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Preface

This volume features key contributions from the International Conference on
Pattern Recognition Applications and Methods (ICPRAM 2012) held in Vilamoura,
Algarve, Portugal from February 6 to 8, 2012.

ICPRAM was sponsored by the Institute for Systems and Technologies of
Information Control and Communication (INSTICC) and held in cooperation
with the Association for the Advancement of Artificial Intelligence (AAAI) and
Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL2).
It was technically co-sponsored by IEEE Signal Processing Society, Machine
Learning for Signal Processing (MLSP) Technical Committee of IEEE, AERFAI
(Asociación Española de Reconocimiento de Formas y Análisis de Imagen) and
APRP (Associação Portuguesa de Reconhecimento de Padrões).

ICPRAM received 259 paper submissions from 46 countries in all continents.
To evaluate each submission, a double-blind paper review was performed by the
Program Committee, whose members are highly qualified researchers in ICPRAM
topic areas. Based on the classifications provided, only 115 papers were selected for
oral presentation (61 full papers and 54 short papers) and 32 papers were selected
for poster presentation. The full paper acceptance ratio was 24 %, and the total oral
acceptance ratio (including full papers and short papers) was 44 %. These strict
acceptance ratios show the intention to preserve a high quality forum which we
expect to develop further next year.

The conference provided a major point of collaboration between researchers,
engineers and practitioners in the areas of Pattern Recognition, both from theoretical
and applied perspectives. Contributions described applications of pattern recogni-
tion techniques to real-world problems, interdisciplinary research, and experimental
and theoretical studies.

This book will be suitable for scientists and researchers in optimization, nu-
merical methods, computer science, statistics and for differential geometers and
mathematical physicists.

Castellón de la Plana, Spain Pedro Latorre Carmona
Castellón de la Plana, Spain J. Salvador Sánchez
Lisbon, Portugal Ana L.N. Fred
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On the Expressivity of Alignment-Based
Distance and Similarity Measures on
Sequences and Trees in Inducing Orderings

Martin Emms and Hector-Hugo Franco-Penya

Abstract Both ‘distance’ and ‘similarity’ measures have been proposed for the
comparison of sequences and for the comparison of trees, based on scoring
mappings. For a given alphabet of node-labels, the measures are parameterised
by a table giving label-dependent values for swaps, deletions and insertions. The
paper addresses the question whether an ordering by a ‘distance’ measure, with
some parameter setting, can be also expressed by a ‘similarity’ measure, with some
other parameter setting, and vice versa. Ordering of three kinds is considered:
alignment-orderings, for fixed source S and target T , neighbour-orderings, where
for a fixed S, varying candidate neighbours Ti are ranked, and pair-orderings, where
for varying Si, and varying Tj, the pairings 〈Si,Tj〉 are ranked. We show that
(1) any alignment-ordering expressed by ‘distance’ setting be re-expressed by a
‘similarity’ setting, and vice versa; (2) any neigbour-ordering and pair-ordering
expressed by a ‘distance’ setting be re-expressed by a ‘similarity’ setting; (3) there
are neighbour-orderings and pair-orderings expressed by a ‘similarity’ setting which
cannot be expressed by a ‘similarity’ setting. A consequence of this is that there
are categorisation and hierarchical clustering outcomes which can be achieved via
similarity but not via distance.

Keyword Similarity distance tree sequence
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1 Tree Distance and Similarity

In many pattern-recognition scenarios the data either takes the form of, or can
be encoded as, sequences or trees. Accordingly, there has been much work on
the definition, implementation and deployment of measures for the comparison of
sequences and for the comparison of trees.

These measures are sometimes described as ‘distances’ and sometimes as
‘similarities’. We are concerned in what follows in first distinguishing between
these, and then with the question whether orderings induced by a ‘distance’ measure
can be dualized by a ‘similarity’ measure, and vice versa. To an extent this can be
seen as providing for sequences and trees a counterpart to the kind of analysis that
has been applied to set and vector comparison measures [1, 10, 11].

From statements such as the following

To compare RNA structures, we need a score system, or alternatively a distance, which
measures the similarity (or the difference) between the structures. These two versions of the
problem score and distance are equivalent. [7]

which are not uncommon in the literature it would be easy to gain the impression
that similarity and distance (on sequences and trees) are straightforwardly inter-
changeable notions. In Sect. 1.1 several distinct kinds of equivalence are defined.
Sections 2, 3.1 and 3.2 then show that while some kinds of equivalence hold, others
do not.

To begin we need to clarify what we will mean by ‘distance’ and ’similarity’ on
sequences and trees. Because sequences can be encoded as vertical trees it suffices
to give definitions for trees. Tai [16] first proposed a tree-distance measure, based
on scoring a mapping. Where S and T are ordered, labelled trees, a Tai mapping
σ : S �→ T is a partial, 1-to-1 function from the nodes of S into the nodes of T ,
which respects left-to-right order and ancestry.1 Figure 1a shows an example Tai-
mapping. To define how the score is assigned, it is convenient to identify three sets
related to the mapping:

M : the pairs (i, j) ∈ σ

{
D : those i ∈ S s.t. ∀ j ∈ T,(i, j) �∈ σ
I : those j ∈ T s.t. ∀i ∈ S,(i, j) �∈ σ

The scoring is based on the these ‘match’, ‘deletion’ and ‘insertion’ sets in a
label-dependent way, and it is conventional to specify the costs with a table—call it
CΔ —indexed by {λ}∪Σ , where Σ is the alphabet of labels. Where (.)γ gives the
label of a node, the table assigns ‘costs’ to M, D and I according to2:

1So if (i, j) and (i′, j′) are in the mapping then (T1) le f t(i, i′) iff le f t( j, j′) and (T2) anc(i, i′) iff
anc( j, j′).
2Note in this general setting even a pairing of two nodes with identical labels can in principal make
a nonzero cost contribution.
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Fig. 1 (a) a Tai mapping (b) a ‘distance’ scoring (c) a ‘similarity’ scoring

(i, j) ∈M, cost =CΔ (iγ , jγ )

{
i ∈ D, cost =CΔ (iγ ,λ )
j ∈ I, cost =CΔ (λ , jγ )

Where σ : S �→ T is any mapping from S to T , define Δ(σ : S �→ T ) by

Definition 1 (‘distance’ scoring of an alignment given CΔ ).

Δ(σ : S �→ T ) = ∑
(i, j)∈M

CΔ (iγ , jγ )+ ∑
i∈D

CΔ (iγ ,λ )+ ∑
j∈I

CΔ (λ , jγ )

From this costing of alignments, a ‘distance’ score on tree pairs is defined by
minimization:

Definition 2 (‘distance’ scoring of a tree pair given CΔ ). The Tree- or Tai-
distance Δ(S,T ) between two trees S and T is the minimum value of Δ(σ : S �→ T )
over possible Tai-mappings from S to T , relative to a chosen cost table CΔ .

See Fig. 1b for an example. Sequences can be encoded as vertical trees, and on
this domain of trees the tree distance coincides with a well known comparison
measure on sequences, the (alphabet-weighted) string edit distance [5, 17]. The
definition3 was given in terms of costs applied to a mapping. There is an alternative
definitional route via the notion of an edit-script of operations, transforming S to T .
For both sequences and trees the mapping-based and script-based notions coincide
[9, 16, 17] and so we omit further details of the definition via edit-scripts.

There is an efficient algorithms for Δ(S,T ) [18]. While the correctness of this
algorithm—ie. that it truly finds the minimal value of Δ(σ : S �→ T ) given cost-table
CΔ —does not require the cost-table CΔ to satisfy any particular properties, some
settings of CΔ clearly make little sense. The combination of deletion/insertion cost-
entries which are negative—CΔ(x,λ ) < 0, CΔ (λ ,y) < 0—with swap/match cost
entries which are not negative gives the counter-intuitive effect that a supertree4

3The literature contains quite a number of inequivalent notions, all referred to as ‘tree distance’; in
this article Definition 2 will be understood to define the term.
4Or a subtree.
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of S is ‘closer’—in the sense of having a lower Δ score—to S than S itself. This is a
rationale for the following nonnegativity assumption

∀x,y ∈ Σ(CΔ (x,y)≥ 0, CΔ (x,λ )≥ 0, CΔ (λ ,y)≥ 0) (1)

which is a pretty universal assumption, and from which it follows that Δ(S,T )≥ 0,
giving a minimum consistency with the every day notion of ‘distance’. In this article
we will confine attention to ‘distance’ Δ based on a table CΔ which satisfies at
least (1). The question whether anything is changed in the claims we wish to make
when the cost-table is constrained more strictly than this—for example requiring
satisfaction of all the conditions of a distance-metric—we leave to Sect. 5.

Turning now to ‘similarity’, rather than approach the problem of comparison
by minimizing accumulated costs assigned to an alignment, a widely followed
alternative, especially for sequence comparison, has been to maximize a score
assigned to an alignment.

Let CΘ be a ‘similarity’ table, again indexed by {λ}∪Σ , where Σ is the alphabet
of labels, and where σ : S �→ T is any mapping from S to T , and then let Θ(σ : S �→
T ) be defined by

Definition 3 (‘similarity’ scoring of an alignment given CΘ ).

Θ(σ : S �→ T ) = ∑
(i, j)∈M

CΘ (iγ , jγ ) − ∑
i∈D

CΘ (iγ ,λ ) − ∑
j∈I

CΘ (λ , jγ )

From this costing of alignments, a ‘similarity’ score on tree pairs is defined by
maximisation:

Definition 4 (‘similarity’ scoring of a tree pair given CΘ ). The Tree- or Tai-
similarity Θ(S,T ) between two trees S and T is the maximum value of Θ(σ : S�→ T )
over possible Tai-mappings from S to T , relative to a chosen cost table CΘ

See Fig. 1c for an example. Θ(S,T ) can be computed via a simple modification
of the algorithm of [18]. Again on the domain of vertical trees this coincides with
a well-known approach to sequence comparison, the (alphabet-weighted) string
similarity [5, 13].

As with Δ , while the correctness of the algorithm for Θ is not dependent on
any assumptions about the cost-table CΘ , some settings of CΘ make little sense.
Given the formulation in (3), which subtracts the contribution from deletions and
insertions, a setting where deletion/insertion cost entries are negative—CΘ(x,λ ) <
0, CΘ (λ ,x) < 0—gives the counter-intuitive effect that a supertree of S would be
more ‘similar’—in the sense of higher Θ score—to S than S itself. This gives
a rationale for the nearly universal assumption of nonnegative deletion/insertions
entries in CΘ :

∀x,y ∈ Σ(CΘ (x,λ )≥ 0, CΘ (λ ,y)≥ 0). (2)
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In what follows we will confine attention always to ‘similarity’ Θ based on a
table CΘ satisfying (2).5 For the CΘ -entries which are not deletions or insertions,
it is quite common in biological sequence comparison to have both positive and
negative entries. The question whether anything is changed in the claims we wish to
make should CΘ be more strictly constrained we leave to Sect. 5.

To reiterate, for the purposes of this discussion a tree ‘distance’ measure will
imply a cost-table CΔ , satisfying (1), used in accordance with Definition 1 and
Definition 2 to score alignments and tree pairs. A tree ‘similarity’ measure measure
will imply a cost-table CΘ , satisfying (2), used in accordance with Definition 3
and Definition 4 to score alignments and tree pairs. This is sufficient to distinguish
the ‘distance’ approach from the ‘similarity’ approach in an intuitive way without
commiting to any further axioms.

Also note the following concerning the relationship of these notions to other
notions in the literature. Often the contribution to the score due to the deleted
and inserted nodes is formulated in terms of gap-penalty functions, which apply
to a sequence of consecutive deletions or insertions. Our definitions of Δ and Θ
effectively coincide with the simplest possible case of such functions, where the
value on a sequence is a sum on the individual parts. Also our definitions of Δ and Θ
concern only what are sometimes termed ‘global’ alignments, in contrast to ‘local’
variants, such as the ‘local’ similarity, popular in biological sequence comparison,
which seeks to maximise a ‘global’ score on pairs of subsequences [5].

1.1 Ordering Expressivity for Tai Distance and Similarity

Given a ‘distance’ Δ scoring of alignments, it can be set to work to induce orderings
of at least three different kinds of entities.

Alignment ordering. Given fixed S, and fixed T , rank the possible alignments σ :
S �→ T by Δ(σ : S �→ T )

Neighbour ordering. Given fixed S, and varying candidate neighbours Ti, rank the
neighbours Ti by Δ(S,Ti)—typically used in k-NN classification.

Pair ordering. Given varying Si, and varying Tj, rank the pairings 〈Si,Tj〉 by
Δ(Si,Tj)—typically used in hierarchical clustering.

Similarly a ‘similarity’ Θ scoring of alignments induces orderings of the above
kinds of entities. Comparing these orderings motivates the following definition

Definition 5 (A-, N- and P-dual). When the alignment orderings induced by a
choice of CΔ and by a choice CΘ are the reverse of each other, we will say that

5While Definition 3 formulates Θ with deletion/insertion contributions subtracted, as is often done
[13, 15], an alternative formulation has these treated additively [5]. With the additive formulation,
the same consideration suggests making deletion/insertions non-positive.
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CΘ is a A-dual of CΔ . Similarly we will say we have an N-dual when neighbour
ordering is reversed, and a P-dual where pair-ordering is reversed.

For example, the following are A-duals in this sense (proven in Sect. 2):

Example 1. Δ with CΔ (x,λ ) = 1 CΔ (x,x) = 0 CΔ (x,y) = 1, otherwise

Θ with CΘ (x,λ ) = 0 CΘ (x,x) = 2 CΘ (x,y) = 1, otherwise

Example 2. Δ with CΔ (x,λ ) = 0.5 CΔ (x,x) = 0 CΔ (x,y) = 0.5, otherwise

Θ with CΘ (x,λ ) = 0 CΘ (x,x) = 1 CΘ (x,y) = 0.5, otherwise

If for every choice of CΔ , there is a choice of CΘ which is a A-dual, and vice
versa, there is a clear sense in which distance and similarity are indistinguishable
in terms of the alignment orderings they are capable of expressing. The natural
question that presents itself is then whether this is so, along with other related
questions concerning N- and P-duals. More precisely there are the following order-
expressibility conjectures

A-duality

{
(i) ∀CΔ∃CΘ (CΔ and CΘ are A-duals)

(ii) ∀CΘ∃CΔ (CΔ and CΘ are A-duals)

N-duality

{
(i) ∀CΔ∃CΘ (CΔ and CΘ are N-duals)

(ii) ∀CΘ∃CΔ (CΔ and CΘ are N-duals)

P-duality

{
(i) ∀CΔ∃CΘ (CΔ and CΘ are P-duals)

(ii) ∀CΘ∃CΔ (CΔ and CΘ are P-duals)

We would argue that these conjectures make precise the question whether there is
really anything that can be accomplished using an alignment-based ‘distance’ score,
which cannot by accomplised via an alignment-based ‘similarity’ score, and vice
versa. For example, if it turns out that N-duality does not hold, then categorisation
outcomes via k-NN may not reproducible by an interchange of distance and
similarity, and if P-duality does not hold, hierarchical clustering outcomes may
likewise not be reproducible. Note that what is at stake is whether parameter settings
for alignment-based distances and similarities can always be found such as to re-
express the same orderings. This is distinct from seeking an arbitrary conversion on
the values of one of these measures, potentially replicating an ordering, because the
output values may not be attainable via any parameter setting.

There have been comparable analyses of similarity and distance measures based
on sets and vectors [1,10,11], motivated similarly by the question whether anything
which can be accomplished with one or other such measure can be replicated by
another such measure. In the case of alignment-based measures on sequences and
trees, as far as we are aware, these notions seem not have been systematically
considered and the following sections endeavour to fill that gap.
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2 Alignment-Duality

The following lemma will be useful for considering the A-duality conjectures above:

Lemma 1. For any CΔ , and some choice δ such that 0 ≤ δ/2 and ∀x ∈ Σ(δ/2 ≤
CΔ (x,λ ),δ/2 ≤ CΔ (λ ,x)) let CΘ be defined according to (i) below. For any CΘ ,
and choice δ such that 0 ≤ δ and ∀x ∈ Σ∀y ∈ Σ(δ ≥ CΘ (x,y)) let CΔ be defined
according to (ii) below.

(i)

⎧⎪⎨
⎪⎩

CΘ (x,λ ) =CΔ (x,λ )− δ/2

CΘ (λ ,y) =CΔ (λ ,y)− δ/2

CΘ (x,y) = δ −CΔ (x,y)

(ii)

⎧⎪⎨
⎪⎩

CΔ (x,λ ) =CΘ (x,λ )+ δ/2

CΔ (λ ,y) =CΘ (λ ,y)+ δ/2

CΔ (x,y) = δ −CΘ (x,y)

then in either case, for any σ : S �→ T

Δ(σ)+Θ(σ) = δ/2× (∑
s∈S

(1)+ ∑
t∈T

(1)) . (3)

Proof. If defining CΘ from CΔ by (i), by the choice of δ we have the nonnegativity
of CΘ (x,λ ) and CΘ (λ ,y). If defining CΔ from CΘ by (ii), by the choice of δ , we
have the nonnegativity of all entries in CΔ . Then whether defining CΘ from CΔ by
(i), or CΔ from CΘ by (ii), it is straightforward to show (see Appendix)

Δ(σ)+Θ(σ) = δ/2× (2|M|+ |D|+ |I|) . (4)

But then (3) follows since 2|M|+ |D|+ |I|= ∑s∈S(1)+∑t∈T (1) ��

Theorem 1. A-duality (i) and (ii) hold

Proof. Immediate given the constant summation property of (3) ��

Example 1 revisited The CΘ of Example 1 can be seen as derived from the CΔ with
δ = 2, and below are shown some outcomes for a few choices of δ :

Δ with CΔ (x,λ ) = 1 CΔ (x,x) = 0 CΔ (x,y) = 1, otherwise
(δ = 2) Θ with CΘ (x,λ ) = 0 CΘ (x,x) = 2 CΘ (x,y) = 1, otherwise
(δ = 1) Θ with CΘ (x,λ ) = 0.5 CΘ (x,x) = 1 CΘ (x,y) = 0, otherwise
(δ = 0) Θ with CΘ (x,λ ) = 1 CΘ (x,x) = 0 CΘ (x,y) =−1, otherwise

The property of alignment dualizability between distance and similarity (and vice
versa) expressed above in Lemma 1 and Theorem 1 was essentially first proven for
the case of sequence comparison in [13]. This shows that for alignment ordering,
‘distance’ and ‘similarity’ are interchangeable. In Sects. 3.1 and 3.2 we turn next
to the other ordering duality conjectures which were noted in Sect. 1.1, recalling
that the N-duality conjectures are relevant to k-NN classification, and P-duality
conjectures to hierarchical clustering. Before turning to that, in the following section
some further A-dualizing conversions are noted.
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2.1 Additional Conversions Generating A-duals

Concerning A-duals, there are besides the conversions given in Lemma 1, others
which also generate A-duals. Whilst the conversion in the lemma leads to a sum of
alignment costs depending only on the two trees sizes: δ/2× (∑s∈S(1)+∑t∈T (1)),
there is a conversion from distance to similarity which gives a sum of alignment
costs depending only on the cost of total deletion and insertion on S and T , and a
conversion from similarity to distance depending only on the self-similarities of S
and T .

Lemma 2. For any CΔ , for any k, let CΘ be defined according to (iii) below.

(iii)

⎧⎪⎨
⎪⎩

CΘ (x,λ ) = kCΔ (x,λ )
CΘ (λ ,y) = kCΔ (λ ,y)
CΘ (x,y) = (1− k)(CΔ (x,λ )+CΔ(λ ,y))−CΔ (x,y)

Then for any σ : S �→ T

Δ(σ)+Θ(σ) = (1− k)× (∑
s∈S

(CΔ (s,λ ))+ ∑
t∈T

(CΔ (λ , t))) (5)

Lemma 3. For any CΘ , for any k, let CΔ be defined according to (iv) below.

(iv)

⎧⎪⎨
⎪⎩

CΔ (x,λ ) =CΘ (x,λ )+ kCΘ (x,x)

CΔ (λ ,y) =CΘ (λ ,y)+ kCΘ (y,y)

CΔ (x,y) = k(CΘ (x,x)+CΘ (y,y))−CΘ (x,y)

Then for any σ : S �→ T ,

Δ(σ)+Θ(σ) = k× (∑
s∈S

(CΘ (s,s))+ ∑
t∈T

(CΘ (t, t))) (6)

For the the proofs of (5) and (6), see the Appendix.

3 Neighbour and Pair Ordering

3.1 Distance to Similarity

Having seen that A-duals can always be created in both directions, attention shifts
to N-duals and P-duals.

The case of using δ = 0 in the (i) conversion of Lemma 1 from CΔ to CΘ

gives non-positive values for all non-deletion, non-insertion entries in CΘ , and is
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an especially trivial case of dualizing a distance setting CΔ , with the effect that
Θ(S,T ) = −1 × Δ(S,T ). Because of this, this distance-to-similarity conversion
makes not only A-duals but also N-duals and P-duals.

Theorem 2. N-duality (i) and P-duality (i) hold.

Proof. Left to the reader

3.2 Similarity to Distance

The remaining ordering expressibility conjectures of Sect. 1.1 are N-duality (ii)
and P-duality (ii), concerning the similarity-to-distance direction. Of the remaining
conjectures, P-duality (ii) is stronger than N-duality (ii). P-duality (i) was provable
using the distance-to-similarity conversion by negation. Concerning similarity-to-
distance, in the (ii) conversion of Lemma 1 from CΘ to CΔ , you can only choose
δ = 0 if all CΘ (x,y)≤ 0, which is false for many natural settings of CΘ . So there is
not an analogous proof of P-duality (ii) and in fact P-duality (ii) does not hold

Theorem 3. P-duality (ii) does not hold, that is, there are CΘ such that there is no
CΔ such that CΘ and CΔ are P-duals.

Proof. It is clearly possible for CΘ to be such that there is no maximum value for
Θ(S,T ). For example for:

Θ with CΘ (a,a) = 1 CΘ (a,λ ) = 1 CΘ (λ ,a) = 1

it is clear we have Θ(a,a) = 1, Θ(a2,a2) = 2 and in general Θ(an,an) = n. Let CΘ

be any table defining a similarity with no maximum. On the other hand, for each
CΔ there will be minimum value of Δ(S,T ). Suppose some CΔ is a P-dual to CΘ .
For any n let [Θ ]n (resp. [Δ ]n) be the set of pairs with similarity (resp. distance) n.
If CΔ is a P-dual to CΘ , there is some bijection between the set of similarity classes
{[Θ ]s} and the set of distances classes of {[Δ ]d}. Some similarity class [Θ ]s1 of
Θ must correspond to the minimum distance class [Δ ]d0 . Let [Θ ]s2 be a higher Θ
class than [Θ ]s1 . It must correspond to some Δ class [Δ ]d1 distinct from [Δ ]d0 , and
since [Δ ]d0 is the distance-minimum, this must be a higher distance class. Then
for (S0,T0) ∈ [Δ ]d0 , and (S1,T1) ∈ [Δ ]d1 you have Δ(S0,T0) < Δ(S1,T1), but also
Θ(S0,T0) < Θ(S1,T1). So the supposed dual CΔ does not reverse the pair-ordering
of CΘ . ��

Of the order-relating conjectures of Sect. 1.1 the only remaining one is N-
duality(ii)—that is the question whether every neighbour-ordering via some CΘ

can be replicated by a neighbour ordering via some CΔ . We can show that this is
false under one minor further assumption concerning the cost-table for distance, the
assumption that deletion and insertion costs are symmetric.
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Theorem 4. There is CΘ such that there is no CΔ with CΔ (x,λ ) = CΔ (λ ,x) such
that CΘ and CΔ are N-duals.

Proof. Let Σ be an alphabet containing a, and suppose that CΘ (a,a) = α > 0, and
CΘ (a,λ ) = CΘ (λ ,a) = β ≥ 0, which are very mild assumptions concerning CΘ .
Let S = a2, and let T be a set such that {a,a3} ⊆ T .

First consider the neighbour ordering of T by Θ , that is, a sequence of disjoint
subsets of T , where each subset [T ]s, contains exactly those members Ti of T with
Θ(S,Ti) = s, so [T ]s = {Ti|Θ(S,Ti) = s}. The neighbour ordering, NΘ (a2), is the
sequence of these sets ordered by their descending similarity values s.

For (a2,a3), the alignments with 2,1, and 0 a-matches have scores, 2α −β , α −
3β and −5β , hence alignments with two a-matches maximise Θ and Θ(a2,a3) =
2α −β and a2 ∈ [T ]2α−β . For (a2,a), the alignments with 1 and 0 a-matches have
scores α −β and −3β , respectively, hence alignments with one a-match maximise
Θ and Θ(a2,a) = α −β and a1 ∈ [T ]α−β .

Given α > 0, we have 2α −β > α −β , and so a3 is in similarity class [T ]2α−β ,
which is strictly earlier in NΘ (a2) than the class [T ]α−β , to which a belongs.

Let CΔ be an arbitrary cost table for distance—as ever, we make the nonnegativity
assumptions (1). Further assume deletion and insertion entries are symmetric.
Hence, for some α ′ ≥ 0, CΔ (a,a) =α ′, and for some β ′ ≥ 0, CΔ (a,λ ) =CΔ (λ ,a) =
β ′. We need to show that the neighbour ordering by increasing distance, NΔ (a2),
does not replicate NΘ (a2). We distinguish the cases (i) 2β ′ ≥ α ′, so β ′ = α ′/2+κ ,
for some κ ≥ 0, and (ii) 2β ′ < α ′, so α ′ = 2β ′+ ε, for some ε > 0. The table below
gives the possible scores from the largest to smallest possible number of a matches

(i) (ii)
σ : a2 �→ a3 Δ(σ ) Δ(σ ) assuming β ′ = α ′/2+κ Δ(σ ) assuming α ′ = 2β ′+ε

2 a-matches 2α ′+β ′ 2.5α ′+κ (eq. min = Δ(a2,a3)) 5β ′+2ε
1 a-matches α ′+3β ′ 2.5α ′+3κ 5β ′+ε

0 a-matches 5β ′ 2.5α ′+5κ 5β ′ (min = Δ(a2,a3))

σ : a2 �→ a Δ(σ ) Δ(σ ) assuming β ′ = α ′/2+κ Δ(σ ) assuming α ′ = 2β ′+ε

1 a-matches α ′+β ′ 1.5α ′+κ (eq. min = Δ(a2,a)) 3β ′+ε

0 a-matches 3β ′ 1.5α ′+3κ 3β ′ (min = Δ(a2,a))

In case (i), Δ(a2,a3) = 2.5α ′ + κ and Δ(a2,a) = 1.5α ′ + κ . Thus a belongs to
the distance class [T ]1.5α ′+κ which is either equal to, or strictly earlier than the
distance class [T ]2.5α ′+κ to which a3 belongs (with equality for α ′ = 0). In case
(ii), Δ(a2,a3) = 5β ′ and Δ(a2,a) = 3β ′. Thus a belongs to the distance class [T ]3β ′

which is either equal to, or strictly earlier than the distance class [T ]5β ′ to which a3

belongs. In neither case do we replicate the descending similarity ordering, NΘ (a2),
which had a3 in a strictly earlier class than a. ��
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The assumptions made about the similarity setting CΘ in the proof of the theorem
were very mild, so we can say that it is practically never the case that a similarity
setting CΘ can be dualized by a distance setting CΔ with symmetric deletions and
insertion costs. If we drop the requirement that the N-dualizing CΔ have CΔ (a,λ ) =
CΔ (λ ,a), then the argument does not go through. For example in case (i), with
CΔ (a,a) = 0, the 2 a-match case for a2 �→ a3 scores CΔ (λ ,a), and the 1 a-match
case for a2 �→ a scores CΔ (a,λ ). So in a distance setting which penalizes deletions
more than insertions—so CΔ (a,λ ) = k+CΔ (λ ,a) for some k > 0—it is possible to
make the distance class to which a3 belongs be [T ]CΔ (λ ,a) and strictly earlier than the
distance class to which a belongs, [T ]k+CΔ (λ ,a). This is discussed further in Sect. 5.

4 Empirical Investigation

In [10] an investigation is undertaken of vector-based distance and similarity
measures often used in information retrieval. For measures which do not produce
equivalent neighbour orderings, they seek to quantify the degree to which the
orderings differ, based on the Kendall-tau statistic for comparing orderings [8].
Some experiments are reported on below in which we quantify in a similar way
the divergence from N-duality of some conversions which generate A-duals.

The experiments were performed on a set of 1334 (see the Appendix for further
details of this data set). For a given distance setting, CΔ , and A-dual similarity
setting, CΘ , repeatedly a tree S was chosen, and neighbour files NΔ (S) and NΘ (S)
were computed, with NΔ (S) the ordering of the remaining trees by ascending Δ ,
and NΘ (S) the ordering by descending Θ , and then NΔ (S) and NΘ (S) were then
compared by the kendall-tau measure τ (see the Appendix for the definition).

Table (a) in Fig. 2 gives a unit-cost CΔ setting and then CΘ settings via the (i)
conversion of Lemma 1 for 2 ≥ δ ≥ 0. The plot (b) then shows for each δ the
average of the τ comparison on the neighbour files, NΔ (S) and NΘ (S). The bottom-
left corner of the plot (b) represents δ = 0, the special case noted in Sect. 3.1 of the
(i) conversion of Lemma 1 giving Θ(S,T ) = −1×Δ(S,T), and thereby an N-dual
so that τ = 0. Then as δ increases, there is progressively greater divergence from
N-duality, until at δ = 2 the τ score is 0.73, which corresponds to a tendency more
towards order reversal than to replication.

Table (c) in Fig. 2 gives a CΘ setting and then several CΔ settings derivable by
the (ii) conversion of Lemma 1 for 1 ≤ δ ≤ 4. Plot (d) then again shows for each
δ the average of the τ comparison on the neighbour files, NΔ (S) and NΘ (S). As
with plot (b) this shows again that although the similarity and distance settings are
A-duals, and perfectly replicate alignment orderings, they are not N-duals and do
not perfectly replicate neigbour orderings.

Theorem 3 concerned the non-replicability by distance of pair-orderings
by similarity and this is illustrated in Fig. 3. The dendogram (a) shows a
single-link clustering of the set of strings {a5,a4,a3,a2,a1}, using similarity
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dual CΘ for varying δ

CΔ 2 1.5 1 0.5 0.2 0.1 0
(x, λ) 1 0 0.25 0.5 0.75 0.9 0.95 1
(x, x) 0 2 1.5 1 0.5 0.2 0.1 0
(x, y) 1 1 0.5 0 -0.5 -0.8 -0.9 -1

dual CΔ for varying δ
CΘ 1 1.5 2 2.5 3 3.5 4

(x, λ) 0.5 1 1.25 1.5 1.75 2 2.25 2.5
(x, x) 1 0 0.5 1 1.5 2 2.5 3
(x, y) 0 1 1.5 2 2.5 3 3.5 4
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Fig. 2 (a) CΘ settings derived from a unit-cost CΔ setting by the (i) conversion of Lemma 1 as δ
varies (b) corresponding plot of average Kendall-tau on NΔ (S) and NΘ (S) (c) CΔ settings derived
from a CΘ setting by the (ii) conversion of Lemma 1 as δ is varied (d) plot of average Kendall-tau
on NΔ (S) and NΘ (S)

a3
a5 a4

a2
a

a2a3a4a5 a
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a4 a3

a2 a
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b

c

Fig. 3 Similarity and distance clusterings of {a5,a4,a3,a2,a1}

with CΘ (a,a) = 1,CΘ (a,λ ) = 1. The dendogram (b) shows the outcome with
CΔ (a,a) = 0, where all pairs (am,am+1) share the same minimum, CΔ (a,λ ).
With CΔ (a,a) = 1, the clustering was made for a variety of settings of the
deletion/insertions, namely 0.5 ≤ CΔ (a,λ ) ≤ 5.5 and 0.1 ≤ CΔ (a,λ ) ≤ 0.4,
which covers both 2CΔ (a,λ ) ≥ CΔ (a,a) and 2CΔ (a,λ ) < CΔ (a,a). In every case
the dendogram (c) was the result. Clearly the similarity-based clustering is not
replicated by any of the distance-based clusterings.
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5 Discussion and Comparisons

In view of the outcomes noted in Sects. 2, 3.1 and 3.2 concerning the various
ordering conjectures we can say that

• Any hierarchical clustering outcome achieved via Δ can be replicated via Θ , but
not vice versa,

• Any categorisation outcome using nearest-neighbours achieved via Δ can be
replicated via Θ , but not vice versa,

and in this sense alignment-based ‘similarity’ and ’distance’ comparison measures
on sequences and trees are not interchangeable. As far as we are aware, this has not
been noted before.

There are a number of papers concerning conversion between similarity to a
distance measures, particularly one satisfying distance-metric axioms. In [2], Chen
and Ma make a proposal concerning similarity axioms on a par with the well-known
distance-metric axioms:

Distance Axioms Similarity Axioms (from [2])

D1.Δ(S,T ) = Δ(T,S) S1.Θ(S,T ) =Θ(T,S)
D2.Δ(S,T )≥ 0 S2.Θ(S,S)≥ 0
D3.Δ(S,V )≤ Δ(S,T )+Δ(T,V ) S3.Θ(S,S)≥Θ(S,T )Θ(S,V )+Θ(T,T )

D4.Δ(S,T ) = 0 iff S = T S4.Θ(S,T )+Θ(T,V )≤
S5.Θ(S,S) =Θ(T,T ) =Θ(S,T ) iff S = T

S4 is what they propose as the similarity analog to the well-known triangle
inequality D3 for distances and they define conversions from similarity to distance
and in the other direction. They are not concerned directly with the P- and N-dual
notions we have been discussing but rather with preservation of axiom satisfaction
under their proposed conversions. The question arises as to the relation of their
work to the claims we have made, one question being whether their conversions
from similarity to distance, converting satisfaction of one kind of triangle inequality
to another, perhaps also dualize neighbour or pair orderings. One of the conversions
they propose is6:

Δ(S,T ) = (Θ(S,S)+Θ(T,T))/2−Θ(S,T) (7)

Returning to the example considered in the proof of Theorem 4, it is straight-
forward to show that the similarity Θ defined there satisfies the above similarity
axioms, so that a conversion according to (7) will, following the proofs in [2], satisfy
the distance axioms. So, amongst other things, satisfaction of their formulation of
the triangle inequality for similarity is converted to satisfaction of the standard
triangle inequality. It remains the case, however, that the derived Δ is not an N-

6See Sect. 3 of [2].
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dual of the similarity Θ , for we have Θ(a2,a3) = 2α − β , Θ(a2,a1) = α − β ,
and applying the conversion in (7), Δ(a2,a3) = (α + 2β )/2 = Δ(a2,a1), putting
a3 and a1 into the same distance class in the distance-based ordering of neighbours
of a2, NΔ (a2), whilst they are in different classes in the similarity-based neighbour
ordering, NΘ (a2).

In [2], Chen and Ma are not concerned specifically with alignment-based
measures on sequences and trees, and correspondingly the conversion in (7) is
defined directly on the Θ values rather than being a conversion on a cost-table CΘ .
However, it is not hard to see that a special case with k = 1/2 of the conversion
given in Lemma 3 generates the relation between Θ and Δ of (7). Thus given a
similarity setting CΘ defining a similarity Θ which satisfies their similarity axioms,
it is possible to find distance setting CΔ which defines a distance Δ coinciding with
the values generated by the conversion in (7). In [14], in work on ‘global’ and ‘local’
similarity measures on sequences (with gap functions), Spiro and Macura proposed
a conversion of the parameters of an alignmment-based similarity measure to the
parameters of a distance measure, inducing essentially the relation (7) between the
measures. As with [2], a motivation is to demonstrate a conversion from a similarity,
Θ , to a distance, Δ , satisfying the distance-metric axioms, in particular the triangle-
inequality. We conjecture that the conversion of Lemma 3 is the specialisation of
the Spiro and Macura conversion to the case without essential use of gap functions.

In [2, 14] a motivation was to convert a similarity to a distance satisfying
the triangle inequality (D3 above). In [15], Stojmirovic and Yu share a similar
motivation, and like [2] study ‘global’ and ‘local’ similarity measures on sequences
(with gap functions), but they drop the symmetry condition (D1) and derive a so-
called quasi-metric. Instantiating to the case of ‘global’ similarity, without gap
functions, their proposal amounts to the following conversion7:

∀x,y ∈ Σ

{
CΔ (x,y) =CΘ (x,x)−CΘ (x,y)

CΔ (x,λ ) =CΘ (x,x)+CΘ (x,λ ) CΔ (λ ,x) =CΘ (λ ,x)

and they prove that the following relationship between Δ and Θ is induced (under
particular assumptions concerning CΘ )

Δ(S,T ) =Θ(S,S)−Θ(S,T) (8)

When discussing Theorem 4 we noted that by having deletion costs exceed
insertion costs—CΔ (a,λ ) = k+CΔ (λ ,a) for some k > 0—it was possible to make
the distance classes to which a3 and a belong be [T ]CΔ (λ ,a) and [T ]k+CΔ (λ ,a),
and thus in the same order (by ascending distances) as the similarity classes to
which they belong, [T ]2α−β and [T ]α−β (by descending similarity). Looking at the
conversion proposed by Stojmirovic and Yu, it can be seen that this is an instance
of CΔ (x,λ ) = k+CΘ (x,λ ), with k = CΘ (x,x), given that CΘ (x,λ ) = CΘ (λ ,x) =
CΔ (λ ,x). On the particular example considered in the proof of Theorem 4, we obtain

7See Sect. 4, Corollary 4.7 of their paper.
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Θ(a2,a3) = 2α−β , Θ(a2,a1) =α−β alongside Δ(a2,a3) = β , Δ(a2,a1) =α+β .
Not only does the conversion proposed by Stojmirovic and Yu deal with this
particular example, but it is clear from the relation in (8) that this equation (unlike
(7)) quite generally gives a distance which is an N-dual of the similarity. Thus the
conversion by Stojmirovic and Yu shows how, in many cases,8 to obtain an N-
dualizing distance, it is sufficient to derive a distance table CΔ which is asymmetric.
Theorem 4 can be seen as showing that such an asymmetry is necessary in order to
find an N-dualizing distance from a similarity.

Our findings on the various order-relating conjectures concern notions with
specific, though widely used, definitions (Definitions 1–4). There are other closely
related notions, and the corresponding questions concerning these have not been
addressed. One variant is stochastic: in a stochastic similarity, probabilities are
assigned to aspects of a mapping and multiplied [3, 12]. These are A-, N- and
P-dualisable to distance. This is because, under a logarithmic mapping, these
stochastic variants can be exactly simulated by a similarity as we have defined it.
In the resulting table, all CΘ (x,y) ≤ 0, allowing the (ii) conversion of Lemma 1 to
define a CΔ choosing δ = 0. There are also normalised variants, which we have not
considered.

Appendix

Proof of (4) from Lemma 1 (4) claims that Δ(σ)+Θ(σ) = δ/2× (2|M|+ |D|+
|I|), when CΔ and CΘ are related by the (i) or (ii) conversions of the lemma.
If defining CΘ from CΔ by (i), for Θ(σ), we have:

∑
(i, j)∈M

[δ −CΔ (i, j)]− ∑
i∈D

[CΔ (i,λ )− δ/2]− ∑
j∈I

[CΔ (λ , j)− δ/2)

= δ (|M|+ |D|
2

+
|I|
2
)− ∑

(i, j)∈M
[CΔ (i, j)]− ∑

i∈D
[CΔ (i,λ )]− ∑

j∈I
[CΔ (λ , j)]

=
δ
2
(2|M|+ |D|+ |I|)−Δ(σ)

If defining CΔ from CΘ by (ii), for Δ(σ) we have

∑
(i, j)∈M

[δ −CΘ(i, j)]+ ∑
i∈D

[CΘ (i,λ )+ δ/2]+ ∑
j∈I

[CΔ (λ , j)+ δ/2)

= δ (|M|+ |D|
2

+
|I|
2
)− ∑

(i, j)∈M
[CΘ (i, j)]+ ∑

i∈D
[CΘ (i,λ )]+ ∑

j∈I
[CΔ (λ , j)]

=
δ
2
(2|M|+ |D|+ |I|)−Θ(σ)

Hence in either case (4) holds ��

8 The proofs in [15] do require that some some conditions on the input similarity table CΘ be
imposed.
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Proof of (5) from Lemma 2 (5) claims Δ(σ)+Θ(σ) = (1−k)× (∑s∈S(C
Δ (s,λ ))

+∑t∈T (C
Δ (λ , t))) when CΘ and CΔ are related by conversion (iii) of the lemma.

