

Software Quality
Engineering
Testing, Quality Assurance, and
Quantifiable Improvement

Jeff Tian
Department of Computer Science and Engineering
Southern Methodist University
Dallas, 7X

INTERSCI ENCE
+IEEE SOCIETY A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left Blank

This Page Intentionally Left Blank

Software Quality
Engineering

C O ~ P U T E R
SOCIETY

Press Operating Committee

Chair Editor-in-Chief
Donald F. Shafer

Athens Group, Inc.

Roger U. Fujii
Vice President Chief Technology Officer

Northrup Grumman Mission Systems

Board Members

Mark J. Christensen, Independent Consultant
Richard Thayer, Professor Emeritus, California State University, Sacramento

Ted Lewis, Professor Computer Science, Naval Postgraduate School
Linda Shafer, Professor Emeritus, University of Texas at Austin

James M. Conrad, Associate Professor, UNC-Charloffe
John Horch, Independent Consultant

Deborah Plummer, Manager-Authored books ,

IEEE Computer Society Executive Staff
David Hennage, Executive Director

Angela Burgess, Publisher

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authori-
tative computer science and engineering texts. These books are available from most retail outlets. Visit the
CS Store at http:/komputer.org/cspress for a list of products.

IEEE Computer SocietyMliley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to produce a
number of exciting new titles in areas of computer science and engineering with a special focus on software
engineering. IEEE Computer Society members continue to receive a 15% discount on these titles purchased
through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals please e-mail dplummer@computer.org or write to
Books, IEEE Computer Society, 100662 Los Vaqueros Circle, Los Alamitos, CA 90720-13 14. Telephone

Additional information regarding the Computer Society authored book program can also be accessed
from our web site at http://computer.org.cspress.

+1-714-821-8380.

Software Quality
Engineering
Testing, Quality Assurance, and
Quantifiable Improvement

Jeff Tian
Department of Computer Science and Engineering
Southern Methodist University
Dallas, 7X

INTERSCI ENCE
+IEEE SOCIETY A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2005 by the IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 1 I 1 River Street, Hoboken, NJ
07030, (201) 748-601 I , fax (201) 748-6008.

Limit of Liahility/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-5724002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 0-471-71345-7

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1

To Sharon, Christine, and
Elizabeth

This Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left BlankThis Page Intentionally Left Blank

This Page Intentionally Left Blank

CONTENTS

List of Figures

List of Tables

Preface

PART I OVERVIEW AND BASICS

1 Overview

1.1 Meeting People’s Quality Expectations

1.2
1.3 Dependency and Suggested Usage
1.4

Book Organization and Chapter Overview

Reader Preparation and Background Knowledge
Problems

2 What Is Software Quality?

2.1 Quality: Perspectives and Expectations
2.2 Quality Frameworks and ISO-9126
2.3 Correctness and Defects: Definitions, Properties, and Measurements
2.4 A Historical Perspective of Quality
2.5 So, What Is Software Quality?

Problems

xvii

xxi

xxv

3

3
6
9

11
13

15

15
18
20
24
25
26

vii

viii CONTENTS

3 Quality Assurance

3.1
3.2 Defect Prevention

Classification: QA as Dealing with Defects

3.2.1 Education and training

3.2.2 Formal method

3.2.3 Other defect prevention techniques

3.3.1
3.3.2
3.3.3

3.4.1 Software fault tolerance

3.4.2

Problems

3.3 Defect Reduction
Inspection: Direct fault detection and removal

Testing: Failure observation and fault removal
Other techniques and risk identification

3.4 Defect Containment

Safety assurance and failure containment

3.5 Concluding Remarks

4 Quality Assurance in Context

4.1
4.2
4.3 Verification and Validation Perspectives
4.4 Reconciling the Two Views

4.5 Concluding Remarks

Handling Discovered Defect During QA Activities
QA Activities in Software Processes

Problems

5 Quality Engineering

5.1
5.2
5.3 Quality Assessment and Improvement
5.4
5.5 Concluding Remarks

Quality Engineering: Activities and Process
Quality Planning: Goal Setting and Strategy Formation

Quality Engineering in Software Processes

Problems

PART II SOFTWARETESTING

6 Testing: Concepts, Issues, and Techniques

6.1
6.2 Questions About Testing
6.3
6.4
6.5 Concluding Remarks

Purposes, Activities, Processes, and Context

Functional vs. Structural Testing: What to Test?
Coverage-Based vs. Usage-Based Testing: When to Stop Testing?

Problems

27

27
31
31
32

33
34
34
35
36
37
37
38
38

39

41

41
43
46
49
51

52

53

53
56
59
59
63
64

67

67
71
74
78
83
84

CONTENTS

r Test Activities, Management, and Automation

7.1 Test Planning and Preparation
7.1.1 Test planning: Goals, strategies, and techniques
7.1.2 Testing models and test cases
7.1.3 Test suite preparation and management
7.1.4 Preparation of test procedure
Test Execution, Result Checking, and Measurement 7.2

7.3 Analysis and Follow-up
7.4 Activities, People, and Management
7.5 Test Automation
7.6 Concluding Remarks

Problems

I Coverage and Usage Testing Based on Checklists and Partitions

8.1
8.2

8.3

8.4

8.5

8.6

Checklist-Based Testing and Its Limitations
Testing for Partition Coverage
8.2.1 Some motivational examples
8.2.2 Partition: Concepts and definitions
8.2.3
Usage-Based Statistical Testing with Musa’s Operational Profiles
8.3.1
8.3.2 Musa OP: Basic ideas
8.3.3
Constructing Operational Profiles
8.4.1 Generic methods and participants
8.4.2 OP development procedure: Musa-1
8.4.3 OP development procedure: Musa-2

Case Study: OP for the Cartridge Support Software
8.5.1 Background and participants
8.5.2 OP development in five steps
8.5.3 Metrics collection, result validation, and lessons learned
Concluding Remarks
Problems

Testing decisions and predicates for partition coverage

The cases for usage-based statistical testing

Using OPs for statistical testing and other purposes

Input Domain Partitioning and Boundary Testing

9.1

9.2
9.3

Input Domain Partitioning and Testing
9.1.1 Basic concepts, definitions, and terminology
9.1.2 Input domain testing for partition and boundary problems
Simple Domain Analysis and the Extreme Point Combination Strategy
Testing Strategies Based on Boundary Analysis - - ~ --_ . _ _ -

ix

85

85
85
86
88
89
90
93
95
97
100
101

103

103
107
107
108
109
111
111
112
114
115
116
117
119
121
121
122
124

125
126

127

128
128
130
132
135

X CONTENTS

9.3.2
Other Boundary Test Strategies and Applications
9.4.1 Strong and approximate strategies

9.4.2 Other types of boundaries and extensions
9.4.3 Queuing testing as boundary testing

Weak 1 x 1 strategy
9.4

9.5 Concluding Remarks
Problems

10 Coverage and Usage Testing Based on Finite-State Machines
and Markov Chains

10.1 Finite-State Machines and Testing
10.1.1 Overcoming limitations of simple processing models
10.1.2 FSMs: Basic concepts and examples
10.1.3 Representations of FSMs

10.2 FSM Testing: State and Transition Coverage
10.2.1 Some typical problems with systems modeled by FSMs
10.2.2 Model construction and validation
10.2.3 Testing for correct states and transitions
10.2.4 Applications and limitations

10.3 Case Study: FSM-Based Testing of Web-Based Applications
10.3.1 Characteristics of web-based applications
10.3.2 What to test: Characteristics of web problems
10.3.3 FSMs for web testing

10.4.1 Markov chains and operational profiles
10.4.2 From individual Markov chains to unified Markov models
10.4.3 UMM construction

10.4 Markov Chains and Unified Markov Models for Testing

10.5 Using UMMs for Usage-Based Statistical Testing
10.5.1 Testing based on usage frequencies in UMMs
10.5.2 Testing based on other criteria and UMM hierarchies
10.5.3 Implementation, application, and other issues

10.6 Case Study Continued: Testing Based on Web Usages
10.6.1 Usage-based web testing: Motivations and basic approach
10.6.2 Constructing UMMs for statistical web testing
10.6.3 Statistical web testing: Details and examples

Problems
10.7 Concluding Remarks

11 Control Flow, Data Dependency, and Interaction Testing

1 1.1 Basic Control Flow Testing
1 1.1.1 General concepts

139
140
140
141
142
144
145

1 47

148
148
149
151
153
153
154
155
156
157
157
158
159
160
161
162
164
164
164
165
166
167
167
168
169
171
172

175

176
176

CONTENTS xi

1 1.1.2 Model construction
11.1.3 Path selection
1 1.1.4 Path sensitization and other activities

11.2 Loop Testing, CFT Usage, and Other Issues
1 1.2.1 Different types of loops and corresponding CFGs
11.2.2 Loop testing: Difficulties and a heuristic strategy
1 1.2.3 CFT Usage and Other Issues

1 1.3 Data Dependency and Data Flow Testing
11.3.1 Basic concepts: Operations on data and data dependencies
11.3.2 Basics of DFT and DDG
11.3.3 DDG elements and characteristics
11.3.4 Information sources and generic procedure for DDG construction
11.3.5 Building DDG indirectly
11.3.6 Dealing with loops

1 1.4 DFT Coverage and Applications
1 1.4.1 Achieving slice and other coverage
1 1.4.2 DFT: Applications and other issues
11.4.3 DFT application in synchronization testing

Problems
1 1.5 Concluding Remarks

12 Testing Techniques: Adaptation, Specialization, and Integration

12.1 Testing Sub-Phases and Applicable Testing Techniques
12.2 Specialized Test Tasks and Techniqu,es
12.3 Test Integration f

12.4 Case Study: Hierarchical Web Testing
12.5 Concluding Remarks

Problems

PART 111 QUALITY ASSURANCE BEYOND TESTING

13 Defect Prevention and Process lmpirovement

13.1 Basic Concepts and Generic Approaches
13.2 Root Cause Analysis for Defect Prevention
13.3 Education and Training for Defect Prevention
13.4 Other Techniques for Defect Prevention

13.4.1 Analysis and modeling for defect prevention
13.4.2 Technologies, standards, and methodologies for defect prevention
13.4.3 Software tools to block defect injection

13.5.1 Process selection, definition, and conformance
13.5.2 Process maturity

13.5 Focusing on Software Processes

178
180
181
182
182
184
186
186
187
188
189
191
192
194
195
195
198
199
200
200

203

203
210
214
214
217
219

223

223
224
225
228
228
229
230
23 1
23 1
232

xii CONTENTS

13.5.3 Process and quality improvement

Problems
13.6 Concluding Remarks

14 Software Inspection

14.1 Basic Concepts and Generic Process
14.2 Fagan inspection
14.3 Other Inspections and Related Activities

14.3.1 Inspections of reduced scope or team size
14.3.2 Inspections of enlarged scope or team size
14.3.3 Informal desk checks, reviews, and walkthroughs
14.3.4 Code reading
14.3.5 Other formal reviews and static analyses

14.4 Defect Detection Techniques, TooYProcess Support, and Effectiveness
14.5 Concluding Remarks

Problems

15 Formal Verification

15.1 Basic Concepts: Formal Verification and Formal Specification
15.2 Formal Verification: Axiomatic Approach

15.2. I Formal logic specifications
15.2.2 Axioms
15.2.3 Axiomatic proofs and a comprehensive example

15.3.1 Weakest pre-conditions and backward chaining
15.3.2 Functional approach and symbolic execution
15.3.3 Seeking alternatives: Model checking and other approaches

15.3 Other Approaches

15.4 Applications, Effectiveness, and Integration Issues
15.5 Concluding Remarks

Problems

16 Fault Tolerance and Failure Containment

16.1 Basic Ideas and Concepts
16.2 Fault Tolerance with Recovery Blocks
16.3 Fault Tolerance with N-Version Programming

16.3.1 NVP: Basic technique and implementation
16.3.2 Ensuring version independence
16.3.3 Applying NVP ideas in other QA activities

16.4 Failure Containment: Safety Assurance and Damage Control
16.4.1 Hazard analysis using fault-trees and event-trees
16.4.2 Hazard resolution for accident prevention

233
234
235

237

237
239
242
242
243
244
244
246
247
249
250

251

25 1
254
254
255
257
259
260
260
26 1
263
265
266

267

267
270
272
272
27 3
274
275
275
278

CONTENTS xiii

16.4.3 Accident analysis and post-accident damage control

16.5.1 Modeling and analyzing heterogeneous systems
16.5.2 Prescriptive specifications foir safety

Problems

16.5 Application in Heterogeneous Systems

16.6 Concluding Remarks

17 Comparing Quality Assurance Techniques and Activities

17.1 General Questions: Cost, Benefit, and Environment
17.2 Applicability to Different Environments
17.3 Effectiveness Comparison

17.3.1 Defect perspective
17.3.2 Problem types
17.3.3 Defect level and pervasiveness
17.3.4 Result interpretation and constructive information

17.4 Cost Comparison
17.5 Comparison Summary and Recommendations

Problems

PART IV QUANTIFIABLE QUALITY IMPROVEMENT

18 Feedback Loop and Activities for Quantifiable
Quality Improvement

18.1 QA Monitoring and Measurement
18.1.1 Direct vs. indirect quality measurements
18.1.2 Direct quality measurements Result and defect measurements
18.1.3 Indirect quality measurements: Environmental, product internal,

and activity measurements
18.2 Immediate Follow-up Actions and Feedback
18.3 Analyses and Follow-up Actions

18.3.1 Analyses for product release decisions
18.3.2 Analyses for other project management decisions
18.3.3 Other feedback and follow-up actions

18.4.1 Feedback loop: Implementation and integration
18.4.2 A refined quality engineering, process
18.4.3 Tool support: Strategy, implementation, and integration

Problems

18.4 Implementation, Integration, and Tool Support

18.5 Concluding Remarks

278
279
279
28 1
282
282

285

285
289
29 1
29 1
292
293
294
295
297
298

303

304
304
306

306
308
309
309
311
3 12
313
3 14
3 16
317
320
320

19 Quality Models and Measurements

19.1 Models for Quality Assessment

323

323

xiv CONTENTS

19.2 Generalized Models

19.3 Product-Specific Models
19.4 Model Comparison and Interconnections

19.5 Data Requirements and Measurement
19.6 Selecting Measurements and Models
19.7 Concluding Remarks

Problems

20 Defect Classification and Analysis

20.1 General Types of Defect Analyses
20.1.1 Defect distribution analysis
20.1.2 Defect trend analysis and defect dynamics model
20.1.3 Defect causal analysis

20.2.1 ODC concepts
20.2.2 Defect classification using ODC: A comprehensive example
20.2.3 Adapting ODC to analyze web errors

20.3. I One-way analysis: Analyzing a single defect attribute
20.3.2 Two-way and multi-way analysis: Examining cross-interactions

Problems

20.2 Defect Classification and ODC

20.3 Defect Analysis for Classified Data

20.4 Concluding Remarks

21 Risk Identification for Quantifiable Quality Improvement

21.1 Basic Ideas and Concepts

21.2 Traditional Statistical Analysis Techniques
21.3 New Techniques for Risk Identification

2 1.3.1 Principal component and discriminant analyses
2 1.3.2 Artificial neural networks and learning algorithms
21.3.3 Data partitions and tree-based modeling
21.3.4 Pattern matching and optimal set reduction

2 1.4 Comparisons and Integration
2 1.5 Risk Identification for Classified Defect Data
2 1.6 Concluding Remarks

Problems

22 Software Reliability Engineering

22.1 SRE: Basic Concepts and General Approaches
22.2 Large Software Systems and Reliability Analyses
22.3 Reliability Snapshots Using IDRMs
22.4 Longer-Term Reliability Analyses Using SRGMs

324
327
328
330
333
335
337

339

339
340
343
344
345
345
346
347
348
348
349
350
35 1

353

353
355
356
356
358
359
362
362
365
368
369

371

37 1
372
374
377

CONTENTS XV

22.5

22.6
22.7

TBRMs for Reliability Analysis and Improvement
22.5.1 Constructing and using TBRMs
22.5.2 TBRM Applications
22.5.3 TBRM’s impacts on reliability improvement
Implementation and Software Tool Support
SRE: Summary and Perspectives
Problems

Bibliography

Index

380
38 1
382
384
385
386
387

389

403

This Page Intentionally Left Blank

LIST OF FIGURES

1.1

1.2

2.1

3.1

4.1

4.2

5.1

5.2

5.3

6.1

7.1

8.1

8.2

9.1

Scope and content hierarchy: Testing, quality assurance (QA), and software
quality engineering

Chapter and PART dependency diagram

Defect related concepts and relations

Generic ways to deal with defects

QA activities in the waterfall process

Verification and validation activities associated with the V-Model

Quality engineering process

Quality engineering in the waterfall process

Quality engineering effort profile: The share of different activities as part
of the total effort

Generic testing process

Test coverage analysis with S-TCAT

An operational profile (OP) of requested file types for the SMU/SEAS web
site

A tree-structured or graphical operational profile

1-dimensional domain testing with I P C strategy

6

10

21

30

45

49

54

61

63

69

100

113

121

133

xvii

xviii

9.2

9.3

9.4

9.5

9.6

9.7

10.1

10.2

10.3

10.4

10.5

10.6

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

LIST OF FIGURES

2-dimensional domain testing with EPC strategy

l-dimensional domain testing with weak N x 1 strategy

2-dimensional domain testing with weak N x 1 strategy for the boundary
between CO and C2

2-dimensional boundary tilt detection by the weak N x 1 strategy

2-dimensional domain testing with weak 1 x 1 strategy for the boundary
between CO and C6

2-dimensional boundary tilt detection by the weak 1 x 1 strategy

An example finite-state machine (FSM) for call processing

Multi-layered web applications

Example Markov chain for call processing FSM in Figure 10.1

Example UMM (unified Markov model): Expanding state E of the top-level
UMM in Figure 10.3 into a lower-level UMM

Sample entries in an access log

Top-level UMM for SMU/SEAS

A sample control flow graph (CFG)

A sample program and its control flow graph (CFG)

Control flow graphs (CFGs) for “for” and “while” loops

Data dependency graph (DDG) element: An example of data definition
through assignment

DDG element: An example of data selector node

A sample data flow graph (DDG)

Data selectors for multiple variables in branches

Three data slices for the DDG in Figure 1 1.6 and their sensitization

Combination of independent data selectors and related slices

11.10 Combination of nested data selectors and related slices

12.1 Testing sub-phases associated with the V-Model

12.2 Hierarchical implementation of an integrated web testing strategy

14.1 Generic inspection process

14.2 A program segment (left) and its permutation (right)

15.1 A program segment with its formal specification

16.1 Fault tolerance with recovery blocks

134

137

138

138

139

140

151

158

162

163

168

170

177

179

183

188

190

192

194

195

196

197

204

218

238

245

258

270

LIST OF FIGURES xix

16.2

16.3

16.4

16.5

16.6

18.1

18.2

18.3

19.1

19.2

19.3

19.4

19.5

20.1

20.2

21.1

21.2

21.3

21.4

21.5

21.6

21.7

21.8

22.1

22.2

22.3

22.4

22.5

22.6

Fault tolerance with NVP 272

Fault-tree analysis (FTA) for an automobile accident 276

Event-tree analysis (ETA) for an automobile accident 277

Two-frame model for a CCSCS 280

Prescription monitor for safety assurance

Refined quality engineering process: Measurement, analysis, and feedback
for quantifiable quality improvement 304

Further refined quality engineering process with detailed measurement
sources and feedback paths 315

Tools for quality measurement, analysi,s, and feedback 319

28 1

Classification of quality assessment models

Effort or defect profile in the Putnam Model

Relating measurements to quality assessment models

A fitted SRGM for an IBM product

A tree-based reliability model (TBRM) for an IBM product

One-way analysis of defect impact for ian IBM product

Error (type E) and hit profiles for SMU/SEAS

Processing model of a neuron

324

326

332

335

336

349

350

358

Backward propagation algorithm for artificial neural networks 359

360 Algorithm for tree-based model construction

Tree-based defect model for a commercial product

Algorithm for optimal set reduction

361

362

Example hierarchy for optimal set reduction 363

Predictions of defect impact for an IBM product

Defect impact distributions for an IBM product

Measured runs (per day) for products D

Measured transactions (per run) for products E

SRGMs for test run indexed failures for product D

TBRMl for product D

TBRM2 for product D

Comparing failure arrivals for products A, B, C, and D

366

367

374

375

380

383

383

384

This Page Intentionally Left Blank

LIST OF TABLES

2.1

4.1

7.1

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

10.1

10.2

Correctness-centered properties according to quality views and attributes 23

QA activities: Mapping from defect-centered (DC) view to verification and
validation (V&V) view

A template for test execution measurements

A high-level functional checklist for some relational database products

A template for a two-dimensional checklist by combining a standards
checklist and a component checklist

Sample test cases for the program sallving the equation ax2 + bx + c = 0

Usage frequencies (hits) and probabilities (% of total)
for different file types for SMU/SEAS

A sample customer profile

A sample user profile

CSS user profile

CSS OP: CSS functions classified according to usage probabilities

An example finite-state machine (FSM) for call
processing in tabular representation

Top entry pages to SMU/SEAS

51

93

105

106

108

112

118

119

123

124

152

170

xxi

xxii LIST OF TABLES

12.1

13.1

13.2

15.1

17.1

17.2

17.3

17.4

17.5

17.6

17.7

17.8

17.9

19.1

19.2

19.3

19.4

19.5

19.6

20.1

20.2

20.3

20.4

20.5

20.6

20.7

21.1

21.2

Comparison of key characteristics and applicable testing techniques for
different testing sub-phases

Distribution of modules of different maturity for an IBM product

Process maturity levels in CMM

Example symbolic execution traces

Objects of QA alternatives

Development activities where different QA alternatives are applicable

Required expertise and background knowledge for people to
perform different QA alternatives

Defect observed and dealt with by different QA alternatives

Main problem types dealt with by different QA alternatives

Defect levels where different QA alternatives are suitable

Ease of result interpretation for different QA alternatives and amount of
constructive informatiodmeasurements

Cost comparison for different QA alternatives

General comparison for different QA alternatives

A segmented model for reliability level estimation

DRM (defect removal model): defect distribution for previous
releases of a product

High-defect modules for two products identified by tree-based modeling

Summary of quality assessment models and their applications

Summary of measurements required by different quality models

Data attributes used in Figure 19.5

Common error types and error distribution for SMU/SEAS

Characterizing web errors by file types

Distribution of DF for a commercial product LS

Distribution of DF for a commercial product NS

A sample defect dynamics model

Some defect attributes and values for an IBM product

Two-way analysis results: Interaction between impact and severity

Principal components for a commercial product

Predicting defects using artificial neural networks

209

227

233

26 1

289

290

29 1

292

292

294

295

297

298

326

327

329

329

33 1

336

34 1

342

342

343

344

347

35 1

357

359

LIST OF TABLES xxiii

2 1.3 Characterizing high-defect modules for a commercial product 361

2 1.4 Comparison of risk identification techniques

22.1 Estimated reliability (A) and failure rate (A)
for successive time segments

364

376

22.2 Daily error rate (or failure rate) for SM’U/SEAS 377

22.3 Comparing purification levels for products A, B, C, and D 3 84

This Page Intentionally Left Blank

PREFACE

With the pervasive use of software systems in modern society and people’s reliance on them
in daily life, work, and societal functions, we need to make sure that these systems meet
people’s expectations for quality and reliability. This is the general subject of Software
Quality Engineering, which is organized into three major topics:

0 Software testing as a primary means to ensure software quality;

0 Other alternatives for quality assurance (QA), including defect prevention, process
improvement, inspection, formal verification, fault tolerance, safety assurance, and
damage control;

0 Measurement and analysis to close the feedback loop for quality assessment and
quantifiable improvement.

These topics and related concepts are introduced in Part I, with detailed coverage for each
major topic in Parts 11,111, and IV, respectively.

This book evolved from class notes for the one-semester course “Software Testing and
Quality Assurance” that I have taught many times at Southern Methodist University since
1995. Most of our students are full-time software professionals enrolled in SMU’s MS
program in Software Engineering, with a few other graduate students or undergraduate
juniors/seniors in related programs. Although there are many books on software testing
and some on specific software QA techniques, they are typically too specialized to be
suitable as a main textbook for a course like ours. On the other hand, general books on
software engineering or software management cannot and do not cover software quality
topics in enough detail or depth. Consequently, a combination of class notes and multiple
textbooks was used. Similar situations were also common at other universities for similar

xxv

xxvi PREFACE

courses, such as “Software Quality Assurance” and “Software Verification and Validation”.
With its comprehensive coverage of all the major topics in software quality engineering in
an integrated framework, this book is suitable as the main textbook for such a course.

In addition, this book could be used as a technical reference about software testing,
QA, and quality engineering by other readers, particularly professionals who perform QA
activities as testers, inspectors, analysts, coordinators, and so forth. It should also be useful
to people involved in project planning and management, product release, and support.
Similarly, this book could help prepare students for their internship assignments or future
employment related to testing or QA.

For more information on this book, please visit the following website:
www.engr.smu.edu/ tian/SQEbooW

www. wiley.com/WileyCDA/WileyTitle/productCd-047 17 13457. html
Supplementary material for instructors is available at the Wiley.com product page:

Acknowledgments

First, I thank all my students in the SMU/CSE 5314/7314 classes since 1995, particularly,
Katherine Chen, Tony Cluff, DeLeon English, Janet Farrar, Nishchal Gupta, Gina Habash,
Chris Jordan, Zhao Li, Sateesh Rudrangi, Zahra Shahim, and Nathan Vong, for reading the
manuscript and offering many invaluable suggestions. I also thank Tim Culver, for sharing
his detailed class notes with me, and Li Ma, for checking the exercise questions.

I thank the co-authors of my technical papers and the sponsors of my research projects for
the material included in this book based on related publications. Since all these publications
are individually cited in the bibliography, I only single out my project sponsors and industrial
collaborators here: National Science Foundation, through awards MRI-97245 17, CCR-
9733588, and CCR-0204345; Texas Higher Education Coordinating Board, through awards
003613-0030-1999 and 003613-0030-2001; IBM, Nortel Networks, and Lockheed-Martin.

I am grateful to SMU for granting me a sabbatical leave for the 2003/2004 academic
year to work on my research and to write this book. I thank my colleagues at SMU,
particularly Prof. Hesham El-Rewini, for their encouragement and help. I also appreciate
the opportunity to work for the IBM Software Solutions Toronto Laboratory between 1992
and 1995, where I gained invaluable practical experience in software QA and testing.

This book would not be possible without the love and support of my wife Sharon and my
daughters Christine and Elizabeth. Sharon, a professional tester for many years, also helped
me greatly by offering her invaluable technical critique. Utilizing her strength in reading
and writing, Christine edited the entire manuscript (and many of my previous papers too).

I also thank my editor Val Moliere, her assistant Emily Simmons, and my production
editor Melissa Yanuzzi, for their professional help.

JEFF (JIANHUI) TIAN

Plano, Texas

PART I

OVERVIEW AND BASICS

Part I gives an overview of the topics covered in this book, and introduces the basic con-
cepts and definitions related to quality, quality assurance (QA), testing, quality engineering,
and so forth. This part also covers quality planning as an integral part of software quality
engineering.

This Page Intentionally Left Blank

CHAPTER 1

OVERVIEW

Computers and software systems are becoming ubiquitous in modern society. Worldwide
users rely on individual and interconnected computers, as well as the global information
infrastructure, such as the Internet and the World Wide Web (WWW), to fulfill their needs
for information processing, storage, search, and retrieval. All these needs are met with
the support of the underlying software. This reliance requires the software to function
correctly over a long time, to be easy to use, and so on. In general, such requirements for
high quality need to be satisfied by the people involved in the development and support of
these software systems through various quality assurance activities, and the claims for high
quality need to be supported by evidence based on concrete measurements and analyses.
This chapter introduces various concepts related to quality, quality assurance (QA), and
quality engineering, and outlines the contents of this book.

1.1 MEETING PEOPLE’S QUALITY EXPECTATIONS

In general, people’s quality expectations for software systems they use and rely upon are
two-fold:

1. The software systems must do what they are supposed to do. In other words, they
must do the right things.

2. They must perform these specific tasks correctly or satisfactorily. In other words,
they must do the things right.

3

4 OVERVIEW

The former requires that the software be the “right software”, or perform the right
functions. For example, an airline reservation system is supposed to handle reservations,
not intended to fly airplanes automatically. The focus of the related activities is to validate
the required software functions under their intended operational environment. The latter
requires that the software systems perform their intended functions without problems. In
the airline reservation system example, the system should help travel agents or individual
travelers make valid reservations within a pre-specified time limit, instead of making invalid
ones, taking too long to make a reservation, or refusing to make reservations without proper
justification. The focus of the related activities is to verify that the implemented software
functions operate as specified.

Main tasks for software quality engineering

As the main topics of this book, the tasks for software QA and quality engineering are
to ensure software quality through the related validation and verification activities. These
activities need to be carried out by the people and organizations responsible for develop-
ing and supporting these software systems in an overall quality engineering process that
inc 1 udes :

0 quality planning;

0 execution of selected QA or software validation and verification activities;

0 measurement and analysis to provide convincing evidence to demonstrate software
quality to all parties involved.

In particular, customers and users need to have the assurance that their quality expectations
are satisfied by the delivered software systems. The overall experience and lessons learned
in delivering such high-quality software systems can be packaged into the software quality
engineering process for quantifiable quality improvement in future development projects
or to provide better product support.

When viewed from a different angle, the negative impact of software problems is also
increasing, accompanying the pervasive use of and reliance on software systems in modern
society. The problems could be associated with performing wrong functions, or performing
intended functions incorrectly, thus causing unintended consequences. We would like to
see such negative impact be eliminated, if possible. However, due to the increasing demand
for automation, additional functionality and convenience by modern society to the computer
and software systems, and due to the ubiquitous nature of modern computer, software, and
information infrastructure, the size and complexity of modern software systems have also
increased steadily. This increase in size and complexity also has unintended consequences
in terms of causing quality problems.

Quality problems in large software systems

Many software systems nowadays are highly complex and contain millions of lines of
source code. Examples of such large software systems can be found in virtually every
product segment or every application domain, from various operating systems, such as
commonly used versions of the Microsoft Windows and UNIX operations systems, to com-
mercial software products, such as database products, to aviation and in-flight entertainment

MEETING PEOPLE‘S QUALITY EXPECTATIONS 5

software used on Boeing 777, to defense related software systems, such as various com-
mandcommunicatiodcontrol (CCC) systems.

Such large and complex systems typically involve hundreds or even thousands of people
in their development over months or even years, and the systems are often to be operated
under diverse, and sometimes unanticipated, application environments. One may argue that
some systems are unnecessarily large and complex. According to (Wirth, 1995), such “fat
software” may be caused by indiscriminately adding non-essential features, poor design,
improper choices of languages and methodologies, which could be addressed by disci-
plined methodologies and return to essentials for “lean software”. Various QA techniques,
including many of those covered in this book, can help produce high-quality, lean software.

However, there is no “silver bullet”, or an all powerful and effective solution to the
size, complexity, quality, and other software engineering problems, due to the fundamental
requirements and constraints that a software system must satisfy (Brooks, 1987). Accom-
panying the size and complexity problems are the many chances for other problems to be
introduced into the software systems. Therefore, dealing with problems that may impact
customers and users negatively and trying to manage and improve software quality are a fact
of life for people involved in the development, management, marketing, and operational
support of most modern software systems.

Testing, quality assurance (QA), and quality engineering

The above factors make it virtually impossible or practically infeasible to achieve the com-
plete prevention or elimination of software problems and related negative impact. Con-
sequently, various software QA activities are carried out to prevent or eliminate certain
classes of problems that lead to such negative impact, or to reduce the likelihood or severity
of such negative impact when it is unavoidable. This book systematically describes topics
and issues related to these software QA activities, with an emphasis on the technical aspects.

Software testing plays a central role among the software QA activities. By running
the software system or executing its prescribed functions, testers can determine if the ob-
served system behavior conforms to its specifications or requirements. If discrepancies
exist between the two, follow-up actions can be carried out to locate and remove the re-
lated problems in software code, which may also include modifying the software design.
Therefore, the detection and removal of defects through testing help reduce the number of
defects in delivered software products, thus helping to achieve the quality goals. Even if no
discrepancy is observed, the specific instances can be accumulated as evidence to demon-
strate that the software performs as specified. Consequently, testing is the most frequently
used means to assure and to demonstrate software quality. A substantial part of this book
is devoted to software testing, with an emphasis on commonly used techniques that have
proven to be effective in various practical application environments.

Beyond testing, there are many other QA alternatives supported by related techniques
and activities, such as inspection, formal verification, defect prevention, and fault tolerance.
Inspection is a critical examination of software code or other artifacts by human inspectors
to identify and remove problems directly, without resorting to execution. Fault tolerance
prevents global system failures even if local problems exist, through various redundancies
strategically designed and implemented into the software systems. Other QA techniques
employ specific means to assure software quality. This book also provides a comprehensive
coverage of these topics.

In addition, all these QA activities need to be managed in an engineering process we
call the software quality engineering process, with quality goals set early in the product

6 OVERVIEW

Figure 1.1
engineering

Scope and content hierarchy: Testing, quality assurance (QA), and software quality

development, and strategies for QA selected, carried out, and monitored to achieve these
preset quality goals. As part of this overall process, data collected during the QA activities,
as well as from the overall development activities,can be analyzed to provide feedback to the
software development process for decision making, project management, and quantifiable
quality improvement. This book also provides a comprehensive coverage of these topics.

1.2 BOOK ORGANIZATION AND CHAPTER OVERVIEW

Figure 1.1 illustrates the general scope of the topics introduced above: Testing is an impor-
tant subset of QA activities; and QA is an important subset of quality engineering activities.
This diagram also explains our book title: “Software Quality Engineering: Testing, Quality
Assurance, and Quantifiable Improvement”. This book is organized in four major parts and
22 chapters, with the main topics outlined below.

Part I: Overview and Basics

Part I gives a general introduction and overview of the topics covered in the book, and
presents the basic concepts and definitions related to quality, QA, testing, quality engineer-
ing, etc. Specific questions answered include:

About this book: What is it? How to use it? How is it organized? In addition, what
background knowledge is needed to have a thorough understanding of the technical
aspects of this book? These questions are answered in Chapter 1.

What is software quality? In particular, what are the different views of quality? Is
quality a single, atomic concept, or does it consist of many different attributes or
characteristics? What is the relationship between quality, correctness, and defect?
Can we narrow down the definition of quality to better focus our attention on various
QA activities commonly carried out during software life cycles? These questions are
answered in Chapter 2.

What is QA? The question is answered from a particular perspective in Chapter 3,
representing a defect-based interpretation of quality and QA.

What are the different QA activities and related techniques? A defect-based classifi-
cation is presented, also in Chapter 3, for the major QA alternatives and techniques,
such as testing, inspection, formal verification, fault tolerance, and so on.

How to fit the different QA activities into the software development processes? What
about other frameworks to classify QA activities? These questions are answered in
Chapter 4.

BOOK ORGANIZATION AND CHAPTER OVERVIEW 7

0 The QA activities are broadened in Chapter 5 into quality engineering that includes
quality planning prior to specific QA activities and measurement, analysis, and feed-
back activities to close the loop for quality assessment and quantifiable improvement.

Part II: Software Testing

Part I1 deals with all the important topics related to software testing, with an emphasis on
commonly used testing techniques that have proven to be effective and efficient in many
practical application environments. The chapters in this part are organized into two sub-
parts: Descriptions of specific testing techniques (Chapters 8 through 11) are surrounded
by chapters on the general issues of testing (Chapters 6,7, and 12). Individual chapters are
described below:

0 General questions, issues, terminology about testing, including the generic testing
process and a taxonomy for testing, are discussed in Chapter 6.

0 The major testing activities, people’s roles and responsibilities in these activities, test
management, and test automation issues are covered in Chapter 7.

0 Checklist and partition-based testing: Chapter 8 starts with the simplest testing of
them all, ad hoc testing, then progresses to more organized testing using simple
models such as lists and partitions. Specific testing techniques covered in Chapter 8
include:

- testing with different types of general checklists;

- decision and predicate testing;

- usage-based statistical testing using flat operational profiles.

0 Boundary testing: As a special case and extension of partition testing, we cover
boundary testing in Chapter 9. Application of boundary testing ideas in other testing
situations is also covered.

0 State-based testing: Both the finite-state machines (FSMs), which serve as the basis
for state-based testing, and the augmented FSMs, which form Markov chains for
more in-depth usage-based statistical testing, are covered in Chapter 10.

Interaction testing: Instead of focusing on individual partitions or states, the testing
techniques described in Chapter 11 deal with the interactions along a complete ex-
ecution path or a dependency slice. Specifically, this chapter covers the following
traditional testing techniques:

- control-flow testing (CFT);

- data-flow testing (DFT).

0 Chapter 12 discusses application of specific testing techniques for specific testing
tasks in different sub-phases or in specialized tasks. The integration of different
testing techniques to fulfill some common purposes is also discussed.

8 OVERVIEW

Part 111: Quality Assurance Beyond Testing

Part I11 covers important QA techniques other than testing, including the ones described
below, and a comparison of all the QA alternatives at the end.

0 Various defect prevention techniques are described in Chapter 13.

0 Software inspection, or critical examination of software artifacts by human inspectors,
is described in Chapter 14.

0 Formal verification of program correctness with respect to its formal specifications
is covered in Chapter 15.

0 Fault tolerance techniques that prevent failures through some redundancy or dupli-
cation are discussed in Chapter 16. Related techniques based on similar ideas, such
as failure containment to minimize failure impact, are also discussed in Chapter 16.

0 Some program analysis techniques, specifically static analyses, are also covered in
Chapter 14 in connection to inspection. Related topics on dynamic program analyses
are briefly covered in Chapter 12 in connection to specialized testing techniques.

0 Comparison of different QA alternatives and techniques, including those covered in
Part I11 as well as testing covered in Part 11, is presented in Chapter 17.

Part IV Quantifiable Quality Improvement

Part IV covers the important activities carried out in parallel or as follow-up to the main
QA activities described in Part I1 and Part 111. The purpose of these activities is to monitor
the QA activities to provide quantitative quality assessment and feedback to the quality
engineering process. Such assessment and feedback can be used to help with decision
making, project management, and various improvement initiatives. The main contents of
the specific chapters in this part are described below:

0 First, the parallel and follow-up activities, as well as the collection and usage of the
raw and processed data in related analyses to provide specific feedback for various
purposes, are described in Chapter 18.

Chapter 19 describes different models and measurements for quality assessment and
improvement, and classifies them according to the information provided and the
specific types of data required.

Defect classification and analysis models are described in Chapter 20, as an important
sub-class of quality assessment models that focuses on the collection and analysis of
detailed defect information.

0 Further analysis of the discovered defects and other measurement data from QA
and overall development activities can be carried out to identify high-risk or high-
defect areas for focused remedial actions aimed at effective quality improvement.
Various risk identification techniques and related models for doing this are presented
in Chapter 2 1.

0 As an alternative to the defect-based view of quality that is closer to the developers’
perspective, reliability is a quality measure that is closer to the users’ perspective

DEPENDENCY AND SUGGESTED USAGE 9

and more meaningful to target customers. Chapter 22 presents software reliability
models and analysis techniques to provide reliability assessments and guidance for
reliability improvement.

1.3 DEPENDENCY AND SUGGESTED USAGE

The integration of the interconnected chapters is an important feature of this book. We next
examine the topic and chapter dependencies, and discuss different ways that these topics
can be combined for different readers with different purposes in mind.

Chapter dependency

Figure 1.2 depicts the dependencies among different chapters, as well as among different
parts, with each part grouped by dotted lines. We use solid lines to depict essential depen-
dencies and dashed lines to depict dependencies that are desirable but not essential. An
example of the latter type of dependencies is the non-essential dependency between quality
assessment and analysis in Part IV and QA topics in Parts I1 and 111: The knowledge of
the topics presented in Parts I1 and I11 would make most of topics covered in Part IV more
meaningful. However, one can have a general understanding of Part IV without a thorough
knowledge of Parts I1 and 111. Similarly, although all the chapters in Part I11 except the last
one can be treated as parallel ones, Chapters 13 through 16 generally follow the sequence
of activities or phases in the development process. Therefore, it would be more logical to
follow this sequence. Some specific dependencies are explained below:

0 In addition to Chapter 17’s dependency on previous chapters of Part 111, it should also
be preceded by chapters in Part 11, at least Chapter 6, because the comparison of QA
alternatives in Chapter 17 rely on the general knowledge of individual alternatives
and techniques.

0 The chapters on testing techniques in Part I1 follow the natural progression from
simple models to complex ones. However, there is no essential dependency between
those based on simple partitions (Chapters 8 and 9) and those based on more complex
models (Chapters 10 and 11).

0 The last two chapters in Part IV can be treated as parallel chapters except that part of
Chapter 22, the topic on tree-based reliability models (TBRMs), uses the modeling
technique called tree-based modeling covered in Chapter 21.

Suggested usage

This book is suitable as the main textbook for a one-semester course in various software
engineering programs. Other people who are interested in learning all the major topics in
software quality engineering should also read the whole book. However, for people who
just want to get a general idea of the topics covered in this book, the following chapters are
appropriate:

0 The minimal set: Chapters 1-6,17, and 18. This minimal set includes all five chapters
in Part I and one chapter each from Parts 11,111, and IV, respectively.

10 OVERVIEW

, !+ Chapter2 : i I Essential dependency

Non-essential dependency

: Chapter4 : B

*

t

r--

j (-1
i i - i I Chapter 19

It

I I (-) Chapter22

I

Figure 1.2 Chapter and PART dependency diagram

Between these two extremes (the minimal set and all chapters), there are also other
possible usages of this book. All the followingwould assume the basic coverageof minimal
set of chapters above and some other chapters in addition to it. Some suggested usages are
given below:

0 Half semester course: Cover all in selective details, with emphasis on either Part 11,
111, or IV.

0 Short course on specialized topics: minimal set above plus one of the part from Parts
11, 111, and IV. Such short courses would be similar in length to about ten hours or
3-4 weeks of class lectures.

0 Other combinations of chapters are also possible, but would require the reader to keep
track of the cross-references in topics and related dependencies using Figure 1.2 as
the guide.

In addition to its use as a textbook, or as a technical book that introduces other people to
the important topics of software quality engineering, the comprehensive coverage of all the
important topics and pointers to further reading should also make this book a good reference
for readers in their professional career.

READER PREPARATION AND BACKGROUND KNOWLEDGE 11

1.4 READER PREPARATION AND BACKGROUND KNOWLEDGE

To have a good understanding of the technical details, the readers need to have a general
knowledge of mathematics, statistics, computer science, and software engineering, equiv-
alent to that at the level of college juniors, seniors, or new graduate students in computer
science, software engineering, or a related field. The following is intended as a general
checklist for the readers: If you find that you lack certain background knowledge listed be-
low, you need to study or review them on your own before proceeding to related technical
discussions. This checklist will help readers link specific pieces of background knowledge
to specific parts of the book.

Mathematical and statistical knowledge

Reviewing standard textbooks on mathematics and statistics covering the following topics
would be useful if you are unfamiliar with some of them:

0 Basic concepts of relations, algebra, and set theory: Used throughout the book, and
especially in the following:

- Sets, subsets, partitions, basic types of relations, and equivalence classes in

- Use of algebraic equations to define boundaries in Chapter 9 for boundary

- Precedence and dependency relations in Chapter 11 for control-flow and data-

- Cause-effect relations in Chapter 16 for hazard analysis and safety assurance,

Chapter 8 for partition-based testing.

testing.

flow testing.

and in Chapter 20 for defect analysis.

0 Logic, particularly Boolean logic, and related formalisms: Used throughout the book,
and especially in the following:

- Boolean logic for predicate and decision testing in Chapter 8.

- Mathematical logic and formalisms in Chapter 15 for formal verification of
program correctness.

0 Some basic concepts of graph theory: Used throughout the book, and especially in
the following:

- Decision trees in Chapter 8 for operational profiles used in statistical testing.

- Graph elements for finite-state machines (FSMs) and related testing in Chap-

- Flow-chart like situations for control-flow testing in Chapter 1 1.

- Data dependency graphs (a tree-structured graph) for data-flow testing in Chap-

- Trees in fault-tree analysis and event-tree analysis in Chapter 16 for hazard

- Tree-based models for risk identification in Chapter 21 and for reliability anal-

ter 10.

ter 11.

analysis and safety assurance.

ysis in Chapter 22.

12 OVERVIEW

0 Basic concepts of probability and statistics: Particularly important to the following
topics:

- Usage-based testing in Chapters 8 and 10.

- Defect classification and distribution analysis in Chapter 20.

0 Basic concepts of statistical analysis and modeling: Important to the topics in Part
IV, in particular,

- General analysis and modeling techniques in Chapter 19.

- Various specific types of analyses for risk identification in Chapter 2 1.

- Stochastic process and analysis for software reliability modeling in Chapter 22.

Computer science knowledge

Reviewing standard textbooks on computer science covering the following topics would be
useful if you are unfamiliar with some of them:

0 Familiarity with programming and general software development using a high-level
language. However, to make the understanding of basic concepts independent of spe-
cific implementation languages, example programs in the book are given in pseudo-
code form. Therefore, at a minimum, the readers need to be familiar with pseudo-
code commonly used to present basic algorithms in computer science literature and
sometimes to illustrate design ideas during software development.

0 Fundamentals of computing, particularly:

- Finite-state machines (FSMs), which are the basis for state-based testing in
Chapter 10.

- Execution flow and data dependencies, which are the basis for control flow and
data.flow testing in Chapter 11.

- Some formalisms about computing and programming languages used in Chap-
ters 10, 11, and 15.

- Some analysis techniques commonly identified with computer science and ar-
tificial intelligence, such as pattern matching, learning algorithms, and neural
networks used in Chapter 2 1.

0 Design and organization of computer and software systems such as used in parallel
and redundant systems in Chapter 16.

Software engineering knowledge

Reviewing standard textbooks on software engineering covering the following topics would
be useful if you are unfamiliar with some of them:

0 General knowledge of software development and maintenance activities, including
requirement analysis, product specification, design, coding, testing, release, support,
- A -

PROBLEMS 13

0 General awareness of different software development processes, including water-
fall, spiral, incremental, iterative, extreme programming (X P) , etc., and the software
process capability maturity model (CMM).

0 General awareness with software management and system engineering issues, in-
cluding economic consequences of project decisions, tradeoffs between different
objectives and concerns, feedback and improvement mechanisms, optimization, etc.

0 Familiarity with at least one of the commonly used development methodologies (and
related tools), such as object-oriented development (OOD), structured development
(SD), Cleanroom technology, agile methods, formal methods, etc.

0 Practical experience working with some industrial software projects would be ex-
tremely helpful.

Problems

1.1 Consider some of your daily activities and classify them according the role played
by computers and underlying software: no role, minor role, major role, and critical role.
If “no role” is your answer for all the areadactivities, STOP - this is not a book for you.
Otherwise, perform an overall assessment on how important software quality is to your
daily activities.

1.2 Use the dependency diagram in Figure 1.2 and related explanations in Section 1.3 to
construct your individual study plan to fulfill your personal goals.

1.3 Use the checklist in Section 1.4 and your personal goals to see if you need to review
any background knowledge. If so, construct your individual study plan to get yourself ready
for the rest of the book.

This Page Intentionally Left Blank

CHAPTER 2

WHAT IS SOFTWARE QUALITY?

The question, “What is software quality?’, is bound to generate many different answers,
depending on whom you ask, under what circumstances, for what kind of software systems,
and so on. An alternative question that is probably easier for us to get more informative
answers is: “What are the characteristics for high-quality software?’

In this chapter, we attempt to define software quality by defining the expected character-
istics or properties of high-quality software. In doing so, we need to examine the different
perspectives and expectations of users as well as other people involved with the develop-
ment, management, marketing, and maintenance of the software products. We also need to
examine the individual characteristics associated with quality and their inter-relationship,
and focus our attention on the critical characteristics of functional correctness. We con-
clude the chapter with a comparison of software quality with quality concepts for other
(non-software) systems and the evolving place of quality within software engineering.

2.1 QUALITY: PERSPECTIVES AND EXPECTATIONS

We next examine the different views of quality in a systematic manner, based on the dif-
ferent roles, responsibilities, and quality expectations of different people, and zoom in on a
small set of views and related properties to be consistently followed throughout this book.
Five major views according to (Kitchenham and Pfleeger, 1996; Pfleeger et al., 2002) are:
transcendental, user, manufacturing, product, and value-based views, as outlined below:

15

16 WHAT IS SOFTWARE QUALITY?

0 In the transcendental view, quality is hard to define or describe in abstract terms,
but can be recognized if it is present. It is generally associated with some intangible
properties that delight users.

0 In the user view, quality is fitness for purpose or meeting user’s needs.

0 In the manufacturing view, quality means conformance to process standards.

0 In the product view, the focus is on inherent characteristics in the product itself in
the hope that controlling these internal quality indicators (or the so-called product-
internal metrics described in Chapter 18) will result in improved external product
behavior (quality in use).

0 In the value-based view, quality is the customers’ willingness to pay for a software.

People’s roles and responsibilities

When software quality is concerned, different people would have different views and ex-
pectations based on their roles and responsibilities. With the quality assurance (QA) and
quality engineering focus of this book, we can divide the people into two broad groups:

0 Consumers of software products or services, including customers and users, either
internally or externally. Sometime we also make the distinction between the cus-
tomers, who are responsible for the acquisition of software products or services, and
the users, who use the software products or services for various purposes, although the
dual roles of customers and users are quite common. We can also extend the concept
of users to include such non-human or “invisible” users as other software, embedded
hardware, and the overall operational environment that the software operates under
and interacts with (Whittaker, 2001).

0 Producers of software products, or anyone involved with the development, manage-
ment, maintenance, marketing, and service of software products. We adopt a broad
definition of producers, which also include third-party participants who may be in-
volved in add-on products and services, software packaging, software certification,
fulfilling independent verification and validation (IV&V) responsibilities, and so on.

Subgroups within the above groups may have different concerns, although there are
many common concerns within each group. In the subsequent discussions, we use external
view for the first group’s perspective, who are more concerned with the observed or external
behavior, rather than the internal details that lead to such behavior. Similarly, we use a
generic label internal view for the second group’s perspective, because they are typically
familiar with or at least aware of various internal characteristic of the products. In other
words, the external view mostly sees a software system as a black box, where one can
observe its behavior but not see through inside; while the internal view mostly sees it as a
white box, or more appropriately a clear box, where one can see what is inside and how it
works.

Quality expectations on the consumer side

The basic quality expectations of a user are that a software system performs useful functions
as it is specified. There are two basic elements to this expectation: First, it performs

QUALITY: PERSPECTIVES AND EXPECTATIONS 17

right functions as specified, which, hopefully fits the user’s needs (fit for use). Second, it
performs these specified functions correctly over repeated use or over a long period of time,
or performs its functions reliably. These two elements are related to the validation and
verification aspects of QA we introduced in the previous chapter, which will be expanded
further in Chapter 4. Looking’into the future, we can work towards meeting this basic
expectation and beyond to delight customers and users by preventing unforeseen negative
impacts and produce unexpected positive effects (Denning, 1992).

For many users of today’s ubiquitous software and systems, ease of use, or usability, may
be a more important quality expectation than reliability or other concerns. For example,
the adoption of graphical user interfaces (GUI) in personal computers to replace text-
based command interpreters often used in mainframes is primarily driven by the usability
concerns for their massive user population. Similarly, ease of installation, is another major
trend for software intended for the same population, to allow for painless (and nearly
effortless) installation and operation, or the so-called “plug-and-play”. However, different
users of the same system may have different views and priorities, such as the importance
of usability for novice users and the importance of reliability for sophisticated users of the
web (Vatanasombut et al., 2004).

When we consider the extended definition of users beyond human users, the primary
expectations for quality would be to ensure the smooth operation and interaction between the
software and these non-human users in the form of better inter-operability and adaptability,
so that the software can work well with others and within its surrounding environment.

The basic quality expectations of a customer are similar to that of a user, with the
additional concern for the cost of the software or service. This additional concern can be
reflected by the so-called value-based view of quality, that is, whether a customer is willing
to pay for it. The competing interests of quality and other software engineering concerns,
such as cost, schedule, functionality, and their trade-offs, are examined in Section 2.4.

Quality expectations on the producer side

For software producers, the most fundamental quality question is to fulfill their contractual
obligations by producing software products that conform to product specifications or pro-
viding services that conform to service agreement. By extension, various product internal
characteristics that make it easy to conform to product specifications, such as good de-
signs that maintain conceptual integrity of product components and reduce coupling across
different components, are also associated with good quality.

For product and service managers, adherence to pre-selected software process and rele-
vant standards, proper choice of software methodologies, languages, and tools, as well as
other factors, may be closely related to quality. They are also interested in managing and
satisfying user’s quality expectations, by translating such quality expectations into realistic
quality goals that can be defined and managed internally, selecting appropriate and effective
QA strategies, and seeing them through.

For other people on the producer side, their different concerns may also produce quality
views and expectations different from the above. For example, usability and modifiability
may be paramount for people involved with software service, maintainability for mainte-
nance personnel, portability for third-party or software packaging service providers, and
profitability and customer value for product marketing.

18 WHAT IS SOFTWARE QUALITY?

2.2 QUALITY FRAMEWORKS AND ISO-9126

Based on the different quality views and expectations outlined above, quality can be defined
accordingly. In fact, we have already mentioned above various so-called “-ilities” connected
to the term quality, such as reliability, usability, portability, maintainability, etc. Various
models or frameworks have been proposed to accommodate these different quality views
and expectations, and to define quality and related attributes, features, characteristics, and
measurements. We next briefly describe ISO-9 126 (ISO, 2001), the mostly influential one in
the software engineering community today, and discuss various adaptations of such quality
frameworks for specific application environments.

ISO-9126

ISO-9 126 (ISO, 2001) provides a hierarchical framework for quality definition, organized
into quality characteristics and sub-characteristics. There are six top-level quality charac-
teristics, with each associated with its own exclusive (non-overlapping) sub-characteristics,
as summarized below:

0 Functionality: A set of attributes that bear on the existence of a set of functions and
their specified properties. The functions are those that satisfy stated or implied needs.
The sub-characteristics include:

- Suitability

- Accuracy

- Interoperability

- Security

0 Reliability: A set of attributes that bear on the capability of software to maintain
its level of performance under stated conditions for a stated period of time. The
sub-characteristics include:

- Maturity

- Fault tolerance

- Recoverability

0 Usability: A set of attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users. The sub-
characteristics include:

- Understandability

- Learnability

- Operability

0 Efficiency: A set of attributes that bear on the relationship between the level of per-
formance of the software and the amount of resources used, under stated conditions.
The sub-characteristics include:

- Time behavior

- Resource behavior

QUALITY FRAMEWORKS AND 180-9126 19

0 Maintainability: A set of attributes that bear on the effort needed to make specified
modifications. The sub-characteristics include:

- Analyzability

- Changeability

- Stability

- Testability

0 Portability: A set of attributes that bear on the ability of software to be transferred
from one environment to another. The sub-characteristics include:

- Adaptability

- Installability

- Conformance

- Replaceability

Alternative frameworks and focus on correctness

ISO-9 126 offers a comprehensive framework to describe many attributes and properties we
associate with quality. There is a strict hierarchy, where no sub-characteristics are shared
among quality characteristics. However, certain product properties are linked to multiple
quality characteristics or sub-characteristics (Dromey, 1995; Dromey, 1996). For example,
various forms of redundancy affect both efficiency and maintainability. Consequently, var-
ious alternative quality frameworks have been proposed to allow for more flexible relations
among the different quality attributes or factors, and to facilitate a smooth transition from
specific quality concerns to specific product properties and metrics.

Many companies and communities associated with different application domains have
adapted and customized existing quality frameworks to define quality for themselves, taking
into consideration their specific business and market environment. One concrete example
of this for companies is the quality attribute list CUPRIMDS (capability, usability, perfor-
mance, reliability, installation, maintenance, documentation, and service) IBM used for
their software products (Kan, 2002). CUPRIMDS is often used together with overall cus-
tomer satisfaction (thus the acronym CUPRIMDSO) to characterize and measure software
quality for IBM’s software products.

Similarly, a set of quality attributes has been identified for web-based applications (Of-
futt, 2002), with the primary quality attributes as reliability, usability, and security, and the
secondary quality attributes as availability, scalability, maintainability, and time to market.
Such prioritized schemes are often used for specific application domains. For example,
performance (or efficiency) and reliability would take precedence over usability and main-
tainability for real-time software products. On the contrary, it might be the other way round
for mass market products for end users.

Among the software quality characteristics or attributes, some deal directly with the func-
tional correctness, or the conformance to specifications as demonstrated by the absence of
problems or instances of non-conformance. Other quality characteristics or attributes deal
with usability, portability, etc. Correctness is typically related to several quality characteris-
tics or sub-characteristics in quality frameworks described above. For example, in ISO-9 126
it is related to both functionality, particularly its accuracy (in other words, conformance)
sub-characteristics, and reliability.

20 WHAT IS SOFMJARE QUALITY?

Correctness is typically the most important aspect of quality for situations where daily
life or business depends on the software, such as in managing corporate-wide computer
networks, financial databases, and real-time control software. Even for market segments
where new features and usability take priority, such as for web-based applications and
software for personal use in the mass market, correctness is still a fundamental part of the
users’ expectations (Offutt, 2002; Prahalad and Krishnan, 1999). Therefore, we adopt the
correctness-centered view of quality throughout this book. We will focus on correctness-
related quality attributes and related ways to ensure and demonstrate quality defined as
such.

2.3 CORRECTNESS AND DEFECTS: DEFINITIONS, PROPERTIES, AND
MEASUREMENTS

When many people associate quality or high-quality with a software system, it is an indica-
tion that few, if any, software problems, are expected to occur during its operations. What
is more, when problems do occur, the negative impact is expected to be minimal. Related
issues are discussed in this section.

Definitions: Error, fault, failure, and defect

Key to the correctness aspect of software quality is the concept of defect, failure, fault, and
error. The term “defect” generally refers to some problem with the software, either with
its external behavior or with its internal characteristics. The IEEE Standard 610.12 (IEEE,
1990) defines the following terms related to defects:

0 Failure: The inability of a system or component to perform its required functions
within specified performance requirements.

0 Fault: An incorrect step, process, or data definition in a computer program.

Error: A human action that produces an incorrect result.

Therefore, the term failure refers to a behavioral deviation from the user requirement
or the product specification; fault refers to an underlying condition within a software that
causes certain failure(s) to occur; while error refers to a missing or incorrect human action
resulting in certain fault(s) being injected .into a software.

We also extend errors to include error sources, or the root causes for the missing or
incorrect actions, such as human misconceptions, misunderstandings, etc. Failures, faults,
and errors are collectively referred to as defects in literature. We will use the term defect in
this book in this collective sense or when its derivatives are commonly used in literature,
such as in defect handling.

Software problems or defects, are also commonly referred to as “bugs”. However, the
term bug is never precisely defined, such as the different aspects of defects defined as errors,
faults, and failures above. Some people have also raised the moral or philosophical objection
to the use of bug as evading responsibility for something people committed. Therefore, we
try to avoid using the term “bug” in this book.

Similarly, we also try to avoid using the related terms “debug”or “debugging”for similar
reasons. The term “debug” general means “get rid of the bugs”. Sometimes, it also includes
activities related to detecting the presence of bugs and dealing with them. In this book, we
will use, in their place, the following terms:

CORRECTNESS AND DEFECTS: DEFINITIONS, PROPERTIES, AND MEASUREMENTS 21

Legend:
“a” causes “b”:

Figure 2.1 Defect related concepts and relations

0 We use defect detection and removal for the overall concept and activities related to
what many people commonly call “debugging”.

0 When specific activities related to “debugging” are involved, we point the specifics
out using more precisely defined terms, including,

- Specific activities related to defect discovery, including testing, inspection, etc.

- Specific follow-up activities after defect discovery, including defect diagnosis,
analysis, fixing, and re-verification.

All these specific terms will be more precisely defined in this book when they are introduced
or when topics most closely related to them are covered.

Concepts and relations illustrated

The concepts of error (including error source), fault, failure, and defect can be placed into
the context of software artifact, software development activities, and operational usage, as
depicted in Figure 2.1. Some specific information illustrated include:

0 The software system as represented by its artifacts is depicted in the middle box. The
artifacts include mainly software code and sometime other artifacts such as designs,
specifications, requirement documents, etc. Thefaults scattered among these artifacts
are depicted as circled entities within the middle box.

0 The input to the software development activities, depicted in the left box, include
conceptual models and information, developers with certain knowledge and experi-
ence, reusable software components, etc. Various error sources are also depicted as
circled entities within this left box.

22 WHAT IS SOFlWARE QUALITY?

0 The errors as missing or incorrect human actions are not directly depicted within one
box, but rather as actions leading to the injection of faults in the middle box because
of some error sources in the left box.

0 Usage scenarios and execution results, depicted in the right box, describe the input to
software execution, its expected dynamic behavior and output, and the overall results.
A subset of these behavior patterns or results can be classified as failures when they
deviate from the expected behavior, and is depicted as the collection of circled failure
instances.

With the above definitions and interpretations, we can see that failures, faults, and errors
are different aspects of defects. A causal relation exists among these three aspects of defects:

errors --i faults -+ failures

That is, errors may cause faults to be injected into the software, and faults may cause
failures when the software is executed. However, this relationship is not necessarily 1-to- 1:
A single error may cause many faults, such as in the case that a wrong algorithm is applied
in multiple modules and causes multiple faults, and a single fault may cause many failures
in repeated executions. Conversely, the same failure may be caused by several faults, such
as an interface or interaction failure involving multiple modules, and the same fault may be
there due to different errors. Figure 2.1 also illustrates some of these situations, as described
below:

0 The error source e3 causes multiple faults,f2 andfJ.

0 The faultfl is caused by multiple error sources, e l and e2.

0 Sometimes, an error source, such as e5, may not cause any fault injection, and a
fault, such asf4, may not cause any failure, under the given scenarios or circum-
stances. Such faults are typically called dormant or latent faults, which may still
cause problems under a different set of scenarios or circumstances.

Correctness-centered properties and measurements

With the correctness focus adopted in this book and the binary partition of people into
consumer and producer groups, we can define quality and related properties according to
these views (external views for producers vs. internal views for consumers) and attributes
(correctness vs. others) in Table 2.1.

The correctness-centered quality from the external view, or from the view of consumers
(users and customers) of a software product or service, can be defined and measured by
various failure-related properties and measurement. To a user or a customer, the primary
concern is that the software operates without failure, or with as few failures as possible.
When such failures or undesirableevents do occur, the impact should be as little as possible.
These concerns can be captured by various properties and related measurements, as follows:

Failure properties and direct failure measurement: Failure properties include infor-
mation about the specific failures, what they are, how they occur, etc. These properties
can be measured directly by examining failure count, distribution, density, etc. We
will examine detailed failure properties and measurements in connection with defect
classification and analysis in Chapter 20.

CORRECTNESS AND DEFECTS: DEFINITIONS, PROPERTIES, AND MEASUREMENTS 23

Table 2.1 Correctness-centered properties according to quality views and attributes

View Attribute
Correctness Others

Consumer/ Failure- Usability
External related Maintainability
(user & properties Portability
customer) Performance

Installability
Readability
etc. (-ilities)

Producer/ Fault- Design
Internal related Size
(developer, properties Change
manager, Complexity,
tester, etc.) etc.

e Failure likelihood and reliability measurement: How often or how likely a failure is
going to occur is of critical concern to software users and customers. This likelihood
is captured in various reliability measures, where reliability can be defined as the
probability of failure-free operations for a specific time period or for a given set of
input (Musa et al., 1987; Lyu, 1995a; Tian, 1998). We will discuss this topic in
Chapter 22.

Failure severity measurement and safety assurance: The failure impact is also a
critical concern for users and customers of many software products and services,
especially if the damage caused by failures could be substantial. Accidents, which
are defined to be failures with severe consequences, need to be avoided, contained,
or dealt with to ensure the safety for the personnel involved and to minimize other
damages. We will discuss this topic in Chapter 16.

In contrast to the consumers’ perspective of quality above, the producers of software
systems see quality from a different perspectives in their interaction with software systems
and related problems. They need to fix the problems or faults that caused the failures, as
well as deal with the injection and activation of other faults that could potentially cause
other failures that have not yet been observed.

Similar to the failure properties and related measurements discussed above, we need
to examine various fault properties and related measurements from the internal view or
the producers’ view. We can collect and analyze information about individual faults, as
well as do so collectively. Individual faults can be analyzed and examined according to
their types, their relations to specific failures and accidents, their causes, the time and
circumstances when they are injected, etc. Faults can be analyzed collectively according to
their distribution and density over development phases and different software components.
These topics will be covered in detail in Chapter 20 in connection with defect classification
and analysis. Techniques to identify high-defect areas for focused quality improvement are
covered in Chapter 2 1.

24 WHAT IS SOFTWARE QUALITY?

Defects in the context of QA and quality engineering

For most software development organizations, ensuring quality means dealing with defects.
Three generic ways to deal with defects include: 1) defect prevention, 2) defect detection
and removal, and 3) defect containment. These different ways of dealing with defects and
the related activities and techniques for QA will be described in Chapter 3.

Various QA alternatives and related techniques can be used in a concerted effort to effec-
tively and efficiently deal with defects and assure software quality. In the process of dealing
with defects, various direct defect measurements and other indirect quality measurements
(used as quality indicators) might be taken, often forming a multi-dimensional measurement
space referred to as quality profile (Humphrey, 1998). These measurement results need to
be analyzed using various models to provide quality assessment and feedback to the overall
software development process. Part IV covers these topics.

By extension, quality engineering can also be viewed as defect management. In addition
to the execution of the planned QA activities, quality engineering also includes:

0 quality planning before specific QA activities are carried out,

0 measurement, analysis, and feedback to monitor and control the QA activities.

In this respect, much of quality planning can be viewed as estimation and planning for
anticipated defects. Much of the feedback is provided in terms of various defect related
quality assessments and predictions. These topics are described in Chapter 5 and Part IV,
respectively.

2.4 A HISTORICAL PERSPECTIVE OF QUALITY

We next examine people’s views and perceptions of quality in a historical context, and trace
the evolving role of software quality in software engineering.

Evolving perceptions of quality

Before software and information technology (IT) industries came into existence, quality
has long been associated with physical objects or systems, such as cars, tools, radio and
television receivers, etc. Under this traditional setting, QA is typically associated with
the manufacturing process. The focus is on ensuring that the products conform to their
specifications. What is more, these specifications often accompany the finished products,
so that the buyers or users can check them for reference. For example, the user’s guide for
stereo equipments often lists their specifications in terms of physical dimensions, frequency
responses, total harmonic distortion, and other relevant information.

Since many items in the product specifications are specified in terms of ranges and
error tolerance, reducing variance in manufacturing has been the focal point of statistical
quality control. Quality problems are synonymous to non-conformance to specifications
or observed defects defined by the non-conformance. For example, the commonly used
“initial quality” for automobiles by the industrial group J.D. Power and Associates (online
at www . jdpa. corn) is defined to be the average number of reported problems per 100
vehicle by owners during the first three years (they used to count only the first year) of
their ownership based on actual survey results. Another commonly used quality measure
for automobiles, reliability, is measured by the number of problems over a longer time for

so, WHAT IS SOFTWARE QUALITY? 25

different stages of an automobile’s lifetime. Therefore, it is usually treated as the most
important quality measure for used vehicles.

With the development of service industries, an emerging view of quality is that business
needs to adjust to the dynamically shifting expectations of customers, with the focus of qual-
ity control shifting from zero defect in products to zero defection of customers (Reichheld
Jr. and Sasser, 1990). Customer loyalty due to their overall experience with the service is
more important than just conforming to some prescribed specifications or standards.

According to (Prahalad and Krishnan, 1999), software industry has incorporated both
the conformance and service views of quality, and high-quality software can be defined
by three basic elements: conformance, adaptability, and innovation. This view generally
agrees with the many facets of software quality we described so far. There are many
reasons for this changing view of quality and the different QA focuses (Beizer, 1998). For
example, the fundamental assumptions of physical constraints, continuity, quantifiability,
compositioddecomposition, etc., cannot be extended or mapped to the flexible software
world. Therefore, different QA techniques covered in this book need to be used.

Quality in software engineering

Within software engineering, quality has been one of the several important factors, including
cost, schedule, and functionality, which have been studied by researchers and practitioners
(Blum, 1992; Humphrey, 1989; Ghezzi et al., 2003; von Mayrhauser, 1990). These factors
determine the success or failure of a software product in evolving market environments, but
may have varying importance for different time periods and different market segments.

In Musa and Everett (1990), these varying primary concerns were conveniently used to
divide software engineering into four progressive stages:

1. In thefunctional stage, the focus was on providing the automated functions to replace

2. In the schedule stage, the focus was on introducing important features and new sys-

3. In the cost stage, the focus was on reducing the price to stay competitive accompanied
by the widespread use of personal computers.

4. In the reliability stage, the focus was managing users’ quality expectations under the
increased dependency on software and high cost or severe damages associated with
software failures.

We can see a gradual increase in importance of quality within software engineering.
This general characterization is in agreement with what we have discussed so far, namely,
the importance of focusing on correctness-centered quality attributes in our software QA
effort for modern software systems.

what had been done manually before.

tems on a timely and orderly basis to satisfy urgent user needs.

2.5 SO, WHAT IS SOFTWARE QUALITY?

To conclude this chapter, we can answer the opening question, “What is software quality?’
as follows:

0 Software quality may include many different attributes and may be defined and per-
ceived differently based on people’s different roles and responsibilities.

26 WHAT IS SOFTWARE QUALITY?

0 We adopt in this book the correctness-centered view of quality, that is, high quality
means none or few problems of limited damage to customers. These problems are
encountered by software users and caused by internal software defects.

The answer to a related question, “How do you ensure quality as defined above?’ include
many software QA and quality engineering activities to be described in the rest of this book.

Problems

2.1 What is software quality?

2.2
What other views not mentioned in Section 2.1 can you think of?

2.3
(quality attributes)?

2.4
failure, accident. What is the relationship among them? What about (software) bugs?

2.5
(Notice that we started with manufacturing in our historical perspective on quality.)

2.6
What about between testing and quality?

What is your view of software quality? What is your company’s definition of quality?

What is the relationship between quality, correctness, defects, and other “-ilities”

Define the following terms and give some concrete examples: defect, error, fault,

What is the pre-industrial concept of quality, and what is the future concept of quality?

What is the relationship between quality, quality assurance, and quality engineering?

CHAPTER 3

QUALITY ASSURANCE

With the correctness-centered quality definitions adopted in the previous chapter for this
book, the central activities for quality assurance (QA) can be viewed as to ensure that
few, if any, defects remain in the software system when it is delivered to its customers or
released to the market. Furthermore, we want to ensure that these remaining defects will
cause minimal disruptions or damages. In this chapter, we survey existing QA alternatives
and related techniques, and examine the specific ways they employ to deal with defects.
Through this examination, we can abstract out several generic ways to deal with defects,
which can then be used to classify these QA alternatives. Detailed descriptions and a general
comparison of the related QA activities and techniques are presented in Part I1 and Part 111.

3.1 CLASSIFICATION: QA AS DEALING WITH DEFECTS

A close examination of how different QA alternatives deal with defects can yield a generic
classification scheme that can be used to help us better select, adapt and use different QA al-
ternatives and related techniques for specific applications. We next describe a classification
scheme initially proposed in Tian (2001) and illustrate it with examples.

A classification scheme

With the defect definitions given in the previous chapter, we can view different QA activities
as attempting to prevent, eliminate, reduce, or contain various specific problems associated

27

28 QUALITY ASSURANCE

with different aspects of defects. We can classify these QA alternatives into the following
three generic categories:

0 Defect prevention through error blocking or error source removal: These QA ac-
tivities prevent certain types of faults from being injected into the software. Since
errors are the missing or incorrect human actions that lead to the injection of faults
into software systems, we can directly correct or block these actions, or remove the
underlying causes for them. Therefore, defect prevention can be done in two generic
ways:

- Eliminating certain error sources, such as eliminating ambiguities or correcting
human misconceptions, which are the root causes for the errors.

- Faultprevention or blocking by directly correcting or blocking these missing or
incorrect human actions. This group of techniques breaks the causal relation be-
tween error sources and faults through the use of certain tools and technologies,
enforcement of certain process and product standards, etc.

0 Defect reduction through fault detection and removal: These QA alternatives detect
and remove certain faults once they have been injected into the software systems. In
fact, most traditional QA activities fall into this category. For example,

- Inspection directly detects and removes faults from the software code, design,

- Testing removes faults based on related failure observations during program

etc.

execution.

Various other means, based on either static analyses or observations of dynamic
executions, can be applied to reduce the number of faults in a software system.

Defect containment through failure prevention and containment: These containment
measures focus on the failures by either containing them to local areas so that there
are no global failures observable to users, or limiting the damage caused by software
system failures. Therefore, defect containment can be done in two generic ways:

- Some QA alternatives, such as the use of fault-tolerance techniques, break the
causal relation between faults and failures so that local faults will not cause
global failures, thus “tolerating” these local faults.

- A related extension to fault-tolerance is containment measures to avoid catas-
trophic consequences, such as death, personal injury, and severe property or
environmental damages, in case of failures. For example, failure containment
for real-time control software used in nuclear reactors may include concrete
walls to encircle and contain radioactive material in case of reactor melt-down
due to software failures, in order to prevent damage to environment and people’s
health.

Dealing with pre-/post-release defects

Different QA alternatives can be viewed as a concerted effort to deal with errors, faults,
or failures, in order to achieve the common goal of quality assurance and improvement.
Defect prevention and defect reduction activities directly deal with the competing processes

CLASSIFICATION: CIA AS DEALING WITH DEFECTS 29

of defect injection and removal during the software development process (Humphrey, 1995).
They affect the defect contents, or the number of faults, in the finished software products
by working to reduce the pre-release defect injections or to remove as many such defects as
possible before product release. The faults left in the finished software products are often
called “dormant defects”, which may stay dormant for some time, but have the potential
of causing problems to customers and users of the products - a situation that we would
like to alleviate or avoid. Further analyses of different types of defects can be found in
Chapter 20. Related techniques to identify high-risk areas for focused defect reduction and
QA can be found in Chapter 2 1.

After product release, the failures observed and problems reported by customers and
users also need to be fixed, which in turn, could lead to reduced defects and improved
product quality. However, one cannot rely on these post-release problem reports and give
up pre-release defect prevention and reduction activities, because the cost of fixing defects
after product release is significantly higher than before product release due to the numerous
installations. In addition, the damage to software vendors’ reputation can be devastating.
Controlled field testing, commonly referred to as “beta testing”, and similar techniques
discussed further in Chapter 12 have been suggested and used to complement pre-release
QA activities. Related process issues are discussed in Chapter 4.

On the other hand, defect containment activities aim at minimizing the negative impact
of these remaining faults during operational use after product release. However, most of
the defect containment techniques involve redundancies or duplications, and require signif-
icantly more development effort to design and implement related features. Therefore, they
are typically limited to the situations where in-field failures are associated with substantial
damage, such as in corporate-wide database for critical data, global telecommunication
networks, and various computer-controlled safety critical systems such as medical devices
and nuclear reactors. The details about these issues can be found in Chapter 16.

Graphical depiction of the classification scheme

The above QA activity classification can be illustrated in Figure 3.1, forming a series of
barriers represented by dotted broken lines. Each barrier removes or blocks defect sources,
or prevents undesirable consequences. Specific information depicted includes:

0 The barrier between the input to software development activities (left box) and the
software system (middle box) represents defect prevention activities.

0 The curved barrier between the software system (middle box) and the usage scenario
and observed behavior (right box) represents defect or fault removal activities such
as inspection and testing.

0 The straight barrier to the right of and close to the above fault removal barrier repre-
sents failure prevention activities such as fault tolerance.

0 The last barrier, surrounding selected failure instances,represents failure containment
activities.

In Figure 3.1, faults are depicted as circled entities within the middle box for the software
system. Error sources are depicted as circled entities within the left box for the input to the
software development activities. Failures are depicted as the circled instances within the
right box for usage scenarios and execution results. Figure 3.1 also shows the relationship

30 QUALITY ASSURANCE

Error
Removal

Software System

f: fault

n

Scenarios and
Results
(inputloutput)

! ! - . . .
! !
I I

presence of "a" removal of *'a*' *'a'' causes " b defect banierlremover

Figure 3.1 Generic ways to deal with defects

between these QA activities and related errors, faults, and failures through some specific
examples, as follows:

0 Some of the human conceptual errors, such as error source e6, are directly removed
by error source removal activities, such as through better education to correct the
specific human conceptual mistakes.

0 Other incorrect actions or errors, such as some of those caused by error source e3
and e5, are blocked. If an error source can be consistently blocked, such as e5, it
is equivalent to being removed. On the other hand, if an error source is blocked
sometimes, such as e3, additional or alternative defect prevention techniques need to
be used, similar to the situation for other error sources such as e l , e2, and e4, where
faults are likely to be injected into the software system because of these error sources.

0 Some faults, such as f4, are detected directly through inspection or other static analysis
and removed as a part of or as follow-up to these activities, without involving the
observation of failures.

0 Other faults, such as f3, are detected through testing or other execution-based QA
alternatives by observing their dynamic behavior. If a failure is observed in these
QA activities, the related faults are located by examining the execution record and

DEFECT PREVENTION 31

removed as a part of or as follow-up to these activities. Consequently, no operational
failures after product release will be caused by these faults.

0 Still other faults, such asfl, are blocked through fault tolerance for some execution
instances. However, fault-tolerance techniques typically do not identify and fix the
underlying faults. Therefore, these faults could still lead to operational failures under
different dynamic environments, such a s p leading to x2.

0 Among the failure instances, failure containment strategy may be applied for those
with severe consequences. For example, XI is such an instance, where failure con-
tainment is applied to it, as shown by the surrounding dotted circle.

We next survey different QA alternatives, organized in the above classification scheme,
and provide pointers to related chapters where they are described in detail.

3.2 DEFECT PREVENTION

The QA alternatives commonly referred to as defect prevention activities can be used for
most software systems to reduce the chance for defect injections and the subsequent cost
to deal with these injected defects. Most of the defect prevention activities assume that
there are known error sources or missinghncorrect actions that result in fault injections, as
follows:

0 If human misconceptions are the error sources, education and training can help us
remove these error sources.

0 If imprecise designs and implementations that deviate from product specifications or
design intentions are the causes for faults, formal methods can help us prevent such
deviations.

0 If non-conformance to selected processes or standards is the problem that leads to
fault injections, then process conformance or standard enforcement can help use
prevent the injection of related faults.

0 If certain tools or technologies can reduce fault injections under similar environments,
they should be adopted.

Therefore, root cause analyses described in Chapter 21 are needed to establish these pre-
conditions, or root causes, for injected or potential faults, so that appropriate defect preven-
tion activities can be applied to prevent injection of similar faults in the future. Once such
causal relations are established, appropriate QA activities can then be selected and applied
for defect prevention.

3.2.1 Education and training

Education and training provide people-based solutions for error source elimination. It has
long been observed by software practitioners that the people factor is the most important
factor that determines the quality and, ultimately, the success or failure of most software
projects. Education and training of software professionals can help them control, manage,
and improve the way they work. Such activities can also help ensure that they have few, if

32 QUALITY ASSURANCE

any, misconceptions related to the product and the product development. The elimination
of these human misconceptions will help prevent certain types of faults from being injected
into software products. The education and training effort for error source elimination should
focus on the following areas:

0 Product and domain specijic knowledge. If the people involved are not familiar with
the product type or application domain, there is a good chance that wrong solutions
will be implemented. For example, developers unfamiliar with embedded software
may design software without considering its environmental constraints, thus lead-
ing to various interface and interaction problems between software and its physical
surroundings.

0 SofhYare development knowledge and expertise plays an important role in developing
high-quality software products. For example, lack of expertise with requirement
analysis and product specification usually leads to many problems and rework in
subsequent design, coding, and testing activities.

0 Knowledge about Development methodology, technology, and tools also plays an
important role in developing high-quality software products. For example, in an
implementation of Cleanroom technology (Mills et al., 1987b), if the developers are
not familiar with the key components of formal verification or statistical testing, there
is little chance for producing high-quality products.

Developmentprocess knowledge. If the project personnel do not have a good under-
standing of the development process involved, there is little chance that the process
can be implemented correctly. For example, if the people involved in incremen-
tal software development do not know how the individual development efforts for
different increments fit together, the uncoordinated development may lead to many
interface or interaction problems.

3.2.2 Formal method

Formal methods provide a way to eliminate certain error sources and to verify the absence
of related faults. Formal development methods, or formal methods in short, include formal
specification and formal verification. Formal specification is concerned with producing
an unambiguous set of product specifications so that customer requirements, as well as
environmental constraints and design intentions, are correctly reflected, thus reducing the
chances of accidental fault injections. Formal verification checks the conformance of soft-
ware design or code against these formal specifications, thus ensuring that the software is
fault-free with respect to its formal specifications.

Various techniques exist to specify and verify the “correctness” of software systems,
namely, to answer the questions: “What is the correct behavior?”, and “How to verify
it?’ We will describe some of these techniques in Chapter 15, with the basic ideas briefly
introduced below.

0 The oldest and most influential formal method is the so-call axiomatic approach
(Hoare, 1969; Zelkowitz, 1993). In this approach, the “meaning” of a program
element or the formal interpretation of the effect of its execution is abstracted into
an axiom. Additional axioms and rules are used to connect different pieces together.
A set of formal conditions describing the program state before the execution of a

DEFECT PREVENTION 33

program is called its pre-conditions, and the set after program execution the post-
conditions. This approach verifies that a given program satisfies its prescribed pre-
and post-conditions.

0 Other influential formal verification techniques include the predicate transformer
based on weakest precondition ideas (Dijkstra, 1975; Gries, 1987), and program cal-
culus or functional approach heavily based on mathematical functions and symbolic
executions (Mills et al., 1987a). The basic ideas are similar to the axiomatic approach,
but the proof procedures are somewhat different.

0 Various other limited scope or semi-formal techniques also exist, which check for
certain properties instead of proving the full correctness of programs. For exam-
ple, model checking techniques are gaining popularity in the software engineering
research community (Ghezzi et al., 2003). Various semi-formal methods based on
forms or tables, such as (Parnas and Madey, 1995), instead of formal logic or math-
ematical functions, have found important applications as well.

So far, the biggest obstacle to formal methods is the high cost associated with the difficult
task of performing these human intensive activities correctly without adequate automated
support. This fact also explains, to a degree, the increasing popularity of limited scope and
semi-formal approaches.

3.2.3 Other defect prevention techniques

Other defect prevention techniques, to be described in Chapter 13, including those based
on technologies, tools, processes, and standards, are briefly introduced below:

0 Besides the formal methods surveyed above, appropriate use of other software method-
ologies or technologies can also help reduce the chances of fault injections. Many
of the problems with low quality “fat software” could be addressed by disciplined
methodologies and return to essentials for high-quality “lean software” (Wirth, 1995).
Similarly, the use of the information hiding principle (Parnas, 1972) can help reduce
the complexity of program interfaces and interactions among different components,
thus reducing the possibility of related problems.

