través de un sencillo análisis y exploración. Inteligencia de negocios es el proceso de convertir datos en conocimiento y el conocimiento en acción, para la toma de decisiones. (2009)

También *Data Warehousing Institute*⁵ define las BI de la siguiente manera:

Son los procesos, tecnologías y herramientas que se necesitan para convertir los datos en información, la información en conocimiento, y el conocimiento en planes que impulsan acciones rentables para el negocio. La Inteligencia de Negocios abarca el almacenamiento de datos, herramientas analíticas, y contenido y gestión del conocimiento. (2006)

Según Gartner Group⁶ se define Bl como:

⁴ **Bernabéu R. Dario**, Ingeniero en Sistemas por el Instituto Universitario Aeronáutico (IUA). Especializado en el desarrollo e implementación de soluciones OSBI (Open Source Business Intelligence), SGBD y tecnologías web. Es coescritor de uno de los libros más destacados de Pentaho: Pentaho 5.0 Reporting, docente, investigador, geek y entusiasta del software libre.

⁵ El Data Warehousing Institute, principal proveedor de capacitación e investigación en inteligencia de negocios y almacenamiento de datos.

⁶ Gartner Group, una de las compañías de análisis de Tecnologías de la Información más prestigiosas del mundo.

"Business Intelligence es una herramienta crítica para el éxito y sobrevivencia de su organización hoy en día, no se trata solo de herramientas y tecnologías, sino también de organización ". (1996)

En la presente investigación se asume como Inteligencia de Negocio a la integración, el almacenamiento y el procesamiento de grandes cantidades de datos con el objetivo de posibilitar su análisis, siendo la inteligencia de negocio un factor importante para el potencial competitivo de una organización o empresa, minimizando los problemas existentes en cada una de ellas y obteniendo beneficios para el éxito.

Beneficios de la inteligencia de negocio

La inteligencia de negocio incorpora nuevas capacidades de alto rendimiento y proporciona beneficios, entre los que se destacan:

- 1. Permite gestionar una empresa en base a la información que genera el propio negocio, buscando atender necesidades de información de ejecutivos y analistas.
- 2. Permite almacenar, reunir y analizar fuentes de datos de los clientes, para estimar ventas o descubrir patrones y tendencias potencialmente beneficiosos.
- Posibilitan un mejor análisis para apoyar la toma de decisiones de los distintos tipos de usuarios.
- 4. Se obtiene un mayor conocimiento de la organización, los clientes y proveedores, siendo mucho más fácil conseguir una ventaja competitiva de este conocimiento.

Por lo que se puede decir que las herramientas de inteligencia de negocio brindan beneficios para una organización. Son usadas para contribuir en la mejora de toma de decisiones en diferentes ámbitos, con soluciones basadas, por ejemplo: almacenes de datos (una colección de datos orientada a un determinado ámbito), mercados de datos (es una versión especial del almacén de datos, subconjuntos de datos con el propósito de ayudar en un área específica de la empresa) y tableros de información (muestran información relevante en una pequeña cantidad de espacio para dar seguimiento a la misma).

1.1.2 Antecedentes de los tableros de información

Los tableros de información son una herramienta de inteligencia de negocio cuyo antecedente son los Cuadros de Mando Integral (CMI) que son: un sistema y una herramienta por medio de la cual una organización logra ejecutar su plan estratégico

trasladando el mismo a la acción. Su importancia radica en que por medio de sus indicadores muestrea de manera continua cuándo la organización y sus colaboradores alcanzan las metas del plan estratégico. Este término fue definido en la década de 1990 por Kaplan y Norton⁷, con su énfasis en los Indicadores Clave de Rendimiento (KPI), como un medio para medir lo que estaba sucediendo en el negocio.

Luego entre enero y febrero de 1992, el concepto de CMI fue presentado en la revista Harvard Business Review en un artículo denominado "The Balance Scorecard", el cual planteaba que: "El CMI es un sistema de administración o sistema administrativo que va más allá de la perspectiva financiera con la que los gerentes acostumbran evaluar la marcha de una empresa".

Años más tarde se comenzó a emplear con cierta frecuencia el término CM que es una herramienta operativa útil para controlar lo que pasó en un área o departamento. Sus indicadores están focalizados a procesos y no al avance del plan estratégico de la organización. Este término es utilizado por primera vez en la edición del 20 de marzo de 2004 de la revista "Empresa Inteligente" en un artículo escrito por Stephen Few⁸ titulado "Confusión del tablero de instrumentos".

En la actualidad, se produce una confusión que lleva a pensar que CMI y CM son sinónimos, cabe destacar que no cualquier modelo que contenga: un mapa estratégico, una tabla con indicadores, objetivos y planes de acción es un CMI. Ambos conceptos son para el beneficio de la empresa y el concepto de CM tiene sus inicios en el de CMI, pero no son lo mismo, uno es un instrumento útil para medir el avance de los resultados en una organización y el otro para lograr la ejecución de un plan estratégico.

1.1.3 Definición, características y requisitos de un tablero de información

Algunas definiciones de varios autores acerca de que es un tablero de información: Según Viñeglas⁹:

⁷ **Kaplan y Norton** creadores del Cuadro de Mando Integral, una herramienta que destacó por su carácter disruptivo en la gestión empresarial al combinar la visión tradicional de la gestión empresarial con una visión global que escapa a la propiamente financiera.

⁸ **Stephen Few** director de la consultora Perceptual Edge, Stephen se enfoca en la visualización de datos para analizar y comunicar información comercial cuantitativa. Autor de Dashboard Design: Display Data for at-a-Glance Monitoring (2006)

⁹ El Dr. Alfonso López Viñegla es profesor titular de la universidad de Zaragoza desde 1997. Colabora habitualmente y/o ha colaborado entre otros con el Instituto de Empresa, la UNED, la Escuela de Organización Industrial, Analistas Financieros Internacionales.

"El cuadro de mando es una herramienta de acción a corto plazo de implementación rápida y estrechamente ligado a los puntos clave de decisión y de responsabilidad de la empresa". (1999)

También Stephen Few dijo:

"Un cuadro de mando es una pantalla visual importante, es información necesaria para lograr uno o más objetivos; consolidado y organizado en una sola pantalla para que la información pueda ser monitoreada de un vistazo". (2004)

En la presente investigación se llega a la conclusión de que los tableros de información son una pantalla visual que muestra información basada en un conjunto de indicadores necesarios para lograr uno o más objetivos en una organización. También es la representación simplificada de un conjunto de indicadores que dan una idea de cómo se está comportando un área o un proceso de nuestra empresa. Con ellos se representa gráficamente la tendencia o el estado de aquellos indicadores que se consideran relevantes para la gestión. La idea es visualizar de una sola vez cómo están todos los KPI del área que quieres controlar, comparándolos con sus respectivos valores objetivos.

Los tableros de información poseen un conjunto de elementos que los **caracterizan**, dentro de los principales se encuentran los siguientes:

- 1. Número de KPI: se deben mostrar los KPI necesarios, los cuales deben ser lo más específicos posibles, posibilitando la toma de decisiones en el entorno empresarial.
- 2. Segmentación y contexto: debe presentar los KPI de forma que estos sean relevantes para el negocio.
- 3. Visualización: la persona que toma las decisiones debe ser capaz de interpretar fácilmente la información que está viendo. Por lo que el tablero de información debe ser conciso y su representación gráfica la adecuada para los datos que representa y lo suficientemente visual, para que resulte atractivo su estudio.
- 4. Análisis: además de los KPI, el tablero de información debe acompañarse de un análisis sobre lo ocurrido, las recomendaciones dadas y su potencial impacto sobre el negocio. El análisis debe recomendar acciones, no describirlas.

Para la creación de un tablero de información se deben tener en cuenta los siguientes requisitos:

- 1. Alcance de la información: el tablero de información debe proporcionar información relevante al usuario.
- 2. Gestión de la información: se debe garantizar la calidad, cantidad y exactitud de los datos.
- 3. Funciones: el tablero de información debe proporcionar funciones que se ajusten a las necesidades de los directivos para mejorar la toma de decisiones.
- 4. Interfaz de usuario: la información debe presentarse al responsable de la toma de decisiones de forma gráfica.

1.1.4 Ventajas y Desventajas de los tableros de información

La implementación de un tablero de información tiene varios **beneficios** ya que juegan un papel importante en las organizaciones principalmente para la toma de decisiones, algunos de estos beneficios son:

- Clarifican las acciones que se realizan a corto y largo plazo en la empresa comunicando los planes que se tienen para encaminar los recursos en una sola dirección y evitar la dispersión.
- 2. Brinda de forma global el estado de la empresa o institución para guiar a los administrativos a tomar decisiones.
- 3. La información mostrada como KPI en forma de gráficos posibilita que la toma de decisiones estratégicas sea de forma sutil y efectiva siendo más sencilla.
- 4. Permite tener mayor efectividad en la empresa minimizando los tiempos para la toma de decisiones y optimizando la gestión.
- 5. Unifican, comparten y almacenan los datos de la empresa.
- 6. Muestran la información más importante para el usuario o área, en el tiempo y formato adecuado a sus requerimientos.
- 7. Cuentan con una interfaz de usuario practica y sencilla, principalmente vía Web.

La implementación de un tablero de información tiene varias **desventajas** a pesar de tener todas las ventajas y beneficios antes mencionados, si los KPI no se escogen con cuidado, no se comunica con claridad el mensaje que se quiere transmitir, imposibilitando una correcta toma de decisiones, provocando que la información visualizada ocupe más de una página mostrando información innecesaria y creando ambigüedades, algunos tableros de información tienen un alcance limitado de la información. Los tableros de información revelan

los aspectos fundamentales para saber cómo está marchando la organización, pero no muestra quienes son los responsables de las fallas que se tengan.

1.2 Estado del arte

Para una mayor comprensión y entendimiento del uso y la importancia de los tableros de información, a continuación, se evidencian algunos sistemas implementados en diferentes organizaciones tanto nacionales como internacionales.