For Θ(σ)+Δ(σ) we have

∑
(i, j)∈M

[(1− k)[CΔ(i,λ )+CΔ (λ , j)]−CΔ (i, j)]− ∑
i∈D

[kCΔ (i,λ )]− ∑
j∈I

[kCΔ (λ , j)]

+ ∑
(i, j)∈M

[CΔ (i, j)]+ ∑
i∈D

[CΔ (i,λ )]+ ∑
j∈I

[CΔ (λ , j)]

= (1− k) ∑
(i, j)∈M

[CΔ (i,λ )+CΔ (λ , j)]

+ (1− k) ∑
i∈D

[CΔ (i,λ )]+ (1− k) ∑
j∈I

[CΔ (λ , j)]

= (1− k)(∑
s∈S

(CΔ (s,λ ))+ ∑
t∈T

(CΔ (λ , t)))

The final line holds because |S|= |M|+ |D| and |T |= |M|+ |I| ��

Proof of (6) from Lemma 3 (6) claims Δ(σ) +Θ(σ) = k × (∑s∈S(C
Θ (s,s)) +

∑t∈T (C
Θ (t, t))) for CΔ and CΘ related to each other by the conversion (iv) of the

lemma. For Δ(σ)+Θ(σ) we have

∑
(i, j)∈M

[
k
[
CΘ (i, i)+CΘ ( j, j)

]
−CΘ(i, j)

]

+ ∑
i∈D

[
CΘ (i,λ )+ kCΘ (i, i)

]
+ ∑

j∈I

[
CΘ (λ , j)+ kCΘ ( j, j)

]

+ ∑
(i, j)∈M

[
CΘ (i, j)

]
− ∑

i∈D

[
CΘ (i,λ )

]
− ∑

j∈I

[
CΘ (λ , j)

]

= ∑
(i, j)∈M

[
k
[
CΘ (i, i)+CΘ ( j, j)

]]
+ ∑

i∈D

[
kCΘ (i, i)

]
+ ∑

j∈I

[
kCΘ ( j, j)

]

= k(∑
s∈S

(CΘ (s,s))+ ∑
t∈T

(CΘ (t, t)))

Again the final line holds because |S|= |M|+ |D| and |T |= |M|+ |I| ��

Definition of Kendall-Tau (with Ties)

Let N1 and N2 be two assignments of ranks to the same set of objects, U (with the
possibility of ties). Where P is the set of all two-element sets of distinct objects from
U , define a penalty function p on any {Ti,Tj} ∈ P , such that (1) p({Ti,Tj}) = 1 if
the order in N1 is the reverse of the order in N2, (2) p({Ti,Tj}) = 0.5 if there is a
tie in N1 but not in N2 or vice versa and (3) p({Ti,Tj}) = 0 otherwise. The Kendall-
Tau distance (with ties) between N1 and N2, τ(N1,N2), is ∑{Ti,Tj}∈P [p({Ti,Tj})]×

2
m×(m−1)
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Details of the Data Set for Kendall-Tau Experiments

Section 4 reports experiments quantifying the difference between neighbour files
computed by distance and similarity, when the two are related by the conversion in
Lemma 1. The trees represent syntax structures and originate in a data set which
was used in a shared-task on identifying inter-node semantic dependencies [6]. See
[4] for download information concerning this data. The nodes in these trees have
multi-part labels. In Table (a) in Fig. 2, these are treated simply as identical or not,
whereas for Table (c), the base line similarity compares node labels via CΘ (x,y) =
1− ham(x,y), where ham(x,y) is the standard hamming distance; the table thus
shows the extreme values of CΘ (x,y) and CΔ (x,y).

Acknowledgements This research is supported by the Science Foundation Ireland (Grant
07/CE/I1142) as part of the Centre for Next Generation Localisation (www.cngl.ie) at Trinity
College Dublin.
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Automatic Annotation of a Dynamic Corpus
by Label Propagation

Thomas Lansdall-Welfare, Ilias Flaounas, and Nello Cristianini

Abstract We are interested in the problem of automatically annotating a large,
constantly expanding corpus, in the case where potentially neither the dataset
nor the class of possible labels that can be used are static, and the annotation
of the data needs to be efficient. This application is motivated by real-world
scenarios of news content analysis and social-web content analysis. We investigate
a method based on the creation of a graph, whose vertices are the documents
and the edges represent some notion of semantic similarity. In this graph, label
propagation algorithms can be efficiently used to apply labels to documents based
on the annotation of their neighbours. This paper presents experimental results
about both the efficient creation of the graph and the propagation of the labels. We
compare the effectiveness of various approaches to graph construction by building
graphs of 800,000 vertices based on the Reuters corpus, showing that relation-based
classification is competitive with support vector machines, which can be considered
as state of the art. We also show that the combination of our relation-based approach
and support vector machines leads to an improvement over the methods individually.

Keywords Graph construction • Label propagation • Large scale • Text
categorisation

1 Introduction

A standard approach to annotation of documents in a large corpus is to use content-
based classifiers, e.g. Support Vector Machines (SVMs), specialised in the detection
of specific topics [20]. In the case where the corpus grows over time, these classifiers
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are applied to all new documents. In the case where new classifications need to be
added to the system, new classifiers need to be trained and added to the set. We
are interested in the design of highly autonomous systems for the management
of corpora, and as part of this effort we have developed the news monitoring
infrastructure ‘News Outlets Analysis and Monitoring system’ (NOAM) [14]. As
part of adding more autonomy and flexibility to that infrastructure, we have been
investigating various ways to propagate annotation across documents in a corpus
that does not involve training content-based classifiers. We are further interested
in the situation where the annotation of a corpus improves with time, that is with
receiving new labelled data. We want the accuracy of existing labels to improve
with more data, where old errors in classification are possibly being amended, and
if entirely new labels start being used in a data stream, the system will be able to
accommodate them automatically and efficiently.

In this paper we explore the use of label propagation algorithms to label graph
nodes, so that the knowledge of our system about the corpus is represented both in
the topology of the graph and in the labels attached to its nodes. This also involves
using scalable graph creation methods. The naı̈ve approach to graph construction,
comparing all documents to all documents or building a complete kernel matrix
[28], will not work in large-scale systems due to high computational complexity.
The cost of label propagation is also an important factor on the time needed to
process incoming documents.

We present a method to propagate labels across documents by creating a sparse
graph representation of the data, and then propagating labels along the edges of
the graph. Much recent research has focused on methods for propagation of labels,
taking for granted that the graph topology is given in advance [8, 18]. In reality,
unless working with web pages, textual corpora rarely have a predefined graph
structure. Graph construction alone has a worst case cost of O(N2) when using a
naı̈ve method due to the calculation of the full N × N pairwise similarity matrix.
Our proposed method can be performed efficiently by using an inverted index, and
in this way the overall cost of the method has a time complexity of O(N logN) in
the number of documents N.

We test our approach by creating a graph of 800,000 vertices using the Reuters
RCV1 corpus [22], and we compare the quality of the label annotations obtained
by majority voting against those obtained by using SVMs. We chose to compare
the graph-based methods to SVMs because they are considered the state of the
art for text categorisation [27]. We show that our approach is competitive with
SVMs, and that the combination of our relation-based approach with SVMs leads
to an improvement in performance over either of the methods individually. It is also
important to notice that our methods can be easily distributed to multiple machines.

1.1 Related Work

There is a growing interest in the problem of propagating labels in graph structures.
Previous work by Angelova and Weikum [2] extensively studied the propagation
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of labels in web graphs including a metric distance between labels, and assigning
weights to web links based upon content similarity in the webpage documents.
Many alternative label propagation algorithms have also been proposed over the
years, with the survey [31] giving an overview of several different approaches cast
in a regularisation framework. A common drawback of these approaches is the
prohibitively high cost associated with label propagation. A number of recent works
on label propagation [8,9,18] concentrate on extracting a tree from the graph, using
a very small number of the neighbours for each node. While many graph-based
methods do not address the problem of the initial graph construction, assuming a
fully connected graph is given, or simply choosing to work on data that inherently
has a graph structure, there is a large number of papers dedicated to calculating the
nearest neighbours of a data point. One such approximate method, NN-Descent [13],
shows promising results in terms of accuracy and speed for constructing k-Nearest
Neighbour graphs, based upon the principle that ‘a neighbour of a neighbour is
also likely to be a neighbour’. The All-Pairs algorithm [5] tackles the problem of
computing the pairwise similarity matrix often used as the input graph structure in
an efficient and exact manner, showing speed improvements over another inverted-
list-based approach, ProbeOpt-sort [26] and well-known signature-based methods
such as Locality Sensitive Hashing (LSH) [15]. In this paper we take a broader
overview, considering both the task of creating a graph from text documents, and
then propagating labels for text categorisation simultaneously. We are interested in
an approach that can be applied to textual streams, with the previously mentioned
additional benefits offered by moving away from classical content-based classifiers.
This paper is an extended version of the paper [21].

2 Graph Construction

Graph constructionX →G deals with taking a corpusX = {x1, . . . ,xn}, and creating
a graph G = (V,E,W ), where V is the set of vertices with document xi being
represented by the vertex vi, E is the set of edges, and W is the edge weight
matrix. There are several ways the construction can be adapted, namely the choice
of distance metric and the method for maintaining sparsity.

The distance metric is used to determine the edge weight matrix W . The weight
of an edge wi j encodes the similarity between the two vertices vi and v j. The choice
of metric used is mostly task dependent, relying on an appropriate selection being
made based upon the type of data in X . A common measure used for text, such as
cosine similarity [24], may not be appropriate for other data types, such as when
dealing with histogram data where the χ2 distance is more meaningful [30].

Typically, a method for maintaining sparsity is required since it is not desirable
to work with fully connected graphs for reasons of efficiency, and susceptibility to
noise in the data [19]. This can be solved by working with sparse graphs, which
are easier to process. Two popular methods for achieving sparsity include k-nearest
neighbour (kNN) and ε-neighbourhood, both utilizing the local neighbourhood
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properties of each vertex in the graph [7, 19, 23]. Local neighbourhood methods
are important for efficiency since a data point only relies on information about other
points close by, with respect to the distance metric, to determine the neighbours of
a vertex. This means that no global properties of the graph need to be calculated
over the entire graph each time a new vertex is added, a consideration that has
implications both for the scalability and, more generally, for the parallelisation.

The first step of creating the graph usually involves calculating the pairwise
similarity score between all pairs of vertices in the graph using the appropriately
chosen distance metric. Many studies assume that it is feasible to create a full
N ×N distance matrix [19] or that a graph is already given [8, 18]. This assumption
can severely limit the size of data that is managable, limited by the O(N2)
time complexity for pairwise calculation. Construction of a full graph Laplacian
kernel, as required by standard graph labelling methods [6, 17, 32] is already
computationally challenging for graphs with 10,000 vertices [18]. Jebara et al. [19]
introduce β -matching, an interesting method of graph sparsification where each
vertex has a fixed degree β and show an improved performance over k-nearest
neighbour, but at a cost to the complexity of the solution and the assumption that a
fully connected graph is given.

We can overcome the issue of O(N2) time complexity for computing the
similarity matrix by using an alternative method, converting the corpus into an
inverted index where each term has a pointer to the documents the term appears
within. The advantage of this approach is that the corpus is mapped into a space
based upon the number of terms, rather than the number of documents. This
assumption relies on the size of the vocabulary |t| being much smaller than the
size of the corpus. According to Heaps’ Law, the number of terms |t| appearing
in a corpus grows as O(Nβ ), where β is a constant between 0 and 1 dependent
on the text [16]. Some experiments on English text have shown that in practice β is
between 0.4 and 0.6 [3,4]. The inverted index can be built in O(NLd) time where Ld

is the average number of terms in a document, with a space complexity of O(NLv)
where Lv is the average number of unique terms per document [29].

Finding the neighbours of a document is also trivial because of the inverted index
structure. A classical approach is to use the Term Frequency-Inverse Document
Frequency (TF-IDF) weighting [24] to calculate the cosine similarity between two
documents. This can be performed in O(Ld log |t|) time for each document by
performing Ld binary searches over the inverted index. Assuming β from Heaps’
Law is the average value of 0.5, the time complexity for finding the neighbours
of a document can be rewritten as O(Ld

2 logN). Therefore, there is a total time

complexity O(N + NLd
2 logN) for building the index and finding the neighbours of

all vertices in the graph. This is equivalent to O(N logN) under the assumption that
the average document length Ld is constant.

A further advantage of this method is that the number of edges per vertex is
limited a priori, since it is infeasible to return the similarity with all documents in
the inverted index for every document. This allows the construction of graphs that
are already sparse, rather than performing graph sparsification to obtain a sparse
graph from the fully connected graph, e.g. [19].
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Fig. 1 Illustration of an example where two graphs, G1 and G2, are being constructed using the two
methods we investigate: k-nearest neighbour and ε-neighbourhood. In the example, the possible
edges for vertex v1 are being considered. The k-nearest neighbour method ranks the closeness of
the adjacent vertices with respect to a given similarity measure, then adds edges to the closest k
vertices. For this example, k = 2. The ε-neighbourhood method adds all edges which connect v1 to
a vertex inside the large circle which visualises the radius ε

We investigate two popular local neighbourhood methods, k-nearest neighbour
(kNN) and ε-neighbourhood, for keeping the graph sparse during the initial
construction phase and also when new vertices are added to the graph [7, 19, 23].
Figure 1 shows intuitively how each of the methods chooses the edges to add for
a given vertex. The first method, kNN, connects each vertex to the k most similar
vertices in V , excluding itself. That is, for two vertices vi and v j, an edge is added
if and only if the similarity between vi and v j is within the largest k results for
vertex vi. The second method we investigate, ε-neighbourhood, connects all vertices
within a distance ε of each other, a similar approach to classical Parzen windows in
machine learning [25]. This places a lower bound on the similarity between any two
neighbouring vertices, i.e. only edges with a weight above the threshold ε are added
to the graph. A simple way of visualising this is by drawing a sphere around each
vertex with radius ε, where any vertex falling within the sphere is a neighbour of
the vertex. While the first method fixes the degree distribution of the network, the
second does not, resulting in fundamentally different topologies. We will investigate
the effect of these topologies on labelling accuracy.

3 Label Propagation

Label propagation aims to use a graph G = (V,E,W ) to propagate labels from
labelled vertices to unlabelled vertices. Each vertex vi can have multiple labels, i.e. a
document can have multiple annotations, and each label is considered independently
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of the other labels assigned to a vertex. The labels assigned to the set of labelled
vertices Yl = {y1, . . . ,yl} are used to estimate the labels Yu = {yl+1, . . . ,yl+u} on
the unlabelled set.

Carreira-Perpinan et al. [7] suggest constructing graphs from ensembles of
minimum spanning trees (MST) as part of their label propagation algorithm, with
their two methods Perturbed MSTs (PMSTs) and Disjoint MSTs (DMSTs), having
a complexity of approximately O(T N2 logN) and O(N2(logN + t)) respectively,
where N is the number of vertices, T is the number of MSTs ensembled in PMSTs,
and t is the number of MSTs used in DMSTs, typically t << N

2 . However, to the best
of the authors’ knowledge, no studies have performed experiments on constructed
graphs with more than several thousand vertices, with the exception of Herbster et al.
[18] who build a shortest path tree (SPT) and MST for a graph with 400,000 vertices
from web pages. Herbster et al. [18] also note that constructing their MST and SPT
trees using Prim and Dijkstra algorithms [11], respectively, takes O(N logN + |E|)
time, with the general case of a non-sparse graph having a time complexity of
Θ(N2).

In this paper we adopt Online Majority Voting (OMV) [8], a natural adaptation
of the Label Propagation (LP) algorithm [32], as our algorithm for the label
propagation step due to its efficiency, simplicity, and experimental performance
[1]. OMV is based closely upon the locality assumption that vertices that are close
to one another, with respect to a distance or measure, should have similar labels.
Each vertex is sequentially labelled as the unweighted majority vote on all labels
from the neighbouring vertices. The time complexity for OMV is Θ(|E|), a notable
reduction from the O(kN2) required for LP algorithm, where k is the neighbours
per vertex. The complexity being dependent on the number of edges in the graph
further benefits from the a priori limit we impose upon the maximum edges per
vertex, ensuring that |E|= bN for some maximum edge limit b.

4 Experiments and Evaluation

We present an experimental study of the feasibility of our approach on a large
dataset, the Reuters RCV1 corpus [22]. We split the corpus into a training and test
set, where the test set is the last 7 weeks of the corpus, and the training set covers
everything else. The test set is further subdivided into 7 test weeks. The performance
was evaluated using the F1 Score, which is the harmonic mean of the precision and
recall, a widely used performance metric for classification tasks [24]. We evaluate
the performance of each method on the 7 test weeks, where all previous weeks have
already been added to the graph, to simulate an online learning environment. The
F1 Scores reported are the mean performance, over the 50 most common topics,
averaged over the 7 test weeks.
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Fig. 2 F1 performance for the 50 most common topics evaluated on the training set using LOO-
CV for (a) ε= {0,0.01, . . . ,1.00} and (b) k = {1,2, . . . ,100}. It can be seen that there is a peak at
ε= 0.4 and k = 5

4.1 Graph-Based Content Classification

For the graph-based methods, the hyperparameters k and ε require careful selection
in order to achieve comparable performance with current methods. This is the most
expensive step as it often requires a search of the parameter space for the best
value. We use Leave-One-Out Cross Validation (LOO-CV) on the training set to
tune the parameters. This involves constructing graphs for a range of values of ε

and k on the training set by iterating over all vertices, predicting the labels of the
vertex based upon the majority vote of its neighbours. The predictions are checked
against the true labels, with the highest performing parameter value being chosen.
The performance for values of ε and k can be seen in Fig. 2(a) and 2(b). The best
parameters for each topic individually were also recorded, allowing for a multi-
parameter graph where each topic label uses a different parameter value. This could
informally be thought of as each label being able to travel a certain distance along
each edge. Figure 3(a) and 3(b) show the performance difference on each topic
between using the general parameter values ε = 0.4 and k = 5 for every topic, and
using the optimal value found for each topic individually. It can be seen that for some
topics a small increase in performance can be achieved, but the performance gain
is minimal (with some loss for ε-Neighbourhood) at the expense of constructing
multiple graphs, and so this approach is not considered further. Figure 4 shows a
direct comparison of the graph-based methods with each other. Out of the 50 most
common topics, kNN has a higher performance on 46 of the possible 50 topics.
Clearly, ε-Neighbourhood is the weaker of the graph-based methods.

4.2 Comparison with Content-Based SVMs Performance

A comparison of the graph-based methods with the current state of the art in
content-based classification was performed. The SVMs were deployed using the
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Fig. 3 Comparison of the mean F1 Score, averaged over all test set weeks, for the graph-based
methods with a single best parameter against a multi-parameter approach on the 50 most common
topics. Points below the diagonal line indicate when the single parameter method achieved a
higher performance, with points above the diagonal line indicating that the multi-parameter method
achieved a higher performance on that topic
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Fig. 4 Comparison of the
mean F1 Score, averaged over
all test set weeks, for the
graph-based methods on the
50 most common topics.
Points below the diagonal line
indicate when
ε-Neighbourhood achieved a
higher performance than
kNN, with points above the
diagonal line indicating that
kNN achieved a higher
performance than
ε-Neighbourhood on that
topic

LibSVM toolbox [10]. We trained one SVM per topic using the Cosine kernel,
which is a normalised version of the Linear kernel [28]. For each topic, training
used a randomly selected 10,000 positive examples, and a randomly selected
10,000 negative examples picked from the training set. The examples were first
stemmed and stop words were removed as for the graph-based methods. The last
week of the training corpus was used as a validation set to empirically tune the
regularisation parameter C out of the set [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. For each
topic, C was tuned by setting it to the value achieving the highest F1 performance
on that topic in the validation set. Figure 5(a) and 5(b) show a comparison of
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Fig. 5 Comparison of the mean F1 Score, averaged over all test set weeks, for
(a) ε-Neighbourhood and (b) k-NN against SVMs on the 50 most common topics. Points below the
diagonal line indicate when SVMs achieved a higher performance than the graph-based method,
with points above the diagonal line indicating that the graph-based method achieved a higher
performance than SVMs on that topic

the graph-based methods with SVMs. Out of the 50 most common topics, SVM
achieved a higher performance than ε-Neighbourhood on 29 topics, but only beat
kNN on 19 of the topics, that is kNN performed better than SVMs on 31 out of
the 50 topics. This shows that the graph-based methods are competitive with the
performance of SVMs.

4.3 Building Ensembles of Graph-Based and Content-Based
Approaches

Further to the comparison of the graph-based methods with SVMs, an ensemble
[12] of the graph-based and content-based classification methods was evaluated.
For each vertex, a majority vote for each class label c is taken by counting the
supporting votes from k votes of the kNN method, supplemented with s votes from
the SVMs for a total of υ = k+ s votes. That is, each vertex has the k votes from
the kNN method, but also s votes assigned by the SVMs. The number of votes from
the SVM is chosen in the interval s = [0,k+1]. This moves the combination method
from purely graph-based at s = 0 (υ = k), to purely content-based at s = k + 1
(υ = 2k+ 1).

Given a set of p class labels C = {c1,c2, . . . ,cp}, a set of n vertices V =
{v1,v2, . . . ,vn}, a graph matrix A ∈ {0,1}n×n where Ai, j indicates whether v j is
a neighbour of vi, a label matrix Y ∈ {0,1}n×p where Yj,c indicates if vertex v j
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seen that the combined
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has class label c, an SVM assigned label matrix S ∈ {0,1}n×p where Si,c indicates
if class label c has been assigned to vertex vi by the SVMs and a regularisation
parameter λ = [0,1], ˜Yi,c is the decision whether label c is to be assigned to vertex
vi. Formally, a linear combination of the methods was created as

˜Yi,c = θ

(

λ ∑
j

(Ai, jYj,c)+ (1−λ )Si,c

)

(1)

θ (x) =
{

1 if x > υ
2

0 otherwise
(2)

Equation 1 can be reformulated so that it is easier to interpret by setting μ = 1−λ
λ ,

giving

̂Yi,c = θ

(

∑
j

(Ai, jYj,c)+ μSi,c

)

(3)

where μ represents the number of SVM votes s in the interval [0,k+ 1].
For our experiments, the value of μ for combining the kNN and SVM methods

was evaluated between 0 and 6 since the kNN method uses k = 5 neighbours.
Next, we consider the best value of μ for combining the kNN methods and SVMs

in a linear combination. Figure 6 shows the performance of the combined method
averaged over the 50 most common topics for each value of μ . Out of the 50 most
common topics, the combined method with μ = 4 provided an improvement over the
performance of both the SVM and kNN methods for 36 of the topics. Using μ = 1
showed an improvement over both methods for the greatest number of topics, with
38 of the 50 topics seeing an improvement. The mean performance of the combined
method with μ = 1 is lower than for μ = 4 however, indicating that when μ = 4 the
improvements are greater on average, even if there are slightly fewer of them.
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Fig. 7 Comparison of the mean F1 Score, averaged over all test set weeks, for the combined
method using μ = 4 against (a) SVMs and (b) kNN on the 50 most common topics. Points below
the diagonal line indicate when the combined method achieved a higher performance, with points
above the diagonal line indicating that the individual method achieved a higher performance than
the combined method on that topic

When comparing the combined method with SVM and kNN as seen in Fig. 7(a)
and 7(b) respectively, the performance of the combined method was higher than
SVM on 45 of the 50 topics and higher than kNN on 41 out of the 50 topics.
This shows that the combined method does not only improve on SVM and kNN
on average, but also provides an improvement for 90% and 82% of the 50 most
common topics, respectively. It should be noted that in the cases where the combined
method does not provide an improvement on one of the methods, it does still have a
higher performance than the lowest performing method for that topic. That is, there
were no cases where combining the methods gives a performance below both of the
methods individually.

A summary of the overall performance of each method can be seen in Fig. 8.
The ε-Neighbourhood method is the weaker of the two methods proposed with a
performance of 62.2%, while the kNN method achieved a performance of 65.9%,
beating the 64.5% for SVMs. Combining the kNN and SVM methods reached the
highest performance at 71.4% with μ = 4, showing that combining the relation-
based and content-based approaches is an effective way to improve performance.

5 Conclusion

We have investigated a scalable method for annotating a large and growing corpus.
This is achieved by efficiently creating a sparse graph and propagating the labels
along its edges. In our case study the edges were created by using bag of words
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Fig. 8 Summary of the mean F1 Score, averaged over all test set weeks, for the graph-based
methods and SVMs along with the best combined method (μ = 4) on the 50 most common topics.
It can be seen that the graph-based methods are comparable with SVMs, with the combined method
showing a further improvement. It should be noted that the performance of the combined method
is slightly bias due to selecting for the best μ . ε-Neighbourhood has been abbreviated to εN

similarity, but potentially we could use any other measure that is correlated to the
labels being propagated. There has been an increased theoretical interest on methods
of label propagation, and some interest on how graph construction interplays with
the propagation algorithms. Findings suggest that the method of graph construction
cannot be studied independently of the subsequent algorithms applied to the graph
[23]. We claim that label propagation has many advantages over the traditional
content-based approach such as SVMs. New labels that are introduced into the
system can be adopted with relative ease, and will automatically begin to be
propagated through the graph. In contrast, a new SVM classifier would need to
be completely trained to classify documents with the new class label. A second
advantage of label propagation is that incorrectly annotated documents can be
reclassified based upon new documents in a self-regulating way. That is, the graph is
continuously learning from new data and improving its quality of annotation, while
the SVM is fixed in its classification after the initial training period. In this paper, we
have investigated two different local neighbourhood methods, ε-Neighbourhood and
k-Nearest Neighbour, for constructing graphs for text. We have shown that sparse
graphs can be constructed from large text corpora in O(N logN) time, with the cost
of propagating labels on the graph linear in the size of the graph, i.e. O(N). Our
results show that the graph-based methods are competitive with content-based SVM
methods. We have further shown that combining the graph-based and content-based
methods leads to an improvement in performance. The proposed methods can easily
be scaled out into a distributed setting using currently available open source software
such as Apache Solr, or Katta, allowing a user to handle millions of texts with
similarly effective performance. Research into novel ways of combining the relation
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and content-based methods could lead to further improvements in the categorisation
performance while keeping the cost of building and propagating labels on the graph
to a minimum.
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Computing Voronoi Adjacencies in High
Dimensional Spaces by Using Linear
Programming

Juan Mendez and Javier Lorenzo

Abstract Some algorithms in Pattern Recognition and Machine Learning as
neighborhood-based classification and dataset condensation can be improved with
the use of Voronoi tessellation. This paper shows the weakness of some existing
algorithms of tessellation to deal with high-dimensional datasets. The use of linear
programming can improve the tessellation procedures by focusing on Voronoi
adjacency. It will be shown that the adjacency test based on linear programming is
a version of the polytope search. However, the polytope search procedure provides
more information than a simple Boolean test. This paper proposes a strategy to
use the additional information contained in the basis of the linear programming
algorithm to obtain other tests. The theoretical results are applied to tessellate
several random datasets, and also for much-used datasets in Machine Learning
repositories.

Keywords Voronoi adjacencies • Nearest neighbors • Machine learning • Linear
programming

1 Introduction

Pattern Recognition (PR) and Machine Learning (ML) are disciplines where the
knowledge about the spatial organization of the data can improve the performance
of the learning and classification procedures. Voronoi and Delaunay tessellations
provide partitions of some representation spaces useful in applications concerning
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the spatial organization of data collections. The tessellation process makes a
partition of the space in disjunct regions or cells called Delaunay or Voronoi
polytopes/polyhedra. Unfortunately Delaunay/Voronoi-based approaches have not
been very successful in PR and ML (if compared with Statistical one) because the
computational complexity of these methods. When the attributes that define each
instance of the dataset are defined in R, every instance can be represented as a point
in Rn, where n is the dimensionality of the problem. Thus, the processing of datasets
with real attributes can exploit their geometrical equivalence and take advantage of
many well-founded geometrical procedures.

Many PR procedures, for example Neighborhood-based Classification or Dataset
Condensation, only need the adjacency relations between instances instead of full
details of Voronoi or Delaunay tessellations. The Voronoi adjacency deals with the
problem of checking if a pair of training instances have a common boundary, that is
if both are neighbors in the Voronoi tessellation.

The Nearest Neighbor (NN) and k-NN are the most used algorithms in the family
of neighborhood-based procedures. Voronoi based is only a category of search
procedures in spaces that are coded by means data structures, as Delaunay/Voronoi
or other spatial related threes [24]. The k parameter in k-NN is usually chosen by
means of a cross-validation process over the training samples [14]. Instead of using
a fix k value for the whole dataset, it will be useful to define a neighborhood that
locally adapts to the data without the need for cross-validation [11,19]. The natural
neighbors for a test point q can be defined from the Voronoi tessellation of the
training set as the set of training instances pi whose Voronoi cell contains (or are
adjacent to the cell containing) q. This definition follows the previously introduced
by Sibson [26] and Gupta et al. [19]. The natural neighbors are in a subset of
instances that encloses or surrounds the test point.

Procedure of dataset editing, pruning or condensing are useful in ML applications
where massive dataset are used to train practical classifiers, eg. SVM or Neural
Networks. In such cases volumes of the training sets are drastically reduced with
low or null loss in the information. The condensation procedures that are decision-
boundary consistent [8,14] based on Voronoi adjacency do not modify the boundary
between classes. Therefore, any improvement in the computation of the Voronoi
tesselation will imply a reduction in the computational cost of any procedure
that can be obtained from this tesselation as the k-NN. In this approach of using
spatial information provided by Dlaunay/Vornoy methods clustering method [21]
is an agglomerative clustering algorithm which access density information by
constructing a Voronoi diagram for the input samples.

The Voronoi tessellation procedure uses the metric distance to define the
boundary planes between regions or cells. Metric distance, as well as vector norm,
only can be used on spaces with a metric structure. However, many applications
in ML deal with data collections without such a level of structured domains.
One way to transform the experimental raw space in a metric space is to use
the statistical Mahalanobis distance [28]. An equivalent approach is the use of
an orthonormal linear transformation as performed in the Karhunen–Loewe (KL)
transformation [28]. In this case, the Euclidean distance in the transformed space is
equivalent to the Mahalanobis distance in the experimental space.
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Fig. 1 A simple dataset [15], P = {(0,0), (2,1), (1,2), (4,0), (0,4), (4,4)}, showing the Voronoi
polyhedra as well as the Delaunay polytopes. The nearest neighbor of point q is p3 and its natural
neighbors are: {p1,p2,p3,p5,p6}

There are several methods to compute the Voronoi and its dual the Delaunay
tessellations [9, 25, 27]. Perhaps one of the more successful approaches is the one
based on representation in an extended space by mapping the instances in Rn+1, and
attempting to search their convex hull. The projection of the solution in Rn generates
the tessellation. The greatest problem with the computation of Voronoi tessellation
is the computational complexity. For a dataset with m instances it is in O(m logm)
for 2D cases, and for a space with dimension n, it is in O(mn/2) in the general
case [6,19], which is clearly exponential with the problem dimensionality. Figure 2
shows the results of the program qvoronoi, a member of the qhull package [6], for
some UCI datasets [2]. It is highly efficient in computing low-dimensional datasets,
but cannot tessellate high-dimensional datasets.

The computational complexity of Voronoi tessellations can be reduced with the
use of Grabriel graphs [17], which have been used as lower cost alternatives for
Voronoi adjacency [3, 4]. However, Gabriel graphs are subsets of Voronoi graphs
and do not provide the full information about neighboring relations.

Computing the Voronoi or Delaunay tessellation in higher dimensional spaces
can become unpractical. However, computing only the Voronoi adjacency can be
done very efficiently by using Linear Programming(LP) [15]. The relationship be-
tween Voronoi and LP problems has a sound theoretical background [1,5,10,16,20]
and can be continually improved with the advances in computer hardware because
Linear Programming (LP) can be efficiently programmed in matrix processors as
GPUs [18] and multiprocessor systems [31].
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Fig. 2 Efficiency area of qvoronoi and its relation to some of the most used datasets in ML. It is
very efficient, but only for low dimensionality problems

As it was stated above, any reduction in the computation of the Voronoi adjacency
will imply an improvement in methods like the k-NN and condensation techniques.
The aim of this paper is to present a method for an efficient computation of the
Voronoi adjacency graph. This computation is based on Linear Programming and it
introduces some innovations over papers previously referenced. The first one is the
modification of the Voronoi adjacency test proposed by Fukuda [15] by showing that
it can be reduced to the polytope search procedure. The second innovation is to show
that the use of the dual problem [7, 29] of the adjacency test brings computational
advantages. And last innovation, but not least, the proposal of an adjacency search
strategy without backtracking. This strategy assures the computation of the correct
value for all adjacency pairs without needing the computation of adjacency test for
all the pairs [23].

The paper is structured as follows: firstly, the adjacency test for an instance pair
is formulated, modified and transformed to its dual form. Then, the procedure of
polytope search is formulated and transformed to its dual form. It will be shown
that the adjacency test is a version of the polytope search. However, the polytope
search procedure provides more information than a simple Boolean test. The paper
proposes a strategy to use the additional information contained in the basis of the
linear programming algorithm to obtain other tests. The experiments were realized
with both artificial and real datasets. Real datasets with numerical features were
taken from the UCI repository to allow comparisons with the results presented in
this work.
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2 Computation of Voronoi Adjacencies

One way to compute the Voronoi polyhedron of a dataset P = {p1, . . . ,pm} in Rn

is based on the construction of an extended paraboloid representation in Rn+1. If
x∈Rn, the n+1 paraboloid coordinate is: xn+1 =∑x2

1+ · · ·+x2
n = ‖x‖2. If pi j are the

coordinate values of pi, its extended representation is: pi = (pi1, . . . , pin,‖pi‖2). The
set of tangent (n+1)-planes in every instance of the dataset generates a polyhedron
whose projection in Rn is the Voronoi diagram [15]. The polyhedron is defined by
the following set of linear equations:

2
n

∑
j=1

pi jx j− xn+1 ≤ ‖pi‖2 i = 1, . . . ,m (1)

The adjacency of two instances pa and pb is verified if they have a common
separating plane in Rn; therefore, the tangent planes in Rn+1 in each instance have
an intersection and a common edge. This condition is verified if a solution exits for
the following linear system:

2
n

∑
j=1

pi jx j− xn+1 ≤ ‖pi‖2 i �= a,b

2
n

∑
j=1

pa jx j− xn+1 = ‖pa‖2

2
n

∑
j=1

pb jx j− xn+1 = ‖pb‖2 (2)

This feasibility test of this linear system is related to the solution of the following
problem of linear programming, where f () is an objective function subject to the
following constraints:

maximize f (x1, . . . ,xn,xn+1)

2
n

∑
j=1

pi jx j− xn+1 ≤ ‖pi‖2i �= a,b

2
n

∑
j=1

pa jx j− xn+1 = ‖pa‖2

2
n

∑
j=1

pb jx j− xn+1 = ‖pb‖2 (3)

This problem can be solved by introducing slack and surplus variables and using
the Two-Phase Method [29]. The feasibility of this problem is obtained in the first
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phase by solving the next linear problem, whose goal is the minimization of the sum
of all the surplus variables:

minimize Z = sa + sb

2
n

∑
j=1

pi jx j− xn+1 + si = ‖pi‖2 i = 1, . . . ,m

si ≥ 0 i = 1, . . . ,m (4)

The feasibility test for the original problem of (2) is that the optimal solution
becomes null, Z∗ = 0, equivalent to: s∗a = s∗b = 0. This problem can be modified as:

minimize Z′ =
n

∑
j=1

(pa j + pb j)x j− xn+1

2
n

∑
j=1

pi jx j− xn+1 ≤ ‖pi‖2 i = 1, . . . ,m (5)

where −Z = 2Z′ − ‖pa‖2−‖pb‖2, and the slack and surplus variables have been
hidden. The linear programming dual of this problem is:

minimize Z′′ =
m

∑
i=1
‖pi‖2zi

m

∑
i=1

pi jzi =
1
2
(pa j + pb j) j = 1, . . . ,n

m

∑
i=1

zi = 1

zi ≥ 0 i = 1, . . . ,m (6)

The optimal solution of the dual must be: Z′′∗ = Z′∗ = 1
2(‖pa‖2 + ‖pb‖2).

2.1 Polytope Search

Voronoi polyhedra can be unbound, but a bounded polyhedron is called a polytope.
Delaunay polytopes are the dual of Voronoi polyhedra. The test for Voronoi
adjacency, as defined in (6), is related to the problem of the polytope search. This
problem is related to find the Delaunay polytope that encloses a test point q ∈ Rn:
more precisely, in obtaining the subset of the dataset instances which define the
polytope enclosing the test point. The polytope degree ranges from 1 to n + 1
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depending on the number of instances included, or the degree of degeneracy of
the polytope. Unfortunately, not all the polytopes found are of the biggest degree of
(n+1); however, a lower degree provides valuable information because a k-polytope
includes k(k− 1)/2 Voronoi adjacencies. If we are trying to find the enclosing
polytope of a point q, the problem can be solved by using linear programming and
finding the solution for y0 ∈ R and y ∈ Rn verifying[15]:

minimize Z = y0 +
n

∑
j=1

q jy j

− y0−
n

∑
j=1

pi jy j ≤ ‖pi‖2 i = 1, . . . ,m (7)

The Delaunay polytope containing the test point is the one whose corresponding
inequalities are satisfied as equality when the problem reaches optimal. That is,
whose dual variables are not null. This linear programming algorithm has two
different stop states. In the first, the enclosing polytope is found if the problem
reaches the optimality. In the second one, the problem gets unbound and no solution
is provided because the test point is outside the convex hull of the dataset instances.
If the solution is optimal but degenerate, a k-polytope is obtained with 1≤ k≤ n+1.
The enclosing polytope can be obtained easily by solving the dual of (7):

minimize W =
m

∑
i=1

‖pi‖2zi

m

∑
i=1

pizi = q

m

∑
i=1

zi = 1

zi ≥ 0 i = 1, . . . ,m (8)

If the test point is outside the convex hull, the problem in (7) becomes unbound,
while its dual in (8) becomes unfeasible. If the problem is not degenerate, the
number of non-null problem variables z ∈ Rm is n + 1 that define the enclosing
Delaunay polytope. If the problem is degenerate, the number of non-null variables
is lower. However the number of problem variables in the final basis provides some
additional information: if a problem variable is null but is included in the final basis,
we can infer that the k-polytope is a subset of a (k+ 1)-polytope defined by k non-
null variables and this null one is also included in the basis. Therefore, knowledge
of the final basis provides extra information in cases of degeneracy.

For computational purposes the polytope search procedure can be expressed as:
B← POLYTOPE(P,q), where B is the set of instances in P included in the basis of
the linear programming. The scalar K = card(B) is an upper bound of the polytope
degree, it verifies: 1 ≤ k ≤ K ≤ n+ 1. When the test point is outside the convex
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Algorithm 1: Computes the Voronoi adjacency graph. The input is the dataset
instances, P = p1, . . . ,pm, and the output the graph, V = {vi j}.

procedure ADJACENCY1(P= p1, . . . ,pm,V = {vi j})
Initialize: ∀i j,vi j← 0
for i← 1,m−1 do

for j← i+1,m do � only the upper triangular
if vi j = 0 then

q← 1
2 (pi +p j) � the middle point between pi and p j

B←POLYTOPE(P,q) � gets the basis of the polytope
K← card(B) � by solving Equation (8)
if K ≥ 2 then � if degeneracy: 1≤ K ≤ n+1

for h← 1,K−1 do
c← Bh
for l← h+1,K do

d← Bl
vcd ← 1 � pc and pd are Voronoi neighbors
vdc← 1 � and the symmetrical

hull, we get K = 0 for computational purpose. The Voronoi adjacency test for two
instances in a dataset in (6) corresponds to the polytope search procedure in (8) by
testing the middle point between the pair: q = 1

2(pa +pb). This test point is always
within the convex hull; therefore the unfeasible solution is not possible.

A Voronoi adjacency graph is constructed by taking each dataset instance as a
node and the Boolean link vi j ∈ {0,1} as the value of the adjacency test between
instances pi and p j. The test for every middle point assures knowledge of the vi j

value, but in every test also other vhl link values are also obtained depending on the
cardinality of B. In the best case, a number of: n(n+ 1)/2+ 1 links of the Voronoi
adjacency graph are obtained. In the worst case only a link value is obtained: it
occurs when the middle point of two instances pi and p j is just another instance
of the dataset q = ph. The best case happens when the middle point is within
a Delaunay polytope that does not include the test pair. In this case K = n+ 1,
therefore, n(n+ 1)/2 links with true values are obtained as well as a false one:
vi j = 0. The Algorithm 1 shows the proposed procedure. It initializes all the links to
false values and only positive adjacencies are added throughout the following steps.
Table 1 contains a trace of the computed pairs for dataset in Fig. 1, where the values
for the basis variables are shown.