0 A better managed process can also eliminate many systematic problems. For example,
not having a defined process or not following it for system configuration management
may lead to inconsistencies or interface problems among different software compo-
nents. Therefore, ensuring appropriate process definition and conformance helps
eliminate some such error sources. Similarly, enforcement of selected standards for
certain types of products and development activities also reduces fault injections.

Sometimes, specific software tools can also help reduce the chances of fault injections.
For example, a syntax-directed editor that automatically balances out each open
parenthesis, “{”, with a close parenthesis, “}”, can help reduce syntactical problems
in programs written in the C language.

Additional work is needed to guide the selection of appropriate processes, standards,
tools, and technologies, or to tailor existing ones to fit the specific application environment.
Effective monitoring and enforceqent systems are also needed to ensure that the selected
processes or standards are followed, or the selected tools or technologies are used properly,
to reduce the chance of fault injections.

34 QUALITY ASSURANCE

3.3 DEFECT REDUCTION

For most large software systems in use today, it is unrealistic to expect the defect prevention
activities surveyed above to be 100% effective in preventing accidental fault injections.
Therefore, we need effective techniques to remove as many of the injected faults as possible
under project constraints.

3.3.1 Inspection: Direct fault detection and removal

Software inspections are critical examinations of software artifacts by human inspectors
aimed at discovering and fixing faults in the software systems. Inspection is a well-known
QA alternative familiar to most experienced software quality professionals. The earliest
and most influential work in software inspection is Fagan inspection (Fagan, 1976). Vari-
ous other variations have been proposed and used to effectively conduct inspection under
different environments. A detailed discussion about inspection processes and techniques,
applications and results, and many related topics can be found in Chapter 14. The basic
ideas of inspection are outlined below:

0 Inspections are critical reading and analysis of software code or other software arti-
facts, such as designs, product specifications, test plans, etc.

0 Inspections are typically conducted by multiple human inspectors, through some
coordination process. Multiple inspection phases or sessions might be used.

0 Faults are detected directly in inspection by human inspectors, either during their
individual inspections or various types of group sessions.

0 Identified faults need to be removed as a result of the inspection process, and their
removal also needs to be verified.

0 The inspection processes vary, but typically include some planning and follow-up
activities in addition to the core inspection activity.

0 The formality and structure of inspections may vary, from very informal reviews
and walkthroughs, to fairly formal variations of Fagan inspection, to correctness
inspections approaching the rigor and formality of formal methods.

Inspection is most commonly applied to code, but it could also be applied to requirement
specifications, designs, test plans and test cases, user manuals, and other documents or
software artifacts. Therefore, inspection can be used throughout the development process,
particularly early in the software development before anything can be tested. Consequently,
inspection can be an effective and economical QA alternative because of the much increased
cost of fixing late defects as compared to fixing early ones.

Another important potential benefit of inspection is the opportunity to conduct causal
analysis during the inspection process, for example, as an added step in Gilb inspection (Gilb
and Graham, 1993). These causal analysis results can be used to guide defect prevention
activities by removing identified error sources or correcting identified missinghncorrect
human actions. These advantages of inspection will be covered in more detail in Chapter 14
and compared to other QA alternatives in Chapter 17.

DEFECT REDUCTION 35

3.3.2 Testing: Failure observation and fault removal

Testing is one of the most important parts of QA and the most commonly performed QA
activity. Testing involves the execution of software and the observation of the program
behavior or outcome. If a failure is observed, the execution record is then analyzed to
locate and fix the fault(s) that caused the failure. As a major part of this book, various issues
related to testing and commonly used testing techniques are covered in Part I1 (Chapters 6
through 12).

Individual testing activities and techniques can be classified using various criteria and
examined accordingly, as discussed below. Here we pay special attention to how they deal
with defects. A more comprehensive classification scheme is presented in Chapter 6.

When can a specific testing activity be performed and related faults
be detected?

Because testing is an execution-based QA activity, a prerequisite to actual testing is the
existence of the implemented software units, components, or system to be tested, although
preparation for testing can be carried out in earlier phases of software development. As a
result, actual testing can be divided into various sub-phases starting from the coding phase
up to post-release product support, including: unit testing, component testing, integration
testing, system testing, acceptance testing, beta testing, etc. The observation of failures can
be associated with these individual sub-phases, and the identification and removal of related
faults can be associated with corresponding individual units, components, or the complete
system.

If software prototypes are used, such as in the spiral process, or if a software system is
developed using an incremental or iterative process, testing can usually get started much
earlier. Later on, integration testing plays a much more important role in detecting inter-
operability problems among different software components. This issue is discussed further
in Chapter 4, in connection to the distribution of QA activities in the software processes.

What to test, and what kind of faults are found?

Black-box (or functional) testing verifies the correct handling of the external functions
provided by the software, or whether the observed behavior conforms to user expectations or
product specifications. White-box (or structural) testing verifies the correct implementation
of internal units, structures, and relations among them. Various techniques can be used to
build models and generate test cases to perform systematic black-box or white-box testing.

When black-box testing is performed, failures related to specific external functions can be
observed, leading to corresponding faults being detected and removed. The emphasis is on
reducing the chances of encountering functional problems by target customers. On the other
hand, when white-box testing is,performed, failures related to internal implementations can
be observed, leading to corresponding faults being detected and removed. The emphasis is
on reducing internal faults so that there is less chance for failures later on no matter what
kind of application environment the software is subjected to.

When, or at what defect level, to stop testing?

Most of the traditional testing techniques and testing sub-phases use some kind of coverage
information as the stopping criteria, with the implicit assumption that higher coverage

36 QUALITY ASSURANCE

means higher quality or lower levels of defects. For example, checklists are often used to
make sure major functions and usage scenarios are tested before product release. Every
statement or unit in a component must be covered before subsequent integration testing can
proceed. More formal testing techniques include control flow testing that attempts to cover
execution paths and domain testing that attempts to cover boundaries between different input
sub-domains. Such formal coverage information can only be obtained by using expensive
coverage analysis and testing tools. However, rough coverage measurement can be obtained
easily by examining the proportion of tested items in various checklists.

On the other hand, product reliability goals can be used as a more objective criterion
to stop testing. The use of this criterion requires the testing to be performed under an
environment that resembles actual usage by target customers so that realistic reliability
assessment can be obtained, resulting in the so-called usage-based statistical testing.

The coverage criterion ensures that certain types of faults are detected and removed, thus
reducing the number of defects to a lower level, although quality is not directly assessed.
The usage-based testing and the related reliability criterion ensure that the faults that are
most likely to cause problems to customers are more likely to be detected and removed,
and the reliability of the software reaches certain targets before testing stops.

3.3.3 Other techniques and risk identification

Inspection is the most commonly used static techniques for defect detection and removal.
Various other static techniques are available, including various formal model based analyses
such as algorithm analysis, decision table analysis, boundary value analysis, finite-state
machine and Petri-net modeling, control and data flow analyses, software fault trees, etc.

Similarly, in addition to testing, other dynamic, execution-based, techniques also exist for
fault detection and removal. For example, symbolic execution, simulation, and prototyping
can help us detect and remove various defects early in the software development process,
before large-scale testing becomes a viable alternative.

On the other hand, in-field measurement and related analyses, such as timing and per-
formance analysis for real-time systems, and accident analysis and reconstruction using
software fault trees and event trees for safety-critical systems, can also help us locate and
remove related defects. Although these activities are an important part of product support,
they are not generally considered as a part of the traditional QA activities because of the
damages already done to the customers’ applications and to the software vendors’ reputa-
tion. As mentioned in Section 3.1, because of the benefits of dealing with problems before
product release instead of after product release, the focus of these activities is to provide
useful information for future QA activities.

A comprehensive survey of techniques for fault detection and removal can be found in
Chapters 6 and 14, in connection with testing and inspection techniques. Related techniques
for dealing with post-release defects are covered in Chapter 16 in connection with fault
tolerance and failure containment techniques.

Fault distribution is highly uneven for most software products, regardless of their size,
functionality, implementation language, and other characteristics. Much empirical evidence
has accumulated over the years to support the so-called 80:20 rule, which states that 20%
of the software components are responsible for 80% of the problems. These problematic
components can generally be characterized by specific measurement properties about their
design, size, complexity, change history, and other product or process characteristics. Be-
cause of the uneven fault distribution among software components, there is a great need for
risk identification techniques to analyze these measurement data so that inspection, testing,

DEFECT CONTAINMENT 37

and other QA activities can be more ettectively focused on those potentially high-defect
components.

These risk identification techniques are described in Chapter 2 1, including: traditional
statistical analysis techniques, principal component analysis and discriminant analysis, neu-
ral networks, tree-based modeling, pattern matching techniques, and learning algorithms.
These techniques are compared according to several criteria, including: accuracy, simplic-
ity, early availability and stability, ease of result interpretation, constructive information
and guidance for quality improvement, and availability of tool support. Appropriate risk
identification techniques can be selected to fit specific application environments in order to
identify high-risk software components for focused inspection and testing.

3.4 DEFECT CONTAINMENT

Because of the large size and high complexity of most software systems in use today,
the above defect reduction activities can only reduce the number of faults to a fairly low
level, but not completely eliminate them. For software systems where failure impact is
substantial, such as many real-time control software sub-systems used in medical, nuclear,
transportation, and other embedded systems, this low defect level and failure risk may still
be inadequate. Some additional QA alternatives are needed.

On the other hand, these few remaining faults may be triggered under rare conditions or
unusual dynamic scenarios, making it unrealistic to attempt to generate the huge number
of test cases to cover all these conditions or to perform exhaustive inspection based on
all possible scenarios. Instead, some other means need to be used to prevent failures by
breaking the causal relations between these faults and the resulting failures, thus “tolerating”
these faults, or to contain the failures by reducing the resulting damage.

3.4.1 Software fault tolerance

Software fault tolerance ideas originate from fault tolerance designs in traditional hardware
systems that require higher levels of reliability, availability, or dependability. In such sys-
tems, spare parts and backup units are commonly used to keep the systems in operational
conditions, maybe at a reduced capability, at the presence of unit or part failures. The pri-
mary software fault tolerance techniques include recovery blocks, N-version programming
(NVP), and their variations (Lyu, 1995b). We will describe these techniques and examine
how they deal with failures and related faults in Chapter 16, with the basic ideas summarized
below:

0 Recovery blocks use repeated executions (or redundancy over time) as the basic
mechanism for fault tolerance. If dynamic failures in some local areas are detected,
a portion of the latest execution is repeated, in the hope that this repeated execution
will not lead to the same failure. Therefore, local failures will not propagate to global
failures, although some time-delay may be involved.

NVP uses parallel redundancy, where N copies, each of a different version, of pro-
grams fulfilling the same functionality are running in parallel. The decision algorithm
in NVP makes sure that local failures in limited number of these parallel versions
will not compromise global execution results.

38 QUALITY ASSURANCE

One fact worth noting is that in most fault tolerance techniques, faults are not typically
identified, therefore not removed, but only tolerated dynamically. This is in sharp contrast
to defect detection and removal activities such as inspection and testing.

3.4.2 Safety assurance and failure containment

For safety critical systems, the primary concern is our ability to prevent accidents from
happening, where an accident is a failure with a severe consequence. Even low failure
probabilities for software are not tolerable in such systems if these failures may still likely
lead to accidents. Therefore, in addition to the above QA techniques, various specific
techniques are also used for safety critical systems based on analysis of hazards, or logical
pre-conditions for accidents (Leveson, 1995). These safety assurance and improvement
techniques are covered in Chapter 16. A brief analysis of how each of them deals with
defects is given below:

Hazard elimination through substitution, simplification, decoupling, elimination of
specific human errors, and reduction of hazardous materials or conditions. These
techniques reduce certain defect injections or substitute non-hazardous ones for haz-
ardous ones. The general approach is similar to the defect prevention and defect
reduction techniques surveyed earlier, but with a focus on those problems involved
in hazardous situations.

Hazard reduction through design for controllability (for example, automatic pres-
sure release in boilers), use of locking devices (for example, hardwarehoftware in-
terlocks), and failure minimization using safety margins and redundancy. These
techniques are similar to the fault tolerance techniques surveyed above, where local
failures are contained without leading to system failures.

Hazard control through reducing exposure, isolation and containment (for example,
barriers between the system and the environment), protection systems (active pro-
tection activated in case of hazard), and fail-safe design (passive protection, fail in a
safe state without causing further damages). These techniques reduce the severity of
failures, therefore weakening the link between failures and accidents.

0 Damage control through escape routes, safe abandonment of products and materials,
and devices for limiting physical damages to equipments or people. These techniques
reduce the severity of accidents, thus limiting the damage caused by these accidents
and related software failures.

Notice that both hazard control and damage control above are post-failure activities that
attempt to “contain” the failures so that they will not lead to accidents or the accident damage
can be controlled or minimized. These activities are specific to safety critical systems, which
are not generally covered in the QA activities for other systems. On the other hand, many
techniques for defect prevention, reduction, and tolerance can also be used in safety-critical
systems for hazard elimination and reductions through focused activities on safety-critical
product components or features.

3.5 CONCLUDING REMARKS

According to the different ways different QA alternatives deal with defects, they can be
classified into three general categories:

PROBLEMS 39

Defect prevention through error source elimination and error blocking activities, such
as education and training, formal specification and verification, and proper selection
and application of appropriate technologies, tools, processes, or standards. The
detailed descriptions of these specific techniques and related activities are given in
Chapter 15 for formal verification techniques and in Chapter 13 for the rest.

0 Defect reduction through inspection, testing, and other static analyses or dynamic
activities, to detect and remove faults from software. As one of the most important
and widely used alternatives, testing is described in Part I1 (Chapters 6 through 12).
Related dynamic analysis is also described in Chapter 12. The other important al-
ternative, inspection, is described in Chapter 14, where a brief description of related
static analysis techniques is also included.

0 Defect containment through fault tolerance, failure prevention, or failure impact min-
imization, to assure software reliability and safety. The detailed description of these
specific techniques and related activities is given in Chapter 16.

Existing software quality literature generally covers defect reduction techniques such
as testing and inspection in more details than defect prevention activities, while largely
ignore the role of defect containment in QA. This chapter brings together information from
diverse sources to offer a common starting point and information base for software quality
professionals and software engineering students. Follow-up chapters describe each specific
alternative in much more detail and offer a comprehensive coverage of important techniques
for QA as well as integration of QA activities into the overall software development and
maintenance process.

Problems

3.1 What is quality assurance?

3.2 What are the different types of QA activities? Do you know any classification other
than the one described in this chapter based on how they deal with defects?

3.3 For the product your are working on, which QA strategy is used? What other QA
strategies and techniques might be applicable or effective?

3.4 Can you use the QA strategies and techniques described in this chapter to deal with
other problems, not necessarily defect-related problems, such as usability, performance,
modifiability? In addition, can you generalize the QA activities described in this chapter to
deal with defects related to things other than software?

3.5 Formal methods are related to both defect prevention and defect detectionhemoval.
Can you think of other QA activities that cut across multiple categories in our classification
of QA activities into defect prevention, reduction, and containment.

3.6 What are the similarities and differences between items in the following pairs:
a) software testing and hardware testing
b) software inspection and inspection of other things (for example, car inspection,

c) quality assurance and safety assurance
house inspection, inspection for weapons-of-mass-destruction)

This Page Intentionally Left Blank

CHAPTER 4

QUALITY ASSURANCE IN CONTEXT

With the interpretation of quality assurance (QA) as dealing with defects adopted in the
previous chapter, we implicitly assumed that all discovered defects will be resolved within
the software development process before product release. In this chapter, we describe
defect handling during the execution of specific QA activities and examine how different
QA activities fit into different software processes. In addition, we also examine the QA
activities from the perspective of verification and validation (V&V), and try to reconcile
this V&V view with our view of QA as different ways of dealing with defects.

4.1 HANDLING DISCOVERED DEFECT DURING QA ACTIVITIES

An important part of the normal execution of various QA activities is dealing with the
discovered problems, or handling defect. At the minimum, each discovered defect needs
to be resolved. To ensure its resolution, some records must be kept and tracked. The exact
way used to handle defects is also influenced by the specific QA activities that led to their
initial discovery, the project environment, and other factors.

Defect handling and related activities

The most important activity associated with defect handling is defect resolution, which
ensures that each discovered defect is corrected or taken care of through appropriate actions.
Each corrected or fixed defect needs to be re-verified to ensure failure-free executions under
the same execution conditions.

41

42 QUALITY ASSURANCE IN CONTEXT

In the case that a discovered defect is not corrected, all the parties involved must agree on
the specific decisions or actions. For example, if a defect from testing is later re-classified
as not to be a defect, a justification needs to be given and the decision agreed upon by the
person who did the re-classification, the tester who reported it in the first place, and all other
people involved. Similarly, if a defect is deferred because it is considered to be a minor
problem that can be fixed in a future release, everyone involved must agree to this decision,
and appropriate planning for future actions is needed. In addition to the planned future fix,
other actions that need to be planned include relevant product support activities to deal with
the possible problems.

To support defect resolution, two other important activities associated with defect han-
dling are also needed:

Defect logging, or the initial reporting and recording of a discovered defect. This
ensures that a record will be kept for every discovered defect.

Defect tracking, which monitors and records what happened to each defect after its
initial discovery, up until its final resolution.

Various specific information about the discovered defects can be recorded and updated
through the defect handling process. Details about such information and its usage in quality
assessment and improvement are included in Chapter 20. To ensure proper collection and
usage of defect data, we need to pay special attention to the following in the defect discovery
and resolution activities:

Consistent defect interpretation and tracking: We need to distinguish execution fail-
ures, internal faults, and human errors. The specific problems need to be counted and
tracked consistently.

Emely defect reporting: Because defect measurements are used to monitor and con-
trol software projects, we must ensure timely defect reporting to keep the information
current.

Defect handling process and tools

Defect handling is an important part of QA that involves multiple parties. For example,
during testing, the developers who fix discovered defects are typically not the same as the
testers who observed and reported the problems in the first place. The exception is unit
testing, which is usually carried out parallel to coding by the same person. However, most
defects from unit testing are not formally tracked because they are considered as part of the
implementation activities.

In many organizations, defect handling is implicitly assumed to be part of the project
management activities, which is handled in similar ways as configuration management.
A formalized defect handling process highlights important activities and associated rules,
parties involved, and their responsibilities. It is typically defined by the different states asso-
ciated with individual defect status and transitions among these states due to status changes.
Such status changes follow certain rules defined by project management. For example, a
newly reported defect has the “new” status, which may go through various different status
changes, such as “working”, “re-verify”, etc., until it is “closed”. Different defect handling
processes may include different collections of defect status and other possible attributes.

The implementation of the defect handling process and enforcement of various related
rules typically need the support of software tools, commonly referred to as defect tracking

QA ACTIVITIES IN SOFTWARE PROCESSES 43

tools or defect handling tools. For example, during the testing of various large software
systems in IBM, two defect tracking tools CMVC, an IBM product for configuration man-
agement and version control, and IDSS, an IBM internal tool, were used for defect tracking
(Tian et al., 1997). Similarly, in many organizations, various software project management
tools are also used for version control and defect tracking. The same trend is also carried
over to the open source world. According to some recent studies (Zhao and Elbaum, 2003;
Koru and Tian, 2004), tools such as Bugzilla (online at www . bugzilla . org) and Issuezilla
(online at www . issuezilla . org) are typically employed to handling defects for medium
and large open source projects.

Defect handling in different QA activities

Defect handling is normally implicitly assumed but not emphasized in various QA activities.
For example, during testing, we typically assume that discovered defects will be fixed, re-
verified, and eventually closed. However, we often do not treat this as part of the testing
activities but as something carried out parallel to testing, because defect fixing is typically
done by developers or “code owners” instead of testers.

Among the three classes of the QA activities described in Chapter 3, defect detection
and removal activities, such as testing and inspection, are more closely associated with
defect handling. For example, the inspector of a program may make an initial note about a
possible problem in the program code. When it is confirmed during the inspection meeting,
it is formally recorded as a defect, which needs to be fixed and re-verified later in the later
stages of the inspection process.

On the other hand, various defect prevention activities do not directly deal with defects
or the discovered faults, but rather deal with various ways to prevent the injection of faults
into the software systems. Consequently, there are little or no discovered faults during these
QA activities. As a result, defect handling is not closely associated with defect prevention.

In defect containment activities, the focus is not on the discovery of underlying faults that
cause failures and possible accidents. In fact, in these techniques, such as fault tolerance,
faults are not typically identified, while their dynamic impact was tolerated or corrected.
Consequently, there are little or no discovered faults. As a result, defect handling is not
closely associated with failure prevention and containment activities either.

4.2 QA ACTIVITIES IN SOFTWARE PROCESSES

QA activities form an integral part of the overall software process. We next examine the
different ways that software QA activities can be carried out and integrated into different
types of software development and maintenance processes.

QA in software development and maintenance processes

In the software maintenance process, the focus of QA is on defect handling, to make sure that
each problem reported by customers from field operations is logged, analyzed, and resolved,
and a complete tracking record is kept so that we can learn from past problems for future
quality improvement. In addition, such defect information can be used as additional input
in planning for future releases of the same product or for replacement products. Among the
different QA activities, defect containment activities play an important role in post-release
product operations and maintenance support. For example, fault tolerance using recovery

44 QUALITY ASSURANCE IN CONTEXT

blocks can keep systems operational even in face of problems caused by environmental
disturbances. However, repeated use of recovery blocks for the same situations may be an
indication of software problems instead of environments1 rlist~~rhances as the primary cause
of some dynamic problems. Therefore, the systems need to be taken off-line and fixed in
order for recovery blocks to work consistently in the future. Even for these techniques, most
of the implementation activities need to be carried out during software development, not
after product release, similar to the implementation of other product functions or features.

Most of the core QA activities, including defect prevention and defect reduction, are
performed during software development instead of during in-field software support after
product release. Therefore, we focus on the software development processes in our ex-
amination of how different QA activities fit into software processes. In what follows, we
examine different QA activities in the general context of several commonly used software
development processes, including waterfall, spiral, incremental and iterative development
processes. We first examine the process characteristics and the organization of different de-
velopment activities, and then relate these activities in the process to specific QA activities.

Q A in the waterfall process

In the most commonly used waterfall process for many large software projects, develop-
ment activities are typically grouped into different sequential stages to form a waterfall,
although overlaps are common among successive pairs of stages (Zelkowitz, 1988). A
typical sequence includes, in chronological order: product planning, requirement analysis,
specification, design, coding, testing, release, and post-release product support. As a cen-
tral part of QA activities, testing is an integral part of the waterfall development process,
forming an important link in the overall development chain. Other QA activities, although
not explicitly stated in the process description, can be carried out throughout other phases
and in the transition from one phase to another. For example, part of the criteria to move
on from each phase to the next is quality, typically in the form of checking to see if certain
quality plans or standards have been completed or followed, as demonstrated by the results
from various forms or reviews or inspections.

Various defect prevention activities are typically concentrated in the earlier phases of
software development, before actual faults have been injected into the software systems.
There are several important reasons for this focus on early development phases:

0 The error sources are typically associated with activities in these early phases, such as
conceptual mistakes by designers and programmers, unfamiliarity with the product
domain, inexperience with the specific development methodologies, etc. Therefore,
error source removal, a primary method of defect preventions, is closely associated
with these early development phases.

0 Although some faults could be injected into the software systems during testing
and other late development phases, the experience tells us that the vast majority of
faults are injected in the early development phases, particularly in detailed design
and implementation phases. Therefore, effective defect prevention through error
blocking needs to be carried out during these phases.

Because of the possibilities of defect propagations and the increasing cost over time or
successive development phases to fix defects once they are injected into the system, we need
to reduce the number of faults in software systems by the combination of defect prevention
and application of QA techniques that can help remove software faults early. Some defect

QA ACTIVITIES IN SOFTWARE PROCESSES 45

I Reauirement 1 fl

/*' Quality gates:
,/ Inspection. review, etc.

Focuson '\.,
defect prevention ' . .

Other QA activities
and focus areas

.-. . - - - - - I.

Focuson *. * *

defect containment
..'

Figure 4.1 QA activities in the waterfall process

detection and removal techniques, such as inspection, can be applied to early phases, such as
inspecting requirement documents, product specifications, and different levels of product
designs. On the other hand, there are practical obstacles to the early fixing of injected
defects. For example, dynamic problems may only become apparent during execution; and
inter-dependency only becomes apparent with the implementation of related components
or modules. Because of these reasons, other fault detection and removal activities, such as
testing, are typically concentrated in the middle to late phases of software development.

Finally, failure prevention and containment activities, such as fault tolerance and safety
assurance, are typically the focus of operational phases. However, their planning, design,
and implementation need to be carried out throughout the software development process.
In some sense, they are equivalent to adding some necessary functions or features into the
existing product to make them safe or fault tolerant.

Figure 4.1 illustrate how the different QA activities fit into the waterfall process. Three
key characteristics of this activity distribution are illustrated:

0 The phase with QA as the focus: Testing phase.

0 QA activities, typically inspections and reviews, carried out at the transitions from
one phase to the next are shown as barriers or gates to pass. The exception to
this is between testing and release, where the reviews are typically accompanied by
acceptance testing.

0 Other QA activities scatter over all other development phases: The general distribu-
tion scope is shown by the dotted bracket, with a focus on defect prevention in the
early phases, a focus on defect removal during coding and testing phases, and a focus
on defect containment in operational support.

46 QUALITY ASSURANCE I N CONTEXT

QA in other software processes

In incremental and iterative processes, the overall process can be viewed as consisting of
several increments or iterations, with each of them following more or less the same mini-
stages corresponding to those in the waterfall process. What is more, at the end of each
increment or each iteration, the newly developed part needs to be integrated into the existing
part. Therefore, integration testing plays a very important role, to make sure that different
parts can inter-operate seamlessly to fulfill the intended functionalities correctly together.

The QA activities performed in the spiral process are similar to those performed in
incremental and iterative processes. The minor difference is typically in the risk focus
adopted in spiral process, where risk identification and analysis play an important role on
the decision as to which part to work on next in the subsequent spiral iteration. This risk
focus leads naturally to selective QA with a non-uniform effort applied to different parts
of the software systems, with high-risk parts receiving more attention than other parts. In
terms of testing techniques, usage-based statistical testing according to user operational
profiles may fit this process better than other testing techniques.

The agile development method and extreme programming that have become popular
recently, especially in the Internet-based and open-source development projects, can be
treated as special cases of incremental, iterative, or spiral process models where many of
their elements are used or adapted. In fact, QA activities, particularly testing and inspection,
play an even more important role than in the traditional software development processes. For
example, test-driven development is an integral part of extreme programming (Beck, 2003),
and inspection in the form of two person inspection, or programmer pairs, is extensively
used (Beck, 1999).

The details about the application of different QA activities and related techniques to
different software processes, phases, and activities will be covered when we describe each
specific QA technique in Part I1 and Part 111.

4.3 VERIFICATION AND VALIDATION PERSPECTIVES

As described in Chapter 1, the basic quality expectations of a user are that a software
performs the right functions as specified, and performs these specified functions correctly
over repeated use or over a long period of time. The related QA activities to ensure that
the right functions are performed are typically grouped as validation activities; while the
ones to ensure the correct or reliable performance of these specified functions are typically
grouped as verification activities. The QA activity classification we used in Chapter 3 can
be mapped into this binary partition of validation and verification activities using the related
defects as the middle link between the two classification schemes.

Validation, failures, and QA activities

Validation activities check whether a function needed and expected by the customers is
present in a software product. An absence of an expected function or feature is clearly
linked to a deviation of expected behavior, or linked to a software failure. However, this is
a special sub-class of failures, where an expected function is absent. By extension, when
an unexpected function is present, it can be considered as a failure of this kind as well,
because a customer is not likely willing to pay for something not needed. Even if it is
free, the customer might be worried about possible interference with other critical needs.
Therefore, various QA activities linked with such kind of failures directly observable by

VERIFICATION AND VALIDATION PERSPECTIVES 47

software users can be viewed as validation activities. Examples of QA activities that can
be classified as validation activities include:

0 System testing, where the focus is the overall set of system functions to be provided
to users;

0 Acceptance testing and beta testing, where the focus is the assessment of software
acceptance or performance by users;

0 Usage-based statistical testing, where the operational environment by target users is
simulated during software testing before product release;

0 Software fault tolerance, which focuses on providing continued service expected by
customers even when local problems exist;

0 Software safety assurance activities, which focus on providing the expected accident-
free operations or reducing accident damage when an accident is unavoidable.

Even in the case where a specific software QA activity is not directly dealing with the
above type of failures, if the intention is to detect or prevent faults that are linked to such
failures, the specific activity in question can also be classified as a validation activity. For
example, in inspections based on usage scenarios, faults that are likely to lead to failures
under usage scenarios by target customers are the focus of the inspect effort. Therefore, this
specific inspection activity can be viewed as a validation activity. In addition, if a preventive
action is aimed at preventing specific problems for specific operational environments by
customers, it can be classified as a validation activity as well.

Verification, conformance, and QA activities

Software verification activities check the conformance of a software system to its specifi-
cations. In performing verification activities, we assume that we have a well defined set of
specifications. A deviation from the specification is either a fault or a failure, depending
on whether the behavior is specified or other software related entities are specific, such as
through coding standards, design patterns, etc.

When failures are involved in verification activities, we are typically dealing with inter-
nal system failures and overall system failures in the form of incorrect behavior, instead of
the evidence of presence or absence of certain functions or feature directly observable by
customers. For example, checking how one component works with another component is
a verification activities, because it tries to eliminate internal failures related to interoper-
ability among internal components, while customers only care if the overall functions are
implemented and implemented correctly.

When a function or feature expected by the customers is present, the activity to determine
whether it performs or behaves expectedly is then a verification activity. Therefore, con-
nected to validation activities, there are almost always accompanying verification activities
as well. In the above examples of various forms of testing as primarily validation activities,
they all include corresponding verification components. They are also used to verify the
correct implementation of various functions visible to customers. The testing environment
for these activities needs to be similar to that will be subjected to by the product after it is
purchased by the customers and put into operational use.

When we are checking non-behavioral specifications, non-conformance indicates the
presence of faults or errors. For example, a wrong algorithm or an inappropriate data

48 QUALITY ASSURANCE IN CONTEXT

structure is used, some coding standard is violated, etc. These problems are typically
associated with various types of software faults. These faults, when triggered, may cause
system failures. Similarly, not following prescribed processes or selected methodologies,
or misunderstanding of needed algorithms and data structures, is associated with errors or
error sources that cause injection of faults. Therefore, all the QA activities we classified as
dealing directly with faults, errors, or error sources can be classified as verification activities.

Verification and validation in software processes

QA activities can also be classified by the binary grouping of verification vs. validation ac-
tivities. Validation checks the conformance to quality expectations of customers and users
in the form of whether the expected functions or features are present or not. On the other
hand, verification checks the conformance of software product implementation against its
specifications to see if it is implemented correctly. Therefore, validation deals directly
with users and their requirements; while verification deals with internal product specifica-
tions. In the software development process perspective, different processes may involve
customers and users in different ways. Therefore, verification and validation activities may
be distributed in these different processes differently.

In the waterfall process, direct involvement of users and user requirement is at the very
beginning and the very end of the development process. These phases include project
planning, market analysis, requirement analysis, specification, acceptance testing, product
release, and post-release product support and maintenance. Therefore, these are the phases
where validation activities may be the focus. For example, overall product specifications
need to be validated through inspections or reviews to make sure they conform to customer
requirements. Various user-oriented testing, such as system, integration, and acceptance
testing focus on the validation of user requirement in the form of checking if the functions
and features expected by users are present in the software product scheduled to be delivered.
Similarly, beta testing and operational support make sure the software product is validated,
that is, it is doing what it is supposed to do under the application environment of the target
customers.

On the other hand, many development activities in the middle part of the waterfall pro-
cess do not involve customers and users directly. A set of internal specifications needs to
be followed or other rules or criteria need to be satisfied. For example, the product designs
must satisfy the product specifications; lower-level designs must conform to the constraints
imposed by the high-level designs; and the final product implementation must follow the de-
sign decisions made earlier. The satisfactory conformance of these specifications, designs,
and rules is the focus of various verification activities. For example, through inspections
of design documents, satisfaction of design constraints and product specifications can be
verified. Program correctness with respect to its formal specifications can be formally ver-
ified using various formal verification techniques. Unit and component testing can be used
to verify the unit or the component against its specifications in the form of detailed designs
for them.

These verification and validation activities can be best illustrated by the V-model in
Figure4.2, a variation of the waterfall process model where the different development phases
are presented in a V-shaped graph, relating specific verification or validation activities to
their corresponding requirements or specifications. For example, customer requirements
are validated by operational use; while product specification, high-level design, and low-
level design are verijied by system test, integration test, and component test, respectively. In

RECONCILING THE TWO VIEWS 49

'- - - -. Coding &
unit test

Figure 4.2 Verification and validation activities associated with the V-Model

addition, system test also validates the product by focusing on how the overall operations
under an environment that resembles that for target customers. In a sense, the users'
operational environment is captured as part of the product specification or as part of the
testing model. At the bottom, coding and unit testing are typically grouped in a single phase,
where the code itself specifies the expected behavior and needs to be verified through unit
test. Sometimes, various other QA activities, such as inspections, reviews, walkthroughs,
analyses, formal verification, etc., are also associated with the left arm of the V-model and
illustrated by additional dotted lines pointed to the specific phases.

Similar to the mapping of QA activities to other process models above, validation and
verification activities can be mapped into non-sequential processes such as incremental,
iterative, spiral, and extreme programming processes. Typically, there is some level of user
involvement in each part or iteration. Therefore, validation plays a more important role in
these processes than in the waterfall process or the V-model.

4.4 RECONCILING THE TWO VIEWS

The above descriptions of verification and validation activities included examples of specific
QA activities. These specific QA activities were also classified using our scheme according
to the generic ways of dealing with defects. Through this connection and the inter-relations
represented therein, we can establish the relationship and the mapping between the veri-
fication and validation (V&V) view on the one hand and our defect-centered (DC) view
and classification on the other hand. In addition, we can use the process information as
presented in Figure 4.1, Figure 4.2, and related discussions to help us with this mapping,
as discussed below.

50 QUALITY ASSURANCE IN CONTEXT

As described in Section 4.3 and illustrated in Figure 4.2, most QA activities carried
within the software development process can be classified as verification activities, while
only those directly dealing with user requirements, typically near the very beginning or the
very end of software development process, are associated with validation activities. On the
other hand, as described in Section 4.2 and illustrated in Figure 4.1, various defect prevention
activities are typically concentrated in the earlier phases of software development; defect
reduction is typically concentrated in the middle to late phases of software development;
while defect containment activities are typically the focus of operational phases, with its
planning, design, and implementation carried out earlier during software development.

Based on this comparison, we could draw some tentative connections to link verification
with defect reduction activities, and validation with defect prevention and defect tolerance.
However, there are complications and adjustments due to the following:

Many specific QA activities deal with both the verification and the validation aspects.
For example, different types of testing in the V-model in Figure 4.2 can be classified
either as verification test or validation test or contain both elements: The focus of the
acceptance test is clearly validation, while that for unit test is verification, however,
system test contains both the verification and validation components.

The situation with inspection as an important defect reduction activity is similar to
testing above. However, due to the absence of execution and direct observations of
failures, inspection is more closely connected to verification than to validation. For
example, most of the inspection activities are performed on software code or design,
which are classical verification activities. The less used requirement inspections and
usage scenarios based inspections are closer to validation.

Defect prevention deals with error source elimination and error blocking, while both
verification and validation deal with failures and faults. Therefore, there is no direct
connection between defect prevention and the V&V view of QA activities, but only
indirectly through the target of preventive actions. For example, if the target is
eliminating ambiguity in the requirement or the product domain knowledge, it is
indirectly connected to validation. If the target is to block syntactic faults or other
faults due to the proper selection and usage of processes, methodologies, technologies,
or tools, it is indirectly connected to verification.

0 Closely related to both defect prevention and formalized inspection is the use of for-
mal method as a QA activity. The formal specification part is close to validation,
but indirectly, much like the defect prevention activities above. The formal verifica-
tion part naturally falls into verification activities, verifying the program or design
correctness with respect to its formal specifications.

Defect containment activities, such as through fault tolerance and safety assurance,
are more closely related to validation activities than verification due to their focus
on avoiding global failures or minimizing failure damages under actual operational
environments. However, when such defect containment features are specific for a
software system or an embedded system, the conformance to this part of the spec-
ification can be treated much the same as other verification activities to check the
general conformance to specifications.

This relationship between the two views can be summarized in Table 4.1, for each
of the DC view categories and related major QA activities, we point out whether it is

CONCLUDING REMARKS 51

Table 4.1
validation (VSrV) view

QA activities: Mapping from defect-centered (DC) view to verification and

DC-view class Major QA activity V&V view

Defect prevention both, mostly indirectly
requirement-related validation, indirectly
other defect prevention verification, indirectly
formal specification validation, indirectly
formal verification verification

Defect reduction both, but mostly verification
testing, unit & component verification
testing, integration both, more verification
testing, system both
testing, acceptance both, more validation
testing, beta validation
inspection, req. & scenario validation
inspection, all other verification
analyses, etc. both, but mostly verification

Defect containment both, but mostly validation
operation validation
design and implementation both, but mostly verification

related to verification, validation, or both, directly (unless specified otherwise) or indirectly.
Therefore, we can follow the three-part classification outlined in Chapter 3 without losing
the general perspectives of validation and verification.

4.5 CONCLUDING REMARKS

To summarize, defect handling is an integral part of QA activities, and different QA alter-
natives and related activities can be viewed as a concerted effort to ensure software quality.
These activities can be integrated into software development and maintenance processes as
an integral part of the overall process activities, typically in the following fashion:

0 Testing is an integral part of any development process, forming an important link in
the overall development chain.

Quality reviews or inspections often accompany the transition from one phase or
development activity to another.

0 Various defect prevention activities are typically carried out in the early stages.

Defect containment activities typically focus on the later, operational part of the
development process, although their planning and implementation need to be carried
out throughout the development process.

These QA activities can also be partitioned into verification and validation (V&V) ac-
tivities using a bi-partite classification scheme in the so-called V&V view. Similarly, they

52 QUALITY ASSURANCE IN CONTEXT

can be partitioned by the generic way they employ to deal with errors, faults, or failures
as different defect-centered (DC) activities using our tri-partite classification scheme in the
so-call DC view. Both views and both classification schemes have their useful purposes
and implications. Our tri-partite classification provides a balanced and systematic scheme
to organize and classify existing software QA activities. It can also be easily mapped to the
commonly used bi-partite scheme of validation and verification activities. Consequently, we
will follow this classification in the rest of the book without losing the generality associated
with the other commonly used views of QA activities.

Problems

4.1 Why is defect tracking and defect handling important in quality assurance?

4.2 In your project, do you have a defined defect handling process? If so, describe the
process and compare it with the generic description in this chapter. If not, can you design
one?

4.3 Define the different defect status and draw a chardgraph to depict the allowable defect
status changes based on your knowledge of your actual defect handling process. You may
use a hypothetical project and its defect handling process to complete this exercise if you are
not working on a project or if your project does not have a defined defect handling process.

4.4 What measurements can be taken during QA activities?

4.5 Document the different QA activities and their organizatiodgrouping in your de-
velopment or maintenance process and compare them to the generic ones descried in this
chapter.

4.6
zation performing more verification, more validation, or both equally?

What is verification and validation? How do they relate to defects? Is your organi-

CHAPTER 5

QUALITY ENGlN EERl NG

In this chapter, we enlarge the scope of our discussion to include other major activities
associated with quality assurance (QA) for software systems, primarily in the areas of
setting quality goals, planning for QA, monitoring QA activities, and providing feedback
for project management and quality improvement.

5.1 QUALITY ENGINEERING: ACTIVITIES AND PROCESS

As stated in Chapter 2, different customers and users have different quality expectations
under different market environments. Therefore, we need to move beyond just performing
QA activities toward quality engineering by managing these quality expectations as an
engineering problem: Our goal is to meet or exceed these quality expectations through the
selection and execution of appropriate QA activities while minimizing the cost and other
project risks under the project constraints.

In order to ensure that these quality goals are met through the selected QA activities,
various measurements need to be taken parallel to the QA activities themselves. Post-
mortem data often need to be collected as well. Both in-process and post-mortem data need
to be analyzed using various models to provide an objective quality assessment. Such quality
assessments not only help us determine if the preset quality goals have been achieved, but
also provide us with information to improve the overall product quality.

To summarize, there are three major groups of activities in the quality engineering
process, as depicted in Figure 5.1. They are labeled in roughly chronological order as
pre-QA activities, in-QA activities, and post-QA activities:

53

54 QUALITY ENGINEERING

Exit
Assurance 1

Measurements

measurements

I Improvement I

Figure 5.1 Quality engineering process

1. Pre-QA activities: Quality planning. These are the activities that should be carried
out before carrying out the regular QA activities. There are two major types of pre-QA
activities in quality planning, including:

(a) Set specific quality goals.

(b) Form an overall QA strategy, which includes two sub-activities:

i. Select appropriate QA activities to perform.

ii. Choose appropriate quality measurements and models to provide feedback,
quality assessment and improvement.

A detailed description of these pre-QA activities is presented in Section 5.2.

2. In-QA activities: Executing planned QA activities and handling discovered defects.
In addition to performing selected QA activities, an important part of this normal
execution is to deal with the discovered problems. These activities were described in
the previous two chapters.

3. Post-QA activities: Quality measurement, assessment and improvement These are
the activities that are carried out after normal QA activities have started but not as
part of these normal activities. The primary purpose of these activities is to provide
quality assessment and feedback so that various management decisions can be made
and possible quality improvement initiatives can be carried out. These activities are
described in Section 5.3.

Notice here that “post-QA”does not mean after the finish of QA activities. In fact, many
of the measurement and analysis activities are carried out parallel to QA activities after they
are started. In addition, pre-QA activities may overlap with the normal QA activities as
well.

Pre-QA quality planning activities play a leading role in this quality engineering process,
although the execution of selected QA activities usually consumes the most resources.
Quality goals need to be set so that we can manage the QA activities and stop them when
the quality goals are met. QA strategies need to be selected, before we can carry out specific
QA activities, collect data, perform analysis, and provide feedback.

QUALITY ENGINEERING: ACTIVITIES AND PROCESS 55

There are two kinds of feedback in this quality engineering process, both the short term
direct feedback to the QA activities and the long-term feedback to the overall quality engi-
neering process. The short term feedback to QA activities typically provides information
for progress tracking, activity scheduling, and identification of areas that need special at-
tentions. For example, various models and tools were used to provide test effort tracking,
reliability monitoring, and identification of low-reliability areas for various software prod-
ucts developed in the IBM Software Solutions Toronto Lab to manage their testing process
(Tian, 1996).

The long-term feedback to the overall quality engineering process comes in two forms:

0 Feedback to quality planning so that necessary adjustment can be made to quality
goals and QA strategies. For example, if the current quality goals are unachievable,
alternative goals need to be negotiated. If the selected QA strategy is inappropriate, a
new or modified strategy needs to be selected. Similarly, such adjustments may also
be applied to future projects instead of the current project.

0 Feedback to the quality assessment and improvement activities. For example, the
modeling results may be highly unstable, which may well be an indication of the
model inappropriateness. In this case, new or modified models need to be used,
probably on screened or pre-processed data.

Quality engineering and QIP

In the TAME project and related work (Basili and Rombach, 1988; Oivo and Basili, 1992;
Basili, 1995; van Solingen and Berghout, 1999), quality improvement was achieved through
measurement, analysis, feedback, and organizational support. The overall framework is
called QIP, or quality improvement paradigm. QIP includes three interconnected steps:
understanding, assessing, and packaging, which form a feedback and improvement loop,
as briefly described below:

1. The first step is to understand the baseline so that improvement opportunities can
be identified and clear, measurable goals can be set. All future process changes are
measured against this baseline.

2. The second step is to introduce process changes through experiments, pilot projects,
assess their impact, and fine tune these process changes.

3. The last step is to package baseline data, experiment results, local experience, and
updated process as the way to infuse the findings of the improvement program into
the development organization.

QIP and related work on measurement selection and organizational support are described
further in connection to defect prevention in Chapter 13 and in connection to quality as-
sessment and improvement in Part IV.

Our approach to quality engineering can be considered as an adaptation of QIP to assure
and measure quality, and to manage quality expectations of target customers. Some specific
correspondences are noted below:

0 Our pre-QA activities roughly correspond to the understand step in QIP.

The execution of our selected QA strategies correspond to the “changes” introduced
in the assess step in QIP. However, we are focusing on the execution of normal QA

56 QUALITY ENGINEERING

activities and the related measurement activities selected previously in our planning
step, instead of specific changes.

Our analysis and feedback (or post-QA) activities overlap with both the assess and
package steps in QIP, with the analysis part roughly corresponding to the QIP-assess
step and the longer term feedback roughly corresponding to the QIP-package step.

5.2 QUALITY PLANNING: GOAL SETTING AND STRATEGY FORMATION

As mentioned above, pre-QA quality planning includes setting quality goals and forming a
QA strategy. The general steps include:

1. Setting quality goals by matching customer’s quality expectations with what can be
economically achieved by the software development organizations in the following
sub-steps:

(a) Identify quality views and attributes meaningful to target customers and users.

(b) Select direct quality measures that can be used to measure the selected quality

(c) Quantify these quality measures to set quality goals while considering the mar-

attributes from customer’s perspective.

ket environment and the cost of achieving different quality goals.

2. In forming a QA strategy, we need to plan for its two basic elements:

(a) Map the above quality views, attributes, and quantitative goals to select a specific
set of QA alternatives.

(b) Map the above external direct quality measures into internal indirect ones via
selected quality models. This step selects indirect quality measures as well as
usable models for quality assessment and analysis.

We next examine these steps and associated pre-QA activities in detail.

Setting quality goals

One important fact in managing customer’s quality expectations is that different quality at-
tributes may have different levels of importance to different customers and users. Relevant
quality views and attributes need to be identified first. For example, reliability is typically
the primary concern for various business and commercial software systems because of peo-
ple’s reliance on such systems and the substantial financial loss if they are malfunctioning.
Similarly, if a software is used in various real-time control situations, such as air traffic
control software and embedded software in automobile, medical devices, etc., accidents
due to failures may be catastrophic. Therefore, safety is the major concern. On the other
hand, for mass market software packages, such as various auxiliary utilities for personal
computers, usability, instead of reliability or safety, is the primary concern.

Even in the narrower interpretation of quality we adopted in this book to be the correctness-
centered quality attributes associated with errors, faults, failures, and accidents, there are
different types of problems and defects that may mean different things to different customers.
For example, for a software product that is intended for diverse operational environments,
inter-operability problems may be a major concern to its customers and users; while the

QUALITY PLANNING: GOAL SETTING AND STRATEGY FORMATION 57

same problems may not be a major concern for software products with a standard opera-
tional environment. Therefore, specific quality expectations by the customers require us
to identify relevant quality views and attributes prior to setting appropriate quality goals.
This needs to be done in close consultation with the customers and users, or those who
represents their interests, such as requirement analysts, marketing personnel, etc.

Once we obtained qualitative knowledge about customers’ quality expectations, we need
to quantify these quality expectations to set appropriate quality goals in two steps:

1. We need to select or dejne the quality measurements and models commonly ac-
cepted by the customers and in the software engineering community. For example,
as pointed out in Chapter 2, reliability and safety are examples of correctness-centered
quality measures that are meaningful to customers and users, which can be related
to various internal measures of faults commonly used within software development
organizations.

2. We need tofind out the expected values or ranges of the corresponding quality mea-
surements. For example, different market segments might have different reliability
expectations. Such quality expectations are also influenced by the general market
conditions and competitive pressure.

Software vendors not only compete on quality alone, but also on cost, schedule, inno-
vation, flexibility, overall user experience, and other features and properties as well. Zero
defect is not an achievable goal under most circumstances, and should not be the goal.
Instead, zero defection and positive flow of new customers and users based on quality
expectation management should be a goal (Reichheld Jr. and Sasser, 1990). In a sense,
this activity determines to a large extent the product positioning vs. competitors in the
marketplace and potential customers and users.

Another practical concern with the proper setting of quality goals is the cost associated
with different levels of quality. This cost can be divided into two major components, the
failure cost and the development cost. The customers typically care more about the total
failure cost, C f , which can be estimated by the average single failure cost, c f , and failure
probability, p f , over a pre-defined duration of operation as:

Cf = C f x p f .

As we will see later in Chapter 22, this failure probability can be expressed in terms of
reliability, R, as p f = 1 - R, where R is defined to be the probability of failure-free
operations for a specific period of given set of input.

To minimize C f , one can either try to minimize c f or p f . However, c f is typically
determined by the nature of software applications and the overall environment the software
is used in. Consequently, not much can be done about c f reduction without incurring
substantial amount of other cost. One exception to this is in the safety critical systems,
where much additional cost was incurred to establish barriers and containment in order
to reduce failure impact, as described in Chapter 16. On the other hand, minimizing p f ,
or improving reliability, typically requires additional development cost, in the form of
additional testing time, use of additional QA techniques, etc.

Therefore, an engineering decision need to be made to match the quantified customer’s
quality expectations above with their willingness to pay for the quality. Such quantitative
cost-of-quality analyses should help us reach a set of quality goals.

58 QUALITY ENGINEERING

Forming a QA strategy

Once specific quality goals were set, we can select appropriate QA alternatives as part of a
QA strategy to achieve these goals. Several important factors need to be considered:

The injuence of qualityperspectives and attributes: For different kinds of customers,
users, and market segments, different QA alternatives might be appropriate, because
they focus on the assurance of quality attributes based on this specific perspective. For
example, various usability testing techniques may be useful for ensuring the usability
of a software product, but may not be effective for ensuring its functional correctness.

The injluence of different quality Levels: Quantitative quality levels as specified in the
quality goals may also affect the choice of appropriate QA techniques. For example,
systems with various software fault tolerance features may incur substantially more
additional cost than the ones without them. Therefore, they may be usable for highly
dependable systems or safety critical systems, where large business operations and
people’s lives may depend on the correct operations of software systems, but may
not be suitable for less critical software systems that only provide non-essential in-
formation to the users.

Notice that in dealing with both of the above factors, we assume that there is a certain
relationship between these factors and specific QA alternatives. Therefore, specific QA al-
ternatives need to be selected to fulfill specific quality goals based on the quality perspectives
and attributes of concern to the customers and users.

Implicitly assumed in this selection process is a good understanding of the advantages
and disadvantages of different QA alternatives under different application environments.
These comparative advantages and disadvantages are the other factors that also need to
be considered in selecting different QA afternatives and related techniques and activities.
These factors include cost, applicability to different environments, effectiveness in dealing
with different kinds of problems, etc. discussed in Chapter 17.

In order to achieve the quality goals, we also need to know where we are and how far
away we are from the preset quality goals. To gain this knowledge, objective assessment
using some quality models on collected data from the QA activities is necessary. As we
will discuss in more detail in Chapter 18, there are direct quality measures and indirect
quality measures. The direct quality measures need to be defined as part of the activities to
set quality goals, when such goals are quantified.

Under many situations, direct quality measures cannot be obtained until it is already too
late. For example, for safety critical systems, post-accident measurements provide a direct
measure of safety. But due to the enormous damage associated with such accidents, we
are trying to do everything to avoid such accidents. To control and monitor these safety
assurance activities, various indirect measurements and indicators can be used. For all
software systems there is also an increasing cost of fixing problems late instead of doing
so early in general, because a hidden problem may lead to other related problems, and the
longer it stays undiscovered in the system, the further removed it is from its root causes,
thus making the discovery of it even more difficult. Therefore, there is a strong incentive
for early indicators of quality that usually measure quality indirectly.

Indirect quality measures are those which can be used in various quality models to assess
and predict quality, through their established relations to direct quality measures based on
historical data or data from other sources. Therefore, we also need to choose appropriate
measurements, both direct and indirect quality measurement, and models to provide quality

QUALITY ASSESSMENT AND IMPROVEMENT 59

assessment and feedback. The actual measurement and analysis activities and related usage
of analysis results are discussed in Chapter 18.

5.3 QUALITY ASSESSMENT AND IMPROVEMENT

Various parallel and post-QA activities are carried out to close the quality engineering loop.
The primary purpose of these activities is to provide quality assessment and feedback so that
various management decisions, such as product release, can be made and possible quality
and process improvement initiatives can be carried out. The major activities in this category
include:

0 Measurement: Besides defect measurements collected during defect handling, which
is typically carried out as part of the normal QA activities, various other measurements
are typically needed for us to track the QA activities as well as for project management
and various other purposes. These measurements provide the data input to subsequent
analysis and modeling activities that provide feedback and useful information to
manage software project and quality.

0 Analysis and modeling: These activities analyze measurement data from software
projects and fit them to analytical models that provide quantitative assessment of
selected quality characteristics or sub-characteristics. Such models can help us obtain
an objective assessment of the current product quality, accurate prediction of the future
quality, and some models can also help us identify problematic areas.

0 Providing feedback and identifying improvement potentials: Results from the above
analysis and modeling activities can provide feedback to the quality engineering pro-
cess to help us make project scheduling, resource allocation, and other management
decisions. When problematic areas are identified by related models, appropriate
remedial actions can be applied for quality and process improvement.

0 Follow-up activities: Besides the immediate use of analysis and modeling results
described above, various follow-up activities can be carried out to affect the long-
term quality and organizational performance. For example, if major changes are
suggested for the quality engineering process or the software development process,
they typically need to wait until the current process is finished to avoid unnecessary
disturbance and risk to the current project.

The details about these activities are described in Part IV.

5.4 QUALITY ENGINEERING IN SOFTWARE PROCESSES

The quality engineering process forms an integral part of the overall software engineering
process, where other concerns, such as cost and schedule, are also considered and managed.
As described in Chapter 4, individual QA activities can be carried out and integrated into
the software process. When we broaden our scope to quality engineering, it also covers pre-
QA quality planning as well as the post-QA measurement and analysis activities carried
out parallel to and after QA activities to provide feedback and other useful information.
All these activities and the quality engineering process can be integrated into the overall
software process as well, as described below.

60 QUALITY ENGINEERING

Activity distribution and integration

Pre-QA quality planning can be an integral part of any project planning. For example, in
the waterfall process, this is typically carried out in the phase for market analysis, require-
ment gathering, and product specification. Such activities also provide us with valuable
information about quality expectations by target customers and users in the specific market
segment a software vendor is prepared to compete in. Quality goals can be planned and set
accordingly. Project planning typically includes decisions on languages, tools, and tech-
nologies to be used for the intended software product. It should be expanded to include 1)
choices of specific QA strategies and 2) measurement and models to be used for monitoring
the project progress and for providing feedback.

In alternative software processes other than waterfall, such as in incremental, iterative,
spiral, and extreme programming processes, pre-QA activities play an even more active
role, because they are not only carried out at the beginning of the whole project, but also at
the beginning of each subpart or iteration due to the nature that each subpart includes more
or less all the elements in the waterfall phases. Therefore, we need to set specific quality
goals for each subpart, and choose appropriate QA activities, techniques, measurement, and
models for each subpart. The overall quality goal may evolve from these sub-goals in an
iterative fashion.

For normal project monitoring and management under any process, appropriate mea-
surement activities need to be carried out to collect or extract data from the software process
and related artifacts; analyses need to be performed on these data; and management decision
can be made accordingly. On the one hand, the measurement activity cannot be carried out
without the involvement of the software development team, either as part of the normal
defect handling and project tracking activities, or as added activity to provide specific input
to related analysis and modeling. Therefore, the measurement activities have to be handled
“on-line” during the software development process, with some additional activities in in-
formation or measurement extraction carried out after the data collection and recording are
completed.

On the other hand, much of the analysis and modeling activities could be done “off-line”,
to minimize the possible disruption or disturbance to the normal software development
process. However, timely feedback based on the results from such analyses and models is
needed to make adjustments to the QA and to the development activities. Consequently,
even such “off-line” activities need to be carried out in a timely fashion, but may be at a lower
frequency. For example, in the implementation of testing tracking, measurement, reliability
analysis, and feedback for IBM’s software products (Tian, 1996), dedicated quality analyst
performed such analyses and modeling and provided weekly feedback to the testing team,
while the data measurement and recording were carried out on a daily basis.

The specific analysis, feedback, and follow-up activities in the software quality engi-
neering process fit well into the normal software management activities. Therefore, they
can be considered as an integral part of software project management. Of course, the focus
of these quality engineering activities is on the quality management, as compared to the
overall project management that also includes managing project features, cost, schedule,
and so on.

The integration of the quality engineering process into the waterfall software develop-
ment process can be illustrated by Figure 5.2. The horizontal activities roughly illustrate the
timeline correspondence to software development activities. For example, quality planning
starts right at the start of the requirement analysis phase, followed by the execution of the
selected QA activities, and finally followed by the measurement and analysis activities.

QUALITY ENGINEERING IN SOFTWARE PROCESSES 61

Quality Planning:

Setting quality goals
Select quality assurance strategies

Making adjustments based on feedback

Quality Assurance: QA Phase: Testing

Quality gates: at phase transition pairs, e.g.. passing design reviews before coding

Other QA activities scattered over all phases, e.g. inspecting specs/desing/code/test cases

INPUT measurement from QA and development activities
OUTPUT quality assessment and other analysis results

Figure 5.2 Quality engineering in the waterfall process

All these activities typically last over the whole development process, with different sub-
activities carried out in different phases. This is particularly true for the QA activities, with
testing in the test phase, various reviews or inspections at the transition from one phase to
its successor phase, and other QA activities scattered over other phases.

Minor modifications are needed to integrate quality engineering activities into other
development processes. However, the distribution of these activities and related effort is by
no means uniform over the activities or over time, which is examined next.

Effort profile

Among the three major types of activities in the quality engineering process, the execution
of specific QA activities is central to dealing with defects and assuring quality for the
software products. Therefore, they should and normally do consume the most resources
in terms of human effort as well as utilization of computing and other related resources.
However, the effort distribution among the three is not constant over time because of the
process characteristics described above and the shifting focus over time. Some key factors
that affect and characterize the effort profile, or the effort distribution over time, include:

0 Quality planning drives and should precede the other two groups of activities. There-
fore, at the beginning part of product development, quality planning should be the
dominant part of quality engineering activities. Thereafter, occasional adjustments

62 QUALITY ENGINEERING

to the quality goals and selected quality strategies might be applied, but only a small
share of effort is needed.

The collective effort of selected QA activities generally demonstrates the following
pattern:

- There is a gradual build-up process for individual QA activities, and for them
collectively.

- The collective effort normally peaks off a little bit before product release, when
development activities wind down and testing activities are the dominant activ-
ities.

- Around product release and thereafter, the effort tapers off, typically with a
sudden drop at product release.

Of course, the specific mix of selected QA activities as well as the specific devel-
opment process used would affect the shape of this effort profile as well. But the
general pattern is expected to hold.

Measurement and quality assessment activities start after selected QA activities are
well under way. Typically, at the early part of the development process, small amounts
of such activities are carried out to monitor quality progress. But they are not expected
to be used to make major management decisions such as product release. These
activities peak off right before or at the product release, and lower gradually after
that. In the overall shape and pattern, the effort profile for these activities follows
that for the collective QA activities above, but with a time delay and a heavier load
at the tail-end.

One common adjustment to the above pattern is the time period after product release.
Immediately after product release or after a time delay for market penetration, the initial
wave of operational use by customers is typically accompanied by many user-reported
problems, which include both legitimate failures and user errors. Consequently, there is
typically an upswing of overall QA effort. New data and models are also called for, resulting
in an upswing of measurement and analysis activities as well. The main reason for this
upswing is the difference between the environment where the product is tested under and
the actual operational environment the product is subjected to. The use of usage-based
testing described in Chapters 8 and 10 would help make this bump smoother.

This general profile can be graphically illustrated in Figure 5.3. The overall quality
engineering effort over time is divided into three parts:

The bottom part represents the share of total effort by quality planning activities;

The middle part represents the share of total effort for the execution of selected QA
activities;

The upper part represents the share of total effort for the measurement and quality
assessment activities.

Notice that this figure is for illustration purposes only. The exact profile based on real
data would not be as smooth and would naturally show large amount of variability, with
many small peaks and valleys. But the general shape and pattern should preserve.

Totdl
Effort

CONCLUDING REMARKS 63

Product Release

Development Time

Figure 5.3
effort

Quality engineering effort profile: The share of different activities as part of the total

In addition, the general shape and pattern of the profile such as in Figure 5.3 should
preserve regardless of the specific development process used. Waterfall process would see
more dominance of quality planning in the beginning, and dominance of testing near prod-
uct release, and measurement and quality assessment activities peak right before product
release.

Other development processes, such as incremental, iterative, spiral, and extreme pro-
gramming processes, would be associated with curves that vary less between the peaks and
valleys. QA is spread out more evenly in these processes than in the waterfall process, al-
though it is still expected to peak a little bit before product release. Similarly, measurement
and analysis activities are also spread out more evenly to monitor and assess each part or
increment, with the cumulative modeling results used in product release decisions. There
are also more adjustments and small-scale planning activities involved in quality planning,
which also makes the corresponding profiles less variable as well.

5.5 CONCLUDING REMARKS

To manage the quality assurance (QA) activities and to provide realistic opportunities of
quantifiable quality improvement, we need to go beyond QA to perform the following:

Qualityplanning before specific QA activities are carried out, in the so-called pre-QA
activities in software quality engineering. We need to set the overall quality goal by
managing customer’s quality expectations under the project cost and budgetary con-
straints. We also need to select specific QA alternatives and techniques to implement
as well as measurement and models to provide project monitoring and qualitative
feedback.

Qualily quantijkation and improvement through measurement, analysis, feedback,
and follow-up activities. These activities need to be carried out after the start of spe-
cific QA activities, in the so-called post-QA activities in software quality engineering.
The analyses would provide us with quantitative assessment of product quality, and

64 QUALITY ENGINEERING

identification of improvement opportunities. The follow-up actions would implement
these quality and process improvement initiatives and help us achieve quantifiable
quality improvement.

The integration of these activities with the QA activities forms our software quality
engineering process depicted in Figure 5.1, which can also be integrated into the overall
software development and maintenance process. Following this general framework and
with a detailed description of pre-QA quality planning in this chapter, we can start our
examination of the specific QA techniques and post-QA activities in the rest of this book.

Problems

5.1 What is the difference between quality assurance and quality engineering?

5.2 Why is quantification of quality goals important?

5.3 What can you do if certain quality goals are hard to quantify? Can you give some
concrete examples of such situations and practical suggestions?

5.4 There are some studies on the cost-of-quality in literature, but the results are generally
hard to apply to specific projects. Do you have some suggestions on how to assess the cost-
of-quality for your own project? Would it be convincing enough to be relied upon in
negotiating quality goals with your customers?

5.5 As mentioned in this chapter, the quality engineering effort profile would be somewhat
different from that in Figure 5.3 if processes other than waterfall are used. Can you assess,
qualitatively or quantitatively, the differences when other development processes are used?

5.6 Based on some project data you can access, build your own quality engineering effort
profile and compare it to that in Figure 5.3. Pay special attention to development process
used and the division of planning, QA, and analysislfollow-up activities.

PART I I

SOFTWARE TESTING

Testing is one of the most important parts of quality assurance (QA) and the most
commonly performed QA activity. Commonly used testing techniques and issues related to
testing are covered in Part 11. We first provide an overview of all the important issues related
to testing in Chapter 6, followed by descriptions of major test activities, management, and
automation in Chapter 7, specific testing techniques in Chapters 8 through 11, and practical
application of testing techniques and their integration in Chapter 12.

This Page Intentionally Left Blank

CHAPTER 6

TESTING:
CONCEPTS, ISSUES, AND TECHNIQUES

The basic idea of testing involves the execution of software and the observation of its
behavior or outcome. If a failure is observed, the execution record is analyzed to locate
and fix the fault(s) that caused the failure. Otherwise, we gain some confidence that the
software under testing is more likely to fulfill its designated functions. We cover basic
concepts, issues, and techniques related to testing in this chapter.

6.1 PURPOSES, ACTIVITIES, PROCESSES, AND CONTEXT

We first present an overview of testing in this section by examining the motivation for
testing, the basic activities and process involved in testing, and how testing fits into the
overall software quality assurance (QA) activities.

Testing: Why?

Similar to the situation for many physical systems and products, the purpose of software
testing is to ensure that the software systems would work as expected when they are used
by their target customers and users. The most natural way to show this fulfillment of
expectations is to demonstrate their operation through some “dry-runs” or controlled ex-
perimentation in laboratory settings before the products are released or delivered. In the
case of software products, such controlled experimentation through program execution is
generally called testing.

67

68 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

Because of the relatively defect-free manufacturing process for software as compared
to the development process, we focus on testing in the development process. We run or
execute the implemented software systems or components to demonstrate that they work as
expected. Therefore, “demonstration of proper behavior” is a primary purpose of testing,
which can also be interpreted as providing evidence of quality in the context of software
QA, or as meeting certain quality goals.

However, because of the ultimate flexibility of software, where problems can be cor-
rected and fixed much more easily than traditional manufacturing of physical products and
systems, we can benefit much more from testing by fixing the observed problems within
the development process and deliver software products that are as defect-free as our budget
or environment allows. As a result, testing has become a primary means to detect and fix
software defects under most development environments, to the degree that “detecting and
fixing defects” has eclipsed quality demonstration as the primary purpose of testing for
many people and organizations.

To summarize, testing fulfills two primary purposes:

0 to demonstrate quality or proper behavior;

0 to detect and fix problems.

In this book, we examine testing and describe related activities and techniques with both
these purposes in mind, and provide a balanced view of testing. For example, when we
analyze the testing results, we focus more on the quality or reliability demonstration aspect.
On the other hand, when we test the internal implementations to detect and remove faults
that were injected into the software systems in the development process, we focus more on
the defect detection and removal aspect.

Major activities and the generic testing process

The basic concepts of testing can be best described in the context of the major activities
involved in testing. Although there are different ways to group them (Musa, 1998; Burnstein,
2003; Black, 2004), the major test activities include the following in roughly chronological
order:

0 Testplanning andpreparation, which set the goals for testing, select an overall testing
strategy, and prepare specific test cases and the general test procedure.

0 Test execution and related activities, which also include related observation and mea-
surement of product behavior.

Analysis and follow-up, which include result checking and analysis to determine if a
failure has been observed, and if so, follow-up activities are initiated and monitored
to ensure removal of the underlying causes, or faults, that led to the observed failures
in the first place.

The overall organization of these activities can be described by the generic testing process
illustrated in Figure 6.1. A brief comparison of it with the generic quality engineering
process in Figure 5.1 reveals many similarities. In fact, we can consider this generic testing
process as an instantiation of the generic quality engineering process to testing.

The major test activities are centered around test execution,orperforming the actual tests.
At a minimum, testing involves executing the software and communicating the related

PURPOSES, ACTIVITIES, PROCESSES, AND CONTEXT 69

Entry -
Planning & Preparation

goal setting
information gathering ,

model constiuction
test cases
test proceduie

Measurements

Figure 6.1 Generic testing process

observations. In fact, many forms of informal testing include just this middle group of
activities related to test execution, with some informal ways to communicate the results and
fix the defects, but without much planning and preparation. However, as we will see in the
rest of Part 11, in all forms of systematic testing, the other two activity groups, particularly
test planning and preparation activities, play a much more important role in the overall
testing process and activities.

The execution of a specific test case, or a sub-division of the overall test execution
sequence for some systems that require continuous operation, is often referred to as a “test
run”. One of the key component to effective test execution is the handling of problems to
ensure that failed runs will not block the executions of other test cases. This is particularly
important for systems that require continuous operation. To many people, defect fixing
is not considered to be a part of testing, but rather a part of the development activities.
However, re-verification of problem fixes is considered as a part of testing. In this book,
we consider all of these activities as a part of testing.

Data captured during execution and other related measurements can be used to locate and
fix the underlying faults that led to the observed failures. After we have determined if a test
run is a success or failure, appropriate actions can be initiated for failed runs to locate and
fix the underlying faults. In addition, further analyses can be performed to provide valuable
feedback to the testing process and to the overall development process in general. These
analysis results provide us with assessments of the current status with respect to progress,
effort, defect, and product quality, so that decisions, such as when to stop testing, can be
made based on facts instead of on people’s gut feelings. In addition, some analyses can
also help us identify opportunities for long-term product quality improvement. Therefore,
various other activities, such as measurement, analysis, and follow-up activities, also need
to be supported.

Sub-activities in test planning and preparation

Because of the increasing size and complexity of today’s software products, informal testing
without much planning and preparation becomes inadequate. Important functions, features,
and related software components and implementation details could be easily overlooked in
such informal testing. Therefore, there is a strong need for planned, monitored, managed
and optimized testing strategies based on1 systematic considerations for quality, formal
models, and related techniques. Test cases can be planned and prepared using such testing

70 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

strategies, and test procedures need to be prepared and followed. The pre-eminent role of
test planning and preparation in overall testing is also illustrated in Figure 6.1, by the much
bigger box for related activities than those for other activities. Test planning and preparation
include the following sub-activities:

Goal setting: This is similar to the goal setting for the overall quality engineering
process described in Chapter 5. However, it is generally more concrete here, because
the quality views and attributes have been decided by the overall quality engineering
process. What remains to be done is the specific testing goals, such as reliability or
coverage goals, to be used as the exit criteria. This topic will be discussed further in
Section 6.4 in connection to the question: “When to stop testing?”.

Test case preparation: This is the activity most people naturally associate with test
preparation. It includes constructing new test cases or generating them automati-
cally, selecting from existing ones for legacy products, and organizing them in some
systematic ways for easy execution and management. In most systematic testing,
these test cases need to be constructed, generated, or selected based on some formal
models associated with formal testing techniques covered in Chapters 8 through 11.

Test procedure preparation: This is an important activity for test preparation. For
systematic testing on a large scale for most of today’s software products and software-
intensive systems, a formal procedure is more of a necessity than a luxury. It can
be defined and followed to ensure effective test execution, problem handling and
resolution, and the overall test process management.

Testing as a part of QA in the overall software process

In the overall framework of software quality engineering, testing is an integral part of the
QA activities. In our classification scheme based on different ways of dealing with defects
in Chapter 3, testing falls into the category of defect reduction alternatives that also include
inspection and various static and dynamic analyses. Unlike inspection, testing detects
faults indirectly through the execution of software instead of critical examination used in
inspection. However, testing and inspection often finds different kinds of problems, and
may be more effective under different circumstances. Therefore, inspection and testing
should be viewed more as complementary QA alternatives instead of competing ones.

Similarly, other QA alternatives introduced in Chapter 3 and described in Part I11 may be
used to complement testing as well. For example, defect prevention may effectively reduce
defect injections during software development, resulting in fewer faults to be detected
and removed through testing, thus reducing the required testing effort and expenditure.
Formal verification can be used to verify the correctness of some core functions in a product
instead of applying exhaustive testing to them. Fault tolerance and failure containment
strategies might be appropriate for critical systems where the usage environment may involve
many unanticipated events that are hard or impossible to test during development. As we
will examine later in Chapter 17, different QA alternatives have different strengths and
weaknesses, and a concerted effort and a combined strategy involving testing and other QA
techniques are usually needed for effective QA.

As an important part of QA activities, testing also fits into various software development
processes as an important phase of development or as important activities accompanying
other development activities. In the waterfall process, testing is concentrated in the dedi-
cated testing phase, with some unit testing spread over to the implementation phases and

QUESTIONS ABOUT TESTING 71

some late testing spread over to the product release and support phase (Zelkowitz, 1988).
However, test preparation should be started in the early phases. In addition, test result
analyses and follow-up activities should be carried out in parallel to testing, and should not
stop even after extensive test activities have stopped, to ensure discovered problems are all
resolved and long-term improvement initiatives are planned and carried out.

Although test activities may fit into other development processes somewhat differently,
they still play a similarly important role. In some specific development processes, testing
plays an even more important role. For example, test-driven development plays a central
role in extreme programming (Beck, 2003). Various maintenance activities also need the
active support of software testing. All these issues will be examined further in Chapter 12
in connection to testing sub-phases and specialized test tasks.

6.2 QUESTIONS ABOUT TESTING

We next discuss the similarities and differences among different test activities and techniques
by examining some systematic questions about testing.

Basic questions about testing

Our basic questions about testing are related to the objects being tested, perspectives and
views used in testing, and overall management and organization of test activities, as de-
scribed below:

0 What artifacts are tested?

The primary types of objects or software artifacts to be tested are software programs
or code written in different programming languages. Program code is the focus of
our testing effort and related testing techniques and activities. A related question,
“What other artifacts can also be tested?”, is answered in Chapter 12 in connection
to specialized testing.

0 What to test, and what kind of faults is found?

Black-box (or functional) testing verifies the correct handling of the external functions
provided or supported by the software, or whether the observed behavior conforms to
user expectations or product specifications. White-box (or structural) testing verifies
the correct implementation of internal units, structures, and relations among them.
When black-box testing is performed, failures related to specific external functions
can be observed, leading to corresponding faults being detected and removed. The
emphasis is on reducing the chances of encountering functional problems by target
customers. On the other hand, when white-box testing is performed, failures related
to internal implementations can be observed, leading to corresponding faults being
detected and removed. The emphasis is on reducing internal faults so that there is
less chance for failures later on no matter what kind of application environment the
software is subjected to. Related issues are examined in Section 6.3.

When, or at what defect level, to stop testing?

Most of the traditional testing techniques and testing sub-phases use some coverage
information as the stopping criterion, with the implicit assumption that higher cov-
erage means higher quality or lower levels of defects. On the other hand, product

72 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

reliability goals can be used as a more objective criterion to stop testing. The coverage
criterion ensures that certain types of faults are detected and removed, thus reducing
the number of defects to a lower level, although quality is not directly assessed. The
usage-based testing and the related reliability criterion ensure that the faults that are
most likely to cause problems to customers are detected and removed, and the relia-
bility of the software reaches certain targets before testing stops. Related issues are
examined in Section 6.4.

Questions about testing techniques

Many different testing techniques can be applied to perform testing in different sub-phases,
for different types of products, and under different environments. Various questions regard-
ing these testing techniques can help us get a better understanding of many related issues,
including:

What is the spec$c testing technique used?

This question is answered in connection with the what-to-test and stopping-criteria
in Sections 6.3 and 6.4. Many commonly used testing techniques are described in
detail in Chapters 8 through 11.

What is the underlying model used in a spec$c testing technique?

Since most of the systematic techniques for software testing are based on some
formalized models, we need to examine the types and characteristics of these models
to get a better understanding of the related techniques. In fact, the coverage of major
testing techniques in Chapters 8 through 11 is organized by the different testing
models used, as follows:

- There are two basic types of models: those based on simple structures such as
checklists and partitions in Chapter 8, and those based on finite-state machines
(FSMs) in Chapter 10.

- The above models can be directly used for testing basic coverage defined accord-
ingly, such as coverage of checklists and partitions in Chapter 8 and coverage
of FSM states and transitions in Chapter 10.

- For usage-based testing, minor modifications to these models are made to asso-
ciate usage probabilities to partition items as in Musa’s operational profiles in
Chapter 8 and to make state transitions probabilistic as in Markov chain based
statistical testing in Chapter 10.

- Some specialized extensions to the two basic models can be used to support
several commonly used testing techniques, such as input domain testing that
extends partition ideas to input sub-domains and focuses on testing related
boundary conditions in Chapter 9, and control flow and data flow testing (CFT
& DFT) that extends FSMs to test complete execution paths or to test data
dependencies in execution and interactions in Chapter 1 1 .

Are techniques for testing in other domains applicable to software testing?

Examples include errorlfault seeding, mutation, immunization and other techniques
used in physical, biological, social, and other systems and environments. These
questions are examined in Chapter 12, in connection to specialized testing.

QUESTIONS ABOUT TESTING 73

0 If multiple testing techniques are available, can they be combined or integrated for
better effectiveness or eflciency?

This question is the central theme of our test integration discussions in Chapter 12.
Different techniques have their own advantages and disadvantages, different applica-
bility and effectiveness under different environments. They may share many common
ideas, models, and other artifacts. Therefore, it makes sense to combine or integrate
different testing techniques and related activities to maximize product quality or other
objectives while minimizing total cost or effort.

Questions about test activities and management

Besides the questions above, various other questions can also be used to help us analyze and
classify different test activities. Some key questions are about initiators and participants of
these activities, organization and management of specific activities, etc., as follows:

0 Who performs which specific activities?

Different people may be involved in different roles. This issue is examined in Chap-
ter 7 in connection to the detailed description of major test activities. A related issue
is the automation of some of these rnianual tasks performed by people, also discussed
in Chapter 7.

0 When can specijic test activities be performed?

Because testing is an execution-based QA activity, a prerequisite to actual testing is
the existence of the implemented software units, components, or system to be tested,
although preparation for testing can be carried out in earlier phases of software devel-
opment. As a result, actual testing of large software systems is typically organized
and divided into various sub-phases starting from the coding phase up to post-release
product support. A related question is the possibility of specialized testing activi-
ties that are more applicable to specific products or specific situations instead of to
specific sub-phases. Issues related to these questions are examined in Chapter 12.

0 What process is followed for these test activities?

We have answered this question in Section 6.1. Some related management issues are
also discussed in Chapter 7

0 Is test automation possible? And if so, what kind of automated testing tools are
available and usable for speciJic applications?

These questions and related issues are examined in Chapter 7 in connection with
major test activities and people’s roles and responsibilities in them.

0 What artifacts are used to manage the testing process and related activities?

This question is answered in Chapter 7 in connection with test activities management
issues.

0 What is the relationship between testing and various defect-related concepts?

This question has been answered above and in Chapter 3.

0 What is the general hardware/software/organizational environment for testing?

74 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

This questions is addressed in Chapter 7, in connection with major test activities
management issues.

0 What is the product type or market segment for the product under testing?

Most of the testing techniques we describe are generally applicable to most applica-
tion domains. Some testing techniques that are particularly applicable or suitable to
specific application domains or specific types of products are also included in Chap-
ter 12. We also attempt to cover diverse product domains in our examples throughout
the book.

The above lists may not be all-inclusive lists of questions and issues that can be used
to classify and examine testing techniques and related activities. However, they should
include most of the important questions people ask regarding testing and important issues
discussed in testing literature (Howden, 1980; Myers, 1979; Miller and Howden, 1981;
Beizer, 1990; Burnstein, 2003; Black, 2004; Huo et al., 2003). We use the answers to these
questions as the basis for test classification and examination, and to organize our chapters
on testing.

6.3 FUNCTIONAL VS. STRUCTURAL TESTING: WHAT TO TEST?

The main difference between functional and structural testing is the perspective and the
related focus: Functional testing focus on the external behavior of a software system or its
various components, while viewing the object to be tested as a black-box that prevents us
from seeing the contents inside. On the other hand, structural testing focus on the internal
implementation, while viewing the object to be tested as a white-box that allows us to see
the contents inside. Therefore, we start further discussion about these two basic types of
testing by examining the objects to be tested and the perspectives taken to test them.

Objects and perspectives

As the primary type of objects to be tested, software programs or code exists in various
forms and is written in different programming languages. They can be viewed either as
individual pieces or as an integrated whole. Consequently, there are different levels of
testing corresponding to different views of the code and different levels of abstraction, as
follows:

0 At the most detailed level, individual program elements can be tested. This includes
testing of individual statements, decisions, and data items, typically in a small scale
by focusing on an individual program unit or a small component. Depending on
the different programming languages used, this unit may correspond to a function, a
procedure, a subroutine or a method. As for the components, concepts may vary, but
generally include a collection of smaller units that together accomplish something or
form an object.

0 At the intermediate level, various program elements or program components may be
treated as an interconnected group, and tested accordingly. This could be done at
component, sub-system, or system levels, with the help of some models to capture
the interconnection and other relations among different elements or components.

FUNCTIONAL vs. STRUCTURAL TESTING: WHAT TO TEST? 75

0 At the most abstract level, the whole software systems can be treated as a “black-
box”, while we focus on the functions or input-output relations instead of the internal
implementation.

In each of the above abstraction levels, we may choose to focus on either the overall
behavior or the individual elements that make up the objects of testing, resulting in the
difference between functional testing and structural testing. The tendency is that at higher
levels of abstraction, functional testing is more likely to be used; while at lower levels of
abstraction, structural testing is more likely to be used. However, the other pairing is also
possible, as we will see in some specific examples later.

Corresponding to these different levels of abstraction, actual testing for large software
systems is typically organized and divided into various sub-phases starting from the cod-
ing phase up to post-release product support, including unit testing, component testing,
integration testing, system testing, acceptance testing, beta testing, etc. Unit testing and
component testing typically focus on individual program elements that are present in the
unit or component. System testing and acceptance testing typically focus on the overall
operations of the software system as a whole. These testing sub-phases are described in
Chapter 12.

Functional or black-box testing (BBT)

Functional testing verifies the correct handling of the external functions provided by the
software, through the observation of the program external behavior during execution. Be-
cause the software is treated as a black-box, with the external behavior observed through
its input, output, and other observable characteristics, it is also commonly referred to as
black-box testing (BBT). In this book, we use these two terms interchangeably.

The simplest form of BBT is to start running the software and make observations in the
hope that it is easy to distinguish between expected and unexpected behavior. This form
of testing is also referred to as “ad hoc” testing. Some unexpected behavior, such as a
crash, is easy to detect. Once we determine that it is caused by software through repeated
execution to eliminate the possibilities of hardware problems, we can pass the information
to responsible parties to have the problem fixed. In fact, this is the common way through
which problems experienced by actual customers are reported and fixed.

Another common form of BBT is the use of specification checklists, which list the
external functions that are supposed to be present, as well as some information about the
expected behavior or input-output pairing. Notice here that we used the term input to mean
any action, artifact, or resource provided in the process of running a program, either at
the beginning or at any time during the program execution. Similarly, we use the term
output to mean any action, artifact, or result produced by the running program, either at
the end or at any time during the program execution. Concrete examples of input to a
calculator program might include the specific numbers entered and the action requested,
such as division operation of two numbers. The output could be the actual division result,
or some error message, such as when attempting to divide by zero. When problems are
observed, specific follow-up actions are carried out to fix them.

More formalized and systematic BBT can be based on some formal models. These
formal testing models are derived from system requirement or functional specifications.
Some traditional white-box testing techniques can also be adapted to perform BBT, such
as control-flow and data-flow testing for external functional units instead of for internal
implementations.

76 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

BBT can follow the generic testing process described in Section 6.1 to carry out the
major test activities of planning, execution, and follow-up. In test planning, the focus is on
identifying the external functions to test, and deriving input conditions to test these functions.
The identified external functions are usually associated with some user expectations, from
which both the input and the expected output can be derived to form the test cases. For
example, for a compiler, the input is source code to be compiled, and the output is the
resulting object or executable code. Part of the expected behavior is system termination, that
is, the compiler should produce some output within a limited amount of time. Another part of
the expected behavior is that if illegal programs are provided as input, object or executable
code will not be generated, and the reason should be given. Therefore, a collection of
programs to be compiled constitutes the test suite, or the collection of test cases. This
test suite should typically consist of both legal and illegal programs to cover the expected
spectrum of input. The testing goals may be stated explicitly as exit quality levels or
implicitly as the completion of planned test cases.