1.2.1 Sistemas internacionales

Tablero de información para el soporte académico basado en datos de entornos virtuales de aprendizaje:

Tablero de información diseñado por la Universidad Politécnica de Valencia en 2017 con el objetivo de diseñar e implementar un prototipo de tablero de información para soporte académico que visualice, en una única pantalla, diferentes fuentes de datos mediante la combinación de distintos tipos de gráficos.

Se diseñó e implementó un prototipo de tablero de información para los estudiantes y profesores de esta universidad, en un contexto de educación presencial. Se utilizaron dos herramientas para la creación de tableros de información: se realizaron análisis de datos en *Tableau*, los cuales permitieron identificar una relación directa entre el tiempo de estancia del estudiante en la plataforma y las notas, y con *QlikSense* se crearon gráficas para permitir monitorear los minutos en los que el estudiante interactúa con la plataforma.

Finalmente, utilizando librerías de código abierto, se creó una aplicación web personalizada que tiene un control del acceso a los perfiles de estudiantes y profesores, y expone los tableros de información que permiten monitorizar los procesos de aprendizaje mediante la información visual que presenta a través de los diferentes gráficos e indicadores. En general, proporciona a los usuarios una herramienta de la que fácilmente puedan obtener información para dar soporte en la toma de decisiones basadas en datos.

Sistema de representación de flujos de red:

El tablero de información creado por la Universidad Autónoma de Madrid en 2019, con el objetivo de que el sistema le proporcionara al usuario la capacidad de filtrar según los

parámetros que decidiera, crear diferentes gráficas, figuras y además observar qué sucede en tiempo real.

Los sistemas de monitorización de flujos de red se llevaron a cabo en cuadros de mando, dónde se seleccionaron los datos a representar, el tipo de gráfica mostrada y los filtros que se deseaban realizar esto permitiendo reducir el espacio de información ocupado en disco, basándose en técnicas de captura y tratamiento masivo de datos que posteriormente permitieron ser filtrados y analizados de una manera visual.

1.2.2 Sistemas nacionales

Tableros de información para el Sistema de Planificación de Actividades (SIPAC):

Desarrollado por la Facultad 3 de la Universidad de las Ciencias Informáticas en el año 2016. El tablero de información creado facilita la implementación de la Instrucción No.1 del Presidente de los Consejos de Estado y de Ministros para la planificación de los objetivos y actividades a todos los niveles organizacionales. Además, permite interrelacionar objetivos de trabajo y actividades en tiempo real, garantizando el seguimiento del desarrollo y cumplimiento de los mismos en las entidades como parte de la planificación a corto, mediano y largo plazo.

El tablero de información implementado permite visualizar la información mediante reportes candidatos y gráficos dinámicos, contribuyendo a las decisiones que toman los directivos en las entidades, apoyada en los KPI.

Cuadro de Mando Integral en la Gerencia SEPSA Cienfuegos:

Elaborado por la Empresa de Servicios Especializados de Protección Cienfuegos (SEPSA) en el año 2004. Para mejorar la gestión empresarial, se decidió implementar un CMI en el ámbito de toda la organización y establecer cuadros de mando, como sistema de comunicación y control de las áreas funcionales.

La organización en general se visualiza desde la perspectiva de un CMI y sus áreas funcionales son vistas a partir de cuadros de mandos. Garantizando las comunicaciones verticales y horizontales, así como la retroalimentación entre las áreas.

El sistema permite controlar las actividades operativas del día a día, así como las actividades estratégicas a largo y mediano plazo lo que permiten un análisis integrador y ordenado que

se refleja en la toma efectiva de decisiones. Se implementó en un programa experimental para la gestión empresarial en hipermedia, obteniéndose gráficos de tendencia.

Tabla 1 Resumen de los sistemas estudiados. Elaboración propia

Sistemas estudiados	Indicadores	Tipo de gráfico	Información en tiempo real	Herramienta que se utilizó para la creación del tablero de información
Tablero de	Los objetivos y	Gráficos de	No	Plugins CDE
información para	actividades a	columna, de		
el Sistema de	todos los	barras, los		
Planificación de	niveles	circulares y		
Actividades	organizacionale	los de líneas.		
(SIPAC)	s.			
Cuadro de Mando	Indicadores de	Gráfico de	Sí	Programa
Integral en la	resultados y	tendencias.		experimental para
Gerencia SEPSA	responsables.			gestión empresarial
Cienfuegos				en Hipermedia
		0.15		
Tablero de	Desempeño	Gráfico de	Sí	Tableau y QlikSense
información para	académico de	barras y		
el soporte	estudiantes y	gráfico de		
académico basado	profesores.	líneas.		
en datos de				
entornos virtuales				
de aprendizaje				
		0.15		
Sistema de	Información	Gráficos	Sí	Grafana.
representación de	almacenada en	circulares.		

flujos de red	la red.		

Una vez realizado el análisis de un grupo de sistemas tanto nacionales como internacionales, examinando sus potencialidades y características técnicas (ver Tabla 1), se puede afirmar que la creación de tablero de información es de gran utilidad para el análisis de la información, contribuyendo al proceso de toma de decisiones en diferentes tipos de organizaciones.

Se puede afirmar que ninguno de los sistemas analizados satisface en su totalidad las necesidades de la investigación, ya que los tableros de información estudiados están orientados y diseñados para empresas y sectores específicos y, por tanto, en ellos se muestran los indicadores pertenecientes a cada área para el que fueron creados y también son herramientas propietarias o forman parte de otro sistema.

El análisis de estos sistemas posibilitó identificar los gráficos más utilizados, con el objetivo de diseñar una interfaz que sea de fácil manejo para el usuario que interactúe con la aplicación. Por lo que se decide utilizar los gráficos de barra para mostrar los cambios de los datos en un período de tiempo o para ilustrar comparaciones entre elementos, los gráficos de línea para representar grandes cantidades de datos que tienen lugar durante un período continuado de tiempo y los gráficos circulares para mostrar el tamaño de los elementos de una serie de datos.

1.3 Metodología, tecnologías y herramientas

Las metodologías para el desarrollo del software imponen un proceso disciplinado sobre el desarrollo de software con el fin de lograr la construcción de un sistema informático que cumpla con los requerimientos planteados. Tiene como principal objetivo aumentar la calidad del software que se produce en todas y cada una de sus fases de desarrollo. Según Pressman¹⁰: "Una metodología de desarrollo de software es una estructura de trabajo usada para planificar y controlar el proceso de desarrollo en sistemas de información". (2005)

¹⁰ Roger S. Pressman es un americano Ingeniero de software , autor y consultante. Presidente de R.S. Pressman & Associates.

La **Propuesta de metodología para el diseño de** *dashboard* proporciona una serie de pasos que se consideran válidos y pueden ser puestos en práctica, y, es de utilidad cuando al momento de desarrollar e implementar un tablero de información se cuenta con limitaciones como el tiempo. La misma cuenta con las siguientes fases:

- 1. Planificación: Se inicia el proceso del diseño del tablero de información, describiendo las características de la organización y escogiendo a los miembros del equipo del proyecto. La fase de planificación es la que inicia el proceso del diseño del tablero de información, se exponen las principales características y funciones de la organización, además de los problemas existentes que conllevan al diseño del tablero de información.
- 2. Recopilación de los requisitos: Se definen los requisitos de información, funcionales y no funcionales. Una vez que se ha definido la planificación, comienza el proceso de recopilación de requisitos. En este punto se deben definir las características del tablero de información para que sea útil en la organización y se propone además realizar entrevistas a los principales interesados para determinarlas necesidades y expectativas con respecto al tablero de información.
- 3. Diseño del tablero de información: Se realiza un análisis de la fuente de datos, se hace una selección de estos y se define su estructura y almacenamiento. Luego de recopilar los requisitos que deben estar presentes en el sistema, se puede comenzar a diseñar el tablero de información.
- 4. Construcción del tablero de información: Se evalúan y definen qué tipos de gráficos representan mejor los datos que se van a mostrar, se configuran las alertas y las notificaciones. También evaluar cuales son las herramientas de visualización de indicadores para el diseño de tableros de información, los tipos de gráficos que mejor representan los datos que se van a mostrar. Se deben tomar decisiones sobre la presentación de la información para proporcionar mayor visibilidad en el análisis.
- Validación del tablero de información: Se define una estrategia de pruebas para asegurar que el tablero de información cumple con los requisitos y especificaciones requeridas.

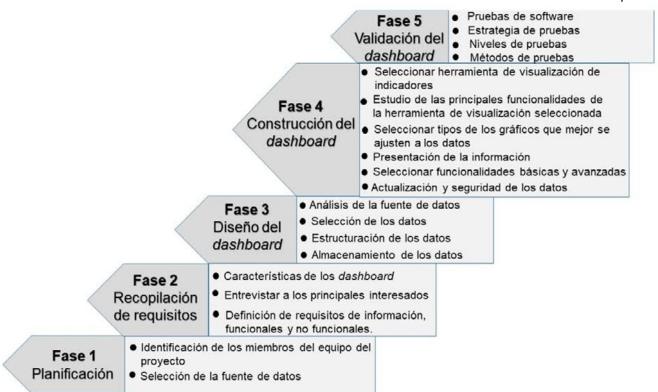


Imagen 1 Fases de la Propuesta de metodología para el diseño de dashboard (tomado de la Revista Cubana de Transformación Digital 7)

La presente investigación estará guiada por la Propuesta de metodología para el desarrollo de *dashboard* ya que es la más específica para la implementación y desarrollo de un tablero de información, estructura que acoge la investigación en cuestión. Transitará por las siguientes disciplinas propuestas en la metodología: planificación, requisitos, análisis y diseño, implementación y pruebas (ver Imagen 1). El producto de trabajo generado durante la elaboración de la solución está basado en esta metodología ya que la implementación de un tablero de información requiere de una metodología que considere todos los aspectos a ser desarrollados dentro del ciclo de vida del software y se aplica a los proyectos con un negocio muy bien definido, el cliente está siempre acompañando al equipo de desarrollo para convenir los detalles de los requisitos y así poder implementarlos, probarlos y validarlos.