2.2 Algorithm Based on Linear Programming

The Voronoi adjacency of two points can be obtained from the polytope inclusion
procedure of their middle point. We can obtain the Delaunay polytope in that a point
q∈Rn is included based on computing the base of the following linear programming
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Table 1 Computation of Voronoi neighbors for the dataset in Fig. 1

Pair q z1 z2 z3 z4 z5 z6 k K Links Ns

1,2 1.0 0.5 0.50 0.50 2 2 v12 2
1,3 0.5 1.0 0.50 0.50 2 2 v13 2
1,4 2.0 0.0 0.50 0.00 0.50 2 3 v12,v14,v24 3
1,5 0.0 2.0 0.50 0.00 0.50 2 3 v13,v15,v35 3
1,6 2.0 2.0 0.40 0.40 0.20 3 3 v23,v26,v36 3
2,5 1.0 2.5 0.75 0.19 0.06 3 3 v35,v36,v56 4
3,4 2.5 1.0 0.75 0.19 0.06 3 3 v24,v26,v46 4
4,5 2.0 2.0 0.40 0.40 0.20 3 3 v26,v23,v36 3

The Algorithm 1 takes 8 tests to compute the 15 adjacent pairs, and used Ns = 24 iterations of
Simplex Dual algorithm. The k parameter is the polytope degree, whereas K is the number of z
variables in the basis. The filled-in z variables are those in the basis

problem that provides Z = {z1, . . . ,zm} ∈ 1m. The problem in (8) can be rewritten
as: min∑m

i=1 |pi−q|2zi = min∑m
i=1 |pi|2zi−|q|2:

min
m
∑

i=1
|pi|2zi−|q|2

st
m
∑

i=1
pizi = q

m
∑

i=1
zi = 1 zi ≥ 0 (9)

where Z has a base defining the Delaunay polytope containing at most the n+ 1
points whose zi ∈ [0,1] values are not null. The term |q|2 is a constant value that can
be avoided. The multidimensional dataset containing m points in an n-dimensional
space is represented by the matrix P of dimension n×m, and Q is a n-dimensional
vector:

P = [p1 · · ·pm] =

⎡
⎢⎣

p11 · · · pm1
...

. . .
...

p1n · · · pmn

⎤
⎥⎦ (10)

q =

⎡
⎢⎣

q1
...

qn

⎤
⎥⎦ (11)

We use the Standard Dual Simplex (SDS) algorithm in this paper. According to
Yarmish and Slyke [31], Revised algorithms take better advantage of sparsity in
problems, while Standard algorithms are more effective for dense problems such as
addressed in this paper. The LP problem of the polytope inclusion can be represented
by the matrix T, the tableau of the LP problem. It is obtained by transforming the
equality equations in (9) in pairs of inequality ones.
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T =

|p1|2 · · · |pm|2 0 · · · 0 |q|2
p11 · · · pm1 q1
...

. . .
...

...
p1n · · · pmn qn

1 · · · 1 I 1
−p11 · · · −pm1 −q1

...
. . .

...
...

−p1n · · · −pmn −qn

−1 · · · −1 −1

(12)

The matrix I is the 2(n+ 1) order identity matrix. The matrix T has 2(n+ 1)+ 1
rows and m+2(n+1)+1 columns. The solving of the Simplex algorithms requires
three subtasks related to find the pivot, which is related to the leaving and entering
variables in the base of the problem. The Simplex and Dual Simplex forms differ in
the order of search for these variables. Our problem is related to the Dual forms, in
that the subtasks are: find the Leaving Variable (LV) in the base, find the Entering
Variable (EV) in the base, and Normalize (N) the matrices of the problem according
to the pivot column and row, which can be efficiently computed in Multi-core and
Multi-GPU systems [22].

2.3 Gabriel Adjacency

Gabriel adjacency is a subset of Voronoi adjacency, its definition resembles the
general definition of Delaunay polytope. A set of (n + 1) instances defines a
Delaunay polytope if the n-sphere that they describe has no instance into. While,
two instances are Gabriel neighbors [13] if no other instance is included in the n-
sphere that is centered in the middle point: 1

2(pa +pb) and has a radius: 1
2‖pa−pb‖,

that is:

‖pi− 1
2
(pa +pb)‖ ≥ 1

2
‖pa−pb‖ ∀i �= a,b (13)

Based on: ‖u− v‖2 = ‖u‖2 + ‖v‖2− 2u ·v, it can be simplified as:

pi ·pi−pi ·pa−pi ·pb +pa ·pb ≥ 0 ∀i �= a,b (14)

The Delaunay test, which involves n + 1 instances to define the sphere, is more
expensive than the Gabriel adjacency, which uses two instances to define a smaller
sphere. If an instance pair verifies the Gabriel test, it also verifies the Voronoi
neighbor test, but not the converse. This property can be used to introduce a cheaper
but incomplete pre-test of adjacency.

The Gabriel test is advantageous if compared to the general Delaunay test, but
this advantage is unclear when compared with Voronoi adjacency obtained with LP,
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Algorithm 2: A modification of Algorithm 1 that computes all the Grabriel
pre-tests previously to the polytope ones.

procedure ADJACENCY2(P= p1, . . . ,pm,V = {vi j})
Initialize: ∀i j,vi j← 0
for i← 1,m−1 do

for j← i+1,m do
if GABRIEL(P, i, j) then � tries Gabriel adjacency

vi j = 1
v ji = 1

for i← 1,m−1 do
for j← i+1,m do � only the upper triangular

if vi j = 0 then
q← 1

2 (pi +p j) � the middle point between pi and p j

B←POLYTOPE(P,q) � gets the basis of the polytope
K← card(B) � by solving Equation (8)
if K ≥ 2 then � if degeneracy: 1≤ K ≤ n+1

for h← 1,K−1 do
c← Bh
for l← h+1,K do

d← Bl
vcd ← 1 � pc and pd are Voronoi neighbors
vdc← 1 � and the symmetrical

because it provides only a link value in every test. To increase the performance of
the polytope-based adjacency test, one algorithm is proposed that uses the cheaper
Gabriel test. The Boolean procedure GABRIEL(P, i, j) is used to test for the
adjacency of the instances pi and p j. In the Algorithm 2, prior to the polytope test, a
pre-test is included for every instance. If the first test fails, the second one computes
the pairs values.

2.4 Computing NN from Voronoi Adjacencies

The Nearest-Neighbor(NN) classification procedure of a test instance q in a dataset
P is achieved by computing all the distances d(q,pi) between the test q and
every samples pi ∈ P. If NN() is such procedure, the classical NN procedure is
defined as: nnq = NN(P,q). The computation of NN by using Voronoi adjacencies
reduces significatively that computational cost by using restricted search around
a random candidate n′q ∈ P. The surrounding instances of this candidate are its
Voronoi neighbors V (n′q) obtained in the Learning phase of the Pattern Recognition
procedure for this dataset. Algorithm 3 illustrates this process, where V (a) includes
a and all of its Voronoi neighbors. After the nq is obtained, the natural neighbors
of q are V (nq). These natural neighbors surround the test instance if it is into the
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convex hull of the dataset. Computational cost can be reduced if a list of already
computed d(pi,q) is used in the partial searches.

Algorithm 3: Computes the Nearest- Neighbor of a test instance q by using the
Voronoi adjacency graph. The inputs are V the Voronoi adjacencies of P, the
test instance q and an initial(e.g. random) candidate n′q ∈ P, and the output is
the Nearest-Neigbor nq

procedure NNV(V,q,nq)
Initialize: searching← 1, random n′q
while searching do

n′′q← NN(V (n′q),q)
if n′′q ≡ n′q then

searching← 0 else

end
n′q← n′′q

nq← n′q

3 Results

A systematic test has been performed to show the strength and weakness of existing
tessellation procedures. One of the more used and faster packages is the before
mentioned qhull [6]. To solve several problems in computational geometry in Rn, it
uses the computation of the convex hull in Rn+1 as the kernel procedure. The family
of programs based on qhull are very fast for problems with low dimensionality.
However, they suffer from the curse of dimensionality when applied in high-
dimensional problems such as those used in ML.

The test uses several random datasets whose instances are within the unit cube
centered at the origin. The dimensions used are: n= 2,3, . . . ,9,10,20, . . . ,70 and the
number of instances is: m= 100,200, . . . ,700. The computation time was taken from
the program qvoronoi, a member of the qhull package. To illustrate the obtained
results for these datasets a contour plot was generated as shown in Fig. 2. Some
values from 1 to 200 s are plot to illustrate the efficiency area of the procedure
efficiency. The number of dimensions and instances of some of the most used dataset
in the UCI Machine Learning Repository [2] such as iris, bupa, glass, wine, wdbc
and sonar are also plotted. The figure shows that while bupa dataset (345 instances
and dimension 6) can be effectively tessellated in 5.76 s. on a test computer (Intel
Pentium M, 1.6 Ghz and 1 GB of RAM), the glass dataset (214 instances and
dimension 9) took several hours to complete. A practical conclusion was obtained,
that is datasets with a dimension greater than eight cannot be tessellated effectively
with this procedure.
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Fig. 3 Efficiency area of the tessellation procedure based on polytope search. The covered area is
more extensive that the covered by qhull and includes the datasets. However, for low-dimensional
problems qhull significatively outperforms it

The Algorithm 1 defines how to compute the Voronoi adjacencies, which
are coded as a graph. The Boolean links vi j ∈ {0,1} are symmetric: vi j = v ji,
therefore, only the upper triangular is computed. The Algorithm was implemented
in C++ using double precision real numbers. The same systematic test that had
been conducted for the qvoronoi was performed for the implementation of the
Algorithm 1. The contour plot of the efficiency is shown in Fig. 3. The entire
range of the UCI datasets is covered in the range of 200 s in this test computer.
The efficiency area seems to cover a more extended area in the n vs. m plane, which
allows to cover a wide range of practical ML applications. In low-dimensional
datasets, qhull significatively outperforms the proposed implementation, but for
n≥ 8, it is outperformed.

A performance factor is defined about how many middle point tests are required
to obtain all the adjacency links of a dataset. The factor is defined as:

γ =
2Ntest

m(m− 1)
(15)

where Ntest is the number of tested pairs necessary to achieved the computation
of all Voronoi adjacencies. It depends on each dataset, and in general would have a
general dependence on m and n. Low factor values are equivalent to high tessellation
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performance, because its inverse provides the average number of adjacency relations
obtained for each test. The tessellation cost not only depends on the size of
dataset m and n, but it also depends on the distribution of instances. Table 2
contains the computation time for the ML Repository datasets, as well as the Ntest

and the Simplex iterations used. Normalized coordinates are used after the KL
transformation because raw data coordinates are meaningless when used in a metric
distance.

It should be mentioned that the plotted points of each of the ML Repository
dataset in Fig. 3 are only qualitative because the plotted background data are related
to random datasets. No qvoronoi values are available for glass dataset and larger,
because these tests had not finished after several hours of computation. Therefore,
they are not comparable for practical purposes. These data are computed on an Intel
Xeon, 3.06 Ghz, 512K in L2 cache, and 1.5GB of RAM. The last column contains
the T2 computed for the Algorithm 2, only slight differences are detected between
the two Algorithms.

The cost analysis of proposed procedure depends on the analysis cost of the LP
problem for finding a Polytope enclosing a point. The cost to obtain all the Voronoi
adjacencies CAllAd(n,m) is:

CAllAd(n,m) = γ(n,m)
m(m− 1)

2
CPoly(n,m) (16)

where γ(n,m) is the fraction of the m(m− 1)/2 pairs that that are tested. It runs, in
the considered cases of the dataset in UCI, from 0.837 for iris dataset to 0.112 for
wdbc dataset. In general it would have a general dependence on m and n that future
works could clarify. We think that it depends for every specific dataset, and that a
general dependence as γ(n,m) is only valid as an average for random datasets.

The cost to obtain a polytope, CPoly(n,m), is the cost to solve an LP problem.
Although we have used in practice the Simplex Dual Algorithm for practical
proposes, any of the available LP Algorithms can be used. This algorithm choice
is no central of our proposal; such as future works will test the relative efficiency
of other choices (Simplex based variants as well as interior methods). A founded
opinion [12] is that the efficiency of good implementations of simplex-based
methods and interior point methods are similar for practical applications of linear
programming. However, for specific types of LP problems, it may be that one type
of algorithm is better than another, but it cannot be decided without an exhaustive
test.

It is very difficult to define the theoretical cost of an LP Algorithm because
we have to decide between the cost for worst-case and the cost for average-case
in the defined application. Although the worst-case complexity of the Simplex
Algorithm is exponential in the problem dimension, it is widely known that in
practice it is probably a polynomial-time [30], that is in practice the Simplex method
almost always converges on real-world problems in a number of iterations that is
polynomial in the problem dimension.
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Table 2 Tessellation results for several datasets coded in normalized coordinates after the KL
transformation: Tq the computational time used by qvoronoi, T1 the used by the proposed
Algorithm 1, Ntest the number of middle points tested, Ns the number of Simplex iterations used to
tessellate the whole dataset, and γ the performance factor

Dataset n m Tq (s) T1 (s) Ntest Ns γ T2(s)

iris 4 150 0.04 0.503 9,349 96,844 0.837 0.515
bupa 6 345 6.71 10.136 45,891 783,100 0.773 10.162
glass 9 214 n/a 2.708 9,262 256,613 0.406 2.733
wine 13 178 n/a 0.863 3,082 69,167 0.196 0.898
wdbc 30 569 n/a 58.886 18,109 664,385 0.112 61.358
sonar 60 208 n/a 6.003 5,237 46,555 0.243 6.752

The T2 column contains the computational time for the Algoritm 2

If the average cost of LP problem for polytope finding is on the class of
O( f (m)g(n), where f (m) and g(n) are polynomial, so we can conclude that the
practical cost CAllAd j(n,m) falls in the class O(m2 f (m)g(n)) also polynomial. That
is very advantageous to qhull based approaches (which are in exponential O(mn/2)
class) for large values of the space dimensionality n, but unadvantageous for small
ones.

4 Conclusions

Machine Learning applications impose unattainable goals on traditional tessellation
techniques, while linear programming provides alternative approaches to perform
the tessellation of high-dimensional datasets. Linear programming provides a sound
theoretical background for the tessellation problem as well as an inspirational source
for efficient implementations. A modification of the Voronoi adjacency test had
shown that it is basically the polytope search procedure, enabling the implementa-
tion of a more efficient algorithm for high-dimensional datasets. It is more efficient
than a single adjacency test because in each trial it provides a polytope, that is many
adjacency values. These perform best if focusing on theγ parameter, which is related
to the fraction of all the all-to-all needed test. The reason for this is that, the higher
dimensionality the greater the number of instances included in each polytope. This is
the counterpart of the curse of dimensionality. Perhaps this would be the reason why
it permits a relative good performance at high dimensionality. The qhull-based and
the linear programming-based implementations are complementary because each is
good in different domains. A suitable use of both algorithms can efficiently tessellate
many massive datasets in Machine Learning. The use of a pre-test based on the
Gabriel adjacency, which provides a faster but incomplete graph of neighboring
relations, does not significatively increase performance because, while it is fast, it
provides only one link value while the polytope provides several link values in each
test.
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Abstract Phase-Locked Matrix Factorization (PLMF) is an algorithm to perform
separation of synchronous sources. Such a problem cannot be addressed by orthodox
methods such as Independent Component Analysis, because synchronous sources
are highly mutually dependent. PLMF separates available data into the mixing
matrix and the sources; the sources are then decomposed into amplitude and phase
components. Previously, PLMF was applicable only if the oscillatory component,
common to all synchronized sources, was known, which is clearly a restrictive
assumption. The main goal of this paper is to present a version of PLMF where
this assumption is no longer needed—the oscillatory component can be estimated
alongside all the other variables, thus making PLMF much more applicable to real-
world data. Furthermore, the optimization procedures in the original PLMF are
improved. Results on simulated data illustrate that this new approach successfully
estimates the oscillatory component, together with the remaining variables, showing
that the general problem of separation of synchronous sources can now be tackled.

Keywords Matrix factorization • Phase synchrony • Phase-locking
• Independent component analysis • Blind source separation • Convex
optimization

M. Almeida (�)
Institute of Telecommunications, Instituto Superior Técnico, Lisbon, Portugal
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1 Introduction

Synchrony is an increasingly studied topic in modern science. On the one hand, there
is an elegant yet deep mathematical framework which is applicable to many domains
where synchrony is present, including laser interferometry, the gravitational pull of
stellar objects, and the human brain [11].

It is believed that synchrony plays an important role in the way different
sections of human brain interact. For example, when humans perform a motor task,
several brain regions oscillate coherently with the muscle’s electromyogram (EMG)
[10, 12]. Also, processes such as memorization and learning have been associated
with synchrony; several pathologies such as autism, Alzheimer’s and Parkinson’s
are associated with a disruption in the synchronization profile of the brain; and
epilepsy is associated with an anomalous increase in synchrony [14].

To infer knowledge on the synchrony of the networks present in the brain or in
other real-world systems, one must have access to the dynamics of the individual
oscillators (which we will call “sources”). Usually, in the brain electroencephalo-
gram (EEG) and magnetoencephalogram (MEG), and other real-world situations,
individual oscillator signals are not directly measurable; one has only access to a
superposition of the sources.1 In fact, EEG and MEG signals measured in one sensor
contain components coming from several brain regions [9]. In this case, spurious
synchrony occurs, as has been shown both empirically and theoretically in previous
works [2]. We briefly review this evidence in Sect. 2.3.

Undoing this superposition is usually called a blind source separation (BSS)
problem. Typically, one assumes that the mixing is linear and instantaneous, which
is a valid and common approximation in brain signals [15] and other applications. In
this case, if the vector of sources is denoted by s(t) and the vector of measurements
by x(t), they are related through x(t) = Ms(t) where M is a real matrix called
the mixing matrix. Even with this assumption, the BSS problem is ill-posed: there
are infinitely many solutions. Thus, one must also make some assumptions on the
sources, such as statistical independence in Independent Component Analysis (ICA)
[7]. However, in the case discussed in this paper, independence of the sources
is not a valid assumption, because synchronous sources are highly dependent. In
this paper we address the problem of how to separate these dependent sources,
a problem we name Separation of Synchronous Sources, or Synchronous Source
Separation (SSS). Although many possible formal models for synchrony exist (see,
e.g., [11] and references therein), in this paper we use a simple yet popular measure
of synchrony: the Phase Locking Factor (PLF), or Phase Locking Value (PLV).

1In EEG and MEG, the sources are not individual neurons, whose oscillations are too weak to be
detected from outside the scalp even with no superposition. In this case, the sources are populations
of closely located neurons oscillating together.
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The PLF between two signals is 1 if they are perfectly synchronized. Thus, in this
paper we tackle the problem of source separation where all pairs of sources have a
PLF of 1.

A more general problem has also been addressed, where the sources are
organized in subspaces, with sources in the same subspace having strong synchrony
and sources in different subspaces having weak synchrony. This general problem
was tackled with a two-stage algorithm called Independent Phase Analysis (IPA)
which performed well in the noiseless case [1] and with moderate levels of added
Gaussian white noise [2]. In short, IPA uses TDSEP [16] to separate the subspaces
from one another. Then, each subspace is a separate SSS problem; IPA uses an
optimization procedure to complete the intra-subspace separation. Although IPA
performs well for the noiseless case, and for various types of sources and subspace
structures, and can even tolerate moderate amounts of noise, its performance for
higher noise levels is unsatisfactory. Also, in its current form, IPA is limited to
square mixing matrices, i.e., to a number of measurements equal to the number
of sources. It may as well return singular solutions, where two or more estimated
sources are (almost) identical. On the other hand, IPA can deal with subspaces of
phase-locked sources and with sources that are not perfectly phase locked [2].

In this paper we address an alternative technique, named Phase-Locked Matrix
Factorization (PLMF). PLMF was originally introduced in [3], using a very
restrictive assumption, of prior knowledge of the oscillation common to all the
sources. The goal of this paper is to remove this restrictive assumption and to
improve the optimization of the problem.

Unlike IPA, PLMF can deal with higher amounts of noise and with non-square
mixing matrices (more measurements than sources). Furthermore, it only uses
variables directly related to the data model, and is immune to singular solutions.
PLMF is inspired on the well-known Non-negative Matrix Factorization (NMF)
approach [8], which is not applicable directly to the SSS problem, because some
factors in the factorization are not positive, as will be made clear below. For
simplicity, we will restrict ourselves to the case where the sources are perfectly
synchronized.

One should not consider PLMF as a replacement for IPA, but rather as a different
approach to a similar problem: PLMF is a model-driven algorithm, whereas IPA
is data-driven. As we will show, PLMF has advantages and disadvantages relative
to IPA.

This paper is organized as follows. In Sect. 2 we introduce the Phase-Locking
Factor (PLF) quantity which measures the degree of synchronization of two
signals, and show that full synchronization between two signals has a very simple
mathematical characterization. Section 3 describes the PLMF algorithm in detail.
In Sect. 4 we explain how the simulated data was generated and show the results
obtained by PLMF. Directions for future work are discussed in Sect. 5. Conclusions
are drawn in Sect. 6.
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2 Phase Synchrony

2.1 Phase of a Real-Valued Signal

In this paper we tackle the problem of Separation of Synchronous Sources (SSS).
The sources are assumed to be synchronous, or phase-locked: thus, one must be able
to extract the phase of a given signal. In many real-world applications, such as brain
EEG or MEG, the set of measurements available is real-valued. In those cases, to
obtain the phase of such measurements, it is usually convenient to construct a set of
complex-valued data from them. Two approaches have been used in the literature:
complex wavelet transforms [13] and the Hilbert transform [6].

In this paper we present only results on simulated data, which is directly
generated as complex-valued, thus curcumventing this issue.

2.2 Phase-Locking Factor

Let φ j(t) and φk(t), for t = 1, . . . ,T , be the time-dependent phases of signals j
and k. The real-valued2 Phase-Locking Factor (PLF) between those two signals is
defined as

ρ jk ≡
∣
∣
∣
∣
∣

1
T

T

∑
t=1

ei[φ j(t)−φk(t)]

∣
∣
∣
∣
∣
=
∣
∣
∣

〈

ei(φ j−φk)
〉∣
∣
∣ , (1)

where 〈·〉 is the time average operator, and i =
√−1. Note that 0 ≤ ρ jk ≤ 1. The

value ρ jk = 1 corresponds to two signals that are fully synchronized: their phase
lag, defined as φ j(t)−φk(t), is constant. The value ρ jk = 0 is attained if the two
phases are not correlated, as long as the observation period T is sufficiently long.
Values between 0 and 1 represent partial synchrony. Typically, the PLF values are
stored in a PLF matrix Q such that Q( j,k)≡ ρ jk. Note that a signal’s PLF with itself
is trivially equal to 1: thus, for all j, ρ j j = 1.

2.3 Effect of Mixing on the PLF

The effect of a linear mixing operation on a set of sources which have all
pairwise PLFs equal to 1 is now discussed. This effect has a simple mathematical
characterization: if s(t) is a set of such sources, and we define x(t) ≡Ms(t), with
det(M) �= 0, then the only possibility for the observations x to have all pairwise PLFs

2“Real-valued” is used here to distinguish from other papers, where the absolute value operator is
dropped, hence making the PLF a complex quantity [2].
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Fig. 1 (Top row) Three sources (left) and PLFs between them (right). (Bottom row) Three mixed
signals (left) and PLFs between them (right). On the right column, the area of the square in position
(i, j) is proportional to the PLF between the signals i and j. Therefore, large squares represent PLFs
close to 1, while small squares represent values close to zero

equal to 1 is if M is a permutation of a diagonal matrix [2]. Equivalently, the only
possibility for that is if x = s up to permutation and scaling, a typical nonrestrictive
indeterminancy in source separation problems.

This effect is illustrated in Fig. 1, which shows a set of three perfectly
synchronized sources and their PLFs. That figure also depicts three signals obtained
through a linear mixing of the sources, and their PLFs. These mixtures have PLFs
lower than 1, in accordance with the result stated in the previous paragraph (even
though the PLF between sources 2 and 3 happens to be rather high, but still not 1).

This property illustrates that separation of these sources is necessary to make
any type of inference about their synchrony, as measured through the PLF. If they
are not properly separated, the synchrony values measured will not be accurate. On
the other hand, established BSS methods such as Independent Component Analysis
(ICA) are not adequate for this task, since phase-locked sources are not independent
[2]. PLMF is a source separation algorithm tailored specifically for this problem,
and it is presented in the next section.

3 Algorithm

We begin with a summary of the notation and definitions used in this section;
we then formulate the optimization problem for PLMF and present a table of the
algorithm at the end.
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3.1 Assumptions and General Formulation

We assume that we have a set of N complex-valued sources s j(t) for j = 1, . . . ,N
and t = 1, . . . ,T . We assume also that N is known. Denote by S a N by T complex-
valued matrix whose ( j, t)th entry is s j(t). One can easily separate the amplitude and
phase components of the sources through S = A�Φ, where � is the elementwise
(or Hadamard) product, A is a real-valued N by T matrix with its ( j, t) element
defined as a j(t) ≡ |s j(t)|, and Φ is a N by T complex-valued matrix with its ( j, t)
element defined as Φ j(t)≡ ei(angle(s j(t))) ≡ eiφ j(t).

The representation of S in amplitude and phase is, thus far, completely general:
it merely represents S in polar coordinates. We place no constraints on A other than
nonnegativity, since its elements are absolute values of complex numbers. This is
consistent with the use of the PLF as a measure of synchrony: the PLF uses no
information from the signal amplitudes.

We assume that the sources are perfectly synchronized; as discussed in Sect. 2.2,
in this situation, Δφ jk(t) =φ j(t)−φk(t) is constant for all t, for any j and k. Thus,
Φ can be decomposed as

Φ≡ zfT, (2)

where z is a complex-valued column vector of size N containing the relative phase
lags of each source, and f is a complex-valued column vector of size T containing
the common oscillation. In simpler terms, if the sources are phase-locked, then
rank(Φ) = 1, and the above decomposition is always possible, even though it is
not unique. Then, the time evolution of each source’s phase is given by φ j(t) =
angle(z j)+ angle( ft ), where z j and ft are the jth entry of z and the tth element of f,
respectively.

Although one can conceive complex-valued sources where the rows of A and
the vector f vary rapidly with time, in real-world systems we expect them to vary
smoothly; for this reason, as will be seen below, we chose to softly enforce the
smoothness of these two variables in PLMF.

We also assume that we only have access to P measurements (P≥ N) that result
from a linear mixing of the sources, as is customary in source separation problems:

X≡MS+N, (3)

where X is a P by T matrix containing the measurements, M is a P by N real-valued
mixing matrix and N is a P by T complex-valued matrix of noise. Our assumption of
a real mixing matrix is appropriate in the case of linear and instantaneous mixing, as
motivated earlier. We will deal only with the noiseless model, where N= 0, although
we then also test how it copes with noisy data.

The goal of PLMF is to recover S and M using only X. A simple way to do this is
to find M and S such that the data misfit, defined as 1

2

∥
∥X−M

(

A� (zfT)
)∥
∥2

F , where
‖ · ‖F is the Frobenius norm, is as small as possible. As mentioned above, we also
want the estimates of A and f to be smooth. Thus, the minimization problem to be
solved is given by
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min
M,A,z,f

1
2

∥
∥X−M

(

A� (zfT)
)∥
∥

2
F

+λA ‖ADA‖2
F +λf ‖Dff‖2

2 , (4)

s.t.: 1) All elements of M must lie between −1 and +1.

2) All elements of A must be non-negative.

3) All elements of z and f must have

unit absolute value.

where DA and Df are the first-order difference operators of appropriate size, such
that the entry ( j, t) of ADA is given by a j(t)− a j(t + 1), and the kth entry of
Dff is given by fk − f(k+1). The first term directly measures the misfit between
the real data and the product of the estimated mixing matrix and the estimated
sources. The second and third terms enforce smoothness of the rows of A and of
the vector f, respectively. These two terms allow for better estimates for A and f
under additive white noise, since enforcing smoothness is likely to filter the high-
frequency components of that noise.

Constraint 2 ensures that A represents amplitudes, whereas Constraint 3 ensures
that z and f represent phases. Constraint 1 prevents the mixing matrix M from
exploding to infinity while A goes to zero. Note that we also penalize indirectly
the opposite indeterminancy, where M goes to zero while A goes to infinity: that
would increase the value of the second term while keeping the other terms constant,
as long as the rows of A do not have all elements equal to each other. Thus, the
solution for M lies on the boundary of the feasible set for M; using this constraint
instead of forcing the L1 norm of each row to be exactly 1, as was done in [3], makes
the subproblem for M convex, with all the known advantages that this brings [5].

3.2 Optimization

The minimization problem presented in (4) depends on the four variables M, A, z,
and f. Although the minimization problem is not globally convex, it is convex in A
and M individually, while keeping the other variables fixed. For simplicity, we chose
to optimize (4) in each variable at a time, by first optimizing on M while keeping
A, z and f constant; then doing the same for A, followed by z, and then f. This cycle
is repeated until convergence. From our experience with the method, the particular
order in which the variables are optimized is not critical. Although this algorithm
is not guaranteed to converge to a global minimum, we have experienced very few
cases of local optima.
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In the following, we show that the minimization problem above can be translated
into well-known forms (constrained least squares problems) for each of the four
variables. We also detail the optimization procedure for each of the four subprob-
lems. For brevity, we do not distinguish the real variables such as M from their
estimates M̂ throughout this section: in each subproblem, only one variable is being
estimated, while all the others are kept fixed and equal to their current estimates.

Optimization on M If we define m ≡ vec(M) and x ≡ vec(X),3 then the mini-
mization subproblem for M, while keeping all other variables fixed, is equivalent to
the following constrained least-squares problem:

min
m

1
2

∥
∥
∥
∥

[R(x)
I(x)

]

−
[R(R)

I(R)

]

m

∥
∥
∥
∥

2

2

(5)

s.t.: − 1≤m≤+1,

whereR(.) and I(.) are the real and imaginary parts, IP is the P by P identity matrix,
and R ≡ [ST ⊗ IP], with ⊗ denoting the Kronecker product and ‖ · ‖2 denoting
the Euclidean norm. Here, and throughout this paper, all inequalities should be
understood in the componentwise sense, i.e., every entry of M is constrained to be
between−1 and+1. For convenience, we used the least-squares solver implemented
in the MATLAB Optimization Toolbox to solve this problem, although many other
solvers exist.

The main advantage of using the constraint−1≤M≤+1 is now clear: it is very
simply translated into−1≤m≤+1 after applying the vec(.) operator, remaining a
convex constraint, whereas other constraints would be harder to apply.

Optimization on A The optimization in A can also be reformulated as a least-
squares problem. If a≡ vec(A), the minimization on A is equivalent to

min
a

1
2

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

R(x)
I(x)

0(N2−N)

⎤

⎥
⎦−

⎡

⎣

R(K)

I(K)√
λADA⊗ IN

⎤

⎦a

∥
∥
∥
∥
∥
∥
∥

2

2

(6)

s.t.: a≥ 0,

where K ≡ [(Diag(f)⊗M)Diag(z0)], 0(N2−N) is a column vector of size (N2−N),
filled with zeros, and Diag(.) is a square diagonal matrix of appropriate dimension
having the input vector on the main diagonal. We again use the built-in MATLAB
solver to solve this subproblem.

Optimization on z The minimization problem in z with no constraints is equiva-
lent to:

3The vec(.) operator stacks the columns of a matrix into a column vector.
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min
z

1
2
‖Oz− x‖22 with O =

⎡

⎢
⎢
⎢
⎣

f1M Diag(a(1))
f2M Diag(a(2))

...
fT M Diag(a(T ))

⎤

⎥
⎥
⎥
⎦
, (7)

where ft is the tth entry of f, and a(t) is the tth column of A. Usually, the solution of
this system will not obey the unit absolute value constraint. To circumvent this, we
solve this unconstrained linear system and afterwards normalize z for all sources j
and time instants t, by transferring its absolute value onto variable A:

a j(t)← |z j|a j(t) and z j ← z j/|z j|.

It is easy to see that the new z obtained after this normalization is still a global
minimizer of (7) (where the new value of A should be used).

Optimization on f Let x̃ ≡ vec(XT). The minimization problem in f with no
constraints can be shown to be equivalent to

min
f

1
2

∥
∥
∥
∥

[
P√
λfDf

]

f−
[

x̃
0(N−1)

]∥
∥
∥
∥

2

2

(8)

with P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
j

m1 jz jDiag(a j)

∑
j

m2 jz jDiag(a j)

...
∑
j

mP jz jDiag(a j)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where ft is the tth entry of f, mi j is the (i, j) entry of M, z j is the jth entry of z, and
a j is the jth row of A.

As in the subproblem for z, in general the solution of this system will not obey the
unit absolute value constraint. Thus, we perform a similar normalization, given by

a j(t)← | ft |a j(t) and ft ← ft/| ft |. (9)

Note that unlike the previous case of the optimization for z, this normalization
changes the cost function, in particular the term λf ‖Dff‖2

2. Therefore, there is no
guarantee that after this normalization we have found a global minimum for f.

For this reason, we construct a vector of angles β ≡ angle(f) and minimize the
cost function (4) as a function of β, using 20 iterations of Newton’s algorithm.
Although infinitely many values of β correspond to a given f, any of those values
is suitable. The advantage of using this new variable is that there are no constraints
in β, so the Newton algorithm can be used freely. Thus, the normalized solution of
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the linear system in (8) can be considered simply as an initialization for the Newton
algorithm on β, which in most conditions can find a local minimum.

On the first time that the Newton algorithm is run, it is initialized using the
unconstrained problem (8) and the ensuing normalization (9). On the second and
following times that it is run, the result of the previous minimization on f is used as
initial value.

Phase-Locked Matrix Factorization The consecutive cycling of optimizations on
M, A, z and f constitutes the Phase-Locked Matrix Factorization (PLMF) algorithm.
A summary of this algorithm is presented below.

PHASE-LOCKED MATRIX FACTORIZATION

1: Input data X
2: Input random initializations M̂, Â, ẑ, f̂
3: for iter ∈ {1,2,. . .,MaxIter}, do
4: Solve the constrained problem in Eq. (3.2)
5: Solve the constrained problem in Eq. (6)
6: Solve the unconstrained system in Eq. (7)
7: a j(t)← |z j|a j(t) and z j ← z j/|z j|, j = 1, . . . ,N
8: if iter = 1
9: Solve the unconstrained system in Eq. (8)
10: a j(t)← | ft |a j(t) and ft ← ft/| ft|, t = 1, . . . ,T
11: Optimize β≡ angle(f) with Newton algorithm

(use result of step 10 as initialization)
12: else
13: Optimize β≡ angle(f) with Newton algorithm

(use Newton algorithm from (iter-1) as init.)
14: end for

4 Simulation and Results

In this section we show results on small simulated datasets, demonstrating that
PLMF can correctly factor the data X into a mixing matrix M, amplitudes A, and
phases z and f. Despite deriving PLMF for the noiseless case, we will also test its
robustness to a small noisy perturbation.

4.1 Data Generation

We generate the data directly from the model X= MS, with S = A�Φ=A�(zfT),
taking N = 2 and P = 4. The number of time samples is T = 100. M is taken as a
random matrix with entries uniformly distributed between −1 and +1. We then
normalize M so that the entry with the largest absolute value is ±1. Each row of A
(i.e. each source’s amplitude) is generated as a sum of a constant baseline and 2–5
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Gaussians with random mean and random variance. z is always equal to
[

0, 2π
3

]T
.4

f is generated as a complex sinusoid with angular frequency 0.06 in the first half
of the observation period, and angular frequency 0.04 in its second half, in a way
that f has no discontinuities. X is then generated according to the data model: X =
M(A� (zfT)).

The initial values for the estimated variables are all random: elements of M̂ and
Â are drawn from the Uniform([0,1]) distribution (M̂ is then normalized in the same
way as M), while the elements of ẑ are of the form eiα with α taken from the
Uniform

([

0, π2
])

distribution. The elements of f are also of the form eiβ, with β

uniformly distributed between 0 and 2π.
We generate 100 datasets of two types with the following features:

• 100 noiseless datasets: 2 sources, 4 sensors, 100 time points, no noise.
• 100 noisy datasets: same as above 1, but with added complex Gaussian white

noise as in (3). The noise power is such that the Signal-to-Noise Ratio (SNR) of
the data is 20 dB.

4.2 Quality Measures

M̂ can be compared with M through the gain matrix G ≡ M̂+M, where M̂+ is the
Moore-Penrose pseudo-inverse of M̂ [4]. This is the same as M̂−1M if the number
of sensors is equal to the number of sources. If the estimation is well done, the
gain matrix should be close to a permutation of the identity matrix. After manually
compensating a possible permutation of the estimated sources, we compare the sum
of the squares of the diagonal elements of G with the sum of the squares of its
off-diagonal elements. This criterion is called Signal-to-Interference Ratio (SIR).

Also, Â will be compared to A through visual inspection for one dataset with an
SIR close to the average SIR of the 100 datasets.

4.3 Results

We did not implement a convergence criterion; we simply do 400 cycles of the
optimization on M, A, z and f using λA = 3 and λf = 1. The mean and standard
deviation of the SIR criterion are presented in Table 1. This table also shows results
for other choices of λA, which are discussed in Sect. 5.1. Figure 2 shows the results
of the estimation of the source amplitudes for one representative dataset, showing
that Â is quite close to the real A for both the noiseless and the noisy datasets. Note

4This choice of z is done to ensure that the sources never have phase lags close to 0 or π, which
violate the mild assumptions mentioned in Sect. 2.3 [2].
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Table 1 Comparison of the
estimated mixing matrix M̂
with the true mixing matrix
M through the pseudo-SIR of
the gain matrix G≡ M̂+M

SIR (dB)

Data λA = 0.3 λA = 3 λA = 30

Dataset 1 23.93 ± 12.72 24.67 ± 12.27 17.34 ± 10.46
Dataset 2 24.37 ± 13.02 25.20 ± 12.29 19.33 ± 10.96

For zero noise (dataset 1), the estimation is quite good, and
the performance hit due to the presence of noise (dataset 2) is
minimal. We used λf = 1 for all the entries of the table.
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Fig. 2 Visual comparison of the estimated amplitudes Â (dashed lines) with the true amplitudes
A (solid lines), for a representative dataset, after both are normalized so that they have unit means
over the observation period. (Left) Results for a noiseless dataset: the two estimated amplitudes
are close to the true values. Note that the estimated amplitudes have slower variations than the true
amplitudes, due to the term with λA. (Right) Results for a noisy dataset: due to the presence of
noise, it is impossible for the two estimated amplitudes to coincide perfectly with the true ones, but
nevertheless the estimated amplitudes follow the real ones very closely. For this figure, the values
λA = 3 and λf = 1 were used

that if noise is present, it is impossible to recreate the original amplitudes as they are
only present in the data corrupted by noise: one can thus only estimate the corrupted
amplitudes. If desired, a simple low-pass filtering procedure can closely recreate the
original amplitudes.

These results illustrate that PLMF can separate phase-locked sources in both
the noiseless and the noisy condition. Furthermore, they show that there is no
performance hit due to the presence of a small amount of noise, suggesting that
PLMF has good robustness against small perturbations.

5 Discussion

The above results show that this approach has a high potential, although some
limitations must be addressed to turn this algorithm practical for real-world
applications.

One incomplete aspect of PLMF is its lack of a stopping criterion; in fact, the
results shown in Table 1 could be considerably improved if the number of iterations
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is increased to, say, 1,000, although that is not the case for all of the 100 datasets.
We did not tackle this aspect due to lack of time; however, the data misfit (first term
of the cost function) can probably be used to design a decent criterion.

If the sources are not perfectly phase-locked, their pairwise phase differences
Δφi j are not constant in time and therefore one cannot represent the source phases
by a single vector of phase lags z and a single vector f with a common oscillation.
In other words, Φ will have a rank higher than 1 (in most cases, it will have
the maximum possible rank, which is N), which makes a representation Φ = zfT

impossible. We are investigating a way to estimate the “most common” phase
oscillation f from the data X, after which PLMF can be used to initialize a more
general algorithm that estimates the full Φ. We are currently testing also a more
general algorithm, which optimizes Φ with a gradient descent algorithm. Yet, it is
somewhat prone to local minima, as one would expect for optimizing variables of
size NT = 200. A good initialization is likely to alleviate this problem.

Another limitation of PLMF is the indetermination that arises if two sources have
Δφi j = 0 or π. In that case, the problem becomes ill-posed, as was already the case
in IPA [2]. In fact, using sources with Δφi j <

π
10 starts to deteriorate the results of

PLMF, even with zero noise.
One further aspect which warrants discussion is PLMF’s identifiability. If we find

two factorizations such that X = M1
(

A1� (z1fT1 )
)

= M2
(

A2� (z2fT2 )
)

(i.e., two
factorizations which perfectly describe the same data X), does that imply that M1 =
M2, and similar equalities for the other variables? It is quite clear that the answer
is negative: the usual indeterminancies of BSS apply to PLMF as well, namely the
indeterminancies of permutation, scaling, and sign of the estimated sources. There
is at least one further indeterminancy: starting from a given solution X = M1

(

A1�
(z1fT1 )

)

, one can always construct a new one by defining z2≡ eiψz1 and f2≡ e−iψf1,
while keeping M2 ≡M1 and A2 ≡A1. Note that S1 = A1� (z1fT1 ) = A2� (z2fT2 ) =
S2, thus the estimated sources are exactly the same.