The focus of test execution during BBT is to observe the external behavior, to ensure
orderly execution of all the test cases, and to record execution information for analysis and
follow-up activities. If the observed behavior patterns cannot be immediately identified as
failures, information needs to be recorded for further analysis. In the above example of the
compiler, the output produced and the execution trace should be recorded, as well as the
exact set-up under which the compiler operated.

Once the execution result is obtained, either individually or as a set, analyses can be
carried out to compare the specific behavior and output with the expected ones. This
comparison to determine if it is expected behavior or if a failure occurred is called the
testing oracle problem. Thus BBT checks whether the observed behavior conforms to user
expectations or product specifications. Failures related to specific external functions can
be observed, leading to follow-up activities where corresponding faults are detected and
removed. The emphasis is on reducing the chances of encountering functional problems
by target customers. Information recorded at test execution is used in these follow-up
activities to recreate failure scenarios, to diagnose problems, to locate failure causes and
identify specific faults in software design and code, and to fix them. An important follow-
up decision, when to stop testing, can be determined either using the traditional functional
coverage criteria or reliability criteria, as further elaborated in Section 6.4.

Structural or white-box testing (WBT)

Structural testing verifies the correct implementation of internal units, such as program
statements, data structures, blocks, etc., and relations among them. This is done through
test execution by observing the program behavior related to these specific units. Because
the software is treated as a white-box, or more appropriately a glass-box or a transparent-
box, where one can see through to view the internal units and their interconnections, it is
also commonly referred to as white-box testing (WBT) in literature. In keeping with this
convention, we also label this as WBT, with the understanding that this “white-box’’ is really
transparent so that the tester can see through it. In this book, we also use the two terms,
structural testing and WBT, interchangeably.

Because the connection between execution behavior and internal units needs to be made
in WBT, various software tools are typically used. The simplest form of WBT is statement
coverage testing through the use of various debugging tools, or debuggers, which help us in
tracing through program executions. By doing so, the tester can see if a specific statement
has been executed, and if the result or behavior is expected. One of the advantages is that

FUNCTIONAL VS. STRUCTURAL TESTING: WHAT TO TEST? 77

once a problem is detected, it is also located. However, problems of omission or design
problems cannot be easily detected through WBT, because only what is present in the code
is tested. Another important point worth noting is that the tester needs to be very familiar
with the code under testing to trace through its executions. Consequently, WBT and related
activities are typically performed by the programmers themselves because of their intimate
knowledge of the specific program unit under testing. This dual role also makes defect
fixing easy.

Similar to the situation for BBT, more formalized and systematic WBT can be based
on some formal models. These formal testing models are typically derived from system
implementation details. In fact, the majority of the traditional testing techniques is based
on program analyses and program models, and therefore is white-box in nature.

WBT can also follow the generic testing process described in Section 6.1, to carry out
the major test activities of planning, execution, and follow-up. However, because of the
extensive amount of implementation knowledge required, and due to the possibility of
combinatorial explosions to cover these implementation details, WBT is typically limited
to a small scale. For small products, not much formal testing process is needed to plan
and execute test cases, and to follow up on execution results. For unit testing of large
products, the WBT activities are carried out in the encompassing framework where most of
the planning is subject to the environment; and the environmental constraints pretty much
determine what can be done. Therefore, test planning plays a much less important role in
WBT than in BBT. In addition, defect fixing is made easy by the tight connection between
program behavior and program units, and through the dual role played by the programmers
as testers. Consequently, not much formal testing process is needed. The stopping criteria
are also relatively simple: Once planned coverage has been achieved, such as exercising all
statements, all paths, etc., testing can stop. Sometimes, internal quality measures, such as
defect levels, can also be used as a stopping criterion.

Comparing BBT with WBT

To summarize, the key question that distinguishes black-box testing (BBT) from white-box
testing (WBT) is the “perspective” question:

0 Perspective: BBT views the objects of testing as a black-box while focusing on
testing the input-output relations or external functional behavior; while WBT views
the objects as a glass-box where internal implementation details are visible and tested.

BBT and WBT can also be compared by the way in which they address the following
questions:

0 Objects: Although the objects tested may overlap occasionally, WBT is generally
used to test small objects, such as small software products or small units of large
software products; while BBT is generally more suitable for large software systems
or substantial parts of them as a whole.

0 Timeline: WBT is used more in early sub-phases of testing for large software systems,
such as unit and component testing, while BBT is used more in late sub-phases, such
as system and acceptance testing.

0 Defect focus: In BBT, failures related to specific external functions can be observed,
leading to corresponding faults being detected and removed. The emphasis is on

78 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

reducing the chances of encountering functional problems by target customers. In
WBT, failures related to internal implementations can be observed, leading to corre-
sponding faults being detected and removed directly. The emphasis is on reducing
internal faults so that there is less chance for failures later on no matter what kind of
application environment the software is subjected to.

0 Defect detection and f i ing : Defects detected through WBT are easier to fix than
those through BBT because of the direct connection between the observed failures
and program units and implementation details in WBT. However, WBT may miss
certain types of defects, such as omission and design problems, which could be
detected by BBT. In general BBT is effective in detecting and fixing problems of
interfaces and interactions, while WBT is effective for problems localized within a
small unit.

0 Techniques: Various techniques can be used to build models and generate test cases
to perform systematic BBT, and others can be used for WBT, with some of the same
techniques being able to be used for both WBT and BBT. A specific technique is a
BBT one if external functions are modeled; while the same technique can be a WBT
one if internal implementations are modeled.

0 Tester: BBT is typically performed by dedicated professional testers, and could also
be performed by third-party personnel in a setting of IV&V (independent verification
and validation); while WBT is often performed by developers themselves.

6.4 COVERAGE-BASED VS. USAGE-BASED TESTING: WHEN TO STOP
TESTING?

For most of the testing situations, the answer to the question “when to stop testing?’ depends
on the completion of some pre-planned activities, coverage of certain entities, or whether
a pre-set goal has been achieved. We next describe the use of different exit criteria and the
corresponding testing techniques.

When to stop testing?

The question, “when to stop testing”, can be refined into two different questions:

0 On a small or a local scale, we can ask: “When to stop testing for a specific test
activity?’ This question is also commonly associated with different testing sub-
phases.

0 On a global scale, we can ask: “When to stop all the major test activities?” Because
the testing phase is usually the last major development phase before product release,
this question is equivalent to: “When to stop testing and release the product?’

These questions may yield different answers, leading us to different testing techniques and
related activities. Without a formal assessment for decision making, decision to stop testing
can usually be made in two general forms:

0 Resource-based criteria, where decision is made based on resource consumptions.
The most commonly used such stopping criteria are

COVERAGE-BASED VS. USAGE-BASED TESTING: WHEN TO STOP TESTING? 79

- “Stop when you run out of time.”

- “Stop when you run out of money.”

Such criteria are irresponsible, as far as product quality is concerned, although they
may be employed if product schedule or cost are the dominant concerns for the
product in question.

0 Activity-based criteria, commonly in the form:

- “Stop when you complete planned test activities.”

This criterion implicitly assumes the effectiveness of the test activities in ensuring
the quality of the software product. However, this assumption could be questionable
without strong historical evidence based on actual data from the project concerned.

Because of these shortcomings, informal decisions without using formal assessments
have very limited use in managing the testing process and activities for large software
systems. We next examine exit criteria based on formal analyses and assessments.

On the global level, the exit from testing is associated with product release, which
determined the level of quality that a customer or a user could expect. In our overall
software quality engineering process, this decision is associated with achieving quality
goals, as well as achieving other project goals in the overall software development process.
Therefore, the most direct and obvious way to make such product release decisions is the
use of various reliability assessments. When the assessment environment is similar to the
actual usage environment for customers. the resulting reliability measurement would be
directly meaningful to these customers.

The basic idea in using reliability criterion is to set a reliability goal in the quality
planning activity during product planning and requirement analysis, and later on to compare
the reliability assessment based on testing data to see if this pre-set goal has been reached.
If so, the product can be released. Otherwise, testing needs to continue and product release
needs to be deferred. Various models exist today to provide reliability assessments and
improvement based on data from testing, as described in Chapter 22.

One important implication of using this criterion for stopping testing is that the reliability
assessments should be close to what actual users would expect, which requires that the
testing right before product release resembles actual usages by target customers. This
requirement resulted in the so-called usage-based testing. On the other hand, because of
the large number of customers and usage situations, exhaustive coverage of all the customer
usage scenarios, sequences, and patterns is infeasible. Therefore, an unbiased statistical
sampling is the best that we can hope for, which results in usage-based statistical testing
(UBST) that we will describe later in this section. Some specific techniques for such testing
are described in Chapters 8 and 10.

For earlier sub-phases of testing, or for stopping criteria related to localized test ac-
tivities, reliability definition based on customer usage scenarios and frequencies may not
be meaningful. For example, many of the internal components are never directly used by
actual users, and some components associated with low usage frequencies may be critical
for various situations. Under these situations, the use of reliability criterion may not be
meaningful or may lead to inadequate testing of some specific components. Alternative
exit criteria are needed. For example, as a rule of thumb:

Criteria similar to this have been adopted in many organizations to test their products and
related components. We call these criteria coverage criteria, which involve coverage of some

“Products should not be released unless every component has been tested.”

80 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

specific entities, such as components, execution paths, statements, etc. The use of coverage
criteria is associated with defining appropriate coverage for different testing techniques,
linking what was tested with what was covered in some formal assessments.

One implicit assumption in using coverage as the stopping criterion is that everything
covered is defect free with respect to this specific coverage aspect, because all defects
discovered by the suite of test cases that achieved this coverage goal would have been fixed
or removed before product release. This assumption is similar to the one above regarding
the effectiveness of test activities, when we use the completion of planned test activities as
the exit criterion. However, this assumption is more likely to be enforced because specific
coverage is closely linked to specific test cases.

From the quality perspective, the coverage criteria are based on the assumption that
higher levels of coverage mean higher quality, and a specific quality goal can be translated
into a specific coverage goal. However, we must realize that although there is a general
positive correlation between coverage and quality, the relationship between the two is not a
simple one. Many other factors need to be considered before an accurate quality assessment
can be made based on coverage. For example, different testing techniques and sub-phases
may be effective in detecting and removing different types of defects, leading to multi-
stage reliability growth and saturation patterns (Horgan and Mathur, 1995). Nevertheless,
coverage information gives us an approximate quality estimate, and can be used as the exit
criterion when actual reliability assessment is unavailable, such as in the early sub-phases
of testing.

Usage-based statistical testing (UBST) and operational profiles (OPs)

At one extreme, actual customer usage of software products can be viewed as a form of
usage-based testing. When problems are experienced by these customers, some informa-
tion about the problems, can be reported to software vendors, and integrated fixes can be
constructed and delivered to all the customers to prevent similar problems from occurring.
However, these post-product-release defect fixing activities could be very expensive because
of the massive numbers of software installations. Frequent fixes could also damage the soft-
ware vendor’s reputation and long-term business viability. The so-called beta test makes
use of this usage-and-fix to the advantage of software vendors, through controlled software
release so that these beta customers help software development organizations improve their
software quality.

In general, if the actual usage, or anticipated usage for a new product, can be captured
and used in testing, product reliability could be most directly assured. In usage-based
statistical testing (UBST), the overall testing environment resembles the actual operational
environment for the software product in the field, and the overall testing sequence, as
represented by the orderly execution of specific test cases in a test suite, resembles the
usage scenarios, sequences, and patterns of actual software usage by the target customers.
Because the massive number of customers and diverse usage patterns cannot be captured in
an exhaustive set of test cases, statistical sampling is needed, thus the term “statistical” in
the descriptive title of this strategy. For the same reason, “random testing” and “usage-based
random testing” are also used in literature. However, we prefer to use the term “usage-based
statistical testing” in this book to avoid the confusion between random testing and “ad hoc”
testing, where no systematic strategy is implied in “ad hoc” testing.

For practical implementation of such a testing strategy, actual usage information needs
to be captured in various models, commonly referred to as “operational profiles” or OPs.

COVERAGE-BASED vs. USAGE-BASED TESTING: WHEN TO STOP TESTING? 81

Different OPs are associated with different testing techniques for UBST. Two primary types
of usage models or OPs are:

0 Flat OPs, or Musa OPs (Musa, 1993; Musa, 1998), which present commonly used
operations in a list, a histogram, or a tree-structure, together with the associated
occurrence probabilities. The main advantage of the flat OP is its simplicity, both in
model construction and usage. This testing technique is described in Chapter 8.

0 Markov chain based usage models, or Markov OPs (Mills, 1972; Mills et al., 1987b;
Whittaker and Thomason, 1994; Kallepalli and Tian, 2001; Tian et al., 2003), which
present commonly used operational units in Markov chains, where the state transition
probabilities are history independent (Karlin and Taylor, 1975). Complete operations
can be constructed by linking various states together following the state transitions,
and the probability for the whole path is the product of its individual transition prob-
abilities. Markov models based on state transitions can generally capture navigation
patterns better than flat OPs, but are more expensive to maintain and to use. This
testing technique is described in Chapter 10.

Usage-based statistical testing (UBST) is generally applicable to the final stage of test-
ing, typically referred to as acceptance testing right before product release, so that stopping
testing is equivalent to releasing the product. Other late sub-phases of testing, such as inte-
gration and system testing, could also benefit from the knowledge of actual customer usage
situations to drive effective reliability improvement before product release, as demonstrated
in some case studies in Chapter 22. Naturally, the termination criterion used to stop such
testing is achievement of reliability goals.

Coverage and coverage-based testing (CBT)

As mentioned above, most traditional testing techniques, either functional testing (BBT) or
structural testing (WBT), use various forms of test coverage as the stopping criteria. The
simplest such criterion is in the form of completing various checklists, such as a checklist
of major functions based on product specifications when BBT is used, or a checklist of all
the product components or all the statements when WBT is used. Testing can be performed
until all the items on the respective checklist have been checked off or exhausted. For
most of the systematic testing techniques, some formal models beyond simple checklists
are used. Some specific examples of such models and related coverage include:

0 Formally defined partitions can be used as the basis for various testing techniques in
Chapter 8, which are similar to checklists but ensure:

- mutual exclusion of checklist items to avoid unnecessary repetition,

- complete coverage defined accordingly.

0 A specialized type of partitions, input domain partitions into sub-domains, can also
be used to test these sub-domains and related boundary conditions, as described in
Chapter 11.

0 Various programming or functional states can be defined and linked together to form
finite-state machines (FSMs) to model the system as the basis for various testing tech-
niques in Chapter 10 to ensure state coverage and coverage of related state transitions
and execution sequences.

82 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

0 The above FSMs can also be extended to analyze and cover execution paths and data
dependencies through various testing techniques in Chapter 11.

The generic steps and major sub-activities for CBT model construction and test preparation
are described below:

0 Defining the model: These models are often represented by some graphs, with in-
dividual nodes representing the basic model elements and links representing the
interconnections. Some additional information may be attached to the graph as link
or node properties (commonly referred to as weights in graph theory).

0 Checking individual model elements to make sure the individual elements, such as
links, nodes, and related properties, have been tested individually, typically in isola-
tion, prior to testing using the whole model. This step also represents the self-checking
of the model, to make sure that the model captures what is to be tested.

0 Dejning coverage criteria: Besides covering the basic model elements above, some
other coverage criteria are typically used to cover the overall execution and inter-
actions. For example, with the partition-based testing, we might want to cover the
boundaries in addition to individual partitions; and for FSM-based testing, we might
want to cover state transition sequences and execution paths.

0 Derive test cases: Once the coverage criteria are defined, we can design our test cases
to achieve them. The test cases need to be sensitized, that is, with its input values
selected to realize specific tests, anticipated results defined, and ways to check the
outcomes planned ahead of time.

Model construction and test preparation are more closely linked to individual testing
techniques, which are described when each testing technique is introduced in Chapters 8
through 11. The other major testing related activities, including test execution, measure-
ment, analysis, and follow-up activities, are typically similar for all testing techniques.
Therefore, they are covered together in Chapter 7. Coverage analysis plays an important
role in guiding testing and coverage criterion is used to determine when to stop testing.
Automated tool support by for this analysis and related data collection is also discussed in
Chapter 7.

Comparing CBT with UBST

To summarize, the key questions that distinguish coverage-based testing (CBT) from usage-
based statistical testing (UBST) are the “perspective” question and the related stopping
criteria:

0 Perspective: UBST views the objects of testing from a user’s perspective and focuses
on the usage scenarios, sequences, patterns, and associated frequencies or proba-
bilities; while CBT views the objects from a developer’s perspective and focuses
covering functional or implementation units and related entities.

0 Stopping criteria: UBST use product reliability goals as the exit criterion; and CBT
using coverage goals - surrogates or approximations of reliability goals - as the
exit criterion.

CONCLUDING REMARKS 83

CBT and UBST can also be compared by the way in which they address the following
questions:

0 Objects: Although the objects tested may overlap, CBT is generally used to test and
cover small objects, such as small software products, small units of large software
products, or large systems at a high level of abstraction, such major functions or
components; while UBST is generally more suitable for large software systems as a
whole.

0 Verification vs. validation: Although both CBT and UBST can be used for both
verification test and validation test, UBST is more likely to be used for validation test
because of their relationship to customers and users.

0 Timeline: For large software systems, CBT is often used in early sub-phases of testing,
such as unit and component testing, while UBST is often used in late sub-phases of
testing, such as system and acceptance testing.

0 Defect detection: In UBST, failures that are more likely to be experienced by users
are also more likely to be observed in testing, leading to corresponding faults being
detected and removed for reliability improvement. In CBT, failures are more closely
related to things tested, which may lead to effective fault removal but may not be
directly linked to improved reliability due to different exposure ratios for software
faults.

0 Testing environment: UBST uses testing environment similar to that for in-field op-
eration at customer installations; while CBT uses environment specifically set up for
testing.

0 Techniques: Various techniques can be used to build models and generate test cases to
perform systematic CBT. When these models are augmented with usage information,
typically as the probabilities associated with checklist items, partitions, states, and
state transitions, they can be used as models for UBST also. This is why we cover
UBST models and techniques together with corresponding basic CBT models and
techniques in Chapter 8 and Chapter 10.

0 Customer and user roles: UBST models are constructed with extensive customer
and user input; while CBT models are usually constructed without active customer
or user input. UBST is also more compatible with the customer and user focus in
today’s competitive market.

0 Tester: Dedicated professional testers typically perform UBST; while CBT can be
performed by either professional testers or by developers themselves.

6.5 CONCLUDING REMARKS

In this chapter, we described basic concepts of testing and examined various questions and
issues related to testing. In addition, we classified the major testing techniques by two
important criteria:

0 Functional vs. structural testing techniques, with the former focusing on external
functional behavior, the latter on internal implementations. Alternatively, they can be

a4 TESTING: CONCEPTS, ISSUES, AND TECHNIQUES

characterized by the ignorance or knowledge of implementation details: Functional
testing is also referred to as black-box testing (BBT) because it ignores all irnplemen-
tation details, while structural testing is also referred to as white-box testing (WBT)
because the transparent system boundary allows implementation details to be visible
and to be used in testing.

0 Usage-based vs. coverage-based stopping criteria and corresponding testing tech-
niques, with the former attempting to reach certain reliability goals by focusing on
functions and feature frequently used by target customers, and the latter focusing on
attaining certain coverage levels defined internally.

Based on this examination, we will focus on two major items related to testing in subse-
quent chapters in Part I1 of this book:

0 Test activities, organization, management, and related issues. We will examine in
detail the major activities related to testing, their management, and automation in
Chapter 7. These issues are common to different testing techniques and therefore
covered before we cover specific techniques.

0 Testing techniques and related issues. We will examine in detail the major testing
techniques in Chapters 8 through 11. The adaptation and integration of different
testing techniques for different testing sub-phases or specialized tasks are covered in
Chapter 12.

Problems

6.1 Perform a critical analysis of the current practice of testing in your organization. If
you are a full-time student, you can perform this critical analysis for the company your
worked for previously, or based on the testing practice you employed in your previous
course projects. Pay special attention to the following questions:

a) What is the testing process used in your organization? How is it different from

b) What is your role in software development? Are your performing any testing?

c) Is testing mostly informal or mostly formalized in your organization? In particular,

6.2 Define the following terms related to testing: black-box testing, white-box testing,
functional testing, structural testing, coverage-based testing, usage-based testing, opera-
tional profiles, statistical testing.

6.3 Can you applied the above terms and related concepts to inspection or other QA
alternatives? If yes, give some examples. If no, briefly justify yourself.

that in Figure 6.1?

What kind? What about your department and your organization?

what formal testing models and techniques are used?

CHAPTER 7

TEST ACTIVITIES, MANAGEMENT, AND
AUTO MAT I 0 N

In the previous chapter, we introduced major test activities and the generic testing process
as part of the overall quality assurance (QA) activities. We expand on these topics in this
chapter to take a detailed look of all the major test activities individually, including test
planning and preparation in Section 7.1, test execution and measurement in Section 7.2,
and test results analysis and follow-up in Section 7.3. We also examine the roles and re-
sponsibilities of different people in carrying out these activities and the related management
issues in Section 7.4. Test automation issues are covered in Section 7.5.

7.1 TEST PLANNING AND PREPARATION

As illustrated in Figure 6.1, test planning and preparation is the most important activity
in the generic testing process for systematic testing based on formal models. Most of the
key decisions about testing are made during this stage. In this section, we first examine
what key questions need to be answered in the high-level test planning, and then examine
individual low-level activities related to test preparation. Test planning and test preparation
are sometimes treated as separate groups of activities (Black, 2004).

7.1.1 Test planning: Goals, strategies, and techniques

The high-level task for test planning is to set goals and to determine a general testing strategy.
This high-level decision should be based on answers to several key questions we examined
in Chapter 6, particularly the objectives or goals of testing under a specific environment.

85

86 TEST ACTIVITIES. MANAGEMENT, AND AUTOMATION

The answers to these questions not only determine the general types of testing to perform,
but also determine the test termination or exit criteria. Overall environment needs to be
considered because the environmental constraints imposed on testing also affect the choice
of testing strategies.

Most of the testing we cover in this book focuses on the correctness aspect of quality.
If the software is complete or nearly complete, then the above correctness-centered quality
goals can be directly translated into reliability goals, which, in turn, requires us to use
usage-based statistical testing. Sometimes, these quality goals can be translated indirectly
into coverage goals, which can be achieved by black-box testing for the whole system.
However, if only individual units and pieces are available, we might choose to focus on the
implementation details and perform coverage-based white-box testing.

Therefore, we set an overall testing strategy by making the following decisions:

Overall objectives and goals, which can be refined into specific goals for specific
testing. Some specific goals include reliability for usage-based statistical testing or
coverage for various traditional testing techniques.

Objects to be tested and the specific focus: Functional testing views the software
product as a black-box and focuses on testing the external functional behavior; while
structural testing views the software product or component as a (transparent) white-
box and focuses on testing the internal implementation details.

Once the overall testing strategy has be selected, we can plan to allocate resources and
staff to implement it. The available staff and resources also affect the specific models and
techniques that can be used to implement the strategy. For example, simple models based
on checklists and partitions generally require less resources and prior knowledge by the
testing staff, while more complex formal models and related testing techniques may require
more resources and expertise. Different models and techniques are also associated with
different effectiveness levels or different applicability to different types of problems and
situations. Consequently, appropriate testing models and related techniques can be selected
to optimize some form of cost-benefit measure.

Sometimes, existing models or test suites can be used with some minor modifications
or adaptations, which would require minimal additional effort in test planning and prepa-
ration. Nevertheless, the above high-level activities still need to be carried out to arrive at
this decision, because indiscriminately using exiting testing strategies, techniques, models,
and test suites may not fulfill the need for the new situation and end up merely wasting
valuable time and resources. In what follows, we focus on the situation where new models,
procedures, and test cases need to be considered in testing planning and preparation. The
situation of minor adaptations is dealt with in Chapter 12 in connection with regression
testing as a specialized type or testing.

7.1.2 Testing models and test cases

Different models are closely linked to different testing techniques, and the modeling details
can only be described together with their corresponding techniques, as we will do in Chap-
ters 8 through 11. However, some generic steps and activities are involved in test model
construction. as follows:

1. Information source identification and data collection: The information and data are
generally affected by both what is required by specific models and what is available in

TEST PLANNING AND PREPARATION 87

the project environment. For example, in usage-based statistical testing, information
about actual in-field or anticipated usage by target customers needs to be gathered to
construct operational profiles as the basis of testing; while in white-box unit testing,
the tested unit provides the information source which can be analyzed to construct
our testing models.

2. Analysis and initial model construction: The information and data collected above
are analyzed to construct testing models. Expertise and familiarity with the specific
testing techniques and models are required for people who perform this task. This step
is typically the hardest to automate because of the human intelligence and expertise
required.

3. Model validation and incremental improvement: This is an important step, particu-
larly for large objects or for functions or usages associated with external customers.
Iterative procedure might be necessary to fix inaccuracies and other problems found
in the initial model or early versions of the candidate models.

Once the testing models have been constructed and validated, they can be used to generate
test cases, which can then be executed by following some planned test procedure. First, we
need to define and distinguish the static test cases and the dynamic test runs, as follows:

0 A test case is a collection of entities and related information that allows a test to be
executed or a test run to be performed.

0 A test run, is a dynamic unit of specific test activities in the overall testing sequence
on a selected testing object.

Each time a static test case is invoked, we have an individual dynamic test run. Therefore,
each test case can correspond to multiple test runs. In some literature and organizations,
each test run is also called an attempt.

The information included for a test case must enable the related test run to start, continue,
and finish. For most of the testing situations, the starting and finishing points correspond
to the initiation and termination of the operations for the whole software system, such
as the compilation of a program when the compiler is tested. But there are exceptions,
such as in operating systems and telecommunication systems, where continuous operation
without stopping is the expected norm. In these cases, because the specific test is an activity
associated with finite time for practical purposes, the starting and finishing points need to
be artificially inserted, resulting in a subsection of the system execution as a test run.

Essential among the test case information is the specific input to the software object in
operation, which includes both the initial input at the start of the test run and the input to
allow it to continue and to finish. In addition, the test case often includes information about
the expected output throughout the test run, which, together with the specific input and
timing information, defines the program behavior under this test run. Such input, output,
and timing information can be captured by the set of input variables, the set of output
variables, and their values over time.

With the above understanding, we can view the construction of a specific test case as
assigning its input values over a planned test run, which is referred to as test sensitization in
testing literature. This assignment is typically derived from testing models we constructed
in the previous step of test planning and preparation. Different criteria and steps may be
involved in test sensitization when different testing techniques are used, as we will illustrate
when individual testing techniques are covered in Chapters 8 through 11.

88 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

In addition to obtaining test cases from the sensitization step based on formal testing
models, test cases can sometimes bederived from other sources directly. For example, actual
runs from in-field operations of software products can sometimes be used to perform test
runs. In this case, a simple strategy of “record-and-rep1ay”is used. For some systems, if the
required information is easy to obtain, this strategy might be an effective one. However, for
most large systems, too much information might need to be recorded, making this strategy
impractical. In addition, systematic analysis of recorded information may provide valuable
insight into the usage situations of the product. Systematic models constructed using such
recorded information may provide more efficient or more effective ways to test the software
products than simply playing back the recorded runs.

7.1.3 Test suite preparation and management

The collection of individual test cases that will be run in a test sequence until some stopping
criteria are satisfied is called a test suite. Test suite preparation involves the construction
and allocation of individual test cases in some systematic way based on the specific testing
techniques used. For example, when usage-based statistical testing is planned, the test case
allocation will be determined by the operational profiles (OPs) constructed as the testing
models, in proportion to individual usage probabilities. Similarly, when coverage-based
testing is planned, the specific coverage criteria would dictate the allocation of test cases.
For example, in control flow testing not involving loops, the exact number of test cases is
determined by the number of paths for all-path coverage.

Another way to obtain a test suite is through reuse of test cases for earlier versions of the
same product. This kind of testing is commonly referred to as regression testing. It ensures
that common functionalities are still supported satisfactorily in addition to satisfactory
performance of new functionalities. Special types of formal models are typically used to
make the selection from existing test cases, as we will discuss in Chapter 12 in connection
to regression testing.

In general, all the test cases should form an integrated suite, regardless of their origins,
how they are derived, and what models are used to derive them. Sometimes, the test suite
may evolve over time and its formation may overlap with the actual testing. In fact, in some
testing techniques, test cases can be constructed dynamically, or “on-the-fly”, during test
execution. But even for such testing, some planning of the test cases and test suite is still
necessary, at least to determine the specific method for dynamic test case construction and
the precise stopping criteria. For most of the testing techniques we cover in this book, a
significant part of test preparation must be done before actual testing starts.

In general, test cases cost time, effort, and expertise to be obtained, and are too valuable
to be thrown away. It is worthwhile to spend some addition effort and resource to save
them, organize them, and manage them as a test suite for easy reuse in the future. Test suite
management includes managing the collection of both the existing test cases and the newly
constructed ones. At a minimum, some consistent database for the test suite needs to be
kept and shared by people who are working on similar areas. Some personnel information
can also be kept in the test suite, such as the testers who designed specific test cases, to better
supported future use of this test suite. The information contained in the test suite constitutes
an indexed database with important information about individual test cases in the test suite,
as well as pointers to actual test cases. The actual test cases, in turn, contains more detailed
information about the exact scenario, test input, expected output and behavior, etc.

There are many ways to organize the test suite or test suites. The most common way
is to organize them by sub-phases, because of the different objects, objectives, concerns,

TEST PLANNING AND PREPARATION 89

perspectives, priorities, and the testing techniques used. Various attributes can be used to
describe, classify, and organize individual test cases in the suite. One concrete example
is the use of the following attributes for an IBM product in its system testing phase (Tian,
1998):

0 sc - scenario class

0 sn - scenario number

0 vn - variation number with a particular scenario

The scenario class sc corresponds to high-level functional areas or groups of functions.
Within each sc, the scenario number sn, and the variation number vn within each sn, form
a three-layer hierarchical organization of test cases in the suite. In addition, sn and vn are
generally ordered in rough correspondence to the expected execution order, ranging from 1
to 99, with consecutive numbers used up to a point and then skipping to 99 to indicate some
ad hoc test cases - those do not fall into some systematic sequence. Therefore, less than
99 scenarios or variations within scenarios are allowed, which was more than adequate for
the product tested.

7.1.4 Preparation of test procedure

In addition to preparation of individual test cases and the overall test suite, the test procedure
also needs to be prepared for effective testing. The basic question is the sequencing of the
individual test cases and the switch-over from one test run to another. Several concerns
affect the specific test procedure to be used, including:

0 Dependencies among individual test cases. Some test cases can only be run after
others because one is used to set up another. This is particularly true for systems that
operate continuously, where the later test run may need to start at a state set up by
the earlier one.

Defect detection related sequencing. Many problems can only be effectively detected
after others have been discovered and fixed. For example, integration of several com-
ponents and related testing typically focus on interface and interaction problems,
which can be masked by problems in individual components. Therefore, these com-
ponents need to be individually tested before integration testing starts.

0 Sequences to avoid accidents. For some systems, possibly severe problems and
damages may incur during testing if certain areas were not checked through related
test runs prior to the current test run. For example, in embedded software for safety
critical systems, one does not want to start testing safety features before testing
other related functions first. This can be considered as a special case of the problem
or defect related sequencing where there is a very strong economical incentive for
preferring certain sequencing to others.

0 Problem diagnosis related sequencing. Some execution problems observed during
testing may involve complicated scenarios and many possible sources of problems.
Under this situation, related test runs focused on a single aspect or limited areas
can be used to help with the problem diagnosis. Better yet, if such complicated
problems are expected, we should run related simpler test cases first to eliminate

90 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

certain possibilities and narrow down the problem areas. Therefore, one natural
sequence for test case execution commonly used in practical testing procedures is to
progress from simple and easy ones to complicated and difficult ones. The same idea
has been used in defining coverage hierarchies.

0 Natural grouping of test cases, such as by functional and structural areas or by usage
frequencies, can also be used for test sequencing and to manage parallel testing.
However, among areas where no such order exists, or when the incentive for following
a certain order is not strong, we can carry out testing for them in parallel to speed up
the testing process. In fact, this is what people do all the time for large-scale software
testing, where parallelism and interleaving are common.

The key to test run transition in the test procedure preparation is to make sure that the
next test run can start right after the current one is finished for each software installment.
This consideration may place some additional requirements on individual test cases, either
requiring them to leave the system in the same initial condition or in some specified final
condition. In fact, the initial and final states of specific test cases can also be used to group
individual test cases in the test suite. This is similar to the grouping of test cases when
system configuration and environmental setup are considered in defining the operational
mode in usage-based testing using Musa’s operational profiles (Musa, 1998).

When test cases are derived dynamically, test procedure would naturally involve much
more dynamic elements. However, the above considerations for test procedure preparation
should still be incorporated in the corresponding test procedure. In this case, not only
the execution but also the generation of dynamic test cases is affected by the dependency,
effectiveness and efficiency concerns.

A related topic to test procedure preparation is the assignment of people to perform certain
tests. Their roles and responsibilities need to be clearly specified, such’as in Section 7.4.
In addition, allocation of time and other resources also needs to be planned ahead of time
before test execution starts, in accordance with test case grouping and allocation within a test
suite. One specific type of resources is the test automation tools examined in Section 7.5,
which could significantly reduce the time, staffing, and other resources required for test
execution.

7.2 TEST EXECUTION, RESULT CHECKING, AND MEASUREMENT

The key to the overall test execution is the smooth transition from one test run to another,
which also requires us to allocate all the required resources to ensure that individual test
runs can be started, executed, and finished, and related problems can be handled seamlessly.
General steps in test execution include:

1. Allocating test time and resources;

2. Invoking and running tests, and collecting execution information and measurements;

3. Checking testing results and identifying system failures.

The step to invoke and run tests is fairly straightforward with well-prepared test cases or
already sensitized test cases. We can simply provide the input variable values over the whole
execution duration as required and as already precisely specified in these test cases. The
sequence of test runs can follow the pre-planned sequence we described in test procedure

TEST EXECUTION, RESULT CHECKING, AND MEASUREMENT 91

preparation in Section 7.1. In the case where test cases are generated dynamically, such as
in various usage-based statistical testing approaches described in Chapter 8 and Chapter 10,
much of the work we described in terms of test sensitization needs to be done at this stage.

The key in handling failed test runs is to ensure that they will not block the execution
of other test cases. In addition, there will be test runs related to the re-verification of fixed
problems, which can be treated much the same way as other planned test cases except
the newly added dependency and its impact on test sequencing: Before an integrated fix
becomes available, the test case that triggered the failure observation in the first place and
other closely related test cases should be suspended to avoid repeatedly observing the same
failure, which adds little new information to what is already known. The same test case
can be re-run after the fix is in, and closely related test cases can also continue at this point.
By doing so, we avoided unnecessary repetitions/re-runs, thus improving the overall test
efficiency.

Test time and resources allocation is most closely related to the test planning and prepara-
tion activities described in the previous section. Although the allocation could be planned
or even carried out at the previous stage, the monitoring, adjustment, and management
of these resources need to be carried out during test execution. Test time allocation and
management are closely related to people’s roles and responsibility in carrying out specific
testing activities, thus they are described in Section 7.4. Managing other test resources
primarily involves the environmental set up and related facility management. For pure
software systems, this is fairly straightforward, with the environment setup to include the
hardware configuration and software environment that the finished product will operate
within. Sometimes, limited number of simulation programs or hardware simulators can
be used for testing some product components, but the overall system testing would very
much resemble the actual operational environment. Once the general system configuration
is decided, the facility management is mainly the allocation and monitoring of testing time
on these facilities.

For embedded software systems or for heterogeneous systems with important software
components, the environment and facility management issues involve the so-called “super-
system”. Coordination between different branches is a major issue where people have
different perspectives and concerns. In addition, various techniques, such as simulation and
prototyping techniques described in Chapter 12, will be used to aid testing or sometimes to
replace part of the testing. We will also see some specific techniques to deal with interface,
interaction, and interoperability problems among different sub-systems as part of the safety
assurance program in Chapter 16.

Result checking: The oracle problem

Result checking, or the oracle problem, and the related failure identification is a difficult
task, because of both the theoretical difficulties and practical limitations. In this book, we
use the term test oracle to indicate any means to check the testing result. Long standing
theoretical results state that result checking for testing in general is an undecidable problem.
In other words, there is no hope for algorithmic or fully automated solution to the general
test oracle problem. On the practical side, the expected behavior can hardly be precisely
described so that the observed behavior can be compared against. Combined with the fact
that software can fail in innumerable variations, the unexpected behavior can happen in
truly unexpected ways, thus making result checking difficult or nearly impossible.

However, there are cases where specific types of system failures, such as irresponsive
behavior or system crash, are easy to identify. In other cases, various other means, such

92 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

as heuristic guesses, possible cross-checking, sampling of product internal information
and/or execution states, etc., can be used to help us find approximate solutions to the oracle
problem, as described below:

0 Sometimes heuristics guesses can be used based on product domain knowledge, for
example, what other similar products would do under similar situations. Conse-
quently, similar products, such as previous releases of the same product or competi-
tors’ products with similar functionality, can often be used as the test oracle, to check
execution results and to identify system failures.

0 Knowledge of implementation details can also be used to link specific behavior to
specific program units. We can also examine various product internal information and
dynamic execution state to help solve the oracle problem. For example, if an external
function is supported by some internal components, and these internal components
were not invoked when we test for this external function, we can be almost certain
there is something wrong with this test run. In addition, product experts or developers
themselves can also help testers to perform this difficult task when some important
problem is suspected, making effective use of these people’s product knowledge.

0 Various types of consistency checking during execution, such as checking for the
database consistency, can also help us determine the execution failures. Such con-
sistency checking can usually be done through sampling of some dynamic states and
related product internal information, which could be analyzed either on-line during
the test execution, or off-line with the detailed dynamic execution information.

Test measurement

Observed failures need to be recorded and tracked until their resolution. This defect handling
or defect tracking process is typically considered part of the testing process itself, and the
reporting of the observed failures is consider part the test execution activity. However, the
handling of defects discovered during testing is not fundamentally different from that of
defects discovered during other QA activities, as we described in the general context of QA
activities in Chapter 4.

Detailed information about failure observations and the related activities is needed for
problem diagnosis and defect fixing. Some specific information for failures and faults also
includes various generic information about defects we will describe in Chapter 20, covering
defect type, severity, impact areas, possible cause, when-injected, etc. This information
could be collected either when the failure were observed and recorded or when the faults
were fixed, or even afterward. When failures are not observed, the measurement of related
test runs can be used to demonstrate product reliability or correct handling of input and
dynamic situations.

Various other measurements can be taken during test execution for further analysis and
follow-up actions. Successful executions also need to be recorded for various purposes,
including documentation of test activities, possible use as oracle to check future execution
results, etc. This is particularly important for regression testing to be described in Chapter 12
and for legacy products that are expected to change and evolve over the whole product
lifespan. The timing and other related information can be important, when it can be used as
input in analysis and follow-up activities described in Section 7.3 and in reliability analysis
described in Chapter 22. In addition to the “on-line” measurement of the dynamic test

ANALYSIS AND FOLLOW-UP 93

Table 7.1 A template for test execution measurements

0 rid - run identification, consisting of

- sc - scenario class,

- sn - scenario number,

- vn - variation number with a particular scenario,

- an - attempt number for the specific scenario variation

0 timing - start time tO and end time t l

0 tester - the tester who attempted the test run

0 trans - transactions handled by the test run

0 result - result of the test run (1 indicates success and 0 for failure)

runs and related failure information, the corresponding static test cases can be measured
“off-line” to avoid interference with normal test execution. Various other information could
also be collected, such as testing personnel, environment, configuration, test object, etc.

Table 7.1 is an example template for test execution information collected for an IBM
product during system testing (Tian, 1995). Notice that a test run here corresponds to a
specific attempt in the hierarchically organized test suite we described in Section 7.1: Each
attempt or test run, numbered an, is drawn from a specific variation, with variation number
vn, of a scenario numbered as sn that belong to a specific scenario class sc. Other information
about individual test runs, such as timing, tester, workload measured in transactions, and
the run result, is also recorded.

7.3 ANALYSIS AND FOLLOW-UP

The third group of major test activities is analysis and follow-up after test execution. The
measurement data collected during test execution, together with other data about the testing
and the overall environment, form the data input to these analyses, which, in turn, provide
valuable feedback to test execution and other testing and development activities. Direct
follow-up includes defect fixing and making other management decisions, such as product
release and transition from one development phase or sub-phase to another. We examine
these issues in this section.

Analysis and follow-up based on individual testing runs

Analysis of individual test runs includes result checking and failure identification we covered
in the previous section as part of the test execution activities. When failures are identified,
additional analyses are normally performed by software developers or “code owners” to
diagnose the problem and locate the faults that caused the failures for defect removal. This
activity may involve the following steps:

0 Understanding the problem by studying the execution record, particularly those in-
volving failures.

94 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

Being able to recreate the same problem scenario and observe the same problem. This
is important to confirm the problem and rule out possibilities of transient problems
due to environmental disturbances or user errors. It also provides input to diagnose
the problem causes.

Problem diagnosis to examine what kind of problem it is, where, when, and possible
causes. This may involve analyzing the above records and using some diagnostic tools
or addition test runs to zoom in on possible causes or to eliminate other possibilities.

Fault locating, to identify the exact location(s) of fault(s) based on information from
the previous steps and product knowledge.

Defect Jixing, to fix the located fault(s) by adding, removing, or correcting certain
parts of the code. Sometimes, design and requirement changes could also be triggered
or propagated from the above changes due to logical linkage among the different
software components.

As mentioned in Section 7.2, once an integrated fix is available, the failed test cases
were re-run to verify the fix. If successful, the normal test execution continues; otherwise,
another round of defect fixing as described above is again initiated.

Analysis and follow-up for overall testing results

Various analyses can be performed on the overall testing results and related data to provide
various assessments about testing, and to drive follow-up activities, including:

0 Reliability analysis for usage-based testing, which can be used to assess current
product reliability and as input to determine if the pre-set reliability goal has been
achieved. If so, product release or test termination decisions can be made. If not,
future reliability as well as time and resources needed to reach the reliability goal can
be estimated. Sometimes, low reliability areas can be identified for focused testing
and reliability improvement. This analysis and its many uses in follow-up activities
are described in Chapter 22.

Coverage analysis for coverage-based testing, which can be used as a surrogate for
reliability and used as the stopping criterion or as input to various decisions related
to testing management. Specifics about this are presented when specific testing
techniques and coverage hierarchies are introduced in Chapters 8 through 11.

Overall defect analysis, which can be used to examine defect distribution and to
identify high-defect areas for focused remedial actions. In addition, some product-
internal measurements, such as size and complexity of individual components, and
other measurements can also be used together with defect data to identify high-defect
areas for focused quality improvement. These topics are covered in Chapters 20 and
21.

These analyses about overall testing results and related follow-up activities are described
in Part IV, in connection with the overall analysis and feedback for all QA alternatives.
Possible test process and overall development process improvement based on these and
other analyses and feedback is also described therein.

ACTIVITIES, PEOPLE, AND MANAGEMENT 95

7.4 ACTIVITIES, PEOPLE, AND MANAGEMENT

In this section, we examine people’s roles and responsibilities in specific test activities as
well as the related management issues.

People’s role in informal vs. formal ,testing

Informal software testing and some types of formal testing could involve minimal prior
knowledge of the software products or systems. One simple way to test the software is
to just run it and observe its behavior. Some obvious problems can be easily recognized
by people with almost no prior knowledge of computer software and software products.
Some formal forms of testing, such as usability testing, can be performed with little prior
knowledge as well. For example, to test some user-friendly, “plug-and-play” software
products, novice users are often asked to start using the products. Their behavior and
their difficulties in using the products are observed and related information is recorded
for usability assessment and improvement. In this scenario, the testing involves the actual
novice users as testers, but it may also involve experienced testers who observe and record
the testing information. With automated information recording, the role of the experienced
tester in this situation can be eliminated.

Because of the above situations, many people have the wrong perception that testing is
“easy”, and any “warm body” can perform testing. This misconception also contributes to
various problems related to software management, where the least experienced and skilled
people are assigned to testing groups. This problem can be corrected by a good knowledge
of the technical skills and experience involved in testing, such as conveyed in this book,
and through some organizational initiatives, such as creating a well-established and well-
respected career path for testers (Weyuker et al., 2000).

For the large and complex software systems used in society today, any hope of assured
quality needs to be supported by testing beyond informal ad hoc testing. We need to
model the software systems, their operational environment, their users and usage scenarios,
sequences, and patterns, so that systematic testing can be performed to ensure that these
systems satisfy their customers’ quality expectations. Test cases can be derived from these
models and used systematically to detect and fix defects and to ensure software quality and
reliability. All these activities are performed by individual testers or testing teams.

Various other development personnel also need to be involved in testing activities. For
example, as part of the follow-up activity to testing, problems detected during testing need
to be resolved by the people who are responsible for the creation of the product design or
code. Therefore, software developers, particularly those designers and programmers whose
code is tested, also need to be involved in testing, although mostly indirectly to follow up
on failure observations and defect fixing.

Sometimes, people can play the dual role of developers and testers, when they test their
own code, such as in the unit or component testing sub-phases. However, for the overall
system, professional testers are typically employed to testing the integration of different
components and the overall operation of the system as a whole in the integration, system,
and acceptance testing sub-phases.

Testing teams: Organization and management

The test activities need to be managed by people with a good understanding of the testing
techniques and processes. The feedback derived from analyses of measurement data needs

96 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

to be used to help with various management decisions, such as product release, and to help
quality improvement. Test managers are involved in these activities.

Testers and testing teams can be organized into various different structures, but basically
following either a horizontal or a vertical model:

A vertical model would organize around a product, where dedicated people perform
one or more testing tasks for the product. For example, one or more teams can perform
all the different types of testing for the product, from unit testing up to acceptance
testing.

0 A horizontal model is used in some large organizations so that a testing team only
performs one kind of testing for many different products within the organization. For
example, different products may share the same system testing team.

Depending on the demand for testers by different projects, staffing level may vary over
time. In the vertical model, as the product development shifts from one phase to another
or as the development focus shifts from one area to another, project personnel could be re-
assigned to perform different tasks. One common practice in industry is to use programmers
to perform various testing tasks when testing phase peaks. This practice may create various
problems related to staffing management: If not done carefully, it may also lead to project
delays, as in Brooks’ famous observation that adding people to a late project will make it
later (Brooks, 1995). The mismatch between people’s expertise and their assignments may
also result in more defects passing through the testing phase to cause additional in-field
problems. This fact is part of the reason for people to adopt the horizontal model where
staffing level variations can generally be better managed due to the different schedules and
demands by different projects.

In reality, a mixture of the two is often used in large software organizations (Tian, 1998),
with low-level testing performed by dedicated testers or testing teams, system testing shared
across similar products, and general project support provided by a centralized support unit
for the entire organization. The general project support includes process, technology, and
tool support necessary for formal development and testing. This centralized support unit
resembles the so-called experience factory that also packages experience and lessons learned
from development for more effective future use (Basili, 1995). The idea of experience
factory is described further in Chapter 13 in connection to defect prevention based on
process improvement.

External participants: Users and third-party testers

Besides the above internal participants, external participants or users may also be involved in
testing. The concept of users can also be expanded to include non-human users of software as
well, such as other software and hardware environments that the software product in question
interacts with (Whittaker, 2001). This extended user concept is particularly relevant to
embedded systems or heterogeneous systems with extensive software components.

In general, the users’ views and perspectives, their usage scenarios, sequences, and
patterns, and the overall operational environment need to be captured in some models and
used in testing to ensure satisfactory performance and reliability for the software products.
This is particularly true for usage-based statistical testing, where active user participant is
essential in model construction. Sometimes, the users can even serve informally as testers,
such as in the usability testing example earlier.

TEST AUTOMATION 97

For certain types of software systems, such as those used in defense industry or govern-
ment, independent verification and validation (IV&V) model is extensively used, where
software systems are independently tested or verified and validated using various tech-
niques by third-party participants. This model has gained popularity for various other types
of high-assurance software systems, where high reliability, high integrity, or other prop-
erties are required, resulting in the so-called certification model or certification pipeline
(Voas, 1999).

Another reason for IV&V’s popularity is the increasing use and focus on software de-
velopment using COTS (commercial-off-lhe shelf) components and CBSE (component
based software engineering, or CBSD - component-based software development). In
such paradigms, independent testing and certification of software components or reusable
parts are key to the possible selection, use, and adoption of software components, parts, or
subsystems.

7.5 TEST AUTOMATION

Test automation aims to automate some manual tasks with the use of some software tools.
The demand for test automation is strong, because purely manual testing from start to
finish can be tedious and error-prone. On the other hand, long standing theoretical results
tell us that no fully automated testing is possible. Even most of the major sub-activities,
such as result checking or the oracle problem we discussed in Section 7.2, are undecidable.
However, some level of automation for individual activities is possible, and can be supported
by various commercial tools or tools developed within large organizations. The key in the
use of test automation to relieve people of tedious and repetitive tasks and to improve overall
testing productivity is to first examine what is possible, feasible, and economical, and then
to set the right expectations and goals. Various issues related to test automation include:

0 specific needs and potential for autornation;

0 selection of existing testing tools, if available;

0 possibility and cost of constructing specific test automation tools;

0 availability of user training for these tools and time/effort needed;

0 overall cost, including costs for tool acquisition, support, training, and usage;

0 impact on resource, schedule, and project management.

We next examine test automation in connection with the major test activities and people’s
roles and responsibilities in them.

Automation for test execution

Among the three major test activities, preparation, execution, and follow-up, execution
i s a prime candidate for automation. In fact, this is the area in which the earliest test
automation tools found some unequivocal successes. For example, various semi-automatic
debugging tools or debuggers allow testers to set and reset variable values and execution
states during execution and observe the dynamic execution behavior at different observation
points. These tools are semi-automatic because testers are still involved in test execution
intervention.

98 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

Many of the modern test automation tools can be considered as enhanced debuggers that
work for larger products, automate more individual testing activities, and are generally more
flexible and more tailorable than earlier debuggers. Various automated task sequencing
tools for job transfer from one test run to another work in much the same way as job
dispatcher/scheduler in various operating systems. In fact, most such test run sequencing
tools are platform-specific, and are often constructed within testing organizations using
some system utilities or APIs (application program interfaces).

An additional functionality for many of the test automation tools is to allow information
recording and collection. For example, in the testing of some commercial software product
in IBM (Tian et al., 1995; Tian, 1998), an internal test automation tool called T3 was used to
generate workload, monitor the execution, and record various execution details for a subset
of test scenario classes listed in Table 7.1. The specific measurement data that need to be
collected are dictated by the specific analyses to be performed. Therefore, we cover test
measurement tools in conjunction with analysis tools later.

Automation for test planning and preparation

In test planning and preparation, the potential for automation is different for different sub-
activities. The overall planning part can only be carried out by experienced personal with
expertise in planning and management as well as a good understanding of testing and
development technologies. Not much automation can be achieved in these sub-activities, nor
is there a high demand for automation here. Similarly, test procedure planning is primarily
done by experts, although the planned procedure can be later enforced and automated during
actual test execution with the help of various test execution automation tools we discussed
above.

Test case preparation is the area where there is some realistic potential for automation.
For example, in testing of legacy products, various automated analysis can be performed
to compare the current version of the product with its previous versions, and to screen the
existing test suites to select the ones for regression testing. For construction of new test
cases, automation is also possible. For example, in the T3 tool we mentioned above for
test execution support, a script can be provided to generate different workload for testing,
which effectively generates test cases and related test runs dynamically from test script.
However, the test scripts, which are high-level descriptions of what to test, need to be
constructed in the first place by the experienced testers. These test scripts are usually much
simpler and shorter, thus much less costly to generate than actual test cases. Consequently,
a semi-automated test case generation is supported in this case.

In general, test scripts or test cases are based on some formal models. The model
construction for different test techniques requires high levels of human intelligence and
expertise, and is therefore not easily automated. However, some individual steps in model
construction can be automated, such as some automated data gathering, graphical or other
aids for modeling, etc. For small-scale programs, some tools can be used to generate
certain models and test cases directly, much like using compilers to generate object code
from source code. However, these tools cannot scale up to large software systems. In
addition, in most of the models, various decisions need to be made and parameters need
to be selected for specific model variations, which can only be carried out by people with
proper expertise.

Once such a model is constructed, various tools can be used to generate test cases
automatically. Sometimes, even if a tool is not directly available, the testing model is
typically associated with some algorithms that can be at least partially implemented for

TEST AUTOMATION 99

automatic generation of at least some test cases. For example, once an underlying usage
model in the form of a Markov chain is constructed,several algorithms can be used for usage-
based statistical testing to cover frequently used usage patterns, frequently visited states,
and call-pairs (Avritzer and Weyuker, 1995). If there is a commercial tool or an existing
tool within the organization available, the key in its adoption for test case generation is to
understand what kind of model is supported and how difficult it is to construct models of
this type, in order to match it with our purpose of testing.

Automation for test measurement, analysis, and follow-up

In terms of analyses of test results and follow-up actions, the situation is similar to test
planning and preparation. Most of the follow-up actions involve problem fixing and various
other remedial and improvement initiatives, very little of which can be automated. However,
specific analysis activities can be supported by various analysis and modeling tools. For
example, many of the reliability analysis activities described in Tian (1998) were automated.
This was achieved after many rounds of studies that converged on the appropriate models and
data to use. Many popular tools were discarded because they were found to be unsuitable
for the type of commercial products froni IBM. This experience told us that automated
analysis tools should not be indiscriminately applied, but rather based on intelligent choice
based on one's own specific environment and experience. A general tool support strategy
for QA and development process measurement, data analysis, and follow-up is described
in Chapter 18.

Closely related to test result analyses a.re coverage analysis for coverage-based testing
and reliability analysis for usage-based testing. For traditional reliability analysis, we
typically need results for individual test ru.ns and related timing information (Lyu, 1995a).
Sometimes, some additional information, such as test input, environment, and personnel
information can also be used to link input states to reliability or to identify problematic areas
for focused reliability improvement (Tian, 1995). These data can usually be automatically
collected using various test execution tools or dedicated data collection tools.

Coverage analysis usually involves the use of more detailed information and measure-
ment data than that for reliability analysis. But, fortunately, various coverage analysis tools
exist to collect coverage information during test execution. For example, several popular
commercial test tools collect and analyze coverage information to provide feedback and
quality assessments to the testing process or the overall development process, including:

0 McCabe Test from McCabe and Associates provides control flow coverage related
information and analysis.

S-TCAT (System Test Coverage Analysis Tool) from SRI (Software Research, Inc.)
provides function-level coverage and call-pair information. S-TCAT can also be inte-
grated into a tool suite called Testworks from SRI for various other testing purposes.

ATAC (Automatic Test Analysis for C) from Telecodia is a data flow coverage analysis
tool for white-box testing.

To use these tools for coverage analysis, the source code is usually instrumented to build
an instrumented test driver. When this instrumented code is run in testing, information
related to coverage in the form of raw data is collected. Later on, the raw data are analyzed
for coverage. Figure 7.1 illustrates these steps with the use of S-TCAT for test coverage
analysis. Each of these steps is usually automated by the tools themselves. One interesting

100 TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION

. Generate
Repom

Instrument-
tation

I I l l I

Reference

S-TCAT Aepom S-TCAT Aepom

Figure 7.1 Test coverage analysis with S-TCAT

fact to notice is that, although these tools are designed for coverage-based testing, they can
also be used sometimes to support usage-based testing, such as the use of S-TCAT to collect
customer usage information for some IBM products (Lu and Tian, 1993b).

7.6 CONCLUDING REMARKS

To summarize, there are three major types of activities for testing, including:

1. Test planning andpreparation: which include the following important sub-activities:

0 setting goals,

0 selecting overall strategies and techniques,

0 gathering information,

0 constructing testing models,

0 preparing individual test cases,

0 preparing the overall test suite ,

0 preparing the test procedure.

Additional details about model construction and test case preparation will be included
in Chapters 8 through 11, when specific testing techniques are introduced.

2. Test execution and measurement, which include three steps:

0 allocating and adjusting test time and resources,

0 invoking and running tests, and taking appropriate measurements,

0 checking testing results and identifying system failures.

The important test oracle problem in connection to the last step above was discussed.
We use the term test oracle to indicate any means to check the testing result.

3. Test result analysis andfollow-up activities, including possible problem diagnosis and
defect fixing as follow-up to individual test runs, and analyses of overall or cumulative
test results for management decisions and quality improvement initiatives.

These activities for large-scale testing can generally be performed and managed with the
involvement of many people who have different roles and responsibilities, including:

PROBLEMS 101

0 dedicated professional testers and testing managers,

0 developers who are responsible for fixing problems, who may also play the dual role
of testers,

0 customers and users, who may also serve as testers informally for usability or beta
testing,

0 independent professional testing organizations as trusted intermediary between soft-
ware vendors and customers.

The important issue of test automation was also examined. We conclude this chapter
with the following general observation: Although fully automated support are not possible,
some automated support, combined with a good understanding of the specific test activities
and related techniques by the testers and other people involved in testing, can help us carry
out planned test activities to effectively detect many software problems and ensure product
quality.

Problems

7.1 Is test planning an important activity in your organization? Why or why not?

7.2 Describe the major activities within test planning and examine how well they are
performed in your organization.

7.3 What would be different when you perform test planning for different systems and ap-
plication environments? Particularly, consider mass-market software products, commercial
software products, internal-use-only software tools, software embedded in other systems.

7.4 Define the following important concepts related to test planning and preparation:
a) dynamic test runs vs. static test cases,
b) test suite and its organization,
c) input and output variables, and how to use them to define program behavior,
d) sensitization of test cases.

7.5 Test execution may be more sensitive to different environments that the other major
testing activities. Describe testing execution for systems your are working on and compare
it to the generic test execution issues we discussed in this chapter.

7.6 Besides dealing with defects, what kind of analysis and follow-up is usually needed?

7.7 What is a test oracle? What oracles are used in your testing currently?

7.8 What test automation tools are used in your organization? Can you classify them
using the different areas of automation we described in this chapter?

7.9 Sort the test automation tools you are familiar with or the ones we mentioned in this
chapter by their degree of automation.

7.10 One of the common problem associated with the use of test automation tools is
unrealistic expectations: If I use so-and-so, all my testing problems will be solved. How
would you explain to your managers or colleagues when they have unrealistic expectations?

7.11 When you have many test automation tools, do you still need to learn about the basic
testing techniques?

This Page Intentionally Left Blank

CHAPTER 8

COVERAGE AND USAGE TESTING
BASED ON
CHECKLISTS AND PARTITIONS

In this chapter, we describe several formal test techniques whose models are based on simple
structures such as lists and partitions. In particular, the following topics are covered:

0 We start with informal and semi-formal testing with the use of various checklists in
Section 8.1.

0 These checklists are formalized into partitions in Section 8.2 to perform basic coverage-
based testing.

0 The basic usage-based testing for partitions using a similar testing model called
Musa's operational profiles (OPs) is described in Section 8.3.

0 We also cover the procedure for developing OPs in Section 8.4 and present a com-
prehensive case study in Section 8.5.

Additional testing techniques based on similar underlying models are covered in Chap-
ter 9 for testing boundary conditions between partitioned input sub-domains.

8.1 CHECKLIST-BASED TESTING AND ITS LIMITATIONS

As already mentioned in Chapter 6, the simplest form of testing is to start running the
software and make observations, in the hope that it is easy to distinguish between expected
and unexpected behavior. Along the same line, software systems are sometimes tested in

103

104 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

a similar way to see if some specific problems can be observed or if specific operational
condition and input can be handled without resorting to some systematic method. We call
these forms of simple and informal testing ad hoc testing. Ad hoc testing is also called
random testing in some literature. However, we will avoid this use of the term random
testing because of the possible confusion between it and usage-based statistical testing that
is random testing based on specific operational profiles or distributions of likely operations
or operational sequences.

When ad hoc testing is used repeatedly to test a software system, the testers then need to
keep track of what has been done, in order to avoid wasting their time repeating the same
tests. In addition, an informal “to-do” list is commonly used to track what needs to be
done. Such to-do lists can be a physical list, an online list, or just a mental list. The use
of these informal lists forms the rudimentary and implicit checklists, where each item can
be checked off when corresponding testing was performed, until every item on the lists is
checked off.

Testing with checklists

The idea of checklists can be and has been generalized to perform systematic testing for
many software systems (DeMillo et al., 1987; Kaner et al., 1999; Binder, 2000). For exam-
ple, a specification checklist, or a checklist based on product specifications with each major
specification item as a checklist item, can be used to perform black-box testing. Similarly,
checklists of expected programming features that are supposed to be implemented in a soft-
ware product, or coding standards that are supposed to be followed in implementation, are
examples of white-box checklists, which can be used to support various types of white-box
testing. In fact, the commonly used testing strategy of statement coverage in unit and com-
ponent testing, or component coverage in integration and system testing, is also white-box
checklist based testing, where each element in the checklists corresponds to a specific state-
ment or a specific component, respectively. As we will also see in Section 8.3, usage-based
statistical testing can also be supported by a special form of checklists called operational
profiles (OPs), in which each item is associated with an operation to be performed together
with its probability of usage.

In using these checklists, a specific testing based on a specific checklist can stop when
every item on it has been tested (or “checked off”). By been “tested” or “checked off’, we
mean that the corresponding test case has been executed, and follow-up activities, such as
fixing discovered problems, have been carried out and completed, which may also include
rerunning the test case to verify that the problems have indeed been fixed. Some commonly
used checklists for black-box or white-box coverage testing are listed below:

0 Functional (black-box) checklists at different levels of abstraction and granularity,
ranging from major high-level functions for the overall system to specific low-level
functions of an individual unit or components.

0 Checklists of system elements (white-box) at different levels of granularity, ranging
from sub-systems and modules at the high level to individual statements or data items
at the low level.

0 Checklists of various structures or features that cut through different elements, such
as list of call-pairs, consumers-and-producers for certain resources, modules sharing
some common data, etc. These lists are concerned with implementation structures,
therefore can be classified as white-box checklists as well.

CHECKLIST-BASED TESTING AND ITS LIMITATIONS 105

Table 8.1 A high-level functional checklist for some relational database products

abnormal termination
backup and restore
comnnunication
co-existence
file I/O
gateway
index. management
installation
logging and recovery
locking
migration
stress

Checklists about certain properties, such as coding standard, specific specification
items, etc., which can be either black-box or white-box.

Other basic types of checklists are also possible. A common way to obtain usable
checklists is to select items from several exhaustive checklists based on some criteria and
to combine them. Many checklists can also be used together, to form some linked set of
things to check during testing, as discussed below.

Table 8.1 gives a sample high-level checklist for some relational database products (Tian
et al., 1995; Tian, 1998). In fact, each item corresponds to a specific high-level functional
area or aspect important to the products as perceived by their users, which can be and was
further refined into sub-areas using other checklists.

From basic checklists to hierarchical and combined checklists

The most commonly used form of multiple checklists is the hierarchical checklist, with
each item in a higher-level checklist expandable to a full checklist at a lower level until we
stop at a level of detail deemed enough by some criteria. In the checklist in Table 8.1, each
high-level functional area represented by a n individual item can be divided into sub-areas,
and each sub-areas can be divided further. In fact, they form the hierarchical test suite we
described in Chapter 7. Table 8.1 and its associated checklists form a set of hierarchical
checklists that can be used as the basis for coverage based testing for these large software
systems.

In addition to the use of individual checklists and hierarchical sets of checklists above,
various checklists can also be combined in other forms. For example, a coding standard
checklist can be combined with a component or unit checklist to make sure that each
component follows all the recommended practice in the coding standards. This combination
of two checklists forms a two dimensional checklist, or a table with each of its entries to be
checked off, as illustrated in Table 8.2. Similarly, higher dimensional checklists can also be
used. In addition, mixed checklists that mix the direct list combinations and hierarchies are
also possible, but such mixed checklists should be used with care because of the possible
confusion involved.

106 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

Table 8.2
a component checklist

A template for a two-dimensional checklist by combining a standards checklist and

Component Standards Items
S n ... s1 s 2

Problems and limitations of general checklists

One of the important characteristics of these checklists is that they are typically not very
specific, particularly those high-level ones. For example, a high-level functional checklist
typically lists the major functions to be performed by a software product, but the list items
are hardly detailed enough for testers to start a specific test run. The translation from this
testing model to the test cases and then to test runs is not a simple matter. It usually involves
experienced testers setting up the system and testing environment to execute specific test
cases. In addition, repetition of the same test case in a later test run can only be guaranteed
with this additional information about setup and environment, but not deduced from the
checklist item itself. This would lead to difficulties when we try to rerun the failing execution
to recreate the failure scenario for problem diagnosis, or when we need to re-verify the
problem fixes. Therefore, additional information needs to be kept for these purposes.

With the increased demand for more automation, service, and functionality, modern
software systems also become larger and more complex. Such systems consist of many
components that are interconnected and interact with one another. There are also many
different functions provided or supported by the systems for many different users. Both the
structural complexity and functional complexity make it hard to effectively use checklists
for testing and quality assurance, because of reasons below:

0 It would be hard to come up with checklists that cover all the functional (black-box) or
structural (white-box) components from different perspectives and at different levels
of granularity, resulting in missed areas of coverage. These areas are the “holes” in
coverage commonly referred to by practitioners.

0 In an attempt to provide good coverage, a lot of overlaps between different items
in the checklists may be introduced, resulting in redundant testing effort when such
checklists are used.

0 Some complex interactions of different system components or among major system
functions are hard or impossible to describe using checklists.

To deal with the third problem, we will introduced finite-state machines (FSMs) and
other related models as the basis for formal and systematic testing in Chapters 10 and
11. The first two problems can be resolved if we can derive a special type of checklists,
called partitions, that can both achieve full coverage of some specifically defined entities

TESTING FOR PARTITION COVERAGE 107

or relationships and avoid overlaps. The formality and precision involved in defining these
partitions would also help us obtain a more precisely defined set of test cases as compared to
general checklist, thus making problem diagnosis, fix re-verification, and other tasks easier
to perform.

8.2 TESTING FOR PARTITION COVERAGE

In the software testing context, partitions and partition-based testing are a special type of
checklists and checklist-based testing. Partitions possess some desirable properties that set
them apart from general checklists. Therefore, they can be used to better support testing
and address some specific problems associated with general checklists in two areas: Better
coverage because a partition is collectively exhaustive, and better efficiency because of the
use of mutually exclusive partitions.

8.2.1 Some motivational examples

As described in the previous chapter, one essential step in testing is to sensitize test cases,
or defining specific input variables and associated values to exercise certain parts of the
program in the white-box view or to perform certain functions in the black-box view. If
the input-output relation is a simple one, then test cases can be directly constructed by
selecting corresponding input variable values through some systematic sampling. If the
sample space is relatively small, exhaustive testing might be possible. Example of such
cases include a decision based on a few input variables of the logical type, each can take
a true (T) or false (F) value. Then the number of input combinations would be 2n for n
such input variables. Complete coverage of input combinations are possible as long as n
remains small. However, even for simple input-output relations, such as a simple program
calculating the root of quadratic equations in the form of

ax2 + bz + c = 0 ,

with the solution for the root r to be:

The number of input combinations between the three input variables a, b, and c could be
huge. For example, if each of these three variables is represented by a 32 bit floating point
number, the number of all possible input value combinations is then

Even for this fairly simple program, the number of test cases to cover all the input value
combinations is beyond the testing resource for any organization.

However, the above example can also be used to illustrate the basic idea of partition-
based testing. Notice that in our algebra classes, we all learned to distinguish the different
cases for the root associated with different values for the part d = b2 - 4ac. We know that
the equation has two different roots if d > 0, two identical roots if d = 0, and no real root
if d < 0. This relationship between d and r can be used in testing to see if the programs
handles all three of these different situations correctly. In doing this, we effectively grouped
the set of all possible input value combinations or test cases into three equivalent classes, or

108 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

Table 8.3 Sample test cases for the program solving the equation ax2 + bx + c = 0

Test Condition Input
Case d = b2 -4ac a b c

1 d > O 1 2 -1
2 d = O 1 2 1
3 d < O 1 2 3

a partition into three subsets defined by the three conditions on d. Such partitioned subsets
of input domains, or the set of possible input values, are called input sub-domains.

In this case, three test cases can be used, as illustrated in Table 8.3. Notice that the choice
of specific test cases for each sub-domain that satisfy specific conditions is not unique.
However, if simple sub-domain coverage is the goal, then it doesn’t matter which one we
choose, because every point in a given sub-domain receives the same kind of treatment, or
belongs to the same equivalent class. In fact, this testing strategy directly corresponds to
the checklist-based testing, with the domain partition as the checklist, and each sub-domain
corresponding to a single element in the checklist.

This idea can be generalized to support partition-based testing for the general case: We
can sample one test case from inside each subset in the partition, thus achieving complete
coverage of all the subsets of corresponding equivalence classes. As illustrated in this
example, the key to partition-based testing is to define the partitions first and then try to
sensitize the test cases to achieve partition coverage.

8.2.2 Partition: Concepts and definitions

Partition is a basic mathematical concept, generally associated with set theory. Formally, a
partition of a set S is a division of a set into a collection of subsets G I , G2, . . . , G, that
satisfies the following properties:

The subsets are mutually exclusive, that is, no two subsets share any common mem-
bers, or formally,

V i , j , i # j =+ Gi n Gj = 0.

That is, the intersection of any such two subsets must necessarily be empty.

The subsets are collectively exhaustive, that is, they collectively cover or include all
the elements in the original set, or formally,

n

U Gi = S.
i=l

That is, the union of all subsets (Gi’s) is the set S.

Each of these subsets in a partition is called an equivalent class (or equivalence class),
where each member is the same with respect to some specific property or relation used to
define the subset. Formally, the specific relation for the members in an equivalent class is
symmetric, transitive, and reflexive, where

TESTING FOR PARTITION COVERAGE 109

A symmetric relation is one that still holds if the order is changed. For a binary
relation R defined on two elements u and b, R is symmetric if R(u, b) + R(b, u) .
For example, “=” is symmetric; but I ‘ > ” is not.

0 A transitive relation is one that holds in a relation chain. A transitive binary relation
R is one that R(u,b) A R(b,c) + R(u,c). For example, “>” is transitive; but
“is-mother-of” is not.

0 A reflexive relation is one that holds on every member by itself. A reflexive binary
relation R is one that R(u, u). For example, “=” is reflexive; but “>” is not.

Similarly, if a relation is not symmetric, not transitive, or not reflexive, we call it asymmetric,
intransitive, or irreflexive, respectively.

With these formal definitions and descriptions of partition in mind, we next examine
various uses of partitions and related ideas for software testing (White and Cohen, 1980;
Clarke et al., 1982; Weyuker and Jeng, 1991; Beizer, 1990).

8.2.3 Testing decisions and predicates for partition coverage

Since partitions are a special subclass of checklists, the types of partitions can closely
resemble the type of checklists we described in Section 8.1. However, we group them in a
different way according to the specific decisions associated use in defining different types
of partitions, as follows:

Partitions of some product entities, such as external functions (black-box view),
system components (white-box view), etc. The definition of such partitions are
typically a simple “member” relation in sets, that is, z E S for z as a member of the
set S. As a concrete example, whether a component belongs to a sub-system or not
is easy to decide. The key is to ensure the partitioned subsets truly form a partition
of the original set of all entities. That is, they are mutually exclusive and collectively
exhaustive.

0 Partitions based on certain properties, relations, and related logical conditions. These
partitions can be further divided into two sub-groups:

- Direct use of logical predicates, through logical variables (those take T/F or
True/False values) and connected through logical operators AND (A), OR (V),
or NOT (7).

- Comparison of numerical variables using some comparison operators, such
as “<”, “=”, “I”, “L”, “>”, and “#”. For example, all possible values (a
property) of a variable 3: can be partitions into two subsets Sl, and Sz defined
by S1 = {z : z < 0) and SZ = {z : z 2 0).

0 Combinations of the above basic types are also commonly used in decision making.
For example, the sub-domain of non-negative integers less than 2 1 can be specified as
(z E I) A (z 2 0) A (z < 21), where I denotes the set of integers. The values range
is also conveniently represented as LO, 21), as we see in mathematical literature.

For the first type of partitions, the testing would be essentially the same as for checklist-
based testing: we simply select one item for testing at a time from the subset as a represen-
tative of the corresponding equivalent class until we have exhausted all the subsets.

110 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

For the other types of partitions above, testing would involve some sensitization in
determining the input variables and their values in consultation with the specific conditions
or logical predicates used to define each partitioned subset. For example, to satisfy both
conditions (x 2 0) and (x < 21) for the subset [0, 21) above, we might as well select
x = 10. Notice that in each subset, there might be many elements. Partition-based testing
selects one from each subset as the representative for the subset based on the equivalence
relations defined.

In addition, the conditions for partitions, or the logical predicate values, are often closely
related to either the product specifications (black-box view) or actual implementations
(white-box view). For example, we might specify that a function works for certain data
types, such as the distinction between integer arithmetic operations and floating point ones
in most numerical computing systems. Similarly, many conditional statements in programs
may be related to some partitioning conditions, such as those used to guard unexpected
input. For example, most arithmetic software packages would not accept divide by 0 as
legitimate input. In general, such domain partitions can be represented by simple decisions
in product specification or multiple decisions in program code. When multiple decisions
are involved, decision trees or decision tables can be used. Therefore, we can consider
decision testing and related predicate testing as part of the general partition-based testing.

The above combinations of partition definitions can often be mapped to a series of de-
cisions made along the way of program execution. These decisions in a sequence can be
represented by a decision tree, starting from the initial decision, progressing through inter-
mediate decisions, until we finish with a final decision and program termination. Some-
times, the decision can be organized into stages, with the same question asked at each stage
regardless of the previous decisions. This would result in a uniform decision tree. Alter-
natively, some of the later decisions and questions asked may be dependent on the earlier
ones, resulting in a non-uniform decision tree.

In either case, we can use the unique path property, from the initial decision node to the
last decision outcome to enumerate all the series of decisions, and treat each unique path as
a sub-domain and derive test cases to cover each sub-domain. In this way, a decision tree is
equivalent to a hierarchical checklist, but with the items of each checklist at each decision
point form a partition. For example, in the hierarchical checklist using test scenario classes,
scenario numbers, and variation numbers in Section 8.1 can be interpreted as a three-level
decision tree, and test cases can be selected to cover these individual variations from specific
scenarios in different scenario classes.

The key to deriving coverage based testing for such decisions is to select values to make
the test execution follow specific decision paths. For example, if we have decisions using
logical variables P and Q in two stages, then we can realize the four combinations:

0 P A Q or TT, that is, P = True and Q = True.

0 P A -Q or TF, that is, P = True and Q = False.

0 -P A Q or FT, that is, P = False and Q = True.

0 T P A -Q or FF, that is, P = False and Q = False.

For a specific combination, if other numerical variables are involved, we need to select
the numerical variable values to make them satisfy the conditions. For example, to select
a test for (x 2 0) A (x < 2l) , we can choose x = 10, that satisfies both (x 2 0) and
(x < 21). In more complicated situations, we might want to generate a list of candidate test
cases based on one condition. and then use other conditions to eliminate certain elements

USAGE-BASED STATISTICAL TESTING WITH MUSA’S OPERATIONAL PROFILES 1 1 1

from this initial candidate list. In this example, we might start with a list like { 1, 10, 100,
. . .}, and the second condition would reduce it to { 1, lo}, and we can finally select 10 or
2 = 10 as our test case to cover this specific decision combination.

8.3 USAGE-BASED STATISTICAL TESTING WITH MUSA’S OPERATIONAL
PROFILES

One important testing technique, the usage-based statistical testing with Musa’s operational
profiles (OPs) (Musa, 1993; Musa, 1998), shares the basic model with partition testing
techniques, and enhances it to include probabilistic usage information. We next describe
Musa OPs and their usage in testing.

8.3.1 The cases for usage-based statistical testing

The many sub-domains for large software systems may include many different operations
for each sub-domain. In such situations, the equivalence relation as represented by partition
testing described earlier in this chapter represents a uniform sampling of one test point from
each sub-domain. However, if operations associated with one particular sub-domain are
used more often than others, each underlying defect related to this sub-domain is also more
likely to cause more problems to users thain problems associated with other sub-domains.

This likelihood for problems to customers,or related system failures defined accordingly,
is captured in software product reliability. As already introduced in Chapter 2, reliability is
defined to be the probability of failure-free operations for a specific time period or a specific
input set (Musa et al., 1987; Lyu, 1995a; Tian, 1998). The best way to assess and ensure
product reliability during testing is to test the software product as if it is used by customers
through the following steps:

0 The information related to usage scenarios, patterns, and related usage frequency by
target customers and users needs to be collected.

0 The information collected above needs to be analyzed and organized into some models
- what we call operational profiles (OPs) - for use in testing.

Testing needs to be performed in accordance with the OPs.

0 Testing results can be analyzed to assess product reliability and provide feedback to
the testing and the general software development process.

Most of the common testing related activities were described in Chapter 7, and relia-
bility analysis is described in Chapter 22. Therefore, we concentrated on the information
collection, OP construction, and it usage in testing in the rest of this chapter.

Like most test activities, the actual testing is typically performed late in the overall
product development process, and the model construction could be and should be started
much earlier. Usage-based statistical testing actually pushes both these activities to the
extremes at both ends as compared with most other testing techniques. On the one hand,
the operational profiles (OPs) need to be constructed with customer and user input. It
makes more sense to start them right at the requirement analysis phase, or even earlier, in
the product planning and market assessment phase. On the other hand, testing according
to customer usage scenarios and frequencies captured in OPs cannot be performed until
most of the product components have been implemented. Therefore, such OP-based testing

11 2 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

Table 8.4
for different file types for SMUlSEAS

Usage frequencies (hits) and probabilities (% of total)

File type Hits % of total

.gif

.html
directory

.pdf

.class

.PS

.PPt

.jpg

.css

.txt

.doc

.ico

.C

438536
128869
87067
65876
10784
10055
2737
25 10
2008
1597
1567
1254
849

57.47%
16.89%
11.41%
8.63%
1.41%
1.32%
0.36%
0.33%
0.26%
0.2 1 %
0.21%
0.16%
0.11%

Cumulative 753709 98.78%

Total 76302 1 100%

could only be performed in the very late sub-phases of testing, such as in the integration,
system, or acceptance testing sub-phases.

8.3.2 Musa OP: Basic ideas

According to Musa (Musa, 1993; Musa, 1998), an operational profile, or an OP for short,
is a list of disjoint set of operations and their associated probabilities of occurrence. It is a
quantitative characterization of the way a software system is or will be used. As a simple
example, consider the usage of www . seas. smu. edu, the official web site for the School
of Engineering (which used to be called School of Engineering and Applied Science, or
SEAS) of Southern Methodist University (SMU/SEAS). Table 8.4 gives the OP for this
site, or the number of requests for different types of files by web users over 26 days and the
related probabilities.

The “operations” represented in the operational profiles are usually associated with
multiple possible test cases or multiple runs. Therefore, we typically assume that each
“operation” in an OP can be tested through multiple runs without repeating the exact exe-
cution under exactly the same environment. In a sense, each operation corresponds to an
individual sub-domain in domain partitions, thus representing a whole equivalence class.
In this example, each item in the table, or each operation, represents a type of file requested
by a web user, instead of individual web pages. Of course, we could represent each web
page as an operation, but it would be at a much finer granularity. When the granularity is too
fine, the statistical testing ideas may not be as applicable, because repeated testing may end
up repeating a lot of the same test runs, which adds little to test effectiveness. In addition,
such fine-granularity OPs would be too large to be practical. For example, the number of
individual web pages on an average web site would be more than tens of thousands, while
the number of file types is usually limited to a hundred or so, including many variations

USAGE-BASED STATISTICAL TESTING WITH MUSA’S OPERATIONAL PROFILES 1 13

Figure 8.1 An operational profile (OP) of requested file types for the SMUISEAS web site

of the same type, such as HTML files with extensions of “.HTML”, “.html”, “.htm”, etc.
There are more than 11,000 web pages but only about a hundred file types for SMWSEAS.

There are also several other key points worth noting about such OPs, including:

0 It is customary to sort the operations by descending probabilities of usage and present
the results in that order.

0 It is common to have quite uneven distribution of usage probabilities, with a few
frequently used ones account for most of the usage frequencies. For example, the
top 13 out of a hundred or so files types account for more than 98% of the web hits
or individual requests for SMU/SEAS.

0 Related to the uneven distribution of usage probabilities is the probability threshold
for individual operations. The basis of statistical testing is to perform more testing for
those operations that are used more by the customers. Therefore, if some operations
have very low probability of usage, we could omit them in the OP. This probability
threshold plays an important role in limiting the numbers of operations to represent
in the OP, especially when there are a large number of possible operations.

0 The representation in forms similar to Table 8.4 is called tabular representation in
literature, which can often be represented visually as a histogram, such as in Fig-
ure 8.1. The use of such histograms has several advantages, primary in the direct and
intuitive information about the relative value and magnitude of the different usage
probabilities associated with different operations.

Consequently, an OP can be considered to be a checklist or a partition, but with frequency
or probability of usage associated with each item in the list or with each sub-domain in the
partition.

11 4 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

8.3.3 Using OPs for statistical testing and other purposes

Once an OP is constructed, it can be used to support statistical testing by some random
sampling procedure to select test cases according to the probability distribution and execute
them. Essentially, each operation in the OP corresponds to certain test cases specifically
constructed or selected from existing ones to specifically test this system operation. The
allocation of test cases is also affected by the associated probability. For legacy products,
there may be more test cases than we can use for some operations. Therefore, the probabil-
ities for individual operations can be used to select some existing test cases while screening
out others. Consequently, these probabilities determine the minimal number of test cases
that need to be constructed or selected for each operation.

The actual test runs are sampled from these test cases according to the probability of
associated operations. Therefore, the number of test runs for each operation in the OP is
proportional to its probability. Under most circumstances, these test cases and associated
runs can be prepared ahead of time, so that some test procedure can be employed to sequence
the multiple test runs according to various criteria we described in Chapter 7. In some cases,
truly dynamic random sampling can be used, to dynamically select test cases to run next.
However, such dynamic random sampling will slow down test execution and the system
performance because of the overhead involved in managing the test case selection in addition
to monitoring the test runs. On the other hand, much of testing is aimed at monitoring
the system performance and possible problems under “normal” operational conditions,
particularly for usage-based statistical testing of common usage scenarios carried out under
the environment that resembles target customers’. We would like to reduce such overhead
and get a truly representative setting of in-field operations. Therefore, unless absolutely
necessary, we should prepare the test cases and test procedures ahead of time to reduce the
impact of testing overhead on normal system operations.

In addition to or in place of proportional sampling, progressive testing is often used with
the help of OPs. For example, at the beginning of testing, higher probability threshold can
be used to select a few very important or highly used operations for testing. As testing
progresses, the threshold can be lowered to allow testing of less frequently used operations
so that a wide variety of different operations can be covered. In a sense, the use of OPs can
help us prioritize and organize our testing effort so that important or highly used areas are
tested first, and other areas are progressively tested to ensure good coverage.