1.4 Proceso de Integración

La integración de datos es usualmente entendida como el proceso que combina datos de diferentes fuentes para proveer una visión simple y comprensible de toda la información combinada. Se requieren herramientas para la obtención de los datos a partir de uno o más sistemas fuentes (Extracción), cambiar el contenido y/o la forma de la información para hacerla coincidir con la estructura (Transformación) e introducir los datos dentro del destino (Carga).

Técnicas de integración:

- La replicación es un conjunto de tecnologías destinadas a la copia y la distribución de datos y objetos de una base de datos a otra, para luego sincronizar ambas bases de datos con el fin de mantener su coherencia. Es útil dividir la replicación en dos amplias categorías: replicación de datos en un servidor para un entorno de servidor y replicación de datos entre un servidor y los clientes.
- La EAI engloba las metodologías, procesos, herramientas y tecnologías usadas para conectar sistemas, datos y procesos de una entidad o de un conjunto de entidades.
 Cuando la conexión es entre sistemas, datos o procesos de distintas entidades se suele hablar de Business to Business integration o B2Bi.
- La EII es la integración de datos a partir de múltiples sistemas en un formato de representación unificada, coherente y precisa orientada a la manipulación de datos y la navegación, donde estos se mantienen en los sistemas de información. Así que los datos son agregados, reestructurados, re-etiquetados (si es necesario) y presentados a un usuario. Por lo general, el resultado de este enfoque es prácticamente un sistema distribuido heterogéneo integrado de información.
- La ETL es un método para extraer, limpiar y almacenar datos de diversas fuentes e integrarlos en un solo destino o almacén, lo que simplifica su gestión y análisis para la toma de decisiones en los negocios.

A continuación se explica el proceso de Extracción, Transformación y Carga ETL.

- Extracción: en esta etapa es donde se obtiene la información proveniente de la fuente.
 En la gran mayoría de los proyectos estas fuentes pueden ser diferentes.
- Transformación: una vez extraída la información, como los datos pueden provenir de diferentes fuentes es necesario estandarizarlos para que puedan ser cargados en el AD.

En esta etapa del proceso ETL se procesa la calidad de los datos, revisando valores válidos, consistencia, eliminación de valores redundantes.

 Carga: este proceso es el encargado de cargar al AD aquellos datos que han sido extraídos de las distintas fuentes y transformados.

1.5 Herramientas a utilizar

Para la creación e implementación de la propuesta de solución planteada se utilizarán un grupo de herramientas para obtener las funcionalidades deseadas de la aplicación informática. En este acápite se especificarán herramientas y sus características escogiendo entre ellas, las que serán utilizadas y explicando de manera concreta su selección.

1.5.1 Herramienta de Modelado

Las herramientas de Ingeniería del Software Asistida por Computadora (*Computer Aided Software Engineering*, CASE por sus siglas en inglés), se le conoce a todo aquel software que es usado para ayudar a las actividades del proceso de desarrollo del software. Estas herramientas se concentran en capturar requerimientos, administrarlos y producir una especificación de requisitos. Son un medio facilitador para agilizar y mejorar los procesos involucrados en todo el ciclo de vida del proyecto y que en conjunto ayudan a la construcción final de un producto de software terminado, además permiten tener un mayor control en los proyectos, automatizar dicho proceso, completo o parcialmente, para así aumentar la productividad de las aplicaciones ,reducir el costo de desarrollo y retrasos en los proyectos, ayudan a determinar la complejidad y los esfuerzos necesarios.

Visual Paradigm for UML 8.0

Es una herramienta CASE que propicia un conjunto de ayudas para el desarrollo de programas informáticos, desde la planificación, pasando por el análisis y el diseño, hasta la generación del código fuente de los programas y la documentación. *Visual Paradigm* ha sido concebida para soportar el ciclo de vida completo del proceso de desarrollo del software a través de la representación de todo tipo de diagramas.

Visual Paradigm for UML 8.0 es la herramienta que se ha escogido para el modelado de la solución por las características que este presenta, ya que: presenta disponibilidad en múltiples plataformas (Windows, Linux), tiene un uso de lenguaje estándar común a todo el

equipo de desarrollo que facilita la comunicación. Además, tiene licencia gratuita y comercial, generación de código para Java y exportación como HTML y es fácil de instalar y actualizar. Es una herramienta colaborativa, es decir, soporta múltiples usuarios trabajando sobre el mismo proyecto y permite el control de versiones.

Brinda la posibilidad de modelar una gran variedad de diagramas, facilitando la codificación desde diagramas, la organización y el entendimiento por parte de los desarrolladores.

1.5.2 Lenguaje de modelado

El lenguaje de modelado se centra en la representación gráfica de un sistema. Provee características para modelar un sistema de software a nivel arquitectónico.

UML 2.1

El Lenguaje Unificado de Modelado (UML) es un lenguaje de modelado visual que se usa para especificar, visualizar, construir y documentar artefactos de un sistema de *software*. También es utilizado para entender, diseñar, configurar, mantener y controlar la información sobre tales sistemas.

Se utiliza UML versión 2.1 ya que establece un conjunto de notaciones y diagramas estándar para modelar sistemas orientados a objetos, y describe la semántica esencial de lo que estos diagramas y símbolos significan. Incluye aspectos concretos como expresiones de lenguajes de programación, esquemas de bases de datos y componentes de software reutilizables.

1.5.3 Herramientas para los procesos de Extracción, Transformación y Carga

DataCleaner v1.5.4

Contar con datos de calidad, entre otras cosas, permite: suministrar datos precisos y completos que conllevan a mejores resultados y a un alto rendimiento aumentando la confianza del usuario, al garantizar que pasen más tiempo analizando los datos y menos tiempo comprobando la calidad de las fuentes de información; aumenta el conocimiento de los datos y permite conocer dónde se están produciendo los errores para corregirlos y construir mejores sistemas de información. Danette McGilvray (2008) define el concepto de calidad de la información como "grado en que la información y los datos pueden ser una fuente confiable para cualquiera que requiera su uso; de forma completa, correcta,

consistente, oportuna para las personas que toman decisiones, accesible a los clientes y dirigida a la organización para conseguir sus objetivos".(23)

DataCleaner es un motor de procesamiento que fue construido para tareas altamente interactivas, de rendimiento y flexibilidad. Es una herramienta de análisis de calidad de la información que le permite realizar perfiles de datos y validación. El monitoreo es un aspecto central del DataCleaner para establecer el punto de partida, los objetivos, y para asegurar un proceso de seguimiento de las cuestiones de calidad de datos. Además encuentra las pautas, valores perdidos, juegos de caracteres y otras características de los valores de la información. (53)

A continuación se presentan las características más importantes de *DataCleaner* 1.5.4:

- Es posible crear reglas de validación para la entrada de los registros. Esta funcionalidad trabaja como una forma de asegurar la integridad y coherencia de los datos almacenados. Elabora perfiles de datos.
- Realiza la comparación de tablas, columnas y células con el fin de verificar la consistencia y veracidad de los datos.
- La personalización de algunas herramientas de acuerdo con la necesidad de la organización, sin olvidarse de la simplicidad.
- Consigue acceder a las BD más utilizadas en el mercado, incluyendo Oracle, Microsoft SQL Server, MySQL, PostgreSQL, OpenOffice (archivos con extensión ODB). Además, consigue interactuar con archivos en formato XML y planillas de Microsoft Excel. Es una aplicación open source (código abierto y licencia de uso gratuita).
- Mejora el flujo de informaciones y garantiza la calidad de datos esenciales para el funcionamiento de la organización.
- Es compatible con Windows XP, Windows Vista, Windows 7, Windows 2003, Linux y Mac OSX.

Pentaho Data Integration v9.4

El uso de la herramienta de integración de datos PDI (conocida además como Kettle) proporciona una poderosa capacidad de Extracción, Transformación y Carga de datos usando una solución innovadora basada en metadatos. Esta herramienta provee un ambiente de diseño intuitivo y es extremadamente versátil, ya que se tienen bloques que permiten leer y escribir de cualquier BD, fichero excel, Access y otros que permiten operar

con los campos renombrando, normalizando, calculando campos en función de otros, mapeando valores y realizando búsquedas auxiliares en BD (31). La herramienta de integración de datos PDI fue concebida para apoyar el desarrollo de soluciones de BI mediante metodologías ágiles, reduciendo y optimizando el ciclo de vida de aplicaciones BI al permitir avanzar de forma paralela en el diseño de las ETL, modelamiento y visualización de datos. PDI está compuesto por cuatro herramientas:

- SPOON: permite diseñar de forma gráfica las transformaciones ETL.
- PAN: ejecuta un conjunto de transformaciones diseñadas con SPOON.
- CHEF: permite diseñar la carga de datos incluyendo un control de estado de los trabajos.
- KITCHEN: permite ejecutar los trabajos batch diseñados con CHEF.

Algunas características:

- Librería de transformaciones completa con más de 100 objetos de mapeo.
- 100% Java, amplio soporte multiplataforma y soporte de una amplia cantidad de fuentes de datos, incluyendo aplicaciones integradas, sobre 30 plataformas propietarias y open source, archivos planos, documentos Excel, y más.
- Herramienta gráfica de muy fácil uso (control lógico de flujo).
- Basado en repositorio facilita re-uso de componentes de transformación, colaboración y administración de modelos, conexiones, logs, etc.
- Scheduler (Calendario programador de transformaciones y jobs).(32)

1.5.4 Herramientas para la visualización de información

La visualización de la información es el proceso de búsqueda, interpretación, contraste y comparación de datos que permite un conocimiento en profundidad y detalle de los mismos de tal forma que se transformen en información comprensible para el usuario. Existen varias herramientas de visualización para ayudar al análisis de la información, son herramientas muy potente para descubrir y comprender la lógica que se encuentra detrás de un conjunto de información, así como para compartir esta interpretación con otras personas desde un punto de vista objetivo.

Grafana v10.4.1

El proyecto Grafana fue iniciado por Torkel Ödegaard¹¹ en 2014 y en los últimos años se ha convertido en uno de los proyectos de código abierto más populares en *GitHub*. Le permite consultar, visualizar y alertar sobre métricas y registros sin importar dónde estén almacenados.