5.1 Choice of Parameters λA and λf

The values of the parameters that we chose were somewhat ad hoc. However, PLMF
is rather robust to the choice of λA. Table 1 shows not only the values for λA = 3
(and λf = 1), but also for cases where λA is one order of magnitude smaller (0.3) or
greater (30). Those results show that the SIR does not change too much when this
parameter varies by two orders of magnitude.

λA has the effect of penalizing large variations in A which can be due to the
presence of noise. Therefore, if this parameter is too large, the algorithm will
underestimate the variations present in the true amplitudes, as illustrated in Fig. 3.
In this figure, the shape of the estimated amplitudes is similar to the shape of the true
amplitudes, but the variations are smaller. This effect was already present in Fig. 2
for λA = 3, but in that case the error was very slight, whereas in Fig. 3 the effect is
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Fig. 3 A typical result of choosing a value of λA which is too large (in this case, λA = 30). The
true amplitudes are shown in solid lines, whereas estimated amplitudes are shown in dashed lines.
The estimated amplitudes are similar in shape to the true ones, but have lower variations, since the
penalty term is too strong

very noticeable. This is the reason why λA = 30 yields somewhat lower SIR values
when compared to λA = 3: the algorithm will yield estimated amplitudes which are
smaller than the true amplitudes.

One might then think that the correct way to choose λA would be to pick the
smallest possible value, which is λA = 0. The results for λA = 0.3, from Table 1,
might encourage that decision. However, λA = 0 is a poor choice, because the λA
term has the indirect effect of preventing A from exploding to infinity and M from
shrinking to zero, while keeping the product X = M(A�(zfT)) constant, a situation
which causes severe numerical problems.5 Therefore, one should pick a small but
positive value for λA.

The effect of λf is easier to understand, because the indirect effect mentioned in
the last paragraph is not present. This parameter has a much smaller effect if f is
smooth, as is the case studied in this paper. A nonzero value helps with numerical
conditioning of the problem in the presence of noise, because it prevents the fast
variations of the noise from contaminating the estimated f. However, in contrast to
the poor choice λA = 0 discussed in the previous paragraph, λf = 0 is a perfectly
valid choice.

5These numerical problems are the reason why no results for λA = 0 are shown in this paper.



Phase-Locked Matrix Factorization with Estimation of the Common Oscillation 65

6 Conclusion

We presented an improved version of Phase-Locked Matrix Factorization (PLMF),
an algorithm that directly tries to reconstruct a set of measured signals as a linear
mixing of phase-locked sources, by factorizing the data into a product of four
variables: the mixing matrix, the source amplitudes, their phase lags, and a common
oscillation.

PLMF is now able to estimate the sources even when their common oscillation is
unknown—an advantage which greatly increases the applicability of the algorithm.
Furthermore, the subproblem for M is now convex, and the subproblems for z and
f are tackled in a more appropriate manner which should find local minima. The
results show good performance for the noiseless case and good robustness to small
amounts of noise. The results show as well that the proposed algorithm is accurate
and can deal with low amounts of noise, under the assumption that the sources are
fully phase-locked, even if the common oscillation is unknown. This generalization
brings us considerably closer to being able to solve the Separation of Synchronous
Sources (SSS) problem in real-world data.
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Stochastic Subgradient Estimation Training
for Support Vector Machines

Sangkyun Lee and Stephen J. Wright

Abstract Subgradient algorithms for training support vector machines have been
successful in solving many large-scale and online learning problems. However, for
the most part, their applicability has been restricted to linear kernels and strongly
convex formulations. This paper describes efficient subgradient approaches without
such limitations. Our approaches make use of randomized low-dimensional approx-
imations to nonlinear kernels, and minimization of a reduced primal formulation
using an algorithm based on robust stochastic approximation, which does not require
strong convexity. Experiments illustrate that our approaches produce solutions of
comparable prediction accuracy with the solutions acquired from existing SVM
solvers, but often in much shorter time.

1 Introduction

Support vector machines (SVMs) have been highly successful in machine learning
and data mining. We broadly categorize training algorithms for SVMs as follows:

1. Decomposition methods based on dual formulations, such as SVM-Light [8],
LIBSVM [6], and an online variant LASVM [1]. Kernels can be easily introduced
into formulations via the kernel trick [2].
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2. Cutting-plane methods using special primal formulations to successively add
violated constraints. SVM-Perf [9] and OCAS [7] handle linear kernels; the
former approach is extended for nonlinear kernels in CPNY [11] and CPSP [10].

3. Subgradient methods for primal formulations with linear kernels, including
Pegasos [18] and SGD [3]. The former is adapted in [19] to nonlinear kernels.

Subgradient methods are of particular interest in this paper since they are well suited
to large-scale and online learning problems.

This paper aims to provide practical subgradient algorithms for training SVMs
with nonlinear kernels, overcoming the weakness of the updated Pegasos algo-
rithm [19], which uses exact kernel information and which may (in the worst
case) require a dual variable for each training example. Our approach uses a
primal formulation with low-dimensional approximations to feature mappings.
Such approximations are obtained either by approximating the Gram matrix or
by constructing subspaces whose random bases approximate the feature spaces
induced by kernels. These approximations can be computed and applied to data
points iteratively and thus are suited to an online context as well. Further, we suggest
an efficient way to make predictions for test points using the approximate feature
mappings, without recovering the potentially large number of support vectors.

Unlike Pegasos, we use Vapnik’s original SVM formulation without modifying
the objective to be strongly convex. Our main algorithm takes steplengths of size
O(1/

√
t) (associated with the robust stochastic approximation methods [14, 15]

and online convex programming [20]), rather than the O(1/t) steplength scheme in
Pegasos. As we show in the experiments, there is little practical difference between
O(1/

√
t) steplengths and O(1/t) steps.

2 Nonlinear SVMs in the Primal

In this section we discuss the primal SVM formulation in a low-dimensional feature
space induced by kernel approximation.

2.1 Structure of the Formulation

We first analyze the structure of the primal SVM formulation with nonlinear feature
mappings. To unveil the details, we apply the tools of convex analysis, rather than
appealing to the representer theorem [12] as in [4].

Let us consider the training point and label pairs {(ti,yi)}m
i=1 for ti ∈ R

n and
yi ∈R, and a feature mapping φ : Rn →R

d . Given a convex loss function �(·) : R→
R∪{∞} and λ > 0, the primal SVM problem (for classification) can be stated as
follows:

(P1) min
w∈Rd ,b∈R

λ
2

wTw+
1
m

m

∑
i=1

�
(
yi
(
wTφ (ti)+ b

))
.
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The necessary and sufficient optimality conditions are

λ w+
1
m

m

∑
i=1

χiyiφ(ti) = 0,
1
m

m

∑
i=1

χiyi = 0 for χi ∈ ∂�
(
yi
(
wTφ (ti)+ b

))
, (1)

where ∂� is the subdifferential of �. We now consider the following substitution:

w =
m

∑
i=1

αiφ(ti) (2)

(which mimics the form of the first equality in (1)). Motivated by this expression,
we formulate the following problem

(P2) min
α∈Rm,b∈R

λ
2

αTΨα +
1
m

m

∑
i=1

�(yi(Ψi·α + b)) ,

where Ψ ∈ R
m×m is defined by Ψi j := φ(ti)

Tφ(t j) for i, j = 1,2, . . . ,m, and Ψi·
denotes the ith row of Ψ . Optimality conditions for (P2) are as follows:

λΨα +
1
m

m

∑
i=1

βiyiΨ T
i· = 0,

1
m

m

∑
i=1

βiyi = 0 for βi ∈ ∂�(yi(Ψi·α + b)) . (3)

In the following result, we show that the solution of (P1) can be derived from a
solution of (P2). This result can be regarded as a specialized representer theorem.

Proposition 1. Let (α,b) ∈ R
m ×R be a solution of (P2). Then if we define w by

(2), (w,b) ∈R
d ×R is a solution of (P1).

Proof. Since (α,b) solves (P2), (3) hold for some βi, i = 1, . . . ,m. To prove the
claim, it suffices to show that (w,b) and χ satisfy (1), where w is defined by (2) and
χi = βi for all i = 1, . . . ,m. Substituting Ψi j = φ(ti)

Tφ(t j) in (3), we have

λ
m

∑
i=1

φ(t j)
Tφ(ti)αi +

1
m

m

∑
i=1

βiyiφ(t j)
Tφ(ti) = 0,

1
m

m

∑
i=1

βiyi = 0,

where βi ∈ ∂�
(

yi

(
∑m

j=1 φ(t j)
Tφ(ti)α j + b

))
. From the first equality, we have

−
m

∑
i=1

(
αi +

yi

λ m
βi

)
φ(ti)+ ξ = 0, for ξ ∈ Null

([
φ(t j)

T]m
j=1

)
.

Since the two components in this sum are orthogonal, it implies that

0 =

∥
∥∥
∥
∥

m

∑
i=1

(
αi +

yi

λ m
βi

)
φ(ti)

∥
∥∥
∥
∥

2

2

+ ξ Tξ ⇒ ξ = 0.
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We can therefore rewrite the optimality conditions for (P2) as follows:

m

∑
i=1

(
λ αi +

yi

m
βi

)
φ(ti) = 0,

1
m

m

∑
i=1

βiyi = 0, (4)

for some βi ∈ ∂�
(

yi

(
φ(ti)

T ∑m
j=1 α jφ(t j)+ b

))
. By defining w as in (2) and setting

χi = βi for all i, we see that (4) is identical to (1), as claimed. ��
While Ψ is clearly symmetric positive semidefinite, the proof makes no assump-

tion about nonsingularity of this matrix, or uniqueness of the solution α of (P2).
However, the first equality in (3) suggests that without loss of generality, we can
constrain α to have the form αi = − yi

λ mβi, where βi ∈ ∂�. (For the hinge loss
function �(δ ) := max{1− δ ,0}, we have βi ∈ [−1,0].) These results clarify the
connection between the expansion coefficient α and the dual variable β (= χ),
which is introduced in [4] but not fully explicated there. Similar arguments for
the regression with the ε-insensitive loss function �′(δ ) := max{|δ |− ε,0} lead to
α ′

i =− 1
λ mβ ′

i , where β ′
i ∈ [−1,1] is in ∂�′.

2.2 Reformulation Using Approximations

Consider the original feature mapping φ◦ : Rn → H to a Hilbert space H induced
by a kernel k◦ : Rn × R

n → R, where k◦ satisfies the conditions of Mercer’s
Theorem [17]. Suppose that we have a low-dimensional approximation φ : Rn →R

d

of φ◦ for which

k◦(s, t)≈ φ(s)Tφ(t), (5)

for all inputs s and t of interest. If we construct a matrix V ∈ R
m×d by defining the

ith row as
Vi· = φ(ti)

T, i = 1,2, . . . ,m, (6)

then we have
Ψ :=VV T ≈Ψ ◦ := [k◦(ti, t j)]i, j=1,2,...,m. (7)

Note that Ψ is a positive semidefinite rank-d approximation to Ψ◦. Substituting
Ψ =VV T and γ =V Tα in (P2) leads to the equivalent formulation

(PL) min
γ∈Rd ,b∈R

λ
2

γTγ +
1
m

m

∑
i=1

�(yi(Vi·γ + b)).

This problem can be regarded as a linear SVM with transformed feature vectors
V T

i· ∈ R
d , i = 1,2, . . . ,m. An approximate solution to (PL) can be obtained with the

subgradient algorithms discussed later in Sect. 3.
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2.3 Approximating the Kernel

We discuss two techniques for finding V that satisfies (7). The first uses randomized
linear algebra to calculate a low-rank approximation to the matrix Ψ◦. The second
approach uses random projections to construct approximate feature mappings φ
explicitly.

Kernel Matrix Approximation In this approach, we specify some integers d and s
with 0< d ≤ s<m, and choose s elements at random from the index set {1,2, . . . ,m}
to form a subset S. We then find the best rank-d approximationWS,d to (Ψ◦)SS , and
its pseudo-inverse W+

S,d . We choose V so that

VV T = (Ψ◦)·SW+
S,d(Ψ

◦)T
·S , (8)

where (Ψ ◦)·S denotes the column submatrix of Ψ◦ defined by the indices in S.
The results in [5] indicate that in expectation and with high probability, the rank-d
approximation obtained by this process has an error that can be made as close to the
best rank-d approximation by choosing s sufficiently large.

To obtain WS,d , we form the eigen-decomposition (Ψ◦)SS = QDQT, where
Q ∈ R

s×s is orthogonal and D is a diagonal matrix with nonincreasing nonnegative
diagonal entries. Taking d̄ ≤ d to be the number of positive diagonals in D, we have
WS,d and its pseudo-inverse W+

S,d as

WS,d = Q·,1..d̄D1..d̄,1..d̄QT
·,1..d̄ , W+

S,d = Q·,1..d̄D−1
1..d̄,1..d̄

QT
·,1..d̄ ,

(where Q·,1..d̄ denotes the first d̄ columns of Q, and so on). Therefore the matrix V
satisfying (8) is

V = (Ψ◦)·SQ·,1..d̄D−1/2
1..d̄,1..d̄

. (9)

For practical implementation, rather than defining d a priori, we can choose a
threshold εd with 0 < εd 
 1, then choose d to be the largest integer in 1,2, . . . ,s
such that Ddd ≥ εd . (In this case, we have d̄ = d.)

For each sample set S, this approach requires O(ns2 + s3) operations for the
creation and factorization of (Ψ◦)SS , assuming the evaluation of each kernel entry
takes O(n). Since our algorithm requires a single row of V in each iteration, the
computation cost of (9) can be amortized over iterations: the cost is O(sd) per
iteration if the corresponding row of Ψ ◦ is available; O(ns+ sd) otherwise.

Feature Mapping Approximation The second approach to defining V finds a
mapping φ : Rn → R

d that satisfies 〈φ◦(s),φ◦(t)〉 = E [〈φ(s),φ(t)〉], where the
expectation is over the random variables that determine φ . The approximate
mapping φ can be constructed explicitly by random projections as follows [16]:

φ(t) =
√

2
d

[
cos(νT

1 t+ω1), . . . ,cos(νT
d t+ωd)

]T
(10)
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where ν1, . . . ,νd ∈ R
n are i.i.d. samples from a distribution with density p(ν), and

ω1, . . . ,ωd ∈ R are from the uniform distribution on [0,2π ]. The density function
p(ν) is determined by the types of the kernels we want to use. For the Gaussian
kernel k◦(s, t) = exp(−σ‖s− t‖2

2), we have p(ν) = (4πσ)−d/2 exp
(−‖ν‖2

2/(4σ)
)
,

from the Fourier transformation of k◦.
This approximation method is less expensive than the previous one, requiring

only O(nd) operations for each data point (assuming sampling of each vector νi ∈
R

n takes O(n) time). As we see in Sect. 4, however, this approach tends to give
lower prediction accuracy than the first approach for a fixed d value.

2.4 Efficient Prediction

Given the solution (γ,b) of (PL), we now describe how the prediction of a new
data point t ∈ R

n can be made efficiently without recovering the support vector
coefficient α in (P2). The imposed low dimensionality of the approximate kernel in
our approach can lead to significantly lower cost of prediction, as low as a fraction
of d/(no. support vectors) of the cost of an exact-kernel approach.

For the feature mapping approximation, we can simply use the decision function
f suggested immediately by (P1), that is, f (t) = wTφ(t)+ b. Using the definitions
(2), (6), and γ :=V Tα , we obtain

f (t) = φ(t)T
m

∑
i=1

αiφ(ti)+ b = φ(t)TV Tα + b = φ(t)Tγ + b.

The time complexity in this case is O(nd).
For the kernel matrix approximation approach, the decision function wTφ(t)+b

cannot be used directly, as we have no way to evaluate φ(t) for an arbitrary point t.
We can, however, use the approximation (5) to note that

φ(t)Tw+ b =
m

∑
i=1

αiφ(t)Tφ(ti)+ b ≈
m

∑
i=1

αik
◦(ti, t)+ b, (11)

so we can define the function on the right-hand side of this expression to be the
decision function. To evaluate this expression, we need to recover a vector α such
that V Tα = γ , where γ is obtained by solving (PL). Since V T has dimensions n× d̄,
α is not uniquely defined by this expression. Thus, we choose to set αi = 0 for i /∈S,
and define the remaining subvector αS as follows (in the notation of Sect. 2.3):

αS := Q·,1..d̄D−1/2
1..d̄,1..d̄

γ.

By using (9) and the decomposition (Ψ◦)SS = QDQT, it is easy to verify that
V Tα = V T

S·αS = γ , as required. Calculation of this α can be performed in O(d2)
time. Therefore, prediction of a test point will take O(d2 + nd), including kernel
evaluation time.
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3 The ASSET Algorithm

Here we describe our stochastic approximation approach, with reference to the
general convex optimization problem

min
x∈X

f (x),

where f is a convex function and X ⊂R
d is a compact convex set with radius DX :=

maxx∈X ||x||2. We assume that at any x∈X , we can calculate a stochastic subgradient
estimate G(x;ξ ) depending on random variable ξ ∈ Ξ ⊂R

p, for which E[G(x;ξ )]∈
∂ f (x). The norm deviation of the stochastic subgradients is measured by DG defined
as follows:

E[‖G(x;ξ )‖2
2]≤ D2

G, ∀x ∈ X , ξ ∈ Ξ .

Iterate Update: At iteration j, the algorithm takes the following step:

x j = ΠX(x
j−1 −η jG(x j−1;ξ j)), j = 1,2, . . . ,

where ξ j is a random variable (i.i.d. with the random variables used at previous
iterations), ΠX is the Euclidean projection onto X , and η j > 0 is a step length. For
our problem (PL), we have x j = (γ j,b j), ξ j is selected to be one of the indices
{1,2, . . . ,m} with equal probability, and the subgradient estimate is constructed
from the subgradient for the ξ jth term in the summation of the empirical loss term.
Table 1 summarizes the subgradients G(x j−1;ξ j) for classification and regression
tasks, with the hinge loss and the ε-insensitive loss functions, respectively.

Feasible Sets: For the classification problem, we define the feasible set X to be the
Cartesian product of a ball in the γ component with radius 1/

√
λ and an interval for

the b component, that is, b ∈ [−B,B], for some constant B. The radius of the ball is
derived using strong duality [19, Theorem 1]; we have DX =

√
1/λ +B2. For the

regression problem, the following theorem provides a bound on the size of γ∗, and
thus suggests a radius for X .

Table 1 Loss functions and their subgradients for classification and regression

Task �

G

([
γ j−1

b j−1

]
;ξ j

)
=

[
λ γ j−1+d jV T

ξ j ·
d j

]

Classification max{1− y(wTφ (t)+b),0} d j =

{
−yξ j if yξ j (Vξ j ·γ j−1 +b j−1)< 1

0 otherwise.

Regression max{|y− (wTφ (t)+b)|−ε,0} d j =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if yξ j >Vξ j ·γ j−1 +b j−1 +ε,

1 if yξ j <Vξ j ·γ j−1 +b j−1 −ε,

0 otherwise.
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Theorem 1. For SVM regression using the ε-insensitive loss function with 0 ≤
ε < ‖y‖∞, where y := (y1,y2, . . . ,ym)

T, we have for the optimal γ∗ that ‖γ∗‖2 ≤√
2(‖y‖∞− ε)/λ .

Proof. We can write an equivalent formulation of (PL) for regression as

min
γ,b

1
2

γTγ +C
m

∑
i=1

max{|yi − (γTφ(ti)+ b)|− ε,0},

for C = 1/(λ m). The corresponding Lagrange dual formulation is

max
z,z′

− 1
2

m

∑
i=1

m

∑
j=1

(z′i − zi)(z
′
j − z j)〈φ(ti),φ(t j)〉− ε

m

∑
i=1

(z′i + zi)+
m

∑
i=1

yi(z
′
i − zi)

s.t.
m

∑
i=1

(z′i − zi) = 0, 0 ≤ zi ≤C, 0 ≤ z′i ≤C, i = 1,2, . . . ,m.

Let (γ∗,b∗) and (z∗,z′∗) be the optimal solutions of the primal and the dual formu-
lations, respectively. Replacing γ∗ = ∑m

i=1(z
′∗
i − z∗i )φ(ti) from the KKT conditions

into the dual objective and using strong duality, we have

1
2
(γ∗)Tγ∗ ≤ 1

2
(γ∗)Tγ∗+C∑m

i=1 max{|yi − ((γ∗)Tφ(ti)+ b∗)|− ε,0}

=−1
2
(γ∗)Tγ∗ − ε∑m

i=1(z
′∗
i + z∗i )+∑m

i=1 yi(z
′∗
i − z∗i )

≤−1
2
(γ∗)Tγ∗+(‖y‖∞− ε)(‖z‖1 + ‖z′‖1).

From the constraints on z, we have ‖z‖∞ ≤C, and thus ‖z‖1 ≤Cm = 1/λ . (Similarly
for z′.) Our claim follows from using these bounds in the inequality above. Note if
ε ≥ ‖y‖∞, then the optimal solution is trivially (γ∗,b∗) = (0,0). ��
Averaged Iterates: The solution of (3) is estimated not by the iterates x j but rather
by a weighted sum of the final few iterates. Specifically, if we define N to be the total
number of iterates to be used and N̄ < N to be the point at which we start averaging,

the final reported solution estimate would be x̃N̄,N :=
∑N

t=N̄
ηt xt

∑N
t=N̄

ηt
. There is no need to

store all the iterates xt , t = N̄, N̄ + 1, . . . ,N in order to evaluate the average. Instead,
a running average can be maintained over the last N − N̄ iterations, requiring the
storage of only a single extra vector.

Estimation of DG: The steplength η j requires knowledge of the subgradient
estimate deviation DG defined in (3). We use a small random sample of training
data indexed by ξ (l), l = 1,2, . . . ,M, at the first iterate (γ0,b0), and estimate D2

G as
E[‖G([γ0,b0]T;ξ )‖2

2]≈ 1
M ∑M

l=1 d2
l (||Vξ (l)·||22 + 1).
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Algorithm 1: ASSET Algorithm
Input: T = {(ti,yi)}m

i=1, Ψ ◦, λ , integers N̄ and N with 0 < N̄ < N, DX , DG.
Set (γ0,b0) = (0,0), (γ̃ , b̃) = (0,0), η̃ = 0;
for j = 1,2, . . .,N do

η j =
DX

DG
√

j ;

Choose ξ j ∈ {1, . . . ,m} at random;

Vξ j · =

{
Vξ j · for V as in (9), or

φ (tξ j ) for φ (·) as in (10).

Compute G

([
γ j−1

b j−1

]
;ξ j

)
following Table 1;

[
γ j

b j

]
= ΠX

([
γ j−1

b j−1

]
−η jG

([
γ j−1

b j−1

]
;ξ j

))
.

if j ≥ N̄ then (Update averaged iterate)

[
γ̃
b̃

]
=

η̃
η̃ +η j

[
γ̃
b̃

]
+

η j

η̃ +η j

[
γ j

b j

]
, η̃ = η̃ +η j.

end
end
Output: γ̃ N̄,N := γ̃ and b̃N̄,N := b̃.

We summarize this framework in Algorithm 1 and refer it as ASSET. The integer
N̄ > 0 specifies the iterate at which the algorithm starts averaging the iterates, which
can be set to 1 to average all, to a predetermined maximum iteration number to
output just the last one, or to a number in between.

3.1 Convergence

The analysis of robust stochastic approximation [14,15] provides theoretical support
for the algorithm above. Considering Algorithm 1 applied to the general formulation
(3), choosing N̄ = �ρN� for some specified constant ρ ∈ (0,1), and denoting the
algorithm’s output by x̃N̄,N , we have the following result.

Theorem 2. Given the output x̃N̄,N and optimal function value f (x∗), Algorithm 1
satisfies

E[ f (x̃N̄,N)− f (x∗)]≤C(ρ)
DX DG√

N
,

where C(ρ) solely depends on the fraction ρ ∈ (0,1) for which N̄ = �ρN�.
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3.2 Strongly Convex Case

Suppose that we omit the intercept b from the linear formulation (PL). Then
its objective function f (x) becomes strongly convex for all of its variables. In
this special case we can apply different steplength η j = 1/(λ j) to achieve faster
theoretical convergence rate—a rate of 1/ j rather than 1/

√
j. The algorithm remains

the same as Algorithm 1 except that averaging is no longer needed. (See [15] for a
general proof.)

Theorem 3. Given the output xN and optimal function value f (x∗), Algorithm 1
with η j = 1/(λ j) satisfies

E[ f (xN)− f (x∗)]≤ 1
N

max

{(
DG

λ

)2

, D2
X

}

.

Note that when λ ≈ 0 (that is, when the modulus of convexity is small), the
convergence of this approach can be quite slow unless we have DG ≈ 0 as well.

Without the intercept b, the feasible set X is simpler (as it contains only the γ
component), so the update steps are changed accordingly. The resulting algorithm,
which we refer to as ASSET∗, is the same as Pegasos [18] and SGD [3], apart for
our extensions to nonlinear kernels.

4 Computational Results

We implemented Algorithm 1 by modifying the open-source Pegasos code. (Our
code is available at http://pages.cs.wisc.edu/∼sklee/asset/.) The versions of our
algorithms that use kernel matrix approximation are referred to as ASSETM and
ASSET∗

M , while those with feature mapping approximation are called ASSETF

and ASSET∗
F . For direct comparisons with other codes, we do not include intercept

terms since some of the other codes do not allow such terms to be used without
penalization. All experiments with randomness are repeated 50 times.

Table 2 summarizes the six binary classification tasks we use, indicating
the values of parameters λ and σ selected using SVM-Light to maximize the
classification accuracy on each validation set. (For MNIST-E, we use the same
parameters as in MNIST.) For the first five moderate-size tasks, we compare all of
our algorithms against four publicly available codes: CPNY and CPSP (both cutting-
plane methods), along with SVM-Light and LASVM. (The original SVM-Perf [9]
and OCAS [7] are not included because they cannot handle nonlinear kernels.) For
MNIST-E, we compare our algorithms using feature mapping approximation to
LASVM.

For our algorithms, the averaging parameter is set to N̄ = m− 100 for all cases
(averaging is performed for the final 100 iterates). The test error values are computed
using the efficient schemes of Sect. 2.4.
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Table 2 Data sets and training parameters

Name m(train) Valid/test n (density) λ σ Note

ADULT 32561 8140/8141 123 (11.2%) 3.07e-8 0.001 UCI Repository
MNIST 58100 5950/5950 784 (19.1%) 1.72e-7 0.01 Digits 0-4 vs. 5-9
CCAT 78127 11575/11574 47237 (1.6 %) 1.28e-6 1.0 RCV1 collection [13]
IJCNN 113352 14170/14169 22 (56.5%) 8.82e-8 1.0 2001 challengea

COVTYPE 464809 58102/58101 54 (21.7%) 7.17e-7 1.0 Type 1 vs. rest
MNIST-E 1000000 20000/20000 784 (25.6%) 1.00e-8 0.01 An extended setb
a

http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
b

http://leon.bottou.org/papers/loosli-canu-bottou-2006/

4.1 Accuracy vs. Approximation Dimension

The first experiment investigates the effect of kernel approximation dimension on
classification accuracy. We set the dimension parameter s in Sect. 2.3 to values in
the range [2,1024], with the eigenvalue threshold εd = 10−16. Note that s is an upper

bound on the actual dimension d of approximation for ASSET(∗)
M , but is equal to d

in the case of ASSET(∗)
F . The CPSP and CPNY have a parameter similar to s, as an

upper bound of d; we set this parameter to the same values as our s.
For the first five moderate-size tasks, we ran our algorithms for 1,000 epochs

(1000m iterations) so that they converged to a near-optimal value with small
variation among different randomization. We obtained the baseline performance of
these tasks by running SVM-Light. SVM-Light does not have dimension parameters
but can be expected to give the best achievable performance by the kernel-
approximate algorithms as s approaches m.

Figure 1 shows the results. We do not plot results for ASSET∗
M or ASSET∗

F ,
as they give very similar results to ASSETM and ASSETF , respectively. When the
value of σ is very small, as in Fig. 1(a) of the ADULT data set, all codes achieve good
classification performance for small dimension. In other data sets, the chosen values
of σ are larger and the intrinsic rank of the kernel matrix is higher, so classification
performance continues to improve as s increases.

Interestingly, ASSETF (feature mapping approximation) seems to require a
higher dimension than ASSETM (kernel matrix approximation) to produce similar
classification accuracy. We can, however, afford to use a larger dimension for
ASSETF , since the former requires less computation than the latter. For fixed
dimension, the overall performance of ASSETF is worse than other methods,
especially in the CCAT experiment.

The cutting plane method CPSP generally requires lower dimension than the
others to achieve the same prediction performance. This is because CPSP spends
extra time to construct optimal basis functions, whereas the other methods depend
on random sampling. However, all approximate-kernel methods including CPSP
suffer considerably from the restriction in dimension for the COVTYPE task.
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Fig. 1 The effect of the approximation dimension to the test error. The x-axis shows the values of
s in log scale (base 2)

4.2 Time Requires to Achieve Similar Test Error

Here we ran all algorithms other than ours with their default stopping criteria. For
ASSETM and ASSET∗

M , we checked the classification error on the test sets ten
times per epoch, terminating when the error matched the performance of CPNY.
(Since this code uses a similar Nyström approximation of the kernel, it is the one
most directly comparable with ours in terms of classification accuracy.) The test
error was measured using the iterate averaged over the 100 iterations immediately
preceding each checkpoint.

Results for the first five data sets are shown in Table 3 for s = 512 and s =
1,024. (LASVM and SVM-Light do not depend on s and so their results are the
same in both tables.) Our methods are the fastest in most cases. Although the
best classification errors among the approximate codes are obtained by CPSP, the
runtimes of CPSP are considerably longer than for our methods. In fact, if we
compare the performance of ASSETM with s = 1,024 and CPSP with s = 512,
ASSETM achieves similar test accuracy to CPSP (except for CCAT) but is faster
by a factor between two and forty. CPNY requires an abnormally long run time on
ADULT; we surmise that the code may be affected by numerical difficulties.

It is noteworthy that ASSETM shows similar performance to ASSET∗
M despite

the less impressive theoretical convergence rate of the former. This is because the
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Fig. 2 Progress of ASSETF and ASSET∗
F in terms of test error rate (MNIST-E)

values of optimal regularization parameter λ were near zero in our experiments, and
thus the objective function lost the strong convexity condition required for ASSET∗

M
to work. We observed similar slowdown of Pegasos and SGD when λ approaches
zero for linear SVMs.

4.3 Large-Scale Performance

We take the final data set MNIST-E and compare the performance of ASSETF and
ASSET∗

F to the online SVM code LASVM. (Other algorithms such as CPSP, CPNY,
and SVM-Light are less suitable for large-scale comparison because they operate in
batch mode.) For a fair comparison, we fed the training samples to the algorithms
in the same order.

Figure 2 shows the progress on a single run of our algorithms, with various
approximation dimensions d (which we set equal to s in these experiments) in the
range [1024,16384]. Vertical bars in the graphs indicate the completion of training.
ASSETF tends to converge faster and shows smaller test error values than ASSET∗

F ,
despite the theoretical slower convergence rate of the former. With d = 16384,
ASSETF and ASSET∗

F required 7.2 h to finish with a solution of 2.7% and 3.5%
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test error rate, respectively. LASVM produced a better solution with only 0.2% test
error rate, but it required 4.3 days of computation to complete a single pass through
the same training data.

5 Conclusion

We have proposed a stochastic gradient framework for training large-scale and on-
line SVMs using efficient approximations to nonlinear kernels. Since our approach
does not require strong convexity of the objective function or dual reformulations
for kernelization, it can be extended easily to other kernel-based learning problems.
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Single-Frame Signal Recovery Using
a Similarity-Prior

Sakinah A. Pitchay and Ata Kabán

Abstract We consider the problem of signal reconstruction from noisy obser-
vations in a highly under-determined problem setting. Most of previous work
does not consider any specific extra information to recover the signal. Here we
address this problem by exploiting the similarity between the signal of interest
and a consecutive motionless frame. We incorporate this additional information of
similarity that is available into a probabilistic image-prior based on the Pearson type
VII Markov Random Field model. Results on both synthetic and real data of MRI
images demonstrate the effectiveness of our method in both compressed setting and
classical super-resolution experiments.

Keywords Single-frame super-resolution • Compressive sensing • Similarity
prior • Image recovery

1 Introduction

Conventional image super-resolution (SR) aims to recover a high-resolution scene
from a single or multiple frames of low-resolution measurements. A noisy frame
of a single low-resolution image or signal often suffers from a blur and down-
sampling transformation. The problem is more challenging when the observed data
is a single low-resolution frame that has fewer measurements than the number of
unknown pixels in the high-resolution scene that we aim to recover. This makes the
problem ill-posed and under-determined too. For this reason, some additional prior
knowledge is vital to obtain a satisfactory solution. We have demonstrated in earlier
work [10] that the Pearson type VII density integrated with Markov Random Fields
(MRF) is an appropriate approach for this purpose.
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In this paper, we tackle the problem using more specific prior information,
namely the similarity to a motionless consecutive frame as the additional input for
recovering the signals of interest in a highly under-determined setting. This has real
applications, e.g. in medical imaging where such frames are obtained from several
scans. Previous work in [13] found the average frame from those scans to be useful
for recovery.

In principle, the more information we have about the recovered signal, the better
the recovery algorithm is expected to perform. This hypothesis seems to work
in [5, 13]; however, both of these works require us to tune the free parameters of
the model manually, and [5] reckons that the range of parameter values was not
exhaustively tested. Reference [13] also mentions that they were not able to attain
exact reconstruction using fewer measurements than those needed by compressed
sensing (CS) for a small image. By contrary, in this paper we will demonstrate good
recovery from very few measurements using a probabilistic model that includes an
automated estimation of its hyper-parameters.

Related work on sparse reconstruction gained tremendous interest recently and
can be found in [2–4, 9]. The sparser a signal is, in some basis, the fewer random
measurements are sufficient for its recovery. However these works do not consider
any specific extra information that could be used to accentuate the sparsity, which
is our focus. Somewhat related, the recent work in [11] exploits partial erroneous
information to recover small image sequences.

This paper is aimed at taking these ideas further through a more principled and
more comprehensive treatment. We consider the case when the observed frame
contains too few measurements, but an additional motionless consecutive scene in
high resolutions is provided as an extra input. This assumption is often realistic
in imaging applications. Our aim is to reduce the requirements on the number of
measurements by exploiting the additional similarity information. To achieve this,
we employ a probabilistic framework, which allows us to estimate all parameters of
our model in an automated manner. We conduct extensive experiments that show
that our approach not only bypasses the requirement of tuning free parameters
but it is also superior to a cross validation method in terms of both accuracy and
computation time.

2 Image Recovery Framework

2.1 Observation Model

A model is good if it explains the data. The following linear model has been used
widely to express the degradation process from the high-resolution signal z to a
compressed or low-resolution noisy signal y [6–8, 12]:

y = Wz+η (1)

where the high-resolution signal denoted by z is an N-dimensional column vector
and y is an Mx1 matrix representing the noisy version of the signal, with M < N.
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Fig. 1 An illustration of a signal recovery process from a noisy version of low resolution for 1D
(left) and 2D (right) signals with the aid of informative input

In classical super-resolution, the transformation matrix W typically consists of
blur and down-sampling operators. In our study, we also utilise random Gaussian
compressive matrices W with entries sampled independent and identically dis-
tributed (i.i.d) from a standard Gaussian. Finally, η is the additive noise, assumed to
be Gaussian with zero-mean and variance, σ2.

Before we proceed with the details of the similarity-prior, an example for 1D and
2D signals in Fig. 1 depicts the input and the output for both signals recovery.

2.2 The Similarity-Prior

The construction of a generic prior for images, the Pearson type VII MRF prior was
presented in [10]. It is based on the neighbourhood features Dz where D makes the
signal sparse. In this paper, we aim to recover both 1D and 2D signals using the
additional similarity information. We define the entries of D, i.e. di j as follows:

di j =

⎧
⎨

⎩

1 if i = j;
−1/# ifi and j are neighbours;
0 otherwise.

where # denotes the number of cardinal neighbours and it is 4 for images and 2 for
1D signals.

In general, the idea is that the main characteristic of any natural image is a
local-smoothness. This means that the intensities of neighbouring pixels tend to
be very similar. Hence, Dz will be sparse. Therefore, here we propose an enhanced
prior to exploit more information that leads to more sparseness. By employing the
given additional information of the consecutive image or signal, we will employ the
difference, f between the recovered image, z and the extra information denoted as s.
Obviously the more pixels z and s have in common, the more smooth their difference
will be. Figure 2 shows a few examples of histograms of the neighbourhood features
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Fig. 2 Example histograms of the distribution of neighbourhood features Diz, and Dif where i =
1, . . . ,N from an MRI real data

Dz from real images, where the sparsity is entirely the consequence of the local
smoothness. Additionally, we also show the histograms of the new neighbourhood
features Df that includes the additional similarity information. We see the latter is a
lot sparser than the former.

Then we can formulate the ith feature in a vector form, with the aid of the ith row
of this matrix (denoted Di) as the following:

fi − 1
# ∑

j∈# neighb(i)

f j =
N

∑
j=1

di j f j = Dif (2)

Since our task is to encode the sparse property of signals, this feature is useful:
The difference between a pixel of the difference image f and the average of
its neighbours is close to zero, almost everywhere except at the edges of the
dissimilarity areas. Plugging this into the Pearson-MRF density, we have the
following prior that we refer to as a similarity-prior:

Pr(z) =
1

ZPr(λ ,ν)

N

∏
i=1

{
(Di(z− s))2 +λ

}− 1+ν
2 (3)

where ZPr(λ ,ν) =
∫

dz∏N
i=1{(Di(z − s))2 + λ}− 1+ν

2 is the partition function that
makes the whole probability density function integrate to one, and this multivariate
integral does not have an analytic form.

2.3 Pseudo-likelihood Approximation

As in previous work [10], we employ a pseudo-likelihood approximation to the
partition function Zp(λ ,ν). Replacing the approximation using the extra information
into (3), we obtain the following approximate image model:
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Pr(z|λ ,ν)≈
N

∏
i=1

Γ
( 1+ν

2

)
λ ν/2{(Di(z− s))2 +λ}− 1+ν

2

Γ ( ν
2 )
√

π
(4)

We shall employ this to infer z simultaneously with estimating our hyper-parameters
λ , ν and σ .

2.4 Joint Model

The entire model is the joint model of the observations y and the unknowns z.

Pr(y,z, f |W,σ2,λ ,ν) = Pr(y|z,W,σ2)Pr(z| f ,λ ,ν) (5)

where the first factor is the observation model and the second factor is the image
prior model and its free parameters defined as λ and ν .

3 MAP Estimation

We will employ the joint probability (5) as the objective to be maximised.
Maximising this w.r.t. z is also equivalent to finding the most probable image ẑ, i.e.
the maximum a posteriori (MAP) estimate, since (5) is proportional to the posterior
Pr(z|y).

ẑ =argmin
z
{− log[Pr(y|z)]− log[Pr(z)]} (6)

Namely, the most probable high-resolution signal is the one for which the negative
log of the joint probability model takes its minimum value. Hence, our problem can
be solved through minimisation. The expression for the negative log of the joint
probability model will then be defined as our minimisation objective and also called
as the error-objective. It can be written as:

Obj(z,σ2,λ ,ν) =− log[Pr(y|z,σ2)]− log[Pr(z| f ,λ ,ν)] (7)

Equation (7) may be decomposed into two terms: the first one that contains all
the entries that involve z and the second one contains the terms that do not—i.e.
Obj(z,σ2,λ ,ν) = Objz(z) + Obj(λ ,ν)(λ ,ν).

3.1 Estimating the Most Probable z

The observation model is also called the likelihood model because it expresses how
likely it is that a given z produced the observed y through the transformation W.
Hence we have for the first term in (5):
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Pr(y|z) ∝ exp

{

− 1
2σ2 (y−Wz)T(y−Wz)

}

(8)

By plugging in the term for the observation model and the prior into (7), we obtain
the objective function. The terms of the objective (7) that depend on z are the
following:

Objz(z) =
1

2σ2 (y−Wz)2 +
ν + 1

2

N

∑
i=1

log
{
(Di(z− s))2 +λ

}
(9)

The most probable estimate is the ẑ that has the highest probability in the model.
It is equivalently the one that achieves the lowest error. Recap, our model has two
factors which depend on the likelihood or also known as the observation model,
and the image prior that assists the signal recovery. Thus, our error models both the
mismatch of the predicted model Wz with the observed data y and determinant for
allowing the free parameters to control the smoothness and the edges encoded in the
prior. The objective is differentiable; therefore, any non-linear optimiser could be
practical to optimise the term (9) w.r.t. z. The gradient of the negative log likelihood
term is given by:

∇(z)Objz =
1

σ2 W′(Wz− y)+ (ν + 1)
N

∑
i=1

DT
i

Di(z− s)
(Di(z− s))2 +λ

(10)

3.2 Estimation of σ2, λ and ν

Writing out the terms in (7) that depend on σ2, we obtain a closed form for
estimating the σ2.