The use of OPs for statistical testing enables us to make of quantitative reliability assess-
ment and ensure product reliability that is meaningful to target customers. Failure and test
execution data from OP-guided testing should resemble the data that would be expected by
target customers. It is for this reason that data from such statistical testing can be analyzed
using various reliability models to assess product reliability, to determine if the product is
reliable enough for release. If the reliability goal has not been achieved yet, the analysis re-
sults can often help us predict time and resource to reach the reliability goal, and sometimes
to identify problematic areas for focused improvement actions. These reliability models
and their usage are described in Chapter 22.

Besides the above use of OPs to help us prioritize testing and assure product reliability,
OPs can also be used in other situations for various purposes, including:

Productivity improvement and schedule gains could be achieved because of the focus
on high-leverage parts with the use of OPs. The use of OPs would reduce the over-
testing of lesser-used product components or functions: The same effort could be
applied to most-used parts, with reduced effort for lesser-used parts. According to

CONSTRUCTING OPERATIONAL PROFILES 11 5

data from AT&T (Musa, 1993), a reduction of 56% system testing cost or 11.5%
overall cost could be achieved.

Introducing new products by implementing highly used features quickly to capture
market share and then gradually adding lesser-used features in subsequent releases or
product updates. OP-guided testing would make this approach work. This use of OP
is similar to and can be combined with spiral development process (Boehm, 1988), or
the use of software prototypes to resolve important product design questions before
proceeding with other implementation activities.

Better communications with customers and better customer relations: The use of
OPs can foster better communications with target customers and help establish and
maintain better customer relations. There are several reasons for these, including:

- The construction of operational profiles needs the direct or indirect involvement
of customers. Customer’s perspectives of quality, product features, relative
importance, and possible usage scenarios and associated problems are adopted
in testing when OPs are used. Therefore, it’s more likely for the software
development organization and the customers to appreciate each other’s views
and efforts in such a collaborative instead of an adversarial environment.

- The use of OPs can help develop more precise product requirements and spec-
ifications, which are more likely to satisfy customers’ needs.

- Customer and user training can be better focused on those features that the
customers use the most instead of esoteric ones more likely to be used by
internal users.

0 High return on investment: According to data from AT&T (Musa, 1993), the OP
development cost for an “average” product is about one staff-month. The average
product is one that contains 100 KLOC (thousand lines of code) and takes 10 devel-
opers 18 months to finish. There is also a sub-linear increase of OP development cost
for larger products. The cost-benefit ratio is reported to be about 1:lO.

Because of these tangible and intangible benefits, OPs should always be a prime candidate
for testing in large software system with many users or with diverse usage environments.

8.4 CONSTRUCTING OPERATIONAL PROFILES

An important question before actual OPs are constructed is whether a single OP would
be enough or multiple OPs have to be constructed. The decision should be based on the
homogeneity or similarity of product usages by different customers: If there are no fun-
damental differences, one OP would be appropriate. However, if qualitative or substantial
differences exist, then one OP for each individual group of customers would be appropri-
ate. The basic assumption is that one OP would be sufficient to capture the usage scenarios
and probabilities for all the customers within a group. Sometimes, a mixed strategy might
be meaningful, to develop separate OPs for individual groups, and then the combined OP
can be used to provide an overall picture of the product’s use by all customers. We next
examine the generic methods for OP construction and some proven procedures that have
been successfully used in industry.

11 6 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

8.4.1 Generic methods and participants

There are three generic methods for information gathering and OP construction: actually
measurement of usage at customer installations, survey of target customers, and usage es-
timation based on expert opinions. For existing software products, the most precise way
to obtain customer usage scenarios and associated probabilities is through actual measure-
ment of the in-field operations at the customer installations. Actual measurement provides
ultimate accuracy but also faces various limitations, including:

0 For new products or new applications, there won’t be in-field customer installations.
Therefore, actual measurement would not be possible. One way to bridge this gap
is to use measurement from similar products or earlier versions of the product for
different applications, and then make certain adjustment to the measurement results
to obtain the OP for the new products or new applications. However, this adjustment
would be difficult and would involve a substantial amount of subjective judgment.
Therefore, other approaches to for OP construction might be preferable.

0 Even if there are in-field customer installations for existing products or earlier ver-
sions of new product releases, the actual usage information and the environment may
contain a substantial amount of business sensitive and proprietary data. Therefore,
the customers would not be willing to share the data with the software development
organizations. In fact, this situation covers most of the commercial products and the
business relations between software development organizations and their customers.
One way to overcome this is through some voluntary participation of selected cus-
tomers, similar to beta testing that we will describe in Chapter 12. Alternatively,
instead of measuring at the customers’ sites, a few customers could be invited in,
to run their applications on the new versions of software products before product
release, such as in the ECI (early customer involvement) program by IBM, through
which information was collected to build OPs (Lu and Tian, 1993a). However, both
these types of remedial solutions suffer from their own limitations, primary in the
late availability of such OPs and the doubtful representativeness of the information
collected.

In addition to the above difficulties and limitations, actual measurements are also ex-
pensive to implement. Consequently, various other ways have been suggested, primarily
customer surveys to obtain information from the customers directly and expert opinions to
obtain customer usage information indirectly. Both of these ways of information gather-
ing can be carried out much earlier in the software development process, typically in the
requirement analysis stage. They are even applicable for brand new products, to get infor-
mation about the “intended” customer usage by surveying potential customers or obtaining
expert opinions. In addition, these techniques are typically much simpler and cheaper to
implement than actual measurement.

Customer surveys can provide more objective and potentially more accurate informa-
tion regarding a product’s usage than expert opinions that are indirect information about
product use by customers. For different products and market segments, such surveys may
be implemented differently. For example, for products with a single customer or limited
number of customers, such as many defense-related software products whose customers are
typically the government(s) or government branches, the survey might be more manageable.
However, for commercial products and other mass-market products, such as commercial
database products or operating systems for PCs, the massive user population requires careful

CONSTRUCTING OPERATIONAL PROFILES 117

planning to reduce the survey cost while maintaining result accuracy. Another problem we
have to deal with in using customer surveys is that the accuracy of the information obtained
is largely affected by the product knowledge of the individuals who complete the survey.

The main advantages of using expert opinions to construct OPs are the ready availability
of these mostly internal experts and the much lower cost. Therefore, many of the rough
OPs can be obtained this way, which can be cross-validated later on when customer survey
and measurement information is obtained. Other information sources include many of the
existing product and system documentations, such as architectural and design documents,
technical memos, and documents of understanding with customers and partners, as well
as product specifications and relevant stamdards. From these information sources, high-
level structures, major components, interconnections among these components, as well as
rough usage frequency and importance information, can be easily obtained by some product
experts or with consultation with such experts.

Musa suggested that the operational profile should be developed by a combination of
system engineers, high-level designers, and test planners, with strong participation from
product planning and marketing functions (Musa, 1993; Musa, 1998). The involvement of
customers is implicitly assumed here as a primary source of information. If we consider the
test planners as the coordinator of OP construction activities and the testing team as the main
user of the OPs, we can then consider the other parties above as representing experts whose
opinions are used in the process for OP construction. Each party bring unique expertise to
OP construction, as follows:

Planning and marketing personnel are the primary contact with customers, and their
involvement would ensure that customers’ concerns and their perspectives are re-
flected in the resulting OPs. 1nitiall:y product requirements are also gathered by these
people, which may as well contain various OP related information. Gathering of such
information could also be a part of requirement gathering.

0 System engineers are responsible for the overall product requirement and specifica-
tion, including high-level functions and features to be implemented in the product.
Therefore, their participation would ensure a comprehensive system view of the re-
sulting OPs.

High-level designers are responsible to produce high-level product designs based on
product specifications. Their participation would help map the external functions
or features expected by customers into internal product components, modules, or
sub-systems that are tested.

On the other hand, the large software systems usually involve many customers who use
the software products differently under different environments or settings. It would be
highly unlikely that all the information about the operations can be obtained and organized
in one step. Consequently, some procedural support is usually needed for such situations.
In what follows, we will describe two such procedures developed by Musa: a top-down
procedure with multiple profiles refined along the way labeled as Musa-1 (Musa, 1993) and
a single profile procedure labeled as Musa-2 (Musa, 1998). Musa-1 is also used in our case
study in Section 8.5.

8.4.2 OP development procedure: Musa-1

In Musa’s top-down approach (Musa, 199’3) or Musa- 1 procedure, one OP is developed for
each homogeneous group of users or operations by following five basic steps below:

1 18 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

Table 8.5 A sample customer profile

Customer Type Weight

corporation 0.5
government 0.4
education 0.05
other 0.05

1. Find the customerprofile by defining a complete set of customer categories weighted
per a usage factor.

2. Establish the userprofile by defining user types weighted in relation to the customer
groups and relative usage rates.

3. Dejine the system modes and related projile by identifying the sets of operations
commonly used together and obtaining their related weights.

4. Determine the functional profile by identifying individual (high-level) functions and
obtaining their related weights based on analysis of the system modes and environ-
mental variables.

5. Determine the operational profile by refining high-level functions into detailed oper-
ations and obtaining their usage probabilities.

Notice that in this top-down approach, each step results in a profile in progressively more
detail, culminating in the final operational profile. The focus is on the external users and
their usage of the software systems. And the general view is that these users are affiliated
with large organizations or are authorized to use certain software products; while each
customer represents an organization.

The main difference between a customer and a user is that the former is responsible
for the acquisition of the software products, while the latter uses them. For example, a
database product could be targeted toward corporate, governmental, educational, and other
large organizations as potential customers. In this case, both the number of customers in
each category, as well as their importance to the software vendors, can be captured in this
customer profile. The resulting customer profile would be in the form of pairs of customer
types and associated probabilities or weighting factors, such as in Table 8.5.

Within each customer group or type, there are different user groups, frequently with some
similar user groups across different customers. For example, in the example above with
database product for large organizations, there may be end users, database administrators
(dba), application programmers, third party contractors. The usage probabilities by these
user types or their weights within each customer type can be determined first, and then the
weighted sums give us the overall user profile, as illustrated in Table 8.6. Notice that the
customer types (ctype) are abbreviated in Table 8.6, with “com”, “gov”, “edu”, and “etc”
for corporate, governmental, educational, and other organizations respectively. Notice that
some user types are absent from some customer types, such as third party contractors are
represented in governmental and educational organizations but not in corporate and other
organizations. When a user type is missing, it is indicated in Table 8.6 by a “-”, and its
weight is interpreted as 0. The customer profile (or weights by customer types) is used to
determine the overall user profile. For example the weight for end users is calculated as:

CONSTRUCTING OPERATIONAL PROFILES 11 9

Table 8.6 A sample user profile

User User Profile by Customer Type Overall
Type ctype com gov edu etc User

weight 0.5 0.4 0.05 0.05 Profile

end user 0.8 0.9 0.9 0.7 0.84
dba 0.02 0.02 0.02 0.02 0.02
programmer 0.18 - - 0.28 0.104
third party - 0.08 0.08 - 0.036

0.8 x 0.5 (com) + 0.9 x 0.4 (gov) + 0.9 x 0.05 (edu) + 0.7 x 0.05 (etc) = 0.84.

The computation for the next three steps, system mode definition and profile, functional
profile, and operational profile, follows essentially the same procedure as that for user
profile: Individual profiles are obtained first, and then the weights from the previous step
are used to calculate the overall profile for this step as the weighted sums of the individual
profiles. Therefore, we will omit numerical examples in describing the next three steps.

System modes are associated with different sets of functions or operations that are com-
monly used together within a mode. For example, the differences of normal operation mode
and maintenance mode for many systems are significant, and each mode can be associated
with its own functions and operations. In this case, various system maintenance functions,
such as some backup and patching functions, are only applied under system maintenance
mode but not under normal operations.

The last two steps, functional profile and operational profile, are essentially the same
except granularity differences and sometimes implementation status differences. System
functions are high-level tasks of the projected system in the requirement, which can be
mapped to various lower-level operations in the implemented system. The function list
can be created from various sources, such as system requirement, prototypes, previous
release, user manual, etc., and then consolidated. The functional profile can then be derived,
followed by the operational profile.

One of the decisions to be made for functional and operational profiles is to use explicit
or implicit profiles. An explicit profile is similar to that in Table 8.4 and in examples we
used so far: the alternatives are disjoint and the weights (or probabilities) for them add up
to 1. These explicit profiles usually correspond to end-to-end operational sequences and
their associated probabilities. However, for many systems, staged or repeated selections,
independent of each other, of operational units may be more meaningful to the users.
For example, if a system operation can be divided into two stages, A, and B, and the
selections are independent of each other, we can then specify the implicit profile for A and
B separately. That is, we specify the distribution for A with p , = prob(A = A,) and for B
with p , = prob(B = B,). The profile for A-B selections can be calculated as the product
of their probabilities, that is, p,, = prob(A = A,, B = B3) = p , x p 3 .

8.4.3 OP development procedure: Musa-2

The above development procedure for OPs is suitable for large software systems, where
there are potentially many customers or users involved and their usage situations can be
quite diverse. Consequently, successive]profiles are used, with one for each of the 5 steps,
culminating into the final OP. However, for smaller products or ones with more homo-

120 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

geneous user population, one profile would probably be enough. The primary areas of
procedure support needed might be in the specific information source identification and
data collection. Another OP construction procedure, also proposed by Musa (Musa, 1998)
and labeled Musa-2 in this book, is suitable for such situations. One OP is constructed
for each operational mode, similar to the system mode in Musa-1 above, because testing
is typically performed under a specific operational mode instead of being in mixed modes.
There are also 5 generic steps:

1. Identify initiators of operations: These initiators include human users as well as other
software, hardware, network, etc. The human users will be the primary information
sources themselves. However, for non-human users, people who are familiar with
them, or sometimes existing documents and recorded data can be information sources.

2. Determine tabular or graphical representation: In fact, this representation used by
Musa here goes beyond simple representation to determine the type of OP will be
constructed, as we will elaborate later.

3. Operations lists: First, individual operations lists can be obtained from identified
initiators of these operations. Then, these lists can be consolidated into a comprehen-
sive list. For example, from the original lists {A, B, C} and {B, D}, we can obtain a
consolidate list {A, B, C, D}. Sometimes, some adjustments are also made to ensure
proper granularity for the comprehensive list, particularly when the initial lists are
based on different levels of granularity.

4. Determine the occurrence rate (per hour): Actual measurement is typically used to
obtain data about the occurrence rate or frequency for individual operations in the
above consolidated operations list and tabulated. This tabulation may be affected by
the type of OPs used, as we will elaborate later.

5. Determine the occurrence probability: With the measurement and tabulation results
from the previous step, this step is straightforward: When we normalized the occur-
rence rate or frequency, we get the occurrence probability, which satisfies the two
conditions 0 5 pi 5 1 and c i p z = 1. When actual measurement is not avail-
able, surveys, expert opinions, or other estimates can be used. In the latter case,
we typically directly estimate the occurrence probability while skipping the previous
step.

The tabular representation is similar to the explicit OP in Musa-1, such as Table 8.4
above. Such OPs can also be represented graphically as histograms, such as in Figure 8.1,
which is not what is referred to as graphical representation by Musa. The measurement
and tabulation in step 4 are carried out for each item in the consolidated operations list, and
these results are normalized by dividing them by the total occurrences in step 5.

The graphical representation used in Musa-2 actually correspond to a tree-structured OP
that somewhat resembles (but it is not exactly the same) the implicit OP in Musa-1 above.
In this type of OPs, the complete operational sequence can be divided into fixed number of
stages, with fixed number of choices for each stage. When we combine these stages, it gives
us a tree, much like a decision tree, but with occurrence rates and probabilities attached to
each tree branch. Therefore, a complete end-to-end operation would be a path in the tree
from the root node to one of the leaf nodes, and the path probability is the product of its
individual branch probabilities. This is best illustrated through an example in Figure 8.2
for web usage by a group of users modeled as a two-stage process:

CASE STUDY: OP FOR THE CARTRIDGE SUPPORT SOFTWARE 121

Stage 1: Start up Stage 2: Other use Operation sequence probability

default-linked 0.16

0.03 bookmarked default-bookmarked

default-mixture 0.01

80/800 =- customized-linked 0.08

800/1000 = 0.8 bookmarked
customized-bookmarked.

customized-mixture 0.56

Figure 8.2 A tree-structured or graphical operational profile

0 Stage I . Starting the browser with two choices: either on the default starting page or
a customized starting page.

0 Stage 2. All subsequent usage is modeled as one stage, with three choices: following
links in visited pages, following bookmarked pages, or a mixture of the two.

Occurrences of specific usage choices at each stage are also tabulated separately, thus
resulting in different probability distributions at points X and Y in Figure 8.2. In other
words, the probability distributions at later stages in such trees can be different, depending
on different earlier choices. However, if implicit OPs in Musa-1 are used, the probability
distributions at points X and Y would be the same. Consequently, the tree-structured
graphical OPs in Musa-2 are more powerful in representing different usage situation than
implicit OPs in Musa- 1. Explicit OPs in Musa- 1 and tabular OPs in Musa-2 are the same,
and can both be treated as degenerated multi-stage OPs when there is only one stage.

8.5 CASE STUDY OP FOR THE CARTRIDGE SUPPORT SOFTWARE

We next describe a case study constructing an operation profile for the Lockheed Martin
Tactical Aircraft System’s (LMTAS) Cartridge Support Software (CSS) (Chruscielski and
Tian, 1997). The process is an adaptation of Musa’s 5-step approach, Musa-I, described
above. This operational profile allowed the LMTAS software engineering team to derive
some clear insights about the usage rate of the CSS functions from the customer’s perspec-
tive.

8.5.1 Background and participants

The Cartridge Support Software (CSS) developed by Lockheed Martin Tactical Aircraft Sys-
tems (LMTAS) is used by aircraft personnel to load mission planning data to a readwritable
media. The read/writable media is used by pilots to upload data to the avionic computers
residing on an aircraft. The ability to use a personal computer to load mission planning data

122 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

is a significant convenience to aircraft personnel who would otherwise be relegated to key-
ing in complex data settings via the cockpit interface. The CSS affords aircraft personnel
an efficient and highly expedient means of performing the mission planning exercise from
the Graphical User Interface (GUI) of a personal computer.

Operational profile development was initiated to gain a better understanding of the CSS
product from the user’s perspective and to improve its reliability by re-focusing the testing
efforts on high-use functions. The primary personnel involved with the CSS OP develop-
ment included:

1. Software Product Manager(SPM): Responsible for the product planning and market-
ing function of the CSS. The SPM was instrumental in determining communication
paths for the solicitation of user inputs to the Operation Profile.

2. Software Test Engineers: Responsible for providing understanding into testable input
states per a typical field operation.

3. System Engineers: Responsible for specifying the system requirements, the high-
level design, and the deliverable functions which are verified during the software
testing phase.

Both authors of the reported case study (Chruscielski and Tian, 1997) were also involved
in a graduate-level class “CSE 53 14: Software Testing and Quality Assurance” at Southern
Methodist University, with Chruscielski taking the class and performed the initial work
described here as a course project, and Tian teaching the class.

8.5.2 OP development in five steps

The customers of the CSS are the air forces (US Air Force or Other Air Forces) that use
the LMTAS tactical aircrafts. The CSS also has internal users labeled as “Avionic System
Test and Flight Test.” For the purposes of the CSS operational profile the investigation
into the customer profile did not result in a “weighting” of the customers, as each customer
had a similar use of the CSS. However, this exercise did serve as a means of establishing
communication paths for the collection of user inputs.

The users of the CSS include the following types of flight personnel and engineering
support:

1. Air Force Pilots, the primary users of the CSS. The pilots are directly involved with
the mission planning exercise, however their use can be very infrequent.

2. Flight Test Support: These frequent users of the CSS interface directly with test pilots
during the mission planning exercise.

3. Avionic System Test: These users are involved in integrating the entire suite of avionics
residing in the aircraft.

4. System Administrators: This user group’s functions are performed by Air Force
Pilots. Therefore, it is combined into the Air Force Pilot group.

The user groups were weighted as shown in Table 8.7. In addition to the usage frequencies
used in weight assignments, marketing concerns were also considered as an important
weighting factor. For example, although the pilots were found to be very infrequent users,

CASE STUDY: OP FOR THE CARTRIDGE SUPPORT SOFTWARE 123

Table 8.7 CSS user profile

User Marketing Frequency Total
Group Concerns of Use Weighting Factor

Air Force Pilot 0.85 0.05 0.45
Flight Test Support 0.10 0.80 0.45
Avionics System Test 0.05 0.15 0.1

they are the primary contractual customers of the CSS. Consequently, they were weighted
accordingly due to both marketing concesns and usage frequencies.

The system modes for the CSS were determined to fall into the following categories:

1. Preflight Mission Planning: The Pilot or Flight Test Support personnel plan a mission.

2. Avionic System Test: The system test engineers use the CSS to stimulate avionics as
part of the verification process during system integration.

3 . System Administration: The administrator uses the CSS to maintain a database of
preflight mission files.

An analysis of the system operational behavior revealed that there is not an apprecia-
ble difference accounted for between the: system modes. Therefore a categorization and
weighting of identified system modes was not performed. The derivation of the CSS user
profile and the associated weighting facfors remains the most significant component for
determining the CSS operational profile.

For CSS, there is no significant distinction between high-level intended functions and
low-level implemented operations. Therefore, the steps of functional profile and operational
profile in Musa-1 was collapsed into one in this case study. Each function of the CSS is
typically associated with it’s own dialog or window. The user has the ability to enter one
or more individual functions and then terminate the mission planning session. The user
does not have a defined order in which the functions must be executed. Because of this,
an implicit functional profile described in Musa-1 was used, listing only the occurrence
probability for each individual function, rather than the end-to-end functional sequences
that define an explicit functional profile. These functions were analyzed for the operational
profile in Table 8.8.

An indication of how each user group uses the CSS was found to be beneficial to the
System Engineers and Test Engineers. The user groups all have a significant contribution
during the lifecycle of a tactical aircraft and each user and their requirements have to be
satisfied. Therefore, an operational profile was created for each of the user groups. From
these individual operational profiles, a comprehensive operational profile was created.

In the existing development and testing environment, a small minority of functions is
considered to be of prime importance and receive a copious amount of emphasis in the
development lifecycle. Those functions i.hat are considered to be of very low importance
are given a brief cursory test to determine their functionality. The formation of the CSS
operational profile was intended to appraise this current approach that is used in software
testing. Because of this specific usage concerns for operational profiles, the raw compre-
hensive operational profile were grouped into high, medium-high, medium-low, and low
use categories in Table 8.8 as the final operational profile. These classifications correspond
to the software management concern for the prioritization of defect resolution.

124 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

Table 8.8 CSS OP: CSS functions classified according to usage probabilities

High Medium-high Medium-low Low

DTC Load DTC Read Wpn Prof RetrCanned
Inventory Delete Hot Keys Save Canned
Save Retrieve Route Comm DTC Test
Route Planning Retr/Save SCL
Print Help

Base Default
FCR
Mstr Mode

High usage Medium-high usage Medium-low usage Low usage
= 100% - 75% = 74.9% - 50% = 49.9% - 25% = 24.9% - 0%

8.5.3 Metrics collection, result validation, and lessons learned

The generation of the CSS operational profile required the participation of the Software
Product Manager (SPM) to outline the marketing aspects of the software product. Several
short interviews with the SPM over the span of a few weeks identified key areas of the CSS
and several communication paths to the users. Follow-up discussions with the SPM helped
to define the requirements for the user profile and functional profile. Much of the existing
system design of the CSS guided the generation of the functional list. Consultations with
system engineers and test engineers, during a two week period, were instrumental in the
development of the survey form that was sent out to the CSS users.

The numbers for the operational profile were derived from e-mail and fax copies of user
surveys through the identified communication channels. The advantage of using electronic
communications was that it allowed for a quick transmission of the surveys to remote
locations. The desirable prospect of this approach was that one user would “forward’ the
survey to other users - thus creating a “chain letter” effect, and thereby increasing user
participation in the survey. The disadvantage of this approach was that the status of the
survey replies was a difficult factor to correctly determine. The projected response to the
survey was 30-50 users. The actual response was 12 users. However, the participants who
did engage in the survey were considered to be significantly reflective of their user groups.

The final results evaluation required each member of the software engineering team
to interpret the operation profile. Individual interviews with each member of the software
engineering team was beneficial in capturing unique perspectives on the operational profile.
Initially, team members were not aware of how the data could be used in practical situations.
Over the course of the interview each member began to suggest possible explanations for
the results of the data. This led the review team to contrast current testing strategies with
the identified needs of the customers. Individuals then offered action plans to accommodate
cuStomer needs and improve software reliability.

The LMTAS software engineering team, including the SPM, System Engineer, and Test
engineers. reviewed and evaluated the operational profile results and the usage probabil-
ity classifications shown in Table 8.8. The test engineers felt that the operational profile
confirmed some of the expectations of their customers. In particular, validation the current
software engineering efforts towards these “high” use functions provides confirmation that

CONCLUDING REMARKS 125

LMTAS’s efforts are on target. However, there were several unexpected results that lead to
related actions:

0 The medium use classification of the Hot Keys Function was found as a completely
unexpected result. This function has been considered to be of low importance to the
customer. The user’s continued reliance on Hot Keys should require modifications
of current testing strategies.

0 The classification of the Help function as a “medium to low” use function was another
unexpected result. The CSS developers had believed that most users are familiar with
the overall operation of the software functions, and as such, would require a minimal
amount of help.

Prior to the generation of the CSS operational profile there had never been a compre-
hensive review of the CSS product from the customer perspective. A higher appreciation
for communicating with the customer and an increased opportunity for improving the CSS
testing strategy were direct results of the operational profile. The increased emphasis on
the customer perspective also affected the system and high-level design effort. As demon-
strated by this case study, an operational profile can be developed for the LMTAS CSS with
a reasonable amount of effort by following and adapting Musa- 1 steps. Cross-validation
through peer review was also found to be valuable not only in validating the results but
also help derived specific follow-up actions based on these results. On the practical side, a
simple classification of usage frequencies also adds value in highlighting the findings and
helping initiate discussions and follow-up actions.

From the OP development procedure perspective, we can see that the 5 steps in Musa- 1
may not necessarily lead to a complete profile each step along the way. In this case study,
customer and system mode profiles were not generated because the homogeneous usage of
CSS by customers under different systems modes. The similarity between high-level in-
tended functions and low-level implemented operations for CSS also reduced functional and
operational profiles into one step. However, even for such reduced steps, the specific activ-
ities carried out were beneficial, for example, in identifying customers and communication
channels to them.

8.6 CONCLUDING REMARKS

Checklist-based testing has been around ever since the first programs were tested. It is
still widely used today due to its simplicity. Various types of checklists covering internal
components, external functions, environments, as well as other related properties, can be
used for testing where each item in the lists needs to be tested and “checked off“. However,
due to the possible problems of overlapping and insufficient coverage, partitions were
introduced as a special kind of checklists that ensure both coverage by the whole and
mutual exclusion among different elements. Therefore, both coverage and efficiency can
be assured.

Partition-based testing models are constructed based on the simple assumption that var-
ious things that we would like to test can be partitioned into subsets of equivalent classes.
The use of equivalent classes can significantly reduce the number of possible tests required
for a product, while still covering diverse situations. Like their checklist counterparts,
partitions can be derived based on either external descriptions or internal components and
implementation details. Various external and internal decisions related to product functions

126 COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS

and information processing can be easily tested by such partition-based testing. As a special
case of such partition-based testing, input domain partitioning and related boundary testing
is described in Chapter 9.

Statistical testing with Musa’s operational profiles (OPs) shares the same basic model
for testing, but focuses on highly used system functions and operations with the help of
usage information by target customers captured in the OPs as probabilities associated with
list items or tree-branches. The development procedures, Musa- 1 and Musa-2 (Musa, 1993;
Musa, 1998), provide practical guidance in the actual development of OPs. These proce-
dures can be adapted for different products under different environments, as demonstrated
by the case study in Section 8.5.

The main advantage of these testing techniques based on such checklists or partitions
is their simplicity, which makes them easy to perform under practical testing situations.
These techniques can also be extended to cover some specific problems, such as boundary
problems closely related to input-domain partitions in Chapter 9. However, for testing more
complex program execution, interaction, and usage situations, alternative models, such as
based on finite-state machines (FSMs) in Chapter 10 and Chapter 11, are called for.

Problems

8.1

8.2
ment. Can you use associated designs or documents as your checklists in testing?

8.3
transitive relation, reflexive relation, and equivalence class.

8.4
based testing.

8.5
product or a utility program.

8.6 Assess the general applicability of Musa’s OPs for a software product that your are
working on or one that you are familiar with. Pay attention to the following issues: customer
identification, difference between users and customers, means for data collection, Musa- 1
vs. Musa-2. If possible, try to construct an OP for this product.

8.7

8.8

8.9
new user type? Use some concrete examples to illustrate your points.

8.10
tree structure can be used as an OP?

8.11 As a customer or an external user, would you like to see OP used in testing of some
specific software products that you buy or use? Be specific with the products and related
properties/attributes that you care about.

What is the main difference between checklists and partitions?

Stepwise refinement is a commonly used strategy for software design and develop-

Define the following terms and give some examples: relation, symmetric relation,

Perform decision analysis for a small program and outline the test cases using partition-

Repeat the previous exercise based on the manual or specifications of a small software

Is OP appropriate for a unit, a component, or a sub-system?

What would be an OP for this book like?

What is the impact if a new customer type is introduced in Table 8.6? What about a

The graphical OP in Figure 8.2 is a specialized tree. What is the impact if a general

CHAPTER 9

INPUT DOMAIN PARTITIONING AND
BOUNDARY TESTING

One of the most important areas where partition-based testing has made a strong impact is
domain testing or input domain testing (White and Cohen, 1980; Clarke et al., 1982; Jeng
and Weyuker, 1994; Beizer, 1990). In this chapter, the idea of partition-based testing is
applied to partition the overall input domain into sub-domains and to test them accordingly.
However, the simple strategies for sub-domain coverage are found to be inadequate for
many situations. This inadequacy is particularly noted in dealing with problems specifying
or implementing the sub-domains involving numeric input variables. Many problems are
commonly observed at the boundaries, leading us to examine various boundary testing
strategies in this chapter, in particular:

0 We first examine possible input domain partitions and related partition coverage
testing ideas in Section 9.1. A special type of common problems associated with
partitions, the boundary problems, is also discussed therein.

0 Several important boundary testing strategies are described, including extreme point
combination (EPC) in Section 9.2, and weak N x 1 and weak 1 x 1 in Section 9.3.

0 We finally extend the above strategies and generalize boundary testing for testing
based on other boundary-like situations in Section 9.4.

All these testing strategies and techniques are based on the same models described in
Chapter 8, that is, input domain partitions, but we focus on the related boundary condi-
tions that distinguish one sub-domain from another. As selective or non-uniform testing

127

128 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

strategies, boundary testing shares some commonalities with usage-based testing using
Musa’s operational profiles (OPs): Sub-domains with more complex boundaries will be
tested more in boundary testing, thus reducing the number of boundary problems that are
the likely causes for many potential in-field failures; while frequently used functions and
components will be tested more under OP-guide statistical testing, thus reducing the chance
of failures when the software is used by target customers.

9.1 INPUT DOMAIN PARTITIONING AND TESTING

We next examine the partitioning of the overall input domain into sub-domains, the associ-
ated boundaries, and the general idea of input domain testing.

9.1.1 Basic concepts, definitions, and terminology

The basic idea of domain testing is to generate test cases by assigning specific values to
input variables based on some analyses of the input domain. This analysis is called domain
analysis, or input domain analysis. By doing so, we hope to avoid exhaustive coverage
of all the possible input variable value combinations by sampling a small number of input
values or test points to systematically cover different input situations. There are several
important characteristics for this testing technique:

0 It tests UO (inputloutput) relations by providing input values associated with all the
individual input variables.

0 The output variable values are not explicitly specified. But, we assume that there are
ways to check if the expected output is obtained for any given input.

0 Although the technique is black-box in nature, by focusing on the UO relations,
the internal implementation details can be used to analyze the input variables and
the input domain. Therefore, the technique can be classified either as white-box or
black-box, depending on whether the implementation information is used in analysis
and modeling.

Before we describe any specific domain testing techniques or strategies, several basic
definitions are needed, as described below:

0 Let 2 1 , 2 2 , . . . , 5, denote the input variables. Then these n variables form an n-
dimensional space that we call input space. Each of these variables corresponds to a
single data item in a program or an input to the program that can be assigned a value.
They include both program variables as well as some constants. On the other hand,
compound data structures, such as arrays, used as program input might need to be
represented by multiple input variables.

0 The input space can be represented by a vector X , we call input vector, where
x = [XI, 2 2 , . . . ,2 ,] .

0 When the input vector X takes a specific value, that is, each of its elements 2 1 , 2 2 , . . . , 2,
is assigned a specific value, we call it a test point or a test case, which corresponds
to a point in the n-dimensional input space.

INPUT DOMAIN PARTITIONING AND TESTING 129

a The input domain consists of all the points representing all the allowable input com-
binations specified for the program in the product specification.

a An input sub-domain is a subset of the input domain. In general, a sub-domain can
be defined by a set of inequalities in the form of

where “<” can also be replaced by other relational operators such as “>”, “=”, “f”,
‘‘<,,, or “>W,

- -

a A domain partition, or input domain partition, is a partition of the input domain into
a number of sub-domains. That is,, these sub-domains are mutually exclusive, and
collectively exhaustive.

a A boundary is where two sub-domains meet. When inequalities are used to define
sub-domains as above, the following equation would give us a specific boundary:

A boundary is a linear boundary if it is defined by:

Otherwise, it is called a nonlinear boundary. If a sub-domain whose boundaries are
all linear ones, it is called a linear sub-domain. In describing all the input domain
testing strategies, we will restrict ourselves to linear sub-domains first before dealing
with the complicated nonlinear boundaries and sub-domains in Section 9.4.

a A point on a boundary is called a boundary point.

a A boundary is a closed one with respect to a specific sub-domain if all the boundary
points belong to the sub-domain.

a A boundary is an open one with respect to a specific sub-domain if none of the
boundary points belong to the sub-domain.

A sub-domain with all open boundaries is called an open sub-domain; one with all
closed boundaries is called a closed sub-domain; otherwise it is a mixed sub-domain.

A point belonging to a sub-domain but not on the boundary is called an interiorpoint.
The opposite is an exterior point, that is, not belonging to a sub-domain and not on
its boundary.

a A point where two or more boundaries intersect is called a vertex point.

Corresponding to these terms and definitions for the input, we can define output variable,
space, vector, point, range (corresponding to input domain), etc. Since the output is only
implicitly specified in most domain testing strategies, we omit the corresponding definitions.

130 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

9.1.2 Input domain testing for partition and boundary problems

With the above definitions, we can restate the general idea of domain testing as trying to
achieve domain coverage, through the following steps:

1. Identifying the input variable, input vector, input space, and define the input domain
based on specifications (black-box view) or implementation details (white-box view)
for the program unit under testing.

2. Dividing or classifying the input domain into sub-domains to form a partition.

3. Performing domain analysis for each sub-domain to examine its limits in each di-
mension and its boundary properties, such as the specific boundary definitions and
the related closure properties.

4. Selecting test points to cover these partitioned sub-domains based on domain analysis
results from the previous step.

5. Testing with the above selected test points as input, checking the results (output
values), dealing with observed problems, and carrying out analysis and follow-up
activities.

Notice that there is not much variability in the first two steps, because the input and
partitions are generally determined by the external specifications or internal implementation
details for the program unit under testing. The last step is also a standard step similar to any
other forms of testing. Therefore, the specific variations of domain testing depend on how
this third step is carried out. That is, how specific test points are selected defines a specific
domain testing strategy.

The simplest strategy is to sample one test point from inside each sub-domain in the
partition, thus achieving complete coverage of all the sub-domains. This is exactly the
same as partition coverage testing we described in the previous chapter. However, there
is empirical evidence that problems with input domain partitions most commonly occur
at sub-domain boundaries. Therefore, some specialized testing techniques are called for
to deal with such problems, as we describe in the rest of this chapter. We next examine
the common problems associated with input domain partitions to set the stage to develop
appropriate testing techniques to deal with these problems.

General problems with input domain partitions

In general, the problems in the computation or information processing for a given input can
generally fall into two categories:

Ambiguity or under-defined processing for some given input: Some input values or
test points in the input domain cannot be handled by the program unit under testing.
In other words, these test points are under-dejined, because we cannot find a solution
for them. The most common situations for this kind of problems to occur are when
computational procedures are defined for individual sub-domains, but these sub-
domains do not cover the complete input domain, thus creating ambiguity for some
input. The practitioners often refer to this as having “holes” in the input domain.

Contradiction or over-defined processing for some given input: In contrast to the
above, some input values or test points have contradictory computation associated

INPUT DOMAIN PARTITIONING AND TESTING 131

with them, or are over-defined. Most of such cases indicate problems in the product
specification or in the implementation, which result in different output for the same
input or the system behaves incorrectly, such as fail to stop computation because
it cannot resolve the conflicting results. The most common situations for this kind
of problems to occur is when computational procedures are defined for individual
sub-domains, but some of these subdomains overlap with one another, thus causing
contradictions.

It has been observed both by practitioners and researchers that the above problems are
most likely to happen at boundaries as discussed below.

Boundary problems

Several specific manifestations of input domain partition problems on the boundaries be-
tween different sub-domains include the following:

0 Closureproblem, that is, the problem with whether the boundary points belong to this
sub-domain under consideration. A closure problem would be an implementation that
disagrees with the specification, or the specification that disagrees with the intention.
For example, an intended open boundary is specified or implemented as a closed one.

0 Boundary shift: This problem refers to the disagreement with where exactly a bound-
ary is between the intended and the actual boundary. In the form of boundary speci-
fications,

f(21,22,...,Zn) = K ,

a (small) change in K is associated with a boundary shift.

0 Other boundary changes are possible too, if the boundary equation

is changed. One common such change is called boundary tilt, when some parameters
in the equation are changed slightly.

0 Missing boundary: If a boundary is missing, that means the two neighboring sub-
domains will collapse into one subdomain, or into one equivalent class. Therefore,
all points in them would receive the same treatment or processing.

0 Extra boundary: If there is an extra boundary within a sub-domain, the sub-domain
has been further partitioned and different points would receive different treatments
because they belong to different equivalent classes.

To deal with such problems, various specific domain testing strategies can be used to
focus on testing related to the sub-domain boundaries, resulting in the so-called boundary
testing strategies. Notice that we assume the existence of “intended” or correct partitions
andor boundaries in discussing both partition and boundary problems above. The actual
specification (black-box view) or implementation (white-box view) of these intended par-
titions or boundaries may contain some mistakes. With the above assumption, the result
checking for testing can be done by using the intended partitions or boundaries as oracles.
In addition, the differences or discrepancies between the intended and actual partitions or
boundaries represent problems that need to be detected and corrected.

132 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

The specification problems can usually be detected through input-domain and bound-
ary analysis, and the implementation problems can be detected through input-domain and
boundary testing. Because such testing typically involves analysis as the first step, we refer
to both the analysis and testing simply as input domain and boundary testing in subsequent
discussions.

9.2 SIMPLE DOMAIN ANALYSIS AND THE EXTREME POINT COMBINATION
STRATEGY

Extreme-point combination (EPC) is one of the oldest domain testing strategies that are still
used by people and supported by some testing tools. We first examine this strategy based
on simple domain analysis in this section.

The idea of EPC is fairly simple and similar to the idea of capacity testing, stress testing,
or robustness testing commonly performed for many systems (DeMillo et al., 1987; Myers,
1979). At extreme input values, system capacities or some other limits might be contested.
Therefore, the logic goes that testing for such extreme values would help reveal system
design and implementation problems. In addition, when we attempt such extreme values,
we are pushing theenvelope to exceed the limits and observing how the system behaves. This
is also related to robust design principle commonly recommended for highly-dependable
systems (Leveson, 1995), where system dependability or safety needs to be assured even if
it is subjected to unexpected input or environments.

The systematic definition and usage of such extreme values when multiple variables
are involved give us the so-called extreme-point (or extreme-value) combination (EPC)
strategy. This strategy can be summarized in the following steps:

0 A set of test points is associated with each sub-domain.

0 For each sub-domain, a simple domain analysis is carried out to identify the domain
limits in each dimension. That is, we need to find out, for each variable zi the
maximal, “maxi”, and minimal, “mini”, values for this sub-domain. In addition, we
would like to stretch these values to test the limits, in an attempt to test the boundaries.
We define the values “underi”, to be slightly under “mini”, and “overi”, to be slightly
over “maxi”.

0 Produce all the possible combinatiqns of input with each of its variables zi taking on
one of the four values defined above, “under;”, “mini”, “maxi”, and “overi”. Each
of these combinations will be a test case or a test point in this n-dimensional space.
Therefore the number of test cases would be 4n + 1, with 4” defined here by the
cross product of those four values for each dimension, plus 1 for sampling inside the
sub-domain as in the simple domain coverage strategy above.

We next illustrate this strategy through some examples and evaluate its effectiveness.

EPC for 1 -dimensional sub-domains

When the input only consists of a single variable, that is, in a l-dimensional input space, we
can directly use the four values, “under”, “min”, “max”, and “over”, and an interior point
for testing. For example, for an input sub-domain, 0 5 z < 21, the test points according
this EPC would be: -1,O, 10, 21, and 22, if we are testing integers. The interior point is

SIMPLE DOMAIN ANALYSIS AND THE EXTREME POINT COMBINATION STRATEGY 133

min rnax
under interior over

I 1 1) I
r \ I

-1 0 10 21 22 X

Figure 9.1 I-dimensional domain testing with EPC strategy

arbitrarily selected at z = 10, and the “under” and “over” points are 1 under or 1 over. If
we go beyond integers, the choice of “under” and “over” will be somewhat problematic.
We will deal with it later in connection with other testing strategies. This example can be
illustrated graphically in Figure 9.1.

To evaluate this testing strategy, we can consider the handling of the common problems
with sub-domains and boundaries we described in Section 9.1, as follows:

0 Closure problem: In this example, the lower bound is a closed one and the upper
bound is an open one, because IC == 0 belongs to the sub-domain (0 5 z < 21},
but not z = 21. In fact, we specify such 1-dimensional sub-domain as [0, 21)
in mathematics, using “[” and ‘‘I” for closed boundaries and “(” and “)” for open
boundaries. If there is a closure problem with the lower bound, the test point “min”,
or x = 0, would catch it: If it was implemented as an open boundary, it would be
treated differently than points within the sub-domain, leading to the detection of this
closure problem. Similarly, the closure problem with the upper bound can be caught
by the test point “max”.

0 Boundary shift: With the sub-domain [0, 21), if we implemented [l , 20), we have
a right boundary shift for the lower bound, and a left boundary shift for the upper
bound. In this case, the pair of test points “min” (z = 0) and “under” (z = -1)
would detect the problem, because. the right-shift of the lower bound would mean
the z = 0 will now be treated as an exterior point. At the upper end, the boundary
shift to the left would not be detected, because both before and after the shift, both
“max” and “over” will be treated as exterior points. Therefore, we can see that some
boundary shift problems can be detected by EPC, but not others.

Missing boundary: In this example, if the lower boundary is missing in [0,21), then
the point z = -1 (under) would be treated as an interior point, thus detecting the
problem. Similarly, if the upper boundary is missing, then both x = 21 (max) and
z = 22 (over) would be treated as interior points, thus detecting the problem.

0 Extra boundary: In this example, depending on where the extra boundary is, we may
or may not be able to detect it with EPC. For example, if the extra boundary is at
z = 5, then the test points IC = 0 (min) and z = 10 (interior) would receive different
processing, and thus detecting the extra boundary problem. However, if the extra
boundary is at z = 15, there is no way it can be detected by EPC, because all the 5
test points still receive the same treatment as if no extra boundary is there.

From this example, we can see that EPC can consistently detect closure and missing
boundary problems for the single input situations; but cannot consistently detect boundary
shift or extra boundary problems.

134 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

00 0 0

0 0 0 0 0 0 00
0 0- - - - - - -

D
0 0
0 0

00 0 0

0 0
00 00

*
X

Figure 9.2 2-dimensional domain testing with EPC strategy

EPC for higher dimension sub-domains

For n-dimensional sub-domains, the combination of extreme points for individual dimen-
sions will come into play when EPC strategy is used. We use 2-dimensional examples below
to illustrate the effect of such combinations. Consider the three sub-domains in Figure 9.2:

0 A, the shaded rectangular region;

0 B, the shaded irregular region;

0 C, the shaded hexagon, which is often used to depict the coverage area for a cell-phone
transmission tower (Garg, 1999);

0 D, the rest of the 2-d space not belonging to either A, B, or C.

The 16 EPC test points each for A, B, and C are also illustrated in Figure 9.2. However,
we have difficulties with the 16 EPC points for D, because it goes from --oc) to +m in both
its z and y dimensions. In fact, EPC would not be applicable to sub-domains like D. The
interior points are omitted because their choices are obvious. The effectiveness of EPC for
sub-domains A, B, and C can be evaluated as follows:

0 TheEPC test points for region A test around the vertex points, which may include more
complex logic to combine the multiple boundaries. The effectiveness in detecting
common domain boundary problems would be similar to that for the l-dimensional
example above but would involve more complex analysis because of the multiple
boundaries involved at these vertex points.

0 The EPC points for regions B and C are totally unrelated to any of the boundaries, and
are all exterior points to B and C. Therefore, they are completely useless in detecting
boundary problems.

In fact, this example, particularly regions B, C, and D, illustrates the shortcomings of
EPC strategy. Alternative strategies, such as those we described next, are needed.

TESTING STRATEGIES BASED ON BOUNDARY ANALYSIS 135

9.3 TESTING STRATEGIES BASED ON BOUNDARY ANALYSIS

The EPC strategy described above is simple but may miss the boundaries entirely. Alter-
natively, we can directly work with the boundaries and the related boundary conditions to
derive our testing strategy, as described below.

9.3.1 Weak N X 1 strategy

This strategy is called weak N x 1 (Cohen, 1978; White and Cohen, 1980), because it uses
n ON points and 1 OFF points to be defined below for each boundary. The term “weak”
is used to indicate that one set of test points is associated with each boundary instead of
a boundary segment as in “strong” domain testing strategies that we will describe later in
Section 9.4.

Basic ideas to detect boundary shift problems

In an n-dimensional space, a boundary defined by an equation in the form of

f(x~,xi!, * . .yxn) = K

would need n linearly independent points to define it. Therefore, we can select n such
boundary points to precisely define the boundary. Any change in boundary would result in
some or all of these points no longer on the boundary. We call these boundary points “ON’
points, simply because they are on the boundary.

Once these ON points are defined, we need to compare them against a point that receives
different processing - what we call an “OFF” point. In an open boundary, all the ON
points receive exterior processing. Therefore, we would like to select an interior point as
our OFF point close to the boundary that receives interior processing. The idea is to pick the
OFF point so close to the boundary that any small amount of boundary shift inward would
move past this point, thus making the movement detectable. Problem detection is achieved
because this interior point will receive exterior processing after the move. If the boundary
moves outward, the ON points would detect the movement because all of them would be
receiving interior processing after the move. Therefore, this set of test points would detect
boundary shift problems.

For a closed boundary, we would like to select an exterior point close to the boundary
as our OFF to detect boundary shifts. It mirrors the above situation with open boundaries:
Any movement inward would be caught by the ON points because now they will receive
exterior processing instead of interior one as specified; and any movement outward would
be caught by the OFF point because it will receive interior processing instead of exterior
one as specified.

Weak N X 1 strategy: Formal definitions

One practical problem that is key to this strategy is the selection of one OFF point for
each boundary and its distance to the boundary. The general recommendation is that this
distance, E , should be small, so that any small movement would result in a change in distance
that is larger than E . In practical applications, this should be set to the numerical precision
of the data type used. For example, for integers, E = 1; while for numbers with n binary

digits after the decimal point, E = -. With the above choice of ON and OFF points and
1

2”

136 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

definition of E distance, we can detect boundary shift problems in the weak N x 1 input
domain testing strategy (Cohen, 1978; White and Cohen, 1980) summarized below:

0 For each sub-domain boundary in a n-dimensional input space, n linearly independent
boundary points are selected as the ON points.

0 The OFF point will be “on the open side of boundary” (White and Cohen, 1980), that
is, it will always receive different processing than that for the ON points. Therefore,
we have two situations:

- If the boundary is a closed boundary with respect to the sub-domain under
consideration, the OFF point will be outside the sub-domain or be an exterior
point.

- If the boundary is an open boundary with respect to the sub-domain under
consideration, the OFF point will be inside the sub-domain or be an interior
point.

In either of the above cases, the OFF point will be 6 distance away from the boundary.

0 In general, an interior point is also sampled as the representative of the equivalence
class representing all the points in the sub-domain under consideration, resulting in
(n + 1) x b + 1 test points for each domain with b boundaries.

Weak N X 1 strategy: Other detectable problems

In addition to the boundary shift problem, other problems can be detected as well, which
we describe in general terms here. However, the readers might want to refer to concrete
examples given later when examining general descriptions below:

0 Closure problems can be easily detected because such problems will be manifested as
ON and OFF points receiving the same processing instead of the expected different
processing. For an open boundary, the ON points should receive exterior processing
while the OFF point should receive interior processing. A closure problem would
cause ON points to receive interior processing. For a closed boundary, the ON
points should receive interior processing while the OFF point should receive exterior
processing. A closure problem would cause ON points to receive exterior processing.

0 Boundary tilt and other boundary changes can be easily detected by the ON and OFF
points because any such change would result in some or all the ON points not on
the boundary anymore. For each of these ON points falling off the boundary, the
part of boundary associated with it is either pushed inward or outward, which can be
detected the same way as the boundary shift problem we described above.

0 Missing boundary would be detected by the same processing received by the ON and
OFF points as opposed to the different processing expected.

0 Extra boundary would likely be detected by the different processing associated with
some of the ON or OFF points for different boundaries. For each boundary, there
will be an OFF point or n ON points which receive interior processing. Let’s call
these ON or OFF points that receive interior processing “IN’ points. All these IN
points as well as the selected interior test point should received the same processing.

TESTING STRATEGIES BASED ON BOUNDARY ANALYSIS 137

ON interior
OFF ,

I 1 I I I

ON
OFF *
-1 0 10 20 21 X

Figure 9.3 I-dimensional doniain testing with weak N x 1 strategy

An extra boundary would likely to cause some of these IN points to receive different
processing if it separates them apart. However, there are cases in which this extra
boundary will not separate any of these IN points apart, resulting in extra boundary
not being detected in these situations. One example of such as an extra boundary
is one near a vertex point that is far away from any of the ON, OFF, or the selected
interior test points.

Therefore, we can see that weak N x 1 strategy is a fairly effective strategy in dealing with
most boundary problems.

Another practical consideration for the OFF point selection is that it should be “central”
to all the ON points for easy comparison. For example, in the two-dimensional space, it
should be chosen by:

1. Choosing the midpoint between the two ON points,

2. Then moving 6 distance off the boundary, outward or inward for closed or open

This selection of ON and OFF points for 2-dimensional sub-domains is illustrated in Fig-
ure 9.4. For higher dimensions, this problem becomes more complicated, but the general
idea is to still find some kind of center on the boundary among the ON points, and then we
can move E distance away to get the OFF point.

boundary, respectively.

Weak N X 1 strategy: Application examples

To contrast weak N x 1 strategy with EPC strategy, we revisit the same examples. For
the l-dimensional example with sub-domain [0, 21), the ON points would be z = 0 and
z = 21, and the OFF points would be z = -1 and z = 20, and we can keep the interior
point at z = 10. This set of testing points, -1, 0, 10, 20, and 21, is depicted in Figure9.3.
Notice that the only difference in testing point selection with EPC is the OFF point at z = 20
instead of the original “over” point at z = 22. The same upper boundary shift to [1, 20)
that cannot be detected by EPC can be detected by this OFF point at z = 20, because it
now receives exterior processing in violation of the expectation. In fact, if we follow the
description above about the weak N x 1 detectable problems, we can conclude the all these
problems can be detected.

The 2-dimensional example for the hexagon in Figure 9.2 is re-examined and illustrated
in Figure 9.4. We only illustrated one set of two ON points and one OFF between regions
CO and C2. As mentioned before, such hexagons are often used to depict coverage areas
for cell-phone transmission towers. When a mobile user passes from one region to another,
a hand-off transaction is processed by the cell-phone communication networks to ensure
continued communication for the user. ‘Therefore, the region can be considered a closed
sub-domain: A hand-off will not occur unless a user crosses the boundary. In this case,
there is a huge superiority of weak N x 1 testing over EPC testing.

We can also use this 2-dimensional example to illustrate the way weak N x 1 detects
boundary tilt problem. Figure 9.5 illustraie the original boundary (solid line) and the tilted

138 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

Figure 9.4
and C2

11 t2 t3 t4 15

CO

Figure 9.5 2-dimensional boundary tilt detection by the weak N x 1 strategy

boundaries (dotted lines) that tilt clockwise at different points. Then we can consider all
the possible tilting points, as below:

0 Any tilt outside the segment between these two ON points would make them receive
the same processing as the OFF point, as illustrated by tilted boundaries t l and t5.
Therefore, such problems can be detected.

Any tilt inside the segment between these two ON points would result in the two
ON points receiving different processing, as illustrated by the tilted boundary t3.
Therefore, such problems can be detected also.

TESTING STRATEGIES BASED ON BOUNDARY ANALYSIS 139

Figure 9.6
and C6

2-dimensional domain testing with weak 1 x 1 strategy for the boundary between CO

0 Any tilt on one of the ON points would make the other ON point and the OFF point
receiving the same processing, as illustrated by tilted boundaries t2 and t4. Therefore,
such problems can be detected also.

Notice that E distance plays a very important role in the above argument: Any tilting
towards the OFF point, such as tilted boundaries t4 and t5 in Figure 9.5, would rotate past
it.

9.3.2 Weak 1 X 1 strategy

One of the major drawbacks of weak N x 1 strategy is the number of test points used,
(n + 1) x b + 1 for n input variables and b boundaries, although it is significantly less
than that for EPC (4n + 1) when n is large. Therefore, a reduced strategy, called weak
1 x 1 strategy, has been proposed and siuccessfully used in place of weak N x 1 (Jeng
and Weyuker, 1994). Weak 1 x 1 strategy uses just one ON point for each boundary, thus
reducing the total number of test points to 2b + 1. The choice of the ON and OFF points in
the 2-dimensional space was also illustrated in Figure 9.6. In fact, we no longer have the
difficulties with the OFF point choice associated with weak N x 1 strategy any more: After
we choose the ON point, the OFF point is just E distance from ON point and perpendicular
to the boundary.

However, most of the problems that can be detected by the weak N x 1 strategy can
still be detected by the weak 1 x 1 strategy. This can be simply shown by observing that
all the n ON points receive the same processing in the closure, shift, and missing boundary
problems in the weak N x 1 strategy. Therefore, in detection these problems, one ON

140 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

t l t2 t3

Figure 9.7 2-dimensional boundary tilt detection by the weak 1 x 1 strategy

point can act as the representative for all the other ON points for the same boundary. Other
boundary problems are considered below:

Extra boundaly: With extra boundary, more ON points would enhance the possibility
that the extra boundary would separate them, thus weak N x 1 would have a better
ability to detect extra boundaries.

Boundaly tilt and other boundary changes: When boundary tilt or general boundary
change is concerned, weak N x 1 can always detect the problem, because the n
ON points exactly define the boundary. Weak 1 x 1 can detect the problem most
of the times, but may occasionally miss some problems. Consider the boundary tilt
in Figure 9.7 on the single ON point in weak 1 x 1: the processing received by the
ON and OFF points after tilting would be exactly the same as before. Therefore,
weak 1 x 1 would miss this boundary tilt. However, if we tilt on any other point,
the ON-OFF pair would receive the same processing after the tilt, thus detecting the
problem.

Consequently, by moving from weak N x 1 strategy to weak 1 x 1, we significantly
reduced the number of test points, without sacrificing much of the problem detection ability.
Therefore, weak 1 x 1 should be used in practical applications, unless there is a compelling
reason for the other choices.

9.4 OTHER BOUNDARY TEST STRATEGIES AND APPLICATIONS

Beside the weak N x 1 and weak 1 x 1 strategies described above, various other boundary
testing strategies may be used in different situations to deal with different problems. In
addition, the basic idea of boundary testing can be extended beyond basic input sub-domain
boundaries to other applications where a logical boundary exists between different infor-
mation processing needs. We examine these testing strategies and their applications in this
section.

9.4.1 Strong and approximate strategies

In contrast to the weak boundary testing strategies above, strong boundary testing strate-
gies may be used for various situations, such as when there are boundary inconsistencies.

OTHER BOUNDARY TEST STRATEGIES AND APPLICATIONS 141

Common boundary inconsistencies inc1ude:changing closures along the boundary, singular
points, or some kind of “holes”. Under such situations, each segment should be treated
separately, much like a separate boundary itself. This treatment would require multiple
sets of ON and OFF points, one for each segment, resulting in the so-called strong testing
strategies, such as strong N x 1 and strong 1 x 1 strategies.

For nonlinear boundaries, n points are not enough to define the boundary. For example,
the boundary for region B in Figure 9.2 would require more than two points to define.
Accordingly, we may select many more OPJ points, or approximate the boundary as a series
of (linear) line segments, with one set of ON-OFF points for each segment. This latter
strategy is in fact a strong testing strategy. Linear approximations can be used to test
imprecise or rough boundaries that may occur in various applications.

Another general extension to boundary testing strategies is to perform vertex testing,
because such points are also commonly associated with problems. However, vertex testing
would involve more complicated logic and interactions. Therefore, they should generally
be done after a regular boundary test.

9.4.2 Other types of boundaries and extensions

The primary application domain of boundary testing is the boundary problems related to
input domain partitioning into sub-domains. However, various other situations involving
boundaries can also benefit from the general idea of boundary testing, primarily because
there are typically problems associated with such boundaries and related boundary condi-
tions. Some such particular situations include:

0 Limits or boundaries associated with various compound data structures and their
implementations. For example, in array implementations and usage, problems asso-
ciated with the lower and upper bounds are much more likely than problems associated
with other “interior” array elements. Therefore, boundary testing ideas can be used
to derive test cases around such data boundaries. We will see a specific example of
such an adapted strategy applied to test queues at the end of this section.

0 The ideas can be used for capacity testing, which is usually associated with stress
testing for various systems. The upper bound in capacity is typically the focus of
capacity testing, which can be plainned and carried out with the help of boundary
testing ideas, such as using test cases to test system operations slightly under or over
this capacity limit. However, people typically don’t pay much attention to lower
bound in capacity, which can be included as part of the systematic boundary testing.

0 There are also other dynamic situations where boundary testing ideas might be appli-
cable. One such situation is the execution of loops, which may be totally bypassed,
or going through a number of iterations until some conditions are met or until a pre-
determined number of iterations has been reached. We will deal with loop testing in
Chapter 11 in connection to control flow testing, where boundary testing idea is also
used.

0 For some systems, output range partitions might be more meaningful than input
domain partitions. For example, in safety critical systems, some output or system
variables are monitored and controlled through some input or control variables, such
as temperature (output) regulation in boilers or nuclear reactors. In this example,
the output or system variable we care about is the temperature. The input or control

142 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

variables are the heatingkooling system parameters, through the settings for these
parameters we can control the heating or cooling processes to regulate the temper-
ature. In such cases, we can apply the input domain partition and boundary testing
ideas to output range partition and related boundary testing. But the test sensitization
will be more difficult because we are no longer directly working with input variables
and their values. These input values need to be derived through control system equa-
tions and related analyses. In fact, one of the most important analyses, called hazard
analysis, deals with the output partition of system failures that may or may not lead to
accidents. Fault-tree analysis and event-tree analysis are used to analyze the system
accidents scenarios to derive the preconditions or system input so that the accident
can be avoided. These specific analysis techniques for safety critical systems are
covered in Chapter 16.

In addition to the above direct adaptations of boundary testing ideas in various other
application domains, the general concepts of associating test points with boundaries instead
of uniform domain coverage can be extended to usage-based statistical testing. In boundary
testing, the number of test points is generally determined by the number of boundaries, the
type of boundaries, and the specific testing strategies used. Therefore, sub-domains with
more boundaries or with more complicated boundary situations are receiving more attention
than those with fewer and simpler boundaries. The rationale behind this uneven distribution
of test points and the associated test resources is that those with larger numbers of and more
complex boundaries are more likely to have defects or problems. Along the same line, if a
sub-domain is used more often, it is more likely to cause more problems to users even if it
contains exactly the same number of defects as another sub-domain that is used less often.
This latter rationale led us to build domain partitions and associated probability of usage as
the basis for usage based statistical testing in Chapter 8.

9.4.3 Queuing testing a s boundary testing

Queuing testing is primarily associated with the many dynamic situations where queues are
involved, such as in store-and-forward strategies commonly used in computer networks and
our global information infrastructure such as the Internet and the world wide web (WWW).
The classical definition of queues is a special type of data structure where the processing

or removal order follows precisely the arrival or inserting order. It has been generalized in
many applications to indicate any buffering scheme employed, with some priority scheme
to select the next element for processing, as follows:

0 Priority or queuing discipline: Most of the selection or service decisions are based on
prioritized queuing disciplines, including the classical queue. In the classical queues,
earlier arrivals receive higher priorities in the priority scheme commonly referred to
as FCFS (first come, first served) or FIFO (first in, first out). Other explicit priorities
and mixed priorities are also commonly used. For example, with the use of a few
priority classes, items from higher priority classes will take precedence to the ones
from lower priority classes, but items within each class are processed in FIFO order.
Strictly random or non-prioritized queuing discipline is rarely used.

0 BufSer capacity: Because queuing implementation needs some buffer space or queu-
ing space for items to be queued, most queues have either an adjustable or fixed upper
bound. In some special cases, theoretically unbounded queues can be implemented
by making all the system resources available. In either case, the queues are bounded

OTHER BOUNDARY TEST STRATEGIES AND APPLICATIONS 143

from below, because we cannot have negative number of elements in the queue.
Boundary testing ideas can be easily adapted to test these queue boundaries.

0 In addition to the above important characteristics, some other parameters can be
specified for queues, including:

- Pre-emptive or not: Whether the queue is pre-emptive or not, that is, can an
item currently receiving service or being served be pre-emptied to make room
for another item of higher priority?

- Butching: One common practice is to wait until a batch is full before all the
items in the batch are processed.

- Synchronization: A special case of batching is synchronization, where some
items have to wait for other specific items before they can be processed together.

In what follows, we concentrate on testing prioritized queues without pre-emption or
batching. Techniques for synchronization testing are described in Chapter 1 1 in connection
to data flow testing. We can adapt boundary testing ideas to test the handling of the following
important situations:

0 We always test the lower bound with 0 (empty), 1, or 2 elements in the queue. In
particular, the following sub-cases are tested:

- When the queue is empty, the server could be busy or idle. Depending on the
server status, the new arrival may be served immediately or entered into the
queue.

- The cases with 1 or 2 elements already in the queue test the insertion function
(or enqueue) to make sure interactions between the new and existing items in
the queue are handled correctly.

0 If there is an upper bound B, we need to test the queue at capacity limit, that is, with
B or B i 1 items in the queue, in particular:

- The case with B - 1 tests the handling when a new arrival pushes the queue to
capacity limit.

- The case with B tests the handling of new arrival when the queue is already full.
Different systems might have different specifications, with the most common
ones being discarding the new arrivals, or blocking the arrival stream so that no
new arrivals are allowed.

- The case with B + 1 resembles OFF point with closed sub-domains, which
may cause system problems, but needs to be guarded to make sure the system
is robust in handling unexpected situations.

0 In addition to the above cases around upper and lower bounds, a “typical” case is
used to test the normal operation of the queue, much like the interior point used in
domain testing strategies. This is particularly useful for unbounded queues, because
we need some information about queue handling beyond a few items.

Notice that in queuing testing, various natural testing sequences can be used to make
the testing run more smoothly. For example, it would make more sense to run the lower
bound before running the typical and upper bound test cases. This sequence follows the

144 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

natural progression from simple to complex test cases. The setup of these later test cases
would most likely involve filling the queue that would start from empty. In addition to
these concerns, the testing of queuing discipline does not usually need separate test cases.
It could be incorporated into the above test cases by observing both the arrival of jobshtems
and the departure or processing of them. Of course, this would imply that each job or item
can be uniquely identified and various static and dynamic information can be kept for it
throughout the testing process. The result checking or the oracle problem in this case is
closely associated with observing and analyzing both the handling of individual arrivals as
well as the overall arrival/departure sequences.

One significant different between queuing testing and input domain boundary testing is
the dynamic and continuous nature of the former as compared with the simple one-decision
processing model of the latter. In fact, in performance evaluation and analysis of systems
and networks, queuing at a single server or in a queuing network is typically supported
and tested with a traffic generator based on measurement and characterization of normal
operational traffic so that realistic operational conditions can be tested (Trivedi, 2001). This
idea is similar to the usage measurement and usage-based statistical testing using Musa’s
operational profiles to ensure product reliability we discussed in Chapter 8.

9.5 CONCLUDING REMARKS

One of the most important areas where partition-based testing has made a strong impact
is input domain testing, where the overall input domain is partitioned into sub-domains,
and the associated boundaries as well as the sub-domains themselves are tested. The basic
testing models are constructed based on the simple assumption that the input domain can
be partitioned into sub-domains of equivalent classes. The information processing model
is assumed to be a simple classify-and-process one, with input classified into sub-domains
and processed accordingly, much like a “case-switch” structure in various programming
languages. The models are often constructed based on external descriptions, resulting in
black-box coverage-based testing. However, implemented decisions can often be consulted
in model construction, in testing, and in problem analysis. Therefore, the input domain
testing strategies need not be purely black-box.

Unlike the strategies for basic partition coverage in the previous chapter, we focus on
the boundary problems between neighboring sub-domains. The types of problems that can
usually be detected by boundary testing strategies generally include the following:

0 Closure problems;

0 Bound changes, most commonly boundary shift and boundary tilt;

0 Extra or missing boundaries.

Because of these reasons, input domain or boundary testing is mostly applicable to the
situations of well-defined input data, such as numerical processing. Testing for VO relations,
such as used in system testing, is also a common place for domain testing to be applied.

The most widely used and effective strategies include weak N x 1 and weak 1 x 1
strategies, particularly the latter for economical reasons as well. For an n-dimensional sub-
domain with b boundaries, weak 1 x 1 uses 2b+ 1 test points; weak N x 1 uses (n+ 1) x b+ 1
test points; and extreme point combination (EPC) uses 4n + 1 test points. Other strong
testing strategies also use significantly more testing points than corresponding weak ones.
We summarize these testing strategies below:

PROBLEMS 145

0 Weak 1 x 1 uses few test points and can detect most of the boundary problems most
of the time. Therefore, it should be a primary candidate for boundary testing.

0 When high quality requirements need to be met or specific types of problems that
weak 1 x 1 cannot address are suspected, weak N x 1 or other testing strategies can
be selectively used.

0 If inconsistencies exist in some boundaries, strong testing strategies can be used to
select one set of test points for each boundary segment.

0 When non-linear boundaries are involved, some approximate testing strategies can be
used, where one set of test points is used for each segment in the linear approximations
of non-linear boundaries.

In addition to its original applications in testing input domain partitions, the basic idea of
boundary testing can be applied to other siituations where a logical boundary exist between
different information processing needs. One such concrete example is the queuing testing
we described in Section 9.4, where the upper and lower bounds of the queue buffer can be
tested. Additional examples of this nature will be included in Chapter 11, when we apply
boundary testing ideas to testing loops.

There are some practical problems with various boundary testing strategies, particularly
in the choice of OFF points and related t-limits. OFF point selection for closed domain
might extend into undefined territory to cause system crash if the system is not robust enough
to guard against unexpected input. In addition, coincidental correctness is common. For
example, when different processing gives same results, much of the basis for our problem
detection is taken away. These testing strategies are also limited by their simple processing
models for more complex interactions. We examine alternative testing strategies based on
more complicated models in subsequent chapters.

Problems

9.1 Define the terms: input, input space, input vector, test point, input domain, domain
partition, sub-domain, boundary, boundary point, interior point, exterior point, vertex point,
under-defined point, over-defined point.

9.2
space.

9.3 Of the different boundary problems, which ones are observed most often at your
work?

9.4 Ifwehavethreesub-domainsdefineclby f(z:l, zz, . . . , z,) < K , f (z ~ , 2 2 , . . . ,z,) =
K , and f(q, 2 2 , . . . , z,) > K respectively. Define the boundaries, and discuss how
boundary problems would be different in this case.

9.5 So far, we have assumed that each sub-domain is connected. A disconnected sub-
domain consists of several disconnected parts or regions. What would be the effect of
disconnected sub-domains on boundary problems, and how would you perform boundary
testing for them?

9.6 For some of the programs/projects your are working on, find some domaidsub-
domain or boundary problems, apply the different boundary testing strategies described in
this chapter, and discuss the result.

Give some concrete examples in drawing for the boundary problems in a 2-dimensional

146 INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING

9.7
(Le., (z - ~ 0) ~ + (y - yo)’ I r2.)

9.8 In the above example, non-linear boundary is used. Discuss the impact on the ability
of different testing strategies to detect boundary problems for such non-linear boundaries.

9.9 Can you think of other possible applications of boundary testing idea not mentioned
in Section 9.4?

What are the EPC, Weak 1 x 1, and Weak N x 1 testing points for a round sub-domain.

CHAPTER 10

COVERAGE AND USAGE TESTING
BASED ON FINITE-STATE MACHINES
AND MARKOV CHAINS

There are many limitations with the testing techniques based on simple models, such as
checklists, partitions, and trees, described in the previous two chapters. Program execution
details, interactions among different parts of programs, as well as detailed usage informa-
tion cannot be adequately represented in such simple models for testing. In this chapter,
we introduce finite-state machines (FSMs) as the basis for various testing techniques, in
particular:

The basic concepts of FSMs are introduced in Section 10.1.

0 The direct use of FSMs in testing to cover the modeled states is described in Sec-
tion 10.2.

0 A comprehensive case study to model web testing and web crawling using FSMs is
presented in Section 10.3.

0 The enhancement of FSMs into Markov chains and Unified Markov Models (UMMs)
as usage models is described in Section 10.4.

0 The usage based testing using Markov chains and UMMs is described in Section 10.5

0 A comprehensive case study of statistical web testing based on UMMs is presented
in Section 10.6.

As extensions to FSM-based testing that focus on interactions along execution paths and
data dependencies, control flow and data flow testing techniques are covered in Chapter 1 1.

147

148 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

10.1 FINITE-STATE MACHINES AND TESTING

The basic idea of FSMs is to use an intermediate formalism to model the program exe-
cution or behavior that strikes a balance between expressive power and simplicity (Chow,
1978). At one extreme, lists and partitions covered in the previous two chapters provide
simple processing models that may not be expressive enough to represent complex program
executions and behavior. On the other hand, the actual implementation, or the programs
themselves, contains too much detail that needs to be abstracted into models so that specific
aspects or features can be analyzed and tested. FSMs lie in between these two extremes,
and possess some flexibility in the level of details that can be modeled by the number of
states, the number of links among them, and related inputloutput.

10.1.1 Overcoming limitations of simple processing models

The processing model used in the previous two chapters is a single stage one in the form
of “input-processsoutput”. Both the input and the output are associated with this single
stage of processing. We focused on the input in test model construction and test case
sensitization, while implicitly assuming that the corresponding output can be obtained and
checked through some oracle. As extensions to the single stage processing model, we also
introduced multi-stage ones such as the use of hierarchical lists, multi-dimensional lists,
and tree-structured decision models. Some of the basic assumptions in those extensions
include:

0 There is a finite number of stages or lists.

0 Each stage or list is unique, that is, no stage or list is a repetition of another.

0 The final choices made through multiple stages or lists are uniquely determined by
the items in each list involved or by the choices made at every stage.

Consequently, although multiple lists or multiple decision stages are involved, the final
choices or complete operations can still be represented by a global one-level list or decision
by collapsing the lists or stages. In the case of tree-structured processing model that can
represent both hierarchical lists and graphical operational profiles in Chapter 8, there is
always a unique path from the root to each leaf node. The whole paths associated with
these leaf nodes represent the series of decisions or stages of processing. Therefore all the
information can be represented at the leaf node, as in Figure 8.2 in Chapter 8. In the case of
multi-dimensional lists, each individual choice can be represented as a point in the multi-
dimensional space, such as in Table 8.2 in Chapter 8. All these points can be enumerated
as long as there are finite dimensions and finite choices for each dimension.

However, we know in information processing, repetition or looping is a common way to
handle various tasks, and the program behavior also shows repetition. It would be desirable
under such situations to relax the unique stage or decision assumption above so that such
repeated processing or behavior can also be modeled. This relaxation actually leads us to
finite-state machines, if we do the following:

0 We simply replace the above decision points associated with individual lists or pro-
cessing stages by states.

0 The selection of an individual list item or the processing decision can be replaced by
a stage or state transition.

FINITE-STATE MACHINES AND TESTING 149

0 Looping back to some list or stage is allowed from any state.

Such models can be formalized and usedl to precisely specify the behavior and interactions
for many systems and components and serve as the basis for testing. In addition, many of
the sub-operations within end-to-end operations specified in checklists or associated with
partitions may be in common. The construction of FSMs could highlight these commonly
used core sub-operations. The use of FSMs could lead to more effective testing by focusing
on these core sub-operations and their connections to the rest of the system operations.
Similarly, more economical testing could also be achieved by avoiding exact repetition of
some of these common sub-operations.

10.1.2 FSMs: Basic concepts and examples

Finite-state machines (FSMs) are standard models in the basic studies of computer science.
There are four basic elements for FSMs, which can be grouped into two subsets:

0 Static elements: The subset of static elements includes states and state transitions.
The state transitions are often referred to as just transitions. The number of states
is finite. By not allowing duplicate transitions from one state to another, that is, a
direct transition from state A to state B can only follow a unique link labeled A-B,
the number of state transitions is also finite.

0 Dynamic elements: The subset of dynamic elements includes the input provided
to the FSMs and the output generated from the FSMs in dynamic executions of the
FSMs. In general, both the number of different input and the number of different
output are also finite. In the case that such input and output may take a large number
or an infinite number of values, we generally need to group them into partitions,
much like what we did in checklist and partition based testing in Chapter 8. These
finite groups or partitions will correspond to transitions from one state to another.
Therefore, they form some special types of equivalence classes.

At any time, the system can be in one state or in transition from one state to another. If
we ignore the transition time, the system is in exactly one state at any time - in what we
call the “current” state. If the output and the next state are both uniquely determined by
the current state and the input, we call it a “deterministic” FSM. We first deal with testing
based on deterministic FSMs in this chapter, with non-deterministic or probabilistic FSMs
used in Section 10.4 for usage-based testing.

The FSMs and their elements are typically represented graphically. The main graphical
elements include:

0 Each state is represented as a node in a graph.

Each transition is represented as a directed link from one state to another.

0 Input and output are associated with state transitions, and are represented as link
weights or annotations by the transitions.

The above representation is called the Mealy model (Mealy, 1955). An alternative model is
to represent each output as a state, resulting in the so-called Moore model (Moore, 1956).
We use Mealy model in this book primarily for its simplicity in reducing the number of
states.

150 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

So far, we have not directly dealt with the question: “What is represented by a state
in FSMs?’. The answer depends on what we want to model. Most commonly, a state
corresponds to some program execution state, or a specific time period or instance between
certain actions. For example, consider the following execution sequence:

0 When a program starts, it is in the “initial” state.

0 After performing a user-oriented function (black-box view), or executing a statement
or an internal procedure (white-box view), the program execution is transitioned to
another state.

0 The above step can be repeated a number of times, with some of the states possibly
repeated as well.

0 The state where program execution terminates is called the “final” state.

0 In each of the transitions, some input might be needed, and some output might be
produced.

In the above example, the states represent some abstraction of execution status or states,
and most of the operations are associated with the links or state transitions. A concrete
example familiar to almost everyone in modern society is the use of the world wide web
(WWW or simply the web): Each web page a user is viewing can be considered a state.
When we start a web browser, the default starting page or our customized starting page will
be loaded, which corresponds to the initial state. Each time we follow a link in a page or
specifically request a page through the use of bookmarWfavorite selections or by directly
typing in a URL (universal resource locator, or the unique address for a specific web page),
we start a transition to another web page. We can stop anytime by exiting the web browser,
or implicitly by no longer requesting pages. This last page visited is then the final state. In
this example of web usage, most of the operations such as requesting and loading a page,
as well as the related error or other messages, are associated with the transitions. The FSM
states are clearly visible to the users and represent the main purpose of using the web.

Alternatively, various individual operations, functions, or tasks can be represented by the
states, and the transitions merely indicate their logical connections or precedence relations.
For example, the flow-charts commonly used in product design, program implementation,
and program analysis are examples of this type. We will see many examples of such FSMs
when we discuss control flow testing in Chapter 1 1.

In many applications, a mixture of the above two types of FSMs can be used as long as
there is no confusion. A concrete example of FSM of this type is Figure 10.1 that depicts the
states and state transitions for call processing in a cellular communication system (TIAEIA,
1994; Garg, 1999). Specific information includes:

0 Specific states related to different operations or system status are identified, for ex-
ample, “Power-up”, “Mobile Station Initialization”, “Mobile Station Idle”, etc., and
are identified by their labels A, B, C, D, E, respectively.

0 Some transitions are not associated with any input (null input) or output (null output).
They simply follow after the completion of the task associated with the current state.
In such cases, there is usually only one possible transition, because otherwise specific
input or conditions will be needed to specify which allowable transition to take.
For example, after state A (Power-up), the next state to follow is always B (MS

FINITE-STATE MACHINES AND TESTING 151

Power-up

6 Mobile

Figure 10.1 An example finite-state machine (FSM) for call processing

Initialization). Similarly, after state D the next state to follow is always C (MS Idle);
and state E (Mobile Station Control on Traffic Channel) is always followed by state B.
In general, such transitions are not associated with any processing but only a logical
relation between the states, just like “is-followed-by” relation in control flow graphs
in Chapter 11.

0 Other transitions in Figure 10.1 are associated with specific messages or conditions as
input and some possible output. For example, the states to follow C (MS Idle) could
be D (System Access), associated with receiving a paging channel message requiring
response, originating a call, or performing registration. State B (MS Initialization)
could also follow C for the condition that MS is unable to receive paging channel.
Similarly, State D can be followed by state E (Mobile Station Control on Traffic
Channel) if a call is originated, or followed by state B if other System Access tasks
are completed.

10.1.3 Representations of FSMs

The most intuitive and most straightforward way to represent FSMs is to use graphical
means, such as in Figure 10.1. As we know from graph theory (Deo, 1974), such graphs
can also be formally specified as a set of states, a set of allowable state transitions, and
associated input/output. For example, the set of states corresponding to Figure 10.1 is {A,
B, C, D, E}. The transition from C to B is represented as {C, B, “unable to receive paging
channel”, -}, with input as specified by the third element and null output (-). The set of
state transitions and input/output includes this and other similar items as its elements.

Although the graphical representation is intuitive and easy to interpret by human subjects,
it becomes impractical when the number of states becomes large. When we have more than

152 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

Table 10.1
processing in tabular representation

An example finite-state machine (FSM) for call

A B C D E

A na -/- na na na
B na na -1- na na
C na NoCI- na msg/- na
D na na done/- na call/-
E na -1- na na na

20 or 30 states, the drawing will become messy and hard to trace. Consequently, tabular
representation (also called matrix representation) is often used, which is easy for computer
to process as well. For example Figure 10.1 can be represented by Table 10.1 that can be
interpreted as follows:

0 The states are listed as both the rows and columns.

0 The rows represent originating states and the columns represent ending states for
specific transitions.

0 If a transition from state X (row X) to state Y (column Y) is allowed, then the
corresponding cell (row X, column Y) is marked by its input and output. A null input
or a null output is marked by “-”. For the specific input conditions or messages in
Table 10.1, we used shorthands msg , NoC , c a l l , and done to represent “paging
channel message”, “unable to receive paging channel”, “making a call”, and “finished
with other tasks”, respectively.

0 If a cell is marked with “na” or not marked (left empty), the corresponding transition
is not allowed.

As we can see, the tabular representation is systematic, regular (an N x N table), and
not too hard to interpret. Therefore, it is used quite commonly to represent FSMs. The
regularity makes computation and analysis based on tabular FSMs easy to perform.

However, when there are many empty cells, we end up wasting a lot of memory space
to store the N x N table. Consequently, a third commonly used representation, what we
call the list representation, is directly based on the formal specification for the graphs in
graph theory formalisms (Deo, 1974). Basically, the set of states is represented by a list;
and the set of allowable state transitions is also represented by a list, with its elements in
the form of {C, B, “unable to receive paging channel”, -} that we mentioned above. The
list representation is more compact but less regular. The comparison between the list and
tabular representations is similar to the comparison between the list and 2-dimensional array
data structures in computing and information processing: The trade off is between storage
savings for lists and faster indexed access for arrays.

All three types of representations of FSMs, graphical, tabular, and list, are commonly
used in testing literature. Therefore, the readers should become familiar with all three,
possibly through some additional exercises interpreting and converting among them. In
what follows, we primarily use graphical representation to make it easy to present and
illustrate the basic ideas and techniques.

FSM TESTING: STATE AND TRANSITION COVERAGE 153

10.2 FSM TESTING: STATE AND TRlANSlTlON COVERAGE

We next examine the basic FSM-based testing that attempts to achieve basic coverage of
states and transitions as the basic elements of FSMs, and using related input and output for
test sensitization and result checking.

10.2.1 Some typical problems with systems modeled by FSMs

As mentioned above, FSMs can be used to model either external system behavior (black-
box view) or detailed execution of specific implementations (white-box view). In either
view, we can consider the four basic elements, namely, states, transitions, input, and output,
to examine possible and likely problems of systems modeled by FSMs, as follows:

0 State problems: missing, extra, or incorrect states:

- An incorrect state is one with ill-defined behavior.

- A missing state corresponds to one that has a valid current state and input but
the next state is missing. A special case of the missing state is that the system
with unspecified initial state.

- Extra state may be related to unreachable state or dead state, where there is no
path from any initial state to it through a number of state transitions. Multiple
next states for the same input may also be linked to some extra states. In this
case, the current state is also an incorrect state because its behavior is ill-defined.

0 Transition problems: missing, extra, or incorrect transitions;

- A missing transition is one that corresponds to a valid current state and input

- An extra transition is associated with multiple transitions for the same current

- An incorrect transition is a transition to an unexpected state or one that produces

but the next state is missing or not specified.

state and input.

unexpected output.

Znput problems: In FSM-based testihg, we typically treat input problems as part of
state or transition problems, assuming that all input needs to be handled correctly
through some state transitions by the FSM. As a general extension, even invalid input
is expected to be handled correctly without causing system crash or other problems,
such as through the following means:

- ignoring invalid input, such as staying in the same state for invalid input.