Grafana es un software de visualización y alertas compatible con una gran cantidad de bases de datos, a través de diferentes *plugins*¹², los cuales agregan más funcionalidades a este software. Grafana tiene un modelo de fuente de datos conectable y viene con un amplio soporte para muchas de las bases de datos de series de tiempo, también tiene soporte incorporado para proveedores de monitoreo en la nube y puede combinar datos de tantos lugares en un solo tablero de información.

Tabla 2 Ventajas y desventajas de las herramientas de visualización de datos.

Herramientas	de	Kibana	Grafana	
visualización				
		Comunes		
		Son gratuitas.		
		De código abierto.		
		Resúmenes en tiempo real y gráficos de flujo de datos.		
Ventajas		No comunes		
		• Inclusión de cuadros de mandos con • Gestiona roles, con lo cual		
		visualizaciones acopladas y posibilidad existe un protocolo		
		de compartir en aplicaciones de privacidad de la información.		
		terceros.	● Puede trabajar con	
			múltiples bases de datos de	
			series temporales.	
		• Al ser un plugin de <i>Elasticsearch</i> lo	• Creado para la	
		hace dependiente del mismo.	monitorización de métricas,	
		• Solo funciona conectado a un	con lo cual las	

¹¹ Torkel Ödegaard, creador de la herramienta grafana y cofundador de Grafana Labs. Gerente de producto y arquitecto principal.

¹²Plugins: Aplicación (o programa informático) que se relaciona con otra para agregarle una función nueva y generalmente muy específica.

Desventajas	Elasticsearch que le proporcione datos.	visualizaciones que posee
	Carece de protocolos de privacidad y	están pensadas en exponer
	seguridad.	estadísticas tipo métricas.

Una vez realizado el análisis de las herramientas para la visualización de datos, como se aprecia en la tabla anterior (ver Tabla 2) ambas herramientas poseen ventajas similares, sin embargo *Kibana* es dependiente de *Elasticsearch* mientras que Grafana es independiente de la fuente de datos a utilizar. Grafana proporciona privacidad de la información a través de la gestión de roles y puede trabajar con múltiples bases de datos. También tiene soporte incorporado para proveedores de monitoreo en la nube y puede combinar datos de diferentes fuentes en un solo tablero de información.

1.6 Sistema gestor de Base de Datos

PostgreeSQL v12

El software de BD en los últimos años ha experimentado un auge extraordinario dado por la progresiva informatización de casi la totalidad de las empresas de hoy día. Rapidez y efectividad en los procesos y los grandes flujos de información son las necesidades más indispensables a la hora de optimizar servicios y productos. Con la existencia de múltiples entornos de desarrollo y la notable demanda de soluciones informáticas, han surgido multitud de gestores de BD.

Los SGBD son un tipo de software muy específico, dedicado a servir de interfaz entre la BD, el usuario y las aplicaciones que la utilizan y que prestan servicios para el desarrollo y el manejo de las mismas. Uno de los SGBD de código abierto que mayor auge ha alcanzado en los últimos tiempos y considerado uno de los gestores más completo es *PostgreSQL*, prestando mayor atención a que permite métodos almacenados, restricciones de integridad, vistas, etc.

Algunas Características de PostgreSQL v9.4:

Atomicidad (Indivisible) es la propiedad que asegura que la operación se ha realizado o
no, y por lo tanto ante un fallo del sistema no puede quedar a medias.

- Consistencia es la propiedad que asegura que sólo se empieza aquello que se puede acabar. Por lo tanto se ejecutan aquellas operaciones que no van a romper la reglas y directrices de integridad de la BD.
- Aislamiento es la propiedad que asegura que una operación no puede afectar a otras.
 Esto asegura que dos transacciones sobre la misma información nunca generará ningún tipo de error.
- Durabilidad es la propiedad que asegura que una vez realizada la operación, ésta persistirá y no se podrá deshacer aunque falle el sistema.
- Compatible con los principales sistemas operativos: Linux, Unix, Mac OS, etc.
- Soporte de todas las características de una BD profesional (*triggers*, funciones, secuencias, relaciones, reglas, tipos de datos definidos por usuarios, vistas, vistas materializadas, etc.)
- Utilidades para limpieza de la BD.
- Utilidades para análisis y optimización de consultas.

A continuación se muestran las características principales que responden la decisión de tomar.

PostgreSQL como SGBD:

- Máximo de BD: ilimitado. (De acuerdo a la capacidad de almacenamiento del servidor)
- Máximo de tamaño de tabla: 32 TB.
- Máximo de tamaño de registro: 1.6 TB.
- Máximo de tamaño de campo: 1GB.
- Máximo de registros por tabla: ilimitado.
- Máximo de campos por tabla: 250 a 1600 (depende de los tipos usados).
- Máximo de índices por tabla: ilimitado.
- Compatible con los principales sistemas operativos.
- Adaptable a las necesidades propias de cada usuario.
- Soporta llaves foráneas, tipos de datos definidos por el usuario, secuencias, relaciones, uniones, vistas, reglas y procedimientos almacenados en múltiples lenguajes.

PgAdmin IV v7.7

PgAdmin es el software más utilizado de código abierto para la administración de BD. En PgAdmin se puede ver y trabajar con la mayoría de los objetos de la BD, examinar sus

propiedades y realizar tareas administrativas. *PgAdmin* está diseñado para responder a las necesidades de todos los usuarios, desde escribir simples consultas SQL para crear BD complejas. La interfaz gráfica soporta todas las características de *PostgreSQL* y facilita la administración.

Seguidamente se mencionan algunas de sus principales características:

- Multiplataforma.
- Diseñado para múltiples versiones de PostgreSQL y derivados.
- Acceso a los datos.
- El acceso a todos los objetos de PostgreSQL.

Para la administración de la BD se decide utilizar *PgAdmin* IV v17.1 porque es un motor de BD de código abierto muy avanzado. Es multiplataforma y también funciona con otros motores comerciales basados en *PostgreSQL*. Se diseña para responder a las necesidades de la mayoría de los usuarios, desde escribir simples consultas SQL hasta desarrollar BD complejas. La interfaz gráfica soporta todas las características de *PostgreSQL* y facilita la administración. Está disponible en más de una docena de lenguajes y para varios sistemas operativos, incluyendo *Microsoft Windows*, *Linux*, *FreeBSD*, *Mac y OSX*.

Conclusiones del capítulo

En el capítulo que finaliza se analizaron los principales conceptos asociado al objeto de estudio para lograr un mayor entendimiento, demostrando la necesidad de implementar un sistema de visualización de tableros de información para la PYME BLS de Industria y tecnología, que permita el análisis de la información a través de indicadores claves de desempeño. Se analizaron sistemas homólogos a la investigación, abordando sus principales características y no se encontró ninguno que cumpla con las características y las necesidades de la solución propuesta. Se establecieron las herramientas que posibilitaran un correcto desarrollo del tablero de información, seleccionándose como metodología de desarrollo de software a la propuesta de metodología para el desarrollo de dashboard, la cual guiará todo el proceso del sistema propuesto. Se eligió Visual Paradigm IV v7.7 como herramienta CASE y lenguaje de modelado UML v2.1. Para el tratamiento de los datos se escogió DataCleaner v1.5.4 y Pentaho v9.4 y para la visualización de los datos se escogió Grafana v10.1.4. Cada una de estas herramientas y tecnologías, posee características que

las hicieron idóneas para el trabajo con ellas durante el proceso de desarrollo de la solución propuesta.

CAPÍTULO II: DISEÑO DE LA SOLUCIÓN PROPUESTA AL PROBLEMA CIENTÍFICO

En el presente capítulo se identifican las necesidades del cliente mediante el levantamiento de requisitos tanto funcionales como no funcionales, con el objetivo de proporcionar una definición completa y útil del software. Se realizan un conjunto de artefactos definidos en la metodología seleccionada que servirán como guía durante la implementación de la propuesta de solución.

2.1 Propuesta de solución

A partir de entrevistas realizadas al cliente, se determinaron un conjunto de necesidades existentes en la PYME BLS Industria y Tecnología. Estas necesidades están enfocadas en un sistema que permita analizar y mostrar el comportamiento de indicadores mediante tableros de información para facilitar el seguimiento de los mismos y mejorar la toma de decisiones en la organización. El sistema debe brindar una interfaz amigable y práctica que les pueda facilitar al usuario poder visualizar y analizar la información deseada. Además de proporcionar privacidad de la información a través de la gestión de roles, siendo solo el usuario capacitado a usar el sistema el único que pueden seleccionar los indicadores a mostrar en el gráfico, realizar comparaciones entre ellos o analizar su comportamiento por intervalo de tiempo y así poder visualizar la información en el gráfico ya creado para una mejor toma de decisiones por los directivos de la empresa.

2.2 Especificación de Requisitos

El objetivo principal en la disciplina Requisitos es desarrollar un modelo del sistema que se va a construir. Esta disciplina comprende la administración y gestión de los requisitos funcionales y no funcionales del producto. Dentro de las tareas de esta disciplina está la Especificación de Requisitos de Software (ERS) que constituye un medio de comunicación entre clientes, usuarios, ingenieros de requisitos y desarrolladores. En la ERS deben recogerse tanto las necesidades de clientes y usuarios (necesidades del negocio, también conocidas como requisitos de usuario, requisitos de cliente y (necesidades de usuario) como los requisitos que debe cumplir el software a desarrollar para satisfacer todas las

necesidades (requisitos del producto, también conocidos como requisitos de sistema o requisitos de software).

2.2.1 Requisitos de Información

Los requisitos de información describen qué información debe almacenar el sistema para satisfacer las necesidades de clientes y usuarios. Los mismos deben estar disponibles para el usuario final a la hora de este realizar las consultas necesarias para analizar los datos, con el objetivo de apoyar la toma de decisiones en la institución.

- **RI1.** Obtener los datos del total general de ventas según los indicadores Cliente, Producto y Mes.
- RI2. Obtener monto en mlc según los indicadores Cliente, Producto y Mes.
- RI3. Obtener monto en cup según los indicadores Cliente, Producto y Mes.
- RI4. Obtener la cantidad de clientes que pagan por adelantado y los que tienen pendiente.
- **RI5.** Obtener valor total de transferencia y efectivo.