σ2 =
1
M

(
M

∑
i=1

(yi −Wiz)2

)

(11)

Terms that depend on λ and ν are given by:

Obj(λ ,ν) =N logΓ
(

1+ν
2

)

−N logΓ
(ν

2

)
+

Nν
2

logλ

− 1+ν
2

N

∑
i=1

log((Di(z− s))2 +λ ) (12)

Both of these hyperparameters need to be positive valued. To ensure our estimates
are actually positive, we parameterise the log probability objective (12) such as to
optimise for the +/− square root of these parameters. Taking derivatives w.r.t

√
λ

and
√

ν , we obtain:
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d log p(z)

d
√

λ
=

N

∑
i=1

ν(Di(z− s))2 −λ
((Di(z− s))2 +λ )

√
λ

(13)

d log p(z)
d
√

ν
=
[
N logλ −

N

∑
i=1

log((Di(z− s))2 +λ )+Nψ

(
1+ν

2

)

−Nψ
ν
2

]√
ν

(14)

where ψ(.) is the digamma function. The zeros of these functions give us the
estimates of ±√

λ and ±√
ν . Although there is no closed-form solution, these can

be obtained numerically using any unconstrained non-linear optimisation method,1

which requires the gradient vector of the objectives.

3.3 Recovery Algorithm

Our algorithm implements the equations given in the previous section as described
in Algorithm 1. At each iteration of the algorithm, two smaller gradient descent
problems have to be solved; namely one for λ , ν and one for z. However, experiment
suggests that it is not necessary to estimate the minimum with high accuracy. We
notice that the inner loops do not require the entire convergence. It is sufficient to
increase but not necessarily minimise the objective at each intermediate step.

Algorithm 1 : Recovery algorithm
1: Initialise the estimates z
2: iterate until convergence: do
3: estimate σ 2 using (11)
4: iteratively update λ and ν in turn using definiton
5: (13) and (14), with the current estimate z.
6: iterate to update z using (10)
7: end

1We made use of the efficient implementation available from http://www.kyb.tuebingen.mpg.de/
bs/people/carl/code/minimize/.
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4 Experiments and Discussion

We devise two hypotheses as following to investigate the role of the new prior and
we test those using synthetic 1D and 2D signals and real MRI signals:

1. The quality of the recovered signal using the additional information is no worse
than the one without the extra information provided that the extra information
is useful. This is when the number of zero entries in the new form of the
neighbourhood feature, i.e. Df is larger than the number of zero entries in Dz,
that is the generic feature that has not been given the extra similarity information.

2. The fewer the edges in f (that is, the non-zeros in Df), the fewer measurements
are sufficient for enabling a successful recovery.

We should mention the construction of the measurement matrix W from CS-type
W is a random Gaussian matrix (M × N) with iid entries. The SR-type W is a
deterministic transformation that blurs and down-samples the image.2

4.1 Illustrative 1D Experiments

In this section, we implement our recovery algorithm on the 1D data, derived from
a spike signal3 of size 512× 1 as shown in Fig. 3a. We proceed by plugging the
extra signal into our image prior and varying the number of measurements using
randomly generated measurement matrices W with iid Gaussian entries as in CS.
The recovery results are summarised in Fig. 3b. We see our enhanced prior is capable
to achieve a good recovery and has a lower mean square error (MSE) than the one
without extra information.

We also examine the MSE performance as a function of the number of zero
entries in the relevant feature vectors (i.e. Df in our case). Figure 4 shows MSE
results when varying the number of zero entries by constructing variations on the
signals. We see when the recovery algorithm received sufficient measurements,
for example when M = 250 in Fig. 3, the role of the proposed similarity prior
gradually reduces. In other words, this similarity prior is useful in massively
under-determined problems and provided that the given extra information has the
characteristics described previously.

A widely used alternative way to set hyperparameters is cross-validation. It is
therefore of interest how does the automated estimation of the hyper-parameters of
our Pearson type VII-based MRF compare to a cross-validation procedure. Next, we
address this by looking at two aspects: MSE performance and CPU time. We use the

2Code to generate the SR-type matrices can be found from http://www.robots.ox.ac.uk/∼elle/
SRcode/index.html.
3Data is taken from http://people.ee.duke.edu/∼lcarin/BCS.html.
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Fig. 3 (a) The original spike signal; the extra similarity information; and an example of recovered
signal from 190 measurements. (b) Comparing the MSE performance of 1D spike signal recovery
with and without the extra information. The error bars are over ten independent trials and the level
of noise was σ = 8e−5
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Fig. 4 (a) Linear scale. (b) Log scale. MSE performance of 1D spike signal using the extra
information. The number of zero entries in D(z-s) is varied. The error bars represent one standard
error about the mean from 50 independent trials. The level of noise was σ = 8e−5

same spike signal for this purpose. For our comparison, we have chosen fivefolds
cross validation method for estimating the hyper-parameters λ and ν and the noise
variance is assumed to be known for this method. A sensible search range is pursued
to avoid a long execution time as we are aware that this method can be extremely
time-consuming if the search space is too large.

Figure 5 shows the MSE performance and the associated values for the four
levels of noise using the CS-type W. It is interesting to see that our fully automated
parameter estimation turns out to be superior to fivefolds cross validation and it has
fast convergence and less execution time.
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Fig. 5 (a) Comparing the MSE performance of the fully automated Pearson type VII-based MRF
approach with the fivefolds cross validation, tested with four levels of noise (σ= 0.005, 0.05, 0.5,
1). (b) Cpu time performance against the same four levels of noise. We see that our automated
estimation and recovery is significantly faster than the fivefolds cross validation method. The error
bars are over ten repeated trials for each level of noise. Three sets of measurements (M = 100, 240,
300) have been tested for this accuracy comparison

4.2 2D Experiments

Following the thorough understanding gained in the previous section about when the
extra information is helpful on the spike signal test cases, we conducted experiments
with both compressive sensing (CS) matrices where W contains random entries and
also the classical super-resolution matrices where W consists of blur and down-
sampling. In this set of experiments, we consider a motionless scene as the extra
information. More precisely, the extra information that we employ in our similarity-
prior consists of a change in the lighting of some area in the image.

We start by conducting the recovery algorithm on a synthetic data of size [50×
50]. The noise variance σ tested in all experiments is set to a smaller range in order
to tally the general noise in real data.

Figures 6 and 7 show examples of vastly under-determined problems using the
extra information for recovery in comparison with the previous prior devised in [10].
The MSE performance results are given in Fig. 8, and we see the MSE drops rapidly
with increasing the measurement size. Figure 9 shows examples of recovered images
from this process. We observe that the quality of the recovered image increases
rapidly for all five levels of noise tested. This is in contrast with the recovery results
from the general prior, which needs a lot more measurements to perform well.

From these findings, the degree of similarity of the available extra information
has a significant impact on the recovery from insufficient measurements. We
find that without informative extra information the recovery algorithm does not
perform well with such few measurements. The recovered signal and the MSE
using the artificial Phantom data in Figs. 6 and 8 demonstrate that the fewer the
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Ground truth a)MSE=1e−001 b)MSE=4e−002 d)MSE=2e−002 e)MSE=6e−012

Sample image recovery without extra information.

Extra info. a)MSE=1e−002 b)MSE=6e−013 d)MSE=3e−013 e)MSE=2e−013

Sample image recovery using extra information of lighting change 1.

Extra info. a)MSE=2e−002 c)MSE=4e−013 d)MSE=3e−013 e)MSE=3e−013

Sample image recovery using extra information of lighting change 2.

Fig. 6 Example recovery of 2D synthetic data of size [50 × 50] in the case of using SR-type
W, and given two slightly different light changes as extra similarity information. The number of
measurements (M) are: (a) M = 60, (b) 460, (c) 510, (d) 960, (e) 1,310. The additive noise level
was σ = 8e−5

edges in the difference image f the better the recovery, or the smaller the number
of measurements needed for a good recovery. This result validates our second
hypothesis.

In the remainder of the experiments, we will now focus on image recovery using
real image data of magnetic resonance imaging (MRI). We obtained this data from
the Matlab database and we created the additional similarity information from it
by changing the lighting of an area on the image. Next we validate our second
hypothesis on a variety of MRI images and its lighting changes. The recovery results
for both types of W are presented in Figs. 11 and 12. The MSE performance for
the CS-type W is shown in Fig. 10. Interestingly, we observe that the log scale in
that figure is in more direct correspondence with our visual perception rather than
using the standard linear scale, and this will be seen by comparison with Figs. 11
and 12.

We observed that more than 6,000 measurements are required for a good recovery
without the extra information in this example. However, from these results we see
that our similarity prior achieves high quality recovery from an order of magnitude
less measurements. The recovered images are presented in Figs. 11 and 12 for
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Ground truth a)MSE=9e−002 b)MSE=4e−002 d)MSE=2e−002 e)MSE=1e−002
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Extra info. a)MSE=1e−002 b)MSE=1e−003 c)MSE=7e−004 d)MSE=2e−005

Sample image recovery without extra information.

Sample image recovery using extra information of lighting change 1.

Sample image recovery using extra information of lighting change 2.

Fig. 7 Example recovery of 2D synthetic data of size [50 × 50] in the case of using SR-type
W, and given two slightly different light changes as extra similarity information. The number of
measurements (M) are: (a) M = 9, (b) 441, (c) 784, (d) 1,296, (e) 1,849. The additive noise level
was σ = 8e−7
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Fig. 8 MSE performance of synthetic data [50× 50] in comparison with the two types of extra
information. Here, both types of W were tested and the noise standard deviation was σ = 8e−5
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Fig. 10 From left: MSE performance of real MRI images of size [70×57], [70×57] and [100×80]
in comparison with three types of extra information on the three different sets of data. CS-type W
was used and the noise standard deviation was σ = 8e−5

a visual comparison. Finally, we also show an example run of our automated
parameter estimation algorithm in Fig. 13 for completeness. As one would expect,
the speed of convergence varies with the difficulty of the problem.

In closing, we should comment on the possibility of using the other types of extra
information for signal recovery. Throughout this paper we exploited the similarity
created by a lighting change. Depending on the application domain, one might
consider a small shift or rotation instead. However, we have seen that the key for
the extra information to be useful in our similarity prior is that the difference image
must have fewer edges than the original image. This is not the case with shifts or
rotations. Therefore to make such extra information useful we would need to include
an image registration model into the prior. This is subject to future work.
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Fig. 11 Examples of MRI image recovery in the case CS-type W, given a motionless consecutive
frame with some contrast changes. The number of measurements (M) were: (a) M = 310, (b) 460,
(c) 560, (d) 610, (e) 760, (f) 1310, (g) 3010, (h) 5610 (i) 7610 and additive noise with σ = 8e−5.
The first row refers to the real data 1, the second row refers to the real data 2 and the third row
refers to the real data 3
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Fig. 12 Examples of MRI image recovery in the case of SR-type W, given a motionless
consecutive frame with some contrast changes. The number of measurements (M) were: (a) M = 6,
(b) 99, (c) 154, (d) 396, (e) 918, (f) 1462, (g) 1505, (h) 2000, (i) 4234. The additive noise is
σ = 8e−5
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Fig. 13 Example evolution of the hyper-parameter updates (σ , λ , ν) and objective function versus
the number of iterations of the optimisation algorithm while recovering a 2D signal: from left,
random measurements; and from right, a blurred and down-sampled low-resolution frame. In both
experiments, the noise level is σ = 8e−5

5 Conclusions

In this paper, we have formulated and employed a similarity-prior-based Pearson
type VII Markov Random Field to include the similarity information between the
scene of interest and a consecutive scene that has a lighting change. This prior
enables us to recover the high-resolution scene of interest from fewer measurements
than a general-purpose prior would, and this can be applied, e.g. in medical imaging
applications.
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A Discretized Newton Flow for Time-Varying
Linear Inverse Problems

Martin Kleinsteuber and Simon Hawe

Abstract The reconstruction of a signal from only a few measurements,
deconvolving, or denoising are only a few interesting signal processing applications
that can be formulated as linear inverse problems. Commonly, one overcomes the ill-
posedness of such problems by finding solutions that match some prior assumptions
on the signal best. These are often sparsity assumptions as in the theory of Com-
pressive Sensing. In this paper, we propose a method to track the solutions of linear
inverse problems, and consider the two conceptually different approaches based
on the synthesis and the analysis signal model. We assume that the corresponding
solutions vary smoothly over time. A discretized Newton flow allows to incorporate
the time varying information for tracking and predicting the subsequent solution.
This prediction requires to solve a linear system of equations, which is in general
computationally cheaper than solving a new inverse problem. It may also serve as
an additional prior that takes the smooth variation of the solutions into account, or
as an initial guess for the preceding reconstruction. We exemplify our approach with
the reconstruction of a compressively sampled synthetic video sequence.

1 Introduction

Linear inverse problems arise in various signal processing applications like in signal
deconvolution [4], denoising [9], inpainting [3], or signal reconstruction from few
indirect measurements as in Compressive Sensing [5, 7]. Basically, the goal is to
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compute or reconstruct a signal s ∈ R
n from a set of measurements y ∈ R

m, with m
being less or equal to n. Formally, this measurement process can be written as

y =As+ e, (1)

where the vector e ∈ R
m models sampling errors and noise, and A ∈ R

m×n is the
measurement matrix. In most interesting cases, recovering s from the measurements
y is ill-posed because either the exact measurement process and henceA is unknown
as in blind signal deconvolution, or the number of observations is much smaller than
the dimension of the signal, which is the case in Compressive Sensing. In this paper,
we restrict to the latter case where the measurement matrix A is known.

To overcome the ill-posedness of this problem and to stabilize the solution,
prior assumptions on the signal can be exploited. In this paper, we discuss two
conceptually different approaches, the so-called synthesis and the analysis signal
model, cf. [11].

1.1 The Synthesis and the Analysis Model

One assumption that has proven to be successful in signal recovery,
cf. [10] is that natural signals admit a sparse representation x ∈ R

d over some
dictionary D ∈ R

n×d with d ≥ n. We say that a vector x is sparse when most of
its coefficients are equal to zero or small in magnitude. When s admits a sparse
representation over D, it can be expressed as a linear combination of only very few
atoms {di}d

i=1, the columns of D, which reads as

s =Dx. (2)

For d > n, the dictionary is said to be overcomplete or redundant, consequently the
representation x is not unique.

Now, an approximate solution s� to the original signal can be obtained from the
measurements y by first solving

x� = arg min
x∈Rd

g(x)

subject to ‖ADx− y‖2
2 ≤ ε, (3)

and afterwards synthesizing the signal from the computed sparse coefficients via
s� = Dx�. As the signal is synthesized from the sparse coefficients, the reconstruc-
tion model (3) is called the synthesis reconstruction model [11]. Therein, g : Rn �→R

is a function that promotes or measures sparsity and ε ∈ R
+ is an estimated upper

bound on the noise power ‖e‖2
2. Although the choice of the �1-norm for g as a

sparseness prior leads to well-behaved convex optimization problems and to perfect
signal recovery under certain assumptions, cf. [8], it has been shown in [6] that in
most cases, the concave �p-pseudo-norm
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‖v‖p
p := ∑

i
|vi|p, (4)

with 0 < p < 1 severely outperforms its convex counterpart. For the presented
approach of tracking the solutions of time-varying linear inverse problems, we
do not assume convexity of g but we require differentiability. This is why we
employ a smooth approximation of the �p-pseudo-norm. Generally, to find a solution
of Problem (3), various algorithms based on convex or non-convex optimization,
greedy pursuit methods, or the Bayesian framework exist that use different choices
for g. For a broad overview of such algorithms, we refer the interested reader to [20].

Besides utilizing the synthesis model (3) for signal reconstruction, an alternative
way to reconstruct s is given via

s� = arg min
s∈Rn

g(Ωs)

subject to ‖As− y‖2
2 ≤ ε, (5)

which is known as the analysis model [11]. In this model, Ω ∈ R
k×n with k ≥ n

is called the analysis operator and the analyzed vector Ωs ∈ R
k is assumed to be

sparse, where sparsity is again measured via an appropriate function g. In contrast
to the synthesis model where a signal is fully described by the nonzero elements of
x, in the analysis model the zero elements of Ωs contain the interesting information.
To emphasize this difference between the two models, the term cosparsity has
been introduced in [14], which simply counts the number of zero elements of Ωs.
Certainly, as the sparsity in the synthesis model depends on the chosen dictionary,
the cosparsity of a signal solely depends on the choice of the analysis operator Ω.

Different analysis operators for image signals proposed in the literature include
fused Lasso [19], the translation invariant wavelet transform [18], and probably best
known the finite difference operator closely related to the total variation [17].

1.2 Our Contribution

Here, we propose an approach based on minimizing a time-variant version of the
unconstrained Lagrangian forms of (3) and (5), which are given by

minimize
x∈Rd

fs(x) =
1
2
‖ADx− y‖2

2+λ g(x). (6)

and

minimize
s∈Rn

fa(s) =
1
2
‖As− y‖2

2+λ g(Ωs) (7)

respectively. In both formulations, the Lagrange multiplier λ ∈R
+
0 weighs between

the sparsity of the solution and its fidelity to the acquired samples according to the
assumed amount of noise in the measurements λ ∼ ε.
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Consider now a sequence of linear inverse problems whose solutions vary
smoothly over time. As an example, one may think of the denoising short video
sequences (without cut), or the reconstruction of compressively sensed magnetic
resonance image sequences, cf. [13]. In this work, we propose an approach to track
the solutions of such time-varying linear inverse problems. Therefore, we employ
preceding solutions to predict the current signal’s estimate without acquiring new
measurements. To the best of the authors’ knowledge, this idea has not been pursued
so far in the literature. The crucial idea is to use a discretized Newton flow to
track solutions of a time-varying version of (6) and (7). We provide three practical
update formulas for the tracking problem and consider both the analysis and the
synthesis model. We conclude with an experiment by applying our approach to a
short synthetic video sequence.

2 Tracking the Solutions

2.1 Problem Statement

Let t �→ s(t) ∈ R
n be a C1-curve, i.e. having a continuous first derivative which

represents a time-varying signal s. Moreover, let y(t) =As(t) be the measurements
of s at time t. In this paper, we consider the problem of reconstructing a sequence of
signals

(
s(tk)

)
k∈N at consecutive instances of time. Instead of estimating s(tk+1) by

solving the inverse problem based on the measurements y(tk+1), we investigate in
how far the previously recovered estimates s�i of s(ti), i = 1, . . . ,k can be employed
to predict s(tk+1) without acquiring new measurements y(tk+1). This prediction step
may serve as an intermediate replacement for this reconstruction step or it may
be employed as an initialization for reconstruction at time tk+1. Note that in our
approach, we assume a fixed measurement matrix A.

Now, consider the time variant version of the unconstrained Lagrangian functions
from (6) and (7), which read asΩ

fs(x, t) =
1
2
‖ADx− y(t)‖2

2+λ g(x) (8)

and

fa(s, t) =
1
2
‖As− y(t)‖2

2+λ g(Ωs). (9)

For a unified notation, we use f (z, t) to refer to both (8) and (9) simultaneously.
Now, for a fixed time t, the gradient

F(z, t) :=
∂
∂z

f (z, t) (10)

must be zero for an optimal estimate z. Consequently, we want to find the smooth
curve z(t) as illustrated in Fig. 1 such that

F(z(t), t) = 0. (11)
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z(t)

z(t−h)

z(t−2h)

z(t+h)

z�

estimate  of z(t+h)

Fig. 1 Smoothly time-varying z(t). Depending on the applied reconstruction model, z(t) denotes
either the signal itself, or its transform coefficient over the used dictionary

In other words, we want to track the minima of (8) and (9) over time. To achieve
this, we employ a discretized Newton flow, which is explained in the following
subsection.

2.2 Discretized Newton Flow

Homotopy methods are a well-known approach for solving problem (11). These
methods are based on an associated differential equation whose solutions track the
roots of F . To make the paper self-contained, we shortly rederive the discretized
Newton flow for our situation at hand based on [1]. Specifically, we consider the
implicit differential equation

JF(z, t)ż+
∂
∂ t

F(z, t) =−αF(z, t), (12)

where α > 0 is a free parameter that stabilizes the dynamics around the desired
solution. Here,

JF(z, t) :=
∂
∂z

F(z, t) (13)

is the (n× n)-matrix of partial derivatives of F with respect to z. Under suitable
invertibility conditions on JF , we rewrite (12) in explicit form as

ż =−JF(z, t)−1
(

αF(z, t)+
∂
∂ t

F(z, t)
)
. (14)

We discretize (14) at time instances tk, for k ∈ N and assume without loss of
generality a fixed stepsize h > 0. Depending on the stepsize we choose α := 1

h .
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With the shorthand notation for zk := z(tk), the single-step Euler discretization of
the time-varying Newton flow is therefore given as

zk+1 = zk −JF(zk, tk)
−1

(
F(zk, tk)+ h

∂F
∂ t

(zk, tk)

)
. (15)

We approximate the partial derivative ∂F
∂ t (zk, tk) by an mth-order Taylor approxima-

tion written as Hm(z, t). For the practically interesting cases these are

H1(z, t) =
1
h

(
F(z, t)−F(z, t − h)

)
(16)

H2(z, t) =
1

2h

(
3F(z, t)− 4F(z, t − h)+F(z, t − 2h)

)
(17)

H3(z, t) =
1

30h

(
37F(z, t)− 45F(z, t − h)+ 9F(z, t − 2h)−F(z, t − 3h)

)
, (18)

see also [1]. These approximations turn (15) into the update formula

z�k+1 = zk −JF(zk, tk)
−1
(

F(zk, tk)+ hHm(zk, tk)
)
. (19)

Practically, the inverse JF(zk, tk)−1 is not accessible or infeasible to calculate,
in particular when dealing with high-dimensional data. Hence for computing the
estimate z�k+1 as in (19), we solve

minimize
z∈Rn

‖JF(zk, tk)z−bm(zk, tk)‖2
2, (20)

with

bm(zk, tk) := JF(zk, tk)zk −
(

F(zk, tk)+ hHm(zk, tk)
)
. (21)

Typically, linear Conjugate Gradient methods efficiently solve this linear equation,
cf. [15]. Note, that this is significantly less computationally expensive than solving
an individual reconstruction problem.

In the next subsection, we derive three explicit update schemes for the concrete
problem of tracking solutions to inverse problems based on the approximations
(16)–(18).

2.3 Explicit Update Formulas for the Synthesis Model

Although the previous sections are general enough to deal with any (smooth)
sparsity measure g, we want to make our ideas more concrete and employ a concrete
smooth approximation of the �p-pseudo-norm, namely

g(x) =
d

∑
i=1

(
x2

i + μ
) p

2 , (22)
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with 0 < p ≤ 1 and a smoothing parameter μ ∈ R
+. The gradient of g is

∇g(x) = p
d

∑
i=1

Ei
(
x2

i + μ
) p

2 −1
x, (23)

where Ei := eie	i and ei ∈R
d is the standard basis vector. The Hessian of g is given

by the diagonal matrix

Hg(x) = p
d

∑
i=1

Ei

((
x2

i + μ
) p

2 −1
+(p− 2)

(
x2

i + μ
) p

2 −2
x2

i

)
. (24)

Now recall, that in the synthesis model, we have

F(x, t) =
∂

∂x
fs(x, t) =D	A	(ADx− y(t))+λ ∇g(x). (25)

The derivative of F with respect to x is thus

JF (x, t) = (AD)	(AD)+λHg(x). (26)

Analogously as above, for the mth-order Taylor approximation, m = 1,2,3, we have

hH1(x, t) = (AD)	
(

y(t − h)− y(t)
)

(27)

hH2(x, t) =
1
2
(AD)	

(
4y(t − h)− 3y(t)− y(t− 2h)

)
(28)

hH3(x, t) =
1

30
(AD)	

(
45y(t − h)− 37y(t)− 9y(t− 2h)+ y(t− 3h)

)
. (29)

This results in the explicit formulas for b1,b2,b3

b1(xk, tk) = λ
(
Hg(xk)xk −∇g(xk)

)
+(AD)	

(
2y(tk)+ y(tk−1)

)
(30)

b2(xk, tk) = λ
(
Hg(xk)xk −∇g(xk)

)

+
1
2
(AD)	

(
5y(tk)− 4y(tk−1)+ y(tk−2)

)
(31)

b3(xk, tk) = λ
(
Hg(xk)xk −∇g(xk)

)
+

1
30

(AD)	
(

67y(tk)− 45y(tk−1)

+ 9y(tk−2)− y(tk−3)
)
. (32)

The three different explicit update formulas for the estimation of the signal at the
next instance of time follow straightforwardly as

s�k+1 =D
{

arg min
x∈Rd

‖JF(xk, tk)x−bm(xk, tk)‖2
2

}
, m = 1,2,3. (33)
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2.4 Explicit Update Formulas for the Analysis Model

For the analysis model, we use the same sparsity measure g as defined in (22). Let
the analysis operator be of dimension Ω ∈ R

k×n. We use the notation (g ◦Ω)(s) :=
g(Ωs) for the composed function. The gradient of g ◦Ω is

∇(g ◦Ω)(s) = pΩ	
k

∑
i=1

Ei

(
(e	i Ωs)2 + μ

) p
2 −1

Ωs. (34)

As in the previous section, we have to compute the Hessian of g◦Ω, which is given
by the matrix

H(g◦Ω)(s) = pΩ	
k

∑
i=1

Ei

((
(e	i Ωs)2 + μ

) p
2 −1

+(p− 2)
(
(e	i Ωs)2 + μ

) p
2 −2

(e	i Ωs)2
)

Ω. (35)

Note, that in contrast to the synthesis model, here the Hessian is not diagonal.
Equation (10) reads as

F(s, t) =
∂
∂ s

fa(s, t) =A	(As− y(t))+λ ∇(g ◦Ω)(s) (36)

with its derivative with respect to s being

JF(s, t) =A	A+λH(g◦Ω)(x). (37)

Combining (36) with (16)–(18) yields

hH1(s, t) =A	
(

y(t − h)− y(t)
)

(38)

hH2(s, t) =
1
2
A	

(
4y(t − h)− 3y(t)− y(t− 2h)

)
(39)

hH3(s, t) =
1

30
A	

(
45y(t − h)− 37y(t)− 9y(t− 2h)+ y(t− 3h)

)
. (40)

The explicit formulas for b1,b2,b3 now result accordingly to the previous subsec-
tion. Finally, the explicit update formulas for estimating the signal are

s�k+1 = arg min
s∈Rn

‖JF(sk, tk)s−bm(sk, tk)‖2
2, m = 1,2,3. (41)

3 Experiments

In this section we provide an example that should serve as a proof of concept of
our proposed algorithm. It consists of tracking the reconstruction result of a series
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Fig. 2 Time sequence of
synthetic test image

of compressively sampled time-varying images s(tk) ∈ R
n. The images are created

synthetically and show a ball moving with constant velocity, see Fig. 2. To enhance
legibility, all formulas are expressed in terms of matrix vector products. However,
regarding the implementation, we want to emphasize that filtering techniques are
used to deal with the large image data.

Considering the measurement matrix A, we chose m � n randomly selected
coefficients of the Rudin–Shapiro transformation (RST) [2]. The RST, also known
as the real-valued Dragon-Noiselet-transformation, is used because of its efficient
implementation and due to its desirable properties for image reconstruction [16].
We empirically set the number of measurements to m = 0.2n. In our experiments
we found that the number of measurements does not severely affect the accuracy
of the tracking algorithm, but the speed of convergence. The larger we chose m the
faster the algorithm converges.

For the reconstruction, we employ the above discussed analysis model. Therein,
the analysis operator Ω ∈ R

2n×n represents a common and simple approximation
of the image gradient, which is in terms of finite differences between neighboring
pixels in horizontal and vertical directions, respectively.

We start our tracking algorithm by measuring RST coefficients at consecutive
instances of time y(tk) = As(tk). From these consecutive measurements we find s�k
by individually solving (9) using a nonlinear Conjugate Gradient (CG) method with
backtracking line-search and Hestenes-Stiefel update rule, see [12] for the concrete
algorithm. From this, we obtain s�k+1 by (33), using a linear CG-method. Regarding
the update formula for bm, we found in our experiments that (31) yields a good
trade-off between prediction results and computational burden.

The tracking results for our example are presented in Fig. 3b–f for p = 0.7.
We use the knowledge of s(tk), s(tk−1) and s(tk−2) to iteratively estimate s�k+ j
for j = 1, . . . ,5 only based on the update formula (33). Clearly, the smaller j is,
the better the estimation. Note that the results shown in Fig. 3e and f are solely
based on previously predicted images. The green circle indicates the position of
the ball in the original images s(tk+ j), j = 1, . . . ,5. It can be seen that although the
quality of the images decreases, the position of the circle is still captured adequately.
As a quantitative measure of the reconstruction quality, Table 1 contains the peak
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Fig. 3 Excerpt of original image (a) and estimated images (b)–(f). The green circle indicates the
position of the ball in the original images

Table 1 Peak signal-to-noise ratio (PSNR) in decibels (dB) and
mean squared error (MSE) between estimated signal s�k+ j for
j = 1, . . . ,5 and original signals s(tk+ j) j = 1, . . . ,5

s�k+1 s�k+2 s�k+3 s�k+4 s�k+5

PSNR 57.2 51.5 34.9 33.3 29.0
MSE 0.12 0.45 20.8 30.3 80.2

signal-to-noise ratio (PSNR) PSNR = 10log
(

max(s)2n
∑n

i=1(si−s�i )

)
and the mean squared error

(MSE) MSE = 1
n ∑n

i=1(si − s�i )
2 of the estimated signals s� to the original signals s.

A final word on the computational cost of the algorithm. Within the analysis
reconstruction model, the cost for applying the Hessian operator as defined in (24)
mainly depends on the cost of applying Ω and its transpose, since the remaining part
is just a diagonal operator that can be applied in O(n) flops.

Furthermore, we want to mention that for both signal reconstruction models the
presented algorithm does not depend on a specific sparsifying transformation D, or
analysis operator Ω, respectively. Any transformation or operator that admits a fast
implementation, e.g. the Wavelet or Curvelet transformation, or the finite difference
operator for images, can be easily used within this framework.
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4 Conclusion

In this paper we present a concept for tracking the solutions of inverse problems that
vary smoothly over time. We consider the two related but conceptually different
synthesis and analysis signal reconstruction models. The tracking is achieved
by employing a discretized Newton flow on the gradient of the cost function.
The approach allows us to predict the signal at the next time instance from previous
reconstruction results without explicitly taking new measurements. One advantage
is that this prediction step is computationally less expensive than an individual
reconstruction. Furthermore, it may be employed as an initialization, or serve as
an additional prior for solving an inverse problem at time tk.
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Abstract Conditional Random Fields (CRF) are popular methods for labeling
unstructured or textual data. Like many machine learning approaches, these undi-
rected graphical models assume the instances to be independently distributed.
However, in real-world applications data is grouped in a natural way, e.g., by
its creation context. The instances in each group often share additional structural
consistencies. This paper proposes a domain-independent method for exploiting
these consistencies by combining two CRFs in a stacked learning framework.
We apply rule learning collectively on the predictions of an initial CRF for one
context to acquire descriptions of its specific properties. Then, we utilize these
descriptions as dynamic and high quality features in an additional (stacked) CRF.
The presented approach is evaluated with a real-world dataset for the segmentation
of references and achieves a significant reduction of the labeling error.
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1 Introduction

The vast availability of unstructured and textual data increased the interest in
automatic sequence labeling and content extraction methods over the last years.
One of the most popular techniques is Conditional Random Fields (CRF) and their
chain structured variant, linear chain CRFs. CRFs model conditional probabilities
with undirected graphs and are trained in a supervised fashion to discriminate label
sequences. Although CRFs and related methods achieve remarkable results, there
remain many possibilities to increase their accuracy.

One aspect of improvement has been the relaxation of the assumption that
the instances are independent and identically distributed. Relational and nonlo-
cal dependencies of instances or interesting entities have been in the focus of
collective information extraction. Due to the fact that these dependencies need
to be represented in the model structure, approximate inference techniques like
Gibbs Sampling or Belief Propagation are applied [7,16]. They achieved significant
improvements, but at the cost of a computationally expensive inference. It has been
shown by several approaches that combined models based only on local features
and exact inference can match the results of complex models while still being
efficient. Kou and Cohen [10] used stacked graphical learning to aggregate the
output of a base learner and to add additional features based on related instances to
a stacked model. Another example is Krishnan and Manning [11] who exploit label
consistencies with a two-stage CRF. However, all these approaches take only similar
tokens or related instances into account while the consistencies of the structure are
ignored.

Semi-structured text like any other data is always created in a certain context.
This may often lead to consistencies in this creation context. While the instances
are locally homogeneously distributed in one context, the dataset is globally still
heterogeneous and the structure of information is possibly conflicting. The bib-
liographic section of a scientific publication, for example, applies a single style
guide and its instances (references) share a very similar structure, while their
structure might differ for different styles. Previously published approaches, cf., [8]
represent structural properties directly in a higher-order model and thus suffer from
a computationally expensive inference and furthermore apply a domain-dependent
model.

In this paper, we propose a novel and domain-independent method for exploiting
structural consistencies in textual data by combining two linear chain CRFs in a
stacked learning framework with a novel intermediate step. After the instances are
initially labeled, a rule learning method is applied on label transitions within one
creation context in order to identify their shared properties. The stacked CRF is then
supplemented with high-quality features that help to resolve possible ambiguities
in the data. We evaluate our approach with a real-world dataset for the segmentation
of references, a domain that is widely used to assess the performance of information
extraction techniques. The results show a significant reduction of the labeling error
and confirm the benefit of additional features induced online during processing
the data.
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The rest of the paper is structured as follows: First, Sect. 2 gives a short
introduction in the background of the applied techniques. Next, Sect. 3 describes
how structural consistencies can be exploited with stacked CRFs. The experimental
results are presented and discussed in Sect. 4. Section 5 gives a short overview of
the related work, and Sect. 6 concludes with a summary of the presented work.

2 Background

The presented method combines ideas of linear chain Conditional Random Fields
(CRF), stacked graphical models and rule learning approaches. Thus, these tech-
niques are outlined in this section.

2.1 Linear Chain Conditional Random Fields

Linear chain CRFs [12] are a chain structured variant of discriminative probabilistic
graphical models. The chain structure fits well with sequence labeling tasks natu-
rally reflecting the inherent structure of the data while providing efficient inference.
By modeling conditional distributions, CRFs are capable of handling large numbers
of possibly interdependent features.

Let x be a sequence of tokens x = (x1, . . . ,xT ) referring to observations, e.g.
the input text split into lexical units, and y = (y1, . . . ,yT ) a sequence of labels
assigned to the tokens. Taking x and y as arguments, let f1, . . . , fK be real-valued
functions, called feature functions. To keep the model small, we restrict the linear
chain CRF to be of Markov order one, i.e. the feature functions have the form
fi(x,y) = ∑t fi(x,yt−1,yt , t). A linear chain CRF of Markov order one has K model
parameters λ1, . . . ,λK ∈ R, one for each feature function, by which it assigns the
conditional probability

Pλ (y|x) =
1
Zx

exp

(
T

∑
t=1

K

∑
i=1

λi · fi(yt−1,yt ,x, t)

)
,

to y with a given observation x.
The feature functions typically indicate certain properties of the input, e.g.

capitalization or the presence of numbers, while the model parameters weight the
impact of the feature functions on the inference. The partition function Zx normal-
izes Pλ (y|x) by summing over all possible label sequences for x. The properties of a
token xt indicated by feature functions usually consider a small fixed sized window
around xt for a given state transition. In the following, we will use the terms feature
and feature function interchangeably.
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2.2 Stacked Graphical Learning

Stacked Graphical Learning is a general meta learning algorithm, cf., [10]. First, the
data is processed by a base learner based on conventional features representing local
characteristics. Subsequently, every single data instance is expanded by information
about the inferred labels of related instances. In a second stage, a stacked learner
exploits this extra information. The process of aggregating and projecting the
predicted information on instance features to support another stacked learner can
be repeated several times. Stacking graphical models has two central advantages:
The approach enables to model long-range dependencies among related instances
and the inference for each learner remains effective.

Similar to Wolpert’s Stacked Generalization [17], Stacked Graphical Models
use a cross-fold technique in order to avoid overfitting. As a result, the stacked
learners get to know realistic errors of their input components that would also
occur during runtime. However, Stacked Generalization and Stacked Graphical
Models are essentially different approaches. In short, Stacked Generalization learns
a stacked learner to combine the output of several different base learners on a per
instance basis. In contrast, Stacked Graphical Learning utilize a stacked learner to
aggregate and combine the output of one base learner on several instances, thus
supporting collective inference.

2.3 Rule Learning

In this paper, we propose to utilize rule-based descriptions as an intermediate step of
our general approach, cf. Sect. 3. For this task we will transfer the data into a tabular
form of attribute value pairs and learn rules on this data representation. While over
the last decades a large amount of rule learning approaches have been proposed, we
will concentrate on two main approaches in this paper:

Ripper [4] is probably the most popular learning algorithm for learning a set
of rules. Ripper learns rules one at a time by growing and pruning each rule and
then adds them to a result set until a stop criterion is met. After adding a rule
to the result, examples covered by this rule are then removed from the training
data. Ripper is known to be on par regarding classification performance with other
learning algorithms for rule sets, e.g., C 4.5, but is computationally more efficient.

As an alternative, we utilize Subgroup Discovery [9] (also called Supervised
Descriptive Rule Discovery or Pattern Mining) to describe structural consistencies.
In this approach, an exhaustive search for the best k conjunctive patterns in the
dataset with respect to a pre-specified target concept and a quality function, e.g., the
F1 measure, is performed. Additionally different constraints on the resulting patterns
can be applied, e.g., on the maximum number of describing attribute value pairs or
the minimum support for a rule. While the resulting rules are not intended to be used
directly as a classifier, a related approach using patterns based on improvement of
the target share and additional constraints has recently been successfully applied as
an intermediate feature construction step for classification tasks [2].
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3 Method

For introducing the proposed method, we first motivate the problem. Then, the
stacked inference, the induction of the structural properties, and the parameter
estimation are presented.

3.1 Problem Description

Recap the inference formula of CRFs (cf. Sect. 2.1). From the model designers’
perspective, the classification process is mainly influenced by the choice of the
feature functions fi. The feature functions need to provide valuable information
to discriminate labels for all possible kinds of instances. This works well when the
feature functions encode properties that have the same meaning for inference across
arbitrary instances. For example in the domain of reference segmentation, some
special words have a strong indicative meaning for a certain task: The word identity
feature “WORD=proceedings” always suggests labeling the token as “Booktitle.”
Thus, the learning algorithm will fix the corresponding weights to high values,
leading the inference procedure into the right direction. Some features, however,
violate the assumption of a consistent meaning. Their validity depends on a
special context or is restricted through long-range dependencies. In our example of
reference extraction, the feature that indicates colons might suggest an author label if
the document finishes author fields with colons. However, other style guides define a
different structure of the author labels. Consequently, the learning algorithm assigns
the weights to average the overall meaning. On the one hand, this yields good
generalization given enough training data. On the other hand, averaging the weights
of such features restricts them to stay behind their discriminative potentials. If we
knew that a certain feature has a special meaning inside the given context, we could
do better by increasing (or decreasing) the weights, dynamically adapting to the
given context. This procedure cannot be performed independently of the remaining
weights. Hence, we apply a different approach in this paper. Instead of changing the
model parameters, we learn the weights of additional feature functions describing
the structural and context-dependent consistencies.

3.2 Stacked Inference

Sequence labeling methods like CRFs assign a sequence of labels y=(y1, . . . ,yT ) to
a given sequence of observed tokens x = (x1, . . . ,xT ). Let crf (x,Λ ,F) = y be
the function that applies the CRF model with the weights Λ = {λ1, . . . ,λK} and
the set of feature functions F = { f1, . . . , fK} on the input sequence x and returns the
labeling result y. The set of model weights must of course correspond to the
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set of feature functions. Since the CRF processes this sequence of tokens in one
labeling task, we call x an instance. All instances together form the dataset D
which is split in a disjoint training and testing subset. An information or entity
often consists of several tokens and is encoded by a sequence of equal labels.
We assume here that the given labels already specify an unambiguous encoding.
An instance itself may contain multiple entities specified by an arbitrary amount
of labels, one label for each token of the input sequences. Furthermore, we assume
that the dataset D = {C1, . . . ,Cn} can be completely and disjointly partitioned into
subsets of instances x that originate from the same creation context Ci. Similar to
the relational template in [10], we imply that a trivial context template exists for
the assignment of the context set. Staying with the previous examples, the reference
section of this paper defines a context C with 18 instances.