- direct handling of invalid input, such as outputting some error message and
going through some exception handling and related state transitions.

Outputproblems: We do not typically deal with output problems directly, but rather
as part of the test oracle problem in state transitions. For example, if a state transition
produces unexpected output, such as missing, extra, or incorrect output, we identify
the transition as an incorrect transition.

Therefore, in FSM-based testing, we focus on state and transition problems. Input is
primarily used for test sensitization, and output is primarily used for result checking.

154 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

10.2.2 Model construction and checking for missing or extra states
or transitions

During model construction, all the basic elements of the FSMs need to be identified, in-
cluding states, transitions, input, and output. Following the generic steps for test model
construction in the test preparation activities we outlined in Chapter 7, some self-checking
or model validation is usually needed to make sure the model reflects reality. Therefore,
checking for missing or extra states or transitions is usually carried out as part of the model
construction process, in particular, as part of model validation step in this process.

Instantiating and expanding the generic steps for model construction we described in
Chapter 7, we can construct FSMs and validate them in the following steps:

Step 1. Information source identification and data collection: Depending on whether
external functional behavior is modeled (black-box view) or internal program execu-
tion states are modeled (white-box view) in FSMs, we can identify different sources
of information. In the former case, the information sources include external prod-
uct specification or expected usage scenarios. They represent functional and logical
relations between different subsets of operations and interfaces. In the latter case,
internal product information, such as structure and connections of the implemented
components in product design documents and the program code can be used for
model construction. For many existing products, existing test cases and checklists
can also be used as an important source of information. The sub-operations need to
be extracted from such existing sources and linked together to form FSMs.

Step 2. Construction of initial FSMs based on the information sources identified in
Step 1 above: We next consider the four basic elements, namely, states, transitions,
input, and output, to construct the initial FSMs. Some of the elements are considered
together for convenience in the following steps:

- Step 2.1. State identification and enumeration: We need to keep the number of
states to a manageable level, ranging from a handful to a few dozens, but not
thousands. In cases where the real system needs to be represented by a large
number of states, we can use nested or hierarchical FSMs, as we will describe
in further detail in model refinement below.

- Step 2.2. Transition identification with the help of input values: For each state,
we can consider all the possible transitions in connection with all the possible
input values. As mentioned in Section 10.1, when the number of possible input
values is large or infinite, we can use input partitions to help identify specific
transitions. These partitions represent equivalence classes defined with respect
to the state transitions to be taken. Another side effect of this step is to identify
some missing states from Step 2.1 above, where some transitions lead to states
other than those already identified above.

- Step 2.3. Identzbing input-output relations related to individual transitions.
This output will be used as part of the test oracle to check the testing results.

Step 3. Model refinement and validation: This step includes two interconnected ac-
tivities. In the process of validating the initial FSM, new states and/or new transitions
might be identified, resulting in the refinement of the FSM. However, as we men-
tioned above, this process cannot be carried to excess, to include too many states and

FSM TESTING: STATE AND TRANSITION COVERAGE 155

transitions in the FSM. Consequently, when large numbers of states and transitions
need to be represented in a model, we typically use nested or hierarchical FSMs,
with some of the specific states in the higher-level FSMs expandable to lower-level
FSMs. This issue is examined further at the end of this section. We can also check
the information sources to identify missing or extra states or transitions as part of the
model validation exercise. This issue is elaborated below.

The basic idea for identifying missing states or transitions is similar to checklist- and
partition-based testing. For example, a checklist based on product functional specifications
can be used to directly check the missing states or transitions. However, such functional
specifications usually correspond to high-level states and state transitions, which need to be
refined to the same level of the states and transitions captured by the FSMs. For lower-level
FSMs, product design information and documents, or program code, can usually be used
to help identify missing states or transitions.

Checking for extra states and transitions can follow essentially the same procedure by
cross-validating them with the information sources. However, this checking is typically
more difficult than identifying missing ones, similar to the situation that requires product
requirement traceability: If every state and every transition can be traced back to the corre-
sponding information sources for their creation, this checking can be done easily. However,
one should not expect complete documentation associated with every state or transition to
be included in the FSMs. This fact makes it hard to identify extra states and transitions if we
don’t know what led to their creation in the first place. As an alternative to this procedure
of checking for extra states or transitions, we can perform reachability analysis to identify
individual unreachable states or clusters of unreachable states. Usually, these unreachable
states or clusters represent extra states or some other problems. The reachability analysis
algorithms from graph theory (Deo, 1974, Knuth, 1973) and related tools can be used to
perform such analyses.

In addition to the above methods of checking the missing or extra states and transitions,
sometimes, they can also be checked together with incorrect ones. To actually test the states
and transitions, we need to start from an initial state or from an intermediate current state
saved in some means, and then follow a series of transitions to test the correct state that we
try to reach and the correct transitions we try to follow.

10.2.3 Testing for correct states anld transitions

The general testing based on FSMs and the. particular checking of correct states and correct
transitions can be treated as two separate problems:

State or node coverage: We need to make sure that each state can be reached and
visited by some test cases. This is essentially a state or node traversal problem in
graph theory (Deo, 1974; Knuth, 1973). Consequently, various graph node traversal
algorithms can be used to help us with the development of test cases.

Transition or link coverage: We need to make sure that each link or state transition
is covered by some test cases. Although this problem can also be treated as link
traversal in graph theory, the above. state coverage testing already helped us reach
each reachable states. It would be more economical to combine the visit to these
states with the possible input values to cover all the links or transitions originated
from this current state.

156 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

In trying to reach a specific state, each test case is essentially a series of input values
that enables us to make the transitions from an initial state to some target state, possibly
through multiple hops by way of some intermediate states. It is possible that one test case
could potentially enable us to visit all the states thus achieving complete state coverage.
However, we need multiple test cases under most circumstances because there might be
multiple initial states, multiple final states, and multiple sequences of transitions leading
from an initial state to a specific state. In most systems modeled by FSMs, the initial states
are the ones without incoming links and the final states are the ones without outgoing links.
Under such circumstances, whenever multiple initial or final states exist, we would need at
least as many test cases, and most likely much more.

From the current state, the next state to visit is determined by the input. Therefore, this
one-step state transition can be viewed as first classifying the input into equivalence classes
and then follow a specific transition according to the classification. With our knowledge
for checklist- and partition-based testing in Chapter 8 and its special cases of input domain
boundary testing in Chapter 9, we can easily perform link coverage starting from each state
that we can reach. The one-step “classify-and-process” model from the current state to the
next state fits perfectly with the processing model we used for those testing techniques.
All the input variables and associated values, as well as input domain partitioning in cor-
respondence to the specific transitions to take, can be examined to derive our test cases as
described in those chapters.

Test case sensitization for FSM-based testing is fairly easy and straightforward. For each
test case of state coverage, we have a specific initial state and a series of state transitions to
lead to a target state. Since each transition is associated with specific input values, we can
simply select such input values to sensitize the test case. The key in this sensitization is to
remember that in FSM-modeled systems, input and output are associated with individual
transitions instead of as an indistinguishable lump of initial input for many other systems.
Consequently, the input sequencing is as important as correct values for the specific input.

For link coverage, the testing we described above is essentially the same as partition-
based input domain testing. We can follow the corresponding techniques to achieve partition
coverage, or if necessary, to test the boundary conditions related to these partitions. The test
sensitization issues are also the same as in those testing techniques described in Chapters 8
and 9.

One useful capability for test execution is the ability to save some “current state” that
can be restored when we start testing. This would significantly shorten the series of state
transitions needed to reach a target state, which may be important because in some systems
these transitions may take a long time. This capability is especially useful for link coverage
testing starting from a specific state: If we can start from this saved state, we can go directly
into link coverage testing without waiting for the state transitions to reach this state from a
specific initial state.

The result checking is similarly easy and straightforward, since the output for each
transition is also specified in FSMs in addition to the next state. The key to this result
checking is to make sure that both the next state and the output are checked.

10.2.4 Applications and limitations

The most common application domain for FSM-based testing is the menu-driven software,
where each menu demands some input and produces some output that is often accompanied
by a new menu. This situation with interactive input is also different from various more
autonomous systems where mostly an initial set of input is required but little or no interaction

CASE STUDY: FSNI-BASED TESTING OF WEB-BASED APPLICATIONS 157

with the user is needed. A special case of menu-driven software is the use of the web that
we will examine in more detail in Section 10.3.

FSM-based testing is generally suitable for systems with clearly identifiable states and
state transitions. The situation covers various real-time systems, control systems, and
systems that operate continuously. In many of these systems, it is more common to relate
various system properties, such as status, controllability, safety, etc., to the current system
states than to the beginning or end of systems operations. Related protocols for such systems
can also be easily specified as FSMs and tested accordingly. Our example of call processing
given in Figure 10.1 is an example of such systems.

Another area where FSM-based testing has received significant attention is the testing of
object-oriented software and systems (00s). Object-state testing typically resembles FSM
testing, with some specific customization (Binder, 2000; Kung et al., 1998). There are
various other application domains, such as device drivers, software for installation, backup
and recovery, and software that replaces certain hardware (Beizer, 1995).

The primary limitation of FSM-based testing is its inability to handle large number of
states. Although nested or hierarchical FSMs can help alleviate the problems, they have their
own limitations in assuming clear-cut hierarchies: In lower-level models, we general assume
a common source and common sink as its interface with higher-level models. However,
the interactions may well be cutting through hierarchy boundaries in real systems. For
large software products, the complete coverage of all these hierarchical FSMs would still
be impractical because of the size as well as the generally uneven distribution of problems
and usage frequencies in different areas and product components. Selective testing focused
on highly used operations or product components can be supported by extending FSMs
with usage information to form Markov chains and using them for statistical usage-based
testing, as we describe in Section 10.4.

10.3 CASE STUDY: FSM-BASED TIESTING OF WEB-BASED APPLICATIONS

Web-based applications provide cross-platform universal access to web resources for the
massive user population. With the prevalence of the world wide web (WWW), testing and
quality assurance for the web is becoming increasingly important. We next examine the
characteristics of the web and discuss the use of FSM-models for web testing.

10.3.1 Characteristics of web-based applications

Web applications possess various unique characteristics that affect the choices of appropri-
ate techniques for web testing. One of the fundamental differences is the document and
information focus for the web as compared to the computational focus for most traditional
software. Although some computational capability has evolved in newer web applications,
document and information search and retrieval still remain the dominant usage for most web
users. In addition, navigational facility is a central part of web-based applications, with the
most commonly used HTML (hyper-text markup language) documents play a central role in
providing both information and navigational links. In this respect, web-based applications
resemble many menu-driven software products. However, there are also some significant
differences, as follows:

0 Traditional menu-driven software still focuses on some computation; while web-
based applications focus on information and documents.

158 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

Client - Web Browsers

Web Server

Middleware

Database - Backend

Figure 10.2 Multi-layered web applications

0 Traditional menu-driven software usually separates its navigation from its computa-
tion; while the two are tightly mingled for web-based applications.

0 In traditional menu-driven software, there is usually a single top menu that serves as
the entry point; while for web-based applications, potentially any web page or web
content can be the starting point. These entry or starting points typically correspond to
initial states in an FSM. Similar differences exist for the end points or final states, with
traditional menu-driven software having limited exits while web-based applications
typically can end at any point when the user chooses to exit the web browser or stop
web browsing activities.

0 Another significant difference is the qualitative difference in the huge number of
navigational pages of web-based applications even for moderately sized web sites
and the limited number of menus for all traditional menu-driven applications.

0 Web-based applications typically involve much more diverse support facilities than
traditional menu-driven software. Web functionalities are typically distributed across
multiple layers and subsystems as illustrated in Figure 10.2. We need to make sure all
these functionalities and related components work well together, to eliminate failure
sources or to reduce failure chances.

Similar to general testing, testing for web applications focuses on the prevention of web
failures or the reduction of chances for such failures. Therefore, we need to examine the
common problems and associated concepts such as web failures, faults, and errors, before
we can proceed with the selection of appropriate testing techniques to identify and remove
these problems and problems sources.

10.3.2 What to test: Characteristics of web problems

We define web failures as inability to correctly deliver information or documents required
by web users. This definition also conforms to the standard definition of failures as the
behavioral deviations from user expectations (correct delivery expected by web users) we
outlined in Chapter 2. Based on this definition, we can consider the following failure
sources:

0 Host or network failures: Hardware or systems failures at the destination host or
home host, as well as network failures, may lead to web failures. These failures
are mostly linked to middleware and web server layers in Figure 10.2. However,
such failures are no different from the regular system or network failures, and can be
analyzed by existing techniques.

CASE STUDY: FSM-BASED TESTING OF WEB-BASED APPLICATIONS 159

0 Browser failures: Browser failures are linked to problems at the highest layer in
Figure 10.2 on the client side. These failures can be treated the same way as software
product failures, thus existing techniques for software testing can be used.

0 Source or content failures: Web failures can also be caused by the information source
itself at the server side, associated with the lowest layer in Figure 10.2.

In addition, user errors may also cause problems, which can be addressed through user
education, better usability design, etc. The host, network, and browser failures mentioned
above can be addressed by the “global” web community using existing techniques. However,
web source or content failures are typicallly directly related to the services or functions that
web-based applications are trying to provide. In addition, although usability is one of
the primary concerns for novice web users, reliability is increasingly become a primary
concern for sophisticated web users (Vatanasombut et al., 2004). Therefore, we will focus
on web source failures and trying to ensure reliability of such web-based applications from
a user’s perspective in this case study. Related web components (Miller, 2000) include the
following:

0 HTML document, still the most common form for documents on the web.

0 Java, JavaScript, and ActiveX comnnonly used to support platform independent exe-
cutions.

0 Cgi-Bin Scripts used to pass data or perform some other activities.

0 Database, a major part of the backend.

0 Multimedia components used to present and process multi-media information.

We need to ensure the functionality, performance, reliability, usability, etc. of these
web components and their applications. To do this, various types of existing web testing
can be performed (Bowers, 1996; Bachiochi et al., 1997; Fromme, 1998; Miller, 2000),
including: functionality testing, load and stress testing, browser rendering, and usability
testing. However, such testing typically focus on a small area or a specific aspect of the web
quality problems. We next describe the use of FSMs in web testing to ensure the overall
satisfactory performance from the user’s perspective for the operational usage scenarios
and sequences.

10.3.3 FSMs for web testing

From the web user’s point of view, each web-based application or function consists of
various components, stages, or steps, visible to the web users, and typically initiated by
them. Consequently, state transition base:d FSMs models are appropriate for this kind of
applications. We next consider the four basic elements of FSMs and map them to web-based
applications:

Each web page corresponds to a slate in an FSM. Potentially any page can be the
initial state and any page can be the: final state.

0 State transitions correspond to web navigations following hypertext links embedded
in HTML documents and other web contents. One special case is that a user may
choose to follow a previous saved Rink (bookmarked favorites) or to directly type a

160 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

URL (universal resource locator, the address of a specific page). The use of these
latter navigation tools makes state transitions more unpredictable. However, there
are also two factors worth noting in modeling web navigations as state transitions in
FSMs:

- From the point of view of Internet- and web-based service providers, it is more
important to ensure that the “official” contents on the providers web site are
correct than to ensure that the user’s bookmarks or typed URLs are up-to-date
or correct.

- There is empirical evidence to show that the vast majority of web navigations
are following embedded hypertext links instead of using bookmarked or typed
URLs. For example, for the www . seas. smu . edu web site studied in (Ma and
Tian, 2003), 75.84% of the navigations are originated from embedded links
within the same web site, only 12.42% are user originated, and the rest from
external and other links.

Consequently, we choose to focus on the embedded navigation links and capture them
in FSMs for web testing.

0 The input and output associated with such navigations are fairly simple and straight-
forward: The input is the clicking of the embedded link shown as highlighted content;
and the corresponding output is the loading of the requested page or content with ac-
companying messages indicating the HTML status, error or other messages, etc.

Existing techniques that attempt to “cover” certain aspects can still be used, but at a
lower level than the FSM-based testing. For example, syntax and form testing can still
be performed on individual pages and Java testing can be performed for Java components.
Link checking can be considered as part of this FSM-based testing for transition coverage,
but not based on formal models. The overall FSMs can guide the overall testing of the web
navigations. In fact, web robots used by various Internet search engines or index services
commonly “crawl” the web by systematically following the embedded hypertext links to
create indexes or databases of the overall web contents. This crawling is very much like the
state traversal for FSMs, with appropriate graph node traversal algorithm typically used.

There is one obvious drawback to web testing using such FSMs: the number of web pages
for even a moderate-sized web site can be thousands or much more. Consequently, there
would be significant numbers of states in these FSMs, which makes any detailed testing
beyond simple indexing impractical, even with some automated support. In fact, even such
simple indexing by the most powerful robot for major web search engines or index sites only
cover a small percentage of the entire web. On the other hand, as a general rule, usage and
problem distribution among different software components is highly uneven, which is also
demonstrated to be true among different web contents (Li and Tian, 2003). Consequently,
some kind of selective testing is needed to focus on highly-used and problematic areas to
ensure maximal web site reliability improvement, such as through usage-based statistical
testing we discuss next.

10.4 MARKOV CHAINS AND UNIFIED MARKOV MODELS FOR TESTING

Parallel to the situation with the use of flat or Musa’s operational profiles (OPs) for usage-
based statistical testing using partitions, we can also augment FSMs with probabilistic

MARKOV CHAINS AND UNIFIED MARKOV MODELS FOR TESTING 161

usage information so that usage scenarios and navigation sequences commonly used by
target customers can be tested more thoroughly than the less frequently used ones. The use
of this approach would help us ensure and maximize product reliability from a customer’s
perspective. Such augmented FSMs are oiur OPs, which typically form Markov chains, to
be described in this section.

10.4.1 Markov chains and operational profiles

For large systems, the state explosion problem (massive number of states in FSMs) calls for
selective testing instead complete coverage. As a basic assumption for usage-based testing,
if some functions or components are used more often, the likelihood that an underlying
fault is going to be triggered through such iusage is also higher. Therefore, we need to focus
on those highly used parts in the FSMs. Both the need for selective testing to deal with the
size problem and the need for focused testing of highly used FSM parts can be supported by
augmented FSMs in the form of Markov chains. The use of Markov chains in usage-based
statistical testing also allows us to obtain realistic and meaningful evaluation of system
reliability under an environment that resembles the actual usage environment by the target
customers. The additional information for the FSMs is the probabilities associated with
different state transitions that satisfy the following property:

0 From the current state X, = i at time n or stage n, the probability of state transition
to state Xn+l = j for the next time period or stage n + 1 is denoted as p i j , which is
independent of the history, that is,

P{X,+1 = j l X , = i, X,-l = S,-I,. . . , xo = so}
= P{X,+1 = j l X , = 2 ,)
- - P i j .

In other words, the probability that the system will be in state j only depends on the
current state i and the history-independent transition probability p i j . Equivalently,
the complete history is summarized in the current state, thus removing the need to
look back into the past history to determine the next transition to take. This property is
call the memoryless, Markov, or Markovian property in stochastic processes (Karlin
and Taylor, 1975).

0 Since pij ’s are probabilities, they also obey the following equations:

0 If the above conditions hold for every state in an FSM, the FSM forms a Markov
chain. Although there are also other types of Markov chains, such as continuous
time and infinite-state ones (Karlin and Taylor, 1975), we restrict our attentions to
the ones based on our FSMs: Current state is associated with a stage of the FSM
but not necessarily associated with fixed amount of time within the state, and state
transition may take unspecified time to complete. In the context that we use it for
usage-based statistical testing, this Markov chain is also called a Markov OP, because
it constitutes the specific operational profile (OP) for the system.

162 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

Power-up <r[I>

Figure 10.3 Example Markov chain for call processing FSM in Figure 10.1

Figure 10.3 is a sample Markov chain enhanced from the FSM in Figure 10.1. The
transitions here are probabilistic instead of deterministic. Specific messages or conditions
in the corresponding FSM are augmented with the associated probability. For example,
after state B the next state to follow is always C, as represented by the transition probability
of p(B , C) = 1. While the states to follow C could be D, with probability p(C, D) = 0.99
for the normal case, or B, with probability p(C, B) = 0.01 for the rare occasion that MS is
unable to receive paging channel. Notice that we omitted the input/output information in
such Markov OPs to keep the illustration simple, with the understanding that the input/output
information is available for us to sensitize testing.

10.4.2 From individual Markov chains to unified Markov models

Statistical testing using Markov chains started with (Mills, 1972), which was integrated with
formal verification to create Cleanroom technology (Mills et al., 1987b), and formalized
later (Whittaker and Poore, 1993; Whittaker and Thomason, 1994). Recently, hierarchical
Markov chains in a framework called unified Markov models (UMMs) to support statistical
testing, performance evaluation, and reliability improvement were developed (Tian and
Lin, 1998; Tian and Nguyen, 1999; Kallepalli and Tian, 2001; Tian et al., 2003; Tian et al.,
2004). In what follows, we focus on the use of UMMs to support effective and flexible
statistical usage-based testing.

The usage information is represented in UMMs as a set of hierarchical Markov chains.
For example, the top-level Markov chain in UMMs for call processing in a cellular commu-
nication network is represented in Figure 10.3. However, various sub-operations may be
associated with each individual state in the top-level Markov chain, and could be modeled
by more detailed Markov chains, such as the Markov chain in Figure 10.4 for expanded

MARKOV CHAINS AND UNIFIED MARKOV MODELS FOR TESTING 163

Figure 10.4
Figure 10.3 into a lower-level UMM

Example UMM (unified Markov model): Expanding state E of the top-level UMM in

state E. Notice that in some of these Markov chains, the sum of probabilities for transitions
out from a given state may be less than 1, because the external destinations (and sources)
are omitted to keep the models simple. ‘The implicit understanding in UMMs is that the
missing probabilities go to external destinations.

Such UMMs make it easy to model individual operational units and link them together
to form the global operations. The higher-level operations can be expanded into lower-level
models for more thorough testing. Therefore, they are more suitable for large systems with
complex operational scenarios and sequences than Musa’s OPs we described in Chapter 8
or deterministic FSMs described earlier in this chapter. This hierarchical structure and the
associated flexibility that can be tailored to multi-purpose applications set this approach
apart from earlier approaches to statistical testing using Markov chains.

Each state or transition represents an individual operation, workload, or execution stage.
They form the building blocks for the end-to-end operations by following the probabilistic
state transitions. We will focus on the use of UMMs in testing in Section 10.5, with some
discussion on reliability analysis and improvement covered in Chapter 22. For practical
implementations, predefined procedures and automated tools can be used to support infor-
mation gathering, model construction, measurement collection, and result analysis, which
we discuss next.

164 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

10.4.3 UMM construction

The construction of UMMs can be considered as the instantiation of the general model
construction process outlined in Chapter 7, which includes the three steps of identifying
information sources, constructing the initial model or models, and several rounds of val-
idation and refinement. Since UMMs are enhanced FSMs, much of the results for FSM
construction can be reused as part of the process to construct UMMs. For each individual
Markov chain in the UMMs, there are two distinct sub-steps in model construction:

Step M1: Constructing the basic FSMs, which we have already described in Section 10.2,
with an emphasis on external functions and operations visible to target users.

Step M2: Complete the usage model by assigning transition probabilities based on mea-
surement or surveys of target customers and actual product usage by them.

Transition probabilities could be obtained by several methods we mentioned in Chapter 8
in connection with Musa’s operational profiles, including: Subjective evaluation based on
expert opinions, survey of target customers, and measurement of actual usage. A combi-
nation of the these three methods can be used to achieve the optimal combination of high
accuracy and low cost for UMM construction. In addition, expert opinions, customer sur-
veys, and usage measurement can also be used to confirm the overall structure and elements
of the FSMs (states and state transitions) derived in step M1 above.

The hierarchical structure of UMMs and their use also affects their construction process:
Not every higher-level state needs to be expanded into lower-level models, because testing
using lower-level model are to be performed selectively. Therefore, a threshold should be
set up so that only the ones above it need to be expanded with their corresponding lower-
level UMMs constructed. In the case that the usage is expected to fluctuate, we might need
to use a lower threshold so that more candidate models of lower-level can be constructed to
handle different usage situations. However, there should be a balance between the number
of UMMs and the flexibility depending on the specific application environment.

10.5 USING UMMS FOR USAGE-BASED STATISTICAL TESTING

We next describe the use of UMMs in usage-based statistical testing and illustrate them
with some concrete examples.

10.5.1 Testing based on usage frequencies in UMMs

Test cases can be generated by following the states and state transitions in UMMs to select
individual operational units (states) and link them together (transitions) to form overall
end-to-end operations. Possible test cases with probabilities above or at specific thresholds
can be generated to cover frequently used operations. In practical applications, thresholds
can be adjusted to control the numbers of test cases to be generated and executed. For
example, we can start with a high threshold to test only the most frequently used operations,
and gradually lower the threshold to cover more distinct situations and ensure satisfactory
performance and reliability for a wider variety of operations. Several thresholds have been
initially proposed (Avritzer and Weyuker, 1995) and used in developing UMMs (Tian and
Lin, 1998; Kallepalli and Tian, 2001). In this book, we use three kind of thresholds for
usage-based statistical testing, including:

USING UMMS FOR USAGE-BASED STATISTICAL TESTING 165

Overallprobability threshold for complete end-to-end operations to ensure that com-
monly used complete operation sequences by target customers are covered and ade-
quately tested.

Stationary probability threshold to ensure that frequently visited states are covered
and adequately tested.

Transition probability threshold to ensure commonly used operation pairs, their in-
terconnections and interfaces are covered and adequately tested.

To use the overall probability threshold, the probability for possible test cases (or com-
plete operations) need be calculated can compared to this threshold. For example, the
probability of the sequence ABCDEBCDC in Figure 10.3 can be calculated as the products
of its transitions, that is,

1 x 1 x 0.99 x 0.7 x 1 x 1 x 0.99 x 0.3 = 0.205821.

If this is above the overall end-to-end probability threshold, this test case will be selected
and executed.

If the Markov chain is stationary, it can reach an equilibrium or become “stationary”
(Karlin and Taylor, 1975). In such a state, the stationary probability ri for being in state i
remains the same before and after state transitions over time. The set { ~ i } can be obtained
by solving the following set of equations:

2 a

where pij is the transition probability from state i to state j . The stationary probability
rt indicates the relative frequency of vi:sits to a specific state i after the Markov chain
reaches this equilibrium. Therefore, testing states above a given threshold is to focus on
frequently used individual operations or system states. For the many Markov chains that are
not stationary (Karlin and Taylor, 1975), the same idea of focused testing can still be used
by approximating stationary probabilities with the recorded relative frequencies of visit.

A mirror case to test states with stationary probabilities above a given threshold is to
test links with transition probabilities above a given threshold. In this case, the testing is
actually much easier to perform, because all the pij’s are specified in the UMMs. A larger
value of pi, indicates a commonly used operations (if we associate individual operations
with transitions) or operational pairs (if we associate individual operations with states) in
the sense that whenever i is reached, j is likely to follow.

Some combinations of these thresholds could also be used if they make sense for some
specialized situations. For example, if state i is visited very infrequently (low r i) , then
even larger values of pi j may not be that meaningful if state j is not tightly connected as
the destination of other links (that is, low p k j , k # 2). In this example, we would combine
stationary probability threshold with link probability threshold to select our test cases.

10.5.2 Testing based on other criteria and UMM hierarchies

Coverage, importance and other information or criteria may also be used to generate test
cases. In a sense, we need to generate test cases to reduce the risks involved in different usage
scenarios and product components, and sometimes to identify such risks as well (Frank1 and
Weyuker, 2000). The direct risks involved in selective testing including missing important

166 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

areas or not covering them adequately. These “important” areas can be characterized by
various external or internal information, as discussed below.

As a basic principle, all implemented functions or sub-functions should at least be covered
once and found to be satisfactory before product release. This coverage requirement can
be handled similarly by adjusting the probabilities to ensure that all things we would like
to cover stays above a certain threshold, or by adjusting our test case selection procedures.

In addition to the coverage requirement, some critical functions of low usage frequencies
also must be thoroughly tested because of the severe consequences if faults exist in them.
For example, some recovery procedures may have little chance of being invoked in customer
settings, but they still need to be adequately tested because of the critical role they play in
emergency situations. Similar adjustments as above can be used to ensure such test cases
are generated, selected, and executed.

In general, importance information can be used in conjunction to usage frequencies to
establish various probabilities or weights, as we have already seen in the case study of
usage-based testing in Chapter 8. The same idea can be carried over to UMMs, weighing
link probabilities accordingly. The importance information can be obtained by consulting
product experts. In addition, the complexity of the implemented components may also
influence the choice of functions or sub-functions to test. Test case allocation can be
adjusted accordingly to compensate for increased complexity.

As mentioned before, models of different granularity can be constructed and then be
used with the above methods for test case generation. Test efficiency concerns may require
that we cover different functions with a minimal of test cases. The hierarchical structure
of UMMs also gives us the flexibility to improve test efficiency by avoiding redundant
executions once a subpart has been visited already. This is particularly true when there are
numerous common sub-operations within or among different end-to-end operations.

When revisiting certain states, exact repetition of the execution states that have been
visited before is less likely to reveal new problems. The revisited part can be dynamically
expanded to allow for different lower-level paths or states to be covered. For example,
when state E is revisited in the high-level Markov chain in Figure 10.3, it can be expanded
by using the more detailed Markov chain in Figure 10.4, and possibly execute different
sub-paths there. In general, to avoid exact repetition, we could expand revisited states with
operations of finer granularity, and more thoroughly test those frequently used parts.

10.5.3 Implementation, application, and other issues

The test sensitization and outcome prediction are relatively simple and straightforward, as
we discussed above for testing based on general FSMs in Section 10.2. Because UMMs are
based on FSMs with augmented probabilistic transitions, once a series of state transitions is
selected using the criteria above, the sensitization simply follows the required sequence of
input and the result checking simply compares the actual output and next states to what are
specified in the corresponding FSMs. In effect, we can prepare all the input and specify the
anticipated output and transitions ahead of time. However, under some dynamic situations,
it would be hard to anticipate the input as well as the next state. One may also argue that such
prepared tests are not truly random in the statistical sense. Under such situations, dynamic
test cases may be generated in the following way: From a current state, the transition or
branching probabilities can be used directly to dynamically select the next state to visit,
and sensitized on the spot. As discussed in Chapter 7, such dynamic test cases also have
their own drawbacks, primarily in the reduced system performance due to the overhead to
dynamically prepare and sensitize these test cases.

CASE STUDY CONTINUED: TESTING BASED ON WEB USAGES 167

The usage-based testing based on UMMs also yield data that can be used directly to
evaluate the reliability of the implemented system, to provide an objective assessment of
product reliability based on observation of testing failures and other related information.
Such use of statistical testing data in reliability analysis is described in Chapter 22. Unique
to the usage of UMMs is that the failures can be associated with specific states or transitions.
We can use such information to evaluate individual state reliability as well as overall system
reliability, to extrapolate system reliability to different environments, and to identify high-
risk (low-reliability) areas for focused reliability improvement.

The general applicability of UMMs is similar to that for FSMs, such as menu-driven,
interactive, and real-time systems, especially to large software systems of these types. In
addition, the hierarchical UMMs fit well with incremental, iterative, and spiral development
processes, where new software increments or sub-systems can be treated as a new top-
level node in UMMs to be added, expanded, and tested, while the rest of the models can
remain essentially the same. Reuse of software components or use of COTS (commercial
off-the-shelf) components can be supported, modeled, and tested similarly.

10.6 CASE STUDY CONTINUED: TESTING BASED ON WEB USAGES

Continuing our case study in Section 10.3 about web testing, we can use statistical testing
based on UMMs to overcome some of the difficulties of using pure FSM-based testing due
to the size and other factors. The key to this usage-based statistical testing strategy based
on a series of studies is the automatic extraction of web usage information from existing
web logs to build UMMs as web usage models (Tian and Nguyen, 1999; Kallepalli and
Tian, 2001; Ma and Tian, 2003; Tian et al., 2004).

10.6.1 Usage-based web testing: Motivations and basic approach

We characterized web-based applications in Section 10.3 by their informatioddocument
focus, integration between information and navigation, and multi-layered support infras-
tructure to derive FSMs for web-based applications. In addition, we also noticed the inade-
quacies of using pure FSMs in testing such web-based application due to the size and other
factors, as follows:

Massive user population: Virtually anyone from anywhere with an Internet access
can be a user of a given web-site. Although some traditional software systems, such
as operating systems, also serve a inassive user population, the systems are usually
accessed locally, thus scattering the: user population into sub-groups of limited size.

Diverse usage environments: Web users employ different hardware equipments, net-
work connections, operating systems, middleware and web server support, and web
browsers, as compared to pre-specified platforms for most traditional software.

The combination of these characteristics and other characteristics noticed in Section 10.3
above also make traditional coverage-based testing such as basic state and link coverage
based on FSMs inadequate for web-based applications. Instead, statistical testing techniques
described above can be used to selectively test those components or usage patterns frequently
used by the massive number of users under diverse usage environments. These techniques
can help us prioritize testing effort based on usage scenarios and frequencies for individual
web resources and navigation patterns to ensure the reliability of web-based applications.

168 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

129.119.4.17 - - [16/A~g/l999:00:00:11 -05001 "GET
/img/XredSeal.gif HTTP/l.l" 301 328 "http://www.seas.srnu.edu/"
"Mozilla/4.0 (compatible; MSIE 4.01; Windows NT)"
129.119.4.17 - - [16/Aug/1999:00:00:11 -05001 "GET /img/ecom.gif
HTTP/l.I" 304 - "http://www.seas.smu.edu/" "Mozilla/4.0
(compatible; MSIE 4.01; Windows NT)".

Figure 10.5 Sample entries in an access log

Once we have decided on the use of usage-based statistical web testing, the immediate
question is the choice of which types of usage models or operational profiles (OPs), or
more specifically, the choice between Musa's flat OP covered in Chapter 8 and the UMMs
covered earlier in this chapter. Web applications consist of various components, stages,
or steps, visible to the web users, and typically initiated by them. Consequently, state
transition based Markov models such as UMMs are generally more appropriate for this
kind of applications than flat OP.

As mentioned in Section 10.4, the construction of UMMs includes two steps: Con-
structing the basic model elements and the structure first (or the underlying FSMs), and
then assigning transition probabilities. In our case study in Section 10.3, we have already
constructed the FSMs. Therefore, we can concentrate on obtaining the probabilistic tran-
sition information. As pointed out in Chapter 8 in connection to flat (Musa) OPs, such
information can be obtained by expert opinions, customer surveys, or actual measurement,
with the last one the most accurate but also typically the most difficult and costly to obtain.
Fortunately, various log files are routinely kept at web servers for normal support of various
web-based applications. This availability offers us the opportunities of automatic collec-
tion of usage information for OP construction, We next describe this approach and also
illustrate it with examples for www . seas. smu . edu, the official web site of the School of
Engineering and Applied Science at Southern Methodist University (SMUKEAS). Access
log data covering 26 consecutive days were used in these examples.

10.6.2 Constructing UMMs for statistical web testing

A "hit" is registered in the access log if a file corresponding to an HTML page, a document,
or other web content is explicitly requested, or if some embedded content is implicitly
requested or activated. Most web servers record relevant information about individual
accesses in their access logs.

Every hit is logged as a separate entry in the server's access log file. Some sample
entries from the access log for the www . seas. smu. edu web site using Apache Web Server
(Behlandorf, 1996) is given in Figure 10.5. Specific information in this access log includes:

0 The reverse-DNS hostname of the machine making the request. If the machine has
no reverse-DNS hostname mapped to the IP number, or if the reverse-DNS lookup is
disabled, this will just be the IP number.

0 The user name used in any authentication information supplied with the request.

0 If "identd" checking is turned on, the user name as returned by the remote host.

CASE STUDY CONTINUED: TESTING BASED ON WEB USAGES 169

0 Date and time that the transfer took place, including offset from GMT (Greenwich
Mean Time).

0 The complete first line of the HTTP request, in quotes.

0 The HTTP response code.

0 Total number of bytes transferred.

If the value for any of these data fields is not available, a “-” will be put in its place.
Although different web servers record different information, the following is almost always
present: the requesting computer, the date and time of the request, the file that the client
requested, the size of the requested file, and an HTTP status code.

UMMs can be constructed based on analyzing the access logs using a combination of
existing tools and internally implemented utility programs. However, as with most model
construction activities, fully automated suipported is neither practical nor necessary. Human
involvement is essential in making various modeling decisions, such as to extract UMM
hierarchies and to group pages or links, a!s follows:

0 For traditional organizations, there is usually a natural hierarchy, such as university-
school-department-individual for universities, which is also reflected in their official
web sites. There are generally closer interconnections as represented by more fre-
quent referrals within a unit than across units. This natural hierarchy is used as the
starting point for the hierarchies in these UMMs for web testing, which are later
adjusted based on other referral frequencies.

0 For links associated with very small link probability values because they are followed
infrequently, grouping them together to form a single link would significantly simplify
the resulting model, and highlight the frequently used navigation patterns. A simple
lower-level model for this group can be obtained by linking this single grouped node
to all those it represents to form a one-level tree. Web pages related by contents or
location in the overall site structure can also be grouped together to simplify UMMs.

This approach to UMM construction based on web logs is similar to the use of data
mining techniques on web logs for web site evaluation (Spiliopoulou, 2000), but the focus
here is to construct integrated models insitead of a loose collection of results and patterns.

10.6.3 Statistical web testing: Delails and examples

Although any web page can be a potential entry point or initial state in an FSM or its
corresponding Markov chain, one basic idea in statistical testing is to narrow this down
to one or a few entry points based on their actual usage as entry point to a web site. The
destinations of incoming links to a web site from external sources are the entry points for
UMMs. These links include URL accesses from dialog boxes, user bookmarks, search
engine results, explicit links from external pages, or other external sources. All these
accesses were recorded in the access log, and the analysis result is summarized in the entry
page report in Table 10.2. For this web site, the root page “/index. htm1”outnumber other
pages as the entry page by a large margin. In addition, these top entry pages are not tightly
connected. These facts lead to the decision of building a single set of UMMs with this root
page as the main entry node to the top-level Markov chain presented in Figure 10.6.

170 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

Table 10.2 Top entry pages to SMU/SEAS

Entry Page Occurrences

/index.html
/ce/index.html
/co/cams/index . h tm 1
/ce/smu/index. html
/netech/index.html
/disted/phd/index.html
/co/cams/clemscam.html
/disted/index.html
/cse/index.html

18646
2778
2568
2327
2139
1036
963
878
813

Figure 10.6 Top-level UMM for SMU/SEAS

The issue with exit points is more complicated. Potentially any page can be the exit
point, if the user decides to end accessing the web site. That is probably why no such exit
page report is produced by any existing analyzer. This problem can be handled implicitly
by specific usage sequences associated with specific test cases: The end of a usage sequence
is the exit point from the UMM. This decision implies that frequently visited pages are also
more likely to be the exit node than infrequently visited pages, which makes logical sense.

Figure 10.6 shows the top-level Markov chain of the UMM for the SMU/SEAS web site.
The following information is captured and presented:

Each node is labeled by its associated web file or directory name, and the total outgoing
direct hits calculated. For example, out = 2099 for the root node “/index. h t m l ” ,
indicates that the total direct hits from this node to its children pages is 2099.

Each link is labeled with its direct hit count, instead of branching probability, to
make it easier to add missing branching information should such information become
available later. Only when such content is requested and loaded,a hit is recorded in the

CONCLUDING REMARKS 171

access log, but not when a user accesses a specific content using browser navigation
buttons (“Back”, “Forward”, etc.), because the local cache is used for the latter type
of accesses. Therefore, branching information represented by the use of these browser
navigation buttons can only be extracted from other information sources, such as a
collection of user-side records, which would be much harder to obtain than server
access logs. However, relative frequencies and conditional branching probabilities
for links originating from a given node can be deduced easily. For example, the direct
hit count from the page “/index. h . t m l ” to the page “gradinf 0. html” is 314; and
the conditional branching probability for this link is 314/2099 = 20.5%.

0 Infrequent direct hits to other pages are omitted from the model to simplify the
model and highlight frequently followed sequences. However, the omitted direct
hits can be calculated by subtracting out direct hits represented in the diagram from
the total “out” hits of the originating node. For example, there are direct hits to
nine other pages from the root page: “/index. html”. The combined direct hits are:
2099 - 431 - 314 - 240 - 221 = 893.

0 Lower-level models (not shown) are also produced for the nodes
“/gradadmission/” and ‘‘ / recrui t /” in the top-level model. These models can
be used to support our hierarchical strategy for statistical usage-based testing.

For nodes needing no further analysis, such as “/smumap.html” and
“ /contac tseas . html”, neither lower-level models nor “out” hits are produced.
Such pages either do not contain outlinks, or are visited with very low frequency, that
further analysis is impossible or unnecessary.

10.7 CONCLUDING REMARKS

Finite-state machines (FSMs) are often suitable models for many software systems where
system functions or operations cannot be: adequately modeled by a one-step or fixed step
information processing models such as those based on checklists, partitions, or decision
trees. FSMs use states and transitions to model the individual units of system operations
or current status, and link them together to form the overall usage scenarios and sequences,
with possible repetitions or loops handled easily. Testing based on FSMs can be performed
on these systems for basic coverage of states and transitions by directly using the FSMs, or
for focused testing of highly used or important parts by using Markov operational profiles
(OPs) as extended FSMs with usage probabilities associated with transitions.

In gaining the power of being able to model and test more realistic steps and transitions
with possible repetitions, we lost the siniplicity of simple processing and testing models
covered in Chapter 8. In addition, the intrinsic complexity associated with the number
of states and transitions limits our ability to model large systems in detail where large
numbers of states and transitions are required. Hierarchical FSMs can be used to alleviate
the problem by limiting transactions across boundaries of different FSMs in the hierarchy.
Selective testing based on Markov OPs can also alleviate the problem to some degree by
focusing on highly used states and transitions while omitting infrequently used ones or
grouping them together. The combination of these hierarchical FSMs and Markov OPs
led us to unified Markov models (UMMs) described in this chapter. UMMs can help us
prioritize testing effort, perform usage-based statistical testing, improve test efficiency, and
support reliability analysis and improvement activities.

172 TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS

These testing techniques can be effectively applied to various systems, such as menu-
driven, object-oriented, and real-time systems, and systems that operate continuously. We
illustrated the use of these testing techniques through a comprehensive case study of testing
web-based applications using both the basic FSMs and the extended FSMs in the form of
UMMs. Not only can the usage of individual web pages and possible links be captured by
FSMs, but also the related usage frequencies and navigation patterns by web users can be
captured automatically in UMMs by extracting information from web access logs routinely
kept by web server for normal web operations. Therefore, FSM- and UMM-based testing
techniques are viable, practical, and effective techniques for web-based applications.

However, complex interactions along execution paths and detailed dependencies among
different data items cannot be adequately modeled and tested by using the testing techniques
described in this chapter. On the other hand, the FSMs can be the starting point for us to
perform various analyses and build additional models as extensions to the basic FSMs to
test more complex interactions, as we will describe in the next chapter.

Problems

10.1 What are the similarities and differences between FSMs and flow charts? You might
want to include some sample flow charts.

10.2 Can the checklists, partitions, and decision trees described in the previous two
chapters considered FSMs?

10.3 Convert the FSM in Figure 10.1 or in Table 10.1 to its list representation. Which con-
version is easier, from graphical to list representation or from tabular to list representation?
What about converting them back?

10.4 As described in this chapter, we can use the three different representations of FSMs.
What about Markov chains? Can you convert the Markov chains in Figure 10.3 and Fig-
ure 10.4 into tabular or list representations? What about the graph in Figure 10.6?

10.5 As we mentioned in Section 10.1, there might be many common sub-operations in
complete end-to-end operations. How would problems related to such sub-operations or
complete operations manifest into problems in FSMs? In particular, can they be mapped to
state problems, transition problems, input problems, or output problems?

10.6 Build an FSM for some menu-driven software you are familiar with.

10.7 What is the main problem of modeling individual web pages as individual FSM
states?

10.8 Many realistic usage situations of software products may be influenced by both the
individual characteristics of the user, the past usage history, as well as the current dynamic
environment. Can you incorporate such information into Markov chains? If yes, how? If
no, why not?

10.9 Can you still use Markov chains to model your software systems if the memoryless
property is not strictly satisfied?

10.10 Compare the probability thresholds in Section 10.5 to the use of Musa OPs we
studied in Chapter 8.

10.11 In your opinion, is it easier to incorporated information other than usage frequencies
into UMMs or into Musa OPs?

PROBLEMS 173

10.12 There are still many open questions about statistical usage-based web testing,
particularly with the missing information or information not recorded in server access logs.
Can you suggest some alternative ways to obtain such missing information or to deal with
other open questions?

This Page Intentionally Left Blank

CHAPTER 11

CONTROL FLOW, DATA DEPENDENCY,
AND INTERACTION TESTING

From the structural or implementation view, a software system is made up of interacting
components, modules, or sub-systems. As it appears to target customers, the overall system
consists of linked functions or operations. Finite-state machines (FSMs) and related usage
models we described in the previous chapter can be used to model and test these inter-
connected system functions, implementations, and related usage. We focused on covering
the states, transitions, and related usage without paying too much attention to interactions
beyond simple links. In this chapter, we describe testing techniques to deal with complex in-
teractions beyond one-step links in FSMs. Two primary types of such complex interactions
are:

Interactions along an execution path, where later executions are affected by all that

0 More specific interactions among data items in execution, with some of the later ones
depending on the definitions and vallues of earlier ones for their definitions and values.

The testing of the above interactions is through what are commonly called control flow
testing (CFT) and data flow testing (DFT), respectively. These techniques are traditionally
white-box techniques due to the level of detail captured in their models (Myers, 1979; Beizer,
1990), but they have also found some applications as black-box testing techniques applicable
to testing system-level functional flow, data dependencies, and related interactions (Howden,
1980; Beizer, 1995). In fact, these techniques and related studies represent some of the
earliest formal studies of software testing (Allen and Cocke, 1972; Goodenough and Gerhart,
1975; Clarke, 1976; Howden, 1976; Miller and Howden, 1981).

went on before them.

175

176 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

11.1 BASIC CONTROL FLOW TESTING

Control flow testing (CFT) is a direct and natural extension to coverage-based FSM testing
with a specialized type of FSMs called control flow graphs (CFGs) and with a focus on
complete execution paths instead of on state or link coverage.

11.1.1 General concepts

When we introduced finite-state machines (FSMs) in Chapter 10, we distinguished the type
whose information processing is associated with transitions from the type whose information
processing is associated with states. Control flow graphs (CFGs) can be considered as
special cases of the latter type, with their elements and characteristics specified as follows:

0 Nodes: Each node in a CFG represents a unit of information processing (white-box
view) or workload to be handled by the software (black-box view). The nodes in
CFGs correspond to the states in FSMs.

0 Links: Each link in a CFG simply represents the relation “is followed by”: If we
have a directed link from node A to node B, it is interpreted as A is followed by B,
or B follows A. The links in CFGs correspond to the state transitions in FSMs, but
no processing or workload is associated with links in CFGs. Duplicate links are not
needed in CFGs because there is no need to specify the simple relation “is followed
by” more than once.

Initial/entry and jinal/exit nodes: The nodes where program execution starts are
called the initial or entry nodes and the ones where program execution ends are called
the final or exit nodes. In CFT, we mostly deal with proper programs or functions
where there is only a single entry node and a single exit node.

0 Outlinks: A link that originates from a node is called an outlink with respect to that
node. When there are multiple outlinks from a node, each of them will be labeled with
its specific condition. The actual execution will only follow one of these outlinks.

0 Inlinks: A link that ends up in a node is called an inlink with respect to that node.
When there are multiple inlinks to a node, the actual execution will only follow one
of these inlinks because the above condition on outlinks guarantees that program
execution will only follow one link at a time.

0 Decision, junction, and processing nodes: A node associated with multiple outlinks
is called a decision node because a decision is made at this node to select an outlink to
follow in an actual execution. It is also called a branching node for obvious reasons.
Similarly, a node associated with multiple inlinks is called a junction node. A node
that is neither a decision node nor a junction node is called a processing node because
it usually corresponds to some internal or external processing. Two special cases are
the entry nodes, where there may not be any inlink, and exit nodes, where there may
not be any outlink. However, they are still grouped as processing nodes, because they
are generally associated with some initial or final processing. For clarity, we generally
separate out the three types of nodes, with information processing associated with
only processing nodes and with one junction node corresponding to each branching
node.

BASIC CONTROL FLOW TESTING 177

. &)
T/ \F

......

G2

Figure 11.1 A sample control flow graph (CFG)

0 Path: A complete path, or simply a path, is one that starts from an entry node, follows
a number of links and visits a number of intermediate nodes, and ends up in an exit
node. Since no duplicate link is allowed, we can simply identify the path by the
sequence of nodes visited.

0 Segment: A path segment, or simphy a segment, is a subpart of a complete path where
the first node may not be an entry node and the last node may not be an exit node.

0 Loop: A path or a segment contains a loop if some nodes in the path or segment are
revisited. In what follows, we will deal with CFGs without loops first. Section 11.2
is dedicated to loop testing.

Figure 11.1 is a sample CFG with processing nodes P1, P2, P3, P4, P5, P6, and P7;
decision nodes C1, C2, and C3; and junction node J1, J2, and 53. The CFG is also divided
into three different parts G I , G2, and G3, with each part shown inside a dotted rectangle. In
another variation of CFGs often used by practitioners and in literature, some of the nodes
could be merged if we allow processing in all the nodes. In that variation, we would merge
J1 and C2 into one node, and J2,53 and 1’7 into another.

The basic idea for control flow testing (CFT) is to select paths as test cases and sensitize
them by assigning corresponding input values. As described in Chapter 7, among the three
major activities of test preparation, execution, and follow-up, the last two share much of the

178 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

same sub-activities among different testing techniques; while different testing techniques
prepare test cases and test procedures differently based on different underlying models. For
CFT, the test preparation includes the following sub-steps:

0 Build and verify the CFG.

0 Define and select paths to cover as individual test cases based on the CFG.

0 Sensitize the paths or the test cases by deciding the input values.

0 Plan for result checking.

We elaborate on each of these sub-steps below.

11.1.2 Model construction

Notice that Figure 11.1 resembles flow charts often used in software development. In fact,
such flow charts are one of the most important sources of information for us to construct
CFGs and to perform CFT. One minor difference between CFGs and flow charts is that
different types of nodes are typically represented by different symbols in flow charts, but
we do not usually use different symbols in CFGs. In the absence of flow charts, program
code or program designs can be the information sources for CFG construction. The CFGs
constructed in this way are white-box testing models because product implementation in-
formation is used, as follows:

0 Processing nodes typically correspond to assignments, function calls, or procedure
calls.

0 Decision or branching nodes typically correspond to branching statements such as
binary branching in the form of “ i f -then-e1se”or “ i f -then” (empty “else”), or
multi-way branching such as “switch-case”. Each outgoing branch will be marked
by its specific condition. For example, for binary branching, it is typically marked
by the truth value (T/F, or TrueRalse) of the associated condition. For multi-way
branching, more specific conditions will be marked.

0 Loop statements correspond to a special type of branching nodes that we will deal
with in Section 11.2.

0 The entry and exit nodes are usually easy to identify, corresponding to the first and last
statement or processing unit in the program code or some corresponding flow-chart.

One of the problems with the above procedure for CFG construction is that a lot of nodes
will be used and represented in the CFG. However, since CFG is used for path testing, we
can group some nodes together, such as a number of sequential processing nodes, to form
super-nodes if such grouping will not affect the execution paths.

Notice that the use of “goto” was not covered in the above procedure for CFG con-
struction. The free use of goto’s will create truly horrible programs and corresponding
CFGs that are hard to test - one of the main reasons that goto is considered harmful
(Dijkstra, 1968). Fortunately, with structured programming and its successor, object-
oriented programming, commonly employed for today’s software product development,
we do not encounter too many goto’s. The commonly used structures are sequential con-
catenation, such as between the parts G1 and G2 in Figure 11.1, and nesting, such as G3

BASIC CONTROL FLOW TESTING 179

L1:
L2:
L3:
L4:
L5 :
L6:
L7:
L8:
L9 :

input(a, b, c);
d t b * b - 4 * a * c;
i f (d > 0) then

r t 2
else-if (d = 0) then

r c 1
else-if (d < 0) then

r +- 0;
output(r);

Figure 11.2 A sample program and its control flow graph (CFG)

nested inside G2 in Figure 1 1.1. Of course, multiple concatenations or multiple levels of
nesting can be used in programs and reflected in their CFGs. We will deal with them in our
path selection and sensitization later.

Figure 1 1.2 gives a program in pseudo-code form that determines the number of roots
for the equation ax2 + bx + c = 0. Each line is individually numbered. We used a three-
way branching implemented by “if -else-if -else-if” (called cascading i f ’s). The
corresponding CFG is given to the right of the program. We merged lines L3, L5, and
L7 together because they basically specify a 3-way branching, with the branching node in
Figure 11.2 marked by condition d =?. Lines L1 and L2 were also merged because such
sequential statements do not affect the control flow. In addition, a junction node J1 was
introduced to clearly mark the junction.

CFGs can also be derived from external functional specification or descriptions of cus-
tomer usage scenarios, thus could also be considered as black-box testing models. We can
directly adapt and modify flow-charts for these product specifications or usage scenario
descriptions into our CFGs. If the flow-(:harts are not available, we need to extract infor-
mation from these specifications and descriptions by examining the structure and relations
in them. as follows:

0 Processing nodes typically correspond to some described actions, typically associated
with phrases such as “do/enter/calc:ulate” something.

0 Branching nodes are typically associated with decisions or conditions.

0 Entry and exit nodes typically conespond to the first and last items respectively in
the specifications or descriptions, although they are also often explicitly specified.

For example, the CFG in Figure 1 1.2 can be conceivably derived from the following product
description:

0 To solve the equation ax2 + b3: + t; = 0, the user needs to enter the parameters.

0 If b2 - 4ac < 0, there is no real root, and the user should be informed.

0 If b2 - 4ac = 0, the root T = -b/(2a) will be calculated.

0 If b2 - 4ac > 0, two roots will be calculated as:

-b i v ’ n c

2a
r =

180 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

Notice that although the roots are calculated here instead of just the number of roots as in
the program in Figure 11.2, the resulting CFG would be identical in structure. The only
difference would be the individual processing associated with the processing node. This
example of the shared CFG also showcases the focus on execution paths of CFGs instead
of specific processing.

The review and cross-validation of CFGs can be performed much the same way as for
FSMs we described in Chapter 10, mainly in the areas of checking for missing or extra
nodes and links, and performing some reachability analysis to weed out some unreachable
or dead clusters of nodes and links.

11.1.3 Path selection

We next describe a strategy to systematically select paths for structured CFGs (no explicit
goto’s). This strategy consists of two basic steps:

1. CFG decomposition.

2. Bottom-up path definition.

In doing this, we make use of some important properties about structured CFGs from
graph theory and programming language theory (Maddux, 1985; Pratt and Zelkowitz, 2001).
A structured CFG is one where only sequential concatenation and nesting are allowed,
and where there is a unique entry and a unique exit node. Such structured CFGs can be
decomposed into their sub-graphs (or sub-CFGs), with each one a proper structured CFG in
its own right. The sub-CFGs are connected through sequential concatenation or nesting. If
a sub-CFG cannot be decomposed further, it is called a prime CFG. The hierarchical CFGs
yielded from this process are called a decomposition of the original CFG. For example, the
CFG in Figure 1 1.1 can be decomposed into: G = G1 o G2 (-, G3). with G3 nested inside
G2, and G1 concatenated with G2. G2(-, G3) is used to indicate that G3 is nested in the F
branch of G2, with use of “-” to indicate no more levels of nesting at the T branch. G2(G3)
is used to indicate that G3 is nested in G2 but we do not know or do not care about which
branch it is nested in. The boundaries for G1, G2, and G3 were also shown in Figure 11.1
by the dotted rectangles.

With the above CFG decomposition, we can perform bottom-up path definition. When
two CFGs, GI with M paths and G2 with N paths, are combined in a higher-level CFG,
we can determine the paths as follows:

0 For sequential concatenation, G = G1 o G2, there will be M x N paths in G. That is,
each of the M paths in G1 can be paired with one of the N paths in G2. Notice that
these paths in G1 and in G2 form path segments in G. For example, the concatenation
of two binary prime CFGs (each has two paths corresponding to the logical value T
or F for its condition) would yield four paths: TT, TF, FT, FF.

0 For nesting, G = G1 (G2), there will be M + N - 1 paths in G. That is, one of the
M paths in GI will be replaced by N paths in G2. For example, in the nesting of
two binary prime CFGs with the one nested in the F path of another, the original T,
F paths will become T, FT, and FF, or 2 + 2 - 1 = 3 paths.

This process can be carried out for each level, by starting with the prime CFGs and
continuing with higher-level combinations, until we have defined the complete path for the

BASIC CONTROL FLOW TESTING 181

whole CFG. In the above example of Figure 1 1.1, we can follow the above procedure to
select the paths. The CFG has already been decomposed, with G = G1 o G2 (-, G3). We
can then focus on the second step, the bottom-up use of concatenation and nesting to select
paths, as follows:

0 We first define the two paths in G3, corresponding to C3=T and C3=F.

0 We next nest G3 paths into G2 to form three paths, corresponding to C2=T, C2=F
and C3=T, and C2=F, C3=F. We can denote these paths as T-, FT, FF, with the letters
in the sequence corresponding to C2 and C3 values respectively. A “-” indicates that
a specific decision is irrelevant. In this case, when C2=T, we do not need to make a
decision involving C3.

0 We finally concatenate G2(G3) with G1 to form 6 paths: TT-, TFT, TFF, FT-, FfT,
FFF.

11.1.4 Path sensitization and other activities

The key to path sensitization is the decision or branching nodes and the associated condi-
tions. If all these conditions are independent of each other, then all the paths defined above
can be sensitized by selecting variable vallues to satisfy the specific conditions for each path.
For example, if logical variables are used for the CFG in Figure 11.1, then the six paths
TT-, TFT, TFF, FT-, FFT, FFF are directly sensitized already. Similarly, if C1 = (x > 0) ,
C2 = (y < loo), C3 = (z = lo), then we can select values for x, y, and z to sensitize the
corresponding conditions. For example, for the path TFT, we may sensitize it using x = 1,
y = 1024, and z = 10. Notice that when numerical variables are involved, the sensitization
is typically not unique. Essentially, we choose one test point from each equivalence class,
as we described in Chapter 8.

If some of the conditions in a path are correlated through some shared logical or nu-
merical variables, then further analysis is needed to eliminate certain paths that cannot be
sensitized. For example, for a concatenation of two binary sub-graphs with exactly the
opposite conditions, C1 = 1 C2, we can eliminate two from the four paths TT, TF, FT, and
FF to leave us with TF and FT paths, because TT and FF cannot be sensitized.

As another example, consider the concatenation of two binary sub-graphs with C1 =
(x > 0) and C2 = (x < 100). The two Conditions are linked through the shared variable
x. In this case, the overall path FF can be eliminated because of the contradiction shown
below:

(cl = F) A (c 2 = F)
G l (x > 0) A -(z < 100)
G (x 5 0) A (x 2 100)
= 0.

That is, the set of x’s that satisfies these conditions is empty (0).
A third situation is that the conditions might be related through some computation and

assignment in between that link one variable in one condition to another one in a later
condition. The analysis of such correlated conditions is essentially an analysis of data
dependencies, which we address in Section 1 1.3 in connection to data flow testing.

Similar to the concatenation situations we considered above, nesting situations may also
involve correlated conditions and need to be handled similarly. From these examples we can
conclude that test sensitization for CFT could be difficult. Proper analysis and sensitization

182 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

tools can help us to some degree. But the ultimate responsibility is with us, the testers.
We need to have a good understanding of the sensitization issues and to check for possible
conflicts or contradictions, instead of blindly trying all the different input combinations in
the attempt to sensitize all the selected paths when some of them may be un-realizable due
to contradictions.

Other activities involved in execution and follow-up for CFT are essentially the same as
those for any other techniques. Some specifics relevant to CFT include:

0 For test oracles, we can take advantage of the internal or intermediate steps in CFT
to sample intermediate states for some consistency conditions.

0 Execution can be helped by debugger and other testing tools, particularly for white-
box CFT because it focuses on statement-oriented path definitions and executions.

0 Some specific follow-up activities include verification of the intended paths against
coverage target and confirmation that the intended paths were indeed followed to
guard against coincidental correctness. Some program instrumentation is typically
needed to collect coverage information and to confirm dynamic execution paths.

11.2 LOOP TESTING, CFT USAGE, AND OTHER ISSUES

So far, we have avoided loops in CFG and CFT. The primary reason for doing so is the in-
trinsic difficulties dealing with loop testing. For example, with just a few loops of moderate
numbers of iterations, the complete coverage becomes impractical because the combina-
torial explosion when we concatenate or nest them together On the other hand, loops are
common and important to almost all the program implementations, and are used as a pri-
mary means of flow control. Consequently, we must deal with loops in CFT, as we attempt
to do next, by modifying the CFT techniques to address some practical difficulties. After
discussing loop testing, we also deal with CFT application and other related issues at the
end of this section.

11.2.1 Different types of loops and corresponding CFGs

Loops are associated with repetitive or iterative procedures of information processing,either
corresponding to the actual implementations (white-box view) or user-oriented functions
(black-box view). As mentioned above, if a path through a CFG contains one or more
nodes visited more than once, a loop is formed. For example, if we have a path ABCDBE,
then the middle sub-path BCDB forms a loop. Loops may also form implicitly through
some programming language features, such as recursion and explicit goto’s. A loop can
be specified as follows:

0 There must be a loop body that accomplishes something, and which may be repeated
a number of times. It is usually represented by a node or some other CFG nested
inside the loop.

There must be some loop control to make the looping decision, or to determine
whether to execute the loop body or exit the loop. This loop control may be used re-
peatedly for each iteration of the loop to make the decision under the current dynamic

LOOP TESTING, CFT USAGE, AND OTHER ISSUES 183

while (C) do { B]

9
for (I; C; U) do { B)

9

Figure 11.3 Control flow graphs (CFGs) for “for” and “while” loops

environment. It is usually represented by a node with associated predicate defined by
some control variables whose dynamic values are used to make the looping decisions.

0 There must be some loop entry and exit nodes. The ones we commonly deal with in
structured programming typically hlave a single entry and a single exit point, such as
the “whi1e”and “for” loops. In addition, in many of these loops the entry, exit,
and loop control nodes are the same. The exceptions include “repeat -un t il”1oops
and unstructured loops using conditional or unconditional goto’s.

0 Two or more loops can be combined through nesting (one inside another) and con-
catenation (one after another). Although non-structured combination using goto’s
are also allowed in many programming languages, their usage is discouraged and
usually limited to rare situations.

Two of the most common loop instructions in various programming languages are the
“while” and “for” loops:

0 “while (C) do { B }”, where C 1 . k the loop condition and B the loop body. The
entry point is also the exit point.

0 “for (I ; C ; U) do { B }”, where I is the loop initialization before entering the
loop, U the loop update after each iteration, C the loop condition, and B the loop body.
The entry point is still also the exit point.

Figure 11.3 gives the CFGs for them.
One of the fundamental questions important to testing is whether we can determine the

number of iterations for a loop ahead of time before actual test execution. If so, it is called a
deterministic loop; otherwise a non-deterministic one. Deterministic loops are commonly
used to process some known data or other entities, such as performing some processing for
every element of an array of fixed size. One direct implementation is the “do” loop, in the
form of “do (n) {B} , that repeats the loop-body B n times. In various languages, this
“do” loop is implemented as a more commonly used “for” loop, which usually specifies
the number of iterations through related entities in the loop control.

The most common form of the nondeterministic loop is the “while” loop, with the loop
body repeated while some condition remains true. For example, the overall operation of an

184 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

operating system (0s) can be considered a seemingly endless “while” loop: While the sys-
tem shut-down command has not been issued by the authorized party, the 0s keeps running.
However, we need to distinguish the concepts of deterministic vs. non-deterministic loops
from their implementations in specific languages. For example, “for” loops in a language
can be used to implement non-deterministic loops and “while” loops for deterministic
loops.

11.2.2 Loop testing: Difficulties and a heuristic strategy

Each time we go through a loop a specific number of iterations, we have a distinct path.
When we combine two loops through concatenation, the number of distinct paths can be
obtained by multiplying the distinct paths for each loop, in the same way as we concatenate
two loop-free CFGs. However, the possible number of iterations for a loop is usually large.
Therefore, the combination produces a larger number of overall paths.

The nesting of two loops is different from the nesting of loop-free CFGs: The resulting
paths is no longer M + N - 1, but a much larger number due to repetition. For example,
corresponding to each distinct path for the outer loop, say going through i iterations, each
of the outer iterations may involve going through N distinct number of inner loop iterations
(from 0 to N - 1). If we unwind the outer loop while treating the inner loop as one indivisible
unit, the nested loop would be equivalent to having the inner loop unit concatenated i times.
Applying the concatenation rule for path combinations, we obtain NZ combined paths - a
huge number even for moderate N and i values. The total number of possible control flow
paths can be calculated as:

which would be beyond complete coverage for almost all cases except very small M and N
values. Consequently, we have to abandon any realistic hope for complete path coverage
when nested loops are involved, and choose instead selective coverage strategies.

One of the common basis for selective coverage strategies is the empirical evidence
or observation of likely problems, much like what we did for boundary testing related
to input domain partitions in Chapter 9. For loops, it was observed by practitioners and
researchers that we typically have more problems with loop boundaries. For example, for
many computational tasks associated with arrays where loops are often used, we often have
problems with the lower end, such as initialization problems and special handling of empty,
and single item cases. At the upper end, we often have array limit problems commonly
manifested as the N f 1 problems. We can derive our test cases accordingly.

On the other hand, if the upper bound for a loop is N, say N = 1000, and if we have
tested for the loop with N/2 iterations without discovering a problem, it is also reasonable to
expect that we will not likely to discover a problem when we test with N/2 + I iterations. In
a sense, this is similar to the equivalenceclass testing related to different input sub-domains:
We typically only need to sample one interior point, while focusing on boundary conditions
and related problems. The same idea can be carried to loop testing, as we describe below.

Based on the above discussion, the following execution paths related to lower bound for
loops should be used:

0 Bypass the loop: This test case can often reveal loop initialization problems. Many
operations, such as those associated with the loop body in this case, need proper
set-up or initialization, and need some restoration or clean-up to allow for further

LOOP TESTING, CFT USAGE, AND OTHER ISSUES 185

operations. For example, if the initialization is done before the loop and restoration
is done inside the loop, there would be a problem if we bypass the loop, and this test
case would reveal the problem.

0 Going through the loop once: This test case can often reveal loop initialization or set
up problems, such as not initializing certain variable or data items for use in the loop
body.

0 Going through the loop twice: This test case can often reveal problems that prevent
loop repetition.

In some specialized loops, there might be minimum number of iterations. In such cases,
the above test cases can be adapted to min and min i 1 iterations. One other fact worth
noting is that every loop has a lower bound but not every one has an upper bound. Therefore,
lower bound testing is more universally applied in loop testing than upper bound testing.
When an upper bound N exist for a loop, it should also be tested using the test cases of N ,
N f 1 iterations. This set of test cases can typically reveal capacity problems.

In addition to the above boundary test cases, we should also use some typical cases to
make sure that normal executions can be lhandled properly.

When we test concatenation of loops, we can combine the above test cases that define
separate path segments to form overall paths. For example, for each typical loop we
have seven path segments (bypass, once, twice, typical, max - 1, max, max + 1). The
concatenation of two such loops would result in 49 test paths, a large number but still
manageable. However, if we have more than a few loops concatenated together, we need
to reduce this further.

A more dire situation is with loop nestling. Even with such reduced test cases, when we
test for the upper bound of N iterations for the outer loop, we have 7N combination paths
because we have seven cases for the inner loop corresponding to each outer iteration. This
would be a truly astronomical number even for moderately large N. Therefore, we need
to reduce the test cases further. For example, after testing the inner loop independently,
we can fix the inner loop with a single test case when we test the outer loop, thus resulting
in only seven test cases for the outer loop. In this case, we used a hierarchical testing
strategy, where we tested the inner loop first, and then effectively reduced it to a single
node for outer loop testing. If such a str,ategy sounds too restrictive, we may combine it
with a randomly selected inner loop test case whenever the inner loop is invoked to bring
more variety to testing without increasing the number of test cases. This ide8 is similar to
the use of hierarchical FSMs or hierarchical Markov chains we described in Chapter 10.
In either of these cases, we loose some interactions between the outer and inner loops, but
significantly reduce the number of test cases. This may be a worthwhile tradeoff for many
situations.

The same combinatorial or hierarchical1 testing ideas can be used to combine loop testing
with general CFT. For example, we can calmbine the heuristic loop test cases with complete
coverage test cases for loop-free CFG for concatenation situations. However, when nesting
is involved, particularly when something is nested in some loops, we are probably forced
to use hierarchical testing ideas as above: First testing the inner CFG or loop in isolation,
and then treating it as a node when testing the outer loop.

The other testing related activities, such as path sensitization, execution, result checking,
follow-up actions, etc., are not fundamentally different from those for regular loop-free CFT
we described in Section 11.1. The only difference is quantitative, with a larger number of

186 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

conditions to consider, a longer execution time, etc., which would require more meticulous
effort by the testers.

11.2.3 CFT Usage and Other Issues

As compared to testing based on FSMs, CFT based on CFGs focuses on the complete
paths and the decisions as well as interactions along these execution paths. Because of this
emphasis on paths, the number of test cases also increases substantially over FSM-based
testing based on the similar underlying structures (states and links), particularly when
loops are involved. Consequently, the increased power in covering dynamic decisions
and interaction problems is accompanied by the additional cost related to the substantially
more test cases. The gain needs to be balanced against the cost to arrive at an optimal
solution for specific application environments. For most computation intensive applications,
which cover most of the traditional software systems, mere state and link coverage would
not be enough because of the interconnected dynamic decisions along execution paths.
Therefore, CFT is generally a necessary step in the repertoire of different testing techniques
for such systems. More often than not, we need to go beyond just CFT to examine detailed
interactions that are captured in data dependency analysis and related data flow testing
(DFT).

Because of the complexity with large number of paths when multiple control structures
are used, particularly when nested loops are used, CFT is typically applicable as a white-box
testing technique to small programs, or to small program units during unit testing. If we
want to use it for larger software systems, we have to use a coarse granularity to reduce the
number of paths to a manageable level, such as using coarse-grain systemLleve1 CFGs, with
each node representing a major function (biack-box view) or a major component (white-box
view) instead of individual program instructions.

CFT can also be enhanced to support usage-based statistical testing. If the branching
probabilities are history independent, the corresponding Markov OPs we covered in Chap-
ter 10 can be used. If the probabilities associated with some usage sequences are context and
history sensitive (memoryless property for Markov chains not satisfied), we can enumerate
individual complete paths and associate usage probabilities with them, similar to the use of
Musa’s explicit OPs for complete end-to-end operations we covered in Chapter 8. These
OPs can then be used to guide our usage-based statistical testing.

11.3 DATA DEPENDENCY AND DATA FLOW TESTING

In the sensitization of CFT test cases, we have encountered some difficulties when shared
variables instead of constants are involved in the decision points, and analyses of these vari-
able values were performed to eliminate un-realizable paths. In fact, the correlated decisions
need not necessarily involve the shared variable. If some computation and assignments link
variables used in later decisions to those used earlier ones, the decisions are correlated. The
analysis of this and other data relations is the subject of data dependency analysis (DDA)
and the verification of correct handling of such data relations during program execution is
the subject of data flow testing (DFT).

DATA DEPENDENCY AND DATA FLOW TESTING 187

1 1.3.1 Basic concepts: Operation:; on data and data dependencies

The use of variables or data items in CFiG decisions is called P-use in data dependency
analysis to indicate their use in predicates or conditions. The other kind of use is called
C-use, or computational use. One commcin understanding of these usage situations is that
these variables or data must be defined earlier, so that we can determine their types and
obtain their values, and use them for various purposes. Formally, we can define these data
operations as follows:

0 Data dejinition through data creation, initialization, assignment, all explicitly, or
sometimes through side effects such as through shared memory locations, mailboxes,
readwrite parameters, etc. It is commonly abbreviated as D-operation, or just D. The
key characteristic of the D-operation is that it is destructive, that is, whatever was
stored in the data item is destroyed after this operation and cannot be recovered unless
some specialized recovery mechanism is used.

0 Data use in general computation or in predicate, commonly referred to as C-use or
P-use. Both these types of uses are collectively called U-operation, or just U. The
key characteristic of the U-operation is that it is non-destructive, that is, the value of
the data item remains the same after this operation. However, P-use of a data item
in a predicate might affect the execution path to be selected and followed. C-use of
data items usually occurs in the form of variables and constants in a computational
expression or as parameters in a program function or procedure. Such C-use typically
affects some computational results, with some result variables being defined.

With the definitions of these two types of data operations, we can next consider the
pair-wise ordinal relations on the same data objects:

0 D-U relation: This is the normal usage case. When a data item is used, we need to
obtain (or “fetch”) its value defined]previously. Most of the data dependency analysis
(DDA) and data flow testing (DFT) focus on this type of usage.

0 D-D relation: This represents the overloading or masking situation, where the later
D-operation destroys the previous contents. One special case is when D-D relation
exists without a U-operation in between, that is, a data item is redefined without
its previous definition ever being used. This situation might represent some error
in the software, or at least some inefficiencies, because the previous definition was
totally wasted. Another special situation is the racing condition, where multiple
execution streams or parallel processes/devices are all trying to “write” to a shared
data item. Again, the unused D-D relation represents problems with control protocol
or inefficiencies. However, under the normal circumstances with one or more U-
operations in between, we could focus on the corresponding D-U relations after each
D-operation in DDA and DFT while leaving the D-D analysis as specialized tasks
for other activities.

U-U relation: There is no effect or data dependency due to the nature of non-
destructive U-operation. Therefore, these relations are ignored in DDA and DFT.
As we mentioned before, such correlation might affect the realizability of different
execution path. However, as we will see later, we can focus on the corresponding
D-U relation for each usage situation to realize different paths in CFT or different
slices in DFT, which implicitly takes care of correlated conditions.

188 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

Figure 11.4
assignment

Data dependency graph (DDG) element: An example of data definition through

0 U-D relation: This is called anti-usage. The only interesting situation with it is that a
data item is used without ever been defined previously (no D-operation precedes the
first U-operation), which usually indicate a problem in the software.

Therefore, with this basic identification and analysis of data operation pairs, some pos-
sible problems can be identified immediately. For overall data dependency analysis (DDA)
used in data flow testing (DFT), we focus on the D-U relation and related issues.

11.3.2 Basics of DFT and DDG

The basic idea of data flow testing (DFT) is to test the correct handling of data dependencies
during program execution. Since program execution typically follows a sequential execution
model, we can view the data dependencies as embedded in the data flow, where the data
flow is the mechanism that data are carried along during program execution. The test cases
are derived from data dependency analysis (DDA), with a focus on D-U relations, and the
related model we call data dependency graph (DDG).

In DDGs, each node represents the definition of a data item, such as a variable, a constant,
and a compound data structure. The links in DDGs represent the D-U relation, or “is used
by”. That is, if we have a link from A to B, we interpret it as that the data defined in A
is used to define the data in B. For example, the assignment statement “ z c 2 + y” can
be represented in Figure 11.4, with the definitions for 2 and y used (C-use) in defining z.
This analysis of chains of D-U relations used in defining later data items can be carried out
to identify the definitions of those earlier items, until we resolve all the definitions. This
backward chaining process, starting from the computational result back to all its input and
constants represents the model construction process, which we will elaborate later.

In DFT, we directly focus on the data dependencies captured in DDGs instead of the
computational sequences or control flow in CFT. One may argue that DFT is closer to testing
the essence of computation because such data dependencies directly affect the computa-
tional results, while sequencing or control flow is used mainly due to the limitations of our
sequential machines and programming languages used (otherwise, much of the computation
can be carried out in parallel). For example, the dependency relations in Figure 1 1.4 must
be obeyed to ensure computational result in z. One the other hand, sequencing in program
implementations might be altered without affecting the results. For example, the order of
the two statements in a sequence

z+-a:+y;
i c i + l ;

can be switched without changing the computational results. Therefore, in performing DDA
and DFT, we separate out essential data dependencies from program execution sequencing
to focus on the correct handling of data items and their dependencies, and ultimately the
correct computational results.

DATA DEPENDENCY AND DATA FLOW TESTING 189

Similar to any other systematic testing techniques, we focus on the test preparation part
for our DFT, with the test execution and follow-up activities essentially the same as that
for other testing techniques described in Chapter 7. For DFT, test preparation includes the
following steps:

0 Build and verify the DDGs.

0 Define and select data slices to cover as individual test cases based on the DDGs.
A data slice consists of a data item, usually an output variable, with its definition in
terms of other data items, possibly selected from among multiple definitions (Weiser,
1984).

0 Sensitize the data slices or the test cases by deciding the input values.

0 Plan for result checking.

We elaborate on each of these sub-steps below, with a focus on building the DDGs. Once
such a DDG is constructed, slice definition and selection is fairly straightforward, and test
case sensitization also directly follows. Outcome prediction is also easy with DFT because
the selected and sensitized slice directly defines the computational results. Another reason
that we focus on DDG construction is that its form and structure are quite different from
the program structure and flow-chart that most software developers are familiar with.

We next describe the ways to construct DDGs by first examining the specific character-
istics of them, identifying the information sources, outlining a generic DDG construction
procedure, and finally an indirect but easy-to-follow procedure for people who are familiar
with traditional sequential programming aind flow-charts.

11.3.3 DDG elements and characteristics

In DFT, we are focusing on testing the coirrect handling of different data items involved in
producing the final computational output through data dependency analysis (DDA) using
DDGs. Therefore, we can view a DDG as a logical graph where computational results
are expressed in terms of input variables and constants through the possible use of some
intermediate data items as nodes and related D-U relations as links. Based on this view, we
can characterize the different graph e1eme:nts in DDGs as follows:

0 Each node represents the definition of a data item z, denoted as D (z) and represented
as 2 inside an oval in a DDG. The nodes can be classified into three categories:

- Output or result nodes that represent computational results for the program
under testing. These nodes will be analyzed and expressed in terms of other
nodes, except in the rare situation that the program does nothing with respect
to some data items (that is, some input direct passed down as output).

- Input or constant nodes that represent user-provided input or pre-defined con-
stants. These nodes represent the “terminal” nodes that do not need to be
analyzed any further.

- Intermediate or storage nodes are those who are neither input nor output nodes.
In most computations, these inodes are introduced to facilitate computational
procedures to make it easy to obtain the results from input.

190 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

Figure 11.5 DDG element: An example of data selector node

0 The relations modeled in DDGs are always D-U relations, or “is-used-by” relation.
as in the normal usage situations such as ‘‘z c a: + y” depicted in Figure 1 1.4.

A special case to the above DDG elements is the selective or conditional definitions of
certain data items using the so-called data selector nodes. For example, in determining the
number of real roots r for the equation uz2 + ba: + c = 0, the result T depend on the value
d = b2 - 4ac in such a way:

(d > 0) + r c 2;
(d = 0) + T + 1;
(d < 0) + r +- 0;

The three possible values for the result r can be marked as r l , 7-2, and 7-3. The final result
r will be selected among these three values based on the condition on d. Therefore, we can
place r in a data selector node, connect rl , 7-2, and 7-3 to r as data inlink, and the condition
node “d?O” to r as the control inlink. We distinguish control inlink from data inlink by using
a dotted instead of a solid link. Only one value will be selected for r from candidate values,
r l , r2, and r3, by matching their specific conditions to the control inlink evaluation result.
The resulting DDG for this data selector is shown in Figure 11.5 (left figure). Although
the specific conditions can be shown explicitly in DDGs, we omit some specific labels for
conditions where there is no danger for confusion. By doing so, we simplify the DDG by
implicitly matching conditions to positions, such as in the right figure in Figure 11.5.

C-use is associated
with computation for the variables r l , r2, and r3 within each DDG branches, where the
constants 0, 1, and 2 are used. P-use is associated with the variable d and constant 0 for the
predicate in the control inlink.

In general, such conditional definitions can be expressed as some parallel conditional
assignments, in the form of a collection of conditional pairs:

Notice that in this example, both P-use and C-use are present:

(C = CZ) + y + f(z1, z2,. . . ,a:n).

Each of these possible definitions of y is labeled yi. We can use a data selector node for
y to select from yi’s by matching their condition Ci’s to the condition node C evaluation
result represented in the control inlink. For example, C = C2, then the condition for the
y2 data inlink to y would match the control inlink result, leading to y2 value been carried
over to y.

Unlike the situation with other data definitions where all the dataconnected to the current
data item being defined are used, data selectors only need the condition node and one data
inlink to uniquely define the current data item. This fact plays a critical role in our data
slice definition and related testing to be discussed in Section 11.4.

In most traditional programming languages that support only sequential execution, the
above conditional assignments can be implemented using a sequence of assignments con-
trolled by “if”, “switch-case”, or similar statements. We will deal with such imple-
mentations and DDGs derived from them later in this section, where the mental mapping

DATA DEPENDENCY AND DATA FLOW TESTING 191

between parallel conditional assignments and actual program implementations plays an
important role in DDG construction.

With the above details about DDGs, we can consider a DDG as consisting of input
nodes, output nodes, intermediate nodes, data selector nodes, and associated links and
properties. Again, the focus is on the output or results, and their resolution through DDGs
in terms of input variables and constants. Because of this procedure for data resolution
through backward chaining using D-U relations, the DDGs typically show the following
characteristics:

0 There is usually one output data itern or variable, or at most a few of them.

0 There are typically more input variables and constants.

0 Multiple inlinks are common.

0 Since the DDG is typically shown as flowing from top to bottom, we have the “fan”
shaped DDGs as the most common type. This shape is also often described as
tree-shaped (like a real tree on the ground, not the upside-down ones in computing
literature), or shaped like a river with its tributaries.

11.3.4 Information sources and geineric procedure for DDG construction

Because of its focus on details, DFT and iits DDGs are usually derived from detailed data
information about small components such as represented in the program codeor detailed de-
sign (white-box view) or detailed functional specifications (black-box view). Traditionally,
DFT is more often white-box than black-box, because detailed functional specifications for
individual components are not commonly used: Instead of such detailed specifications, the
refinement of high-level product specifications is usually accompanied by implementation
choices for the components directly. However, for object-oriented methodology, detailed
functional specifications might be more meaningful for individual objects, thus making
black-box DFT more likely to be used.

When actual code (or detailed design) is available, our natural tendency is to trace it
from beginning to end in order to construct our DDGs. In doing so, we could identify input
variables and constants first, then follow the code to identify other intermediate variables,
link them, and finally conclude with the output variables. This is more akin to following
the programmer’s train of thought in the (optimistic) hope that everything will fall into its
place when we finish.

In its focus on computational results, DFT construction is more naturally aligned to
stepwise data resolution backward from output to input. In addition, a model and view
independent of the programmer’s train of thoughts are also beneficial in detecting problems
and ensure product quality. Therefore, the following DDG construction procedure based
on backward data resolution is generally preferred:

0 Identify output variables.

Backward chaining to resolve these variables using other variables and constants by
consulting the specific computation involved.