2.2.2 Requisitos Funcionales

Los requisitos funcionales son declaraciones de los servicios que debe proporcionar el sistema, de la manera en que este debe reaccionar a entradas particulares y de cómo se debe comportar en situaciones particulares , es la capacidad que debe tener un software para que sea útil en la realización de los procesos de negocio de una organización .

Para el desarrollo del sistema de visualización de tableros de información se identificaron los requisitos funcionales, en la tabla 3 se listan estos requisitos, la prioridad para el cliente y su complejidad, determinada mediante el producto de trabajo Evaluación de Requisitos del expediente de proyecto 5.0. A continuación, se listan los requisitos funcionales identificados.

Al seleccionar la herramienta de visualización de indicadores Grafana, los requisitos funcionales (RF) fueron proporcionados por dicha herramienta. A continuación, se listan los requisitos funcionales.

Requisitos funcionales del Subsistema de Almacenamiento.

RF1. Obtener información a partir de los registros de ventas generados en la empresa de 2022 y 2023.

Requisitos funcionales del Subsistema de Integración de Datos.

RF2. Cargar información incremental correspondiente al modelo 0005 con una periodicidad mensual.

Requisitos funcionales del Subsistema de Visualización.

RF5. Mostrar información mediante tableros de información.

Estos son algunos de los requisitos. Todos los demás requisitos se encuentran en su totalidad en el documento de especificación de requisitos.

2.2.3 Requisitos No funcionales

Los requisitos no funcionales son restricciones de los servicios o funciones ofrecidos por el sistema. Incluyen restricciones de tiempo, sobre proceso de desarrollo y estándares, además detallan las propiedades o cualidades que el producto debe tener. Estos requisitos a menudo se aplican al sistema en su totalidad más que a características o a servicios individuales del mismo. En el presente trabajo se identificaron requisitos no funcionales distribuidos entre software, hardware, diseño, rendimiento, interoperabilidad, apariencia, confiabilidad. A continuación, se muestran los requisitos no funcionales identificados.

SOFTWARE

RNF 1 El servidor de aplicaciones debe tener instalado sistema operativo Windows del 7 en adelante o Linux Ubuntu o Debian.

RNF 2 Debe tener instalado la maquina virtual de java y la configuración de las variables de entorno java 8 en adelante, *PostgreSQL* y *Grafana*.

HARDWARE

RNF 3 Servidor de Aplicaciones: 2núcleos, 2GB de RAM, 20 GB (Grafana y directorio).

RNF 4 RESTRICCIONES DEL DISEÑO E IMPLEMENTACIÓN

RNF 5 Se utilizará para la base de datos el SGBD *PostgresSQL* 12.

RENDIMIENTO

RNF 6 La eficiencia del sistema depende en gran medida del volumen de información contenido en los *Excels* a importar, sin embargo, el sistema debe mantener tiempos de respuestas que no excedan los 1500 ms.

INTEROPERABILIDAD

RNF 7 El sistema debe ser capaz de garantizar la comunicación interna entre todas las herramientas usadas.

APARIENCIA O INTERFAZ EXTERNA

RNF 8 Para los gráficos cuyos elementos a visualizar no excedan los 10 aspectos, se recomienda el uso de gráficos de barra.

RNF 9 El sistema debe cumplir con el manual de identidad visual existente en la BLS de Industria y tecnología.

CONFIABILIDAD

RNF 10 Fiabilidad. La precisión y exactitud de las salidas del sistema se corresponden con la calidad y exactitud de la información contenida en los *Excels* desde donde se extraen los datos.

2.3 Reglas del Negocio

Las reglas de negocios (o las directivas empresariales) definen y controlan la estructura, el funcionamiento y la estrategia de una organización, son la acción, práctica o procedimiento dentro de una determinada actividad o esfera (53). Son además las condiciones que regulan un proceso de negocio, las cuales se deben seguir para cumplir con las necesidades de información de los clientes. Las reglas de negocio para el desarrollo del Sistema de visualización de tableros de Información de la empresa se agrupan en cuatro grupos: las reglas de variables, reglas de almacenamiento, reglas de transformación y reglas de visualización.

Reglas de Variables:

RN1. Los identificadores de los indicadores no pueden estar repetidos ni tomar valores nulos.

Reglas de almacenamiento:

RN2. Los valores de los indicadores del registro de ventas de 2022 deben ser números con cifras decimales hasta 2 lugares después de la coma.

Reglas de Visualización:

RN3. En el registro de ventas de 2023 las columnas Total General y CUP mes de julio hasta diciembre estarán bloqueadas desde la fila 245 a la 350.

2.4 Arquitectura del Sistema

Un patrón arquitectónico es un paquete de decisiones de diseño que se encuentra repetidamente en la práctica, tiene propiedades bien definidas que pueden ser reutilizadas y describe una clase de arquitecturas. (Ekaterina Novoseltseva, 2020)

El sistema de visualización de tableros de información está ordenado mediante una arquitectura compuesta por la fuente de datos, el Subsistema de integración, Subsistema de almacenamiento y Subsistema de visualización. A continuación una descripción de cada uno de estos Subsistemas.

- En el subsistema de integración de datos es donde se realizan todos los procesos ETL en los cuales se extrae, se limpia e integra toda la información almacenada en los sistemas fuentes a través de transformaciones y trabajos.
- En el subsistema de almacenamiento es donde se guarda toda la información que ha sido transformada en el subsistema de integración.
- En el subsistema de visualización de la información es donde se muestra toda la información almacenada al cliente, a través de vistas de análisis. Los mismos permiten al cliente realizar un análisis de toda la información procesada.

La arquitectura del sistema de visualización de tableros de información queda diseñada de la siguiente manera. (Ver Imagen 2: Arquitectura del Sistema de Visualización de tableros de información).

Imagen 2: Arquitectura del Sistema de Visualización de tableros de información

2.5 Análisis y Diseño del sistema

2.5.1 Diseño del Subsistema de Almacenamiento

Para la realización del Sistema de visualización de tableros de información se realiza el modelo dimensional de los datos, el cual contiene las tablas de cliente, producto y registro de ventas, así como las relaciones entre estas.

Cliente

Como parte del diseño del Subsistema de almacenamiento se identifican la tabla cliente que constituye los datos del cliente, como su nombre, provincia y municipio.

A continuación se detalla la tabla cliente (ver Imagen 3: Entidad Cliente)

Imagen 3: Entidad Cliente

Producto

La tabla producto constituyen los datos referentes al producto, como el nombre del producto y el precio del producto.

A continuación se detalla la tabla cliente (ver Imagen 4: Entidad Producto)

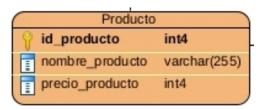


Imagen 4: Entidad Producto

Registro de Ventas

La tabla producto constituyen los datos referentes al registro de ventas, como el número de factura, valor total, la cantidad total por transferencia, en MLC entre otras

A continuación se detalla la tabla cliente (ver Imagen 5: Entidad Registro de Ventas)

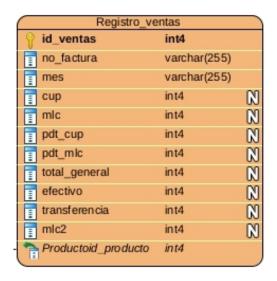


Imagen 5: Entidad Registro de Ventas

2.5.2 Modelo de Datos Diagrama Entidad Relación

Un modelo entidad-relación es una herramienta para el modelo de datos, la cual facilita la representación de entidades de una base de datos. (Peter Chen, 1976)

Una vez definidas en el negocio las entidades se conforma el modelo de datos del sistema de visualización de tableros de información cuyo objetivo es el análisis de las ventas en la empresa BLS Industria y Tecnología, evidenciando además las relaciones existentes entra las tablas de cliente, producto y registro de ventas. A continuación se muestra en la Imagen 6 el modelo de datos propuesto para el desarrollo del sistema de visualización de los tableros de información.



Imagen 6: Diagrama Entidad Relación

2.6 Diseño del Subsistema de Integración

Uno de los elementos más importantes del sistema de visualización de tableros de información es el diseño del Subsistema de integración del cual forma parte el perfilado de datos, que permite realizar un análisis profundo de los datos provenientes de la fuente para conocer el estado en que se encuentra la información así como su calidad y estructura.

Una vez realizado el perfilado de datos a la fuente del sistema de visualización de tableros de información se pudo observar que la información que se encontraba almacenada corresponde a los años 2022 y 2023, los que utilizan como máscara de fecha yyyy/mm/dd. Los datos encontrados son: textos, números enteros y fechas además no existen valores negativos ni se encontraron valores vacíos.

Permite además verificar los distintos tipos de datos que contiene la fuente de Información del sistema de visualización de tableros de información, como se muestra en la Imagen 7: Distribución del tipo de dato.

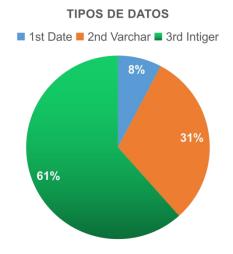


Imagen 7: Distribución del tipo de dato

2.6.2 Estrategias Generales de Integración de Datos

Para el desarrollo de la presente investigación se utiliza como estrategia de integración de datos: ETL. Se decide la utilización de esta estrategia pues da soporte a distintos orígenes de datos desde BD relacionales y no relaciones hasta archivos XML, archivos en formatos *Excel* y DBF, entre otro gran conjunto de ficheros.

ETL brinda la posibilidad de enviar datos a otros *softwares* en tiempo real, tiene una amplia capacidad de transformación de datos, desde la más simple conversión de un tipo de datos, cálculos simples, hasta transformaciones algo más complejas como agregaciones y sumarizaciones.

La primera parte del proceso de ETL consiste en extraer la información desde los sistemas fuentes, en este caso serían los registros de ventas, cuyo formato son *Excels*. Una parte importante de este subproceso consiste en analizar los datos extraídos para verificar si los mismos cumplen con la estructura requerida.

Una vez extraídos estos datos quedan preparados para la fase de transformación.