In stacked graphical learning, several models can be stacked in a sequence.
Experimental results, e.g., of Kou [10], have shown that this approach already
converges with a depth of two learners and no significant improvements are achieved
with more iterations of stacking. Therefore, we only apply stacked graphical learn-
ing with CRFs in a two-stage approach like Krishnan and Manning [11]. In order to
extract entities collectively, we define the stacked inference task on the complete set
of instances x in one context C. The two CRFs, however, label the single instances
within that context separately as usual. The following algorithm summarizes the
stacked inference combined with online rule learning. Section 3.3 describes the rule
learning techniques for the identification of structural consistencies and how the
“meta-features” f m are induced. Details about the estimation of the weights (e.g., Λ̂
or Λ m) are discussed in Sect. 3.4.

1. Apply base CRF
Apply crf (x,Λ̂ ,F) = ŷ on all instances x ∈ C in order to create the initial label
sequences ŷ.

2. Learn structural consistencies
Learn classification rules for certain label transitions of all instances x ∈ C and
construct a feature function f m ∈ Fm for each discovered rule.

3. Apply stacked CRF
Apply crf (x,Λ ∪Λ m,F ∪Fm) = y again on all instances x ∈C in order to create
the final label sequences y.

3.3 Learning Structural Consistencies During Inference

First, the overall idea how structural consistencies are learned during the inference
is addressed. The technical details are then described after a short example.

We apply rule learning techniques on all (probably erroneous) label assignments
ŷ ∈ C of the base CRF. The rules are learned in order to classify certain label
transitions and, thus, describe the shared properties of the transition within the
context C. The labeling error in the input data is usually eliminated by the
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Author Author Author Author Author Author Author Title ... Author Author Author Date Date Date Date ...

y1 y2 y3 y4 y5 y6 y7 y8 ... y35 y36 y37 y38 y39 y40 y41 ...

x1 x2 x3 x4 x5 x6 x7 x8
... x35 x36 x37 x38 x39 x40 x41

...

Klösgen , W . : Explora : A ... , R . ( eds . ) ...

Fig. 1 Two excerpts of the ninth reference with erroneous labeling: The begin of the title (token
x6 and x7) was falsely labeled as author. The editor was additionally labeled as an author (up to
token x37) and date (token x38 to x41)

generalization of the rule learning algorithm. The label transition is optimally
described by a single pattern that covers the majority of transitions despite of
erroneous outliers. The learned rules are then used as binary feature functions in
the same context C: They return 1 if the rule applies on the observed token xt , and 0
otherwise. We gain additional features that indicate label transitions if the instances
are consistently structured. Even if the learned rules are misleading due to erroneous
input data or missing consistency of the instances, their discriminative impact on the
inference is yet to be weighted by the learning algorithm of the stacked CRF.

This process is illustrated by a simple example concerning the author label, but
can also be applied to any other label. Let the reference section of this paper be
processed by the base CRF that classified all instances but one correctly. For some
reasons the base CRF misclassified tokens x6 and x7 and tokens x15 to x41 in the ninth
reference (cf. Fig. 1). The input of the rule learning now consists of 18 transitions
from author to title whereas one transition is incorrect. In this case, a reasonable
result of the rule learning is the rule “if the token xt is a colon after a period, then
there is a transition from author to title at t.” Converted to a feature function, this rule
returns 1 for token x5 and 0 for all other tokens of the reference in Fig. 1. Therefore,
the stacked CRFs’ likelihood of a transition from author to title is increased at token
x5 due to high weights of the meta-features. Furthermore, no meta-features for the
transition from author to date could be learned resulting in a decreased evidence for
the label sequence at token x37.

In general, any classification method can be applied to learn indicators for
the structural consistencies. In this work, we restrict ourselves to techniques for
supervised descriptive rule discovery because their learning and inference algorithm
are efficient and the resulting rules can be interpreted. This allows studies about the
properties of good descriptions of structural consistencies. We disregarded the usage
of the Support Vector Machines [5] because several models need to be trained and
executed during the stacked inference.

For inducing the meta-features, a tabular database T = (I,A) is created for
each context C as the input of the rule learning techniques described in Sect. 2.3.
The database is constructed using all instances x ∈ C, their corresponding initially
labeled sequences ŷ and a feature set F ′ ⊆ F . Each individual of I corresponds
to a single token of the instances in C. The set of attributes A consists of the
possible labels and a superset of F ′: When classification methods are applied on
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sequential data, the attributes are also added for a fixed window, e.g., the attribute
“WORD@-1=proceedings” indicates that the token before the current individual
equals the string “proceedings.” Hence, this superset contains the feature functions
F and additionally their manifestation in a window defined by the window size w.
The cells in the tabular database T are filled with binary values. They are set to true
if the feature or label occurs at this token and to false otherwise.

In a next step, the target attributes for the rule learning are specified. In this work,
we apply the transition of two different labels. Here, the target attribute is set on all
transitions of two dedicated labels in the initially labeled result ŷ of the context C.
Finally, the set of learned rules is transformed to the set of binary feature functions
Fm that return true, if the condition of the respective rule applies.

3.4 Parameter Estimation

The weights of two models need to be estimated for the presented approach: the
parameters of the base model (Λ̂ ) and of the stacked model (Λ ∪Λ m). The base
model needs to be applied on the training instances for the estimation of the weights
of the stacked model, i.e., step 1 and step 2 of the stacked inference in Sect. 3.2
need to be performed on the training set. If the weights of the base model are
estimated as usual using the labeled training instances, then it produces unrealistic
predictions on these instances and the meta-features of the stacked model are over-
fitted resulting in a decrease of accuracy. Since in this case the base model is
optimized on the training instances, it labels these instances perfectly. The learned
rules create optimal descriptions of the structural consistencies and the stacked
model assigns biased weights to the meta-features. This is of course not reproducible
when processing unseen data.

The simple solution to this problem is a cross-fold training of the base model for
the training of the stacked CRF as described in Sect. 2.2 and successfully applied by
several approaches [10,11]. Training of the base model in a cross-fold fashion is also
a very good solution for the presented approach. However, we simply decrease the
accuracy of the model by reducing the training iterations for estimating Λ ′. Thus,
only one model needs to be trained for the learning phase of the stacked model.
For the testing phase or common application on the other hand, a single base model
learned with the default settings is applied.

The model of the stacked CRF is trained dependent on the base model and
the creation context C. Both are applied to induce the new features online during the
stacked inference. These meta-features possess the same meaning in the complete
dataset, but change their interpretation or manifestation depending on the currently
processed creation context. The weights Λ = {λ1, . . . ,λK} and Λ m = {λ m

1 , . . . ,λ m
M}

of the stacked CRF are estimated to maximize the conditional probability on the
instances of the training dataset:
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Pλ

(
y|x,C,crf (x,Λ ′,F)

)
=

1
Zx

exp

(
T

∑
t=1

K

∑
i=1

λi · fi(yt−1,yt ,x, t)

+
T

∑
t=1

M

∑
j=1

λ m
j · f m

j

(
yt−1,yt ,x, t,C,crf (x,Λ ′,F)

))

The resulting model still relies on the normal features functions but is extended
with dynamic and high-quality features that help to resolve ambiguities and
substitute for other missing features.

A short example: The induced feature function for the transition of the author
to the title is set to very high weights for the corresponding state transition of
the learned model. As illustrated in the example of Sect. 3.3, this feature function
returns 1 in the reference section of this paper for a token which is a colon after a
period. In other reference sections with a different style guide applied, the feature
function for this state transition returns 1, if the token is a period and is followed
by a parenthesis. However, both examples refer only to exactly one feature function
that dynamically adapts to the currently processed context.

4 Experimental Results

The presented approach is evaluated in the domain of reference segmentation.
The common approach is to separately process the instances, namely the references.
Within these references, the interesting entities need to be identified. Since all tokens
of a reference are part of exactly one entity, one speaks of a segmentation task. In this
section, we introduce the overall settings and present the experimental results.

4.1 Datasets

All available and commonly used datasets for the segmentation of references are
a listing of references without their creation context and are thus not applicable for
the evaluation of the presented approach. Therefore, a new dataset was manually an-
notated with the label set of Peng and McCallum [14] concerning the fields Author,
Booktitle, Date, Editor, Institution, Journal, Location, Note, Pages, Publisher, Tech,
Title and Volume. The resulting dataset contains 566 references in 23 documents
extracted only of complete reference sections of real publications. The amount
of instances is comparable to previously published evaluations in this domain, cf.
[6, 14].

Two different sets of features are used in the experimental study: The basic
features are applied for all evaluated models and correspond to the features of well-
known evaluations in this domain, cf. [6,14]. For an extensive definition of the set of
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basic features, we refer to the dataset that contains all applied basic features. Only
a part of the basic features is used for the induction of the meta-features, omitting
ngram and token window features. This restriction is justified with their minimal
expressiveness for the identification of the structure in relation to the increase of the
search space. The dataset with all applied basic features can be freely downloaded.1

4.2 Implementation Details

The machine learning toolkit Mallet2 is used for an implementation of the CRF
in the presented approach. For rule learning, we integrated two different methods.
We chose a subgroup discovery implementation3 because of the multifaceted
configuration options that allow a deep study of the approach’s limits. Additionally,
we applied an established association rule learner Ripper [4] for a comparable
implemention.4

We used only the default parameters for the CRF and all evaluated models were
trained until convergence. Only for the training of the stacked model, the iterations
of the base model were reduced to 50 iterations. For the default configuration of both
rule learning tasks, we set the window size w= 1. Additionally for the default setting
of the subgroup discovery, we used a quality function based on the F1 measure,
selected only one rule for each description of a label, restricted the length of the
rules to maximal three selectors, and set an overall minimum threshold of the quality
of a rule equal to 0.5.

4.3 Performance Measure

The performance is measured with commonly used methods of the domain.
Let t p be the number of true positive classified tokens and define f n and f p,
respectively, for false negatives and false positives. Since punctuations contain
no target information in this domain, only alpha-numeric tokens are considered.
Precision, recall and F1 are computed by:

precision =
t p

t p+ f p
, recall =

t p
t p+ f n

, F1 =
2 ·precision · recall
precision+ recall

.

1http://www.is.informatik.uni-wuerzburg.de/staff/kluegl peter/research/
2http://mallet.cs.umass.edu
3http://sourceforge.net/projects/vikamine/
4http://sourceforge.net/projects/weka/
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4.4 Results

The presented approach is compared to two baseline models in a five-fold cross
evaluation. Four different settings of stacked CRFs combined with a rule learning
technique are investigated. A detailed description of all evaluated models is given in
Table 1. The documents of the dataset are randomly distributed over the fivefolds.

The results of the experimental study are depicted in Table 2. Only marginal
differences can be observed between the two baseline models CRF and STACKED

CRF. This indicates that the normal stacking approach cannot exploit the structural
consistencies or gain much advantage of the predicted labels.

All of our stacked models combined with rule learning techniques significantly
outperform the baseline models using one-sided, paired t-tests on the F1 scores of
the single references (p� 0.01). Comparing the results of STACKED+DESCRIPTIVE

that only considers the consistencies of four labels to the baseline CRF, our approach
achieves an average error reduction of over 30% on the real-world dataset.

The lower F1 scores of STACKED+RIPPER can be explained by its learning
algorithm. The Ripper implementation applies a coverage-based learning in order
to create a set of rules, which together classify the target attribute. This can lead to a
reproduction of errors of the predicted labels in the description of the structure.
In the domain of reference segmentation a single description of the structure is
preferable. However, in other domains where disjoint consistencies of one transition
can be found, a covering algorithm for inducing the rules performs probably better.

The second configuration STACKED+MORE considers the transition between
seven labels and is able to slightly increase the measured F1 score compared to
our default model STACKED+DESCRIPTIVE. STACKED+MAX that induces rules
for all labels achieves only an average error reduction of 26% compared to a single
CRF. This is mainly caused by misleading meta-features for rare labels. The task of
learning consistencies from a minimal amount of examples is error-prone and can
decrease the accuracy, especially if the examples are labeled incorrectly.

Table 1 Overview of the evaluated models

CRF A single CRF trained on the same data and features.
STACKED CRF A two-stage CRF approach. The predictions of the base CRF are

added as features to the stacked CRF.
STACKED+DESCRIPTIVE The default approach of stacked CRF combined with subgroup

discovery for rule learning. Only transitions between the labels
Author, Title, Date, and Pages that commonly occur in most
references are considered.

STACKED+RIPPER A stacked CRF combined with the association rule learner Ripper.
Only the four most common labels are addressed.

STACKED+MORE A stacked approach using subgroup discovery that additionally
learns the transitions of the labels Booktitle, Journal, and Volume.

STACKED+MAX A stacked approach using subgroup discovery that considers the
transitions of all labels for the rule learning task.
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Table 2 F1 scores averaged
over the fivefolds Average F1

Base line
CRF 91.3
STACKED CRF 91.8
Our approach
STACKED+DESCRIPTIVE 94.0
STACKED+RIPPER 93.6
Variants of DESCRIPTIVE

STACKED+MORE 94.1
STACKED+MAX 93.6

Table 3 F1 scores of the
author label STACKED+ Error

CRF DESCRIPTIVE reduction

Fold 1 97.7 99.6 82.6%
Fold 2 97.0 99.2 73.3%
Fold 3 96.4 96.5 2.8%
Fold 4 97.1 98.8 58.6%
Fold 5 89.5 95.1 53.3%
Average 95.5 97.8 51.6%

Table 3 provides closer insights into the benefit of the presented approach using
the author label as an example. STACKED+DESCRIPTIVE is able is significantly
improve the labeling accuracy for all folds but one. The third fold contains an
unfavorable distribution of style guides between the training and testing set for the
author. If the initial base CRF labels a label systematically incorrectly, then the
rule learning cannot induce any valuable and correct descriptions of the structure.
Nevertheless, an average error reduction of over 50% is achieved for identifying the
author of the reference.

To our knowledge, no domain-independent approach was published that can
be utilized for a comparable model. As comparison, we applied the skip-chain
approach of [16] with factors for capitalized words and additionally for identical
punctuation marks, but no improvement over the baseline models could be mea-
sured. Furthermore, the feature induction for CRFs [13] was integrated, but resulted
counter-intuitively in a decrease of the accuracy.

The performance time of the presented approach for onefold averaged over the
fivefolds is several times faster than a higher-order model with skip edges, about
nine times faster using the subgroup discovery and about fourteen times faster
using Ripper. The difference in speed is less compared to previously published
evaluations [10]. This is mainly caused by the fact that the rule learning is optimized
neither for this task nor for the domain, e.g., by pruning the attributes.
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5 Related Work

In the following, we give a brief overview on related work coming from different
domains with context consistencies, attempts utilizing complex graphical models
and stacked graphical models for collective information extraction, and approaches
on feature induction.

Especially for Named Entity Recognition (NER) modeling long-distance
dependencies is crucial. The labeling of an entity is quite consistent within a
given document, however, conclusive discriminating features are sparsely spread
across the document. As a consequence, leveraging predictions of one instance
to disambiguate others is essential. Bunescu et al. [3], Sutton et al. [16], and
Finkel et al. [7] extended the commonly applied linear chain CRF to higher order
structures. The exponential increase in model complexity enforces to switch from
exact to approximate inference techniques. Stacked graphical models [10,11] retain
exact inference as well as efficiency by using linear chain CRF.

In Kou and Cohen’s Stacked Graphical Learning framework [10], information is
propagated by Relational Templates C. Although each C may find related instances
and aggregate their labels in a possibly complex manner, they utilize rather simple
aggregators, e.g. COUNT and EXISTS. Likewise, the approach of Krishnan and
Manning [11] uses straightforward but for NER efficient aggregate features, con-
centrating on the label predictions of the same entity in other instances. In contrast
to Stacked Graphical Learning, they also include corpus-level features, aggregating
predictions across documents. In this paper, we use data mining techniques to
determine rich context sensitively applied features. Rather than simply transferring
labels of related instances, e.g., by majority vote aggregation, we exploit structural
properties of a given context. We represent the gathered context knowledge by
several meta-features which are conceptually independent of the label types.

A semi-supervised approach on exploiting structural consistencies of documents
has been taken by Arnold and Cohen [1] who improve domain adaption by
conditional frequency information of the unlabeled data. They show that differences
in the frequency distribution of tokens across different sections in biological
research papers can provide useful information to extract protein names. Counting
frequencies can be done efficiently and the experimental results suggest that these
features are robust across documents. However, in general unlabeled data is not
enough to model the context structure, e.g., frequency information can be noisy or
differences in the frequency distribution may be caused non-structural. We propose
to mine the distributions of predicted labels and their combinations with observed
features to capture context structure.

Yang et al. use structural consistencies for information extraction from web
forums [18]. They employ Markov Logic Networks [15] with formulas to encode
the assumed structural properties of a typical forum page, e.g., characteristic link
structures or tag and attribute similarities among different posts and sites. Since
context structure is represented inside the graphical model, inference and learning
have to fight model complexity. Another example for content extraction from web
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sites that exploits related instances is Gulhane et al. [8]. They assume two properties
of web information: The values of an attribute distributed over different pages are
similar for equal entities and the pages of one web site share a similar structure due
to the creation template. In contrast to those two approaches, the work presented in
this paper relies on no structural knowledge previously known about the domain.

McCallum contributed an improvement for CRF applications through feature
induction [13]. Based on a given training set useful combinations of features are
computed, reducing the number of model parameters. The feature induction of our
approach is performed online during processing the document and applies flexible
data mining techniques to specify the properties of consistent label transitions.

6 Conclusions

We have presented a novel approach for collective information extraction using a
combination of two CRFs together with rule learning techniques to induce new
features during inference. The initial results of the first CRF are exploited to gain in-
formation about the structural consistencies. Then, the second CRF is automatically
adapted to the previously unknown composition of the entities. This is achieved by
changing the manifestation of its features dependent on the currently processed set
of instances. To our best knowledge, no similar and domain-independent approach
was published that is able to exploit the structural consistencies in textual data.
The results on a real-world dataset for the segmentation of references indicate a
significant improvement towards the commonly applied models. This is achieved
without any additional domain knowledge, integrated matching methods with a
bibliographic database, or other jointly performed tasks like entity resolution.
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Detecting Mean-Reverted Patterns
in Algorithmic Pairs Trading

K. Triantafyllopoulos and S. Han

Abstract This paper proposes a methodology for detecting mean-reverted
segments of data streams in algorithmic pairs trading. Considering a state-space
model that describes the spread (data stream) as the difference of the prices of two
assets, we propose two new recursive least squares (RLS) algorithms for predicting
mean-reversion of the spread in real time. The first is a combination of steepest
descent RLS and Gauss–Newton RLS, for which we extend previous work by
providing exact recursive equations to update the variable forgetting factor (VFF).
We propose a new RLS algorithm for variable forgetting, by transforming the
prediction errors into a binary process and adopting Bayesian methods for inference.
The new approach is versatile as compared to more traditional RLS schemes, having
the advantage of uncertainty analysis around the VFF. The methods are illustrated
with real data, consisting of daily prices of Target Corporation and Walmart Stores
Inc shares, over a period of 6 years. Alongside the detection of mean-reversion of
the spread, we implement a simple trading strategy. The empirical results suggest
that the new Bayesian approach returns are in excess of 130 % cumulative profit
over a period of 2 years.

Keywords Pairs trading • Statistical arbitrage • Mean-reversion • Market-neutral
trading • Recursive least squares • Variable forgetting factor • Adaptive filtering

1 Introduction

This paper is concerned with the detection of mean-reversion in algorithmic pairs
trading. Pairs trading is a market-neutral trading philosophy, which exploits a very
basic trading rule in the stock market: buy low and short-sell high. This and similar
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ideas can be traced back in the 1930s [1], but they appeared within the pairs trading
framework in the 1980s with the work of Nunzio Tartaglia and his quantitative
group at Morgan Stanley. Algorithmic pairs trading deploys trading strategies and
related financial decisions that can be implemented in the computer without human
intervention. Recently, there has been a growing interest in pairs trading and in
related market-neutral trading approaches, see, e.g., [2, 3, 7, 8, 14]; Gatev et al. [3]
provide a nice historical introduction to the subject. For book-length discussion of
pairs trading, the reader is referred to [13] and [9].

Considering the spread of two assets A and B, defined as the difference of the
prices of A and B, pairs trading assumes that the spread attains an equilibrium or
that the spread in the long run reverts to its historical mean. The main idea behind
pairs trading is to propose trades based upon the relative temporary mispricings
of the two assets. For example, suppose that the equilibrium of the spread is $10
(US dollars) and today the two assets trade at $40 and $10, respectively, or with
spread $40−$10= $30. Then, pairs trading suggests to go short (or short-sell) asset
A (as this is likely to be overpriced at $40) and to go long (or buy) asset B (as this is
likely to be underpriced at $10). If the spread reverts to its historical mean, the price
of asset A will decrease and/or the price of asset B will increase, either of which can
return a healthy profit.

This approach is heavily dependent on the assumption of mean-reversion for the
spread. Should this assumption be violated, the trader may buy an overpriced asset,
which is losing its value, or may short-sell an undervalued asset, which commit the
trader to high buying costs in the future; both of these actions result in significant
loss. Mean-reversion implies that the spread fluctuates around the equilibrium level
and thus if today the price of an asset goes up, it will go down in the near future and
vice versa. Conversely, a breakdown of mean-reversion implies that any shock in
the spread may be permanent and hence there is no guarantee that if today the price
of an asset goes up, it will go down in the near future. This is what happened at the
Wall-Street operating Long-Term Capital Management hedge fund, which had to
be bailed out in 1998 by the Federal Reserve Bank of New York over a $3.625 billion
loss, of which $286 million was in equity pairs [5]. This story reveals that spread
speculation, in particular regarding to short-selling assets, may lead to significant
loss, if mean-reversion is not monitored systematically and if the uncertainty of
spread prediction is not studied carefully. In practice, assets may exhibit local mean-
reversion, i.e. there may be periods of mean reversion followed by periods of a
breakdown of mean-reversion, see, e.g., [9, 12]. As a result, it is proposed that by
detecting periods of mean reversion, the trader can find opportunities for trading.

In this paper, considering a state-space model for the spread, we propose that
mean-reverted patterns can be detected in real time by predicting the dynamic
states of this model. Section 2 motivates and describes the above model. In Sect. 3
we propose a new Gauss–Newton recursive least squares (RLS) method, which
improves on the Gauss–Newton RLS algorithm of [11]. The proposed variable
forgetting updating is exact, avoiding the approximation of the second derivative
of the mean square error [11]. By combining in a single algorithm, steepest
descent RLS [4, 6] and Gauss–Newton RLS, we propose that for periods when the
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data stream is smooth or stable, the former algorithm is used, while for higher
adaptivity tracking at periods when the data stream is not stable, the algorithm
switches to the Gauss–Newton RLS. Furthermore, Sect. 3 introduces a new variable
forgetting factor RLS algorithm, based on Bayesian conjugate methods. According
to this the forgetting factor is stochastic and, under some assumptions, we derive
its predictive distribution. This approach of variable forgetting is versatile, as it
enables the modeller to analyze uncertainty associated with the forgetting factor
at each point of time. In Sect. 4 a simple trading strategy is proposed, which is
put into practice in the empirical section that follows. Section 5 illustrates the
proposed methodology considering a data stream consisting of share prices of Target
Corporation and Walmart Stores Inc, over a period of 6 years. The empirical findings
suggest that the proposed Bayesian methods outperform both the RLS and the new
combined RLS algorithm. Section 6 gives concluding remarks and the appendix
details proofs of arguments of Sect. 3.

2 Model Set-Up

Suppose that, at time t, pA,t denotes the price of asset A and pB,t denotes the price
of asset B, and that we form the data stream {yt}, where yt = pA,t − pB,t . Assuming
that in the long run, {yt} is mean-reverted, we can take advantage of temporary
mispricings of A and B, in order to realize profits. For example, if {yt} reverts to
a mean 10, and at the current time point t, yt = 18, this would mean that asset
A is overpriced and/or asset B underpriced; hence, a simple trading strategy is to
go short (short-sell) asset A and go long (buy) asset B, with the view to realize a
profit when yt+1 reverts to its mean 10. On the other hand, if the spread {yt} is not
mean-reverted, it is quite dangerous to deploy the above trading procedure as we
can short-sell an undervalued asset or buy an overvalued asset, both cases of which
leading to a loss.

A model that can detect mean-reverted patterns is important as it will enable
decision makers to quantify risks and construct optimal trading strategies. A first
such model is to consider that yt is a noisy version of a mean-reverted process xt

and that the associated noise can make or break the mean-reversion. This model
is technically defined by yt = xt + ξt and xt = α +β xt−1 + ζt , where α and β are
parameters and ξt ,ζt are uncorrelated white noise processes [2]. With this model
in place it is easy to observe that the mean of yt converges to α/(1− β ), if and
only if |β | < 1, where |β | is the absolute value of β . A disadvantage of the above
model is that the parameters α and β are time-invariant, which may not be a
realistic assumption as the mean-reverting behaviour of {yt} may well change over
time. An improvement of this model is achieved by considering the more general
state-space model

yt = αt +βtyt−1 + εt = FT
t θt + εt , (1)

θt = Φθt−1 +ωt , (2)
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where now the parameters αt and βt are time-varying [12]. This is conveyed
via the Markovian bivariate column vector θt = (αt ,βt)

T and Ft = (1,yt−1)
T,

where T denotes transposition. The matrix Φ is assumed to be diagonal, i.e. Φ =
diag(φ1,φ2), for some known φ1 and φ2 (in the applications of this paper we consider
φ1 = φ2 ≈ 1; the above authors describe maximum likelihood estimation of these
hyperparameters). Furthermore, the white noise ωt is assumed to be uncorrelated of
εt , for all t. The system is initiated at t = 1 with θ1. The distributions of εt ,ωt and
θ1 may be assumed as Gaussian, and this is assumed for the rest of the paper.

With model (1)–(2) in place, the condition of mean reversion is |βt | < 1, for all
t; for a proof of this result the reader is referred to [12]. Furthermore, we suggest
that one can extract a mean-reverted segment It1,t2 = [t1, t2] � [1,N], where t1 < t2
and N is the total length of {yt}. In other words, we propose that using data up to t,
we obtain a working prediction β̂t+1 of βt+1, and we use this to test whether t + 1
belongs to a mean-reverted segment t + 1 ∈ [t1, t2] (with |β̂t1 | < 1, . . . , |β̂t2 | < 1) or
not; usually we operate in real-time one-step ahead, i.e. t1 = t2 = t + 1. For this
process to end and in order to declare at each time point whether the process is
likely to be mean-reverted, the β̂t values are needed. In a similar fashion we require
to obtain predictions of yt+1, which are denoted by ŷt+1. Adaptive schemes of both
of these predictions are described next.

3 Adaptive Learning

Given data Dt = (y1, . . . ,yt), we wish to predict βt+1 and yt+1. In the sequel we
present three prediction procedures with adaptive forgetting: (a) a standard steepest
descent variable forgetting factor RLS (SDvFF) algorithm, (b) a new switching
variable forgetting factor RLS (SvFF), which switches from SDvFF to a modified
Gauss–Newton method and (c) a new adaptive forgetting method using a binary
model (BBvFF).

3.1 Steepest Descent Variable Forgetting Factor RLS

RLS algorithms with adaptive memory have been extensively developed and used
[4], while SDvFF with adaptive memory is recently introduced in [6]. Defining λ
to be a forgetting factor (0 < λ ≤ 1) (so that the system forgets observations in
a rate ∑∞

j=0 λ jyt− j = (1− λ )−1), then locally λ is chosen so that to minimize the
cost function J(t) = 2−1E(e2

t ), where E(·) denotes expectation and et = yt − ŷt is
the residual or prediction error at time t. Using the celebrated Kalman filter for the
recursions of mt = E(θt |Dt), we update λt via

λt = [λt−1 − a∇λ (t)]
λ+
λ− , (3)
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where ∇λ (t) = ∂J(t)/∂λ is the first derivative of J(t) with respect to λ , a is the rate
of change from t − 1 to t and the notation y = [x]ba implies that y = x, if a < x < b,
y = a, if x ≤ a and y = b, if x ≥ b. This consideration is important, as it makes sure
that λ1, . . . ,λt , . . . do not fall below λ− or above λ+, both of which could result in
poor or unacceptable values for the forgetting factor. The values of a, λ− and λ+ are
pre-specified and usually they are chosen by considering historical data [6].

The algorithm starts by first applying the Kalman filter recursions (all dependent
on λt−1), e.g. the prediction of θt+1 is θ̂t+1 = Φmt and mt = Φmt−1 +Ktet , where
Kt = (λt−1 +FT

t ΦPt−1ΦTFt)
−1ΦPt−1ΦTFt is the Kalman gain, with Pt−1 being the

covariance matrix of θt−1, which is updated with a similar formula.
Then the algorithm commences by deriving a formula for the evaluation of ∇λ (t),

which is used in (3). We note that ∇λ (t)≈ −etFT
t Φψt−1, where ψt = ∂mt/∂λ and

then the recursion of ψt is given by ψt = (I−KtFT
t )Φψt−1 +StFtet , where I denotes

the identity matrix and St = ∂Pt/∂λ . After some algebra, we can verify that St can
be recursively computed by

St =−λ−1
t Pt +λ−1

t KtK
T
t +λ−1

t (I −KtF
T

t )ΦSt−1ΦT(I −FtK
T
t ).

With this algorithm in place we obtain a sequence of estimated values {mt ,Pt ,ψt ,
St ,λt}, given that some initial values m1,P1,ψ1,S1,λ1 are specified. The prediction
β̂t+1, which is needed to detect stationary patterns in the spread, is then obtained
by noting θt = (αt ,βt)

T, i.e. β̂t+1 is the lower element of the bivariate vector Φmt .
Furthermore, one can obtain the prediction ŷt+1 of the spread yt+1, as ŷt+1 =FT

t Φmt .

3.2 Switch Variable Forgetting Factor RLS

The SDvFF algorithm described above works well when there are small shifts in
the data stream; some authors assume that {yt} is a stable or stationary data stream,
see, e.g. [11]. However, as this assumption may well not be valid—and indeed in
the context of this paper we are interested in detecting patterns of stable or mean-
reverted regions—we need to have a way that the forgetting factor will adapt much
quicker to changes than the steepest descent method of the previous section.

Motivated by this observation, we deploy a Gauss–Newton method, for the
recurrence updating of the adaptive forgetting factor λt . Thus, we replace (3), by

λt =

[
λt−1 − a

∇λ (t)

∇2
λ (t)

]λ+

λ−

, (4)

where ∇2
λ (t) denotes the second partial derivative of J(t) with respect to λ .

The Gauss–Newton algorithm, abbreviated as GN, follows similar lines as the
SDvFF algorithm of the previous section. The recursions of mt ,Pt ,ψt ,St are as
before, but now we need to add the evaluation of ∇2

λ (t). By direct differentiation,
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we get ∇2
λ (t)≈ (FT

t Φψt−1)
2 − etFT

t Φηt , where ηt = ∂ψt−1/∂λ . In the appendix it
is shown that by applying differentiation, the recursions of ηt and Lt = ∂St/∂λ are

ηt = (I −KtF
T

t )Φηt−1 +LtFtet − 2StFtF
T

t Φψt−1, (5)

where

Lt = λ−1
t (I−KtF

T
t )ΦLt−1ΦT(I −FtK

T
t )+λ−2

t Pt(I −FtK
T
t )−λ−1

t St +Mt +MT
t

−λ−2
t (I −KtF

T
t )ΦSt−1ΦT(I −FtK

T
t ) (6)

and

Mt = λ−1
t StFtF

T
t {Pt −ΦSt−1ΦT(I −FtK

T
t )}. (7)

In this algorithm, the estimated vectors {θ̂t} are provided by the sequences of
{mt} and {Pt}, but now these depend on the forgetting factor λt , which is updated
by the Gauss–Newton method (4), for the application of which the sequences
{ψt ,St ,Lt ,Mt} need to be computed.

However, experience with data indicates that this algorithm is too sensitive to
abrupt changes, due to the introduction of the second derivative in (4). This results
in poor predictive performance, in particular in the case of non-stationary abrupt
points of the data stream being followed by smooth less noisy data points. In theory,
the SDvFF algorithm of the previous section is likely to work better when there are
not many abrupt changes (providing more smooth predictions of βt), while the GN
algorithm is likely to work better when there are abrupt changes that require the
forgetting factor to adapt quickly. Motivated from this observation, we propose that
the forgetting factor is updated as follows

λt =

⎧⎪⎨
⎪⎩

[λt−1 − a∇λ (t)]
λ+
λ− , if |et | ≤ kt[

λt−1 − a ∇λ (t)
∇2

λ (t)

]λ+

λ−
, if |et |> kt

where | · | indicates modulus and kt is a pre-specified threshold value.
Basically this scheme suggests a combination of SDvFF and GN methods, which

switches from SDvFF to GN when the prediction errors are high (SvFF). According
to this, at each time t, if the prediction error et is small, then we operate with SDvFF,
because we consider that the system performs smoothly. If, however, there is an
abrupt change—e.g. as evidence of an outlier present or evidence of non-stationarity
of the stream—then we operate with the Gauss–Newton updating of the forgetting
factor. This allows us to experience smooth or low variance predictions when the
data stream is not noisy and adaptive predictions when the stream is noisy.
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3.3 Beta-Bernoulli Variable Forgetting Factor RLS

Motivated by the comments in the last paragraph, it is desirable to obtain adaptive
forgetting to respond quickly to changes of the data stream, but yet retaining smooth
performance when the data is not as noisy. A natural way to achieve this is to set the
forgetting factor λ as

λ = πλ++(1−π)λ−, (8)

where λ−,λ+ are defined as before and π is the probability that the prediction error
et is small (to be defined mathematically later). This setting guarantees that λ− ≤
λ ≤ λ+ and so there is no need to force λ to be in this range (as we had to do in
(3) and (4)). The motivation of formula (8) is that when e2

t is small, then π should
be close to one and so λ is much closer to λ+, while when e2

t is large (e.g. in the
presence of an outlier), then π should be close to zero and λ is closer to λ−. In the
sequel, we propose a flexible mechanism for estimating π from the data and thus
learning about λ from the data.

In order to estimate π we deploy conjugate Bayesian methods. We define xt to be
a binary random variable (taking values 0 and 1), according to the law

xt =

{
1, if |et | ≤ kt , with probability π
0, if |et |> kt , with probability 1−π

where the probability π is unknown and kt is a threshold determined at time t.
Given π , the likelihood function from the observed data xt is a bernoulli distribution,
written as p(xt | π) = πxt (1−π)1−xt .

The next step is to specify a prior distribution for π . Since π is a probability, a
natural choice is a beta distribution, i.e. π ∼ Be(c1,c2), with density

p(π) =
Γ(c1 + c2)

Γ(c1)Γ(c2)
πc1−1(1−π)c2−1,

where c1,c2 > 0 are the parameters of the beta distribution and Γ(·) denotes the
gamma function. The reader should note that the distribution of π is implicitly
conditional on data up to time t−1 (i.e. c1,c2 will depend on t−1 as shown below).
Then by applying Bayes theorem, we have that the posterior distribution of π , given
xt is

p(π | xt) ∝ p(xt | π)p(π) ∝ πc1+xt−1(1−π)c2+1−xt−1,

which is proportional to the posterior beta distribution, π | xt ∼ Be(c1 + xt ,c2 −
xt + 1). Applying this formula sequentially we obtain π | x1, . . . ,xt ≡ π | Dt ∼
Be(c1t ,c2t), where c1t = c1,t−1 + xt and c2t = c2,t−1 − xt + 1. With these results in
place, we propose that after observing yt , the mean of the distribution π | Dt as a
prediction of π and so we write π̂t = E(π | Dt) = c1t(c1t + c2t)

−1. We can then
propose the variable forgetting factor λ̂t as the mean of λ | Dt , i.e. λ̂t = E(λt | Dt) =
π̂tλ++(1− π̂t)λ−.
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The above procedure is delivered conditional on the specification of the threshold
kt . Since the innovations {εt} and {ωt} are assumed to be Gaussian, we have that

q−1/2
t et follows the standard Gaussian distribution and so P(q−1/2

t |et | ≤ 1.96) =
0.95, where qt =Var(et |Dt−1)=FT

t Pt−1Ft/λ̂t−1+1 is the prediction error variance,

and so we can choose kt = 1.96q1/2
t .

In this framework, the forgetting factor is a random variable (as it is a function of
π) and thus, by rewriting (8) as λ = (λ+−λ−)π +λ− and noting the posterior beta
distribution of π | Dt , one can derive the distribution of λ | Dt , i.e.

p(λ | Dt) = c(λt −λ−)c1t−1(λ+−λt)
c2t−1, (9)

where the proportionality constant c is given by

c =
Γ(c1t + c2t)

(λ+−λ−)c1t+c2t−1Γ(c1t)Γ(c2t)
.

This distribution is consistent with the above evaluation of λ̂t = E(λ | Dt), but
p(λ | Dt) offers versatility, as one can analyze the uncertainty associated with λ̂t . In
particular, the variance of λ is

Var(λ | Dt) =
c1tc2t(λ+−λ−)

(c1t + c2t)2(c1t + c2t + 1)
.

This can be easily verified by first writing λt = (λ+− λ−)π + λ−, so that Var(λ |
Dt) = (λ+−λ−)2Var(π | Dt) and then noting the variance of the beta distribution
π | Dt ∼ Be(c1t ,c2t). Furthermore, for c1t > 1 and c2t > 1, the mode of λt is

mode(λ | Dt) =
λ+(c1t − 1)+λ−(c2t − 1)

c1t + c2t − 2
, (10)

the proof of which is detailed in the appendix.
Given initial values c1,1 and c2,1, the above development suggests a sequential

algorithm, which basically runs the Kalman filter conditional on the forgetting
factor λt−1 and then updates the forgetting factor according to the above beta-
bernoulli procedure. From the prior distribution π ∼ Be(c1,1,c2,1), by noting that
π̂1 = c1,1(c1,1 + c2,1)

−1, we propose to set the initial values as c1,1 = c2,1 = 0.5.
This is motivated by the reasoning that since we have no data observed, we predict
the probability π as 0.5.

Although (9) provides the distribution of λ , in the empirical section below, λ̂t is
used as the working estimate of λ . It is then of interest to derive a recursive formula
of λ̂t (as a function of λ̂t−1), e.g. to enable comparison with the forgetting factors
of SS-RLS and GN-RLS algorithms. To this end, we note that π̂t = c1t(c1t + c2t)

−1

and so
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λ̂t = π̂tλ++(1− π̂t)λ− =
c1tλ++ c2tλ−

c1t + c2t

=
c1,t−1 + c2,t−1

c1t + c2t
λ̂t−1 +

(λ+−λ−)xt +λ−
c1t + c2t

=
t − 1

t
λ̂t−1 +

(λ+−λ−)xt +λ−
t

, (11)

upon observing that c1t + c2t = c1,t−1 + c2,t−1 + 1 = · · · = c1,1 + c2,1 = t, if we use
the initial values c1,1 = c2,1 = 0.5, suggested above.

An interesting implication of equation (11) is as follows. Rewrite (11) as tλ̂t =
(t − 1)λ̂t−1 +(λ+− λ−)xt +λ− and apply this formula sequentially backwards in
time to obtain λ̂t = t−1(0.5λ++(t−0.5)λ−)+t−1(λ+−λ−)∑t

j=1 x j. Then for large

t we have that the first term of the above equation is close to λ− and so λ̂t ≈ λ−+
(λ+−λ−)x̄, which can be rearranged to

λ̂t ≈ x̄λ++(1− x̄)λ−, (12)

where x̄ = t−1 ∑t
j=1 xi is the mean of the xt values. Equation (12) has a similar form

as that of λ , where now x̄ replaces π . The former is the proportion of points (1, . . . , t)
for which the model has a good forecast ability (judged via Pr(|et | ≤ kt)).

In the application of the above procedure, a difficulty is associated with the
phenomenon of having many units in the xt sequence (corresponding to small errors
|et |, followed by a small number of outlying observations or zeros (corresponding to
large value of |et |). Since, in the evaluation of λ̂t , we estimate π by x̄, it is possible
to have one or more sequential outliers, but the probability π̂ can be large, as it is
estimated by x̄ (which includes many units from past observations). This may be fine
in the long run, as it can be argued that units are much more dominant than zeros,
in this particular case. But in the short run it can cause the forgetting factor to fail to
adapt as new information comes in. To illustrate this point, suppose that λ− = 0.8,
λ+ = 0.99 and say that we have got the first 95 time points corresponding to |et | ≤ kt

(t = 1, . . . ,95) and for the last 5 time points (t = 96, . . . ,100), it is |et | > kt . This
implies that xt = 1, for t = 1, . . . ,95 and xt = 0, for t = 96, . . . ,100, so that x̄ = 0.95.
Therefore, at time t = 100, the forgetting factor is λ̂t = 0.9805, which is much closer
to λ+ = 0.99 than to λ− = 0.8 and thus it is failing to be adaptive after 5 consecutive
outliers.