0 If there are unresolved variables, the above step is repeated for each one of them,
until we have no unresolved variables left.

192 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

Figure 11.6 A sample data flow graph (DDG)

An unresolved variable is one that is neither an input variable nor a pre-defined constant.
Therefore, the above procedure ensures that at the end of DDG construction, all leaf nodes
are either input variables or constants. For example, we can follow the above procedure to
finish the DDG for Figure 11.5 by resolving the variables d, rl , 7-2, and 7-3. The resulting
DDG is shown in Figure 1 1.6, where all the leaf nodes are either input variables (a, b, and
c) or constants (0, 1,2,4). Notice that we also switched the positions of r3 and r l and the
corresponding conditions in the control inlink so that the sharing of the same constant 0 can
be more easily depicted.

One immediate use of such constructed DDGs is the identification of variables in spec-
ifications or implementations that are not connected to the DDGs, thus not contributing to
the computational results. Such disconnected nodes or sub-graphs are called dead nodes
or dead sub-graphs, which usually represent some data problems either in the software or
in the model, or at least some wasted system resources in computing something that is not
used or returned as results. Such problems can also be detected using DDGs constructed
from forward tracing of code by identifying nodes that do not end up in some linked path to
output nodes. In this case, effort has already been wasted constructing part of the forward
DDGs that lead to nowhere.

11.3.5 Building DDG indirectly

In following the backward chaining procedure for DDG construction, various specific situ-
ations specified by conditional parallel assignments in specifications or in implementation
can be easily handled. However, in most system implementations using traditional pro-
gramming languages, they are achieved by sequential assignments and use of conditional
statements such as “if” and “switch-case”. In addition, most software developers and
testers are generally more familiar with such sequential conditional statements. We can cus-
tomize the above backward chaining procedure to construct DDGs based on information
represented in such code and related flow-charts or CFGs. If these CFGs are not available,
it is usually much less difficult for people with the traditional training of computer science
or software engineering to construct them first and then construct DDGs indirectly. We
still follow the same general procedure specified above by starting with the output variables
and try to resolve them in terms of other variables and constants until all non-terminal data
items are resolved. However, whenever we are dealing with a specific non-terminal node,
we can use the corresponding code or CFG in the following steps:

1. Identify all the variables and constants, 21, z2 , . . . , z,, used in defining the current
node y as in the D(y) operation: y t f(zl,22,. . . , zn).

DATA DEPENDENCY AND DATA FLOW TESTING 193

2. For each of these data items xi used, we can trace back to its latest definition by
identifying the D-U pair for xi. If D(y) is not in a branch, we can directly link node
zi to node y.

3. If D(y) is in a binary control flow branch, there are two possible definitions for y
after the branching statement is done (after the junction point). The actual definition
of y can be handled in the following way:

(a) We can denote the situation as: “blockI; if C then A e l s e B”, where
“blockI” is the initial block before the branching statement; C is the branching
condition, and A and B are the: “then” and “else” parts where D(y) occurs.

(b) Build sequential subgraph for each branch independently by treating them as:

0 blockI ; A

0 blockI ; B

We know how to do such sequential situations from step 2 above. This step
gives us two y definitions, labeled as y l and y2.

(c) Build data selector condition subgraph for: “block1 ; C”. This step gives the
definition of C.

(d) A data selector node will be used for y to select from data definitions yl and y2

0 The definitions, y l and y2, can be directly linked to the data selector node

o The control inlink to y is from C above in the selector condition subgraph.

as follows:

Y-

The above step can be repeated for every data definition, until all unresolved variables
are resolved. Multi-way branches can be treated similarly as binary branches, but with a
multi-way selector instead of a binary selector above.

Following the procedure above, we should be able to obtain the DDG in Figure 11.6
from the pseudo-code or the CFG in Figure 11.2. Also worth noting is the conventions we
adopted in such pseudo-code, with explicitly identified input and output variables. In actual
programs, they are often implicit, such as through parameter passing or user-prompt for
input, and implicitly returned variables (w:ritable parameters or parameters by reference) or
explicit returned variable or values using “exit” or “return” statements.

In the above derivation, one common case where mistakes are often made is with the case
of empty “else” part. We need to remember that there are still two choices, corresponding
to two execution paths, for the variables involved after this “if -then” statement with empty
“else”: one updated value and another unchanged. For example, consider the following
pseudo-code:

input (XI ;
y + x;
if (x < 0 then y + -x;
output (y> ;

In this case, the output variable y still hlas two possible values, --z and x, depending on
whether the condition 3: < 0 is true, which can be represented by a data selector on y values
in the DDG.

194 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

square ...“ 97
F I T

Figure 11.7 Data selectors for multiple variables in branches

Another complication with branching is the situation with multiple variables being used.
In this case, we can treat each variable separately, just like in the examples above. However,
since the conditions will be the same, they can be shared through control inlinks from the
same node. For example, consider the following pseudo-code:

input (x) ;
i f (x < 0) then

e l s e y + sqrt (x)
re turn (y > ;

e x i t (“square root undefined f o r negative numbers”) ;

There are two output variables, one explicitly returned y and another implicitly returned
error message e. The DDG can be derived and is shown in Figure 11.7. If the “then”
branch is executed (or corresponding data slice realized), we have an error message and the
variable y will keep its original value yo. Otherwise, y is assigned sqrt(z) and no error
message is produced.

11.3.6 Dealing with loops

The use of loops would significantly complicate the DDGs because of the many possible
data dependencies involved. The data used within each iteration would be dependent on all
the previous iterations, similar to an n-level sequential concatenation. With the difficulties
noted above for selector combinations for sequential concatenations, full data dependency
analysis for even a loop with moderate number of iterations would be impractical. The
situation is much worse than in CFT, where only execution path is analyzed but not the
detailed computations and related data definitions within each iteration captured in DDG.

However, many of the loops in actual implementations may not correspond to loops in
conceptual models or functional specifications. One concrete example is the summation of
an array: conceptually, it can be defined as:

n

i=l

which can be implemented in whichever way supported by a computational model. How-
ever, due to the limitations of most sequential programming languages, this is often imple-
mented as a loop.

When we test such non-essential loops, we can choose to focus on the conceptual data
dependency between S and A, instead of the individual elements A[i]’s. We could adopt a
two-phase strategy, testing the loop by CFT, and then collapsing the loop into one processing

DFT: COVERAGE AND APPLICATIONS 195

Figure 11.8 Three data slices for the DDG in Figure 11.6 and their sensitization

node, for example, in the form of “S + arraysum(8) ;”, in performing our data flow
testing.

For essential loops that could not be processed without loops even in conceptual models
we can attempt to unwind the loops once or twice, treating them as nested if’s. In this way,
“while C do B”is unwindedinto: “if C then {B; i f C then B}”. That is, we have
empty else’s for both the inner and the outer if’s. From what we have described above,
we know how to handle such if’s. Therefore, by unwinding the loops once or twice, we
can test basic data relations but avoid complications with multiple iterations that would be
too complex to handle.

11.4 DFT: COVERAGE AND APPLICATIONS

With the data dependency graphs (DDGs) constructed above,data flow testing can be carried
out easily by selecting data slices and other entities to cover and sensitize them. Both these
selection and sensitization steps are relatively easy and straightforward, as described below.

11.4.1 Achieving slice and other coverage

As with testing based on complex models, we can always start with testing the basic model
elements and then complex interactions and dependencies in DFT. For DFT based on DDGs,
we can start with the nodes that represent data items. The simplest testing would be to
provide input and check the output, while ignoring all that is going on inside. We can then
repeat the same type of testing for other variables involved, for the links, etc. All these could
be done similar to the way we did for simple testing based on checklists in Chapter 8. One
special case in the above elementary coverage based on DDGs is the testing with different
predicate values, which would be similar to CFT where decision and related paths are tested.

What really makes DFT different from CFT is the use of DDGs in slice testing, where
a slice is a specific realization of an output variable value through a specific set of input
variable and constant values (Weiser, 1984). When there is a single output variable and no
selector nodes, then all the used input variables and constants will be covered in one slice.
However, when there are selectors, each selector will choose one specific data inlink from
multiple data inlinks with the control inlink takes a corresponding value. Therefore, we
have as many data slices associated with each data selector as the number of corresponding
data inlinks. For example, the DDG in Figure 11.6 has three slices, corresponding to the
three candidates r l , 7-2 and 7-3 data definiltions for the variable r , as shown in Figure 11.8.

In general, there will be multiple slices for each output variable, and the number of slices
depends on the number of specific selectors and their combinations. The combination of

196 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

Original DDG g

Figure 11.9 Combination of independent data selectors and related slices

two selectors is similar to the path combination involving nesting (when one selector is in
the slice of another) or sequential concatenation (when neither is inside the other’s slice,
thus called independentselectors). For example, in computing z +- z + y, if 2 uses a binary
selector and so does y, then the candidate values 21, 22, y l , y2 and related conditions
can be combined to produce four slices representing the following pairs of values taken
by 2 and y under corresponding conditions: ((21, y l) , (21, y2), (22, y l) , (22, y2)).
Figure 11.9 illustrates this DFG (top figure) and its four slices.

Similarly, if we have a selector for 2 above (but not for y) between 21 and 22, and if
22 involves another binary selection between 221 and 222, then there will be three slices
corresponding to (21, 221, 222). Notice here 22 is going to takes the values of 221 or
222. Figure 1 1.10 illustrates this DFG (top left figure) and its three slices.

The above steps for combining two selectors can be repeatedly applied to combine
multiple selectors. This process would yield multiple slices from DDGs, and each slice can
be selected for testing. The sensitization is fairly easy and straightforward for a selected
slice, as follows:

0 Every input variable and constant involved in the slice needs to be initialized with
specific values, as follows.

DFT: COVERAGE AND APPLICATIONS 197

m-??z Slice 1

@.-ii. Slice 3 z

Figure 11.10 Combination of nested data selectors and related slices

- If it is involved in a predicate, the values selected must ensure the realization of
the desired predicate value. To do so, we can work backwards with the desired
predicate value, and select its input value, possibly through several steps and
using several intermediate variables.

- If it is involved as a data input, potentially any value is allowable.

Again, worth noting is that these input values are not uniquely determined by the
data slice selected. We can always use ideas from partition-based, usage-based, or
boundary testing covered in Chapters 8 and 9 as well as other practical considerations
to make such selections.

For variables and constants not invdved in the slice, they would not have any effect
on the computational results of the slice according to the definition of slice (Weiser,
1984). However, we still need to assign values to them under most circumstances
because data input is usually handled as an indivisible group of actions in the execution
of sequential programs. Default or random values, sometimes labeled as “don’t care”
values, can be used.

The above separation of variables and constants that matter from those that don’t in
computational results is one significant difference between DFT and CFT. For example, to
sensitize the left slice in Figure 11.8, we need to have d < 0, which can be carried back to
values such as a = 1, b = 2, c = 3, also shown for this slice. Notice here that the constants
1 and 2 involved in r2 and r l branches in the other two slices are not used, thus need not

198 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

to be provided for the computation of this slice. A better example is the sensitization of the
x1 slice (slice 1) in Figure 11.10, where all the variables that are only involved in defining
221 and 222 need not be sensitized.

In terms of outcome prediction, DFT is also more focused than CFT, because we only
need relevant input variables in the slice to predict the computational results. We are not
verifying the execution sequence, but the exact output values. However, this prediction
also involves substantial amount of work, so we also need automated support that can make
predictions based on DDGs, or we have to rely on other oracles discussed in Chapter 7.

11.4.2 DFT: Applications and other i s sues

Among the testing techniques, DFT is closest to CFT, with both attempt to test the correct
handling of the overall execution. Therefore, the applicability of CFT and DFT is also
similar. Much of what we discussed in the usage situations for CFT in Section 11.2 also
applies to DFT: Both techniques are suitable for traditional computational tasks, with CFT
focusing more on the decisions involved and the execution paths taken, and DFT on the
computational results and related data dependencies. In a sense, CFT is more process-
oriented, as exemplified by its step-by-step paths, and DFT is more result-oriented, as
exemplified by its fan-shaped slices.

Although the starting points for both CFT and DFT are FSMs, we developed independent
models for them to focus on different problems, which have various implications on their
applications, as below:

0 CFT relies on CFGs, a specialized type of FSMs; while DFT relies on DDGs, which
deviates greatly from FSMs.

0 CFGs closely resemble the program code or overall execution flow commonly as-
sociated with sequential computation models. DDGs capture more details about
interactions and essential dependencies while omitting the non-essential sequencing
information captured in CFGs. This difference manifests in testing in the fan-shaped
slices in DFT as contrast to step-by-step paths in CFT.

0 DDGs are generally more complex than CFGs.

0 The ability for loop handling is much more limited in DFT than in CFT.

Because of the above, our assessment of the limits on applications due to product size
and granularity for CFT above is even more true for DFT due to the increasing details in
DDGs used in DFT: Both CFT and DFT are generally applicable to small programs, small
units of large software systems, or overall system operations for large systems at coarse
granularity levels. Automated tool support, such as those discussed in Chapter 7, would
help make DFT scale-up to some degree. On the other hand, some of the difficulties with
one testing technique can often be compensated for by using the other one. For example,
we can use CFT for loops within DFT to form a hierarchical testing strategy. For many
systems, CFT and DFT can be used together to ensure product quality, usually with CFT
performed before DFT due to its relative simplicity and closer ties to program code.

Similar to CFT, DFT contains much detail in its models and uses it in testing. Typically
such detailed information can only be obtained based on program code and detailed design,
making them more likely to be used as white-box testing techniques. However, DFT is
closer to specification than CFT in its focus on the result instead of the process or path

DFT: COVERAGE AND APPLICATIONS 199

taken to obtain the result. In this respect, DFT is more likely to be used as a black-box
testing technique for various situations, including object-level testing for object-oriented
systems.

DFT can also be enhanced to support usage-based statistical testing. For example, when
we used hierarchical models to perform DFT for large systems, the important data slices or
those associated with higher usage probabilities can be expanded into lower-level DDGs,
much like we did in our unified Markov models (UMMs) in Chapter 10. Such information
can also be used to determine what we warit to do with loops. For example, if the loops are
associated with frequently used slices, we should probably unwind it (once or twice) to test
the basic data relations through the loops. Otherwise, we could just perform CFT for the
loops and treat them as a functional node in performing DFT.

In addition to its application to computational and result-oriented system functions and
implementation, DFT can be applied in various other application situations due to the
information captured in its DDGs. The most important among its other applications is the
many uses of data dependency analyses in parallel and distributed systems. If we generalize
DDGs to capture the essential dependency among different system tasks instead of data
items, we can use such DDGs to help maximize overall system performances: Whenever
no dependency is represented in DDGs among different computations tasks, they can be
executed in parallel. The parallel execution results can then be synchronized to produce
the overall results. In fact, synchronization is a built-in mechanism in DFT, if we interpret
the input to a node in a DDG as tasks. We next explore this application of DFT for task
synchronization and related testing.

11.4.3 DFT application in synchronization testing

As we described in Section 11.3, for situations like y t f(xl,x2,. . . , x,), that is, when
data items z1, 22, . . . , x, are used and processed to define the value for y, we can draw
links from them to y. When we interpret these xi’s as parallel tasks carried out before our
next task y, these links represent the synchlronization situation: All the xi tasks must finish
before y can be completed. That is, if some of the xi’s finish early, we still have to wait for
the other to finish before we can finish y. Because of the dynamic nature of such individual
tasks executed in parallel, the testing of the correct handling of such synchronizations
involves two elements:

0 Correct (computational) result (y value) is obtained or appropriate processing (y
processing) is applied for given input xi’s. One special case for this is that no result
should be produced or no processing should be applied if we do not have all the xi’s
available.

0 Synchronization of arrivals among xi’s in all possible orders, including time ordered
arrivals as well as the possibility of one or more xi’s arriving at exactly the same
time.

In synchronization testing, we would combine the above two conditions to test the arrivals
of 5,’s in all different arriving orders, and to check for the correct outcome. For example,
with two way synchronization of input A and B to produce C, we can run the following
synchronization testing cases:

0 Nothing arrives + no output.

0 One arrives (2 cases: A alone or B alone) + no output.

200 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

0 Both arrive (3 cases: A then B, B then A, or A and B together)

As we can see, even for such a simple situation, we have 6 synchronization test cases.
When the number of xi’s goes up, we need significantly more synchronization test cases
due to the combinatorial explosion of possible arriving orders. One way to simplify such
testing is through hierarchical models to form groups among the xi and then synchronize
the grouped results. For example, for a 4-way synchronization, if we can group them into
two groups of 2-way synchronizations, we can then use 6 test cases for each group and
then 6 additional test cases to synchronize the two groups by treating each group as a single
input in the higher-level model, resulting in 18 total synchronization test cases. The raw
4-way synchronization would involve substantially more test cases.

=$ verify that correct C is obtained.

11.5 CONCLUDING REMARKS

Generally speaking, there are two basic elements in any computation or information pro-
cessing task: the data element and the control element, which are organized together through
some implemented algorithms. In this chapter, we extended the basic analysis based on
FSMs further to analyze and test the overall control flow paths and the overall interactions
among different data items through control flow testing (CFT) and data flow testing (DFT).
The basis for CFT is the construction of control flow graphs (CFGs) as a special type of
FSMs and thq related path analysis. The basis for DFT is the data dependency analysis
(DDA) using data dependency graphs (DDGs). CFT tests for basic decision or control
flow problems and, to a limited degree, interactions along execution paths. More thorough
testing of the interactions can be achieved through DFT. Both CFT and DFT models can
be either white-box ones based on implementation details or black-box ones based on ex-
ternal functions and usage scenarios. However, due to the details involved and the close
resemblance to program code, their white-box variations are more likely to be produced
and used.

In addition to CFT and DFT used individually, they can also be combined into the so
called transaction flow testing (Beizer, 1995), where the basic structure resembles control
flow while the dynamic tokens and the token relations resemble data flow and parallelism
common in many systems. Another specialized analysis technique and related testing is
the use of Petri-net models (Ghezzi et al., 2003), which can be considered as a special kind
of FSMs with two distinct types of nodes called places and transitions (Peterson, 1981).
In fact, Petri net shares many of the important characteristics of transaction flow models,
such as marking and token relations. These analysis and testing techniques are generally
more suitable for overall workload handling in complex systems where parallel execution
and process coordination play a central role.

One of the common characteristics that runs through all these testing techniques is their
focus on details and the use of such detailed information in performing actual testing.
Therefore, these techniques are generally appropriate for small-scale testing, unit testing of
large software systems, and high-level control, data, and transaction integration for large
systems. In general, for large software systems, people are more like to use a combination
of different testing techniques for different purposes and under different environments to
maximize the effectiveness of different testing techniques while keeping the overall cost
at a reasonable level. These are the subjects that we will examine in the next chapter, to
integrate different testing techniques for more effective and efficient testing.

PROBLEMS 201

Problems

11.1 Construct a CFG for a small program.

11.2 Construct a CFG from a specification or description of a product or a module.

11.3 Select one of the CFGs you constructed above, sensitize all the paths in your CFG.
If it contains loops, treat it as a binary deci:sion (that is, going through the loop or not going
through the loop).

11.4 Consider the sensitization of a CFG that consists of sequential concatenation of two
subgraphs G1 and G2 (that is, G = G1 o G2). G1 and G2 each contains a binary branching
with conditions C1 and C2 respectively. Discuss the possible sensitization issues for the
following cases:

a) C1 and C2 unrelated (or independent of each other).
b) C1 =C2.
c) c 1 = 1 c2 .
d) C1 + C2. (C1 implies C2, for example, (x > 100) =+ (z 2 0))
e) C2 + C1.
f) C1 and C2 overlaps, for example, C1 = (0 5 z 5 100) and C2 = (50 5 z 5

g) C1 and C2 are disjoint, for example, C1 f (0 5 x 5 10) and C2 = (50 5 2 5
200).

200).

11.5 Repeat the question above for the situation where G2 is nested in G1.

11.6 Is combinatorial explosion a big problem €or CFGs without loops? What about
when numerous multiple branching statements are used?

11.7 Consider the “repeat-until’’ and the “do” loops, where “repeat {B} u n t i l
(C)” keeps on executing the loop-body B until C becomes True, and “do (n) {B} repeats
the loop-body B rt times.

a) Draw the CFGs for these loops or for related sample programs, and design your

b) Are they deterministic or non-deterministic loops?
c) Can you use “while” or “for” loops to implement them or vice versa? If yes,

show your implementation. If no, state why not.

Enumerate a few different paths systematically for nested loops to get a feel for the

Construct a DDG for a small program.

test cases to test these CFGs.

11.8
enormous number of paths.

11.9

11.10 Construct a DDG from a specification or description of a product or a module.

11.11 One simple way to check your DDGs is to examine its shape: If it looks like a
single-entrykingle-exit graph, you have most likely made some mistakes. Why is this the
case?

11.12 Define slices for one of the DDGs above, and sensitize them.

11.13 Similar to correlated branches in CFGs, we also have correlated data selectors in
DDGs. How can you detect such correlations in DDGs, and how do you deal with them?

202 CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING

Discuss the relative difficulties in identifying and dealing with such correlations in CFGs
and DDGs.

11.14

11.15

11.16
to the 2-staged 2-way synchronization described in Section 11.4.

Discuss the relative importance of P-use and C-use in slice sensitization.

Construct the test cases for a 3-way synchronization.

Construct the test cases for a 4-way synchronization and compare your test cases

CHAPTER 12

TESTING TECHNIQUES:
ADAPTAT I ON, S P EC I ALIZATI ON,
AND INTEGRATION

For large-scale testing for today’s large and complexity software systems, many tasks are
carried out to fulfill multiple goals and objectives. Different testing techniques might be
used and integrated, and many resources are also involved. In this chapter, we examine
these issues in detail, including,

0 Individual testing sub-phases and appropriate techniques for them are discussed in
Section 12.1.

0 Other specialized tasks and specialized testing techniques are described in Sec-
tion 12.2.

0 Integration of different testing techniques covered in the previous chapters to fulfill
some specific purposes in practical applications are described in Section 12.3, and
illustrated through a strategy for web testing that integrates both usage-based and
coverage-based testing at different levels in Section 12.4.

12.1 TESTING SUB-PHASES AND APPLICABLE TESTING TECHNIQUES

For large-scale testing, typically multiple testing techniques are used to test multiple objects.
The test activities spread out over time, lasting over months or more than a year. The overall
testing is commonly divided further into various sub-phases to allow testing to be carried
out in a smaller, more manageable scale. In this section, we examine the problems and
focuses of these sub-phases and suitable testing techniques for them.

203

204 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

verify Integration ; ', High-level _.______---.
test ', design

regression ;
test ;

_ _ _ _ _ _ - _ 1

Figure 12.1 Testing sub-phases associated with the V-Model

Testing sub-phases

Figure 12.1 illustrates the testing sub-phases through the use of V-model, a variation of the
commonly used waterfall process with an emphasis on verification and validation activities.
It shows an annotated V-model with additional information about the specific testing sub-
phases. All the sub-phases not included in the original V-model are shown in dashed boxes,
with their relationship to the other sub-phases also illustrated. Specific information about
these sub-phases is described below:

0 When problems are reported by customers during operational use, diagnosis testing
can be used to recreate and diagnose the problems. Diagnosis testing can also be
used for other sub-phases of testing for the same purpose as well, as illustrated by
the downward arrow in Figure 12.1.

0 Controlled product release and operational use by limited customers lead to beta
testing. Beta testing can be considered as an additional testing sub-phase closely
linked to operational use. It often directly precedes operational use or is carried out
at the very beginning of it, as depicted accordingly in Figure 12.1.

0 A special testing sub-phases, acceptance testing, is attached to the end of system
testing, because it is typically performed right after system testing to determine if
the product should be released. Sometimes, the late part of system testing is used as
acceptance test instead of a dedicated acceptance testing sub-phases. Therefore, we
also show possible overlap between the two in Figure 12.1.

0 As a direct division of the testing phase in the waterfall process, several specific sub-
phases of testing, such as system testing, integration testing, and component testing

TESTING SUB-PHASES AND APPLICABLE TESTING TECHNIQUES 205

have already been represented in the V-model originally. Therefore, no modification
or annotation is necessary to represent these sub-phases in Figure 12.1.

0 Similarly, unit testing is depicted as is, both as a sub-phase of overall testing and as
a part of the coding-and-unit-testing phase.

0 A special case is regression testing, which typically spreads over the overall test
activities for new product releases based on previous ones or other similar products.
However, since a significant part of tlhe existing product is used, the focus of regression
testing is typically on the integration testing sub-phase and thereafter, where old and
new product components are integrated. On the other hand, the unit and component
testing for the new components are similar to those for traditional new products.
The existing components can typically forgo full-fledged unit and component testing,
while only subjected to testing focused on interface and interaction problems with the
new components, typically in the integration testing sub-phase and after. Therefore,
we depict regression testing in Figure 12.1 as linked to integration testing, with an
additional arrow pointing to later testing sub-phases.

Unit testing for implementation details

Unit testing tests a small software unit at a time, which is typically performed by the indi-
vidual programmer who implemented the unit. Depending on the different programming
languages used, this unit may correspond to a function, a procedure, or a subroutine for
traditional structured programming languages such as C, PASCAL, or FORTRAN, or
correspond to a method in object-oriented languages such as C++, Java, and Smalltalk.

Unit testing typically focuses on the implementation details and uses white-box testing
techniques, with various coverage criteria as the exit criteria. It typically focuses on the
executable statements and related control and data elements. The commonly used testing
techniques for unit testing include:

0 Ad hoc testing or informal debugging are often used to execute the unit in isolation,
typically with the help of some debugging tools to relate specific execution state to
the execution of specific statements. Complete statement coverage is a common goal
for such testing. For units where interaction with other units is essential, a specific
testing environment or testbed may need to be used to simulate this interaction without
actually involving other units.

0 Input domain partitions based on input variables for the unit are often used to perform
input domain partition testing and related boundary testing, as described in Chapter 8.

0 Various traditional structural testing techniques, such as control flow testing (CFT)
and data flow testing (DFT) described in Chapter 11, are often used, with the models
'built based on analyzing the code through control flow analysis and data dependency
analysis.

Black-box testing could also be performed on the unit, while focusing on the input-
output relations. However, it is used much less frequently than white-box coverage testing
because of the implementation knowledg,e possessed by the programmers who test their
own code.

206 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

Component testing for implementation details and specific functions

Component testing tests a software component at a time, typically by a small group of
developers. A component generally includes a collection of smaller units that together
accomplish something or form an object. For traditional software products, such as those
developed using structured programming and high-level structured programming languages
such as C, PASCAL, and FORTRAN, there isn’t a clear-cut distinction between units and
components, except that components are general larger and each of them typically includes
a few units. Consequently, component testing is almost identical to unit testing, except at
a slightly larger scale.

For some new programming models and software development paradigms, component
testing and unit testing are more likely to be different. For example, for object-oriented
(00) systems, a components is typically an object or a class, which include both the
internally defined data objects as well as the pre-defined operations (or methods) on them.
Although the same white-box approach for unit testing can still be used for testing such
components, it runs contrary to information hiding principle, one of the fundamental ideas
in object-orientation. Black-box view is more in line with such objects as components.
Corresponding black-box testing techniques or usage-based testing techniques can be used,
similar to those we describe with system testing below. In addition, some recent work has
been focused on adapting traditional testing techniques to work for object-oriented systems
(Binder, 2000; Kung et al., 1998), which attempts to adapt use cases and design pattern
ideas in testing as well as in product development.

The increasing use of software development based on COTS (commercial-off-the shelf)
components and CBSE (component based software engineering, or CBSD - component-
based software development) has also altered people’s perception of component testing. In
such paradigms, components play a much more important role, which also increases the
need for us to ensure and demonstrate the quality and reliability of individual components.
Independent testing and certification of software components or reusable parts is key to the
possible selection, use, and adoption of certain software components. Therefore, indepen-
dent verification and validation (IV&V) by third-party participants described in Chapter 7
are often performed for such situations. As for the testing techniques used, the situation is
similar to system testing we describe later in this section, where black-box and usage-based
techniques dominate, but at a smaller scale.

Integration testing for interface and interactions

Integration testing deals with the integration of different product components to work to-
gether, with the focus on interface and interaction problems among these components.
Therefore, in integration testing, each component is treated as an atomic unit or as a black-
box, while the interconnections among them are examined and modeled to test component
interfaces and interactions. Most of the integration testing uses white-box testing tech-
niques. However, the individual units are no longer individual statements or programming
unit, but individual components instead. Again, coverage is typically used as the exit cri-
terion for such testing. From integration testing onward, testing is typically performed by
dedicated professional testers.

The execution control in such integration situations typically passes from one component
to another and back-and-forth, which can be modeled by a finite-state machine (FSM).
Therefore, FSM-based testing described in Chapter 10. is often used to cover the different

TESTING SUB-PHASES AND APPLICABLE TESTING TECHNIQUES 207

states and transitions to ensure correct handling of interfaces, interactions, and execution
control.

Sometimes, we may choose to adopt a completely black-box view for integration testing,
and treat the whole collection of the components to be integrated as a black-box and test it
accordingly. This view is similar to the system testing view below, and the testing techniques
also correspond to those used in system testing. In fact, in many organizations, integration
testing is considered as part of system testing instead of a separate testing sub-phase. We
make the distinction in this book, using integration testing to indicate the part of testing that
focuses on the interface and interactions among different product components, and using
system testing to indicate the part of testing that focuses on the overall system operations.

System testing for overall system operations

System testing tests the overall system operations as a whole, typically from a customer’s
perspective. The primary concern is how the software system works as a whole under
the operational environment of actual customers. Therefore, in system testing, the whole
system is treated as a black-box, where external functions are tested. In addition, because of
the customer’s perspective adopted for this testing sub-phase, usage-based statistical testing
techniques are often used.

Because of this concern and perspective, the entities to be tested stay at fairly high levels
of abstraction. For example, high-level functions or components may be tested, typically
those directly visible to the customers, but not implementation details or those elements far
removed from customers. As for the team who performs the testing, knowledge about overall
product functions, application domain and market segment, and customer expectations and
their usage of the system is more important than product implementation details. The
commonly used techniques include:

0 High-level functional checklists are often used to ensure that all the major functions
expected by the customers are present and perform satisfactorily. We can either try
to achieve complete coverage of all major functions, therefore resulting in coverage-
based testing, or to achieve reliability goals by emphasizing functions important to
and frequently used by customers, resulting in usage-based statistical testing. With
the latter technique variation, Musa’s operational profile (OP) can be used. Both
these coverage-based and usage-based system testing techniques were covered in
Chapter 8.

0 Finite-state machines (FSMs) for the above system functions may be constructed
for more systematic testing than merely using the checklists above. Each state here
represents a major function expected by and visible to target customers. These test-
ing models and techniques are black-box ones, because they are based on external
functions instead of internal implementations. Various coverage criteria can be used
as stopping criteria.

0 Similar to the way Musa OP enhances checklist to perform usage-based testing for
direct reliability assurance. Markov OPs enhanced from FSMs can be used for usage-
based statistical testing, as described in Chapter 10.

For embedded software systems or for heterogeneous systems with important software
components, such as software controlled medical equipment and modern telecommunica-
tion networks, the term “system” typically means the complete system with the software

208 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

part as a component or a sub-system. In such systems, system testing takes on additional
meaning as well, which we refer to as super-system testing. Both integration testing and
system testing described above can be applied to such super-system testing, to check for
interface, interaction, and interoperability problems among different sub-systems, as well
as to check for the overall super-system operations as a whole.

Acceptance testing and product release

In most organized development in mature software organizations, some form of acceptance
testing is usually performed as the final sub-phase of testing to determine if the product
should be released. Related questions also include:

What is the expectations of product reliability in customer settings if the product is
released now?

0 What is the appropriate level of post-release product support?

Sometimes, acceptance testing can be a part of system testing, typically the last part
that answers the product release questions. However, we distinguish it from regular system
testing by the different focuses as well as the differences in defect fixing possibilities: In
regular system testing, all major problems observed will be fixed before product release;
while in acceptance testing, we assume that the problems will not be fixed because of
imminent product release. The discovered problems in acceptance testing will be dealt with
during post-release product support. In practical applications, critical problems observed
in acceptance testing could cause costly delays to pre-planned and often pre-announced
product release. The cost of delay needs to be weighed against the cost of delivering a
product with major flaws, in order to arrive at a product release decision.

In terms of testing techniques, the ones usable for system testing are all potentially
usable for acceptance testing. But with the focus on product release decisions and expected
post-release product support, usage-based statistical testing techniques are typically favored
over traditional black-box testing because of their direct linkage to reliability. Repeated
random sampling without defect fixing (in statistical terms, without replacement) supported
by either Musa or Markov OPs mentioned above is often used for acceptance testing.

Beta testing and testing based on operational problems

Although usage-based statistical testing can be used to ensure product reliability from the
user’s perspective, there are various limitation to the accuracy and practicality of these
techniques. For example, the collection of information about actual usage scenarios, se-
quences, and patterns is often hindered or completely blocked by proprietary nature of such
information, because much of it may be business sensitive. In addition, the diversity of
customers and related population pool also present major obstacles in constructing OPs
that are accurate for everyone involved.

An alternative to bring information “in” for usage-based testing is to ship the software
product “out” in controlled release so that likely problems to be experienced by the general
user population can be exposed and corrected before general product release. This model
is commonly referred to as beta testing. The benefit is obvious and significant, especially
for product with wide release and large user pool, and when usage-based statistical testing
is inadequate. However, the cost of running such a testing program is also significant,
including:

TESTING SUB..PHASES AND APPLICABLE TESTING TECHNIQUES 209

Table 12.1
testing sub-phases

Comparison of key characteristics and applicable testing techniques for different

Sub-phase Perspective Stopping Who Techniques

unit white-box coverage programmer db, s-list, BT, CFT, DFT
component-I white-box coverage programmer s-list, BT, CFT, DFT
component-I1 black-box both tester/3p BT, CFT, DFT
integration white-box coverage tester FSM, CFT, DFT
system black-box both tester f-list, FSM, Musa, Markov
acceptance black-box usage tester/3p Musa, Markov
beta black-box usage customer normal usage

0 Direct cost and limitations of running beta tests: A large enough and representative
set of customers and users have to be identified; and the relationship with them often
needs to be nurtured over a long pleriod of time to gain their trust and cooperation.
Sometimes, other criteria instead of representativeness can be used for selection of
beta test customers, such as selecting customers who reported most field defects to
effectively reduce such chances for similar problems after product release.

0 Indirect cost in product delays could be significant, because beta test not only takes
time to run, it also takes time and effort to prepare. In addition, enough time should
be allowed for customers and users to get familiar with the product and start to use
its full set of functionalities.

Therefore, whether to run a beta test, and what kind of beta test to run, its scope and
length, etc., all need to be decided with all the factors considered. The general trend for
increasing numbers of software products is to run some beta tests. In fact, direct involvement
of the massive numbers of users who use the products and report problems, much similar to
beta testing, but at a larger scale, has been credited as an important reason for high quality
of various open source and Internet-based products (Raymond, 1999; Vixie, 1999).

Summary and comparison of testing sub-phases

Table 12.1 summarizes the different testing sub-phases in roughly the chronological order
with respect to several important characteristics:

Perspective: black-box (functional) vs. white-box (structural).

0 Stopping criteria: coverage-based vs. usage based.

Who is performing the test, including programmers, tester, customers, and indepen-
dent third party (labeled “3p” in Table 12.1).

0 Major types of specific testing techniques used, including, informal debugging (db),
functional and structural checklists (f-list and s-list), boundary test (BT), finite-state
machine based testing (FSM), control flow testing (CFT), data flow testing (DFT),
Musa operation profiles (Musa), and Markov operational profiles (Markov).

Notice that main objectives are not directly stated but implied in the above characteri-
zation: Black-box testing focuses on external functions provided, while white-box testing

21 0 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

focuses on internal implementations of different levels of detail; and coverage-based testing
focuses on detecting problems for fixing, while usage-based testing focuses on reliability
from a user’s perspective.

Component testing is divided into two types, with type I (component-I) as loosely
grouped components, and type I1 (component-11) as tightly packed components which
form the basis of objects and reusable and resalable components in object-oriented (00),
component-based software engineering (CBSE), and commercial-off-the-shelf (COTS)
component market.

12.2 SPECIALIZED TEST TASKS AND TECHNIQUES

In the above description of testing sub-phases, the tasks can be ordered in roughly chrono-
logical order. However, some specialized tasks related to testing would cut through many of
these sub-phases, such as defect diagnosis testing and regression testing mentioned above.
There are also other specialized testing techniques that can be applied to different objects
beyond programs, designed to fulfill different goals, or other techniques that can be used as
substitute to testing. We next cover these specialized testing and analysis tasks and related
techniques.

Defect diagnosis testing

When problems are reported by customers during normal operations or during beta testing,
diagnosis testing is often used to help with the problem diagnosis by recreating the problem,
observing program behavior associated with these problems, collecting relevant informa-
tion, narrowing down the possibilities, and finally diagnosing the problems by analyzing all
the information collected. Diagnosis testing can often help us find the exact location of the
underlying faults in the program so that they can be fixed. In performing diagnosis testing, a
series of test runs may be executed in succession to progressively narrow down the possible
areas of problems. Therefore, highly correlated test runs based on similar scenarios are
carried out, which is different from the normal testing or usage situations where a wider
variety of usage scenarios are used.

Diagnosis testing can also be used to diagnose problems discovered during testing,
as illustrated by the downward arrow in Figure 12.1. However, they may be used less
extensively than the diagnosis testing for in-field problems reported by the customers. The
key difference between the two situations is information availability: For in-house testing,
all the test cases and the related test run details can be provided by the testers for code
owners to diagnose the problems. However, actual customers are typically less willing to
share detailed usage scenarios and detailed information when problems were encountered.
Therefore, the code owners rely more on diagnosis testing to obtain more information for
analyzing the in-field problems. The use of diagnosis testing in third-party testing in the
IV&V (independent verification and validation) environment resembles in-field problem
diagnosis.

In general, the more information that we can collect from specific testing or operational
usage, the less our reliance on diagnosis testing. In addition, diagnosis testing can also
be used to deal with other problems found through other means as well, such as through
inspection and other QA activities. Therefore, diagnosis testing is an important specialized
testing activity that cut through many related testing, usage, and QA activities.

SPECIALIZED TEST TASKS AND TECHNIQUES 21 1

Defect-based testing

Besides testing based on specification, implementation, and usage of the programs and other
artifacts, testing can be based on the disclovered defects or potential defects. The simplest
form of such defect-based testing is the ad hoc testing based on guesses where potential
faults might be located (not yet discovered, unlike in defect diagnosis testing) based on
subjective feelings or some objective evidence, so that related functions or components
can be tested accordingly. Systematic application of defect-based testing results in several
strategies, including the following:

0 Defect risk based testing: If the guesswork on where defects are likely can be replaced
by estimates supported by quantifiable evidence, the above ad hoc defect based testing
can then be more effectively used to focus on the identified high-risk areas, or those
areas more likely to contain more defects.

0 Defect injection and testing: This technique is also call fault seeding and testing
(Mills, 1972). The idea is to inject known faults into the software system, and then use
testing to catch both injectedseeded faults and original faults to ensure that certain
types of defects are detected and removed, much like what immunization do to keep
people healthy.

0 Mutation testing: The basic idea of mutation testing is similar to fault injec-
tiodseeding above, but somewhat more systematic in creating slightly changed pro-
grams from the original ones. Such slightly changed programs, or mutants, are then
subjected to testing by running a test suite to see if the mutants can be detected and
“killed”. This technique could be used effectively to detect various syntactic vari-
ations and related faults, as well as used to evaluate the “strength” or “kill rate” of
existing test suites.

Due to the size limit of this book, we will omit detailed discussions of these more
specialized testing techniques (Mills, 1972; Hamlet, 1977; Howden, 1982; Voas, 1998).
Risk-based testing is covered in connection with the general topic of risk identification and
risk-based QA activities in Chapter 21.

Software maintenance, product updates, and regression testing

For software maintenance and post-release product support, problems reported by customers
need to be analyzed to fix the underlying defects. In doing so, diagnosis testing is typically
used to recreate the problem scenario and to diagnose the problem.

Besides the above corrective software maintenance activities, software maintenance
often includes adaptive and perfective activities to adapt the product to different operational
environment, or to improve the product in various ways, as a pro-active move. Various
product updates through new releases can be considered as an extension to such maintenance
activities. The products with a long history and numerous previous releases are commonly
referred to as legacy products. For these maintenance activities and for legacy products, a
special form of testing called regression testing is typically used to make sure that previously
supported software functions are not negatively affected by the updates.

Unlike problem diagnosis testing and defect-based testing, regression testing is more
closely associated with specific testing phases for legacy products and for major software
maintenance activities. For major new product releases, we usually go through a full cycle

21 2 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

of testing, with the focus of regression testing typically on the integration testing sub-
phases where old and new product components are integrated. For smaller product updates
and software maintenance activities, regression testing may constitute the main part of
the testing. The testing techniques for regression testing are typically more specialized
(Rothermel and Harrold, 1996; Rosenblum and Weyuker, 1997), including the following
components:

0 An analysis of differences between the previous version of the product and the current
version based on some formal or informal models to select from existing test cases,
and to determine what new test cases are needed.

0 The new test cases focus on two areas:

- the newly developed or updated part, which is fundamentally the same as testing

- the interactions involving both old and new parts, which is similar to integration

of new systems but on a smaller scale,

testing, but with a focus on specific kind of interfaces and interactions.

Testing beyond programs

The primary object of testing is program code produced in the software development process.
However, this process also produces various other artifacts, such as product specifications,
high-level (architectural), module-level, and detailed design documents, user manual, etc.
If some of these artifacts can be implemented through some mockups or software proto-
types, then the basic testing ideas and related techniques can be applied to test the general
feasibility and performance of these prototypes, and testing results can be used to improve
the prototypes for inclusion in the final products or for the construction of their successors.

As execution-based techniques for QA, testing can also be applied to various software-
intensive systems instead of pure software systems we dealt with so far. Such software-
intensive systems include embedded software used to monitor or control physical or hard-
ware systems, equipments, or processes, as well as other general heterogeneous systems.
Examples of embedded systems include software controlled medical equipments and pas-
sive restraint systems in automobiles. Examples of general heterogeneous systems include
telecommunication networks and distributed computing facilities over wide geographical
areas, where software, hardware, and networks interact with one another. For such systems,
it is sometimes hard to distinguish when software testing ends and overall system testing
starts. Functional testing and usage-based statistical testing are typically more suitable for
testing these system interactions than structural testing and coverage-based testing.

The Internet and the world wide web (WWW or simply the web) are some specific
example of general heterogeneous systems. With the prevalence of them and people’s
reliance on them for their informal needs in daily life and work, testing and QA for these
systems are also gaining importance. Various techniques for software testing can be adapted
to test web-based applications, as we described in Chapter 10. The integration of different
testing techniques for web testing is described in Section 12.4.

Testing to achieve other goals/objectives

As described in Chapter 2, the primary focus of this book is the correctness aspect of
quality, which can be characterized by various reliability measures or defect-related entities.

SPECIALIZED TEST TASKS AND TECHNIQUES 21 3

Therefore, all the testing related topics we discussed so far had this focus in the background,
that is, to achieve high-reliability or low-defect goals. However, as we have also noticed in
Chapter 2, there are various other aspects of quality and related attributes and sub-attributes,
which can be addressed by other types of testing, including:

0 Performance testing, which focuses on the performance of the software system in
realistic operational environments. Many such systems are real-time systems, where
timely completion of computational tasks and overall workload handling are of critical
importance.

0 Stress testing, which is a special form of performance testing, where software system
performance under stress is tested. This type of testing is also closely related to
capacity testing, where the maximal system capacity is assessed.

0 Usabiliv testing, which assesses the overall usability of software systems, particularly
for those systems where user interfaces play an important role, such as web browsers,
GUI (graphical user interface) products, etc. For such software products and systems,
usability may be more important than reliability.

In addition, there are other types of testing, although less formalized than the above
to test the other quality aspects, such as testing the installation, maintainability, different
environmental configurations, portability, interoperability, security, fault tolerance, recov-
erability, adaptability, etc. Again, we will omit detailed discussions about these specialized
testing due to our book size limit.

Dynamic analyses and other related techniques for QA

Various analyses for problem diagnosis, fault locating, and other purposes associated with
testing is the most commonly used dynamic analyses for defect detection and removal
(Wallace et al., 1996). In addition, other dynamic, execution-based techniques, including
simulation and prototyping, can help us detect and remove various defects early in the
software development process, before large-scale testing becomes a viable alternative. On
the other hand, in-field measurement and related analyses, such as timing and performance
monitoring and analysis for real-time systems, and accident reconstruction using software
event trees for safety-critical systems, can also help us locate and remove related defects.
The basic ideas of these dynamic analyses and related techniques for QA are summarized
below:

0 Simulation is an important techniques early in the development process before fully
operational systems become available, which can push the verification of some high-
level design ideas or system architectural features to much earlier stages before ex-
pensive implementation and rework are involved. The expected behavior of part or
even the whole system can be simulated through some simulation programs or hard-
ware simulators, which capture the essential input/out and timing information. This
could be a viable alternative when actual testing becomes exceedingly expensive.
The most famous example is probably the extensive and exclusive use of computer
simulation instead of wind-tunnel testing for Boeing 777, a product with extensive
software components, throughout its entire design and development process.

Prototyping is similar to simulation in basic ideas, where software prototypes, or
simplified systems with some key features implemented, are built to test some high-
level ideas in architecture, design, or operation environment. These prototypes could

21 4 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

be thrown away later (throw-away prototypes) or revised to be included as part of the
delivered system.

0 Timing and sequencing analyses of operational systems can be similar to the analyses
performed during problem diagnosis after failures are observed in testing. However,
these analyses may be more limited by the amount of information available and
different operational environments the system is subjected to. Therefore, various
heuristics are used to approximate the causal relations and environmental impacts.

0 Event-tree analysis is extensively used in accident reconstruction for safety criti-
cal systems, which is covered in Chapter 16 in connection to failure containment
strategies commonly used for such systems.

12.3 TEST INTEGRATION

Many testing techniques and activities can be applied to test large software systems and
to ensure their reliability and quality in general. On the other hand, each technique and
related activities are only more effective than others for specific purposes under specific
environment or product development phases. A collection of techniques and activities
instead of a single one is called for because of the many different aspects of software
systems that need to be tested for and many different problems we need to guard against
for such large systems. The main advantages of such integrations include:

0 Benefit enhancement: By taking advantage of the different techniques, the integrated
strategies can be used to perform not only the original tasks the individual techniques
were designed for, but also provide an “all-around” QA that may go above and
beyond customer expectations to delight customers. The combination may yield
some unforeseen insights into problem areas or quality aspects so that the combined
total benefit may well be more that the sum of its individual elements.

0 ZncreasedJlexibiZity: Such integrated strategies also offers more flexibility in overall
QA and in deriving results that can be extrapolated to different situations and for
different types of products and market segments. For example, if we are shifting
from new product development to product support and update, much of the suite of
testing techniques can still be used but with more of a focus on integrating updated
parts with the existing parts.

0 Cost reduction: By consolidating the models and techniques, substantial savings
could be realized because such integrated strategies eliminate much of the redundant
work associated with different techniques and activities. For example, many of the
information sources can be shared, some models can be reused, even testing results
by different techniques can serve as oracles to cross-check each other, etc.

12.4 CASE STUDY: HIERARCHICAL WEB TESTING

The realization of many of the advantages of test integration can be best illustrated in
the following integrated strategy for web testing. Continuing our case study of web testing
described in Chapter 10, we next examine the different testing techniques that are applicable
to web testing and the possible integration of them to effectively assure quality from the
perspective of web users.

CASE STUDY: HIERARCHICAL WEB TESTING 21 5

Techniques applicable to web testing

Most existing work on web testing focus on functionality testing to test web components
to ensure that the web site performs its intended functions as expected. This type of testing
usually involves analyzing given web components, and checking their conformance to rel-
evant standards and external specifications (Bowers, 1996). Specific types of functionality
testing include:

0 HTML syntax checking: HTML validators, such as Weblint (www . weblint. org)
and W3C Validator (validator. w3. org), can parse HTML files and check their
conformance to relevant language specifications and document standards. Most of
such validators and similar tools can also perform spelling checking on these files.
This testing technique corresponds to automated testing based on checklists we dis-
cussed in Chapter 8 or automated syntax testing (Beizer, 1990).

0 Link checking can be performed to check the entire site for broken links, with the
help of tools like Net Mechanic (www.netmechanic. com). This is similar to link
coverage testing we discussed above for FSM-based testing, but without formally
constructing a FSM.

0 Form testing checks input types and variable names in various forms, with the help
of tools such as Doctor HTML (www2. imagiware . com/RxHTML). This can be con-
sidered as rudimentary input domain testing covered in Chapter 8.

Verification of end-to-endtransactions, which is similar to testing complete execution
paths in control flow testing covered in Chapter 11.

0 Java component testing: Java applets, which work on the clients side, or other Java
applications, which work on the server side, need to be tested, similar to traditional
software testing we covered in the previous chapters.

Besides these forms of functionality testing, various other forms of testing and related
testing techniques have been used for web testing and evaluation:

0 Load testing is a subset of stress (or performance) testing. It verifies that a web site
can handle a large number of concurrent users while maintaining acceptable response
time.

0 Usability testing focuses on the ease-of-use issues of different web designs, overall
layout, and navigations. A lot of work has been done on web usability testing. How-
ever, such work relies heavily on subjective preferences of selected users. The focus
is not on the reliability (the correct delivery of required information or documents),
but rather on the appearance and usability. Therefore, it is not included as a part of
this case study.

0 Browser rendering problems may affects the delivery as well as presentation of web
contents. For example, HTML files that look good on one browser may look bad
on another. We need to make sure that the web site functions appropriately with all
these different browser versions. However, the browser checking is done manually
to assess the “look & feel” of the GUI etc., similar to usability testing discussed
above. Other basic tests to detect browser rendering problems can be done to test for
functionality and download time using different browsers.

21 6 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

Besides the above coverage-based testing for individual web components and some
other limited aspect, other techniques have been used to test the overall usage scenarios
and navigation patterns and evaluate web reliability (Tian and Lin, 1998; Tian and Nguyen,
1999; Kallepalli and Tian, 2001; Tian et al., 2004). In particular, selective functional
testing based-on FSM and unified Markov models (UMMs) was performed for frequently
used web contents and navigation patterns was supported automated information extraction
from existing web logs. This approach was described in our case studies of web testing in
Chapter 10.

On the other hand, loosely related collections of web pages can be more appropriately
represented and tested by using some simpler usage models based on a flat list of operations
and associated probabilities, such as Musa’s operational profiles (OPs) we described in
Chapter 8. The introduction of statistical testing strategies based on such OPs or UMMs
is not to replace traditional testing techniques, but to use them selectively on important or
frequently used functions or components, as in the following integrated strategy.

An integrated hierarchical strategy for web testing

We next describe an integrated strategy that integrates existing testing techniques and re-
liability analyses in a hierarchical framework (Tian et al., 2003). This strategy combines
various usage models for statistical testing to perform high-level testing and to guide se-
lective testing of critical and frequently used subparts or components using traditional
coverage-based structural testing. There are three-tiers to this strategy, as follows:

1. Development of the high-level operational profile (OP), which enumerates major
functions to be supported by web-based applications and their usage frequencies by
target customers. This list-like flat OP will be augmented with additional information
and supported by lower-level models based on unified Markov models (UMMs). The
additional information includes grouping of related functions and mapping of major
external functions to primary web sources or components.

2. For each of the high-level function groups, a UMM can be constructed to thoroughly
test related operations and components. UMMs capture desired behavior, usage,
and criticality information for web-based applications, and can be used to generate
test cases to exhaustively cover high-level operations and selectively cover important
low-level implementations. The testing results can be analyzed to identify system
bottlenecks for focused remedial actions, and to assess and improve system perfor-
mance and reliability.

3. Critical parts identified by UMMs can be thoroughly tested using lower-level models
based on traditional testing techniques. Other QA alternatives, such as inspection,
static and dynamic analyses, formal verification, preventive actions, etc., can also be
used to satisfy user needs and expectations for these particular areas.

Reliability analysis and risk identification form an integral part of this strategy to help
assure and improve the overall reliability for web-based applications. The use of this in-
tegrated testing strategy also yield data for use to perform various reliability analyses for
several purposes, including: 1) providing an objective assessment of current web reliability
from the user’s perspective,2) predicting future reliability (reliability growth) if we continue
with testing using our integrated strategy 3) identifying problematic areas or software com-
ponents for focused reliability improvement. Some examples of such reliability analysis
and improvement activities can be found in Chapter 22.

CONCLUDING REMARKS 21 7

Implementation of the integrated strategy

The following reports can be easily produced from analyzing the web access logs kept at
the web servers:

0 Top access report (TAR) that lists frequently accessed (individual) services or web
pages together with their access counts.

0 Call pair report (CPR) which lists call pairs (transition from one individual service
to another) and the associated frequency.

TAR is important because many of the individual services can be viewed as stand-alone
ones in web-based applications, and a complete session can often be broken down into
these individual pieces. This report, when normalized by the total access count or session
count, resembles the flat OP (Musa, 1998) we covered in Chapter 8. Each service unit in
a TAR may correspond to multiple pages grouped together instead of a single page. Such
results provide useful information to give us an overall picture of the usage frequencies
for individual web service units, but not navigation patterns and associated occurrence
frequencies.

CPR connects individual services and provides the basic state transitions and transi-
tion probabilities for our UMMs. We can traverse through CPR for strong connections
among TAR entries, which may also include additional connected individual services not
represented in TAR because of their lower access frequencies or because they represent
lower-level service units. A UMM can be constructed for each of these connected groups.
In this way, we can construct our UMMs from TAR and CPR.

Notice that multiple OPs, particularly multiple UMMs in addition to TAR, our top-level
OP, usually result for a single set of web-based applications using the above approach. This
implementation of our integrated strategy in a hierarchical form is discussed below:

0 At the top level, TAR can be used directly as our flat OP for statistical usage-based
testing.

0 Entries in TAR can be grouped according to their connections via CPR, and a UMM
can be constructed for each of these groups, forming our middle-level usage models,
or our individual UMMs.

0 The hierarchical nature of our UMMs will allow us to have lower-level UMMs as
well as other lower-level testing models to thoroughly test selected functional areas
or web components.

This hierarchical implementation of our integrated strategy is graphically depicted in
Figure 12.2. We focus on testing frequently used individual functions or services at the top
level, testing common navigation patterns and usage sequences at the middle level, and cov-
ering selected areas at the bottom level. Specific low-level UMMs or other coverage-based
testing models can be built to thoroughly test the related features or critical components in
the higher-level flat OPs or UMMs. Coverage, criticality, and other information can also
be easily used to generate test cases using lower-level models under our OPs.

12.5 CONCLUDING REMARKS

When testing can be divided and performed in several sub-phases, each one can focus on
some specific aspects and try to achieve some specific objectives. Various testing techniques

21 8 TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

Top Level: Top Access Report (TAR)
a flat list of frequently accessed services in ranking order
(may be grouped by interconnection in customer usage scenarios)

Middle Level: Unified Markov Models (UMMs)
for groups of TAR entries linked by CPR (call-pair report)
(may be expanded into lower-level UMMs or other models)

Bottom Level: Detailed UMMs or other Models
associated with frequently visited or critical nodes of UMMs
(may correspond to testing models other than UMMs)

Figure 12.2 Hierarchical implementation of an integrated web testing strategy

covered in the previous four chapters can be adapted and used in these testing sub-phases.
The major testing sub-phases covered in this chapter and applicable testing techniques are
summarized in Table 12.1.

In addition to these sub-phases, various specialized tasks and related testing techniques
were also described in this chapter, including:

0 problem diagnosis testing,

0 defect-based testing, such as defect injection and mutation testing,

0 regression testing for product maintenance, updates, and for legacy products,

0 testing to achieve other objectives, such specialized testing for usability, stress, per-
formance, etc.

0 other execution and dynamic alternatives to testing, such as simulation, prototyping,
and dynamic analysis techniques.

Another important issue addressed in this chapter is the possible integration of multiple
testing techniques and related activities in a concerted effort to test large software systems
and ensure their quality from different perspectives or to guard against different problems.
Substantial amount of savings can also be achieved through such integrated strategies due
to sharing of many common information sources, models, and other artifacts and results.
We demonstrated such testing integration ideas in a case study of hierarchical testing of
web-based applications:

The user focus of web-based applications are supported in this integrated strategy
by testing functions, usage scenarios, and navigation patterns important to and fre-
quently used by end users under our top-tier usage model based on the list-like Musa’s
operational profiles described in Chapter 8 as well as our middle-tier usage models
based on Unified Markov Models (UMMs) described in Chapter 10.

0 On the other hand, internal components and structures for web-based applications
can also be thoroughly exercised by using our bottom-tier models based on traditional
coverage-based testing, under the guidance of the upper-level usage models.

In general, a collection of appropriate testing techniques can be selected and adapted
to help us perform testing for different purposes and under different project environments.

PROBLEMS 219

The integration of them would also enable us to achieve our testing goals more effectively
and efficiently.

Problems

12.1 What testing related phases and sub-phases are used in your projects? Can you map
them to the standard sub-phases in Figure 12.1?

12.2 What would be the impact on different sub-phase organization and individual sub-
phases if the following processes are used: spiral, incremental, iterative, and X P (extreme
programming)?

12.3 Repeat the above question by examining the impact of the following technologies:
00, Cleanroom, and CBSE?

12.4
testing techniques we covered in this book. Why?

12.5 Usability testing is typically tightly integrated with design-for-usability or user-
centered-design activities. Can you find some such integration between testing and design
for other types of testing we described in this book?

12.6 If you are working on a large software product or a large system with extensive
software components, list the types of testing performed, examine the current status of test
integration in your project, and give some improvement suggestions.

Defect injection testing and mutation testing are not used as widely as many other

This Page Intentionally Left Blank

PART 111

QUALITY ASSURANCE
BEYOND TESTING

Although software testing plays a central role in software quality assurance (QA) and is
the most commonly performed QA activity,it is neither the only viable nor the most effective
QA technique under all circumstances. There are many other QA activities beyond testing.
Among the chapters in Part 111, Chapter 13 is devoted to defect prevention and related
techniques and activities, and Chapters 14, 15, and 16 are devoted to inspection, formal
verification, and defect containment, respectively. We compare all these QA alternatives to
testing as well as among themselves in Chapter 17.

This Page Intentionally Left Blank

CHAPTER 13

DEFECT PREVENTION
AND PROCESS IMPROVEMENT

Unlike most other commonly used QA techniques, defect prevention deals directly with
errors instead of with faults or failures, In this chapter, we first examine the basic concepts
and overall approaches to defect prevention, and then describe specific defect prevention
techniques.

13.1 BASIC CONCEPTS AND GENERIC APPROACHES

Broadly speaking, testing and most QA activities deal with defects or faults already injected
into the software system by a two-step process:

1. Detecting the presence or effect of defects through some observation, examination,
or monitoring activities;

2 . Applying certain actions to locate and remove the detected defects for most situations,
or tolerate their presence if such defect removal activities are impossible or impractical
for some special situations.

These activities consume a substantial share of total software development and main-
tenance cost, ranging from about one quarter to more than half. In addition, the longer a
defect lies dormant in a software system, the more likely it is to cause other related problems.
Therefore, problems or defects related to product requirement, specification, and high-level
design are particularly damaging and costly because of the subsequent chain-effect due to

223

224 DEFECT PREVENTION AND PROCESS IMPROVEMENT

these problems (Boehm, 1991). Unfortunately, most of the testing techniques are much
less effective in dealing with such early defects because of the lack of executable program
implementations at these early stages. Other QA techniques that can be applied to deal
with some such early problems, such as inspection and formal verification, also have their
individual limitations.

To summarize, there are two major problems with the existing QA approaches we have
covered so far and in the rest of Part 111:

0 The significant cost for dealing with defects already injected into software systems;

0 The ineffectiveness or limitations of existing QA techniques in dealing with early
problems or defects.

Because of these, one natural question to ask is:

“Is it possible to prevent the injection of defects, or at least a subset of certain defects,
in the first place?’

As defined in Chapter 2, “errors” are missing or incorrect human actions that result in
certain fault(s) being injected into a software system. Therefore, if we can automatically
provide some of the missing actions or correct some of the incorrect ones, we can prevent
the injection of certain faults. We call such direct interventions error blocking, because
they block the injection of some faults. This can be achieved through strict adherence to
selected software process steps or relevant standards, or by using certain software tools that
support the implementation languages and development methodologies.

On the other hand, we can analyze the reasons or causes behind the missing or incorrect
human actions, and deal with the root causes, or the error sources, instead. This generic
approach is called error source removal. The focus of these activities is typically on
the people and their conceptual mistakes, which may lead to the selection and use of
inappropriate development methodologies, languages, algorithms, QA strategies, etc. Such
inappropriate selections or wrong uses then may lead to numerous fault injections.

Through error blocking or error source removal, some fault injections can be prevented
in either of the above cases. Therefore, these techniques are commonly referred to as defect
prevention techniques. They can be used for most software systems to reduce the chance of
defect injections and the subsequent cost of dealing with these injected defects. However, the
effective usage of defect prevention techniques depends on the specific product development
environment and the common problems associated with it. Therefore, appropriate defect
prevention actions need to be selected for specific applications.

13.2 ROOT CAUSE ANALYSIS FOR DEFECT PREVENTION

Root cause analyses can be performed on the product under development to identify the
common defects and their causes, so that appropriate defect prevention activities can be
selected and applied. However, because we aim for defect prevention right at the beginning
of the product development, when there is typically a lack of actual product defect data,
these root cause analyses are more often based on the predecessors of the current product,
or based on similar products from the same company or even from other companies. In
general, if there is a closer match between the product under development and the products
the root cause analyses are based upon, the more likely that the analysis results can be used
more effectively to drive defect prevention actions. Root cause analyses can usually taken
two forms:

EDUCATION AND TRAINING FOR DEFECT PREVENTION 225

0 Logical analysis examines the logical link between the faults (effects) and the cor-
responding errors (causes), and establishes general causal relations. This analysis
is human intensive, and should be performed by experts with thorough knowledge
about the product, the development process, the application domain, and the general
environment.

0 Statistical analysis is based on empirical evidence collected either locally or from
other similar projects. These empirical data can be fed to various models to establish
probable predictive relations between causes and effects.

Once such causal relations are established, either logically or statistically, appropriate
defect prevention activities can then be selected and applied for error blocking or error
source removal.

Particularly relevant to defect prevention is the root cause analysis that identifies specific
error sources or missing/incorrect actions that result in fault injections. Typical causes,
appropriate actions, and focus areas include:

0 If human misconceptions or wrong conceptual models are the error sources, education
and training should be part of the solution. The two main problem areas are: product
domain knowledge and development methodology or technology knowledge. In this
case, we focus on project personnel in our defect prevention activities, as described
in Section 13.3.

0 If imprecise designs and implementations that deviate from product specifications
or design intentions are the causes for faults, formal methods should be part of the
solution. In this case, we focus on the selection and use of a specific development
methodology in our defect prevention activities, as described in detail in Chapter 15.

0 As a generalization of the above case, if there is empirical or logical evidence that
certain standards, tools, or technologies can reduce fault injections under similar
environments, they should be adopted and followed. The key is the match between the
project environment for the product under development and the effective application
domain of the tools and technologies. We address these defect prevention activities
focused on the product or project in Section 13.4.

0 If non-conformance to selected processes is the problem that leads to fault injections,
then process conformance should be part of the solution. Similarly, if various de-
velopment activities are not precisely defined, measured, and managed, people may
not have a process to follow for effective QA. We address these defect prevention
activities focused on process in Section 13.5.

Therefore, root cause analyses are needed to establish these predictive relations and
related pre-conditions, so that appropriate defect prevention activities can be applied for
error blocking or error source removal. Information about how to perform these analyses as
well as other related analyses is presented in Chapter 20. Specific types of defect prevention
activities are described below in subsequent sections.

13.3 EDUCATION AND TRAINING FOR DEFECT PREVENTION

It has long been observed by software practitioners that the people factor is the most impor-
tant factor that determines the quality and, ultimately, the success or failure of most software

226 DEFECT PREVENTION AND PROCESS IMPROVEMENT

projects. For example, in a recent empirical study of software projects implemented in
seven different programming languages (Prechelt, 2000), it was found that the performance
variability that derives from differences among programmers of the same language is on
average as large or larger than the variability found among the different languages. Soft-
ware project management and process maturity work, to be described in Section 13.5, has
also been extended recently to include process-related education and training for individual
programmers, such as through the personal software process (PSP) (Humphrey, 1995).

Education and training of software professionals can help them control, manage, and
improve the way they work, thus preventing the injection of certain defects based on their
good software engineering practice. The injection of defects similar to those already dis-
covered in the current or previous products can also be prevented if they can learn from these
problems and their collective experience. Therefore, this learning effect takes place both a
priori and a posteriori to the actual software development experience. Such activities can
also help ensure that they have few misconceptions related to the pioduct in particular and
the product development in general. The elimination of these human misconceptions will
help prevent certain types of faults from being injected into software products.

Based on the above discussion, the education and training effort for defect prevention
should focus on two major areas: generic software development knowledge and specific
product domain knowledge. In terms of timeline, both pre-project education and on-the-job
training are important in effective defect prevention. We describe these topics below.

Generic knowledge about software development

Software development knowledge plays an important role in developing high-quality soft-
ware products. As a discipline and profession, software engineering is still immature as
compared to other engineering branches, such as mechanical, chemical, civil, and electrical
engineering. Consequently, it is still common to have people who lack basic education in
computer science and software engineering involved in software development and main-
tenance activities. For example, a lack of fundamental knowledge and familiarity about
the programming language(s) used in product implementation could lead to improper use
of language features. Wrong data structures or algorithms could be selected to implement
certain product functions, if the programmers lack relevant knowledge. On the positive
side, the use of the information hiding principle (Parnas, 1972) can help reduce the com-
plexity of program interfaces and interactions among different components, thus reducing
the possibility of interface or interaction problems.

The above problems can be addressed by basic computer science education, to ensure
that programmers have a solid knowledge of programming, data structure, algorithms,
and other basic topics in computer science. However, many computer science graduates
who have a basic knowledge of the above but lack basic knowledge about development
processes and activities for large software systems are commonly entrusted with system
design and implementation tasks. This situation could lead to misunderstanding of customer
requirements, and the lack of expertise with requirement analysis and product specification
usually leads to many problems and rework in subsequent design, coding, and testing
activities. Similarly, poor overall design could result due to the designers’ inability to
deal with the complexity associated with large software systems. These problems, in turn,
can lead to the injection of numerous defects into the product, and represent more serious
problems than the implementation problems noted above. Therefore, acquiring necessary
knowledge about software engineering is a pre-requisite to successful and high-quality
software products.

EDUCATION AND TRAINING FOR DEFECT PREVENTION

Table 13.1 Distribution of modules of different maturity for an IBM product

Module Type Metric Value(s) Modules %

227

unchanged SMI = 1 685 52.82
moderately changed 0 .< SMI < 1 482 37.22
all new SMI = 0 129 9.96

all 0 5 SMI 5 1 1295 100

A re12 ed issue is the required expertise with relevant software processes, st ndards, ch-
nologies, and tools. For example, in an implementation of Cleanroom technology (Mills
et al., 1987b), if the developers are not familiar with the key components of formal verifi-
cation or statistical testing, there is little chance for them to produce high-quality products.
Similarly, if the project personnel do not have a good understanding of the development
process used, there is little chance that the process can be implemented correctly. We deal
with these issues in Section 13.4 in connection to technologies and tools for defect preven-
tion, and in Section 13.5 in connection to process-based defect prevention, process maturity
and quality improvement.

Product and domain specific knowledge

If the people involved are not familiar with the product type or application domain, there is
a good chance that wrong solutions will be implemented. For example, if some program-
mers only experienced with numerical computation were asked to design and implement
telecommunication software systems, they may not recognize the importance of making the
software work within the existing infrastructure, thus creating incompatible software. On
the other hand, people generally realize the important of familiarity with the product under
development as a whole, instead of just limiting themselves to the modules or components
they are responsible for, because of the interface and interaction among different product
components.

Similarly, if project personnel are not familiar with the product specific history and
other characteristics, fault injections are also likely. For example, very few large software
projects are developed from scratch these days. For successive releases of software products,
typically only a small proportion is newly implemented, while the vast majority of system
components are adapted or changed slightly from previous releases. For example, for the
IBM product LS (Troster and Tian, 1995), CSI, or changed source instructions, and SMI,
or software maturity index, were used to characterize the extent of change for individual
modules. SMI is defined by:

CSI
SMI = 1 - -

LOC’

where LOC is the total lines of code for the module. SMI measures relative change, with
untouched modules having SMI = 1 (or CSI = 0) and completely new module having
SMI = 0 (or CSI = LOC, all lines are new lines) at the two extremes. For this product, the
distribution of modules over different SMI values is given in Table 13.1.

For software products like LS, it is critical for project personal, particularly product
designers and programmers, to have a thorough knowledge of not only the modules they
are responsible for, but also both old and new modules they interact with, to ensure overall

228 DEFECT PREVENTION AND PROCESS IMPROVEMENT

interoperability and the correct and smooth operation for the whole system. This familiarity
would also help prevent injection of related faults.

Education vs. on-the-job training

Notice that most of the education and training activities discussed above need to be com-
pleted before the project is started, with most of the background information in software
development knowledge through formal education, and product domain knowledge through
education and training within the company. On the other hand, various other on-the-job
training activities can be carried out to help project personnel to prevent the injection of de-
fects similar to those already discovered in the current or previous products. This on-the-job
training can take several forms:

0 Formal training sponsored by the software development organizations, third-party
technical training organizations who address industry-specific training needs, or other
parties closely related to the product’s domain. This form of training is particularly
appropriate for gaining the general product domain knowledge.

0 Formal and informal training within the company for product history and product-
specific characteristics. Some formal classes as well as informal mentoring can be
used for this kind of training.

0 On-the-job learning by individual project participants under the guidance of some
project expert. This form of learning and training is particularly suitable for pre-
venting future defects similar to those already injected into the software system. An
implicit assumption of these learning and training activities is the collection and
analysis of existing defect data, which is covered in detail in Chapter 20.

13.4 OTHER TECHNIQUES FOR DEFECT PREVENTION

Appropriate software technologies and tools can also help prevent defect injection. The
key in selecting and using such strategies for defect prevention is a good understanding of
these technologies and tools on one hand, and a good understanding of the overall project
environment on the other hand, so that a match can be made to use appropriate strategies
for the product under development.

13.4.1 Analysis and modeling for defect prevention

As noted in Section 13.1, the pre-requisite for defect prevention is some root cause analysis
to identify common defects and their causes, and to select effective ways to deal with
such defect causes. Similar to the use of root cause analysis, research findings, analysis
results, and models related to defects, defect distribution, and relations, can also provide
opportunities for defect prevention, such as those covered in Part IV of this book. For
example, if we have identified that certain types or classes of defects are concentrated in
some product areas or injected during a specific development phase based on historical data,
we could selectively apply certain defect prevention techniques to reduce or eliminate the
injection of similar defects in the current product release. These analyses and related defect
classification scheme are described in Chapter 20.

OTHER TECHNIQUES FOR DEFECT PREVENTION 229

Most of the defect prevention actions based on analysis results are concentrated on high-
risk or potentially high-defect areas, instead of being applied uniformly. For example, if
we have established predictive relations between defects and module complexity or ar-
chitectural features, then we can identify certain critical or high-risk modules or product
components that are associated with high defects historically, using selected risk identifica-
tion techniques described in Chapter 21. This identification of high-risk modules can help
us take some pro-active actions, such as assigning the best designers to similar modules
to prevent the possible injection of large numbers of faults. In fact, this effect has been
observed by many practitioners, where the modules with the highest complexity are not
typically the ones with the most observed defects, due to such pro-active actions as well as
focused reactive or remedial actions and follow-ups. This effect has also been statistically
validated through formal hypothesis testing for some large software products from IBM
and Nortel Networks (Koru and Tian, 2003).

Various other analyses of software artifacts related to QA can also be used to help
defect prevention (Wallace et al., 1996), including static analysis techniques described
in Chapter 14 in connection with inspection techniques and dynamic analysis techniques
described in Chapter 6 in connection with general testing techniques. The usage of these
analysis results is similar to the above: first identify problem areas and major causes, and
then apply selected defect prevention actions that specifically deal with these problems or
problem areas.

13.4.2 Technologies, standards, and methodologies for defect prevention

The idea of formal methods, which was introduced in Chapter 3 and will be described in
detail in Chapter 15, is a good example of a methodology that can prevent injection of
certain defects into the software system. Formal specification produces an unambiguous
set of product specifications so that customer requirements, as well as environmental con-
straints and design intentions, are correctly reflected, thus eliminating certain error sources
and reducing the chance of accidental fault injections. Formal verification checks the con-
formance of software design or code to these formal specifications, thus ensuring that the
software is fault-free with respect to its formal specifications. Therefore, formal specifi-
cation can be considered as a defect prevention strategy. Formal verification is similar to
other software verification techniques, such as inspection and testing, but with a focus on
the verification of defect absence instead of the detection of defect presence. As a side
effect, defect presence can sometimes be detected by formal verification.

Appropriate use of other software technologies and suitable implementation languages
can also help reduce the chance of fault injections. For example, Cleanroom technology
(Mills et al., 1987b) combines formal verification in the early part of software development
with statistical testing in the late part of development to produce high-quality products.
As demonstrated in a set of empirical studies (Selby et al., 1987), the use of Cleanroom
has lead to fewer defect injections and higher product quality, although various obstacles
also exist to its widespread adoption. Similarly, component-based software engineering
(CBSE), where assembly of reusable COTS (commercial off-the-shelf) components play a
central role in software development, has been promoted as a way to reduce defect injection
and to improve overall product quality. However, one must be cautious in adopting CBSE,
because different usage profiles may lead to vastly different quality levels (Weyuker, 1998),
and there are a lot of open issues with certification of COTS components (Voas, 1999; Voas,
2000). Similar situations exist for the adoption of other software technologies: Careful

230 DEFECT PREVENTION AND PROCESS IMPROVEMENT

planning and evaluation need to be carried out before they can be adopted for effective
product development and QA.

Similarly, enforcement of appropriately selected product or development standards or
guidelines also reduces fault injections. Such standards offer a common understanding
for all the people involved, thus reducing the chances for misunderstanding and miscom-
munication and eliminating a major source for defect injections. For example, the system
designed following Coad-Yourdon’s object-oriented design principles as a quality guideline
was significantly easier to maintain, as demonstrated by a controlled experiment (Briand
et al., 2001). These standards may take different forms: The scopemay range from product-
specific standards, to company-internal ones, to industrial-wide ones, all the way to univer-
sal standards. The areas covered may include implementation languages and supporting
environments, development activities and processes, interface with other products, docu-
mentation, etc.

Various software development methodologies, which package individual techniques into
systematic frameworks, can also be used to help with defect preventions. The most famous
example is the structured development ushered in by the elimination or strictly limited use of
GOT0 statement (Dijkstra, 1968), which led to significantly higher levels of product quality
and became widely adopted as the standard development methodology. The significant
reduction in observed failures and detected faults can largely be attributed to the reduced
defect injection, because structured development methodology eliminated a large class of
control flow defects. More recently, object-oriented methodology and related programming
languages and technologies have been widely used and adopted,but still haven’t quite gained
universal acceptance, probably due to some counter evidence (Hatton, 1998; Wiener, 1998)
despite the general observations of improved product quality.

13.4.3 Software tools to block defect injection

Specific software tools, when used properly, can also help reduce the chance of fault in-
jections. Development support tools are commonly used for this purpose, which typically
support specific development activities and different aspects or phases of development. The
focus of these tool support strategies is on blocking the fault injections by directly screen-
ing out or automatically correcting certain human actions associated with defect injection.
Some examples of such tools for defect prevention include:

Tool support for Programming language and programming environment: For exam-
ple, a syntax-directed editor that automatically balances out each open parenthesis,
“{”, with a close parenthesis, “}”, can help reduce syntactical problems in programs
written in the C language. Certain coding standards can be easily supported and
automatically checked to allow only those meeting the standards to pass through.

Tool support for source code and version control: These support tools can help
maintain consistency of product design and code, particularly important for par-
allel or distributed development commonly used for large software systems or for
open source software projects coordinated over the Internet. Specific examples in-
clude CMVC, an IBM product for configuration management and version control,
and CVS, or Concurrent Versions System (see www . cvshome . org), the open-source
network-transparent version control system. The use of these tools eliminates certain
inconsistency or interface problems among different software versions or compo-
nents. Worthy of noting is the fact that these tools, or extensions of them, are often
used for defect tracking and quality management as well.

FOCUSING ON SOFTWARE PROCESSES 231

Tool support for individual development activities: These tools can help us automate
various repetitive tasks in which humans are more likely to make mistakes, and free
us to perform tasks that only we can do better. For example:

- Various test automation tools can help testers generate and maintain test case
suite and select appropriate ones for execution, thus eliminating certain human
errors in repeating many similar tasks.

- Requirement solicitation tools can help us capture user requirements more ac-
curately.

- Design automation tools can help us with various design tasks.

0 An extension to the above tools is the tool support for certain technologies described
earlier in this section, as well as support for process implementation and enforce-
ment. Typically, such support is provide by a tool suite or a collection of related
tools. The most famous example is Rational Rose, a suite of tools for object-oriented
development methodologies, with support for different platforms and implementation
languages.

Additional work is needed to guide the selection of appropriate tools or to tailor them
to fit the specific application environment. Effective monitoring and enforcement systems
are also needed to ensure that the selected tools are used properly to reduce the chance of
fault injection.

13.5 FOCUSING ON SOFTWARE PROCESSES

As described so far in this chapter, defect prevention may involve many individual pieces
of tasks and many individual activities. Most of these individual pieces can be integrated
in some overall framework of software processes. A better managed process or a more
suitable process can also eliminate many systematic problems. Effective monitoring and
enforcement systems are also needed to ensure that the selected process or standard is
followed to reduce the chance of fault injection.

Work on software processes serves many purposes, primarily in software project man-
agement during product development and maintenance. However, from the QA perspective,
the primary contribution to quality management by the process work is in the area of de-
fect prevention during product development. These software development processes, when
properly selected, enforced, and managed, help prevent the injection of certain software
defects by integrating many individual defect prevention activities. They also provide an
overall guideline that software developers can follow to produce high-quality products.
We next focus on several important process issues related to defect prevention, including
process selection, definition, conformance, maturity, and improvement.

13.5.1 Process selection, definition, and conformance

There are several commonly used processes for software development, including the tradi-
tional waterfall process, iterative and incremental processes and their more recent counter-
parts such as agile development and extreme programming, and spiral process. Different
processes might be suitable for different product domains and different project environ-
ments. For example, waterfall process is generally suitable for large software systems with

232 DEFECT PREVENTION AND PROCESS IMPROVEMENT

stable requirements, while other processes may be more suitable for newer products with
less stable requirements. Consequently, matching the existing processes with the project
environment is the key in process selection.

Once a general process is selected, it generally needs to be adapted and precisely defined
for product development, in consideration with the specific project environment. Typically,
some company-specific process definitions can be used. For example, a variation of water-
fall process is defined in the so-called Programming Process Architecture (IBM, 1991) for
IBM projects, which precisely defines the different development phases and individual ac-
tivities associated with them. A well-defined process can be monitored and its conformance
can be checked and assured.

The overall software processes, which are typically defined and applied to large software
projects, can be tailored to work on smaller-scale projects and for individual programmers,
such as through the personal software process (PSP) (Humphrey, 1995). These precisely
defined and adapted processes can also be used to facilitate the education and training
of software professionals for defect prevention. Therefore, ensuring appropriate process
selection, definition, and conformance helps eliminate some such error sources.

In the other direction, work has been done over the last ten years or so to create in-
ternational standards for software processes, noticeably in the effort culminating in the
I S 0 9000 series of standards for quality management by the International Organization for
Standardization (see www . is0 . ch). As it applies to software, the focus is on three areas:

1. Define the process, or “say what you do”.

2. Follow the defined process, or “do what you say”.

3. Demonstrate evidence, or “show me”.

In other words, it requires the process definition and conformance verification covered in
this section.

13.5.2 Process maturity

Much of the work in process maturity was pioneered and led by SEI (Software Engineer-
ing Institute) at CMU (Carnegie-Mellon University). As stated in its official website at
www . sei . cmu . edu, SEI’s core purpose is to help others make measured improvements in
their software engineering capabilities. The cornerstone of this effort is the software capa-
bility maturity model (SEUCMM) (Paulk et al., 1995). According the SEI vision statement:

“The right software, delivered defect free, on time and on cost, every time.”

“ ‘Right software’ implies software that satisfies requirements for functionality, perfor-
mance, and cost throughout its lifetime.”

It deals mostly with software fit-for-use or the validation aspect of quality we discussed in
Chapter 4, and other management issues such as performance and cost. Furthermore, in
the same vision statement, SEI stated:

“ ‘Defect-free’ software is achieved either through exhaustive testing after coding or
by developing the code right the first time. The SEI’s body of work in technical and
management practices is focused on developing it right the first time, which results not
only in higher quality, but also in predictable and improved schedule and cost.”

There is a clear focus on defect prevention in SEI’s work, through education and process
maturity. Since we have covered education issues in Section 13.3 and in connection with
process definition above, we focus on the process maturity issue here.

FOCUSING ON SOFTWARE PROCESSES 233

Table 13.2 Process maturity levels in CMM
~~

Level Description Focus

1 initial (ad-hoc) competent people (and heroics)
2 repeatable project management processes
3 defined engineering process and organizational support
4 managed product and process quality
5 optimized continual process improvement

There are five process maturity levels in CMM, with higher numbers associated with
higher process maturity, as summarized in Table 13.2. Associated with each level, there
are key practice areas (WAS) (Paulk et al., 1993) which characterize and define specific
practices that an organization needs to follow to reach that level. More recently, SEI has
focus more on expanding CMM and the integration of it into the software process in CMMI
(CMM Integration), and its use for people (P-CMM) and for software acquisition (SA-
CMM). Various empirical studies have also been conducted to confirm the link between
higher CMM levels and higher product quality, in selected publications available from the
SEI web site. For example, a recent empirical study of 45 projects demonstrated that both
consistent application of CMM and higher personal capability contribute to reduced product
defects (Krishnan and Kellner, 1999).

CMM has exerted a strong influence in the US, especially in the defense software industry.
Parallel international effort on process maturity, assessment, and improvement include ISO-
9000 series of standards mentioned above, and two related approaches called SPICE and
BOOTSTRAP, as follows:

0 SPICE stands for Software Process Improvement and Capability dEtermination. Ac-
cording to the official website www . sqi . gu. edu . au, SPICE is a major international
initiative to support the development of an International Standard for Software Pro-
cess Assessment. The project has three principal goals:

- to develop a working draft for a standard for software process assessment;

- to conduct industry trials of the emerging standard;

- to promote the technology transfer of software process assessment into the
software industry worldwide.