En la fase de transformación del proceso de ETL, a los datos extraídos se le aplican una serie de reglas de negocio o una manipulación específica en dependencia del negocio y de la fuente de información, para convertirlos en los datos que realmente serán cargados. Además en esta fase se define la información de la fuente que se desea cargar. Una vez terminado este subproceso los datos quedan listos para su posterior almacenamiento.

En el subproceso de carga se toman los datos de la fase de transformación para cargarlos en el sistema destino, el sistema de visualización de tableros de información. Esta fase puede contener varias acciones pues generalmente se mantiene un historial de la carga de la información, cuyo objetivo es no actualizar los datos almacenados con anterioridad, para disponer de un historial de uno o más valores a lo largo del tiempo.

2.7 Diseño del subsistema de visualización

El diseño del Subsistema de visualización se realiza con el objetivo de organizar el tablero de información, facilitando al usuario una búsqueda rápida de la información. Se deben tomar decisiones sobre la presentación de la información para proporcionar mayor visibilidad al analizar esta. También se definen las alertas visuales, la configuración de umbrales y los cambios de color de los gráficos cuando los valores oscilen dentro de los umbrales definidos, así como configurar la actualización de los datos y la seguridad que estos tendrán.

2.7.1 Arquitectura de la Información

Con la creación del sistema de visualización de tablero de información se podrá visualizar la información de los indicadores provistos por el área de la dirección comercial de la empresa para ser analizada por las personas capacitadas y sirviendo de apoyo al proceso de toma de decisiones. En la investigación se identificaron cinco requisitos de información por lo que los tableros de información en la herramienta Grafana quedan estructurados por requisitos.

- Tablero de Información total de ventas (RI1): contiene todo lo referente a los datos del valor total de ventas en función a los indicadores cliente, producto y mes.
- Tablero de Información valor total en MLC (RI2): contiene todo lo referente a los datos del valor total de las ventas en MLC en función a los indicadores cliente, producto y mes.
- Tablero de Información valor total en CUP (RI3): contiene todo lo referente a los datos del valor total de las ventas en CUP en función a los indicadores cliente, producto y mes.
- Tablero de información de clientes que pagan por adelantado y los que tienen pendiente (RI4): contiene todo lo referente a los clientes que pagan por adelantado (no tienen ningún pendiente) y los que si tienen pendiente.

 Tablero de Información Comparación valor total de Transferencia y Efectivo (RI5): contiene todo lo referente al total de datos comparados entre si de las transferencias y el efectivo.

En la siguiente imagen se muestra la estructura y el orden de las tablas. (Ver Imagen 10: Estructura de los tableros de información en Grafana)

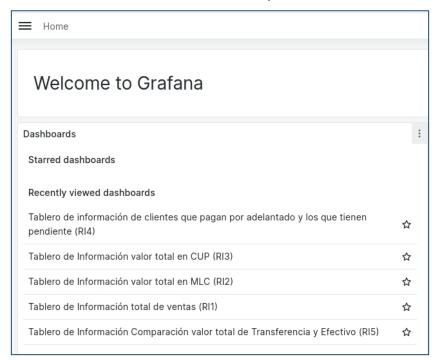


Imagen 10: Estructura de los tableros de información en Grafana

2.7.2 Diseño del tablero de información

En el sistema de visualización de tableros de información se definieron cinco tableros de información realizadas con Grafana, respondiendo a los requisitos de información identificados. En la solución propuesta se identificaron los siguientes tableros de información: Tablero de Información total de ventas, Tablero de Información valor total en MLC, Tablero de Información valor total en CUP, Tablero de información de clientes que pagan por adelantado y los que tienen pendiente y Tablero de Información Comparación valor total de Transferencia y Efectivo. La Imagen 11 muestra el diseño del tablero de información.

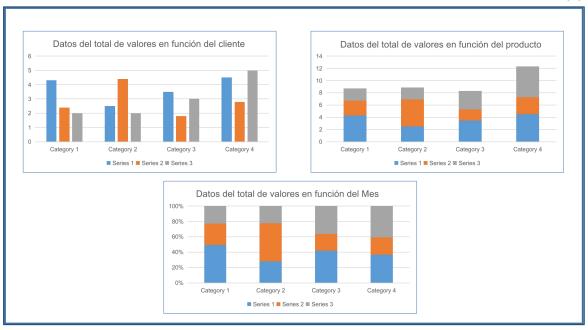


Imagen 11: Diseño del tablero de información

2.8 Esquema de Seguridad

En el sistema de visualización de tableros de información es de gran importancia la seguridad de la información, pues los datos que maneja son de vital importancia para la economía de la empresa. Con este objetivo se definieron roles para darle permisos a cada uno de los usuarios que interactúan directamente con el sistema.

Seguridad en el Subsistema de Almacenamiento

Para la seguridad de la base de datos se creó el rol Administrador de Base de Datos el que posee acceso total a la base de datos y el Administrador de ETL que se encarga de los procesos de extracción transformación y carga. En la Tabla 3 se muestra el esquema de seguridad definido para el Subsistema de almacenamiento.

Tabla 3: Esquema de Seguridad Subsistema de almacenamiento.

Roles	Permisos					
Administrador de Base de datos	Total acceso a la BD. Realiza la					
	administración de la BD, que contiene todas					
	las tablas del sistema de visualización.					
	Autoriza permiso a cada uno de los usuarios.					

Administrador ETL.	Realiza todos los procesos de extracción,			
	transformación y			
	carga de la información. Y tiene todos lo			
	permisos sobre las			
	tablas de hechos y dimensiones del MD			
	Contabilidad.			

Seguridad en el Subsistema de Integración

Como el MD Contabilidad se desarrolla sobre el sistema operativo Linux, se garantiza asignar permisos sobre archivos a un grupo determinado de usuarios. Esto permitirá restringir el acceso sobre los archivos que contienen las transformaciones y trabajos encargados de los procesos de integración del sistema de visualización de tableros de información solo al personal autorizado, en este caso al administrador de ETL.

Seguridad en el Subsistema de Visualización

Para la seguridad de la aplicación se definió el rol Administrador, que posee total acceso al área de análisis del sistema de visualización de tableros de información, además de ser el encargado de la creación de nuevos usuarios, así como asignarles los roles y permisos a los mismos y el rol especialista que tiene acceso al área de análisis para de este modo consultar las visualizaciones de análisis correspondientes a cada uno de los indicadores de la empresa. En la Tabla 4 se muestra el esquema de seguridad definido para el Subsistema de Visualización.

Tabla 4: Esquema de Seguridad Subsistema de visualización.

Roles	Permisos					
Administrador	Acceso total al Área Análisis General del					
	sistema de visualización de tableros de					
	información, creación de roles, usuarios					
	gestión de permisos.					
Especialista.	Acceso solo a las visualizaciones de análisis					
	del registro de ventas del Área de la					
	Dirección Comercial.					

Conclusiones Parciales

Con el desarrollo de este capítulo se concluye que, fueron definidos los requisitos de información, requisitos funcionales del sistema, los requisitos no funcionales y las diferentes herramientas y tecnologías empleadas para la captura y validación de los mismos para el sistema de visualización de tableros de información de la empresa BLS y así satisfacer las necesidades del cliente. Según la propuesta de metodología para el desarrollo de *dashboard*, la arquitectura del sistema, el diseño del tablero de información en conjunto con los tres subsistemas de almacenamiento, integración y visualización y además del diseño de los diagramas de entidad relación y de despliegue fueron de gran ayuda para la realización de la propuesta de solución.

CAPÍTULO III: IMPLEMENTACIÓN Y VALIDACIÓN DE LA SOLUCIÓN PROPUESTA

El análisis de la propuesta de solución mostrada en el capítulo anterior, ayuda al programador a entender el sistema y ser capaz de desarrollar su construcción y validación. Además de su implementación se realizan y describen un conjunto de pruebas de software a la aplicación, en este caso se utilizarán las pruebas funcionales, más específicamente el nivel de pruebas de aceptación y pruebas de integración con el objetivo de cumplir con las necesidades del cliente.

3.1 Implementación del Subsistema de Almacenamiento

Posterior al diseño del modelo de datos dimensional se realizó la transformación al modelo físico, el que facilita la descripción del almacenamiento de los datos y la relación existente entre las tablas que lo componen.

Estructura de los datos

Una estructura de datos es una vía factible para organizar una colección de datos. En la base de datos la información se encuentra organizada en estructuras lógicas que facilitan una correcta manipulación de la misma. Estas estructuras son denominadas esquemas que están conformados por una o varias tablas.

Esquemas: los esquemas en una DB representan una manera eficiente de tener organizada la información. Estos pueden contener funciones, operadores y tipos de datos. Esta estructura le permite al usuario tener acceso a ellos siempre y cuando posea los permisos adecuados.

Para el desarrollo de la solución se cuenta con un esquema:

Esquema bls_dashboard: el esquema de que contiene las tablas.

Tablas: Las tablas representan el conjunto de registros que te van a permitir describir un elemento individual de la información. La solución propuesta contiene un total de tres tablas contenidas en el esquema bls_dashboard y una relación que se representan en la siguiente tabla que describe dicha estructura.

Tabla 5 Esquema y tablas

No.	Esquema	Tablas
1	bls_dashboard	cliente
		cliente_producto
		producto
		registro_ventas

3.2 Implementación del Subsistema de Integración

En el proceso de integración de datos no es recomendable iniciar los procesos de ETL sin haber analizado previamente la fuente de datos. El registro de ventas del área de la dirección comercial se encuentra almacenada en una base de datos relacional soportada por el sistema de gestión de base de datos PostgreSQL9.4. Una de las etapas más importantes de este proceso es la de transformación y limpieza, una vez realizada estas, ya los datos se encuentran listos para ser almacenados en la base de datos. Con la limpieza de la información se detectan los datos que contienen errores, las entradas duplicadas, y las transformaciones nos permiten filtrar información, combinar y ordenar los datos.

Subsistema de Extracción

En el subsistema de extracción se obtienen los datos de la fuente proporcionada por el cliente que poblarán el sistema de visualización de tableros de información. Estos datos fueron extraidos de dos Excels que son los registros de las ventas del área de la dirección comercial de la empresa pertenecientes a los años 2022 y 2023.