To alleviate this problem, we propose a simple intervention step. Basically, we
suggest that once a change in the sequence xt occurs we reset the prior values of
c1,t−1 and c2,t−1 to the initial values (c1,1 = c2,1 = 0.5) and so we reset the prior
π̂t−1 to 0.5. This simple intervention has the effect of not using x̄ in (12), but only
the current value, or more mathematically

π̂t =
c1t

c1t + c2t
=

c1,1 + xt

c1,1 + c2,1 + 1
=

1+ 2xt

4
,
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where xt = 1 (if xt−1 = 0) and xt = 0 (if xt−1 = 1). As a result the forgetting factor
at time t is

λ̂t =

{
0.75λ++ 0.25λ−, if xt = 1

0.25λ++ 0.75λ−, if xt = 0

In the numerical example above, we would intervene after the first time we have
observed an outlier, that is at t = 96, with λ̂96 = 0.25× 0.99+ 0.75× 0.8 = 0.847.
This forgetting factor is much closer to 0.8 than to 0.9805 (which was the value
obtained above using x̄) and it depicts the influence of the outlier (and the proposed
intervention) at this point of time.

4 Trading Strategy

In this section we describe a simple trading strategy, which is used in the empirical
section below. As mentioned previously, we have two assets A and B and at each
time t, we observe their prices, denoted as pA,t and pB,t . Consequently, their spread
is formed as yt = pA,t − pB,t . If we knew yt+1 at time t, we would know which asset
to buy and which to sell. If say, we knew that yt < yt+1, we would know that the
price of A was likely to increase at t+1 and / or the price of B was likely to decrease
at t +1 (relative to their prices at t). As a result at time t, we should buy asset A and
short-sell B. At t + 1, with yt+1 > yt , we would realize a profit, if we sold asset A
and bought B (minus transaction costs). Of course at time t we do not know yt+1,
but we can forecast it by ŷt+1 (produced by each of the three algorithms).

Suppose that we wish to open a trading position at time t. We first check whether
the spread is expected to be mean-reverted at t + 1, i.e. we see whether |β̂t+1| <
1. If |β̂t+1| ≥ 1, we decide not to trade and so we do not open a position at t. If
|β̂t+1| < 1, we open a trading position according to the rule: buy a unit of A and
short-sell 3 units of B, if ŷt+1 − h > yt and short-sell 3 units of A and buy a unit of
B, if ŷt+1 + h < yt . Here h > 0 is a prediction margin that allows some uncertainty
to guarantee that the unknown yt+1 at time t falls in the range [ŷt+1 − h, ŷt+1 + h].
To explain further this idea, imagine that at time t, the spread is equal to yt = 10
and that we project that at time t + 1 the spread prediction goes up to ŷt+1 = 11.
As there is uncertainty around this prediction, it is equally likely that the true value
of yt+1 be 12 (higher than yt ) or 9 (lower than yt ), each of which returns a different
trading rule (buy/sell or sell/buy); in particular the latter (yt+1 = 9< yt ) can result in
a loss, if we implement the rule yt > ŷt+1. For this reason, introducing h prevents this
happening. In this simple example, if we operate with h as 10% of ŷt+1 = 1.1, then
ŷt+1 − k = 9.9 < 10 = yt and so we will not open the position: buy A and short-sell
B. Likewise ŷt+1+h= 11.1> 10= yt and so we do not open the position: short-sell
A and buy B. In such a case, we make the decision not to open a trading position at
t, because the predicted ŷt+1 does not create a safe margin in the spread to allow for
a probable profit. Figure 1 illustrates the trading strategy we propose.
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We can see that the lower the value of h the more transactions we operate (we are
more exposed to risk) and the higher the value of h the less transactions we operate
(we are more conservative). As a result, one has to evaluate h and in this paper
we propose to look at the mean cumulative profit considering h as 1 %, 3 % and 5 %
of ŷt+1; this is implemented in the empirical section below.

Coming back to our trading strategy, with N the length of the spread, at each time
t = 3, . . . ,N−1, we close the trading position from time t−1 (if at that point of time
we had opened a trade) by reverting the buy and sell actions of time t − 1 (i.e. if we
bought A and sold B at t−1, we sell A and we buy B at t). At t, we project whether at
t +1 will be mean-reverted at t +1 and if it is, we open a trading position according
to the rules above. Thus, at each time t we do one of the following: (a) close a
position of t −1 (if we opened a position at t −1) and open a position at t, (b) close
a position of t − 1 (if we opened a position at t − 1) and we decide not to open a
new trade, (c) open a new trade at t, or (d) no action is committed. Initially, at t = 2,
we may open the first trading position and at the last point t = N, we may close the
trading position of time N − 1.
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5 Example: Target and Walmart Shares

In this section we consider data, consisting of daily prices (in US$) of Target
Corporation and Walmart Stores Inc share prices, over a period of nearly 6 years
(3 January 2006 to 14 October 2011). The data has been provided by Yahoo! finance
(http://finance.yahoo.com/). Figure 2 shows the data and its spread yt = pAt − pBt

(shown in the inset), where pAt denotes the daily price of Target (for short) and pBt

denotes the daily price of Walmart (for short). The figure indicates that the relative
prices of these two assets seem to co-evolve at some periods of time and that their
spread appears to exhibit mean-reversion, fluctuating around a historical mean of
0.7713. However, it is clear that the spread is more mean-reverting at about 2008
and after 2010, while the fluctuations of 2006 until 2008 may give some indication
of lack of mean-reversion. Figure 2 also shows that Walmart is much more volatile
and uncertain than Target, which seems to have relatively moderate fluctuations
around its historical mean.

We have applied the three algorithms (SDvFF, SvFF and BBvFF) of the previous
section, in order to obtain predictions ŷt of the data stream yt and β̂t of the βt

coefficient, which controls the detection of mean-reversion. For the application of
SDvFF and SvFF we have used a learning rate a = 0.5; this choice is supported by
our own simulation experiments (not reported here) as well as by suggestions of [6].
For the specification of the threshold kt in the updating of λt in SvFF, we apply the
same approach as in BBvFF, i.e. we switch from SDvFF to Gauss–Newton when

q−1/2
t |et | > 1.96 or when there is an outlying observation causing the standardized

one-step error q−1/2
t et to be large enough in modulus. For SDvFF and SvFF we

have used λ1 = 0.95 and for BBvFF we have used λ1 = 0.8; we have found that
the algorithms are not sensitive to this choice, but a lower value in BBvFF reflects a
prior belief of a noisy signal. For all algorithms we have used λ+ = 0.99. We wish
to allow a low forgetting factor λ− to be small, in order to facilitate quick adaptive
performance when needed. However, initial experiments show that both SDvFF and
SvFF failed to allow this and in fact for λ− lower values than 0.9 the algorithms
crashed; this observation is in agreement with similar studies in the literature, see,
e.g., [4] or [6]. Thus for these two algorithms we chose λ− = 0.9. BBvFF did not
experience such a problem and thus we were able to set up a low value for λ−;
we observed that for λ− = 0.9 its performance was in par with SvFF, but the real
benefits adopting this approach were obtained when considering lower values of
λ− and thus making BBvFF more adaptive than the other two algorithms. We thus
chose λ− = 0.01 for BBvFF; for a smooth signal we operate with a relatively
large forgetting factor (close to λ+), for a noisy signal the intervention step allows
the VFF to be much lower (close to λ− = 0.01). Figure 3 shows the dynamics of the
three forgetting factors. Figures 4–6 show the predictions β̂t for each of the three
algorithms together with the predictions of the spread. In each algorithm we detect
mean-reversion locally if the modulus of the estimated β̂t is less than 1.

In Fig. 4 the SDvFF algorithm has detected about a year (mid-2008–mid-2009)
of breakdown in mean reversion and this is reflected in the very poor prediction of
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Fig. 2 Share prices of Walmart and Target together with their spread data stream (inset)

the spread in that time. Other than this, post to 2009 there is a long period of mean-
reversion, while in the early/mid 2007 there is a suggestion of another breakdown
of mean reversion. In comparison with Fig. 4, Fig. 5 shows an improved spread fit
(the dashed line with the predictions is much closer to the solid line of the actual
spread). The breakdown of mean reversion is of shorter length, which indicates a
better performance of the algorithm, e.g. in 2009 there is still a breakdown of mean
reversion, but now the prediction system recovers much quicker and thus it allows
for some trades even at this period of high uncertainty. We observe a degree of
similarity between SvFF and BBvFF, evidenced by similar periods of breakdown of
mean reversions in Figs. 5 and 6, especially in the period of end 2006 till the end
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small window (0.95,0.99), while that of BBvFF has a much wider range (0.01,0.99)

of 2007. BBvFF seems to have more clear signals on breakdown of mean reversion,
while SvFF seems to have more fluctuations around it; both seem to outperform
SDvFF.

Figure 7 shows the mean square prediction error (MSE) computed over time, by
each of the algorithms. We observe that up to the mid-2008 the three algorithms have
similar MSE values, but after this time the MSE of SDvFF explodes (this clearly is
due to the very poor spread predictions in that period, see Fig. 4). Up to 2010, the
best performer is the SvFF algorithm, but considering the time interval 2010–2011,
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BBvFF has the best performance. It also appears that when BBvFF has a poor
prediction influencing the MSE, this is not as bad as in the other two algorithms
(their respective MSE after a poor prediction are higher with SDvFF providing
clearly the most poor performance). If one looks at the overall period or at the period
2010–2011, then BBvFF is the best performer here.

We have implemented the trading strategy, described in Sect. 4, from 4 January
2010 to 14 October 2011. Table 1 shows the mean, the standard deviation and the
final closing balance of the cumulative profits for h = 1%,3% and 5% of ŷt+1,
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produced by each algorithm. This table indicates that for any value h = 1,3,5%
of ŷt+1, the BBvFF algorithm returns the highest cumulative profit. As h increases,
the profits have the tendency to slightly reduce over the returns of each algorithm.
This is due to the increased uncertainty in the prediction interval due to an increase
in h. This is clearly depicted by the second part of the table, which again shows
that as h increases the standard deviation of the cumulative profits increases. Now,
for a given value of h, we observe that the standard deviation is smaller under the
BBvFF algorithm. The table also shows the final balance; although for h = 3,5%



Detecting Mean-Reverted Patterns in Algorithmic Pairs Trading 143

Spread of Target & Walmart and Prediction by BBvFF

Trading day

Spread

Prediction

Prediction of the AR coefficient βt

Trading day

2006 2007 2008 2009 2010 2011 2012

−
20

−
10

0
10

20

2006 2007 2008 2009 2010 2011 2012

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 6 Spread prediction using the BBvFF algorithm (upper panel) and modulus of the predicted
coefficients {β̂t} using the BBvFF algorithm (lower panel). Mean-reversion segments are detected
for t satisfying |β̂t | < 1 and these regimes are highlighted with the upper straight line (the lower
straight line indicates periods of breakdown of mean reversion)

the SDvFF algorithm shows the largest cumulative profit, one needs to put this
result into perspective. Over time SDvFF results in loses as well as profits and as a
result the mean cumulative profit is relatively low, in comparison with the other two
algorithms. Figure 8 shows the cumulative profit over time for h= 1%, produced by
each of the three algorithms. We see that since May 2010, the BBvFF profits achieve
a lower bound of around $40, while for the same time period both SDvFF and SvFF
reach the negative profit territory with the SDvFF reaching a loss of $50, in the



144 K. Triantafyllopoulos and S. Han

Mean square error of the three algorithms

Trading day

2006 2007 2008 2009 2010 2011 2012

0
10

20
30

40
50 SDvFF

SvFF

BBvFF
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SvFF and BBvFF)

beginning of 2011. Overall, we conclude that BBvFF with the proposed trading
strategy offers the best performance, returning profit in excess of 127 % (minus
transaction costs) and 130 % in mean cumulative profit.

6 Conclusions

In this paper we propose two new recursive least squares (RLS) algorithms with
adaptive forgetting for the segmentation of mean-reversion in algorithmic pairs
trading. The first algorithm is a combination of the usual RLS and Gauss–Newton



Detecting Mean-Reverted Patterns in Algorithmic Pairs Trading 145

Table 1 Mean, standard
deviation (STD) and final
balance (FB) of cumulative
profit, using each algorithm,
for 3 values of the prediction
margin h

h

Mean 1% 3% 5%

SDvFF 78.30 70.76 73.75
SvFF 92.33 77.04 66.53
BBvFF 130.92 112.54 115.21
STD 1 % 3 % 5 %
SDvFF 39.39 57.71 61.15
SvFF 32.03 46.03 52.89
BBvFF 32.19 38.80 44.69
FB 1 % 3 % 5 %
SDvFF 117.77 127.68 143.12
SvFF 123.25 117.62 109.85
BBvFF 127.80 119.98 133.71

RLS (SvFF), which switches from one algorithm to other according to the perfor-
mance of the prediction errors. The second algorithm is an RLS combined with
a new approach for the variable forgetting factor (VFF), according to which a
binary process is used to classify low and high prediction error, and then adopting a
conjugate Bayesian modelling approach based on beta and Bernoulli distributions.
This approach appears to be more flexible than traditional VFF schemes as it
provides the distribution of the VFF. A simple buy low and sell high trading
strategy, based on the above algorithms, is described. The methods are illustrated
by considering Target Corporation and Walmart Stores Inc share prices and the
empirical findings suggest profits in excess of 130 % (minus transaction costs) over
a time horizon of nearly 2 years.

The methodology of this paper may be suitable for other trading approaches,
such as spread trading, in which the trader is interested in opening a trading position
by speculating on whether the bid-ask spread of a single share will go up or down,
for more information of which the reader is referred to [10].

Appendix

In this appendix we prove equations (5), (6) and (10).
We start with (5). From the definition of ηt = ∂ψt/∂λ and Lt = ∂St/∂λ , we have

ηt =
∂

∂λ
{(I−PtFtF

T
t )Φψt−1 + StFtet}=−StFtF

T
t Φψt−1 +(I−PtFtF

T
t )Φηt−1

+LtFtet + StFt(−FT
t Φψt)

= (I −KtF
T

t )Φηt−1 +LtFtet − 2StFtF
T

t Φψt−1,

where Kt = PtFt is used.
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Next we prove (6).

Lt =
∂

∂λ
{−λ−1Pt +λ−1(I−PtFtF

T
t )ΦSt−1ΦT(I−FtF

T
t Pt)+λ−1PtFtF

T
t Pt}

= λ−2(I −KtF
T

t )Pt −λ−1St −λ−2(I −KtF
T

t )ΦSt−1ΦT(I −FtK
T
t )

−λ−1StFtF
T

t ΦSt−1ΦT(I −FtK
T
t )+λ−1(I −KtF

T
t )ΦLt−1ΦT(I −FtK

T
t )

−λ−1(I−KtF
T

t )ΦSt−1ΦTFtF
T

t St +λ−1StFtF
T

t Pt +λ−1PtFtF
T

t St , (13)
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where Pt − PtFtFT
t Pt = (I −Kt FT

t )Pt and Kt = PtFt are used. The proof of (6) is
completed, by substituting in (13) Mt from (7).

Finally, we prove (10). For simplicity and convenience, we drop the time index
in the distribution (9). To find the mode of λ , we find the maximum of log p(λ ) =
logc+(c1 −1) log(λ −λ−)+(c2 −1) log(λ+−λ ). The first derivative with respect
to λ is equal to

∂ log p(λ )
∂λ

=
c1 − 1
λ −λ−

− c2 − 1
λ+−λ

,

which by equalizing the above to zero returns the stationary point given by (10).
The second partial derivative is always negative, i.e.

∂ 2 log p(λ )
∂λ 2 =− c1 − 1

(λ −λ−)2 − c2 − 1
(λ+−λ )2 < 0

and so the stationary point of (10) is a maximum.
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Segmenting Carotid in CT Using Geometric
Potential Field Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, and Perumal Nithiarasu

Abstract We present a method for the reconstruction of vascular geometries from
medical images. Image denoising is performed using vessel enhancing diffusion,
which can smooth out image noise and enhance vessel structures. The Canny
edge detection technique, which produces object edges with single pixel width, is
used for accurate detection of the lumen boundaries. The image gradients are then
used to compute the geometric potential field which gives a global representation
of the geometric configuration. The deformable model uses a regional constraint
to suppress calcified regions for accurate segmentation of the vessel geometries.
The proposed framework shows high accuracy when applied to the segmentation of
the carotid arteries from CT images.

1 Introduction

The human circulatory system consists of vessels that transport blood throughout
the body, providing the tissues with oxygen and nutrients. It is known that vascular
diseases such as stenosis and aneurysms are often associated with changes in blood
flow patterns and the distribution of wall shear stress. Modelling and analysis of
the hemodynamics in the human vascular system can improve our understanding of
vascular disease and provide valuable insights which can help in the development
of efficient treatment methods. In recent years, computational fluid dynamics (CFD)
has been widely used for patient-specific modelling of blood flow in vascular
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structures [6, 26, 29, 30]. Despite the involvement of numerous groups working in
this field, and rapid advancement in efficient computational methods, there have
been limited applications of computational hemodynamics in clinical practice. This
is largely due to the challenges involved in the design of an integrated framework
which can efficiently and accurately automate the interdisciplinary computational
modelling process, which includes image segmentation, mesh generation and CFD
simulation.

One of the main challenges in the computational modelling of hemodynamics
is the accurate reconstruction of the vascular geometry. Anatomically accurate
geometric models of the vascular structures are essential for realistic flow simu-
lations and analysis. The anatomical information used to reconstruct the geometric
models are usually provided in the form of medical image datasets (scans) from
imaging modalities such as computed tomography (CT) and magnetic resonance
(MR) imaging. Manual reconstruction of the vasculature geometries can be tedious
and time consuming. There is also an issue of variability between the geometries
extracted manually by different individuals, and variability of geometries extracted
by the same individual at different occasions. In order to allow computational flow
modelling to be efficiently applied as a diagnostic or predictive tool, the amount of
user intervention required in the process should be reasonably small. In particular,
a considerable amount of user intervention is often required in the reconstruction
of an accurate geometric model for the simulation of flow dynamics. Therefore a
robust and efficient method that can be used to accurately segment the geometric
structures from medical image datasets can be very useful and advantageous in the
modelling process. Here, we propose a robust framework for the segmentation of
vessel geometries using the GPF deformable model. The framework is then applied
to efficiently segment the geometries of carotid arteries from CT images.

Although several techniques exist for the segmentation of vascular structures
from medical images, it remains an intricate process due to factors such as image
noise, partial volume effects, image artifacts, intensity inhomogeneity and changes
in topology. In [20], the coordinate points for the centreline of the aortic arch
were extracted from volume-rendered MR images. A cubic spline was then used to
represent the aortic centerline, and cross-sectional grids were generated on normal
planes at equidistant points along the curve. This generated a curved tube with
circular cross section of uniform radius, which is not representative of the geometry
of the aorta. In [31], the centerline and diameter information of the vessels were
extracted from the image dataset, and the vascular model was reconstructed using
non-uniform rational B-splines (NURBS). Such techniques may often smooth out
geometric information that can be important to the computation of accurate flow
dynamics, such as those at bifurcations.

The 3D models of the vascular structures in [32] were reconstructed by extracting
the 2D contours of the vessels at each of the image slices of the MR image dataset,
and then lofting through the contours to create the surface models of the vessels.
The different vessels were then merged using boolean operations in solid modelling.
The cross sections of a particular vessel may, however, intersect with cross sections
of branching vessels, and the geometry at these positions has to be approximated.
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Other authors such as [4, 15, 23, 33, 39] also reconstructed 3D surface models of
the vessels from 2D contours extracted from image slices. This sometimes requires
positioning and orienting the 2D contours according to the medial axis of the
vessels, and curve and surface interpolation are used to approximate and reconstruct
the surface models. However, the 2D contour extraction techniques used do not
provide control over 3D smoothness, and 3D geometric properties from the image
datasets are not considered.

A simple thresholding technique was used in [21] to extract the binary image of
the vessels, and the vascular model was reconstructed using an isosurface algorithm.
The thresholding technique, however, does not consider the spatial characteristics of
the image and is sensitive to image noise and inhomogeneous intensity. In [25, 37],
region growing algorithms were applied to segment the vascular structures from CT
and MR angiography data. The region growing techniques are, in general, sensitive
to noise, and can often lead to non-contiguous regions and over-segmentation. In ad-
dition, thin structures are often not extracted due to variations in image intensities.
The watershed transform was used in [1, 11] to extract the geometry of the carotid.
In this approach, the image is interpreted as a landscape or topographic surface, with
the pixel intensity representing the elevation of the topographic surface. Consider
water on the landscape flowing towards regions with local minima, the watersheds
are the lines that partition these regions. In this way, the image is partitioned into
homogeneous regions with the watersheds defining the boundaries of the regions.
The watershed transform tends to be sensitive to noise and often produces over-
segmentation. It is also difficult for the watershed technique to extract thin structures
and weak object edges.

In [14, 17], a 3D dynamic surface model was used to delineate the boundary of
carotid arteries. An initial triangulated model was placed within the interior of the
carotid vessels, and an inflation force was applied to deform the model towards the
vessel wall. In particular, the inflation force is applied only when the vertices of
the model are within the lumen, i.e., at locations with image intensity below a user-
specified threshold. An image-based force is further applied to the surface model to
better localize the boundary. It may, however, be difficult to select an appropriate
threshold value that delineates the vessel wall closely due to inhomogeneous image
intensity. This approach is sensitive to noise, and manual editing is often required
to move the vertices towards the vessel wall. In [27], a 2D discrete dynamic contour
was first used to extract the vessel contours, a dynamic surface model was then
inflated to reconstruct the surface model using the binary images of the extracted
contours. This, however, does not consider the 3D geometric information from the
image dataset. In [5,7,38], the surface models for each of the vessel branches of the
carotid artery were reconstructed independently using a tubular deformable model.
A surface merging algorithm is then required to reconstruct the surface model of
the carotid bifurcation from the triangulated surfaces of the vessel branches. This
particular approach requires the determination of the axis of each of the vessels,
which can be done manually by selecting a reasonable amount of points from image
slices to represent the curves of the structure. Due to the smoothing effect of this
technique, regions of high curvature such as those at bifurcations or stenosis may
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not be modeled accurately. These explicit deformable models represent contours
and surfaces parametrically, which requires the tracking of points on the curves and
surfaces during deformation. It is therefore difficult for explicit deformable models
to deal with topological variation and complex shapes.

Implicit deformable models have been applied in the segmentation of vascular
structures in [2, 3, 10, 22, 28]. However, many of these techniques use an attraction
force field which acts on contours or surfaces only when they are close to the
object boundaries. As such, initial contours have to be placed close to the object
boundaries, which can be tedious in complex geometries. A constant pressure
term such as the one in [18] is often used to monotically expand or shrink the
deformable model towards the image object boundaries, which can overwhelm weak
object edges. In addition, the initial contours have to be placed either inside or
outside object boundaries, which can be difficult for compact and narrow structures.
Many of these techniques are also sensitive to image noise and have difficulties in
extracting deep boundary concavities.

2 Proposed Method

In this section, a robust framework is proposed for the reconstruction of vascular
geometries from medical images. The approach consists of image denoising using
vessel enhancing diffusion [12, 19], optimal edge detection using the Canny edge
filter [8], and robust segmentation of the vascular geometries using GPF deformable
model [36].

2.1 Vessel Enhancing Diffusion Filtering

The formulation of the vessel enhancing diffusion filter [12, 19] is based on a
smoothed version of the vesselness measure used in [13]. In this approach, an
anisotropic diffusion filter with strength and direction determined by the vesselness
measure is applied to enhance the geometric structures of the vessel. The vesselness
measure is determined by analyzing the eigensystem of the Hessian matrix given as:

H =

⎡
⎣

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤
⎦ (1)

which describes the geometric information at each point of a 3D image I based
on the local intensity variations. Here, the derivatives of the image I are computed
as convolution with derivatives of the Gaussian function, i.e. Ix = I(x) ∗ ∂

∂x Gσ (x),
where Gσ denotes the Gaussian function with standard deviation σ . The principal
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curvatures and directions are given by the maximum and minimum eigenvalues and
the corresponding eigenvectors. With the eigenvalues given such that |λ1| ≤ |λ2| ≤
|λ3|, the vesselness measure is defined as: if λ2 ≥ 0 or λ3 ≥ 0, Vσ (λ ) = 0; otherwise

Vσ (λ ) =

(
1− e

−RA
2

2α2

)
· e

−RB
2

2β2 ·
(

1− e
−S2

2γ2

)
· e

2c2

|λ2 |λ3
2 (2)

with

RA =
|λ2|
|λ3| (3)

RB =
|λ1|√|λ2λ3|

(4)

S =

√
λ1

2 +λ2
2 +λ3

2 (5)

in which RA and RB can be used to differentiate tubular structures from blob-like
and plate-like structures, while S is used to differentiate between foreground vessel
structures and background noise. The parameters α , β and γ are weighting factors
which control the sensitivity of the vesselness measure, and c is a small constant.

For a multiscale analysis, the vesselness function is computed for a range of
scales, and the maximum response is selected using the following equation:

V = max
σmin≤σ≤σmax

Vσ (λ ) (6)

A diffusion tensor is then defined such that vessel diffusion takes place in the
direction of the vessel, while diffusion perpendicular to the vessel direction is
inhibited. The diffusion tensor can therefore be used to preserve vessel structures
and is given as:

D = Qλ ′QT (7)

where Q is a matrix containing the eigenvectors of the Hessian matrix H, and λ ′ is
a diagonal matrix with elements given as:

λ1
′ = 1+(w− 1) ·V 1

s (8)

λ2
′ = λ3

′ = 1+(ε− 1) ·V 1
s (9)

with w, ε and s as tuning parameters. The anisotropic diffusion is then defined as:

Lt = ∇ · (D∇L) (10)

where L(0) is set as the input image. Figure 1 demonstrates that the vessel enhancing
diffusion filter can be applied to enhance the vessel structures and smooth out
noise in the image. The algorithm for the vessel enhancing diffusion filter has been
implemented using the Insight Toolkit [16].
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Fig. 1 Vessel enhancing diffusion and image object edge representation of CT image dataset
1, from left to right—original image, image with vessel enhancing diffusion, image gradient
magnitude, Canny edge with image gradient intensities, geometric potential field

2.2 Edge Representation for Vessel Geometries

Image object edges are usually represented as regions with high intensity contrasts.
Image gradients can be determined using the gradient operator or the Sobel filter.
These techniques, however, produce object edge width of a few pixels. This can
easily cause nearby structures to be connected. For complex geometries such as
those in medical images, it is often necessary to determine fine edges using more
robust edge detection techniques [9, 24] for accurate representation of the image
structures. The Canny edge detection [8] can produce object edges with single
pixel width, and can therefore be used for accurate edge detection of the vessel
structures. In the Canny edge detection technique, image smoothing is first applied
to reduce noise interference. This can be performed using the Gaussian filter or
other smoothing techniques such as vessel enhancing diffusion [19]. The image
gradients are then computed to determine the magnitudes and directions of the
edges. Image pixels with magnitudes which are not local maxima in the directions
of the edges are suppressed. Hysterisis thresholding is then applied to filter out
spurious edges caused by noise. Image pixels with edge magnitude greater than
a high threshold, i.e. fedge(x) > Th are considered as edges, while pixels with edge
magnitude lower than a low threshold, i.e. fedge(x) < Tl are removed. Image pixels
with edge magnitudes in between the threshold values, i.e. Tl ≤ fedge(x)< Th, which
are connected to edge pixels are also considered as edges. The image gradients
at the detected edges are then used to compute the geometric potential field, see
[36] for more detail. As shown in Fig. 1, the geometric potential field gives a more
coherent representation of the image object boundaries as it utlizes global edge pixel
interactions across the image.
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2.3 Segmentation of Vessel Geometries using GPF Deformable
Model with Region Constraint

It is shown in [34–36] that the GPF deformable model can be used to efficiently
segment complex geometries from biomedical images. By using pixel or voxel
interactions across the whole image domain, the deformable model is more robust
to image noise and weak edges. The dynamic vector force field changes according
to the relative postition and orientation between the geometries, which allows the
deformable model to propagate through long tubular structures.

Here, the GPF deformable model is applied to segment the geometries of human
carotid arteries from CT images. Some of the main challenges in the segmentation
of the carotid geometries include intensity inhomgeneity, weak edges and adjacent
veins with similar intensities to the carotids. In addition, calcifications which are
attached to the arterial walls should not be included in the reconstructed geometries.
Although the calcified plaques often appear as relatively bright regions compared
to soft tissues, plaques with lower densities may have similar intensities to the
lumen. As the intensities of the plaques vary with the densities, it is not easy
for techniques such as global intensity threshold to remove the plaques from
the extracted geometries. In this section, a region constraint is added to the
deformable model such that it does not propagate across the calcified regions. This
is done by constraining the deformable model from propagating across regions
with image gradient magnitude larger than a user specified value, Tmax. As the
calcified regions usually have relatively large image gradients, the threshold value
can be easily selected by observing the histogram of the image gradient magnitude.
The deformable model with region constraint can thus be expressed as:

∂φ
∂ t

=

{
0 if |∇I|> Tmax

α gκ |∇φ |− (1−α)(F ·∇φ) otherwise
(11)

where α is a weighting parameter, g is the edge stopping function, κ is the curvature,
and F is the geometric potential force defined in the GPF model [36].

Figures 2 and 3 depict a z-axis slice of the extracted geometry. As shown in the
figures, some calcified regions have similar intensity to the lumen, which caused the
deformable model to include them in the extracted geometries. The intensities of
the plaques vary which makes it difficult for a global intensity threshold to suppress
them. It is shown that by adding the region constraint, the deformable model can
easily get around the calcified regions to segment the carotid geometries accurately.

3 Results and Discussion

In this section, experimental results on the segmentation of the cartoid geometries
using the proposed framework are shown. In particular, six datasets from CT
imaging (provided by Wolverhampton NHS trust) are used in the experiment.
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Fig. 2 Image slice from CT image dataset 2 showing contours (top row) and corresponding pixels
(bottom row) extracted using: from left to right—GPF deformable model, GPF deformable model
with intensity threshold and GPF deformable model with region constraint

Fig. 3 Image slice from CT image dataset 4 showing contours (top row) and corresponding pixels
(bottom row) extracted using: from left to right—GPF deformable model, GPF deformable model
with intensity threshold and GPF deformable model with region constraint

The volumes of interest containing the carotid arteries are extracted from the
image datasets to reduce the size of the input datasets. The robust framework
which consists of vessel diffusion enhancing, computation of optimal object edge
representation and deformable model with regional constraint is then applied for the
reconstruction of vessel geometries.

Figures 4–7 depict the segmentation of the carotid geometries using the GPF
deformable model with region constraint. As shown in Figs. 4 and 6, the bidirec-
tional and dynamic vector force allows the flexible cross-boundary intializations of
the model to easily propagate and converge to the geometries of the carotid arteries.
The extraction of the vessel geometries from image datasets 1 and 4 took only
276 s and 494 s, while the extraction from image datasets 2 and 5 took 1,216 s and
1,379 s due to factors such as intensity variation, low constrast, multiple branches
and complex topologies. A graphical user interface has been developed, which
can be used to set multiple initial contours for fast convergence. It can also be
used to remove inconsistency in object boundaries due to low resolution of the
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Fig. 4 Segmentation of carotid artery from CT image dataset 1 (61 × 71 × 125) using GPF
deformable model (CPU-time, 276 s)

Fig. 5 Segmentation of carotid artery from CT image dataset 3 (70 × 80 × 120) using GPF
deformable model (CPU-time, 206 s)

Fig. 6 Segmentation of carotid artery from CT image dataset 5 (70 × 80 × 120) using GPF
deformable model (CPU-time, 1,379 s)

images, artifacts, etc., or small branches which do not affect the computational
flow analysis. As shown in Figs. 5 and 7, one can easily speed up the segmentation
process by placing multiple initial contours or surfaces, as the model converges to
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Fig. 7 Segmentation of carotid artery from CT image dataset 6 (70 × 80 × 120) using GPF
deformable model (CPU-time, 185 s)

Fig. 8 Comparison of geometry segmented from CT image dataset 1 using image slices taken
along z-axis direction: blue—manual, orange—GPF deformable model

the vessel geometries in 206 s and 185 s when applied to image datasets 3 and 6,
respectively. Note that the deformable model easily propagates through the stenotic
carotid bifurcations and get around the calcified regions to efficiently segment the
carotid geometries from the CT images.

The reconstructed vessel geometries using the proposed framework are compared
against geometries from manual segmentation. Figures 8–11 depict the comparison
of the extracted geometries using random cross section slices taken along the z-axis
direction. The blue and orange contours represent the cross section of the geometries
extracted manually and using the GPF deformable model, respectively. As shown in
the figures, the image dataset consists of other tissue structures which may affect
the geometric reconstruction. In particular, vessels adjacent to the carotid artery can
often cause other models to leak out due to the similar intensity. The geometric
potential field provides a more coherent and global representation of the object
edges and allows the deformable model to extract the geometry accurately. By
adding a region constraint, the proposed model can easily get around the calcified
regions as the deformable model propagates through the tubular structures to
segment the vessel geometry as depicted in Figs. 9–11. The proposed framework
can therefore be applied to segment the vessel geometries efficiently from the
images. As shown in the figures, the vessel geometries segmented using the GPF
deformable model with region constraint exhibit considerably small deviations from
the manually extracted geometries.
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Fig. 9 Comparison of geometry segmented from CT image dataset 3 using image slices taken
along z-axis direction: blue—manual, orange—GPF deformable model

Fig. 10 Comparison of geometry segmented from CT image dataset 4 using image slices taken
along z-axis direction: blue—manual, orange—GPF deformable model

Fig. 11 Comparison of geometry segmented from CT image dataset 6 using image slices taken
along z-axis direction: blue—manual, orange—GPF deformable model

Table 1 presents the accuracy of the segmented geometries using the proposed
method. The foreground (FG) and background (BG) accuracy of the geometries was
measured as the percentages of true foreground and background voxels which were
segmented as foreground and background, respectively. The normalized overall
accuracy is given as the average of FG and BG to measure the accuracy of
correctly extracted voxels to reduce measurement bias towards the large number of
background voxels in the image. It is shown that the proposed framework provides
significantly accurate geometries with overall acurracies of 94.9 %, 94.8 %, 97.9 %,
99.5 %, 96.7 % and 97.0 % for image datasets 1–6, and an average overall accuracy
of 96.8 %.
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Table 1 Comparison of the
segmented carotid geometries
using the GPF deformable
model with manual
segmentation: Foreground
(FG), background (BG) and
overall accuracy measured
in %

CT image dataset GPF

FG (%) 89.9
1 BG (%) 99.9

Overall (%) 94.9
FG (%) 89.8

2 BG (%) 99.9
Overall (%) 94.8
FG (%) 96.0

3 BG (%) 99.9
Overall (%) 97.9
FG (%) 99.1

4 BG (%) 99.8
Overall (%) 99.5
FG (%) 93.8

5 BG (%) 99.5
Overall (%) 96.7
FG (%) 94.4

6 BG (%) 99.6
Overall (%) 97.0

FG average (%) 93.9
BG average (%) 99.8

Overall average (%) 96.8
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A Robust Deformable Model for 3D
Segmentation of the Left Ventricle
from Ultrasound Data

Carlos Santiago, Jorge S. Marques, and Jacinto C. Nascimento

Abstract This paper presents a novel bottom-up deformable-based model for the
segmentation of the Left Ventricle (LV) in 3D ultrasound data. The methodology
presented here is based on Probabilistic Data Association Filter (PDAF). The main
steps that characterize the proposed approach can be summarized as follows. After
a rough initialization given by the user, the following steps are performed: (1) low-
level transition edge points are detected based on a prior model for the intensity
of the LV, (2) middle-level features or patch formation is accomplished by linking
the low-level information, (3) data interpretations are computed (hypothesis) based
on the reliability (belonging or not to the LV boundary) of the previously obtained
patches, (4) a confidence degree is assigned to each data interpretation and the model
is updated taking into account all data interpretations.

Results testify the usefulness of the approach in both synthetic and real LV
volumes data. The obtained LV segmentations are compared with expert’s manual
segmentations, yielding an average distance of 3 mm between them.

Keywords 3D Echocardiography • Left ventricle • Segmentation • Deformable
models • Feature extraction • Robust estimation • PDAF

1 Introduction

Ultrasound imaging plays an important role in the analysis of the cardiac function
since it allows a real-time observation of the heart structures. The segmentation
and tracking of the left ventricular (LV) endocardial border is a major goal in
this context, since it provides information for measuring the ejection fraction and
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for assessing the regional wall motion [34]. A fully automatic LV segmentation
system has the potential to streamline the clinical workflow and reduce the inter-
user variability of the LV segmentation.

In ultrasound data, the LV appearance is mainly characterized by a dark region,
representing the blood pool inside the chamber, enclosed by the endocardium,
myocardium, and epicardium, which are roughly depicted by a brighter region (see
Fig. 1). In ultrasonic devices, there is a great variability of the gray value distribution
and the spatial texture in each of the above-mentioned regions. This happens among
different ultrasound sequences and within the same sequence. This is due to the
several reasons: fast motion during systole phase, low signal-to-noise ratio, edge
dropout (specially in the diastole phase), the presence of shadows produced by the
dense muscles, the specific properties and settings of the ultrasound machine, and
the anisotropy of the ultrasonic image formation [6].

Some features make the problem of LV segmentation difficult. The large
variation of the LV appearance forced researchers to impose constraints on the LV
segmentation process using shape and motion models. Shape models are used to
constraint the mean shape of the LV, as well as the main modes of variation, based
on a collection of manually annotated LV images. However, the characterization of
all possible shape patterns and variations has proven to be a difficult task given the
large variability of LV shapes due to the heart anatomy. Another difficulty lies in
the presence of outliers, that is, features in the image that do not belong to the LV
boundary that hamper the LV shape estimates.

To tackle the above-mentioned issues, we use a 3D deformable model that is
capable of large shape deformation at representing the LV contour, thus dealing with
large variation of the LV appearance. To face with the presence of outliers (second
difficulty), we exploit the use of Probabilistic Data Association Filter (PDAF) which
is rooted in the seminal work of Bar Shalom [2]. Two main underlying ideas of
the proposed algorithm are as follows. First middle-level features are considered,
called patches, which consist of edge points grouped such that they form continuous
surface portions. Second, each patch is labeled as being valid/invalid. Since we do
not know beforehand the reliability of the patches, all possible labeling sequences
of valid/invalid patch labels are considered. Each patch sequence is called here as
patch interpretation. Finally, a probability (association probability) is assigned to
each patch interpretation. Thus, in the adopted strategy, all patches contribute to the
evolution of the deformable model with different weights.

The paper is organized as follows: in Sect. 2 we review the foremost ideas in this
field of research; Sect. 3 presents an overview of the proposed segmentation system;
Sect. 4 describes the deformable model used; Sect. 5 addresses the feature extraction
algorithm and the middle-level features’ assemblage; and Sect. 6 presents the robust
model estimation technique. Section 7 shows results of the segmentation system
applied to synthetic data and to the segmentation of the LV in echocardiographic
images. Finally, Sect. 8 concludes the paper with final remarks about the developed
system and future research areas.
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Fig. 1 Echocardiography—
apical four-chamber
view [10]

2 Previous Work

The literature concerning the segmentation of the LV is large. The main techniques
that have been successfully addressed can be divided into the following classes: (1)
bottom-up approaches [41, 45], (2) active contours methods [25], (3) active shape
models (ASM) [12], (4) deformable templates [11,17,32,44], (5) active appearance
models (AAM) [7,13,30], (6) level set (LS) approaches [5,14,15,27,28,36,37,39],
and (7) database-guided (DB-guided) segmentation [8, 9, 19, 46].

Bottom-up approaches detect the LV boundary using edge detection that consti-
tutes features to represent the object boundary. Although these methods have low
computational complexity, they are sensitive to initial conditions and generally lack
robustness to imaging conditions.

Active contours methods inspired the development of level set (LS) meth-
ods [29], which significantly reduce the sensitivity to initial conditions. The use
of level sets for medical image segmentation aims at improving the performance of
active contours due to the following. First, LS are able to increase robustness of the
model by combining both region and boundary segmentation. Second, the texture
and shape priors are jointly used with a continuous parametric function to model the
implicit segmentation function [4, 5, 14, 27, 28, 37, 39].

Alternatively, these issues can also be faced using deformable templates [11,
17, 32, 44] that use an unsupervised scheme for learning. However, deformable
template-based methods require the knowledge of how the initialization is per-
formed.

Both level-sets and deformable templates have demonstrated good results when
dealing with medical images. Nonetheless, they also present some drawbacks
regarding the prior knowledge included in the optimization function.