0 BOOTSTRAP was funded by the European Commission within the ESPRIT pro-
gramme, with the objective to develop a methodology for software process assess-
ment, quantitative measurement, and improvement, and validate the methodology by
applying it to a number of companies (Kuvaja et al., 1994).

13.5.3 Process and quality improvement

Notice that in the above approaches for software process assessment, maturity and improve-
ment, such as SEUCMM, SPICE, and BOOTSTRAP, one of the ultimate goals is product
quality improvement. Alternatively, one can focus directly on quality improvement through
measurement, analysis, feedback, and organizational support, as in the TAME project and
related work (Basili and Rombach, 1988; Oivo and Basili, 1992; Basili, 1995; Basili et al.,

234 DEFECT PREVENTION AND PROCESS IMPROVEMENT

1995; Seaman and Basili, 1997; van Solingen and Berghout, 1999). The key elements to this
approach include: QIP or quality improvement paradigm, GQM or goal-question-metric
paradigm, and EF or experience factory. We briefly describe the basic ideas below, with
some examples of quality measurement, analysis, and feedback presented in Part IV.

QIP includes three interconnected steps, understanding, assessing, and packaging, which
form a feedback and improvement loop. The first step is to understand the baseline so that
improvement opportunities can be identified and clear, measurable goals can be set. All
future process changes are measured against this baseline. The second step is to introduce
process changes through experiments, pilot projects, assess their impact, and fine-tune
these process changes. The last step is to package baseline data, experiment results, local
experience, and updated process as the way to infuse the findings of the improvement
program into the development organization.

In the QIP approach, various measurements need to be taken for the assessment step
above. GQM paradigm identifies the measurement goals (conceptual level) first. For
example, some specific process improvement goals in QIP, or quality improvement goals
can be identified, under the environmental constraint of the software project. Then a set of
questions (operational level) related to a specifically identified goal is used to characterize
the assessment or achievement of it. Finally, a set of metrics is derived and associated
with every question in order to answer it in a measurable way. GQM can be used to guide
measurement-based process improvement as well as various other purposes, such as for
general software measurement, analysis, and feedback we cover in Part IV.

EF, or experience factory, provides organizational support for process and quality im-
provement in the above approach. The key idea is the separation of concerns, with the project
organization primarily concerned with product development and maintenance, and the ex-
perience factory concerned with process, quality, and development support. EF supports
reuse of experience and collective learning from the project organization by developing,
updating, and delivering experience packages back to the project organization. The most
famous example of experience factory is the Software Engineering Laboratory (SEL) at
NASNGSFC (Basili et al., 1995). The most up-to-date information about this EF can be
found at the official website sel . gsf c . nasa. gov.

13.6 CONCLUDING REMARKS

Defect prevention techniques can be a very effective and efficient way to deal with quality
problems by preventing the injections of faults into the software systems. The primary
advantage of these techniques is in the effective savings resulted from not having to deal
with numerous software faults that would otherwise be injected without applying these
defect prevention techniques. There are two general strategies for defect prevention:

0 Error blocking: Identifying common errors, which are defined to be missing or
incorrect human actions, and blocking them to prevent fault injections. Various
techniques, such as following well-defined processes, standards, and methodologies,
or using appropriate tools, can help block identified common errors.

0 Error source removal: Identifying common error sources and removing them, thus
preventing fault injections. Various activities focused on people and their product and
process knowledge can be carried out to removal these identified error sources, such
as through education and training, process maturity and improvement initiatives, and
other techniques specifically based on causal analysis of injected or potential faults.

PROBLEMS 235

Consequently, the pre-requisite for these defect prevention techniques to work is the
effective identification of these common errors and error sources, so that appropriate tech-
niques can be applied to block or to remove them. For mature product lines or mature
software development organizations, the rich historical data of past defects and related
information can be used to identify common errors and error sources. Therefore, defect
prevention should be a primary choice of QA techniques for such products and organiza-
tions.

However, for new products to be developed in a new environment for an emerging
market, it would be hard to collect existing defect data and analyze them to formulate an
overall defect prevention strategy. Anticipated defects, based on past experience or general
knowledge, can be used for this purpose. However, the effectiveness of the selected defect
prevention techniques would be somewhat questionable, and should be closely monitored
and adjusted whenever necessary.

In either of the above situations with mature products or new ones, there are still some
defects whose related errors or error sources we couldn’t identify practically. This observa-
tion is particularly true for large software systems, where it would be infeasible to analyze
all the actual and potential defects to find their corresponding causes in errors and in error
sources. In addition, we cannot expect the selected defect prevention techniques to be 100%
effective in blocking all the identified errors or removing all the identified error sources.
These facts indicate that there would still be some defects that evade the defect prevention
activities and get injected into large software systems. These defects then need to be dealt
with by other software QA alternatives we cover in this book.

Problems

13.1 What are the commonly used defect prevention strategies and initiatives? Are they
focusing on error source removal or error blocking? What more can be done in you view?

13.2 One of the difficulties with empirically validating better-quality claims for various
defect prevention initiatives is in the part of hypothetical if’s, such as in the claim: “If abc
is not used, #xyz defects would be introduced.” How would you validate such claims?

13.3
mentality?

13.4 How much of your formal education and on-the-job training is related to defect
prevention and how much related to other ways of dealing with defects? What changes
would you suggest?

13.5
purpose? Does it have a strong impact on your software quality?

13.6 What relevant standards to your industry are consistently followed in your company
for defect prevention?

13.7 What are the commonly used development methodologies in your organization?
Was quality or defect prevention used as part of the justification for the introduction and
adoption of these methodologies in the first place?

13.8 What tools are commonly used in your software development or maintenance? In
your view, is any of them contributing to defect prevention?

Do you think zero defect is a realistic or practical goal? What about the zero-defect

Is root cause analysis commonly performed in your organization? If so, what is the

236 DEFECT PREVENTION AND PROCESS IMPROVEMENT

13.9 Define process maturity levels and discuss their relationship to the quality. (You
might want to browse the SEI web site at www . sei . cmu. edu and related publications for
references.)

13.10 What is the focus of your organization’s process work, conformance or improve-
ment? Is your organization IS0 certified or CMM assessed? If so, what’s the impact on
your product quality?

13.11 Do you have an experience factory within your organization or something similar,
such as an experience warehouse or database? How are your past project data and experience
kept?

CHAPTER 14

SOFTWARE INSPECTION

Software inspection is the most commonly performed software quality assurance (QA)
activity besides testing. Unlike testing, inspection directly detects and corrects software
problems without resorting to execution, therefore it can be applied to many types of soft-
ware artifacts. Depending on various factors, such as the techniques used, software artifacts
inspected, the formality of inspection, number of people involved, etc., inspection activities
can be classified and examined individually, and then compared to one another. We next
discussed these issues, with a focus on the technical aspects of inspection. As a general
extension, we also consider static analyses of programs and other software artifacts that can
be performed similar to the ways that software inspections are performed.

14.1 BASIC CONCEPTS AND GENERIC PROCESS

Software inspection deals with software defects already injected into the software system
by detecting their presence through critical examination by human inspectors. As a result
of this direct examination, the detected software defects are typically precisely located, and
therefore can be fixed easily in the follow-up activities.

The case for inspection

The main difference between the object types of inspection and testing, namely executable
programs for testing and all kinds of software artifacts for inspection, is also the primary
reason for the existence of inspection: One does not have to wait for the availability of

237

238 SOFTWARE INSPECTION

a
‘, re-inspection or next roundlphase of inspection ,,I

~ - - _ .

Figure 14.1 Generic inspection process

executable programs before one can start performing inspection. Consequently, the urgent
need for QA and defect removal in the early phases of software development can be sup-
ported by inspection, but not by testing. In addition, various software artifacts available late
in the development can be inspected but not tested, including product release and support
plans, user manuals, project schedule and other management decisions, and other project
documents. Basically, anything tangible can be inspected.

Because of this wide variety of objects for inspection, inspection techniques also vary
considerably. For example, code inspection can use the program implementation details as
well as product specifications and design documents to help with the inspection. Inspection
of test plans may benefit from expected usage scenarios of the software product by its
target customers. Inspection of product support plans must take into account the system
configuration of the product in operation and its interaction with other products and the
overall operational environment. Consequently, different inspection techniques need to be
selected to perform effective inspection on specific objects.

Similarly, there are different degrees of formality, ranging from informal reviews and
checks to very formal inspection techniques associated with precisely defined individual
activities and exact steps to follow. Even at the informal end, some general process or
guidelines need to be followed so that some minimal level of consistency can be assured, and
adequate coverage of important areas can be guaranteed. In addition, some organizational
and tool support for inspection is also needed.

Generic inspection process

Similar to the generic QA process we described in Chapter 3, all three basic elements of
planning, execution, and follow-up are represented in the generic inspection process in
Figure 14.1. The major elements are explained below:

Planning andpreparation: Inspection planning needs to answer the general questions
about the inspection, including:

- What are the objectives or goals of the inspection?

- What are the software artifacts to be inspected or the objects of the inspection?

- Who are performing the inspection?

- Who else need to be involved, in what roles, and with what specific responsi-

- What are the overall process, techniques, and follow-up activities of the inspec-

bilities?

tion?

In the inspection literature, the term “inspection” is often used to denote the inspection
meeting itself. Preparation for such meetings, as well as all the related activities lead-

FAGAN INSPECTION 239

ing up to these meeting, is often grouped with inspection planning, as the “planning
and preparation” step.

0 Inspection or collection: This step roughly corresponds to the execution of QA
activities in our generic quality engineering process. However, as noted above, this
step typically refers to the inspection meeting alone in literature, while all the activities
leading up to this meeting are grouped in the previous step. This step is also referred
to as collection or collection meeting. The focus of this step is to detect faults in the
software artifacts inspected, and record the inspection results so that these faults can
be resolved in the next step.

0 Correction and follow-up: The discovered faults need to be corrected by people
who are responsible for the specific software artifacts inspected. For example, in
design or code inspection, the responsible designer or programmer, often labeled as
design or code “owners” in industry, need to fix the design or code. There should be
some follow-up activities to verify the fix. Sometimes, new inspection rounds can
be planned and carried out, as illustrated by the dotted line leading back from the
“correction & feedback” step to the “planning & preparation” step in Figure 14.1.

Therefore, faults are detected directly in inspection, in the preparation or the inspection
steps, and removed in the follow-up step.

Within the generic inspection process above, there are numerous possible variations,
primarily associated with the answers to the questions posed in the inspection planning
step. There is generally a close integration between inspection techniques with inspection
processes. Therefore, we introduce commonly used inspection techniques in connection
with the corresponding inspection processes and examine their individual characteristics
together in subsequent sections.

14.2 FAGAN INSPECTION

The earliest and most influential work in software inspection is Fagan inspection (Fagan,
1976), which is almost synonymous with the term “inspection” itself. Ever since its initial
conception, Fagan inspection has been used widely across different industrial boundaries
and on many different software artifacts, although most often on program code. Almost
all the other inspection processes and techniques can be considered as derivatives of Fa-
gan inspection, by enhancing, simplifying, or modifying it in various ways to fit specific
application environment or to make it more effective or efficient with respect to certain
criteria.

Process and participants

The original Fagan inspection process (Fagan, 1976) included five steps for actual inspec-
tion preceded by inspection planning. However, because of the tight connection between
the planning and execution of inspections, they are generally considered together in the
following six steps:

1. Planning: Deciding what to inspect, who should be involved, in what role, and if
inspection is ready to start.

240 SOFTWARE INSPECTION

2. Overview meeting: The author meets with and gives an overview of the inspection
object to the inspectors. Assignment of individual pieces among the inspectors is
also done.

3 . Preparation: Individual inspection is performed by each inspector, with attention
focused on possible defects and question areas.

4. Inspection meeting to collect and consolidate individual inspection results. Fault
identification in this meeting is carried out as a consensus building process.

5. Rework: The author fixes the identified problems or provides other responses.

6. Follow-up: Closing the inspection process by final validation.

Notice that in the Fagan inspection process, the term “inspection” is used to refer to the
inspection meeting, while individual examination of the software artifacts under inspection,
often referred to as individual inspection in later literature, is referred to as “preparation”.
We should keep this distinction in mind when examining inspection literature in order
to avoid unnecessary confusion. In addition, Fagan inspection is typically carried out as
an one-pass inspection. Although re-inspection for final validation is allowed, it is not
interpreted as another complete round of inspection.

We can adapt the generic inspection program diagram in Figure 14.1 to depict Fagan
inspection in the following:

0 The “planning and preparation” block in Figure 14.1 can be expanded into three
sequential steps, “planning”, “overview”, and “preparation” in Fagan inspection.

0 The “inspectiodcollection” is directly mapped to the “inspection” step.

0 The “correction and follow-up” block can be expanded into two sequential steps,
“correction”, and “follow-up”.

0 The dotted link for the next round of inspection is eliminated.

Fagan inspection typically involves about four people in the inspection team, large
enough to allow group interaction to help with the defect detection, but small enough
to allow individual voices to be heard. In general, the potential inspectors are identified
in the planning stage (Step 1) from those designers, developers, testers, or other software
professionals or managers, who are reasonably familiar with the software artifacts to be
inspected, but not necessarily those who directly work on it. An ideal mix would include
people with different roles, background, experience, and different personal or professional
characteristics, to bring diverse views and perspectives to the inspection.

The assignment of individual pieces for inspection among the inspectors needs to take
two issues into consideration: overall coverage and areas of focus. On the one hand,
different inspectors will be assigned different pieces so as not to unnecessarily duplicate
inspection effort. On the other hand, some important or critical pieces may need the focused
attention of more than one inspector. A related inspection technique that uses extensive
duplicate inspection on critical areas is described in Chapter 16, because they share the
same basic idea of duplication for fault tolerance.

The inspection meeting should be an organizedevent, with one inspector identified as the
leader or moderator, who oversees the meeting and ensures that it fulfills its main purpose of
defect identification and consolidation. The meeting typically lasts two hours or less to avoid

FAGAN INSPECTION 241

the ineffectiveness due to fatigue. The focus is on defect detection and consolidation only,
but not on defect resolution, which may easily sidetrack the meeting. The assumption is that
a group of people working together would find and confirm problems that individuals may
not. However, each individual must be fully prepared and bring forward candidate problems
for the team to examine together. In this group process, false alarms will be eliminated, and
consolidated defects will be confirmed, recorded, and handed over for authors to fix.

General observations and findings

Ever since Fagan inspection was introduced in the 1970s, it has been widely adopted,
adapted, and used in many companies covering diverse industries. Some important findings
are summarized below:

The importance of preparation: Many studies pointed out the great influence on
inspection effectiveness by well-prepared inspectors and their individual inspections.
In fact, the majority of defects discovered during inspection were initially noted by
individual inspectors during their preparation, while the meetings are mainly used to
consolidate the individual results to eliminate false alarms and confirm true defects
(Porter and Johnson, 1997). This general observation has lead to several variations
of Fagan inspection, as described in the next section.

Variations with team size, moderator role, and session coordination: Depending on
the size and complexity of the artifacts to be inspected, different team sizes may be
appropriate. This has led to reduced team size for some situations, such as for small
pieces of code or small increments in non-traditional (non-waterfall) development
processes. In the other direction, larger sized teams or multiple sessions may be
used for large or complex inspection objects. When multiple sessions are involved,
the coordination issues also need to be addressed. No matter what the variations,
the moderator plays a very important role not only in coordination but also directly
affects the inspection effectiveness (Holmes, 2003).

Defect detection techniques used in inspection: Various defect detection techniques
have been proposed and used in inspection. The general idea is that systematic
techniques are more likely to uncover defects during inspection than ad hoc checking
(Porter et al., 1996). We will address this issue in Section 14.4.

Additional use of inspection feedback: In addition to correction and direct follow-up
actions based on feedback from inspection, the inspection process itself or the overall
software development process and product quality can be improved. If root cause
analysis is carried out to identify some of the common sources of the defects found
during inspection, preventive actions can be carried out to prevent the injection of
similar defects in future projects. The performance of these additional analyses or the
use of such feedback forms an integral part of some modified inspection processes,
such as Gilb Inspection (Gilb and Graham, 1993) to be described in the next section.
These causal analysis results can also be used to guide defect prevention activities by
removing identified error sources or correcting identified missinghncorrect human
actions, as described in Chapter 13.

242 SOFTWARE INSPECTION

14.3 OTHER INSPECTIONS AND RELATED ACTIVITIES

Variations to Fagan inspection have been proposed and used to effectively conduct inspection
under different environments. Some of them are direct responses to some of the general
findings of Fagan inspection described above. We organize these inspection techniques and
processes along two dimensions:

0 size and scope of the inspection,

0 formality of the inspection.

Since most of them were initially conceived and introduced as alternatives to Fagan inspec-
tion, the original descriptions are typically accompanied by comparison to Fagan inspection
or empirical studies of the effectiveness of the newly proposed alternatives. We summarize
some important inspection techniques and processes below.

14.3.1 Inspections of reduced scope or team size

As described above, Fagan inspection teams typically consist of four members to allow for
the potential benefit of group process to discover defects that would otherwise escape the
individuals. However, some software artifacts are small enough to be inspected by one or two
inspectors. Similarly, such reduced-size inspection teams can be used to inspect software
artifacts of limited size, scope, or complexity. Consequently, the so-called two-person
inspection (Bisant and Lyle, 1989) was proposed to simplify the Fagan inspection, with an
author-inspector pair, but following essentially the same process for Fagan inspection. This
technique is cheaper and more suitable for smaller-scale programs, small increments of
design and/or code in the incremental or iterative development, or other software artifacts
of similarly smaller size.

A typical implementation of two-person inspection is the reversible or symmetric author-
inspector pair, that is, the individuals in the pair complement their roles by inspecting each
other’s software artifacts. Consequently, on the organization level, this technique is also
easier to manage because of the mutual benefit to both individuals instead of the asymmetric
relation in Fagan inspection, where the author is the main beneficiary while the inspectors
are performing “service” to others or to the company. The idea of two-person inspection has
also found renewed interest in the new development paradigm called agile development and
extreme programming (Beck, 1999), where the so-called paired programming resembles
the author-inspector pair.

On the other hand, there has been empirical evidence pointing to the fact that most of
the discovered defects are indeed discovered by individual inspectors during the “prepara-
tion” step of Fagan inspection, with the gains of defect detection by the meeting ranging
approximately from 5% to 30% (Humphrey, 1989; Porter et al., 1996). Therefore, there
is a possibility of eliminating inspection meetings entirely, thus significantly reducing the
overall inspection cost without sacrificing many of the benefits from inspection. This re-
sults in the so-called meetingless inspection or the use of nominal inspection teams, where
individual inspectors do not communicate with each other as a part of inspection (Biffl
and Halling, 2003). One issue to deal with in this kind of inspection is the significantly
higher false alarm rate (Porter and Johnson, 1997). Various ways of communication can
be used to pass the individual inspection results to the author, for example, through direct
communication with the author, or through some data or defect repository.

OTHER INSPECTIONS AND RELATED ACTIVITIES 243

14.3.2 Inspections of enlarged scope or team size

One direct extension to Fagan inspection is based on the common observation about in-
spection meetings in Fagan inspection, where people tend to linger on discovered defects
and try to both find the causes for them and suggest fixes. These additional activities in the
meeting would interfere with the main task of defect detection and confirmation in Fagan
inspection and tend to prolong the meeting, leading to diminishing returns as the meeting
drags on. On the other hand, these activities do add valuable information to the feedback
that can be used to improve the overall inspection process and product quality.

A solution to this problem is proposed in the Gilb inspection (Gilb and Graham, 1993),
where an additional step, called “process brainstorming”, is added right after the inspec-
tion meeting in Fagan inspection. The focus of this step is root cause analysis aimed at
preventive actions and process improvement in the form of reduced defect injections for
future development activities. There are several other special features to Gilb inspection,
as characterized below:

0 The input to the overall inspection process is the product document, rules, check-
lists, source documents, and kin documents. The emphasis is that any technical
documentation, even diagrams, can be inspected.

0 The output from the overall inspection process is the inspected (and corrected) input
documents, change requests, and suggested process improvements.

0 The inspection process forms a feedback loop, with the forward part resembling Fagan
inspection but with the added step for process brainstorming, and the feedback part
consisting of inspection statistics and adjustment to inspection strategies. Multiple
inspection sessions are likely through this feedback loop, by making the dotted line in
the generic inspection process in Figure 14.1 into a solid line. In a sense, this overall
process resembles our quality engineering process in Figure 5.1 more closely, where
analysis and feedback play an important role.

0 The inner inspection steps (forward part of the overall feedback loop) are labeled
somewhat differently than in the Fagan inspection, as follows (with Fagan inspection
equivalent given inside parenthesis):

1. planning (same),

2. kickoff (overview),

3. individual checking (preparation),

4. logging meeting (inspection),

5a. edit (rework),

5b. process brainstorming (),

6. edit audit (follow-up).

Notice that 5a and 5b are carried out in parallel in Gilb inspection.

0 The team size is typically about four to six.

0 Checklists are extensively used, particularly for step 3, individual checking.

Another variation to the above is the phased inspection (Knight and Myers, 1992), where
the overall inspection is divided into multiple phases with each focusing on a specific area

244 SOFTWARE INSPECTION

or a specific class of problems. These problems not only include the defects (correctness
problems), but also issues with portability, maintainability, etc. This inspection is typically
supported by some form of checklist and related software tools. The dynamic team make-up
reflects the different focus and skill requirements for individual phases.

14.3.3 informal desk checks, reviews, and walkthroughs

As mentioned at the beginning of this chapter, inspection is most commonly applied to code,
but it could also be applied to requirement specifications, designs, test plans and test cases,
user manuals, and other documents or software artifacts. However, these other software
artifacts are typically less formal or less precise than the program code itself, which partially
explains the need for less formal forms of inspection.

Desk check typically refers to informal check or inspection of technical documents pro-
duced by oneself, which is not too different from proofreading one’s own writings to catch
and correct obvious mistakes. However, with the advance and widespread use of various
software tools, many of which come packaged with the compilers or programming support
software, we should not be focusing on such things as mis-spelling, format, syntactical er-
rors, and other problems that can be easily detected and/or corrected by these tools. Instead,
desk checks should focus on logical and conceptual problems, to make effective use of the
valuable time of software professionals.

Similar to desk check, review typically refers to informal check or inspection of technical
documents, but in this case, produced by someone else, either organized as individual effort,
or as group effort in meetings, conference calls, etc. The focus of these reviews should be
similar to desk checks, that is, on logical and conceptual problems. The differences in
views, experience, and skill set are the primary reasons to use some reviews to complement
desk checks. In most companies, the completion of a development phase or sub-phase
and important project events or milestones are typically accompanied by a review, such as
requirement review, design review, code review, test case review, etc.

A special form of review is called walkthrough, a more organized review typically
applied to software design and code. Meetings are usually used for these walkthroughs.
The designer or the code owner usually leads the meeting, explaining the intentions and
rationales for the design or the code, and the other reviewers (meeting participants) examine
these desigdcode for overall logical and environmental soundness and offer their feedback
and suggestions. Defect detection is not the focus. Typically, these meetings require less
time and preparation by the participants except for the owners.

In practical applications, these informal checks, reviews, and walkthroughs can be used
in combination with formal inspections. For example, desk checks should precede any
other reviews or inspections because we do not want to waste other people’s time and effort
on trivial and obvious mistakes we have made in product development. Information from
reviews and walkthroughs can be used to plan for inspections and to determine which part
to inspect, inspection techniques or processes to use, whom to invite as inspectors, etc. In
addition, follow-up on inspection results and defect fixing can often be an informal review
instead of another round of formal inspection.

14.3.4 Code reading

In addition to informal reviews and walkthroughs, various formal review techniques have
also been proposed and used on various software artifacts. The most commonly used
such formal reviews are various code reading techniques, typically applied by readers to

OTHER INSPECTIONS AND RELATED ACTIVITIES 245

1 input(x);
2 if(x > 0) then
3 Y +- 2;

4 else
5 y +- -x;
6 output(y);

1 Y + 2;

4 output(y);
5 y t -x;

2
3 else

if (x > 0) then

6 input(x);

Figure 14.2 A program segment (left) and its permutation (right)

individually examine program code to detect defects. The inspectors or readers focus on
reading source code and looking for defects, with feedback to the author either through
meetings or other means of communication.

An effective code reading technique for structured programs is top-down hierarchical de-
composition combined with bottom-up abstraction. This technique, particularly its bottom-
up abstraction, is called code reading with stepwise abstraction (Basili and Mills, 1982).
The decomposition allows readers or inspectors to focus on one subpart of a program at a
time; and the abstraction builds up a conceptual understanding of the pieces and connects
them together in a structural hierarchy to form an overall picture. This divide-and-conquer
strategy, which is intrinsically in agreement with structured programming philosophy, ap-
plies well to structured programs. In a recent study (Dunsmore et al., 2003b), this reading
technique was found to perform well for object-oriented software, although with high cost.
It can also be complemented by alternative defect-detection techniques, such as use case
driven ones.

The basic idea of coding reading by stepwise abstraction shares many things in common
with the mental models programmers use to design and implement programs and readers
use to comprehend them. In the program design and implementation process, the overall
tasks are decomposed into smaller and smaller ones recursively, until we reach the level
that the individual tasks are small enough for implementation as an individual unit (for
example, a function, a procedure, or a subroutine). This is the essential idea of structured
programming or structured development.

Program comprehension works in the opposite direction: The readers start with individ-
ual lines or statements and abstract out individual blocks or units, and then use the abstract
representation of them in comprehending higher-level units. This mental model has been
empirically validated by some early experiments (Shneiderman, 1977; Shneiderman, 1980).
Some of the findings can be best illustrated through the example in Figure 14.2: The left
figure resembles a real program segment in pseudo-code, while the right one is the left
one reshuffled (or a permutation or mutation of the left). The experienced programmers
are much more effective in recalling and reconstructing programs like the left one in ex-
periments than the scrabbled programs like the right one. The explanation is that they can
abstract out the “meaning” of such meaningful programs, but for texts like the right one in
Figure 14.2, the only way to recall or to reconstruct them is strictly through memorization.

We can also use Figure 14.2, particularly the left figure, to illustrate the ideas of code
reading by stepwise abstraction. This program can be divided into three parts: input-
processing-output. The middle processing part can be abstracted by an experience reader
or programmer to y = 1x1. Consequently, when this segment is used inside a larger segment
or unit, this mental abstraction y = 1x1 can be used to connect it to the rest of the unit.
Therefore, we can build up higher and higher levels of program comprehension for larger
and larger units by following such steps. Problems can also be detected along the way.

246 SOFTWARE INSPECTION

In this way, the readers or inspectors are focusing on the semantics or the “meaning” of
the program, instead of the syntactical problems that can be easily detected by various
programming or debugging tools.

One fact worth noting in the above abstraction is the formalism used, for example,
y = 1x1. In keeping track of larger and larger units and their functions or “meanings”, we
might need to describe them or specify them in formal ways. This is similar to the formalism
used in formal program specifications that we discuss in Chapter 15 in connection with
formal verification of program correctness.

14.3.5 Other formal reviews and static analyses

In addition to formal reviews of program code using various reading techniques above,
various formal reviews can also be applied to other software artifacts. For example, in the
active design reviews (ADR) (Parnas and Weiss, 1985), to ensure inspectors’ active partic-
ipation, the author prepares questionnaires to focus on specific scenarios or areas. ADR
usually involves many participants, ranging from managers, designer& and programmers.
The questions are designed in such a way that they can only be answered by careful study
and analysis of the design document. This emphasis on the importanceof preparation would
likely lead to active participation. The typical ADR meetings are broken down into smaller
ones or multiple sessions, with each participated by two to four people to allow for better
interaction between reviewers and the author.

Formal reviews and inspections can also be supported, or substituted in some cases,
by other analysis techniques for technical documents for software. Inspection belongs to
the category of static analysis techniques that directly analyzes the form and structure of
a product without executing the product (Wallace et al., 1996). Other static and/or formal
analysis techniques can also be used, including various formal model based analyses such
as algorithm analysis, decision table analysis, boundary value analysis, finite-state machine
analysis, control flow and data dependency analyses, software fault trees, etc. Most of
these analyses can be used in testing or other QA activities, and are covered accordingly in
connection with corresponding techniques and activities, as described below:

0 Decision table and decision tree analyses are related to partitions of choices and
partition-based testing. Therefore, they are covered in Chapter 8.

0 Boundary value analysis is related to testing for boundary coverage. Therefore, it is

0 Finite-state machine analysis is most closely related to state-based testing, and cov-
ered in Chapter 10.

0 Control flow and data dependency analyses, and to some degree, algorithm anal-
ysis, are most closely related to control flow testing and data dependency testing.
Therefore, they are covered in Chapter 1 1.

0 Various analyses related to symbolic executions and program state descriptions or
formal specifications, such as in the form of logical pre-/post-conditions and mathe-
matical functions computed by a program, are closely related to formal verifications.
Therefore, they are covered in Chapter 15.

0 Software fault trees are mostly used in analyzing accidents for safety-critical sys-
tems. Therefore, they are covered in Chapter 16 in connection to failure containment
strategies commonly used for such systems.

covered in Chapter 9.

DEFECT DETECTION TECHNIQUES, TOOUPROCESS SUPPORT, AND EFFECTIVENESS 247

14.4 DEFECT DETECTION TECHNIQUES, TOOUPROCESS SUPPORT, AND
EFFECTIVENESS

As an integral part of any software inspection technique and process, defect detection can be
carried out and supported by various specific techniques and tools. The overall inspection
processes and techniques as well as other factors affect the inspection effectiveness. We
discuss these issues below.

Defect detection techniques

In the above descriptions of individual inspection techniques and related processes, we
have already mentioned the use of checklist, scenarios, stepwise abstraction, etc. for defect
detection. We next examine these and other defect detection techniques in more detail.

When no systematic defect detection technique is recommended or used in a specific
inspection process, we call it ad hoc defect detection. The inspection team could choose
to use some systematic defect detection technique to improve inspection effectiveness. For
example, although no specific defect detection technique is specified in Fagan inspection,
one may choose to leave it as is, thus using ad hoc defect detection, or use other defect
detection methods, such as checklist- or scenario-based defect detection. The rationale
that motivates people to seek out other defect detection techniques is that systematic defect
detection techniques are less likely to miss major areas that we try to cover, thus leading
to more defect discoveries and better quality. We will keep this point in mind when we
examine various empirical studies about inspection effectiveness at the end of this section.

Checklist-based defect detection techniques use various forms of checklists to ensure
coverage of important areas for inspection:

0 Artifact-based checklist: Examples include checklists for major functions or fea-
tures in requirement and specification inspections, components in design inspections,
program functions/routines, data structures and other data definitions, etc., in code
inspections. Notice that most of these checklists can also be followed in informal
reviews or walkthroughs.

0 Property-based checklist: Examples include checklists for coding style and standards,
conformance to development methodologies, dependencies or coupling between dif-
ferent components, modules, or program parts, etc. This kind of checklists can be
constructed based on analysis of common defects in previous releases of the product
or similar products from industry, so that these problematic areas can be the focus of
effective inspections. Such checklists are more likely to be used in formal inspections
instead of informal reviews or walkthroughs.

Notice that these checklists look remarkably similar to the checklists used in our checklist-
based testing in Chapter 8. In fact, many of these checklists can be shared between inspection
and related testing to reduce the overall QA cost.

Scenario-based inspection is closer to usage-based testing we described in Part I1 of this
book than coverage-based testing that checklist-based inspection is akin to. In scenario-
based inspection, usage scenarios are used to guide the areas of focus, and typically tie
together multiple product components that are involved in the scenario. For example, for
an implemented product, customer usage scenarios can be used to inspect the code of the
components involved to see if the usage scenarios can be handled properly by the product.
An important variation of scenario-based inspection is the use case based inspection for

248 SOFTWARE INSPECTION

object-oriented systems, which has gained popularity in QA for such systems, because of
the importance that use cases play in object-oriented methodology.

Abstraction-based inspection, similar to the technique of code reading with stepwise
abstraction described in Section 14.3, is a special defect detection technique particularly
suited for code reading and code inspection for structured programs.

Tool support and process integration

Inspection process is human intensive, with the involvement of inspectors spending their
valuable time to perform various inspection activities. It is virtually impossible to automate
most of these activities. However, proper software tool support can reduce the routine
effort and free the inspectors to focus on what they can do best. For example, inspection
for syntax errors is a waste of inspectors’ valuable time, because they can usually be more
effectively detected by some programming tools. Therefore, the inspectors can focus on
logical or conceptual problems.

Communication support, data repository, and groupware can also facilitate the inspection
processes better. For example, proper groupware support can help lessen the burdens
of inspection meetings, where interactions among the inspectors can be facilitated and
recorded, and inspection reports can be easily produced. Communication via asynchronous
means and data repositories can help with the communication between inspectors and the
author in meetingless inspections as well as in other inspection tasks, such as supporting
the use of background information for preparation in Fagan inspection.

To enhance the likelihood for success, inspection needs to be integrated into the overall
quality engineering process and software development process. Adequate resources need to
be allocated for inspection, and inspection results, as well as possible process improvement
suggestions, need to be handled accordingly. As inspections can consume a substantial
amount of resources, particularly software professionals’ valuable time, upper management
support for these activities is a critical success factor for inspections.

As follow-ups to the completed inspections, we need to go beyond just fixing the discov-
ered defects. Various analyses can be and need to be performed, either within the inspection
process, such as in Gilb inspection, or after the inspection process, to extract valuable infor-
mation and lessons learned from the inspection activities just completed. These analyses
and follow-up activities are described in Part IV of this book. A specific analysis technique
called orthogonal defect classification (or ODC) (Chillarege et al., 1992) is described in
Chapter 20, which can be used to analyze defects discovered during inspection to provide
specifically tailored feedback to improve the inspection process and its effectiveness.

Inspection effectiveness and related studies

Inspection effectiveness can be assessed from several different perspectives. For exam-
ple, inspection productivity can be assessed as the number, size, or amount of technical
documents inspected per unit time or per session. Inspection intervals, effort, process
changes, product modifications and defect fixed, etc., can also be used to assess inspection
effectiveness. With the correctness-centered quality perspective in this book, defect-related
measures can be directly used to measure inspection effectiveness.

Ideally, the defect measure should be about the latent defects and downstream failures
and problems caused by these latent defects or faults that escaped the inspection. However,
there are many other factors affecting these latent defects. The usage environment also
affects the likelihood for failures. Therefore, most of the inspection effectiveness studies

CONCLUDING REMARKS 249

use the number of defects detected, either directly or normalized by size or some other
measurement of the inspection objects, to measure the inspection effectiveness.

Among the reported inspection effectiveness studies in literature, most agree that defect
detection method used has a strong influence on the inspection effective, while the impact
assessments of different inspection processes and techniques were less than unanimous.
Most also agree that inspector expertise or skills also have a strong impact on inspection
effectiveness, but it is hard to quantify. In a series of studies summarized in Porter and Votta
(1997), it was noted that better defect detection techniques, not better process structures, are
the key to improving inspection effectiveness. In addition, they found that scenario-based
inspection is better than ad hoc or checklist based inspections, and the latter two are about
the same in effectiveness.

Other studies also point out similar eFfects, but the details are different. For example,
it was observed that both abstraction-driven and use case driven inspections for object-
oriented systems are superior to checklist-based inspection, with the abstraction-driven
inspection obtaining high payoff but also incurring high cost, while use cases are easy
to use and cost little to implement (Dunsmore et al., 2003b; Dunsmore et al., 2003a).
On the topic of reading techniques related to abstraction-driven inspections, it was found
that use of multiple reading techniques are superior than using the single best reading
technique alone for individual inspections (Biffl and Halling, 2003). Other factors, such as
organizational structure, working relationship among participants, and physical proximity,
were also found to affect the contents and durations of inspection meeting and inspection
effectiveness (Seaman and Basili, 1998).

Therefore, these empirical studies and follow-up studies in the same direction would help
us choose appropriate inspection techniques and processes to maximize their effectiveness.
In particular, the selection of defect detection techniques can be guided by these studies. On
the other hand, the selection of inspection processes and participant is largely determined
by the type of technical document to be inspected, the scope of the inspection, and the
availability of experts for inspections.

14.5 CONCLUDING REMARKS

To summarize, inspection can be a very effective and efficient way to deal with quality
problems caused by faults that have already been injected into software systems. Inspec-
tion works by directly examining the software artifacts, identifying problems or faults, and
removing them. Sometimes, it is the only way, before execution becomes possible during
early development phases, or for informal artifacts where formal analyses cannot be per-
formed. This early and wide applicability is the main advantage of inspection over its close
competitor, testing, although both detect the presence of faults, either directly in inspection
or indirectly by observing execution failures in testing, and remove them.

As a human-intensive QA alternative, inspection also suffers from its own limitations,
including:

0 Difficulties in dealing with dynamic and complex interactions often present among
many different components or functions in large software systems;

0 Difficulties with task automation because of the human expertise involved. Commu-
nication and analysis tools can only help inspection to a limited degree, but are not
able to replace human inspectors whose ability to detect conceptual problems cannot
be matched by any software tool.

250 SOFWARE INSPECTION

Consequently, inspection forms an important component in an overall suite of techniques
and activities to ensure product quality. Detailed comparison of inspection with other
common QA alternatives and techniques is presented in Chapter 17.

Problems

14.1 Assess the use of inspection in your organization and describe the forms of inspection
used, scope and pervasiveness, formality and process, data collection and data keeping, and
integration with other QA activities.

14.2 Find a piece of code or some technical document and perform a Fagan inspection
on it. Document and discuss your experience and findings based on this exercise.

14.3 Repeat the inspection above, but use .a different inspection technique.

14.4 Document your experience with various review meetings, and discuss the similarities
and differences between them and inspection.

14.5 What is the technique, if any, that you use when you read your own programs or
those of someone else’s? Compare your mental process in understanding and checking the
code when it is written in a language that your are familiar with that for programs in an
unfamiliar language.

14.6 Despite many empirical studies that compare inspection favorably to testing, it is
still not as widely used as testing. What is your assessment of the reason behind this fact?

14.7 Conduct some small-scale experiments about code reading and understanding sim-
ilar to that described in Section 14.3 and Figure 14.2 and see how people build up concep-
tual understanding of programs. For example, you may ask some of your co-workers or
classmates to make some changes to a program or rewrite it in a different language, and
observe/measure the way they approach this task and the result produced.

CHAPTER 15

FORMAL VERIFICATION

As mentioned in the previous chapter, formal reviews and inspections can be supported or
substituted in some cases by other analysis techniques for some software artifacts. Some
of these analysis techniques attempt to formally verify program correctness through logical
or other formal inferences, or to check certain properties. We next describe these formal
analyses based on formal models of programs and their expected behavior, as an alternative
way for software quality assurance (QA).

15.1 BASIC CONCEPTS: FORMAL VERIFICATION AND FORMAL
SPECIFICATION

As Dijkstra pointed out: Testing shows the presence of defects,not their absence. (See E.W.
Dijkstra Archive at www . cs . utexas . edu/users/EWD, particularly manuscripts numbered
EWD268, EWD273, EWD303, and EWD1036.) In response to this and other similar
observations, formal verification techniques attempt to show the absence of defects or
faults in the implemented software systems.

Formal methods and their components

The basic idea of formal verification is to verify the correctness, or absence of faults,
of some given program code or design against its formal specifications. Therefore, the
existence of formal specifications is a prerequisite for formal verifications. Both formal
specification techniques and formal verification techniques are referred to as formal methods

251

252 FORMAL VERIFICATION

collectively in literature. When formal methods are used for software development, formal
specifications are used upstream for requirement analysis and product specifications, and
formal verifications or analyses are used downstream to verify the design and code before
additional verification and validation (V&V) activities are carried out. Therefore, the use
of formal methods can be summarized in the following two-step process:

1. Constructing formal specijications: The expected behavior and other properties of
the software artifacts are represented in formal models. These models of program
code, design, and expected behavior are typically product-dependent, which can be
specifically constructed for formal verification and analysis purposes. However, to
reduce cost as well as to benefit from formal development methods, these models
can be the same as the formal specifications or adapted by formalizing informal
specifications for the product.

2. Performing formal verijications: Formal analysis techniques are applied on the prod-
uct components, typically product code or formal designs, to verify their correctness
with respect to their formal specifications, or to check for certain properties. These
techniques are typically organized as a product-independent framework of rules that
serve as the basis of formal inferences or analyses. The most common type is a
set of axioms used in correctness verification, which we describe in Section 15.2.
Other frameworks used for formal verification and analysis are also described in this
chapter.

Therefore, the analysis and verification activities are similar to formal reviews and in-
spections against requirement documents, product specifications, standards, etc. However,
they focus on verifying the correctness or fault absence, or checking for other properties,
instead of detecting defect in inspections and reviews. The formal specifications here serve
similar purposes as the checklists for inspections in Chapter 14.

Formal specifications

Formal specification is concerned with producing an unambiguous set of product speci-
fications so that customer requirements, as well as environmental constraints and design
intentions, are correctly reflected, thus reducing the chances of accidental fault injections.
It is similar in idea to various other defect prevention strategies based on development
methodologies described in Chapter 13.

Formal specifications typically focus on the functional aspect or the correctness of ex-
pected program behavior, instead of non-functional aspects such as development schedule,
personnel, cost, process, etc. With formal specifications, the desirable properties for soft-
ware specifications, the so-called 3Cs (completeness, clarity, consistency) can be more
easily and sometimes formally analyzed and assured through various formal analysis and
verification techniques. Formal specifications can be produced in several different forms,
falling into two general categories, descriptive specifications and operational specifications
(Ghezzi et al., 2003), as follows:

Descriptive spec$cations focus on the properties or conditions associated with soft-
ware products and their components. For example:

- Entity-relationship diagrams are commonly used to describe product compo-
nents and connections.

BASIC CONCEPTS: FORMAL VERIFICATION AND FORMAL SPECIFICATION 253

- Logical (or logic) specifications focus on the formal properties associated with

- Algebraic specifications focus on functional computation carried out by a pro-

different product components or the product as a whole.

gram or program-segment and related properties.

Operational specijications focus on the dynamic behavior of the software systems.
For example:

- Data flow diagrams specify information flow among the major functional units.

- UML diagrams specify individual behavior for major objects or product com-

- Finite-state machines (FSMs) describe control flow in state transitions.

ponents.

Notice that most of the operational specifications can be tested by using various testing
techniques we described in Part 11, and analyzed by various formal analysis techniques
briefly summarized in Chapter 14. Therefore, we focus on formally verifying descriptive
specifications, particularly the logic subtype. In what follows, we will only introduce the
basic ideas associated with individual specification techniques in connection to the specific
formal verification techniques.

Formal verification and analysis

Formal verification checks the conformance of software design or code to its formal spec-
ifications described above, thus ensuring that the software is fault-free with respect to its
formal specifications. To do this, some formal frameworks of models and rules are needed
to support the arguments or inferences based on logical reasoning, algebraic relations, etc.
The most influential and widely used ones include axiomatic correctness (Hoare, 1969;
Zelkowitz, 1993), weakest pre-conditions (Dijkstra, 1975; Gries, 1987), and functional
correctness (Mills et al., 1987a). The basic ideas are summarized below:

The axiomatic approach works with the logical specifications of programs or formal
designs by associating with each type of programor design elements with an axiom to
prescribe the logical transformation of program state before and after the execution of
this element type. When connected together through a formal set of inference rules,
this approach can produce a correctness proof for a program, a program-segment, or
a formal design, with respect to its formal specifications.

The weakestpre-condition approach works in much of the same way as the axiomatic
approach above, but with the focus on the goal or the computational result that is
captured by the final state of the execution sequence. A series of backward chaining
operations through the use of the so-called weakest pre-conditions transform this
final state and its properties into an initial state and its properties, which verifies the
correctness of the verification object if the initial state properties can be satisfied.

Thefunctional correctness or program calculus approach is similar to the axiomatic
approach in the sense that some basic axioms or meanings of program elements are
prescribed. Symbolic executions are used to connect these elements in a program.
The program correctness, or the mathematical function specified and computed by
the program, is verified through this process.

254 FORMAL VERIFICATION

We single out the axiomatic approach in Section 15.2 to give readers a glimpse of a
typical formal verification techniques and their applications. Related observations, such as
the substantial amount of verification effort required, make subsequent discussions about
different issues with formal verification and analysis techniques rooted in solid ground.

Each of the above approaches produces a full proof of program correctness. However,
sometimes, we can accept partial proof or verification of certain properties instead of the
full proof to reduce the verification cost while still verifying features or properties important
to the specific product or its application environment. Model checking and other formal and
semi- formal analyses of programs and formal designs offer such opportunities, as described
in Section 15.3.

15.2 FORMAL VERIFICATION: AXIOMATIC APPROACH

The axiomatic approach is among the earliest work in the direction of formally verifying
the correctness of programs (Hoare, 1969), and as such, influenced almost all the later work
in this areas (Zelkowitz, 1993). We next outline this approach and give some concrete
examples.

15.2.1 Formal logic specifications

The specifications to be used with axiomatic verification fall into the category of descriptive
specifications introduced earlier. They are logical statements or conditions associated with
the states, or program states, of programs or program segments. In what follows, we use
programs and program segments interchangeably, because they are treated essentially the
same way in this approach. The basic elements of these logical specifications include:

0 Let S denote a program segment.

0 The program state before executing S can be described by its pre-condition P and
denoted as { P } when it is shown with programs or in the proof or verification process.
For example, if a program accepts non-negative input for its input variable 2, the pre-
condition can then be described by the logical predicate P, {z 2 0} , or { P = z 2 0) .

The program state afer executing S can be described by its post-condition Q and
denoted as { Q}. For example, if the above program accepting non-negative input for
its input variable z computes its output y as the square root of 2, the post-condition
can be described by Q, {y = fi}, or {Q = y = fi}.

0 This pair of logical predicates around program segment S, denoted as {P}S{Q},
which is also referred to as a schema, constitutes the formal specifications for S ,
indicating that “if P is true before executing S and S terminates normally, then Q
will be true”.

The above notations are generally associated with program code. However, they can
also be extended to deal with program designs, through various specification languages,
notations, and methods, such as Z, VDM (Vienna Definition Method), etc. (Ghezzi et al.,
2003; Zelkowitz, 1993). We next describe the verification techniques to verify { P}S{Q},
for S against its formal specifications.

FORMAL VERIFICATION: AXIOMATIC APPROACH 255

15.2.2 Axioms

The logical inference rules usually take the form:

conditions or schemas
conclusion

This kind of rules is interpreted as, “if we know that the expressions above the line are true,
then we can infer that the expression below the line follows”. The basic logical operations
include logical AND (A), OR (V), NOT (negation, or T), and IMPLIES (+).

We start with the so-called consequence axioms for logical implications and deductions
that link different predicates. One variation sets up logical inferences for more restrictive
pre-conditions, as follows:

Axiom A1 states that if a program works for a given pre-condition, it also works for a more
restrictive (or stronger) pre-condition. For example, if we have already proven that our
program S works for all non-negative inputs, or {R)S{Q}, with R = {x 2 0}, then by
applying axiom Al, we can concluded that it also works for a positive input of bounded
value, that is, {P}S{Q}, with P = (0 < x I lOOO), because P + R in this case.

Another variation of the consequence axiom sets up logical inferences for more relaxed
post-conditions, as follows:

Axiom A2 states that if a program works for a given post-condition it also works for a less
restrictive (or relaxed) post-condition. For example, if we have already proven that our
program S calculates our results T within E of the true results y, that is, Iy - T I 5 E , then we
can relax the precision requirement to 26, and still calculate an acceptable result, because

For each type of basic program elements, an axiom can be derived as the basis for
correctness verification. Here we restrict ourselves to only the following basic statement
types:

ly - TI 5 E * Iy - TI I 2E.

0 Assignment in the form: y + ezpr(zl,x2, ..., x,), where the right hand side (rhs)
is an expression involving variables x1, 22, . . ., zn,

0 Sequential concatenation in the form: 5’1; Sz

0 Conditional or “ i f ” statement, either as an “ i f -then” statement in the form of

i f B t hen S

or an “ i f -then-else’’ statement in the form of

i f B then S1 else Sz

0 Loop or “while” statement in the form of

while B do S

256 FORMAL VERIFICATION

In addition, any number of sequential statements, or a block, can be grouped as:

beginS1; 5’2; ...; s, end
In general, other statements can be reduced to or converted to one or more of the above
statements, while more complex language constructs, such as arrays, procedures, functions,
etc., are covered elsewhere (Zelkowitz, 1993).

We need axioms or inference rules for each of the above statements, The first type of
such axioms is simply in the form of { P}S{ Q}. For example, the axiom for the assignment
statement is given by:

where { P,”} is derived from expression P with all free occurrences of y (y is not bound to
other conditions) replaced by x. As a practical example, consider a program that balances a
banking account: If no negative balance is allowed after each transaction, that is, {b 2 0} is
the post-condition P, the pre-condition P,”, before the withdrawal of money as represented
by the assignment statement, b + b - w, is then represented by { b - w 2 0}, or { b 2 w},
by the above axiom. That is, the pre-condition for maintaining non-negative balance is that
sufficient fund exists before each withdrawal transaction.

Another type of axioms for language elements defines the inference rules for multi-part
statements. The so-called composition axiom for sequential concatenations states:

Axiom A3 : {P,”} y t x {P} .

As we will see in examples later, such sequential concatenations and the use of Axiom
A4 help us build up our correctness proofs by linking individual elements to form bigger
blocks, in essentially a bottom-up approach.

There are two variations of the conditional axiom. The following axiom gives the
“meaning” for the “ i f -then-else’’ statement:

As a practical example, consider the following statement:

if x 2 0 then y c x else y t -x

with post-condition Q = {y = lxl}, pre-condition P = TRUE, and B = {x 2 O}. To
verify this statement, we need to verify: { P A B}Sl{Q} and { P A -7B}S2{Q}. The first
branch (B) to verify is:

{x 2 0) y + x {y = 1x1).

{x = I41 Y +- x {Y = 1x11.

Applying axiom A3 above, we have:

Combined with the logical relation {x 2 0) + {x = 1x1). by applying axiom Al , this
branch is verified. The second branch (4?), can be verified similarly. Therefore, through
these verification steps, we have verified the above conditional statement.

FORMAL VERIFICATION: AXIOMATIC APPROACH 257

The second variation of the conditional axiom is the following axiom for the ij-then
statement:

{P A B)S{Q) , { P A -B} * { Q } Axiom A6 :
{P} if B then S { Q }

This axiom can be considered as a special case of Axiom A5.
For the loop statement, we have the axiom:

This P (often labeled I) is called the loop invariant, which is the key to loop verification.
Another property that we need to verify for loops is program termination (that is, it is not
an infinite loop), through some property Pi for the ith iteration of a loop. This can be done
by showing that

Pi is positive within a loop, or V i , Pi > 0, and

Pi > Pi+l.

We will see some examples of loop verification after we introduce the general procedure
for axiomatic proofs.

15.2.3 Axiomatic proofs and a comprehensive example

The verification process, often referred to as theproofofcorrectness, is a bottom-up process
much like the above verification example for the conditional statement: We start from
individual statements and associated intermediate conditions we annotated before and after
them, verify intermediate conditions through axioms or inference rules, and finally verify the
pre- and post-conditions for the complete program. Although this is a bottom-up process,
the main goal is to verify the result (post-condition) for the input (pre-condition), therefore,
the annotations or intermediate conditions are guided by these pre- and post-conditions.
Because of the post-condition is typically more specific and contains more information, we
typically start with it and work backward, in the backward-chaining process to derive and
verify intermediate conditions until we verify the whole program.

The hardest part is usually the verification of loops, and the hardest part in it is to find
appropriate loop invariant that helps the verification. Consequently, a lot of the verifica-
tion process often focuses on loop verifications, which also covers program termination
verification.

As a comprehensive example, consider the program segment that calculates the factorial
of a positive integer in Figure 15.1. The fformal specification in the form of pre- and post-
conditions is given, and the lines are individually numbered. The program segment has
a “while” loop at the end, therefore, we need to verify that the loop terminates, and it
terminated in the desired state.

Loop termination is easy to verify in this case: We notice that i > 0 throughout this loop,
and i is decremented by 1 through each iteration of the loop. By apply the loop termination
criterion, we have verified that this program terminates.

As for the correct results, we notice that the program segment ends with a “while”
statement, and the post-condition for it is I A 4 3 . We also notice that y holds the current
running factorial, or n!/i! as the partial result. We denote it as:

258 FORMAL VERIFICATION

{n 2 1)
1 y t l ;
2 i t n;
3
4 begin

while i > 1 do

5 y t y x i ;
6 i t i - 1 ;
7 end

{y = n!}

Figure 15.1 A program segment with its formal specification

In addition, when we finished loop, we should have i = 1. Therefore, we select our loop
invariant to be 11 A (i 2 1). or :

The loop condition is: B = i > 1, and i B = i 5 1. Therefore, at loop termination, we
have the post-conditions as: I A 4?, with:

I A i B
3 11 A (2 2 1) A (i 5 1)
= 11 A (i = 1)

= (y = n!).
= (y = $ - % ! > A % (‘ = I >
-

which is exactly our post condition for the entire program segment.

Axiom A3 to line 6, we get:
Now we need to show that I is indeed the invariant for the loop. First, by applying

{(Y = -1 A (2 - 1 2 1))
i c i - 1 ;
{(y = 2) A (i 2 1)).

And, again applying Axiom A3 to line 5 , we get:

{ (y x i = &) A (i - 1 2 1))

y t y x i ;

However, because:

and i 2 1 + i 2 0, by applying Axiom Al , we verify for line 5:

OTHER APPROACHES 259

Notice that the verified pre-condition to line 5 is I itself.

&) A (i - 1 2 I), we get:
Now, combining the above for line 5 and line 6 using Axiom A4, and letting Pi = (y =

{I}y t y x 2; {Pi}, {Pz}i t i - 1; { I }
{I} y +- y x 2; 2 +- i - 1; {I}

Also, because I A B + I, by applying Axiom Al, we have:

{I} +- y X i; i + - 1; {I}, (I A B =+ I)
{ I A B } y + y x z ; i t z - 1 ; {I}

Now, when we apply Axiom A7, we get:

{ I ~ B } y + y x i ; i c i - 1 ; {I}
{I} while B do beginy +- y x z; z c i - 1; end { I A d?}’

The last couple of steps for the statements before the “while” loop can then be verified.
For line 2, using Axiom A3 with post-condition I , we get:

The pre-condition to line 2 can be reduced to (y = 1) A (n 2 1). Again, applying Axiom
A3 to line 1 yields:

((1 = 1) A (?I 2 I)} y +- 1; {(y = 1) A (n 2 1)).

The pre-condition to line 1 is exactly the same to the pre-condition of our program
segment, n 2 1. Now, combining line 1 and line 2 using Axiom A3, we get:

Finally, combine lines 1-2 with the “while” loop, again using Axiom A3, we get:

{ (n 2 1)) line 1 - 2 { I } , {I} while -loop {y = n!}
{ (n 2 1)) whole program - segment in Figure 15.1 {y = n!}.

This finishes our verification process or the correctness proof for the program-segment
inFigure 15.1.

15.3 OTHER APPROACHES

Besides the axiomatic approach described above, two other widely used formal verification
approaches are the weakest pre-condition approach and the functional approach. We next
introduce the basic ideas of these approaches, then discuss some limitations of all these
three approaches, and introduce the idea of model checking and other formal or semi-formal
approaches that attempt to provide only a partial verification of certain properties.

260 FORMAL VERIFICATION

15.3.1 Weakest pre-conditions and backward chaining

The weakest pre-condition approach was introduced by Dijkstra (1975), and extended to
cover all kinds of situations by Gries (1987). The basic idea is essentially the same as the
axiomatic approach above, but with a focus on backward chaining for program verification
through the use of the wp operator, or the weakest pre-condition operator. The wp operator
incorporate axioms for basic program elements, and the inference rules can be stated in
terms of wp’s.

Formally, the weakest pre-condition to a given statement Sand post-condition Q, denoted
as wp(S, Q) , is the largest initial set of states for which S terminates and Q is true after the
execution of S. With this definition, we can see that the formal specification in the form of
{ P } S { Q } can be interpreted as P j wp(S, Q). Therefore, if we can derive wp(S, Q) for
a program S , and show that P + wp(S, Q), we then have effectively provided a proof for
{ P } S { Q } , or the correctness of program S, with respect to its formal specification pair P
and Q.

Based on this definition, as well as the program semantics, similar basic wp definitions
for different types of statements, similar to the corresponding axioms in Section 15.2, can
be derived. Various inference rules, referred to as theorems in this approach, can also be
derived. For example:

0 wp(S, F) = F. Since no state satisfy the condition F , we do not have any state in

wp(S, Q) A wp(S, R) = wp(S, Q A R).

if P + Q then wp(S, P) + wp(S, Q) .

wp(S, F) for any program S .

Therefore, program development as well as its verification is treated as a goal-oriented
activities, and backward chaining plays a central role in this verification approach. Closely
related to this verification approach is the so-called guarded command for non-deterministic
execution (Dijkstra, 1975; Gries, 1987).

15.3.2 Functional approach and symbolic execution

Unlike in the above two formal verification approaches, where logical predicates are used
to annotate states before and after the execution of some program segments, functional
approach views these program elements as mathematical functions, in the sense that they
provide a functional mapping from their input values to their output values. Full details
about this approach, also called program calculus, can be found in Mills et al. (1987a).
However, many basic ideas are similar to the axiomatic or the wp approaches described
earlier, such as:

The (mathematical) function calculated by each type of program elements can be cap-
tured by its “meaning”, similar to the axioms for program elements in the axiomatic
approach. In particular, conditional assignments are used extensively to break down
the traces for “if” statements, and the “meaning” of “while” statement is defined
recursively using that for “if” and “while” statements.

0 The combination of sequential statements can be treat as functional nesting. For
example, if S, computes fi, then the function computed by SI; S2; ..., S,, with
original input 10, is f n (. . . (f 2 (f l(10)) ...).

OTHER APPROACHES 261

Table 15.1 Example symbolic execution traces

Part Condition x y Part Condition x y

i f x > O , x > O i f x > O 2 6 0
Y + X X y +- -x -X

Symbolic execution plays an important role in this approach. For example, the different
traces of “ i f ” statement through symbolic execution are used to determine parallel condi-
tional assignments. Similarly, “while” involves “ i f ” in recursive definition, therefore also
involves corresponding symbolic execution. The functional nesting can be traced through
symbolic execution as well. For the above example of calculating the absolute values with

i f x 2 0 theny + x e l s e y +- -x

we have the two traces in the symbolic execution in Table 15.1.
Full details about symbolic execution and its used in this verification approach can be

found in Mills et al. (1987a). In essence, symbolic execution is a forward flow techniques,
contrasting with the backward chaining technique for the axiomatic and wp approaches.

15.3.3 Seeking alternatives: Model checking and other approaches

Although we didn’t go through detailed examples for the functional and wp approaches,
and the proof procedures are somewhat different, several observations are true for all three
formal verification approaches, including:

0 The difficulty of producing correctness proofs, particularly for loops, where the se-
lection of proper loop invariant plays an important role, but there isn’t a uniform
formula for doing the selection. Some heuristics based on people’s understanding,
prior knowledge, or insight, are typically used to select such invariants. Sometimes, a
trial-and-error strategy is necessary to consider multiple candidates before a workable
solution can be found.

0 In general, many steps are involved in the correctness proofs, and the proof can be
fairly long and complicated even for relatively small-sized programs. As a rule of
thumb, the length of the proof is typically one order of magnitude longer than the
program itself.

0 The proof process can generally benefit from some hierarchical structures and related
abstractions as guide for different parts, in much of the same way as stepwise abstrac-
tion used as a code reading techniques described in Chapter 14. These abstractions
can also help us in dealing with some of the difficulties noted above, such as deriving
loop invariant based on abstraction of the loop body.

The first two of the above observations make it difficult to apply formal verification tech-
niques on large-scale software products. In addition, we also need to deal with various other
aspects and complications for larger programs, including: arrays and functions, procedures,
modules, and other program components, and sometimes complications from things such
as physical limitations, side effects, and aliases. Because of these, various “partial” and/or
semi-formal verification techniques have been suggested, as described below.

262 FORMAL VERIFICATION

One way to deal with the difficult and human-intensive formal verification activities
is through automation and software tool support. However, the long standing theoretical
results state that the correctness and other properties for general programs are undecidable
problems, that is, there is no hope for algorithmic or fully automated solutions. Neverthe-
less, for some restricted subset of problems and properties, some automated solutions are
possible. Model checking is such an approach that automatically or algorithmically checks
certain properties for some software systems. A good introduction to this topic can be found
in Ghezzi et al. (2003), and the following briefly summarize the key ideas:

0 A software system is modeled as a finite-state machine (FSM), with some property of
interest expressed as a suitable formula, or a proposition, defined with respect to the
FSM. Ideally, this FSM and the propositions are both developed during the software
specification process, much like the use of formal specifications in various formal
methods.

0 The model checker is a software that runs an algorithm to check the validity of the
proposition. If it is checked to be true, a proof is said to be produced. Otherwise,
a counterexample is given, much like a failed test case that can be analyzed further
for defect fixing.

An alternative to the above is formal methods for specific subset of properties related to
the overall correctness of software. For example, algebraic specification and verification
can help us specify and verify correctness of data structures and related data properties
(Guttag et al., 1978). This example may look very limited at first glance. However, if we
consider the increasing popularity of object-oriented systems, algebraic specification and
verification can be a powerful tool, due to its close link to verifying the implementation of
abstract data types, which form part of the cornerstone of object-oriented technology.

Other formal model based analyses can also be used to check for certain properties,
either by analysts alone or with the help of some software tools, but rarely with fully
automated support, due to the same reason as noted above. For example, various algorithm
analysis techniques and analytical modeling techniques can be applied to verified the key
algorithms employed in product implementations (Wallace et al., 1996). Petri-net, a special
type of FSM, and the rich set of theoretical results for it, can be used to model and analyze
various properties for various software, particularly those related to parallel, distributed,
andor asynchronous systems (Peterson, 198 1). Various other static and formal analysis
techniques we covered in Chapter 14 in connection with formal software inspection and
reviews also fall into the same category.

All the formal analysis techniques mentioned above are extensions to formal verification
techniques we described earlier. By restricting to a smaller subset of problems, systems,
or properties, these techniques may lead to additional opportunities for automation, thus
making them easier to perform than formal verifications. Such automated approaches can
be considered as combining the ideas and advantages of formal verification with testing.
However, there are still serious obstacles to the wide application of these extensions in larger
software systems due to the intrinsic complexity involved in these verification and analysis
techniques. For example, state explosion for FSM for large software systems would make
model checking impractical unless we focus on the high-level components or functions
only. In general, these formal verification and analysis techniques cost more, and in many
cases significantly so, than testing and inspection, thus limiting their application domains.
We next discuss this and other related issues.

APPLICATIONS, EFFECTIVENESS, AND INTEGRATION ISSUES 263

15.4 APPLICATIONS, EFFECTIVENESS, AND INTEGRATION ISSUES

So far, the biggest obstacle to formal methods is the high cost associated with the difficult
task of performing these human intensive activities correctly without adequate automated
support. Although model checking and some other formal analysis techniques have allevi-
ated the problem to some degree, formal methods in general still remain a costly alternative
for ensuring software quality. This and other factors affect the applicability and effective-
ness of formal verification analysis techniques in the quality engineering process, which
we examine below.

Applicability and implementation

The question of applicability can be answered in two steps:

1. The type of products or application domains that would benefit from using formal
verification and analysis techniques.

2. The type of software artifacts in the above products that can be verified or analyzed
by these techniques.

Any product can potentially benefit from the use of these formal techniques. However,
due to the required expertise for the personnel involved in the verification and analysis
activities and the related cost, these techniques are mostly used in small software, or in a
small subset of larger software systems that require ultra-high quality or where the damage
of failures is substantial. Such large software systems include software for safety critical
systems, or critical components or functions for large software systems. Examples of
the latter include operating system kernels, routing functions in communication network
switching software, etc.

Even for safety critical systems, formal verification and analysis techniques are usu-
ally used selectively instead of uniformly on all system components. For example, when
applied in software safety engineering, focused verification activities are carried out over
development phases based on results obtained from hazard analysis. Ideas similar to model
checking can also be used in such systems, such as through some assertion or prescription
monitor. These techniques will be described in Chapter 16.

The most commonly verified or analyzed objects are the program code. However, other
formal technical documents can be verified or analyzed as well. For example, one of
the biggest advantage of producing a set of formal product specifications is that formal
development method, such as stepwise refinement in lock-step with verification, can be
applied. In this example, each level of product design and implementation detail added
can be formally specified and verified, bath with respect to this new detailed specification
for correctness, and with respect to the previous specification for equivalence between the
current and earlier specification sets. Basically, any technical document can potentially be
formally verified or analyzed, as long as formal specifications can be constructed for them.

Similar ideas and techniques have also been used successfully in verifying and analyzing
distributed programs, hardware systems and their functions, communication networks and
protocols, etc. The basic reason behind this is the shared formalism and formal language
that can be used to describe, model, and analyze different type of systems, not just limited
to the software systems. However, due to our software quality focus in this book, we will
omit detailed discussions about this topic.

264 FORMAL VERIFICATION

Technology and process integration

In terms of the software artifacts from different development phases being verified and
analyzed, these techniques are closely related to and depend upon the availability of formal
system specifications, either as formal descriptions, such as through logical and algebraic
statements, or operational definitions, such as using finite-state machines. The integra-
tion between these specification techniques and the verification and analysis covered in
this chapter resulted in various formal methods, such as stepwise development and veri-
fication based on logical specifications and axiomatic correctness proofs noted above. In
most of these formal methods, software development and verification work side-by-side in
developing high-quality software products or components.

There are some intrinsic limitations of formal systems, primarily related to simplification
of the physical realities in the abstraction process and difficulties in dealing with language
and hardware limitations. Therefore, formal methods cannot guarantee perfection for soft-
ware, but only assure it with respect to the formal specifications verified or the properties
checked. Even this assurance is subject to the error-free construction of correctness proofs
or performance of formal analyses, which cannot be absolutely guaranteed. Consequently,
formal methods cannot be replacements to all other QA activities. Instead, they can be
used together in software development and maintenance processes, or integrated into some
software methodologies and/or technologies.

One concrete example of this integration is the cleanroom technology and the related
process (Mills et al., 1987b), which include two important components:

0 Formal verification based on functional correctness approach is used during product
design and implementation.

0 Statistical testing based on customer operational profile is used in the later part of
product development. This topic was covered in Chapter 10 in relation to Markov
chain operational profiles.

However, in some cleanroom implementations, formal verification is replaced by formal
inspection and some related analyses.

In general, formal methods are suitable to stable product development and market en-
vironments, where product requirements can be captured into formal specifications and
remain fairly stable thereafter to allow for later refinements and verifications. Fortunately,
most software sub-systems used in safety critical systems fall into this category, so that
they can benefit from such formal methods. For products in volatile market environments,
frequently requirement changes and solution updates make the use of formal methods more
difficult. However, if some risk analysis techniques is used to identify main risk areas and
deal with them first, such as in the spiral process, adapted formal methods can be applied to
core functions to assure their quality, much like the identification of safety critical features
for focused safety assurance in Chapter 16.

Relation to and integration with other QA activities

Formal verification and analysis is most closely related to formal inspection, review, and
static analysis covered in Chapter 14. In fact, they are often grouped together as non-
execution based QA activities in existing software engineering literature. Some variations of
formal verification and analysis techniques are also closely related to testing. For example,
symbolic execution in functional correctness verification is similar to testing in the way

CONCLUDING REMARKS 265

execution flow is traced and analyzed, but with symbolic instead of actual variable values
to produce more generalizable results in the form of correctness proof instead of checking
the success or failure of a single test run. Model checking combines algorithmic checking
of propositions through execution with formal assertions stated as the propositions with
respect to software systems modeled as finite-state machines.

In our framework of treating QA strategies as different ways to deal with defects in
Chapter 3, formal methods belong to the defect prevention category, with formal specifica-
tions eliminating certain error sources due to poor understanding of product requirements
and formal verification confirming the absence of certain defects. By extension, when a
correctness proof cannot be constructed, it might be an indication of defect presence, thus
triggering additional activities for defect locating and removal. Therefore, this usage can
also be categorized as defect detection and removal, similar to inspection and testing. How-
ever, this is an ineffective way to detect and remove defects due to its different focus. Model
checking and other formal analyses are closer to inspection and testing, in the sense that
they may produce counterexamples during model checking or identify problems directly
during analyses. Such information can then be used to locate and fix related defects.

As a defect prevention strategy, formal verification and analysis is human intensive, and
requires mathematical and logical rigor in performing the verifications or analyses. As
illustrated in the examples in this chapter, correctness proofs are difficult to produce and
lengthy, even for short programs. The infeasibility to fully automate these proofs means
that the manual process involved for any reasonably-sized programs will be error-prone.
Attempts to scale up formal correctness proofs through model checking and other formal
analysis have produced some successes but still suffer from their own limitations in both
the model and analyze capabilities and the types of analyses that can be performed.

Consequently, education and training are key to success of these techniques. However,
this effort should not be limited only to people who perform the verification and analysis
activities, but also software managers, clients, and other parties involved so that the results
can be interpreted properly, appropriate strategies can be selected ahead of time, resources
can be allocated, and parallel QA activities and follow-up actions can be carried out to com-
plement the use of these techniqlies. Some practitioners and researchers have also observed
that formal methods place substantially higher responsibilities and stress on the software
developers (Selby et al., 1987), while prior formal education and on-the-job training can
help reduce such stress and make the application of formal methods more likely to succeed.

15.5 CONCLUDING REMARKS

Formal verification and analysis techniques, especially when they are packaged into formal
methods and related development technologies, have many advantages. Various success
stories as well as effectiveness studies have also been reported in literature (Selby et al.,
1987; Gerhart et al., 1994; Pfleeger and Hatton, 1997; King et al., 2000), indicating that
formal methods are not only effective for ensuring higher quality for many applications,
but also more cost effective than other QA alternatives under some circumstances.

However, as a QA alternative, formal verification and analysis techniques have not gained
the wide usage and popularity anywhere close to that for inspection or testing. Besides their
own limitations related to cost, process, and other issues, one key reason is the general lack
of the required expertise, which can be partially solved or alleviated by our education
system. In fact, one reason for formal verification techniques to be included in this book
is to promote the awareness of formal verification as a viable alternative for consideration

266 FORMAL VERIFICATION

by software professionals to use in ensuring the quality and reliability of their software
systems.

Although over-selling formal methods is not a good way to promote their use, which may
even induce certain backlashes, people need to be aware of the many advantages of formal
methods in general, and formal verification techniques in particular. We need to conclude
this topic with a balanced view on formal methods as a potentially effective element in the
overall suite of QA techniques that can be combined in an overall strategy to achieve quality
goals under project constraints, particularly for those requiring high levels of quality.

Problems

15.1 Some of the best arguments for formal verification or mathematicalllogical proof of
correctness are by the late E.W. Dijkstra. You can read many relevant articles/manuscripts
on this topic and on the wp approach at the E.W. Dijkstra Archive:

www.cs.utexas.edu/users/EWD

Enjoy.

15.2 If you have never been exposed to formal specifications, you can use Ghezzi et al.
(2003) in our bibliography as the starting point to study this important topic, particularly if
this chapter convinced you to try some formal verification at your own work.

15.3 Complete the formal verification for the following program segment we studied in
Section 15.2:

if x 2 0 then y t x else y t -x

15.4 Apply the axiomatic approach to some program code that you are working on or
some (pseudo-)code examples in earlier chapters of this book. You really need to do it to
get a feel for it.

15.5 Can you find some manufacturing process examples to illustrate some of the axioms?
For example, it might be useful to consider the precision and tolerance of the machines and
mechanical parts when we talk about more restrictive or more relaxed pre-/post-conditions.

15.6 How would you formally verify multi-way branches such as “switch-case” state-
ments without inventing some new axioms?

15.7 How would you formally verify “f or”-loops without inventing some new axioms?
(Hint: Look at the loops in Figure 11.3, Chapter 1 1 .)

15.8 The mechanism for the wp approach looks similar to data dependency analysis we
studied in Chapter 1 1. What are the similarities and differences?

15.9 Have you used symbolic executions before? If not, it’s an interesting thing to try
out on some simple programs.

15.10 Model checking is a “hot” topic in software engineering research today. Try find
some articles on it to get a feel for some latest research on this topic.

15.11 Some people have cited culture influence on the relative popularity of formal meth-
ods in Europe as compared to that in the United States. What is your opinion on that?

15.12 How would you approach the task to make formal methods more widely used and
practiced in software and IT industries?

CHAPTER 16

FAULT TOLERANCE
AND FAILURE CONTAINMENT

We next explore additional quality assurance (QA) alternatives that can be used to keep
systems operational even under software problems, thus tolerating local faults to avoid
global failures, or to contain the damage due to software problems or failures. These two
generic strategies are referred to as fault tolerance and failure containment, respectively. We
call them collectively defect containment strategies, because both of them contain defects by
limiting them either to local failures or global failures with much reduced damage. Notice
that the term “defect containment” we used in this context is different from some uses of
the same term to mean defect detection and removal within the same development phase.
This latter use is related to our defect dynamics models that characterize defect injection
and removal by development phases described in Chapter 20.

16.1 BASIC IDEAS AND CONCEPTS

Despite the use of QA techniques we have described so far, we can only keep the number
of faults to a fairly low level for the large and complex software systems in use today, but
not completely eliminate them. For software systems where failure impact is substantial,
such as software that runs the global telecommunication infrastructure, financial and critical
databases for large companies, and many real-time control software sub-systems used in
medical, nuclear, transportation, and other embedded systems, this low defect level and
failure risk may still not be adequate. One common-sense solution to such problems is
duplication and backup to reduce the chances for software failures or damages due to them.

267

268 FAULT TOLERANCE AND FAILURE CONTAINMENT

We first examine similar ideas applied to other systems and the potential adoption andor
adaptation of them to deal with software problems.

Ideas from other highly dependable systems

Traditional physical systems that require higher levels of reliability, availability, or depend-
ability have used duplications and backups all the time. In such systems, spare parts and
backup units are commonly used to keep the systems in operational conditions, maybe at
a reduced capability, at the presence of unit, part, equipment, or sub-system failures. The
use of multiple engines on aircrafts and the availability of co-pilot to backup the pilot for
passenger jets are examples of such duplications and backups. In cases where failures are
unavoidable, it would be desirable that the accidents could be avoided if at all possible,
where an accident is a failure with severe consequences. For example, when power failure
for an elevator occurs, backup power might be switched on (a fault tolerance feature). When
the backup power also fails, the system should be kept in a fail-safe state. In this case, the
elevator should be locked in its current position instead of being allowed to have a free-fall.
This locked state is a failure state, but a safe state, unless nothing is done over a long period
of time to free the passengers or to restore power.

In the case that the problems cannot be isolated and contained in a local area and acci-
dents do occur, there are usually failure containment measures to contain the damage. For
example, the idea of containment walls has been around for ages, to contain such damaging
disasters from age-old floods to modern day nuclear melt-downs. What is more, in the
unfortunate event of accidents, we need to learn from them and improve our ability to deal
with future problems. For example, in aircraft crashes, we try to recover the “black-boxes”,
and perform analysis to pinpoint possible problems, or hazards, through various analyses
techniques and eliminate these hazard sources by modifying designs, procedures, etc., to
minimize the probability of future disasters.

In the above discussion, we made two basic assumptions about such highly dependable
systems and their usage scenarios:

0 A l . Rare event assumption: Some system failures and accidents are associated with
rare events with extremely low probabilities. Therefore, it is impossible to anticipate
all these rare events, otherwise our systems would be designed and implemented to
deal with them. Consequently, dynamic actions during the operations of the systems
are needed to deal with the problems associated with such rare events. These dynamic
actions constitute much of the work in fault tolerance and failure containment for
highly dependable systems.

0 A2. Failure independence assumption: Different components or subsystems fail
independently of one another. Without this assumption, duplication and other safety-
assurance techniques, such as use of interlocks, barriers, and protective sub-systems,
would not work, or at least would not work as effectively. For example, if all aircraft
engines are related in such a way that if one fails, all other fail at the same time,
then the use of multiple engines does not reduce the likelihood of failures over a
single engine. Similarly, if containment walls give way whenever nuclear melt-down
occurs, it does not contribute to accident containment.

Both these basic assumptions will be examines in connection to software fault tolerance
and failure containment techniques later in this chapter.

BASIC IDEAS AND CONCEPTS 269

Adoption and adaptation to computers and software

These ideas of duplication and containment have been used in designing and implementing
computer hardware, systems, networks, and computing infrastructure. For example, there
is typically more than one route between any two points in the computer network, so that
communication andor coordination can still be achieved even if some nodes experience
difficulties or are completed shut down, or when some links are broken. In the ideal case,
these problems should be transparent to the users so that they will not notice any difference.
When this goal is difficult to achieve, we would like to see the system to be kept operational
at a reduced performance or capacity, with this reduction managed at an acceptable level.
Similarly, the idea of backing up critical data and information has been used ever since the
computer has been invented and started to be used in early applications.

The same idea can be adopted to the software domain, leading to the fault tolerance
techniques for software QA. On the other hand, software is not usually involved in the safety
problems, unless it is used in embedded systems to control physical devices or processes,
such as in the case of control software for medical equipment, navigation systems, and
nuclear reactor controllers. In the latter case, we also need to examine if various safety
techniques for physical systems can be adopted and adapted to work for these software
controllers.

Similar to the assumption of physical systems, these few remaining faults may be trig-
gered under rare conditions or unusual dynamic scenarios (Assumption A l) to cause failures
or possible accidents, making it unrealistic to attempt to generate the huge number of test
cases to cover all these conditions or to perform exhaustive inspection or analysis based
on all possible scenarios. Instead, some other means needs to be used to prevent failures
by breaking the causal relations between these faults and the resulting failures, thus “tol-
erating’’ these faults, or to contain the failures to reduce the resulting damage. Similarly,
when duplication software components or executions are involved, we would like to ensure
their independence (Assumption A2), so that the overall system reliability or safety can be
improved.

Classification of techniques

The above discussion already divided the overall approach to fault tolerance and failure
containment categories. The former will tolerate faults and local failures so that no global
failures occur. The latter will apply some containment measures after some global failure
has occurred. However, sometimes, it would be hard to make a distinction. For example,
some fault tolerance techniques often lead to reduced system performance or capacity. Such
reductions could fit failure definitions, particularly in real-time systems, when a delay of
more than a given threshold is defined to be a failure. Nevertheless, this rough distinction
serves some purposes: In the former category of techniques, we focus on keeping the system
operational under dynamic problems. In the latter category, we focus on keeping the system
safe or reduce the damage while paying little attention to whether the system is operational
or not:

Within fault tolerance techniques, we distinguish between duplication and backup. Du-
plication generally implies that multiple programs are running in parallel, similar to the
example of multiple aircraft engines. One such specific technique we will describe in Sec-
tion 16.3 is call N-version programming or NVP, which uses some kind of consensus from
n parallel programs to make the system fault tolerant. On the other hand, backup implies
that there is a primary program or dynamic execution, and backup is used when there are

270 FAULT TOLERANCE AND FAILURE CONTAINMEN1

1 Saved I
Dynamic
Contents

refresh
refresh

checkuoint checkuoint
rerun

Figure 16.1 Fault tolerance with recovery blocks

some problems or suspected irregularities associated with this primary version. When the
backup is provided by the same program, we have the recovery block or checkpointing-
and-recovery technique described in Section 16.2. In the case where backup is provide
by a different program, if the program has the same functionality, we can consider it as
a combination of backup and duplication ideas. However, this backup program is more
likely to have somewhat different functionality than the primary program it backs up, for
example, with reduced functionality to allow for speedy recovery, or to have general backup
procedures that serves multiple purposes. All these and other fault tolerance techniques
and related topics are described in much more detail in Lyu (1995b).

Within failure containment techniques, we can focus either on the accident prevention
before accidents happen, or focus on damage control or reduction after accidents happen.
In the former case, we try to limit the scope and impact of failures so that they do not
lead to accidents. In the latter case, we try to reduce the accident damage through vari-
ous techniques. Both these categories are described in Section 16.4, and related analysis
techniques are also covered therein. All these and other failure containment techniques and
related topics on software safety and embedded systems are described in much more detail
in Leveson (1995).

16.2 FAULT TOLERANCE WITH RECOVERY BLOCKS

With the increasingly faster and faster processors, we may have the luxury of repeating
some computational tasks within a prescribed time limit without seriously affecting the
system performance. Under this circumstance, we can use recovery blocks to repeatedly
establish checkpoints, and repeat certain computational steps when dynamic problems are
observed or suspected, as described in this section.

Basic operations of systems using recovery blocks

The use of recovery blocks introduces duplication of software executions so that occasional
failures only cause loss of partial computational results but not complete execution failures.
For example, the ability to dynamically backup and recover from occasional lost or corrupted
transactions is built into many critical databases used in financial, insurance, health care,
and other industries. Figure 16.1 illustrates this technique, and depicts the major activities
involved:

FAULT TOLERANCE WITH RECOVERY BLOCKS 271

0 Periodic checkpointing and refreshing to save the dynamic contents of software exe-
cutions. Sometimes this activity can be associated with the completion of some major
tasks or occurrence of some significant events, in addition to at the pre-determined
time instances.

0 Failure detection: This activity is typically associated with the checkpointing activity
above. Typically, before a new checkpoint can be established, some consistency check
is carried out to see if there is an execution failure or other suspected problems since
the last checkpoint. This activity can be event driven as well, such as when triggered
by some system anomalies. If a failure is detected or if a problem is suspected, the
following two steps are performed before normal activity continues:

1. Rollback by restoring the saved dynamic contents associated with the latest

2. Rerun the lost computation.

checkpoint.

In using recovery blocks, failures are detected but the underlying faults are not removed.
Hopefully the dynamic condition or external disturbance that accompanied the original
failure will not repeat, and subsequent rerun of the lost computation can succeed and normal
operation can resume. Although this hope may look like wishful thinking on the part of
the software designers and system users, some rare dynamic conditions caused by system
disturbances do fit into this profile. Therefore, this optimistic technique is more of an
enhancement of system robustness under disturbances or unexpected usage environments.

Capability, performance, and other issues

The limited capability for fault tolerance is achieved through fault avoidance due to a
different execution path or execution condition that does not involve the faulty code triggered
in the first place. In this way, faults are tolerated in the system, or more precisely, faulty
code is circumvented with occasional minor delays - a loss of performance tolerable under
many circumstances. However, the situation with repeated failures is a real possibility.
To reduce the chance of such repeated failures, the system might be re-run with slightly
different configurations and conditions to rninimize repetition of the exact execution path.
A different version of the program that implements the same functionality can be used if
it is available. This approach actually combines the ideas of backup and duplication, as
mentioned in Section 16.1.

In the case of repeated identical or closely-related failures, the system has to be brought
down, or partially incorrect results have to be accepted if operations need to continue. The
software faults that caused the runtime problems need to be dealt with off-line. Activities
can be carried out to identify and remove the faults. Alternatively, other fault tolerance
techniques can be used, such as NVP discussed in Section 16.3.