Subsistema de Transformación

Una vez finalizada la extracción de los datos se prosigue a la transformación de los mismos. En este proceso se detectan los posibles errores que contenga la información y se les da un tratamiento para corregirlos aplicando las reglas de negocio identificadas garantizando que los datos sean cargados con la calidad requerida por el usuario final. En el desarrollo del presente trabajo se implementaron un total de 3 transformaciones con el objetivo de poblar el sistema de visualización de tableros de información.

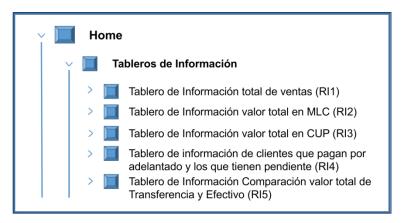
En la Imagen 13 se muestra el proceso de transformación utilizando la herramienta Pentaho en donde se toman los datos de dos Excels usando el componente "XML input stream" y luego se seleccionan cuales son las columnas que se quieren usar acudiendo al componente "Select values" esto en los dos Excels anteriormente introducidos a la transformación. A continuación se procede a unir los datos usando el componente "Append streams" el cual selecciona las columnas en los dos casos que se quieren unir. Después se hicieron varias modificaciones a los datos debido a que algunos estaban en minúsculas, incompletos, solo iniciales en algunos casos y otras formas. Una vez que el flujo estuvo listo con todos los datos correspondientes a cargar en la tabla de hechos se validó que no existiera ningún campo nulo para ser cargado, y de haber algún tipo de error se capturaron estos en un fichero Excel con la finalidad de ser revisados por el cliente para luego realizar una transformación con una entrada Excel y cargar todos esos datos una vez arreglado el error. Una vez comprobado que los datos estén correctos se procede a insertarlos en la tabla de hechos "registro_ventas".

2023 Select values 5

Append streams Replace in string Insert / update registro_ventas

2022 Select values

Imagen 12: Transformación de los datos a insertar en la tabla registro ventas


Carga de Datos

El proceso de carga de datos constituye el paso final del desarrollo del subsistema de integración, donde la información que fue transformada en los procesos de extracción y transformación se cargó hacia las tablas de hechos correspondientes. Estas tablas conforman el modelo dimensional del sistema de visualización de tableros de información, posibilitando su consulta por los usuarios finales.

3.3 Implementación del Subsistema de Visualización

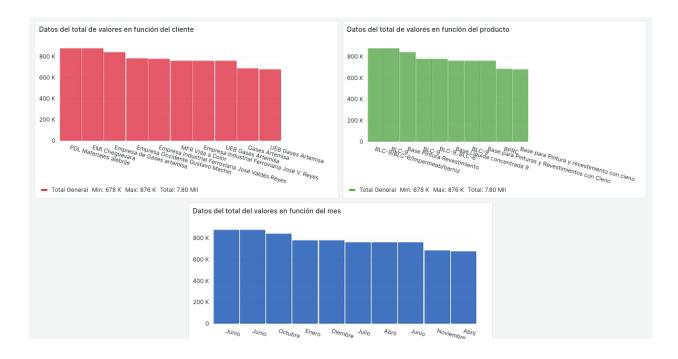

La capa de visualización se estructuró según la arquitectura de información propuesta en el mapa de visualización, donde se evidencia la información que contiene la misma. El sistema de visualización está compuesto por tres tablas y una relación de mucho a mucho. A continuación se muestra la Imagen 14 donde se muestra la Arquitectura de la información del sistema de visualización de tablero de información.

Imagen 13: Arquitectura de la Información del sistema de visualización

A continuación se presenta el tablero de información referente al requisito RI1 ver Imagen 14

Imagen 14: tablero de información referente al requisito de información (RI1)

3.4 Pruebas de Software

Las pruebas de software son una actividad en la cual un sistema o componente es ejecutado bajo unas condiciones o requisitos especificados, los resultados son observados y registrados, y una evaluación es hecha de algún aspecto del sistema o componente (Pressman, 2010). Tienen como objetivo proporcionar información sobre la calidad interna y externa del software. Las estrategias de pruebas de software proporcionan una guía que describe los pasos que deben realizarse como parte de las pruebas. Estas deben incorporar la planificación de la prueba, el diseño de casos de prueba, la ejecución de la prueba y la recolección y evaluación de los resultados (Pressman, 2010).

3.4.1 Calidad del Software

La calidad del software es el grado con el que un sistema, componente o proceso cumple los requerimientos especificados y las necesidades o expectativas del cliente o usuario. Concordancia del software producido con los requerimientos explícitamente establecidos, con los estándares de desarrollo prefijados y con los requerimientos implícitos no establecidos formalmente, que desea el usuario. (28)

3.4.2 Pruebas

Las pruebas constituyen una de las fases más importantes en el desarrollo de cualquier producto de software y permiten determinar su calidad. Las mismas son aplicadas desde el inicio del desarrollo del software hasta que este llegue a manos del cliente, esperando que cumpla con sus expectativas.

Disímiles son los tipos de pruebas que pueden ser aplicadas a los sistemas de visualización de tableros de información con el fin de obtener un producto con la calidad requerida. En la investigación se evaluó la Calidad del sistema de visualización de tableros de información mediante el Modelo V. La Imagen 15 muestra cómo el Modelo V relaciona las actividades de prueba con el análisis y el diseño:

El modelo en V muestra la relación entre las actividades de prueba con el análisis y el diseño como se puede observar en la Imagen 15. La unión mediante líneas discontinuas entre las fases de la parte izquierda y las pruebas de la derecha representa una doble información. Por un lado sirve para indicar en qué fase de desarrollo se deben definir las pruebas

correspondientes. Por otro lado sirve para saber a qué fase de desarrollo hay que volver si se encuentran fallos en las pruebas correspondientes. (30)

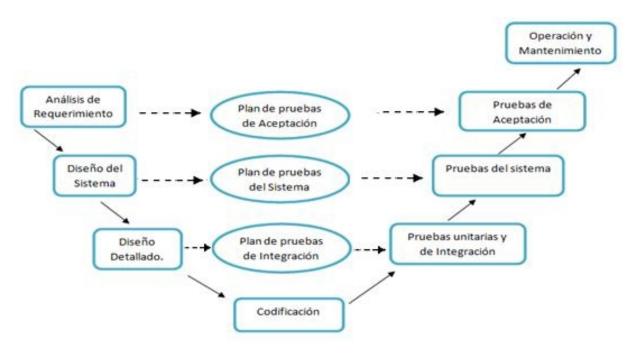


Imagen 15: Modelo V

A continuación se muestran las pruebas aplicadas al sistema de visualización de tableros de información haciendo uso del modelo V:

- Prueba unitaria: Es el proceso de probar los componentes individuales (subprogramas o procedimientos) de un programa. El propósito es descubrir discrepancias entre la especificación de la interfaz de los módulos y su comportamiento real. Estas pruebas son diseñadas y ejecutadas por el desarrollador una vez terminado el desarrollo de cada componente.
- Prueba de integración: Son las pruebas que se realizan para determinar la integración de los componentes dentro de un sistema y evaluar su correcta interfaz, funcionalidad y desempeño. Estas pruebas son diseñadas y ejecutadas por el desarrollador cuando la solución está completa junto a los especialistas del centro.
- Prueba de sistema: Son las pruebas que se realizan para determinar el correcto funcionamiento de un sistema y su cumplimiento contra las especificaciones del producto.

 Pruebas de aceptación: Pruebas que se realizan directamente con el cliente para validar su conformidad con el producto.

3.4.3 Casos de Prueba

Los casos de prueba son utilizados por el analista para determinar si los requisitos de una aplicación son parciales o completamente satisfactorios y para identificar los posibles fallos de implementación. En el sistema de visualización de tableros de información fueron diseñados tres casos de prueba asociados a los requisitos de información identificados en la etapa de análisis, los cuales están regidos por las tablas, con el fin de verificar que sean visualizados con las variables correspondientes. A continuación en la Imagen 17 se muestra un ejemplo de uno de los casos de prueba diseñados.

Imagen 16: Caso de Prueba del requisito de información "Mostrar Indicadores Seleccionados de la tabla registro_ventas"

Escenario	Descripción	Variable	Variable	Variable	Variable	Variable	Variable	Respuesta	Flujo Central
								del Sistema	
EC 1 Mostrar Información de Indicadores Seleccionados de registro_ventas	Realizar entrevistas a usuarios del negocio y revisar los datos de los registros de ventas para identificar las necesidades informativas en el/los temas de análisis definidos en la solución a desarrollar	valor_tot al	transfere	efectivo	MLC	fecha	mes	Se muestra la Información correspondi ente al escenario.	1. En la pagina inicial del software se en encuentran en la parte inferior izquierda los tableros se selecciona el indicado. 2. Se Selecciona la visualización correspondiente al escenario especificado. 3. Se visualiza el gráfico deseado.

3.4.4 Resultados de las Pruebas

Las pruebas realizadas al sistema de visualización de tableros de información arrojaron los siguientes resultados:

- Pruebas unitarias y de Integración: Las pruebas unitarias y de integración realizadas al subsistema de integración de datos y a los diferentes componentes relacionados con la capa de visualización, detectaron seis NC las cuales fueron resueltas en su totalidad.
- Pruebas del sistema: Las pruebas del sistema fueron realizadas por el grupo de calidad interno del departamento de Área de dirección comercial, el caso de prueba diseñado permitió identificar veintisiete NC, seis de complejidad baja, veintiuna de complejidad media y ninguna de complejidad alta, las cuales fueron resueltas en su totalidad. Los resultados obtenidos se muestran a través de un gráfico de barras (Ver Imagen 19) que contiene las NC y su distribución según la complejidad:

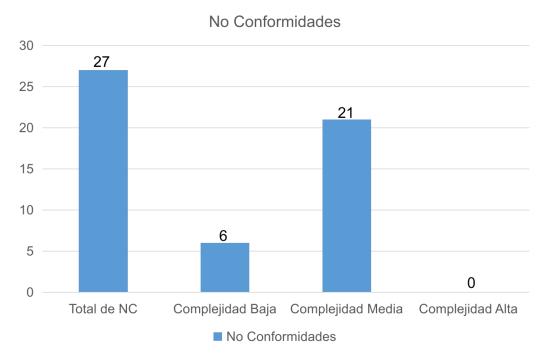


Imagen 18: Resultados de los Casos de Pruebas (No conformidades)

Pruebas de aceptación:

Las pruebas de aceptación, también llamadas pruebas del cliente, son especificadas por el cliente y se centran en las características y funcionalidad generales del sistema que son

visibles y revisables por parte del cliente. Las pruebas de aceptación se derivan de las historias de los usuarios que se han implementado como parte de la liberación del software. En conjunto con el cliente se realizaron las pruebas de aceptación de la solución, las cuales arrojaron resultados satisfactorios, quedando comprobado que el sistema cumple con sus necesidades y que están satisfechos con el producto elaborado.