The previously raised issues have also motivated the development of the su-
pervised based models, in which the shape and appearance of the LV are learned
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from a manually annotated training set. This class of methods include the active
shape model (ASM) [12] and active appearance model (AAM) [7,13,30]. However,
both methods need a large set of annotated training images and the initialization
must be close to a local optimum. Furthermore, these methods assume a Gaussian
distribution of the shape and appearance derived from the training samples. The
above issues motivated the proposal of the DB-guided segmentation approaches
that use supervised learning techniques [19, 46]. Specifically, discriminative
learning model based on boosting techniques [18] is developed to segment LV
from ultrasound images. Another important point in the DB-guided approach is its
independence regarding an initial guess. Instead of that, a full search is conducted
in the parameter space. However, these methods have several shortcomings. Besides
the high complexity of the search process, supervised learning methods face two
main difficulties which are the large number of training images (in the order of
hundreds) needed to estimate the parameters of the model and the robustness to
imaging conditions absent from the training set.

Nonetheless, 3D echocardiography has gained increasing interest and several
methods to perform the 3D segmentation of the LV have become available in
literature [34]. One approach to perform 3D segmentation is to consecutively
applying 2D segmentations to each image plane and assembling them into a 3D
structure [33, 40]—as cardiologists manually do in such cases. However, such
approaches require additional methods to prevent spacial inconsistencies in the
surface. Other approaches have performed the 3D segmentation using 3D active
contours such as level-set [21,22,24]. Furthermore, over the last decade some effort
has been put into developing 3D+t LV tracking systems that are able to segment the
LV over the course of the cardiac cycle, such as [35, 42].

3 System Overview

The idea behind the present approach is to tackle the difficulties of classic de-
formable contour methods associated with noisy images (such as ultrasound images)
by introducing a robust estimation scheme. The robust framework is inspired in
the S-PDAF [31], developed for shape tracking in cluttered environments. Here we
extend it to the context of 3D shape estimation.

The proposed segmentation system uses a 3D deformable model to characterize
the surface of the segmentation. This deformable surface requires an initialization
procedure that ensures it is initialized in the vicinity of the LV boundary.

The adaptation procedure is an iterative process that consists of the following
steps. After initialization of the model, an adaptation cycle begins with the
detection of low-level features (edge points), searched in the vicinity of the model.
Then, these are grouped into middle-level features (patches) to form continuous
and meaningful surface portions. Based on the assembled patches, the S-PDAF
algorithm determines all possible interpretations of considering a patch valid or
invalid and assigns each patch interpretation a confidence degree. This confidence
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Fig. 2 Diagram of the proposed segmentation system

degree determines the weight of the patch interpretations in the estimation of the
LV boundary location. The surface model then adapts towards the estimated LV
boundary, ending an iteration of the adaptation cycle. The process repeats until the
surface is considered close to the LV boundary. Figure 2 shows a diagram of the
adaptation cycle.

4 Surface Model

The proposed segmentation system uses a 3D deformable model called simplex
mesh [16]. A 3D simplex mesh is a meshed surface composed of vertices and edges,
where each vertex has three neighbors (i.e., belongs to three different edges) (see
Fig. 4). This particular structure allows the definition of geometric relations between
vertices that are used in the adaptation procedure to ensure a smooth surface and
good vertex distribution.

4.1 Law of Motion

Each vertex Pi adapts by an iterative process (with iteration number k) under the
influence of external and internal forces, and its final position is determined by the
equilibrium of these forces using the following equation [16]:

Pi(k+ 1) = Pi(k)+ (1− γ)(Pi(k)−Pi(k− 1))+αiFint
i (k)+βiFext

i (k) (1)

where the parameters γ , α and β are constants.
The internal force, F int, is responsible for maintaining the smoothness of the

surface, making use of the geometric relations between vertices. On the other hand,
the external force, Fext, is responsible for attracting each vertex towards the object
boundary.
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Fig. 3 Schematic example of the creation of a carved volume (cylinder). The light gray areas
correspond to the binary mask created by the manual segmentation, whereas the dark gray volume
corresponds to the intersection of the three carved volumes

4.2 Model Initialization

The initialization procedure has to meet the following conditions: (1) the initial
model should be initialized in the vicinity of the LV boundary and (2) it should be a
simplex mesh. These two conditions are met using the following three steps.

First, to ensure that the model is initialized in the vicinity of the LV boundary,
the user manually defines a coarse outline of the LV in three orthogonal planes. A
3D region is then obtained by space carving [26] (see an example in Fig. 3).

Second, the simplex mesh is initialized as a sphere in the center of the carved
volume. After uniformly sampling sphere points, the convex hull algorithm [1] is
applied, resulting in a triangular mesh on the sphere surface. Then, taking into
account the duality between simplex meshes and triangulations [16], an associated
simplex mesh can be formed by considering the center of each triangle as vertices
and linking each vertex with the center of the three neighboring triangles, resulting
in the simplex mesh shown in Fig. 4a.

Finally we let the spherical simplex mesh deform until it fits the carved region.
This region corresponds to the silhouette of the LV boundary and simplifies an initial
adaptation to the dataset since it is a noiseless binary volume.

5 Feature Extraction

The detection of the LV border is performed by the feature extraction algorithm.
First, each slice of the volume is pre-processed using a 2D median filter with a
window size of 4× 4 pixels (alternatively, a 3D median filter can also be used).
Feature extraction is then performed using a directional feature search in the vicinity
of the surface model.
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Fig. 4 (a) Simplex mesh initialized as a sphere. (b) Detail of simplex mesh showing the search
lines (red lines) and detected features (colored dots); each dot color and colored links between
them correspond to a different patch

5.1 Feature Detection

At each vertex, Pi, of the simplex mesh, we compute the normal to the surface and
define a search line parallel to the normal vector that passes through Pi (See Fig. 4b).
Then, the intensity signal along the search line is analyzed. The LV border features
are detected using an edge detector filter, as described in [3]. The filter output’s
maxima are extracted using a threshold and a non-maximum suppression technique.

Although this methodology has good results, many undesired features are still
detected, depending on the threshold used. In our experimental setup, we detect up
to four features per search line, and recall that only one of these features corresponds
to the LV boundary.

5.2 Middle-Level Features

To increase the robustness of the feature detection, these are grouped into middle-
level features (patches). To assemble these patches, we assign to each feature a patch
label. The labeling algorithm assumes that features should belong to the same patch
if: (1) the corresponding vertices are neighbors (i.e., the patch is a connected graph
of its features); (2) all features associated with the same vertex (located along the
same search line) have different labels; and (3) the distance between neighboring
features in a patch must not exceed a chosen threshold. Figure 4b shows an example
of the labeling result.

In order to achieve the desired label configuration, L, we define an energy
function E(L) composed of three terms. The first term, E1(L), is minimum when
features with the same label are the closest features associated with the neighboring
vertices. The second term, E2(L), prevents patches from having features too far
apart. This is done by assigning an energy of ∞ to labels where the distance between
neighboring features exceeds the labeling threshold. If the distance is lower than the



170 C. Santiago et al.

Table 1 Labeling algorithm Q = {} % labeling queue
C = {} % labeled features
repeat
If Q is empty

seed a new label l in a random feature yi /∈ C
add yi to C
for each feature y j neighbor of yi

if y j /∈ C & labeling y j with l lowers E(L)
add y j to Q

Else
repeat
yi = Q(1)
label yi with l
add yi to C
remove yi from Q
for each feature y j neighbor of yi

if y j /∈ C & labeling y j with l lowers E(L)
add y j to Q

until Q is empty
until all features have been labeled

threshold, the energy yields the value 0. Finally, the third term, E3(L), prevents
repeated labels in features associated with the same vertex, again assigning an
energy value of ∞ if this occurs and 0 otherwise. The total energy of the label
configuration is:

E(L) = E1(L)+E2(L)+E3(L) (2)

The label configuration L that minimizes the total energy function (2) corresponds
to the configuration that obeys all the mentioned conditions.

To determine the label configuration that minimizes the total energy function, we
resort to a labeling algorithm that uses a region growing scheme. In this algorithm, a
new label is seeded in a random feature and it propagates to the surrounding features
whenever an energy decrease is possible. This process repeats until all features have
been labeled. The pseudocode in Table 1 describes the developed labeling algorithm.

The size of the resulting patches and their distance to the surface provides good
differentiation measures to assess if the features in that patch belong to the LV
boundary or if they were produced by the background.

6 Robust Model Estimation

The robust model estimation used is an extension of the S-PDAF algorithm
described in [31] to the 3D case. The algorithm consists of the following. In
each iteration k, this estimation technique considers all possible combinations
of valid/invalid labels for the patchs. Assuming M(k) patches were detected
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in iteration k, there are m(k) = 2M(k) possible interpretations. Each combination

is defined as a patch interpretation Ii(k) = {I1
i (k), . . . , I

n
i (k), . . . , I

M(k)
i (k)}, where

In
i (k) = 0 if the nth patch in the ith interpretation is considered invalid and In

i (k) = 1
otherwise.

The model assumes that the LV boundary position is described by the state vector
x(k), which contains the 3D coordinates of all the simplex mesh’s vertices, and
follows the motion model:

x(k) = x(k− 1)+w(k) (3)

where w(k)∼ N(0,Q) is a realization of a random variable with normal distribution
(white noise).

For each interpretation Ii(k), the observations yi(k) are generated by a specific
model. If an observation yi(k) is considered invalid (outlier), the model assumes it
is generated by uniform distribution. Otherwise, the model assumes it relates to the
boundary points x(k) by:

yi(k) =Ci(k)x(k)+ vi(k) (4)

where Ci(k) is the observation matrix that relates the vertices to the corresponding
observations, and vi(k)∼N(0,Ri) is white noise with normal distribution associated
with the valid features yi(k) of the interpretation Ii(k).

The state estimate is then defined by [31]:

x̂(k) =
mk

∑
i=0

x̂i(k)αi(k) (5)

where x̂i(k) is the updated state conditioned on the hypothesis that Ii(k) is correct.
This updated state is computed in the same way as the update state equation of a
traditional Kalman filter. αi(k) is the association probability of the interpretation
Ii(k). A similar analysis is done to update the covariance matrix [31].

The obtained estimate is used in the computation of the external force, Fext
i (k),

in (1). The desired position of a vertex Pi(k) is the corresponding estimate x̂i(k),
therefore:

Fext
i (k) = x̂i(k)−Pi(k) (6)

6.1 Association Probabilities

The association probabilities, αi(k), define the strength of the corresponding
interpretation Ii(k) in each iteration k of the adaptation procedure. We assume that
the association probabilities depend on the following variables: Lk = {L(k),Lk−1},
which is the set of all patches from iteration 1 until k, where L(k) = {L1, . . . ,LM(k)}
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is the set of detected patches in iteration k; and A(k) = {A1, . . . ,AM(k)} is the set
of patch areas, which correspond to the number 0 (low-level) features each patch
includes—Ln = {yn

1, . . . ,y
n
An
}. Then, we define the association probability of an

interpretation Ii(k) as:

αi(k) = P(Ii(k)|L(k),Lk−1,M(k),A(k)) (7)

From this point on, we omit the dependence on (k) for the sake of simplicity. Using
a Bayesian approach, this probability can be decomposed into:

αi =
P(L|Ii,A,M,Lk−1)×P(Ii|A,M,Lk−1)

β
(8)

where β = P(L|A,M,Lk−1) is a normalization constant that does not depend on
Ii, P(L|Ii,A,M,Lk−1) is the likelihood of the set of patches L and P(Ii|A,M,Lk−1)
is the prior probability of the interpretation Ii conditioned on the patches (i.e.,
based on its valid and invalid patches). Furthermore, an association probability of
0 will be assigned to interpretations with overlapping (valid) patches and patches
considerably smaller than the larger ones will be promptly discarded to avoid an
exponential growth of possible interpretations.

Assuming that the patches are independently generated, the likehood can be
expressed as P(L|Ii,A,M,Lk−1) = ∏n P(Ln|Ii,A,M,Lk−1), where each individual
term is the probability of having a patch Ln at an average distance d to the surface.
This probability is dependent on the hypothesis that Ln is considered valid or invalid:
if In

i = 0 it is assumed that the probability distribution is uniform along the search
line, whereas if In

i = 1 the probability distribution is assumed Gaussian with mean
0 and covariance proportional to the length of the search line, V . Formally:

P(Ln|Ii,A,M,Lk−1)∼
{

V−1 if In
i = 0

ρ−1N(d;0,σ) otherwise
(9)

where ρ is the normalization constant.
As to the prior probability of each interpretation Ii, it is related to the area of its

valid and invalid patches. The probability P(Ii|A,M,Lk−1) can also be decomposed
as the product of each individual probability of the patches, P(In

i |A,M,Lk−1). It is
assumed that larger patches are more likely to belong to the LV boundary. Therefore,
these should receive a higher probability. On the other hand, when considered
invalid, these should be assigned a small probability.

The resulting prior probability yields:

P(Ii|A,M,Lk−1) = ∏
Ln:In

i =1

[a log(An + 1)+ b]× ∏
Ln:In

i =0

1− [a log(An + 1)+ b)] (10)
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where:

a = PA−PB
1−log(Amax+1)

b = PB − a log(Amax + 1).
(11)

and PA, PB, and Amax are constants. These assumptions assure that patches with large
areas receive a high prior probability.

7 Results

The proposed system was tested using different datasets, both real and synthetic.
The purpose of the synthetic data was to assess the functionality of the model. The
real data consists of four echocardiographic volumes, with 208× 208× 224 voxels
and a resolution in x, y, and z of, respectively, 0.834 mm, 0.822 mm, and 0.726 mm.
The algorithm was applied to four different echocardigraphic volumes.

A quantitative assessment of the system’s performance will be provided using
error metrics between the obtained segmentation and the manual segmentation
performed by an expert—considered as the ground truth (GT). We use four
similarity metrics to compare the output of the algorithm with the reference
contours, namely: the Hammoude metric [20], dHMD, the average distance, dAV,
the Hausdorff metric [23], dHDF, and mean absolute distance, dMAD. These are
computed as described in [38].

7.1 Parameter Definition

The parameters of the model were fine-tuned and kept constant in all the tests. In
(1), the constants are set to α = 0.7, β = 0.05 and γ = 0.9; the adaptation process
stops when the average displacement of the vertices went bellow 0.005 voxels. In
the feature extraction algorithm, the threshold used in the maxima detection was
t f = 0.5cmax, where cmax is the highest peak of the filter output; as to the labeling
threshold (i.e., the maximum distance allowed between neighboring features with
the same label) adopted was tl = 8. Finally, in (10) we used PA = 0.05, PB = 0.95
and Amax = 700 (the number of vertices in the surface).

7.2 Synthetic Data

We present one particular test using a synthetic volume. This synthetic volume
contains a sphere corrupted by white Gaussian noise with zero mean (see Fig. 5).
Although many features are detected (an average of approximately three features
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Fig. 5 Segmentation of synthetic data containing a noisy sphere. (a) Patches detected (colored
meshes) in the vicinity of the surface model (gray mesh). (b) Slice view of the volume and
corresponding cross section of the surface after the adaptation cycle (yellow contour)

per search line), only one large patch is extracted (see Fig. 5a) and all the other
noise-originated patches are discarded due to their smaller size. Therefore, only two
interpretations are possible: one that considers the large patch valid and the other
that considers it invalid. The association probabilities of the existing interpretations
are the following:

α1 = P(I1 = {I1 = 0}) = 0.04

α2 = P(I2 = {I1 = 1}) = 0.96

which means a high confidence degree is assigned to the large (correct) patch.
Figure 5b shows that the model is able to correctly fit the desired sphere.

7.3 Echocardiographic Data

As mentioned before, the segmentations of the LV in four different echocardio-
graphic volumes are presented in Fig. 6. For each volume, a single slice is shown
twice: one containing the estimated contour (left), obtained by intersecting the
simplex mesh with a plane, and the GT contour (center). The final three-dimensional
surface is also presented.

Figure 6 shows that the developed segmentation system performs reasonably
well. A quantitative evaluation of the results was performed using the similarity
metrics mentioned above and the results can be seen in Table 2.

The table shows high similarity between the estimated contour and the GT, with
an average distance (d̄AV) of 3 mm between the closest points and an average error
(d̄HMD) of 17.5%. This indicates a good match between both contours.
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Fig. 6 Slice from the echocardiographic showing (on the left) the GT and (on the center) the
obtained segmentation. Final configuration of the surface (on the right)
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Table 2 Results of the
evaluation methods for each
volume (d̄AV, d̄HDF and d̄MAD
are expressed in millimeters)

Volume 1 Volume 2 Volume 3 Volume 4

d̄HMD 0.15±0.03 0.20±0.10 0.16±0.02 0.24±0.04
d̄AV 3.1±0.6 2.5±1.1 2.7±0.5 3.8±0.6
d̄HDF 9.2±2.1 7.2±2.6 6.9±1.7 11.3±1.9
d̄MAD 4.5±1.1 3.9±2.3 3.6±0.9 6.7±2.1

8 Conclusions

This paper addresses the automatic LV segmentation problem in 3D echocardio-
graphic data. Due to the nature of the volumes, many of the detected features are
outliers and do not belong to the LV boundary. The proposed system uses a robust
estimation technique based on PDAF that prevents the segmentation to be misguided
by the outliers and leads to acceptable surface estimates.

The results show that the proposed system performs a good segmentation
of the LV. It achieves an average error of 3 mm between the obtained segmentation
and the GT, which is within the state-of-the-art results [43]. Therefore, this system
has the potential to be used to accurately compute cardiac measurements such the
systemic and diastolic volumes.

Further tests shows that the developed system is still over-dependent on the
initialization procedure, which does not help improving the repeatability of LV
segmentations. This weakness could be alleviated using an automatic initialization
scheme, such as in [42].
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Abstract This paper presents a new method for facial expression modelling and
recognition based on diffeomorphic image registration parameterised via stationary
velocity fields in the log-Euclidean framework. The validation and comparison are
done using different statistical shape models (SSM) built using the Point Distri-
bution Model (PDM), velocity fields and deformation fields. The obtained results
show that the facial expression representation based on stationary velocity fields can
be successfully utilised in facial expression recognition, and this parameterisation
produces a higher recognition rate than the facial expression representation based
on deformation fields.

Keywords Facial expression representation • Facial expression recognition •
Vectorial log-Euclidean statistics • Statistical shape modelling • Diffeomorphic
image registration

1 Introduction

Face is an important medium used by humans not only to communicate, but also
reflecting a person’s emotional and awareness states, cognitive activity, personality
or well-being. Over the last 10 years automatic facial expression representation and
recognition have become an area of significant research interest for the computer
vision community, with applications in human–computer interaction (HCI) systems,
medical/psychological sciences and visual communications to name a few.
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Although significant efforts have been undertaken to improve the facial features
extraction process and the recognition performance, automatic facial expression
recognition is still a challenging task due to an inherent subjective nature of the
facial expressions and their variation over different gender, age and ethnicity groups.
Detailed overviews of existing methodologies, recent advances and challenges can
be found in [7, 12, 14, 23].

The facial expression representation can be seen as a process of extracting
features, which could be generic such as local binary patterns [21] or Gabor
coefficients [3], or more specific such as landmarks of characteristic points located
in areas of major facial changes due to articulation [11], or a topographic context
(TC) that treats the intensity levels of an image as a 3-D terrain surface [26].
Recently, in [18, 19] authors postulated that the space shape vectors (SSV) of the
statistical shape model (SSM) can constitute a significant feature space for the
recognition of facial expressions. The SSM can be constructed in many different
ways, and it was developed based on the point distribution model originally
proposed by [6]. In [17], the SSM is built based on the control points of the
B-Spline surface of the training data set, and in [20] an improved version with multi-
resolution correspondence search and multi-level model deformation was proposed.
In this paper, the SSM is generated using the stationary velocity fields obtained
from diffeomorphic face registration [16]. The idea of using the motion fields as
feature in computer vision and pattern recognition was used previously for face
recognition where the optical flow was computed to robustly recognise face with
different expressions based on a single sample per class in the training set [10].

In medical image analysis, the parameterisation of the diffeomorphic transfor-
mation based on the principal logarithm of non-linear geometrical deformations
was introduced in [1]. Using this framework, the log-Euclidean vectorial statistics
can be performed on the diffeomorphic vector fields via their logarithm, which
always preserve the invertibility constraint contrary to the Euclidean statistics on
the deformation fields. Recently, the stationary velocity field parametrisation has
been utilised for deformable image registration in different ways e.g. for exponential
updates of deformation field [25], or producing the principal logarithm directly as
an output of image registration e.g. inverse consistent image registration [2, 24]
or symmetric inverse consistent image registration [9]. These algorithms preserve
the spatial topology of objects by maintaining diffeomorphism. As the facial
shapes (mouth, eyes, eye brows) have constant intra- and inter-subject topology,
it is interesting to check the adequacy of the facial expressions represented using
stationary velocity fields as a result of performing diffeomorphic image registration
and compare with the deformation field-based facial expression representation in
terms of separability in feature space and recognition performance.

The remainder of the paper is organised as follows: Sect. 2 introduces the concept
of the SSM with detailed description of the group-wise registration algorithm
(Sect. 2.1). Then, the velocity field-based representation of facial expression is
described in Sect. 2.2, and the Point Distribution Model is presented in Sect. 2.3. The
experimental results of qualitative and quantitative evaluation are shown in Sect. 3
with concluding remarks in Sect. 4.
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2 Log-Euclidean Statistical Shape Model

The statistical shape model was developed based on the point distribution model
originally proposed in [6]. The model represents the facial expression variations
based on the statistics calculated for corresponding features during the learning
process of the training data set. In order to build an SSM, the correspondence of
facial features between different faces in the training data set must be established.
This is done here first by generating a mean face model for the neutral facial
expression data set to find the mappings from any face to the so-called common
face space. Then, by transferring subject-specific facial expressions data set into the
common face space, the intra-subject facial expression correspondence is estimated.
Finally, the principal component analysis (PCA) is applied to the training data set
aligned in the common face space to provide a low-dimensional feature space for
facial expression representation.

2.1 Log-Domain Group-wise Image Registration

Generation of the mean face model is an essential step during the training process
because it allows a subject-independent common face space to be established for
further analysis.

For a given set of n-dimensional images representing neutral facial expressions
denoted by

Ine = {Ine
k : Ω ⊂ R

n →R,k = 1, . . . ,K} (1)

where K is the number of subjects included in training data, and the objective is to
estimate a set of displacement fields ûne to map the images taken from Ine to the
mean face model Imean.

In general, this problem can be formulated as a minimisation problem:

ûne = argmin
une

ε(une;Ine) (2)

where ε(une) is defined as

ε(une) = ∑
k

∑
l

∫
Ω

Sim(Ine
k (x+ uk(x), I

ne
l (x+ ul(x)))dx

+α ∑
k

∫
Ω

Reg(uk(x))dx (3)

where x = [x1, . . . ,xn] ∈ Ω denotes given voxel position, Sim denotes a similarity
measure between each pair of the images, Ine

k and Ine
l (l �= k) from Ine, Reg denotes

a regularisation term, and α is a weight of the regularisation term. In this work, the
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deformation fields are parameterised by recently proposed stationary velocity fields
v(x) via exponential mapping [1]:

ϕ(x) = x+ u(x) = x+ exp(v(x)). (4)

To minimise (2), Demon force [25] was used in the symmetric manner [15] in the
following way:

dui
kl =

(I
ϕ i

k
k − I

ϕ i
l

l )(∇I
ϕ i

k
k +∇I

ϕ i
l

l )

‖∇I
ϕ i

k
k +∇I

ϕ i
l

l ‖2 +(I
ϕ i

k
k − I

ϕ i
l

l )2
(5)

where I
ϕ i

k
k = Ine

k (ϕ i
k(x)), I

ϕ i
l

l = Ine
l (ϕ i

l (x)) are warped images and ∇I
ϕ i

k
k , ∇I

ϕ i
l

l are
gradients of those images, and i is an iteration index. The average update of the
velocity field is calculated using the log-Euclidean mean for vector fields dui

kl given
by [1]:

dvi
k =

1
K ∑

l

log(dui
kl) (6)

and the deformation field ui+1
k (x) is calculated via exponential mapping for the

updated velocity field:

vi+1
k (x) = vi

k(x)+ dvi
k(x) (7)

Although according to (6) the log-Euclidean mean requires calculation of the
logarithm, which is reported to be a time-consuming process [1, 5], the consistent
log-domain diffemorphic Demon approach [24] is used which produces the princi-
pal logarithm of transformation as an output of image registration and therefore the
logarithm is not calculated directly. Finally, the mean face model is generated by
averaging the intensity of all images after registration:

Imean =
1
K

K

∑
k

Ine
k (ϕk(x)) (8)

The procedure for estimation of the set of deformation fields for generation of
the common face space is summarised below [16]:

repeat
for k=1:K

for l=1:K and l!=k
Calculate update (Equation 5)

end
Calculate average of updates (Equation 6)
Update velocity field (Equation 7)
Smooth velocity field using Gaussian filter

end
i = i+1;

until (velocity fields do not change) or
(i>max_Iteration)
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The examples of the mean face model estimated by applying the proposed scheme
to neutral expressions are illustrated in Fig. 1, where different input data sets are
used for validation. Moreover, the quantitative performance of the proposed implicit
group-wise registration includes the Intensity Variance (IV ) criterion [22]. The
intensity variance measures the similarity of the group of images (population) based
on the pixel intensity differences. The IV is computed here as follows:

IV (x) =
1

K − 1

K

∑
k

(Ine
k (ϕk(x))− Imean(x))2 (9)

where Imean is given by (8). The perfect group-wise registration results for the
images of the same modality should be characterised with the minimum pixel
intensity differences between registered images.

The presented algorithm of generating the mean face model is similar to the
work presented in [8]. The main difference is in how the deformation fields are
parameterised with the stationary velocity field used in the proposed method instead
of the Fourier series in [8], and secondly in the method of solving (2) with the
Demon approach used instead of the linear elastic model. Using the log-domain
parameterisation for deformation fields is reported to produce smoother deformation
fields and it allows vectorial statistics to be calculated directly on the velocity fields.

2.2 Velocity Field-Based Facial Expression Model

The next step is to warp all other training faces representing different facial
expressions to the mean face (the reference face) via transformation ϕk(x) estimated
for neutral expressions. For a given set of facial expression images from subject K:

Iex
k = {Iex

km : Ω ⊂ R
n → R,m = 1, . . . ,M} (10)

where M denotes the number of images. The transformation ϕk(x) is applied to get
a set of facial expression images in the common face space (space of the reference
image):

I
cex

k = {Iex
km(ϕk(x))} (11)

By applying the log-Domain image registration approach based on the consistent
Demon algorithm [24], each image in set I

cex

k is registered to image of neutral
expression in common face space Ine

k (ϕk(x)), the set of the velocity fields vex
k is

estimated, and the set of the corresponding deformation fields uex
k via exponential

mapping is calculated as well. Utilising this particular method for image registration
has two important advantages. Firstly, the consistency criterion is maintained during
the registration process that helps to keep the smooth transformation especially for
cases like matching between open-mouth and close-mouth shapes. Secondly, the
results of registration are the velocity fields so there is no necessity of calculating
the principal logarithm of transformations.
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Fig. 1 Grey-level average of mean face before registration, and after registration: (from left to
right) mixed data set, female data set, and male data set. (Top row) shows grey-level average before
registration, (upper middle row) shows grey-level average of images after registration, (lower
middle row) shows the IV before registration and (bottom row) shows the IV after registration
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Fig. 2 Variations of the first (top row), the second (middle row), and the third (bottom row) major
modes of the point distribution model for automatically selected landmarks

2.3 Point Distribution Model

The point distribution model originally proposed by [6] is one of the most often
used techniques for representing shapes. This model describes a shape as a set
of positions (landmarks) in the reference image. The variations between different
shapes require establishment of the correspondence between points detected in the
reference image and images representing different deformation in the training set.
Although this can be relatively reliably achieved during the model training phase
by careful time-consuming, often manual selection of corresponding points, such
task is prone to occurrence of gross errors during the model evaluation where often
near real-time performance is required. The examples of the manually selected
landmarks for expressions included in data sets can be found in [16, 27]. The
automatically selected landmarks used later on in the experimental section are
obtained with the help of face image registration described in the previous section.
In that case, the manually selected landmarks in the model face are automatically
mapped into registered faces.

Using the standard principal component analysis (PCA), each face representation
in the training data set can be approximately represented in a low-dimensional
shape vector space instead of the original high-dimensional data vector space [4].
Figure 2 shows the effect of varying the first three largest principal components
of the PDM for automatically selected landmarks, where λ is eigenvalue of the
covariance matrix calculated from the training data set.
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3 Experimental Results

The data set used for validation consists of 48 subjects that are selected from the BU-
3DFE database [27], with a wide variety of ethnicity, age and gender. The data used
during the training procedure are excluded from the data used for validation. The
implicit group-wise registration based on the Demon force minimises the Sum of
Squared Difference (SSD) between images and hence due to different skin patterns
an additional image intensity adjustment was performed.

3.1 Separability Analysis

To assess whether the Shape Space Vectors based on the velocity fields can be used
as a feature space for facial expression analysis and recognition, the separability
of the SSV-based features has been analysed. The first three elements of the SSM
are used to reveal clustering characteristics and separability powers. The SSM for
training was built using 24 subjects, each containing 25 faces, the SSV is based
on the automatically selected points (with 60 landmarks per face), the velocity
fields, and the deformation fields (with 512× 512 pixels per image). The test data
set was extracted from another 24 subjects. The training data set and the testing
data set are mutually exclusive. Examples for some pairs of the expressions given
in Fig. 3 exhibit good separability even in the low-dimensional space, especially
for expressions such as “happiness vs. sadness” or “disgust vs. surprise”. The
expressions like “anger vs. fear” appear to overlap more with each other, but the
clusters can be identified.

In order to quantitatively assess the separability of the presented facial expression
features, the appropriate criteria are needed to be calculated. A computable criterion
for measurement of within-class and between-class distances was applied in similar
way as it was done by [19, 26]. The within-class scatter matrix SW is defined as
follows:

SW =
c

∑
i=1

1
n

ni

∑
k=1

(xi
k −mi)(x

i
k −mi)

T (12)

and the between-class scatter matrix SB is defined as:

SB =
c

∑
i=1

ni

n
(mi −m)(mi −m)T (13)

where: xi
k is a d-dimensional feature, ni is the number of samples in the ith class, n

is the number of samples in all classes, c is the number of classes, mi is the mean of
samples in the ith class defined as:

mi =
1
ni

ni

∑
k=1

xi
k (14)
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Fig. 3 Separability analysis for automatically selected landmarks (left) and for full velocity field
(right) using first three principal components

m is the mean of all the samples:

m =
c

∑
i=1

ni

n
mi (15)

The separability criterion J2(x) is defined as a natural logarithm of the ratio
of within-class scatter matrix’s determinant and between-class scatter matrix’s
determinant:

J2(x) = ln
det(SB + SW )

det(SW )
(16)

This separability criterion is efficient for comparison of different feature selection,
lying in the completely different spaces, and it is intrinsically normalised and reflects
the quantity of separability for features between different classes [19,26]. The larger
value of J2(x) means the better separability.

The separability criterion was evaluated on the different facial expression rep-
resentations, namely the manually selected landmarks, the automatically detected
landmarks, the full velocity fields, and the full deformation fields, and the results are
shown in Fig. 4. The results can be summarised that for the same ratio of retained
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Fig. 4 Separability of expression for different features in term of separability criterion J2(x)

energy in the training data, the value of J2(x) for the manually selected landmarks
is the highest. The automatically selected landmarks in range above 80% is not
significantly different from the manually selected landmarks. The velocity field and
the deformation field-based facial expression representations are the worst.

To quantify the between-expression separability, the two-class separability crite-
rion was evaluated [26]. The within-class scatter matrix S

exi,ex j
W for two-class case

(c = 2) is defined as follows:

S
exi,ex j
W =

1
n

(
nexi

∑
k=1

(xexi
k −mexi)(x

exi
k −mexi)

T

+

nex j

∑
l=1

(x
ex j
l −mex j )(x

ex j
l −mex j )

T

)
(17)

and the between-class scatter matrix S
exi,ex j
B is defined:

S
exi,ex j
B =

nexinex j

n2 (mexi −mex j )(mexi −mex j )
T (18)

where exi and ex j are analysed expressions, nexi , nex j are the numbers of samples in

the ith and jth class, n = nexi+nex j . For each pair of selected expressions J
exi,ex j
2 (x)

of different facial expression representation was calculated.
Tables 1–4 shows the separability of all pairs of expression for different facial

expression representations. These results support the visual inspection of the
qualitative analysis presented in Fig. 3. The separability of the pair of expressions
such as “happiness and sadness”, or “disgust and surprise” gets higher values
of separability criterion J

exi,ex j
2 (x) (with the minimum value of 2.57), while the

separability of the pair of “anger and fear” is lower (with the maximum value of
2.36).
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Table 1 Confusion matrix of J
exi,ex j
2 (x) for the manually selected landmarks

Anger Disgust Fear Happiness Sadness Surprise

Anger – 2.15 2.36 3.71 1.70 4.10
Disgust – – 2.43 3.38 2.82 3.27
Fear – – – 2.09 2.05 2.78
Happiness – – – – 3.95 4.44
Sadness – – – – – 3.90
Surprise – – – – – –

Table 2 Confusion matrix of J
exi,ex j
2 (x) for the automatically detected land-

marks

Anger Disgust Fear Happiness Sadness Surprise

Anger – 2.11 2.15 3.29 1.57 3.34
Disgust – – 2.23 3.31 2.45 3.06
Fear – – – 2.06 1.92 2.51
Happiness – – – – 3.52 4.02
Sadness – – – – – 3.20
Surprise – – – – – –

Table 3 Confusion matrix of J
exi,ex j
2 (x) for the full deformation fields

Anger Disgust Fear Happiness Sadness Surprise

Anger – 1.81 2.21 2.56 1.51 4.12
Disgust – – 2.14 2.19 2.29 3.19
Fear – – – 1.61 1.68 2.69
Happiness – - – – 2.57 3.40
Sadness – – – – – 3.41
Surprise – – – – – –

Table 4 Confusion matrix of J
exi,ex j
2 (x) for the full velocity fields

Anger Disgust Fear Happiness Sadness Surprise

Anger – 1.91 2.21 2.61 1.52 3.94
Disgust – – 2.14 2.20 2.32 3.14
Fear – – – 1.62 1.71 2.68
Happiness – – – – 2.61 3.42
Sadness – – – – – 3.46
Surprise – – – – – –

3.2 Experiments on Facial Expression Recognition

The separability analysis conducted in the previous section indicates that the
SSV feature space based on the velocity can be used for classification of facial
expressions. Data used for classification-based validation again consists of 48
subjects, and contains neutral expression and six basic facial expressions of anger,
disgust, fear, happiness, sadness and surprise with four different expression intensity
ranges. These data were divided into six subsets containing 8 subjects with 25



190 B.W. Papiez et al.

Table 5 Recognition rate for different classifier methods

Feature/ LDA QDA NNC NBC
classifier (%± SD) (%± sSD) (%± SD) (%± SD)

Manually 78.1±4.2 74.0±4.8 61.5±1.1 74.3±2.4
Automatic 73.4±6.0 69.1±6.0 61.9±4.9 70.8±4.0
Deformation 75.0±5.2 58.9±2.9 56.2±5.0 69.1±5.0
Velocity 76.6±4.3 59.3±4.1 57.7±5.1 69.1±5.2

Table 6 Confusion matrix of the LDA for the manually selected landmarks

Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)

Anger 74.5 4.7 3.1 3.1 14.6 0.0
Disgust 8.3 81.8 4.7 0.5 3.6 1.0
Fear 7.8 1.6 59.9 11.5 16.1 3.1
Happiness 4.2 2.1 8.3 85.4 0.0 0.0
Sadness 16.7 1.6 4.2 0.0 77.6 0.0
Surprise 1.0 2.1 4.2 0.5 2.6 89.6

faces per subject representing different expressions. During evaluation one subset
is chosen as the testing set, and the remaining data are used for the training, and
the evaluation procedure is repeated six times, every time with the different testing
set. Four types of facial expression representations have been used for validation:
the manually selected landmarks from the database [27], the automatically detected
facial landmarks using the log-domain Demon registration, the full velocity fields,
and the full deformation fields.

Four commonly used classification methods were used for evaluation, namely
linear discriminant analysis (LDA), quadratic classifier (QDC), nearest neighbour
classifier (NCC), and naive Bayes classifier (NBC). The detailed description of these
methods can be found in most of the textbooks on pattern recognition e.g. [4].

The average recognition rates and standard deviations of all six experiments for
different facial expression data are presented in Table 5. It can be seen that the
LDA classifier achieves the highest recognition rate for every facial expression
representation. As shown in Table 5 all facial expression representations achieve
a similar recognition rate for the same classifier with the highest rate for the
manually selected landmarks. The manually selected landmarks are included only
for a reference for other automatic methods. The recognition rates obtained by the
automatic methods are lower (maximum 15.1 % less using the deformation field-
based representation and QDA classifier) than that obtained by manual landmark
selection. The confusion matrices for LDA for different data are given in Tables 6–9.
From the classification performance, it can be concluded that the surprise, disgust,
happiness and sadness expressions can be classified in most cases with above 75 %
accuracy, anger with about 70 % accuracy, whereas fear is only classified correctly
in 61.5 % using the velocity field-based representation. The best recognition rates
(about 90 %) are found for surprise, similar to the work reported in [19] for data sets
taken from the same database.
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Table 7 Confusion matrix of the LDA for the automatically detected landmarks

Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)

Anger 68.8 5.2 5.2 2.6 18.2 0.0
Disgust 12.5 76.6 5.7 0.5 3.6 1.0
Fear 7.8 2.6 55.2 14.1 19.3 1.0
Happiness 4.1 1.6 11.5 82.3 0.0 0.5
Sadness 19.8 3.1 4.7 0.0 72.4 0.0
Surprise 1.0 3.1 7.8 0.5 2.6 87.0

Table 8 Confusion matrix of the LDA for the full deformation fields

Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)

Anger 74.5 9.9 1.0 2.6 10.9 1.0
Disgust 9.4 75.5 6.3 5.7 1.6 1.6
Fear 5.7 2.6 56.8 15.6 11.5 7.8
Happiness 2.1 6.3 16.1 74.0 1.0 0.5
Sadness 12.0 0.5 7.3 2.1 78.1 0.0
Surprise 2.6 1.0 2.1 2.1 1.0 91.1

Table 9 Confusion matrix of the LDA for the full velocity fields

Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)

Anger 77.6 7.8 0.5 2.1 11.5 0.5
Disgust 8.9 77.1 5.2 5.2 2.6 1.0
Fear 4.7 3.6 61.5 9.9 13.0 7.3
Happiness 3.1 6.3 14.1 76.0 0.0 0.5
Sadness 15.1 0.0 6.8 1.6 76.6 0.0
Surprise 1.6 1.6 3.6 1.0 1.6 90.6

The results of misclassification support the conclusion of the separability analysis
conducted in the previous section. The pair of expressions with low value of
separability criterion J

exi,ex j
2 (x) are more prone to be misclassified (e.g. “fear and

sadness”). The expression of fear achieves low values of separability criterion
J

exi,ex j
2 (x) for each facial expression representation and as it is expected the

misclassification error is the highest. The expressions with high value of separability
criterion J

exi,ex j
2 (x) achieve high recognition rates (e.g. “happiness, or surprise”).

Table 10 summarises the success rates of the recognition for the different
representations included in Tables 6–9. Taking into account the subjective nature
of the ground truth data [19], the results can be considered as reasonable.
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Table 10 Summary of success rates for confusion matrix of the LDA for
different representations

Feature/ Anger Disgust Fear Happiness Sadness Surprise
Expression (%) (%) (%) (%) (%) (%)

Manually 74.5 81.8 59.9 85.4 77.6 89.6
Automatic 68.8 76.6 55.2 82.3 72.4 87.0
Deformation 74.5 75.5 56.8 74.0 78.1 91.1
Velocity 77.6 77.1 61.5 76.0 76.6 90.6

4 Conclusions

A statistical analysis of different facial expression representations based on the
log-Euclidean statistics has been presented in this paper. The proposed method
generates first the mean face by simultaneous registration of faces with neutral
expression included in the training data set, thereby enabling all faces to be mapped
to the common face space based on the estimated transformations. The obtained
results show that the Space Shape Vectors built based on the velocity fields can
be considered as an effective facial expression representation for the Statistical
Shape Model. The performed tests show also that the parameterisation via stationary
velocity fields in the log-domain produces slightly higher recognition rate of facial
expressions than that produced by using deformation fields. The future investigation
can consider extension of the proposed facial expression recognition system for the
dynamic high-resolution sequences [13]. The temporal information estimated by the
velocity fields can lead to improvement of the performance of the current system.
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