Conclusiones parciales

En el capítulo fueron tratados temas que dieron paso a la implementación del sistema de visualización de tableros de información. Se realizó la transformación al modelo físico de la base de datos, facilitando una implementación de la base de datos consecuente con el diseño multidimensional. La estructura de los datos quedó organizada mediante un esquema, logrando así una mejor y mayor organización de los datos. Se obtuvo una buena sincronización entre las fuentes de datos y el destino de los mismos, al ejecutar la extracción y transformación de la información para cargar la base de datos. En el proceso de Inteligencia de Negocio se logra que los datos aporten información valiosa para el análisis y la toma de decisiones. Logrando así que el sistema de visualización funcione en correspondencia a las especificaciones del cliente.

Las pruebas realizadas al sistema de visualización de tableros de información detectaron no conformidades, las cuales fueron resueltas en el tiempo fijado con el objetivo de entregarle al cliente un producto de calidad. Con la aplicación de las listas de chequeo a los artefactos de ETL y los casos de pruebas basados en casos de uso se logró probar que el sistema de visualización de tableros de información garantiza la calidad de la solución y que los artefactos cuentan con la estructura correspondiente.

CONCLUSIONES FINALES

Al finalizar la investigación se puede afirmar que se le ha dado cumplimiento de forma satisfactoria al objetivo general del presente trabajo, por lo que se concluye:

- 1. El estudio de los fundamentos teóricos de la investigación permitió seleccionar las herramientas y tecnologías necesarias para llevar a cabo la implementación del sistema de visualización de tableros de información.
- 2. A través del diseño de los tableros de información del Sistema de Visualización para la PYME BLS Industria y Tecnología se comprobó que los mismos satisfacen las necesidades del cliente posibilitando visualizar el comportamiento de indicadores seleccionados a través de gráficos, tablas resúmenes, paneles, etc.
- 3. Las pruebas de software efectuadas, permitieron comprobar el correcto funcionamiento del sistema de visualización de tableros de información.

RECOMENDACIONES

Luego de haber logrado los objetivos que se trazaron en esta investigación y como el sistema se encuentra en su primera versión, surgen algunas ideas que podrían ser incorporadas en un futuro con el objetivo de fortalecer el sistema desarrollado, por lo que se recomienda:

- Al área de la dirección comercial de la empresa recomendarle que la información que almacenan de las ventas le añadan también las provincias y los municipios de los clientes para saber la distribución de los productos por provincia y municipio. Con el objetivo de saber en que municipio se vende más y en que provincia se vende más productos.
- Que también separen los productos por facturas y que no asocien a una misma factura varios productos, para poder tener una distribución de productos por clientes. Ya que de la forma en que lo tienen almacenados es muy complejo y así no pueden ver un estado de los productos que mas se venden y los que menos se venden.

REFERENCIAS BIBLIOGRÁFICAS

- «PRUEBA CAPACITACION CONTRALORIA | Datos Abiertos Colombia». Accedido 10 de octubre de 2023. https://www.datos.gov.co/Gastos-Gubernamentales/PRUEBA-CAPACITACION-CONTRALORIA/69ij-qume.
- 2. TOVAR, Clarysabel, sin fecha. RESEARCH ON BUSINESS INTELLIGENCE APPLICATION IN THE ARGENTINE SMES MANAGEMENT. .
- VIERA, Yaquelín Córdova, BORREGO, Jennifer Martínez y VIERA, Elizabet Córdova, 2021.
 Propuesta de metodología para el diseño de dashboard. Revista Cubana de Transformación Digital. Vol. 2, número 3, pp. 56-76. DOI 10.5281/zenodo.5545998.
- LEONARD, Berta Carolina Aguiar, 2006. El Cuadro de Mando Integral una necesidad en las empresas cubanas. Revista de Arquitectura e Ingeniería [en línea]. Vol. 0, número 2. Recuperado a partir de : https://www.redalyc.org/articulo.oa?id=193915925003 [accedido 10 octubre 2023].
- VIERA, Yaquelin Córdova, ESCOBAR, Alain Tejas y BORREGO, Jennifer Martínez, 2021.
 Solución con tecnologías de software libre para el análisis de información estadística del MES. . Vol. 15.
- Centro de Representación y Análisis de Datos (CREAD) | Universidad de las Ciencias Informáticas, sin fecha [en línea]. Recuperado a partir de: https://www.uci.cu/investigacion-ydesarrollo/centros-de-desarrollo/centro-de-representacion-y-analisis-de-datos-cread [accedido 10 octubre 2023].
- CÓRDOVA VIERA, Yaquelin, MARTÍNEZ BORREGO, Jennifer y CÓRDOVA VIERA, Elizabet,
 2021. Propuesta de metodología para el diseño de dashboard.
 DOI 10.5281/ZENODO.5545998.
- MARTÍNEZ GIL, Carlos A., 2016. SIGE-Droid: herramienta de apoyo al trabajo con el sistema integrado de gestión estadística [en línea]. bachelorThesis. Universidad de las Ciencias Informáticas. Facultad-6. Recuperado a partir de: https://repositorio.uci.cu/jspui/handle/123456789/7965 [accedido 10 octubre 2023]. Accepted: 2019-09-12T15:35:25Z
- 9. DARIO, Bernabeu R y MARIANO, García Mattío, sin fecha. DATA WAREHOUSING: Marco Conceptual HEFESTO: Metodología Data Warehouse. .
- 10. (1) Business Intelligence | "La información como arma competitiva" | LinkedIn, sin fecha [en línea]. Recuperado a partir de : https://www.linkedin.com/pulse/business-intelligence-la-

- informaci%C3%B3n-como-arma-medina-la-plata/?trk=pulse-article_more-articles_related-content-card&originalSubdomain=es [accedido 10 octubre 2023].
- 11. El enfoque de Kaplan y Norton: El Cuadro de Mando Integral, 2002.
- 12. Barroso Benitez, Y., Trujillo Casañola, Y., y Millet Lombida, Y. (2021). Revista Cubana de Ciencias Informàticas (RCCI). Vol. 15, No. 3, 92-117.
- 13. DBMS, D.-E. R. (20 de abril de 2020). DBMS, DB-Engines Ranking of Time Series. Obtenido de https://db-engines.com/en/ranking/time+series+dbms
- 14. DBMS, D.-E. R. (2020). DBMS, DB-Engines Ranking of Time Series. Obtenido de https://db-engines.com/en/ranking
- 15. Engines., D.-E. R. (20 de Abril de 2020). DB-Engines Ranking of Search Engines. . Obtenido de https://db-engines.com/en/ranking/time+series+dbms.
- 16. Few, S. (2017). Common Pitfalls in Dashboard Design.
- 17. Few, S. (2017). Pervasive Hurdles to Effective Dashboard Design, Visual Business Intelligence Newsletter. .
- 18. Gonzalez Palacios, E. (julio de 2019). Propuesta de actualización de tecnologías para el desarrollo de soluciones de Inteligencia de Negocios BI en DATEC. La Lisa, La Habana, Cuba: Universidad de las Ciencias Informàticas (UCI). Trabajo de diploma.
- 19. Gonzalez Soler, R. (2009). Cuadro de mando. ISBN 1696-8360.
- 20. Juice Analytic. (2009). A guide to creating dashboards people love to use.
- 21. Junta intenacional, d. c. (2018). International software testing qualifications board.
- 22. Perez Ferrer, M. (2018). Arquitectura data warehousing para la operación de los servicios de tecnologías de la información de ETECSA. Memorias de la Convencion y Feria Internacional INFORMATICA 2018.
- 23. McGilvray, D. Executing Data Quality Projects, from Science Direct. [En línea] 2008. [Citado el: 30 de 11 de 2012.] http://ds.freecode.com/projects/datacleaner.
- 24. DataCleaner. [En línea] 2012. [Citado el: 3 de 12 de 2012.] http://datacleaner.org/.
- 25. Pressman, R. (2010). Ingenieria de Software, un enfoque pràctico.
- 26. Quesada. (2012). Minería de Datos aplicada a la Gestión Hospitalaria. La Habana, Cuba: Memorias de la Convención Científica de Ingeniería y Arquitectura CCIA CUJAE.
- Sanz Nuñez, C. (2013). Sistema de Captura de Información para la Toma de Decisiones e Inteligencia de Negocio. La Habana: Ediciones Futuro.
- 28. AUQUI, D. O. (Enero de 2013). Portal de Tecnologías Aplicadas a Negocios. Recuperado el Enero de 2013, de pis2.wikispaces.com/file/view/TESIS+II+-+UGEL+04.doc.

Referencias

- 29. Enrique J. Abril Pérez.Disponible en:http://zarza.usal.es/~fgarcia/doctorado/iweb/05-07/Trabajos/CalidadAplicsWeb.pdf
- 30. Martha Rojas Vera. "Ciclo de vida Modelo en V"Julio 2010. Disponible en:http://spanishpmo.com/index.php/ciclos-de-vida-modelo-en-v/
- 31. DataCleaner, una sencilla opción para mantener las BD ordenadas . [En línea] 2012. [Citado el: 4 de 12 de 2012.] http://www.genbeta.com/herramientas/datacleaner-una-sencilla-opcion-para-mantener-las-bases-de-datos-ordenadas.
- 32. Pillasagua, Flor Maricela Pibaque. [En línea] 2011. http://repositorio.cisc.ug.edu.ec/bitstream/123/67/1/TOMO%201.pdf.