In the above discussion, we have seen that both the basic assumptions for fault tolerance
techniques, names, the rare event assumption (Al) and independence assumption (A2), are
necessary for this technique to work. In addition, we assume that there is excess capacity
in speed and occasional delays are tolerable. Violation of these assumptions would greatly
impact the performance of this technique, because frequent re-runs or repetitions would
serious hinder the progress of the computational task carried out. On the other hand,
several other factors also affect the performance of these techniques.

One key decision in this technique is the checkpointing frequency: higher frequency
leads to higher cost associated with frequent refreshing of the saved dynamic contents,

272 FAULT TOLERANCE AND FAILURE CONTAINMENT

__.
input

version 2
decision

I

version N J

Figure 16.2 Fault tolerance with NVP

while lower frequency leads to longer and more costly recovery. An optimal frequency
balances the two and incurs minimal overall cost. Alternative checkpoint strategies might
also be used, for example, performing partial checkpointing for only those contents that
are more likely to change more frequently than other contents. Therefore, the overall
performance could be improved.

Another issue is the maintenance and follow-up activities to normal operations. As we
noted before, repeated failures need to be dealt with by taking the system off-line for defect
analysis and fixing. However, for normal operations, some information about the re-runs
should be recorded and analyzed at a later time, either parallel to system operations or when
the system is off-line. The key determination is whether these re-runs are truly due to rare
environmental disturbances, or if software faults are to blame. In the latter case, the related
software faults need to be located and fixed at the earliest opportunity.

16.3 FAULT TOLERANCE WITH N-VERSION PROGRAMMING

N-version programming (NVP) is another way to tolerate software faults by directly in-
troducing duplications into the software itself (Aviiienis, 1995). NVP is generally more
suitable than recovery blocks when timely decisions or performance are critical, such as in
many real-time control systems, or when software faults, instead of environmental distur-
bances, are more likely to be the primary sources of problems.

16.3.1

The basic technique is illustrated in Figure 16.2 and briefly described below:

NVP: Basic technique and implementation

0 The basic functional units of the software system consist of N parallel independent
versions of programs with identical functionality: version 1, version 2, . . ., version
N.

0 The system input is distributed to all the N versions.

0 The individual output for each version is fed to a decision unit.

0 The decision unit determines the system output using a specific decision algorithm.
The most commonly used algorithm is a simple majority vote, but other algorithms
are also possible.

The decision algorithm determines the degree of fault tolerance. For example, when the
simple majority rule is used, the system output would be the correct one as long as at least

FAULT TOLERANCE WITH N-VERSION PROGRAMMING 273

half of the versions are operational and produce correct results. In this case, we say that the
overall system is fault tolerant up to

- _ N 1
2

Other variations to the algorithms, designs, and implementations are also possible, as we
discuss next in connection with various other issues about NVP.

Besides the symmetric implementation as depicted in Figure 16.2 and the majority algo-
rithm, various asymmetric implementations or other symmetric implementations are also
possible. For example, we might use the asymmetric design and algorithm to designate
one version as the primary one and the others as backups. In this case, the backup versions
are only considered if some internal or external checking is performed and determined that
the result is incorrect. We could also partition the N versions into different subgroups to
form a hierarchical implementation. Alternatively, we can also combine NVP with recov-
ery blocks and other fault tolerance ideas to enhance the overall system reliability. In fact,
innovative design and configuration of multiple versions of similar programs, together with
the related decision algorithm, are a major research area within fault tolerant computing
and communication.

The determination of overall system reliability is one major topic in fault tolerance studies
(McAllister and Vouk, 1995). System reliability can be determined by the reliability of its
individual versions, the decision algorithm, as well as the relationship among these different
versions. For example, if all individual versions are highly correlated, then they tend to fail
at the same time or under similar operational conditions, thus defeating the whole purpose
of multiple versions. Therefore, the most fundamental assumption and the enabling factor
in NVP is that faults in different versions are independent (Assumption A2 in Section 16.1).

When different versions are independent, even if there is a fault that causes a local failure
in version i, the whole system is likely to function correctly because the other (independent)
versions are likely to function correctly under the same dynamic environment. In this way,
the causal relation between local faults and system failures is broken for most locaI faults
under most situations, thus improving the quality and reliability of the software system.
One of the main research topics in NVP is to ensure that the software versions are as
independent as possible so that local faults can be tolerated and the resulting local failures
can be contained effectively.

The other assumption for fault tolerance, the rare and unanticipated event assumption
(Al), is not directly used in NVP. However, it does affect NVP implementation to a large
degree. NVP costs significantly more to implement than a single version, typically by a
factor of N or more if we count also the decision unit and the coordination in addition to
the N individual versions. Therefore, in actual implementations, we can only afford it for
selected critical components or units in a large systems where rare individual failure events
that can not be anticipated ahead of time need to be tolerated. For frequent and anticipated
events, other solutions are much more effective and economical.

16.3.2 Ensuring version independence

Besides ensuring the quality of the overall NVP scheme and its individual elements, the most
important factor to make NVP work reliably is to ensure independence among its different
versions. The differences in these different versions are reflected in their different designs
and implementations. Since the implementations are constrained by their designs, most of
the existing work focuses on design diversities in trying to achieve version independence

274 FAULT TOLERANCE AND FAILURE CONTAINMENT

(Lyu and Aviiienis, 1992). There are several general areas that we can focus on in trying
to achieve this diversity:

0 People diversity: People of different background and training are more like to pro-
duce different solutions. Other factors also include personality types, group or team
structure, and related communication structure, etc. All these factors might affect the
solution design and implementations.

0 Process variations: Different development processes might favor different solutions.
For example, the waterfall process might favor design and implementation with a
hierarchical structure, while the iterative process is more likely to produce a star
structure, with some core function in a central unit and many other utilities con-
nected to it. Therefore, process variations might lead to more diverse design and
implementation as well.

0 Technology diversity: The use of different software development methods or method-
ologies, support tools, programming languages, algorithms and data structure, etc.,
all could contribute to version independence. In addition, different QA techniques
and tools also add to the diversity, because each of them works differently to assure
product quality.

To implement and integrate these diversity initiatives, some NVP-specific development
process is called for. For example, one approach is to use tightly managed communication
among the different teams for the different versions, thus achieving version independence
through team independence (Aviiienis, 1995; Lyu and Aviiienis, 1992). Key ideas in this
approach include:

0 Each version is developed by an independent production team (or P-team), totaling
N such P-teams for NVP.

0 Controlled communication is carried out through the use of a single specially-trained
coordination team (C-team). P-teams communicate with one another through C-team
only, but not directly.

0 There are mandatory rules (DOs & DON’TS) that the developers in these teams must
follow.

In software development specifically tailored for NVP development, version indepen-
dence through design and implementation diversity needs to be managed as part of the
requirement throughout the process. The overall evaluation and the decision on system ac-
ceptance demand evidence of diversity and/or independence, in addition to how the overall
system works together.

16.3.3 Applying NVP ideas in other QA activities

The basic ideas in NVP can also be applied to various other QA activities to improve the
overall product quality. In fact, the combined use of different QA techniques for most
large software systems can itself be considered a fault tolerance feature, with different
QA techniques effective at preventing, catching, or containing different kinds of problems.
Therefore, the overalI system quality and reliability are assured and improved through the
combined effort.

FAILURE CONTAINMENT: SAFETY ASSURANCE AND DAMAGE CONTROL 275

In the QA for critical units or components, NVP idea is often directly applied. For
example, in Fagan inspection (Fagan, 1976) and other inspection techniques described in
Chapter 14, multiple inspectors may be assigned to the same critical inspection object to
ensure its quality. As a general extension, this duplication can be provided by multiple
inspection teams and coordinated through some mechanisms. Similarly, critical product
functions may be tested by multiple individuals and teams to ensure their correct operational
behavior. Such duplications go beyond basic coverage or usage criteria for inspection or
testing to ensure higher quality for these critical parts.

16.4 FAILURE CONTAINMENT SAFETY ASSURANCE AND DAMAGE
CONTROL

The fault tolerance techniques, when combined with other QA techniques we described so
far in this book, can keep the failure occurrence rate to a fairly low level. However, even
such low failure rates may not be adequate for some systems where damages associated
with failures are substantial, such as embedded control systems for aircraft, nuclear reactors,
medical devices, etc. We need to treat different failures differently and focus on those that
may lead to accidents or safety problems through the use of related safety assurance and
damage control techniques, as described below.

For safety critical systems, the primary concern is our ability to prevent accidents from
happening, where an accident is defined to be a failure with a severe consequence. The
secondary concern is our ability to reduce accident damage in case of accidents. Various
specific techniques are used for safety critical systems based on analysis of hazards, or
logical pre-conditions for accidents. Accident prevention include two generic steps:

1. Analysis of actual or potential accident scenarios with a focus on preconditions, or
hazards, for these scenarios. This type of analysis is called hazard analysis.

2. Preventive or remedial actions for accident prevention, referred to as hazard resolu-
tion, to deal with the hazards identified in the above analysis. Generic ways include
hazard elimination, hazard reduction, and hazard control.

Each of these steps and the techniques used in them are described below.

16.4.1 Hazard analysis using fault-trees and event-trees

There are several hazard analysis techniques (Aldemir et al., 1994), among which the most
commonly used ones are fault-tree and event-tree analyses, which have been adapted to
work for software-intensive embedded systems (Dugan, 1995; Leveson, 1995). The basic
idea of fault-tree analysis (FTA) can be summarized below:

0 The basic analysis tool is logical diagrams calledfault-trees, which also represent the
analysis results. Nodes in a fault-tree represent various events or conditions and are
connected through logical connectors, AND, OR, NOT, to represent logical relations
among sub-conditions.

The analysis follows a top-down procedure: starting with the top event and recursively
analyzing each event or condition to find out its logical conditions or sub-conditions.
The top event is usually associated with an accident and is represented as the root
node of the tree.

276 FAULT TOLERANCE AND FAILURE CONTAINMENT

Collision u
Fail to CI (j object

ABS engaged
but fail to stop

Breakpad problem problems

Figure 16.3 Fault-tree analysis (FTA) for an automobile accident

0 We stop this recursive procedure at a terminal node under one of several conditions:

- The current node is well understood, therefore there is no need to analyzed it

- We cannot break a node into its sub-conditions any further (an atomic node).

- We do not have enough information to perform further analysis.

further.

0 The terminal nodes are associated with the so-called basic or primary events or condi-
tions represented as circles. The non-terminal nodes in-between are associated with
intermediate events or conditions represented as rectangles.

As an example of FTA, consider the collision between an object (representing an obstacle)
and an automobile that fails to stop, even though it is equipped with an anti-lock break system
(ABS), illustrated in Figure 16.3. ABS contains embedded software used in controlling this
safety critical device. In this case, the top event “collision” must involve the automobile in
question AND another object. The automobile failed to stop due to three possible conditions,
1) driver error, 2) ABS did not engage, OR 3) ABS engaged but failed to stop. We can carry
this analysis further, and find out that certain software functions may be part of the problem,
and therefore need to be fixed. Notice that in FTAs, we focus on the controllable events
or conditions. For example, driver error, such as incorrect use of ABS, is not analyzed
further because we focus on the embedded software problems. On the other hand, the FTA

FAILURE CONTAINMENT: SAFETY ASSURANCE AND DAMAGE CONTROL 277

Obstacle appears

ABS worked

1 No collision

I No collision
No obstacle

Figure 16.4 Event-tree analysis (ETA) for an automobile accident

in Figure 16.3 can be expanded further to analyze the causes for the software problem or
other problems.

In contrast to FTA that extracts the static logical conditions, event-tree analysis, or ETA,
focuses on the dynamic aspect of accidents by examining the timing or temporal relations
in the series of events that led to accidents. The basic ideas are summarized below:

0 An event tree is a temporal cause-effect diagram. We start with the primary event and
follow through its subsequent events and consequences over time or stages (simplified
or discretized time) until we reach a stage where an accident is encountered.

Each branch of the event tree represents a specific consequence of a decision, which
in turn can be associated with their own subsequent decisions and consequences.

0 The main usage of ETA is to recreate accident sequences and/or scenarios, and identify
the critical paths that lead from the primary events through a sequence of decisions
and consequences eventually to an accident. Typically, the events and consequences
not related to the critical path are not analyzed further to allow us to focus on system
safety and hazard resolution actions that can be guided by ETA.

As an example of ETA, consider the collision scenario above. Figure 16.4 illustrate
the ETA for chains of events leading to collisions or no collisions. In this case, while an
automobile is cruising, there won’t be a collision if no object or obstacle appears. When an
obstacle appears, if the driver did not break in time, collision occurs (due to driver error).
If the driver did break in time, the collision could be avoided if the ABS is working fine,
otherwise we still may have an collision because ABS malfunctioning. We can carry this
analysis further, and find out that certain software functions and related events may be part
of the accident scenarios, and therefore pin-point the specific software functions and related
usage scenario so that the related problems could be fixed.

Besides FTA and ETA, many other analysis techniques can be used for hazard analysis,
identification, and related activities, including: safety related checklists and design reviews,
hazard indices, risk trees, cause-consequence analysis (CCA), hazard & operability analysis
(HAZOP), failure modes and effect analysis (FMEA), etc. (Aldemir et al., 1994; Leveson,
1995).

278 FAULT TOLERANCE AND FAILURE CONTAINMENT

16.4.2 Hazard resolution for accident prevention

Once the pre-conditions that may cause accidents or the series of events that may lead
to accidents is identified through FTA, ETA, and other hazard identification and analysis
techniques, appropriate actions can be applied to negate the conditions, to disrupt the event-
chain, or otherwise provide a resolution to these hazards. Generic ways for hazard resolution
in accident prevention include the following:

Hazard elimination through substitution, simplification, decoupling, elimination of
specific human errors, and reduction of hazardous materials or conditions. These
techniques are similar to the defect prevention and defect reduction techniques, but
with a focus on those controllable events or conditions (terminal nodes) involved in
hazardous situations based on FTA results.

0 Hazard reduction through design for controllability (for example, automatic pressure
release in boilers), use of locking devices (for example, hardwarekoftware inter-
locks), and failure probability minimization using safety margins and redundancy.
These techniques are similar to the fault tolerance techniques, where local failures
are contained without leading to system failures. However, the actions are guided by
FTA and ETA results to focus on the key events, conditions, and sequences that are
potentially related to accidents.

Hazard control through reducing exposure, isolation and containment (for example,
.barriers between the system and the environment), protection systems (active pro-
tection activated in case of hazard), and fail-safe design (passive protection, fail in a
safe state without causing further damages). These techniques reduce the severity of
failures, therefore weakening the link between failures and accidents.

In the above hazard resolution activities, some specific results from FTA can be used.
For example, component replacement could be focused on those parts and areas that are
linked through FTA as conditions for accidents. The software components thus identified
can be the focus of formal verification activities, in the so called safety verification instead
of broad-based formal verification of all the system components. We can also design lock-
in, lock-out, and interlock devices, using a mixture of software and hardware technologies,
to negate logical relations represented in FTA to prevent related accidents from happening.
Similarly, some specific results from ETA can be used in hazard resolution, especially in
hazard reduction and hazard control strategies. For example, barriers created between the
critical and other paths, as well as other isolation and containment measures, can be applied
to break or disrupt the chain of events that can lead to accidents.

16.4.3 Accident analysis and post-accident damage control

Similar to the situation with accident prevention described above, damage control also
involves accident analyses that guide planned and actual strategies for damage control in
the unfortunate event that accidents do happen. However, these analyses are much simpler
than hazard analyses, and do not involve searching for intricate pre-conditions and event-
chains that lead to the accidents. Instead, accident analyses focus on possible accidents and
their consequences or damage areas. Typically the application domain knowledge would be
adequate for such analyses, but not implementation details needed for hazard analyses. For
example, aircraft accidents involve crashes that lead to loss of lives and property damages,

APPLICATION IN HETEROGENEOUS SYSTEMS 279

while nuclear reactor accidents typically involve radioactive material causing damages to
people’s health and the environment.

Once such accident scenario and damage areas are identified, various techniques can be
used for damage control, such as through escape routes, safe abandonment of products and
materials, and devices for limiting physical damages to equipment or people. These tech-
niques reduce the severity of accidents thus limiting the damage caused by these accidents.

Notice that both hazard control described earlier and damage control here are post-failure
activities not generally covered in the QA activities described before. These activities
are specific to safety critical systems. On the other hand, many techniques for hazard
elimination and reduction can also be used in general systems to reduce fault injection and
to tolerate local faults.

16.5 APPLICATION IN HETEROGENEOUS SYSTEMS

As mentioned at the beginning of this chapter, most systems where high dependability
and safety are required fall into the heterogeneous or embedded system category. These
systems involve software interacting with other physical subsystems, processes, equipments
or devices, either as loosely coupled heterogeneous systems, or as embedded systems where
software directly monitors or controls its physical surroundings. Fault tolerance and failure
containment techniques are generally suitable for such systems, because the significant
consequences of failures justify the high cost involved. We next examine this application
domain and its environment and give some application examples,mostly based on a previous
study of safety assurance for computer-controlled safety-critical systems (CCSCS) (Yih and
Tian, 1998).

16.5.1 Modeling and analyzing heterogeneous systems

When we consider software as part of a heterogeneous system, system reliability and de-
pendability issues need to be addressed. System reliability deals with hardware and com-
municatiodinteraction problems, in addition to software problems. Therefore, the system
reliability is the probability of failure-free,operations for the whole system for a given time
period or under a given set of usage scenarios. System dependability is a broader concept
still, which includes reliability, fault tolerance, safety, etc., all related to how likely or how
much a system can be depended upon. It i s typically hard to quantify. However, system
dependability can generally be represented by the values for its components that can usually
be measured quantitatively. Traditional reliability and safety engineering focuses on hard-
ware, identifying actual or potential failures, their causes and related event sequences, and
assessing the probabilities for them (Henley and Kumamoto, 1981; Aldemir et al., 1994).
Existing work on software reliability also treats software in isolation.

For heterogeneous systems involving computers and related software, the software sub-
system and the physical subsystem demonstrate vastly different operational behavior and
characteristics. For example, common assumptions for hardware and equipment, such as
wear, aging, and decay, are not immediately applicable to software domain. Various mod-
els, such as the two-frame model (or TFM) (Yih and Tian, 1998), were developed to analyze
such systems.

In TFM, a heterogeneous system, such as a computer-controlled safety-critical system
(CCSCS), is divided into a logical subsystem (or logical frame) and a physical subsystem
(or physical frame). The logical subsystem corresponds to the computer controller, and

280 FAULT TOLERANCE AND FAILURE CONTAINMENT

control

Ii-7

/

Logical Frame

FSM rules

A

Ending

t I

\
Equipment

Physical process

Figure 16.5 Two-frame model for a CCSCS

the physical subsystem is monitored and controlled by the computer controller through
sensors and actuators, as graphically illustrated in Figure 16.5. TFM is similar to the “four
variable model” (Parnas and Madey, 1995), but the symmetry between the two frames was
highlighted instead of treating the software as the center and the physical subsystem as
the environment. This perspective also gives us a better way to analyze the similarities
and differences between the two frames to ensure and improve their safety. In such a
heterogeneous system, failures may involve many different scenarios, including:

0 Software failures due to defects in software design and implementation, which can
be addressed to a large degree by QA techniques we have described so far in this
book.

0 Hardware or equipment failures due to wear, decay, or other physical processes,
which is the main subject of traditional reliability and safety engineering, and can be
largely addressed by related techniques.

0 Communicatiodinterface failures due to erroneous interactions among different sub-
systems or components.

Most computer-related accidents in CCSCS can be traced back to problems in the in-
terface or interactions among the components of the systems, particularly between the
computer controller and the surrounding environment (Mackenzie, 1994). Therefore, haz-
ard analyses focusing on the interactiodinterface problems can be performed to develop
techniques for hazard prevention and safety improvement.

APPLICATION IN HETEROGENEOUS SYSTEMS 281

se"S0rs
(set 2) predicted SORWEIe

Figure 16.6 Prescription monitor for safety assurance

stllte

16.5.2 Prescriptive specifications for safety

In TFM, the commonly noted interfacehnteraction problems are mostly manifested as frame
inconsistency problems. The primary causes for these inconsistencies can be identified to
be the fundamental differences between the logical and physical frames, as follows:

entitieS

0 Physical states generally demonstrate regular behavior or form totalfunctions accord-
ing to physical laws; while the discrete software states usually formpurtiulfunctions.

0 There are typically invariants or limits reflecting physical laws, which, when imple-
mented in software, may be violated or surpassed in failure situations.

However, because of the ultimate flexibility offered by software, if we could derive
some prescriptive speciJicutions as maintainable formal assertions for the logical frame, we
can effectively keep the logical frame consistent with its physical frame, thus preventing
various hazardous conditions from occurring. The logical subsystem could be enhanced
to include a prescription monitor, as illustrated in Figure 16.6. The prescription monitor
takes input from both the logical and physical subsystems, automatically checks prescriptive
specifications to assure system integrity, and sounds alarms or carries out emergency actions
if any of these assertions is violated.

A series of experiments was conducted to evaluate the effectiveness of this technique.
based on report of actual scenarios of a nuclear accident. Nineteen hazard situations were
tested in the simulated nuclear reactor control system, covering a wide variety of errors
representative of realistic situations. In all the 19 instances, errors have been successfully
detected on the spot by checking the prescriptive specifications developed above.

The approach above can be interpreted as using formal methods, in particular model
checking, on CCSCS. However, system modeling and hazard analysis play a very important
role in identifying the areas to focus, possible prescriptive specification, as well as the
checking of these properties. This approach can be considered as a specific adaptation of
the comprehensive approach in (Leveson, 1995) where hazard analysis and identification
techniques are used throughout the development process for embedded software in CCSCS.
This is in contrast to the current practice of applying formal verification techniques that
generally focused on internal logical errors, which, as indicated above, are not the main
sources of hazard for CCSCS.

282 FAULT TOLERANCE AND FAILURE CONTAINMENT

16.6 CONCLUDING REMARKS

To summarize, defect containment techniques attempt to contain the defects through two
generic means:

0 Fault tolerance techniques limit defect manifestation to a local area to avoid global
failures, through the use of some duplication designed into the software systems or
their operations.

0 Failure containment techniques reduce the impact or damage associated with certain
system failures so that some accidents can be avoided or the related damage can be
minimized. Accidents are a subset of failures with severe consequences, and the
pre-conditions to such accidents are called hazards. Most of the failure containment
activities are associated with safety-critical systems, where the main concerns are
for the system to be as safe or to be as accident free as possible. Hazard analysis
and resolution play an important role in identifying hazards and dealing with them
to contain failures related to potential accidents, thus ensuring system safety.

Because of the duplications and other expensive mechanisms used, such as interlocks,
barriers, and protective systems, both these variations of defect containment strategies are
more costly than other QA techniques we covered in this book. In addition, the problem
analyses for fault tolerance and hazard analyses for safety assurance require specialized
expertise, extensive data that could be difficulty or expensive to collect, and substantial
time and effort to perform. Consequently, these QA alternatives can only be used in lim-
ited settings and applied to critical components or functions for systems where stoppage in
operation can be very costly or certain failures may be associated with catastrophic con-
sequences. As for other non-critical components and functions, other QA alternatives we
covered earlier in this book should be used to reduce the overall system development and
operational cost.

Problems

16.1 What is the difference between reliability and safety?

16.2 What is the impact of fault tolerance on reliability and safety?

16.3 Compare the operational implementation of recovery blocks and common backup-
and-recovery for your data or information on your PCs.

16.4 The fault tolerance capability defines how many faults can be tolerated. For specific
situations, we might design or select different appropriate decision algorithm to make the
system more fault tolerant. (Sometimes backup might be more meaningful than duplica-
tion.) Analyze the fault tolerance capability for the following situations with NVP:

a) no problem detection (normal case we covered in Section 16.3),
b) accurate detection of local problems,
c) accurate detection and correction of local problems.

Answer the following questions about NVP:
a) Would NVP work if you use N identical software copies?
b) How would the availability of parallel and distributed processing affect NVP?

16.5

What if you only have a single-processor machine?

PROBLEMS 283

c) NVP has not been as widely used as hardware duplications for highly dependable
or critical systems. Why?

16.6
NVP more popular or less popular? Why?

16.7
tree.

16.8
event trees?

16.9
and an event-tree analysis on it.

16.10
are applicable to the systems you are working on?

In your view, would CBSE (component-based software engineering) help make

Define the terms and concepts: accident, hazard, hazard analysis, fault tree, event

What are the similarities and differences between decision trees and fault trees or

Find some problem, defect, or accident report, and try to perform a fault-tree analysis

Of the different safety assurance strategies described in this chapter, which ones

This Page Intentionally Left Blank

CHAPTER 17

COMPARING QUALITY ASSURANCE
TECHNIQUES AND ACTIVITIES

In this chapter, we compare the different quality assurance (QA) techniques and activities by
examining their cost, applicability under different environments and development phases,
and effectiveness in dealing with different types of problems. Based on this comparison,
we also provide some general recommendations. Notice that all the QA techniques and
activities covered in both Part I1 (testing) and Part I11 (QA alternatives other than testing)
are compared here.

17.1 GENERAL QUESTIONS: COST, BENEFIT, AND ENVIRONMENT

Broadly speaking, a comparison of QA alternatives, together with related techniques and
activities, is a cost-benefit analysis under the overall environment for software development
or long-term maintenance. Consequently, the questions and comparison criteria can be
classified into three broad categories of cost, benefit, and environment.

Questions and criteria related to environment

The main question is the applicability of specific QA alternatives and related activities and
techniques to specific development and maintenance environments. We can first divide our
examination of the applicability question into two general environments: 1) development
environment, and 2) maintenance environment, which includes operational support and
software maintenance activities.

285

286 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

Most of the QA alternatives have a development focus, although some can be used in
software maintenance as well. All the QA alternatives covered so far in this book are
applicable to software development. However, the applicability to software maintenance
may vary, as follows:

0 Defect prevention techniques are typically not applicable to the software maintenance
process, although lessons learned from related activities can be used and package for
future defect prevention activities.

0 Inspection, formal verification, and testing can be applied to a very limited degree
to software maintenance process. For example, when a problem is reported by some
customers, we can perform related inspection, verification, or testing activities to
locate the problem, as well as to ensure that the fix indeed would correct the problem.

0 Defect containment alternatives, such as fault tolerance and failure containment, ap-
ply to software in operation. Therefore, they can also be applied to the software
maintenance process. However, as noted in Chapter 16, the design and implementa-
tion of these features are supposed to be completed during the development processes.
The focus during the software maintenance process is the support for normal oper-
ations and damage reduction, but not fixing problems or correcting the underlying
software product.

Notice that in the above discussions, we focused on the corrective maintenance. For the
other types of maintenance, such as adaptive and perfective maintenance, the adaptations
to new application environment or the product improvements to make it more effective or
more efficient, share many things in common with product development. Consequently, the
applicability of different QA alternatives to adaptive and perfective maintenance activities
is similar to their applicability to software development.

Once we confirmed the general applicability of all the QA alternatives to software devel-
opment environment, we can further examine their applicability to different development
processes or to different product domains or market segments. In addition, we can examine
the kind of product artifacts these QA alternatives are applied to, or what the objects of
related activities are, and the influence of different people (human and organizational) envi-
ronment. One key question that we will focus on is the timeline or project phasedsub-phases,
because of their relation to both the effectiveness and cost, with correcting problems earlier
producing far more benefit and incurring far less cost than correcting them later. These and
other specific questions are examined in Section 17.2.

Questions and criteria related to effectiveness or benefit

As discussed in Part I of this book, the general benefit of performing the various QA activities
is to ensure the quality of software systems. Consequently, the comparison of individual QA
alternatives can be made on how effectively each of them can help us achieve this general
goal. However, as also noted in the previous chapters in both Part I1 and Part 111, these
different QA alternative address the software quality problems from different perspectives,
dealing with different problems, and can be used in complementary ways in a concerted
strategy to ensure software quality. The flip side of the argument is that each QA alternative
exists for its own reasons, where it might be the most effectiveor cost-effectiveunder certain
situations. Otherwise, there is no real reason for it to exist. Therefore, a more meaningful
comparison is their effectiveness under different situations and environments instead of
effectiveness in general.

GENERAL QUESTIONS: COST, BENEFIT, AND ENVIRONMENT 287

As we outlined in Chapter 3, different QA alternatives can be treated as different ways to
deal with defects. Therefore, we can examine the effectiveness of different QA alternatives
by examining the qualitative and quantitative information regarding defects under different
environments, as follows:

0 Defect perspective: Is the QA technique dealing with errors, faults, or failures? This
question can be broken down further with the executiodobservation of the specific
QA activities and the follow-up actions, where different defect perspectives may be
taken. For example, during testing, failures are observed, which lead to follow-up
actions to locate and fix the faults that caused these observed failures.

0 Problem types: Closely related to different defect perspectives are the problem or
defect types. For example, dynamic or timing problems are typically associated
with some interface or interaction among different parts of the software products,
which might be more easily detected through testing than through inspection. On
the other hand, logical and static problems may be more cost-effectively detected
through inspection.

0 Defect levels andpervasiveness: Different QA techniques may be suitable for differ-
ent defect levels or pervasiveness. For example, if defects are pervasive in the system,
systematic inspection might be more appropriate than testing because inspection can
continue after some defects are detected, unlike in the case of testing, which often
needs to be stopped once a failure is observed.

0 Constructive information and guidance for quality improvement: Ideally, we would
like to have different QA alternatives to provide as much information as possible to
help us deal with the problems observed and to improve quality for the current and
future products. For example, in inspection, not only the specific problem can be
identified for immediate defect removal, but sometimes systematic problem patterns
can be detected, leading to process changes or focused remedial actions aimed at
preventing similar problems in the future.

We will examine individual QA alternatives with respect to the above questions in Sec-
tion 17.3.

Questions and criteria related to cost

If the total cost can be calculated for each QA alternative, then it can be used together with the
benefit assessment to select appropriate ones for a specific environment. The direct cost for
carrying out the planned QA activities typically involves the time and effort of the software
professionals who perform related activities and the consumption of other resources such as
computer systems and supporting facilities. In addition, there are also indirect costs, such
as training project participants, acquisition and support for related software tools, meeting
time and other overhead. All these costs should be considered in our decision to choose
appropriate QA alternatives.

There are several factors affecting the above total cost. Sometimes it is easier and more
straightforward to deal with these factors instead of dealing with the cost directly, because
some of these factor are more closely related to individual QA alternatives. Some key
factors include:

0 Simplicity of the techniques associated with the specific QA alternatives. A simple
technique is generally easy to understand, easy to use, easy to perform, and more

288 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

likely to be supported by existing tools. Minimal amount of training is needed before
a software quality professional can learn and master the technique. Therefore, tech-
nique simplicity will affect the total cost of the selected QA alternative. For example,
inspection is much simpler than formal verification, thus costing significantly less to
perform.

0 Availability of tool support also has a significant influence on the cost of specific
QA alternatives. This is particularly true for our software and IT industries, where
the share of cost of professionals’ time dominant other material cost. Consequently,
availability and affordability of software tool support is an important issue, because
such automated support would save software professionals’ valuable time and allow
them to perform other tasks that only they can do best.

Other general questions and observations

If the above factors affecting the choice of appropriate QA alternatives can be characterized
and quantified, then the choice is reduced to a mathematical optimization problem in the
form of optimizing some form of cost-benefit objective functions under the constraints
imposed by the environment. However, the benefit is typically hard to quantify in monetary
terms, although sometimes it can be quantified to some degree in terms of defect count
or density (#defectdunit). Even on the cost side, it is typically easier to quantify the total
time or effort instead of the monetary amount. Therefore, it would be hard to formulate the
choice of different QA alternatives as a mathematical optimization problem, although the
general ideas and techniques would certainly help.

There are also questions and criteria related to more than one of the above areas. For
example, the early applicability and availability of a QA techniques is not only related
to the general applicability, but also to cost and benefit, because problems found late in
development are much harder and cost significantly more to fix. In addition, a defect
remaining in the software system - what we call a dormant defect - may also lead to
the injection of other related defects. And the longer it stays in the system, the more likely
the reasons for its injection in the first place get obscured. Therefore, the effectiveness
comparison needs to be re-adjusted accordingly. For example, a 10% reduction of defect
injection rate might be more significant than a 10% increase of defect detection rate.

Similarly, many questions we posed as related to cost and benefit also have a strong ap-
plicability implications or are strongly influenced by the overall application environment.
For example, defect perspective may be heavily influenced by the product type and the over-
all market expectations. As a concrete example, a user-oriented or user-centered software
product, such as graphical user interface (GUI) products and various PC-based utilities or
web-based applications, would favor user-oriented defect perspectives. Validation activi-
ties involving actual usage scenarios, such as through usage-based statistical testing, are
more likely to be useful in this situation than verification activities aimed at internal im-
plementations, such as formal verification of individual units in isolation. However, each
question we posed above typically has a primary affiliation to one of the three categories,
cost, benefit, and environment, and would be examined accordingly.

In subsequent detailed comparisons, we will examine each question listed above as well
as some related questions for each of the following QA alternatives individually:

.

0 testing

0 defect prevention

APPLICABILITY TO DIFFERENT ENVIRONMENTS 289

Table 17.1 Objects of QA alternatives

QA Alternative

testing
defect prevention
inspection
formal verification
fault tolerance
failure containment

Object

(executable) code
(implementation activities)
design, code, and other software artifacts
desigdcode with formal specification
operational software system
system with potential accidents

inspection

formal verification

0 fault tolerance

0 failure containment

Notice that the contents of the above list are slightly different from the list of chapters
in Part 111. Besides the addition of testing covered in Part 11, fault tolerance and failure
containment are listed separately due to their individual differences. In addition, we isolate
out formal verification from formal specification, with the latter treated as part of the defect
prevention activities. Several related topics, such as model checking, dynamic analysis,
and static analysis, are treated the same way as the QA technique they are closest to, that
is, formal verification, testing, and inspection, respectively, in subsequent discussions.

17.2 APPLICABILITY TO DIFFERENT ENVIRONMENTS

Our comparison of applicability concentrates on the development process, related activities
and phases, and the general project environment.

Artifacts as objects

Table 17.1 lists the main objects of different QA alternatives and related activities. Notice
that all of them are applied to some specific and concrete artifacts, with the exception
of defect prevention that applies to implementation activities in general with a focus on
human actions and conceptual mistakes. By extension, defect prevention also applies to
all the artifacts involved in the implementation activities, including conceptual models,
product domain knowledge, development process and technology knowledge, requirement
and specification documents, designs, code, test plans, etc. However, the focus is on the
activities that might be related to the injection of software faults into the system, and their
related causes in human knowledge base.

In addition to the primary objects listed in Table 17.1, some secondary objects might
also be involved. For example, fault tolerance and failure containment also involve the
whole development process and related artifacts in the design and implementation of fault
tolerance and failure containment features, in addition to their focus on the operational
support of such systems.

290 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

Table 17.2 Development activities where different QA alternatives are applicable

QA Alternative Development ActivityPhase

testing testing phase and after
defect prevention implementation (req/spec/desigdcoding)
inspection all
formal verification desigdcoding
fault tolerance in-field operation
failure containment in-field operation

Products, processes, activitiedphases

Generally speaking, all QA alternatives can be potentially applied to all kinds of products.
However, for different products or market segments, some might be more appropriate while
others less so. For example, fault tolerance and failure containment are appropriate for
market segments where high dependability and safety are major concerns, while they may
be too costly for some low-cost entertainment software. The applicability of different QA
alternatives to different products or market environments is closely related to defect or
quality perspectives and related expectations as characterized by defect levels, which we
examine in Section 17.3. It is also closely related to thecost issues examined in Section 17.4.

As discussed in Chapter 4, all QA alternatives can be applied to all variations of develop-
ment processes. We can refine this to individual activities and individual QA alternatives,
as summarized in Table 17.2. Notice that we generally follow the sequence of activities
in the commonly used waterfall development process. Although the individual activities
can be organized differently to form other development processes, this would not adversely
affect the applicability of different QA alternatives to them.

Once again, fault tolerance and failure containment features need the support of other QA
alternatives during their design, implementation, and testing phases. In addition, individual
QA alternatives may be applied to some other secondary phases in addition to the ones
listed above, such as defect prevention used in limited scope during testing, particularly
during defect fixing to reduce the injection of new defects while fixing existing ones.

Required participant expertise

The factor of people’s expertise, including people’s prior education, skill, experience, and
on-job training, affects the applicability of specific QA techniques. This factor also affects
the overall cost directly, because a good fit between people’s expertise and the specific
QA activities to be performed would incur little additional cost beyond the professionals’
time. In addition, it also affects the overall effectiveness indirectly, because people with
appropriate expertise are more likely to perform relevant tasks well.

A direct measure of people’s expertise that affects the applicability and cost is the level
of education and training required to gain the expertise to competently perform the specific
QA activities. This includes:

the specific knowledge regarding the specific QA alternatives and related techniques;

0 the background knowledge as prerequisites.

EFFECTIVENESS COMPARISON 291

Table 17.3
perform different QA alternatives

Required expertise and background knowledge for people to

QA Alternative Expertise Level Background Knowledge

testing low - high
defect prevention medium - high
inspection low - medium
formal verification high formal training
fault tolerance high dynamic systems
failure containment high safety, embedded systems

In Table 17.3 we summarize both the main specific background knowledge required and
the overall level of education and training effort required to gain the expertise.

Notice that in Table 17.3 we omitted the specific knowledge for each QA alternative
because it is implied. In addition, we omitted the general knowledge of computer science
and software engineering, which is assumed for the readers of this book, as outlined in
Chapter 1.

Also worth noting is that the expertise level for some QA alternatives is given as broader
ranges instead of individual levels, because some of them cover a wide spectrum of tech-
niques which require different levels of expertise. For example, informal testing and
checklist-based testing requires little in terms of formal training, while formal structural
testing and usage-based statistical testing require significantly more effort in training to gain
the expertise. Defect prevention typically requires good knowledge of the application do-
main, development methodologies and processes, tools etc., to be effective, thus requiring
medium to high levels of expertise. On the other hand, inspection training is typically less
time consuming, with many professional programs or training courses for inspection that
can be mastered in a few days. On the higher end, formal verification, fault tolerance, and
failure containment require more effort in education and training before project participants
can effectively applied the related techniques.

17.3 EFFECTIVENESS COMPARISON

We next compare different QA alternatives by examining the specific perspectives of defect
they are dealing with, what kind of problems they are good at addressing, their suitability to
different defect levels and pervasiveness, and their ability to provide additional information
for quality improvement.

17.3.1 Defect perspective

Among the different defect related perspectives and concepts, we can examine the QA
alternatives by examining whether they are dealing with error sources, errors, faults, failures,
or accidents. This examination can be broken down further into two parts:

0 Detection or observation of specific problems from specific defect perspectives during
the performance of specific QA activities.

0 Types offollow-up actions that deal with the observed or detected problems in specific
ways as examined from the defect perspectives.

292 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

Table 17.4 Defect observed and dealt with by different QA alternatives

QA Alternative Defect Perspective
At Observation

testing failures fault removal
defect prevention errors & error sources reduced fault injection
inspection faults fault removal
formal verification (absence of) faults fault absence verified
fault tolerance local failures global failures avoided
failure containment accidents hazards resolution & damage reduction

At Follow-up (& Action)

Table 17.5 Main problem types dealt with by different QA alternatives
__________~_______~

QA Alternative Problem Types

testing
defect prevention
inspection static & localized faults
formal verification logical faults, indirectly
fault tolerance
failure containment

dynamic failures & related faults
systematic errors or conceptual mistakes

operational failures in small areas
accidents and related hazards

Sometimes, they may be dealing with the same defect perspective, such as faults that
are directly detected and removed in inspection. In other cases, they may be dealing with
different defect perspectives, linked through some analysis activities in between. For exam-
ple, testing detects failures during execution, and additional analyses are performed based
on information recorded during the failed executions to locate and remove the underlying
faults that caused the failures. Table 17.4 summarizes the perspectives or types of defects
observed and dealt with by individual QA alternatives. To make the follow-up defect per-
spective more meaningful, we also include the general follow-up actions and results for
each QA alternative.

17.3.2 Problem types

Different QA alternative might be effective for different types of problems, including deal-
ing with different perspectives of defects, ranging from different errors and error sources,
various types of faults, and failures of different severity and other characteristics. Table 17.5
summarizes the different problem types each QA alternative is effective in dealing with.

Defect prevention works to block some errors or to remove error sources to prevent
the injection of related faults. Therefore, it is generally good at dealing with conceptual
mistakes made by software designers and programmers. Once such conceptual mistakes can
be identified as error sources, they can be effectively eliminated. Some systematic problems
can also be addressed by defect prevention techniques by using certain tools, processes,
standards, technologies, etc., to block the errors that are related to fault injections. These
problem types are also related to the pervasive, systematic problems we discuss below in
connection to defect levels.

EFFECTIVENESS COMPARISON 293

One key difference between inspection and testing is the way faults are identified: inspec-
tion identifies them directly by examining the software artifact, while failures are observed
during testing and related faults are identified later by utilizing the recorded execution in-
formation. This key difference leads to the different types of faults commonly detected
using these two techniques: Inspection is usually good at detecting static and localized
faults which are often related to some common conceptual mistakes, while testing is good
at detecting dynamic faults involving multiple components in interactions. The reasons
behind this difference in detected defects can be explained by the following differences
between the two types of QA alternatives:

0 Inspection involves static examination while testing involves dynamic executions.
Therefore, static problems are more likely to be found during inspection, while dy-
namic problems are more likely to be found during testing.

0 It is hard for human inspectors to keep track of multiple components and compli-
cated interactions over time, while the same task may not be such a difficult one for
computers. Therefore, testing is generally better at detecting interaction problems
involving multiple components.

0 Human inspectors can focus on a small area and perform in-depth analysis, leading
to effective detection of localized faults. In addition, in-depth analyses can also
be used to identify conceptual problems for related defect prevention - a topic we
examine further in connection to the comparison of constructive information provided
by different QA alternatives later in this section.

Formal verification deals with logical (or mathematical) correctness, and can be inter-
preted as extremely formalized inspection. Therefore, it shares some of the characteristics
of inspection in dealing with static and logical problems. However, such problems are
dealt with indirectly, because the correctness verification instead of fault detection is the
focus. Problem identification is only a side-effect of failing to produce a correctness proof.
However, in model checking, an important variation of formal verification we covered in
Chapter 15, this ability to identify problems is enhanced through the use of counterexamples.

Fault tolerance and failure containment are designed to work with dynamic operational
problems that may lead to global failures or accidents. Fault tolerance techniques are good
at isolating faults to only cause local failures but not global ones, while failure containment
works to contain failures that may lead to accidents by dealing with hazards or reducing
damage related to accidents.

17.3.3 Defect level and pervasiveness

Different QA techniques may be suitable for different defect levels or pervasiveness. Ta-
ble 17.6 summarizes the defect levels each individual QA alternative is suitable for, with
more discussions presented below.

In general, if systematic problems exist in an organization and the related products,
preventive action is the most effective way to deal with them. Such systematic problems are
generally associated with common failures traceable to common faults, and these common
faults can be traced in turn to some common errors through causal analysis. As pointed out
in Humphrey (1995):

“While detecting and fixing defects is critically important, it is an inherently defensive
strategy. To make significant quality improvements, you should identify the causes of
these defects and take steps to eliminate them.”

294 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

Table 17.6 Defect levels where different QA alternatives are suitable

QA Alternative Defect Level

testing low - medium
defect prevention low - high (particularly pervasive problems)
inspection medium - high
formal verification low
fault tolerance low
failure containment lowest

On the other hand, sporadic problems can generally be dealt with by other QA alternatives.
For existing products with relatively high defect levels or with many common faults,

inspection is most likely to be more effective than testing, because inspection can continue
after the initial fault is detected, but further testing is often blockedor partially blocked once
a fault is encountered and a failure is observed. In addition, when defect levels are high,
execution of most test cases will result in failure observations, and the subsequent effort to
locate and remove the underlying faults is similar to that for inspection. Analysis of existing
high-defect projects commonly conducted in conjunction with inspection can often point
to systematic problems. Such systematic problems can be most effectively addressed by
defect prevention activities in successor projects.

A proof of correctness or a formal verification can only be produced if the program is
fault-free with respect to its formal specifications. When verification cannot be successfully
completed, further analysis can often reveal accidental logical or functional faults. However,
this is not an effective method for fault detection because of the substantial effort involved
in the failed verification attempt. Therefore, formal verification does not work for software
with high defect levels. Fortunately, the use of formal methods, with formal specification
focusing on error source elimination and formal verification focusing on verifying the
conformance in designs and code, generally results in low defect levels.

Fault tolerance techniques generally involve the observations of dynamic local failures
and the tolerance of the related faults, but not the identification and removal of these faults.
These techniques only work when defect levels are very low, because multiple fault encoun-
ters or frequent failures cannot be effectively tolerated. Therefore, other QA alternatives
need to be used to reduce the defects to a very low level before fault tolerance techniques
can be used to further reduce the probability of system failures.

On the other hand, many software safety assurance techniques attempt to weaken the link
between failures and accidents or reduce the damage associated with accidents. The focus
of these activities is the post-failure accidents and the related hazard analysis and resolu-
tion. Defect levels are expected to be extremely low, because these expensive techniques
are generally applied as the last guard against system safety problems after all relevant
traditional QA activities have been performed already.

17.3.4 Result interpretation and constructive information

Ease of result interpretation plays an important role in the application of specific QA tech-
niques. A good understanding of the results is a precondition to follow-up actions. For
example, both inspection and testing are aimed at defect removal. However, inspection re-
sults are much easier to interpret and can be used directly for defect removal. Testing results

COST COMPARISON 295

Table 17.7
constructive informatiodmeasurements

Ease of result interpretation for different QA alternatives and amount of

QA Alternative Result Interpretation InformationMeasurement

testing moderate executions & failures
defect prevention (intangible) experience
inspection easy faults, already located
formal verification hard fault absence verified
fault tolerance hard (unanticipated) environmentshsages
failure containment hard accident scenarios and hazards

need to be analyzed by experienced software professionals to locate the faults that caused
the failures observed during testing, and only then can these faults be removed. In addition,
re-verification of defect removal is also more complicated in testing than in inspection.
Additional testing effort in the form of re-runs is typically involved, while re-inspection are
less likely to be required and, even if required, it would be much simpler.

On the other hand, result interpretation for formal verification, fault tolerance, and failure
containment is harder than that for inspection and testing. Sometimes, a significant amount
of effort is needed to analyze these results to support follow-up actions. For example, in a
fault tolerant system using recovery blocks,repeated failures need to be dealt with off-line by
analyzing the dynamic records. Much information related to unanticipated environment and
usage not covered in the pre-planned testing activities may be included in these records.
Similarly, failure containment results typically need additional analysis support such as
those described in Chapter 16. The difficulties with interpreting formal verification results
usually involve the formalism used, which requires formal training not as readily available
to software practitioners as other QA alternatives.

In comparison, defect prevention produces results in the form of reduced fault injection,
which is harder to quantify or visualize, thus somewhat intangible or invisible. However, we
do not usually associate direct follow-up action with them, except packaging the experience
for future projects. Therefore, the difficuity with interpreting defect prevention results is
less of an issue.

Table 17.7 summarizes the above comparison of result interpretation for different QA
alternatives. In addition to easy result interpretation, we would like to have different QA
alternatives to provide as much information as possible to help us improve quality for the
current and future products. Consequently, such additional information and related mea-
surement data are also summarized in Table 17.7. As discussed above, this information and
data can be used in direct follow-up activities after the execution of selected QA activities.
More detailed description of these measurement data and their usage to provide quality
assessment and improvement is given in Part IV, and particularly in Chapter 18.

17.4 COST COMPARISON

Testing is among the standard activities that make up the whole software development
process, regardless of the process choice or the product type. Therefore, the cost of other
QA alternatives is examined below using testing as the baseline for comparison.

296 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

Cost factors

Most traditional QA activities, such as testing and inspection, focus on defect detection
and removal. The cost can then be directly related to the effort in detecting and fixing the
problems. Another part of cost not commonly considered is the cost of down-stream damage
caused by dormant defects, or those who escaped the collection of QA activities. However,
this cost is negatively correlated with the effectiveness of the different QA techniques we
discussed above, particularly the quality levels at the exit after the application of a collection
of QA techniques. Therefore we focus on the cost of defect detection and removal in this
section.

Another complication to this cost evaluation and comparison is the defect prevention
techniques, which prevent the injection of certain faults by spending valuable resources
up-stream to block errors or to remove error sources. As discussed in the previous section,
this reduction in defect injection is hard to quantify. Therefore, we focus on the cost related
to the effort to prevent fault injection, instead the cost of down-stream cost of poor quality.

For the cases of fault tolerance and failure containment, the cost includes three parts:

Operational cost of having specific mechanisms in the operational systems, which
may slow down the overall system, reduce the system capacity, or negatively affect
other performance measures. For example, repeating failed executions in the fault
tolerance implementation using recovery blocks slows down normal processing.

Implementation cost to design, implement, and assure selected features and mecha-
nisms, such as backups and redundancies.

Failure or accident cost, which is similar to the dormant defect cost considered above
for defect prevention and defect reduction techniques.

Among the three, failure/accident cost need to be balanced against the other two to
justify spending valuable resources to implement and operate these fault tolerance and
failure containment mechanisms. On the other hand, operational cost in the form of reduced
performance or capacity is typically tolerable to the customers and users. Therefore, we
focus on the implementation cost when we consider the cost for fault tolerance and failure
containment techniques.

Cost comparison for specific QA alternatives

In general, the longer a fault remains in a software system, the higher the total cost (more
than linear increase) associated with fixing the related problems (Boehm, 198 1; Humphrey,
1995). In addition to fixing the original fault, the problems that need to be resolved include
the failures caused by the original fault, as well as other related faults which may be injected
in a chain reaction because of the presence of the original fault, for example, in a module that
needs to interface with the module containing the original fault. Therefore, fixing problems
early in the development process, or even better, preventing the injection of faults through
error removal, is generally much more cost-effective than dealing with the problems later
in other QA activities.

Unlike testing, which can only be performed after the software system is at least par-
tially implemented, inspection can be performed throughout the software development
process and on almost any software artifact. The cost for conducting different variations
of inspection ranges from very low for informal reviews to that comparable to testing for

COMPARISON SUMMARY AND RECOMMENDATIONS 297

Table 17.8 Cost comparison for different QA alternatives

QA Alternative cos t

testing medium (low - high)
defect prevention low
inspection low - medium
formal verification high
fault tolerance high
failure containment highest

formal inspections. According to some empirical data (Gilb and Graham, 1993), inspec-
tion typically brings in a return-on-investment (ROI) ratio of around 10-to-1. This effect is
particularly strong in the earlier phases of software development.

Formal verification can be viewed as an extremely formal form of inspection where all
the elements of the design or the code are formally verified. As mentioned before, the proof
of correctness for a program or a design is typically one order of magnitude longer than
the program or the design itself. Therefore, such human intensive proofs cost significantly
more than most inspections, and usually cost more than testing.

Fault tolerance techniques cost significantly more to implement due to the built-in du-
plications. Safety assurance activities cost even more because of all the associated actions
taken to address both pre-failure and post-failure issues to ensure not only low probability
of failure, but also to limit the failure consequences and damages. However, for safety
critical applications, the associated high cost is usually justified.

Table 17.8 summarizes the cost comparison presented above. Notice that we used test-
ing, the most widely performed QA activity, as the baseline of comparison and set its cost
as medium. However, different forms of testing have significantly different costs, as rep-
resented by the general range in Table 17.8. A careful cost-benefit analysis needs to be
performed based on historical data to choose the appropriate QA alternatives for different
types of software products.

17.5 COMPARISON SUMMARY AND RECOMMENDATIONS

Table 17.9 summarizes the above comparisons in three categories: applicability, effective-
ness, and cost. Among the three, only the cost comparison is directly taken from Table 17.8.
The other two are summarized from many factors related to applicability and effectiveness
as presented above. For the applicability comparison, we focus on the major applicability
limits for individual QA alternatives. For effectiveness comparison, we focus on prob-
lem type, level, and defect perspective, all summarized in one short phrase for each QA
alternative.

Based on the comparison and analysis presented so far, we make the following general
recommendations:

0 In general, a concerted effort is necessary with many different QA activities to be
used in an integrated fashion to effectively and efficiently deal with defects and ensure
product quality.

0 Defect prevention greatly reduces the chance of fault injections. Therefore, such
preventiveactions should be an integral part of any QA plan. Causal analyses covered

298 COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

Table 17.9 General comparison for different QA alternatives

QA Alternative Applicability Effectiveness cos t

defect prevention known causes systematic problems low
testing code occasional failures medium

inspection s/w artifacts scattered faults low - medium
formal verification formal spec. fault absence high
fault tolerance duplication rare-cond. failures high
failure containment known hazards rare-cond. accidents highest

in Chapter 20 can be performed to identify systematic problems and select specific
preventive actions to deal with the identified problems.

0 Inspection and testing are applicable to different situations, and effective for different
defect types at different defect levels. Therefore, inspection can be performed first
to lower defect levels by directly detecting and removing many localized and static
faults, then testing can be performed to remove the remaining faults related to dy-
namic scenarios and interactions. To maximize the benefit-to-cost ratio, various risk
identification techniques covered in Chapter 21 can be used to focus inspection and
testing effort on identified high-risk product components.

0 Software safety assurance (especially hazard and damage control), fault tolerance, and
formal verification techniques cost significantly more to implement than traditional
QA techniques. However, if consequence of failures is severe and potential damage
is high, they can be used to further reduce the failure probability, or to reduce the
accident probability or severity.

The comparison of the applicability, effectiveness, and cost of these QA alternatives
in this chapter can help software professionals choose appropriate QA alternatives and
related techniques, and tailor or integrate them for specific applications. Together with
the measurement and analysis activities described in Part IV, they can help us arrive at an
optimal strategy for software QA and achieve quantifiable quality improvement.

Problems

17.1 In software engineering literature, there are various studies comparing different QA
alternatives and techniques based on empirical data. Scan through some recent publications
and read some articles on this topic, and compare their results with the general comparisons
described in this chapter.

17.2 Most empirical studies mentioned above typically compare one QA alternative to
another (for example, inspection vs. testing), or compare different techniques within a
general category (for example, different inspection processes or techniques). Can you
replicate some of these studies in your work?

17.3
testing techniques?

17.4
software processes (non-waterfall ones) are used?.

Can you use the comparison questions listed in this chapter to compare individual

How would the applicability of different QA alternatives be different when other

PROBLEMS 299

17.5 Based on what we have covered so far in this book, list the specific background
knowledge for individual QA alternatives.

17.6 Compare both the entry and exit levels of quality for individual QA alternatives.
That is, what is the defect level before and after applying these specific QA alternatives.

17.7 Can your relate the difficulty level of result interpretation to the required expertise
to perform a specific QA activity?

17.8 Consider the specific application environment in your organization, how would
different QA alternatives compare? In addition, is cost a critical factor in your market
segment? How would it affect the choice of different QA alternatives for your products?

17.9 With the overall technology change and development, would the comparison results
we discussed in this chapter be different? How? Give some specific examples.

This Page Intentionally Left Blank

PART IV

QUANTIFIABLE
QUALITY IMPROVEMENT

Our focus in Part IV is quantifiable quality improvement, which includes two basic
elements:

0 Quantification of quality through quantitative measurements and models so that the
quantified quality assessment results can be compared to the pre-set quality goals for
quality and process management.

0 Quality improvement through analyses and follow-up activities by identifying quality
improvement possibilities, providing feedback, and initiating follow-up actions.

We start this part with a general description of the feedback loop and all the activities
involved in quantifiable quality improvement in Chapter 18. It is followed by a general de-
scription of the models and measurements that can be used for these purposes in Chapter 19.
Finally, we describe the major types of analyses and models, including defect analysis, risk
analysis and identification, and software reliability engineering in Chapters 20,21, and 22,
respectively.

This Page Intentionally Left Blank

CHAPTER 18

FEEDBACK LOOP AND ACTIVITIES FOR
QUANTIFIABLE QUALITY IMPROVEMENT

To support quantifiable quality improvement, various parallel and follow-up activities to
the main quality assurance (QA) activities are needed, including:

0 Monitoring the specific QA activities and the overall software development or main-

0 Analyzing the data collected above for quality quantification and identification of

tenance activities, and extracting relevant measurement data.

quality improvement opportunities.

0 Providing feedback to the QA and developmentlmaintenance activities and carrying
out follow-up actions based on the analysis results above.

These activities also close the quality engineering feedback loop in Figure 5.1 and refine it
into Figure 18.1:

0 The single measurement source in Figure 5.1 is expanded in Figure 18.1 to include:

- in-process measurements from the QA activities as well as the related

- environmental measurements about the overall project environment and external

developmentlmaintenance activities;

measurements beyond the project scope.

0 The quality assessment and improvement box in Figure 5.1 is significantly enlarged
in Figure 18.1 to depict the various analysis and modeling activities for quantifiable
quality improvement.

303

304 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

In-process
measurements

Planning -5-
In-process
feedback measurements Selected \

1 \ &models v

Environmental
&external
measurements

Quality Analysis Other Analysis

Defect analysis

Measurement-based Observation-based
predictive quality quality/reliability
1 modeling modeling

,

<
I
Analysis1
modeling
results

Yes - -
Exit

Figure 18.1
quantifiable quality improvement

Refined quality engineering process: Measurement, analysis, and feedback for

0 In addition to the important use of analysis and modeling results for the product
release decision in Figure 5.1, some short-term direct feedback is added from the
analysis box to the activity box in Figure 18.1.

All the important issues related to these activities, measurements, analyses, and feedback
are discussed in subsequent sections.

18.1 QA MONITORING AND MEASUREMENT

The primary purpose of QA monitoring is to ensure proper execution of the planned QA
activities through the use of various measurements. These measurements also provide
the data input to subsequent analysis and modeling activities. We next examine these
measurements and their roles in quantifiable quality improvement.

18.1.1 Direct vs. indirect quality measurements

As discussed in Part I, the correctness aspect of quality can often be directly derived from
its definition or related to various defect measurements. For example, how likely a system
is going to fail is captured by its reliability and related measurements. Alternatively, defect
measurements for a product, such as total fault count, can also be used to characterize its
quality. External data from industry and related quality models can also be used to provide a
rough estimate of product quality without actually measuring it, as described in Chapter 19.
However, such rough estimates can only serve as the starting point for some quality planning
or related activities before actual measurement data from the project in question become
available.

Measuring quality directly would typically require that we measure the results of indi-
vidual QA activities and related defects. Result and defect measurements can sometimes
be used in isolation (that is, without relating to other measurements) in QA monitoring.
For example, many software development organizations track their QA activities by the

QA MONITORING AND MEASUREMENT 305

discovered defects so far, with an implicit understanding of how these discovered defects
represent the share of total defects. The total number of defects can be estimated by var-
ious software estimation techniques. These direct quality measurements may be used in
isolation in selected quality models as well, as described in Chapter 19.

Under most circumstances, these direct quality measurements need to be used in conjunc-
tion with other indirect measurements in quality modeling to monitor the QA and software
processes and provide feedback to them. For example, even in the above example of QA
monitoring by tracking the number of discovered defects, we need some time or activity
measurements, such as days or execution hours spent in testing. These measurements would
give us a general idea of not only where we are in the proportion of defects discovered, but
also in project schedule.

In addition, various direct quality measurements need other indirect quality measure-
ments as well. For example, the measurement of reliability, which is defined to be the
probability of failure free operations of a software system for a specific time period or for
a given set of input under a specific environment (Musa et al., 1987; Lyu, 1995a; Tian,
1995), requires us to measure time or input and characterize the environment, in addition
to measuring failures.

More importantly, most of the result and defect measurements can only become available
in the later part of the software development process. In addition, fixing problems at late
stages may not be cost effective, because the longer a defect stays dormant in a system, the
more harm it is likely to cause and the more difficult to fix (Boehm, 1991). Consequently,
there is a strong need for us to use other early indicators and related quality models to provide
early quality predictions. These indirect quality indicators can generally be measured by
the environmental, product internal, and activity measurements.

Most of these direct and indirect quality measurements can be obtained from the QA
activities or from the overall software development or maintenance processes. Therefore,
they are classified as in-process measurements, as depicted in Figure 18.1. However, the
overall project environment shouldn’t be affected much by the exact process dynamics or
the specific QA activities. Similarly, various external measurements and models might also
be used in providing rough quality estimates for the current project. These environmental
and external measurements are depicted as from data sources different from the in-process
measurements in Figure 18.1.

To ensure proper collection and usage of various measurement data, we need to pay
special attention to the following:

Consistent interpretation and tracking: For defects, we need to distinguish execution
failures, internal faults, and errors in human actions. The specific problems need to
be counted and tracked consistently. Similarly, other measurements also require us
to maintain consistent interpretation.

Timely defect and data reporting: Because these measurements are used to monitor
and control software projects, we must ensure timely reporting of defects and other
dynamic measurements to keep the information current.

Proper data granularity: Different quality analyses and models might require data
at different levels of granularity. We will examine this aspect further in connection
with models for quality assessment and improvement in Chapter 19.

The data collection also needs some process and implementation support, which is
described in Section 18.4.

306 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

18.1.2 Direct quality measurements: Result and defect measurements

As described in Part I1 and Part 111, an important part of any QA activity is to analyze the
results from individual activities, to handle the problems, and to follow up on them. For
example, the result of the execution of a selected test case needs to be checked to see if it
conforms to the user expectation or product specification. In case of non-conformance, we
need to decide if the deviation can be counted as a failure. If it is deemed to be a failure, then
a defect record is opened, and all the rules and regulations of the defect handling process
apply to this reported defect. For defect resolution, the underlying fault that caused the
failure observed in testing needs to be located and fixed. In case a decision is made not
to count it as a defect, to defer the fix, etc., proper rules for defect handling need to be
followed. The details about defect handling were described in Chapter 4.

At the minimum, each defect will be uniquely identified to facilitate its tracking and
resolution. Various other specific information about the discovered defects can be recorded
and updated through the defect handling process, including:

0 Circumstantial information about the defect discovery. For example, the exact thing
that a tester was doing when this failure was triggered might provide valuable infor-
mation for the responsible developers or “code owners” to analyze the problem and
fix the underlying faults that caused the observed failure.

0 Exact location of the faults fixed in response to an observed failure, or the location
of the fault directly detected through inspection or other QA activities.

Each of these discovered defects can then be counted and relevant information about
it can be used, in combination with other information about the project, in analyses using
various quality assessment models described in Chapter 19. Such models provide us with
quality assessments, such as defect density and distribution, current product reliability, the
progress information of the QA activities, or other results. Additional information about
these defects, such as defect type, severity, types of fix applied, etc., often needs to be
collected for additional analyses that promise more valuable feedback. Details about such
additional information and its usage in quality assessment and improvement are included
in Chapter 20.

18.1.3 indirect quality measurements: Environmental, product internal,
and activity measurements

Environmental measurements can be associated with the general characteristics of the
process, product and people, or the software product’s domain (Prahalad and Krishnan,
1999), in the following hierarchy:

The process characteristics include:

- the process used: waterfall, iterative, spiral, etc.,

- activities and their relationships,

- specific development techniques used, etc.

People characteristics include:

- skills and experience,

QA MONITORING AND MEASUREMENT 307

- roles and responsibilities,

- organizational and team structure, etc.

0 Product characteristics include:

- general expectations of the target users,

- high-level product functionality,

- market environment for the product,

- specific hardwarelsoftware configuration, etc.

Environmental measurements are typically rough categorical measurements instead of
quantitative or numerical measurements. They specify a general category a product belongs
to, a specific process used, or a group of people involved. Associating numbers to them does
not usually add new information. In fact, it often obscures the main information provided.
Environmental measurements are mainly used to characterize the current product and its
market segment. This characterization can often provide the basis for some general extrap-
olation based on industrial averages, market segmentation, or product history. Sometimes,
various models make assumptions about the overall environment. These assumptions need
to be validated before actually analyses using these models can be performed.

Product internal measurements characterize various product internal attributes of se-
lected software artifacts (Fenton and Pfleeger, 1996). This category is the most studied and
most well understood in the software engineering community. These measurements can be
characterized by the following:

0 Sofhyare artifacts being measured, including software requirement specifications,
designs, program code, test cases, related documents, and other software artifacts.

0 Product (internal) attributes being measured, including control (for example, con-
trol flow paths), data (for example, operand count), and presentation (for example,
different indentation rules used).

0 Measurement of structures: Different attributes of the software artifacts may be
treated as an unstructured heap of symbols (for example, raw count such as LOC -
line of code), or as syntactical structures (for example, various control flow path mea-
surements (Fenton and Pfleeger, 1996)), or even as interconnected semantic entities
(for example, context-sensitive measures such as live data definitions (Tai, 1984)).

Most product internal measurements are available before testing, with many available in
requirement and design phases, while most direct quality measurements cannot be obtained
early. Because of this, product internal measurements are often used in various models to
provide early assessments of product quality and to identify problematic areas for focused
quality improvement.

Activity measurements directly measure specific software development and mainte-
nance activities and the associated effort, time, and other resources. Many of these mea-
surements involve dynamic measurement, which is in contrast to the mostly static product
internal and environmental measurements above. Activity measurement can be done at
different levels of granularity:

Coarse-grain activity measurements for the whole project. For example, total effort
and cycle-time can be used in various models for overall quality assessment and
project release decisions.

308 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

0 Medium-grain activity measurements for individual development phases, sub-phases,
or time periods such as weeks or months. For example, defect profiles over develop-
ment phases are commonly used in various models for quality assessment, resource
allocation, and project management.

0 Fine-grain activity measurements for individual activities. For example, test work-
load assessments for individual test cases are used in various reliability models to
provide valuable feedback to the software development process and QA activities, as
described in Chapter 22.

18.2 IMMEDIATE FOLLOW-UP ACTIONS AND FEEDBACK

Although some analyses are typically needed to provide feedback and drive follow-up
actions, a few feedback or follow-up actions can be provided or carried out immediately
for timely feedback and adjustment without further analysis. The most obvious and most
immediate follow-up action to defect discovery is defect fixing, which is usually considered
part of the QA activities themselves. Once a defect fix is attempted, usually re-verification
is carried out to certify the defect fix before it is declared as “fixed”, as described in the
defect handling process in Chapter 4.

The action of defect fixing may also have various implicit impacts on the QA activities.
For example, during Gilb inspection covered in Chapter 14, a step called process brain-
storming is performed to identify defect causes and problem areas and to formulate quality
and process improvement plans. Therefore, the subsequent steps in the inspection process,
as well as the subsequent inspections, would be affected by this immediate feedback.

Another concrete example of this impact on QA activities is in the testing activity plan-
ning and execution. For the testing of many large software systems, such as the system
testing of IBM’s commercial software products (Tian, 1998), test activity adjustment ac-
cording to defect discovery is quite common, as follows:

0 The testing team usually suspends activities related to the testing scenarios that have
triggered the defect and continues with others. This approach reduces the chance
of repeatedly finding duplicate defects that provide little additional information for
defect removal or quality improvement. The same change of areas of testing also
contributes to good testing efficiency.

0 When an integrated fix for the reported defect arrives from the development team,
the failing scenario is rerun and the testing process continues.

This adjustment to testing activities also has an impact on the suitability of model used to
analyze product reliability, as discussed in Chapter 22.

The overall results of a QA activity can often be directly measured, and sometimes
used for immediate follow-up actions. For example, in multi-phase inspection, process
termination might be influenced by the number of defects found in an inspection phase:
When it is under a certain threshold, inspection can stop; otherwise another inspection phase
is carried out. Similarly, testing sub-phases, and decision of which sub-area to test, may
well be influenced by the direct results of the previous testing sub-phase or sub-area.

Other indirect quality measurements can also be used to provide immediate feedback and
lead to appropriate adjustments to the QA activities and the overall development process.
Among the three sub-types of indirect quality measurements, environmental measurements

ANALYSES AND FOLLOW-UP ACTIONS 309

are the most stable over time, and therefore are less likely to be used for immediate feed-
back. Unlike the “in-process’’ product internal and activity measurements in Figure 18.1,
these measurements reflect the overall development environments instead of the dynamic
information about the project in progress.

Product internal measurements should be fairly stable during the later part of develop-
ment, when the code base is stable. After “code freeze”, major additions or changes to the
code base are prohibited, except for changes in response to discovered defects. Therefore,
these measurements are less likely to be used for immediate feedback during late part of
development or during software maintenance activities. However, during the early part
of development, product-internal measurements may be used for immediate feedback and
follow-up actions. For example, extremely high complexity of product components, such
as tight coupling among different modules, may be an indication of improper design. Such
problems may need to be modified as early as possible, by changing the design to de-couple
the modules in this example, to avoid later and more costly changes that would require
discarding many of the lower-level designs and code in those affected modules. Notice
that in this case, we implicitly assume a “norm” of module complexity so that exceptions
(extremely high complexity, in this case) can be detected. Therefore, we are in effect using
external input to provide feedback.

Activity measurements are the most dynamic, and can be updated in a timely fashion
and used to track the progress of QA and development activities, and make initial sugges-
tions for the adjustments to the project schedule, resource allocation, etc. Here, again, we
implicitly assume that there are plans and norms that we can compare against to provide
such immediate feedback. However, typically, formal adjustments and major decisions
need further justification and support from additional analyses, as discussed below.

18.3 ANALYSES AND FOLLOW-UP ACTIONS

The analysis and modeling activities provide feedback to the QA activities and the overall
software development/maintenance process, and serve as the basis for follow-up activities.
There is a tight connection between the types of analyses performed and the feedback and
follow-up activities in response to the specific analysis results. Therefore, we examine them
together, linking specific analyses to specific feedback and follow-up actions.

18.3.1 Analyses for product release decisions

The most important use of analysis and modeling results is to provide input for making prod-
uct release decisions, which is shown prominently in Figure 18.1, in the question: “Quality
& other goals satisfied?’. In general, comparing quality assessment results from selected
models to pre-set quality goals can help us make product release decisions. Various other
factors, such as project schedule, resource utilization, market environment, competitive
pressure, prior plans and announcements, etc., all play an important role in these decisions.
There are two basic ways to make product release decisions:

Decisions without explicit quality assessment, which may take three general forms:

- Implicit quality assessments, such as completion of planned test activities, can
be used as exit criteria, which implicitly assumes the effectiveness of the testing
activities.

31 0 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

- Indirect quality assessments, such as achieving certain test coverage goals, can
be used as exit criteria, which implicitly equates coverage levels to reliability
levels.

- Otherfactors, such as project schedule, cost, and resource utilization, can some-
times be used as exit criteria.

0 Decisions based on explicit quality assessments: Two types of quality assessments
exist depending on the two major quality perspectives described in Chapter 2:

- Failure-related quality assessments from a customer’s or external perspective,

- Fault-related quality assessments from a developer’s or internal perspective,

such as various reliability measures and impact assessments.

such as defect density and count estimates for latent defects.

The most direct and obvious use of quality assessments for product release decisions
is the use of various reliability assessments. Reliability is a measure of quality directly
meaningful to customers and users. The basic idea is to set reliability goals in the quality
planning activity during product planning and requirement analysis early in the software
development process, and later on to compare the reliability assessment based on testing
data to see if this preset goal has been reached. If so, the product can be released. Otherwise,
testing needs to continue and product release needs to be deferred. Various models exist
today to provide reliability assessments and improvement based on data from testing, as
described in Chapter 22.

Besides reliability, other failure-based quality assessments can also be used for product
release decisions. For example, for safety critical systems, the focus is not on all the failures,
but only on those with severeconsequences. Therefore, failure impact analysis may be used
as a product release criterion. For example, the product can be released if the worst-case
damage is limited to a preset amount. Sometimes, a composite release criterion, such as
reliability goal for the general problems combined with worst-case damage limit, can be
used.

Many companies use internal defect information to build quality models and use the
related results for product release decisions. Such usage was particularly prevalent before
software reliability engineering becomes widely used in industry. For example, defect
profile based on past projects from the same organization can be used to put the current
defect measurement into perspective, and to estimate the latent defects, or the remaining
faults still in the systems that are likely to cause problems to users. Product release criterion
can then be based on a threshold of such estimated latent defects. The advantage of such
release criteria is the availability of internal product and defect data that can be used to make
such decisions. The disadvantage is the tenuous connection between such quality estimates
and quality as perceived by target customers and users. Although there is generally a
positive correlation between the two, a functional mapping from such faults to failures and
reliability simply does not exist.

On the other hand, acceptance testing is typically the last major QA activity carried out
before product release, no matter what kind of development process is followed. Naturally,
quality analysis results based on this activity can be used as part of the input for product
release decisions. In addition, product release decisions are generally accompanied by
some forms of final reviews that focus on quality or other factors mentioned above. The
quality reviews typically include: conformance to certain standards, presence or absence
of major functions or features, match or mismatch between the overall quality levels and

ANALYSES AND FOLLOW-UP ACTIONS 31 1

users’ quality expectations. With the general connection of acceptance testing as the last
major QA activity, the product release decision is closely linked to the question: “When to
stop testing?” that we have already addressed in Chapter 6.

Based on the above discussion and the analysis of exit criteria for different types of
testing in Chapter 6, the product release decision can be made as follows:

0 If quality measurements directly meaningful to target customers are available, such as
reliability, safety, and other failure-based measurements, they should be used as the
primary criterion for product release. Explicit quality analysis and modeling based
on various measurement data are required to support such product release decisions.

0 When the above are not available because of lack of data or other difficulties, internal
quality assessments, such as various internal defects and fault-based measurements,
can be used.

0 In the absence of any direct quality assessments,coverage-based product release crite-
ria are probably the best we can hope for. Consequently, they are the most commonly
used product release criteria based on indirect or implicit quality assessment.

0 When none of the above is available, we can use the completion of certain QA
activities or other factors as the last resort to make product release decisions.

18.3.2 Analyses for other project management decisions

Termination criteria for various QA activities, or sometime for general software devel-
opment activities, can also be based on analysis results from various quality assessment
models. The product release decision discussed above can be treated as a special case of
these termination criteria where the termination of the last testing sub-phase is accompa-
nied by the product release. Different concerns of different sub-phases might induce certain
changes to the corresponding termination criteria:

0 In later sub-phases of testing, such as system testing, beta testing, integration testing,
etc., the focus is typically on the overall operation of the software system from the
users’ perspective. Therefore, when we make test termination decisions, little or no
adjustment is needed to use the analysis and modeling results for product release
discussed above.

0 In earlier sub-phases of testing, such as in unit and component testing, the focus is on
the internal implementation of a product subpart. In addition, the complete system
may not be operational yet. The overall system reliability from a users’ perspective
may not be defined nor can it be assessed. Therefore, criteria based on test coverage,
internal defects, or even just schedule and resources, could be more easily justified.

The termination criteria for other early QA activities, such as inspection of design and
code, have more similarities to earlier sub-phases of testing than to later ones. Most likely
some criteria based on internal assessments can be adopted, such as completion of planned
activities, coverage, and occasionally modeling results based on internal defects. For exam-
ple, exit criterion for inspection is typically completion of planned objects to inspect. This
completion usually represents certain levels of coverage that are determined in the planning
stage for inspection.

31 2 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEOUALITY IMPROVEMENT

The quality assessment and modeling results can also be used to support various other
management decisions, primarily in the following areas:

0 Schedule adjustment: This decision is probably the one most closely identified with
product release or phasehb-phase termination decisions. When there is a mismatch
between a product’s quality progress and project schedule, adjustment is called for.
The quality assessment results typically will indicate when the quality goal will be
satisfied. This input can be used to delay (more often) or speed up (less often) the
project schedule.

0 Resource allocation and adjustment: Similar to the above, if a project is behind
schedule or ahead of schedule, resource allocation decisions may be made to try to
compensate for it by adding or removing certain resources, although the impact of
this is limited (Brooks, 1995). When such analysis results are available for subparts
of projects, then re-allocation of planned resources among those different subparts
may be a good idea, so that high-risk or problematic areas can receive more attention
and the overall product quality can be improved in the most cost-effective way. This
topic is discussed in conjunction with various risk identification techniques needed
to support such resource allocation decisions in Chapter 21.

0 Planning for post-release product support: Sometimes, product release decisions
are made regardless of the current quality level. For example, a product might be
released due to competitive pressure, or to capture market share even if the preset
quality goals have not been achieved yet. Under such circumstances, the quality
analysis results can be used to plan for anticipated increase for post-release product
support. Similarly, if we have information about problematic areas, we can also
better plan for post-release product support, for example, to allocate more support
personnel to potentially problematic areas.

Planning for future products can be based on an assessment of quality strength and
weakness of the current product, or a comparison between this and other competitive
products.

18.3.3 Other feedback and follow-up actions

The analysis and modeling activities can also provide feedback to themselves, although
mostly indirectly. For example, if the analysis results are not usable by the upper manage-
ment to make product release decisions, it might be an indication that inappropriate models
and measures are used. As a concrete example, suppose only reliability is assessed and
managed during the development of a mass-market end-user product without paying atten-
tion to usability, the upper management may totally disregard the quality modeling results
and base their product release decision on other evidence. In this case, if the problem was
discovered early, new quality measurements and models might be adopted to assess the
usability or other aspects of product quality.

A less drastic adjustment is usually called for, because the major concerns, such as in
the usability vs. reliability focus in the example above, should have been addressed in the
quality planning stage already. One concrete example of this is the application of software
reliability engineering in IBM Software Solutions Toronto Laboratory (Tian et al., 1995)
summarized below:

IMPLEMENTATION, INTEGRATION, AND TOOL SUPPORT 31 3

0 At the beginning of the project, the commonly recommended time measurement for
reliability analysis, CPU execution time (Musa et al., 1987), was selected as the
primary time measurement for reliability analysis and modeling.

0 As time goes on, it was discovered that the modeling results based on this time
measurement were not stable for this kind of products due to some specific product
characteristics.

0 Additional analysis was performed to identify other alternative time measurements.
Test run count was found to provide more stable modeling results and was adopted.

Follow-up studies also identified other appropriate time measurements, such as transactions
processed, and combined timing information with input information to identify problematic
areas for focused reliability improvement (Tian, 1995; Tian and Palma, 1997; Tian and
Palma, 1998). The models used, analyses performed, and the overall results from this
series of studies are described in Chapter 22.

Longer-term and broader-scope follow-up activities are those carried out over more than
a few months and beyond the scope of the current project. Such activities can be supported
by the analysis and modeling activities described above, the overall experience of the current
project, and an overall analysis of the quality engineering process for the current project.
The follow-up and improvement can be concentrated in three major areas:

0 Futureproduct quality improvement: This is similar to the above feedback and follow-
up activities, but with the added hindsight. Better quality planning can be formulated
based on the experience of the current project, both in terms of goal setting and the
selection of the overall QA strategies. The concrete results from the current project
would allow us to set more realistic quality goals. The experience with specific QA
strategies would allow us to select effective QA techniques, proper measurements,
and analysis models for use in future projects, and to execute the plans more smoothly.

0 Process quality improvement: This improvement can be achieved in two general areas,
the quality engineering process itself and the general software engineering process.
The former can be based on the experience with carrying out the current quality
engineering process, while the latter would also benefit greatly from alternative ex-
perience using other development processes to develop similar products. Therefore,
a comparative assessment can be made, and new processes, or new process elements,
can be adopted or adapted to work better for future projects.

0 People quality improvement: A more intangible benefit is the experience gained by
people in many areas, including domain knowledge of the specific product, software
process and technology experience, and quality engineering knowledge. Their ex-
perience can be packaged to ensure effective transfer of the collective knowledge
and experience, or the so-called institutional memory, to new project personnel. In
addition, specific shortcomings can be identified for further education and training
for the current project personnel.

18.4 IMPLEMENTATION, INTEGRATION, AND TOOL SUPPORT

All the activities described above need to be implemented as part of the overall quality
engineering activities, supported by various automated tools to allow for an effective and
efficient implementation, and integrated into the quality engineering process.

31 4 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

18.4.1 Feedback loop: Implementation and integration

As described in Chapter 5, the quality engineering process connects the main QA activities
in the center with the quality planning activities at the beginning and the measurement and
analysis activities as the parallel and follow-up activities. The measurement and analysis
activities monitor the QA activities as well as the overall development activities, and provide
feedback to them and serve as the basis for follow-up actions. From the operational view,
these measurement and analysis activities complete the feedback loop and play a central
role in the quality engineering process. We next identify specific feedback loop passages by
examining 1) the specific measurements used as input to various analyses; and 2) specific
feedback produced as output from them.

As described in Section 18.1, the direct quality measurements include results and defect
measurements, and the indirect quality measurements include activity, product internal,
and environmental measurements. We need to enlarge the input sources for measurements
to include all the sources to provide these four sub-types of direct and indirect quality
measurements:

1. Results and defect measurements: The main source of this data input is the QA
activities themselves, probably through the use of defect tracking tools.

2 . Activity measurements: Both the QA activities as well as the general development
activities are measured here.

3. Product internal measurements: The main source of this data input is the current
product under development instead of the QA activities. However, the current product
is directly affected by the development process and so is its measurement values.

4 . Environmental measurements: The main source of this data input is the overall project
environment instead of the QA activities.

The first three above are from QA/development/maintenance activities and processes.
Therefore, they are classified as in-process measurements. The environmental measure-
ments are not from these processes or activities, similar to some external measurements
that might be used for comparison or for rough quality estimates.

On the analysis and modeling output side, different kinds of feedback include immediate
feedback without performing analyses, and other short- to long-term feedback based on
analysis and modeling results. In fact, the frequency of feedback as well as the feedback
passages are both affected by the “term” of the feedback, which we arrange in the following
spectrum in increasing duration:

Immediate feedback: Such feedback can be provided without going through analysis
or modeling on collected data. Therefore, it can be provided immediately and fre-
quently. The time duration and the associated frequency are typically in the range of
a few days to at most (and rarely) a few weeks. The data are typically the results and
defect data, as well as some activity data, and the data sources are likely to be from
the QA activities themselves.

Short-term or sub-project level feedback: Most of the feedback and follow-up ac-
tivities are at this time duration or at the sub-project level, such as termination of
project phases or sub-phases and transition to the next one, schedule and resource
adjustments, staffing buildup, etc. These activities are typically within a sub-part or

IMPLEMENTATION, INTEGRATION, AND TOOL SUPPORT 31 5

I Environmental
I measurements - Measurement-based Observation-based

predictive quality quality/reliability
modeling modeling 6

Figure 18.2
feedback paths

Further refined quality engineering process with detailed measurement sources and

L

External
measurements

sub-phase of a project, but not at the overall project level. The typical frequency is
the weekly status report and adjustments, or sometimes up to a few months at most
in duration. All types of measurement data are used and analyzed for these feedback
and follow-up activities.

Medium-term or project level feedback: The most important feedback and decision
associated with this category is the product release decision. Other types of feedback
and follow-up activities include adjustments to overall project schedule, quality goals,
etc. The data are accumulated over the project, especially in the latest part of the
project, usually for durations of more than a few weeks and sometimes over a year.
All types of measurement data are used and analyzed for this kind of feedback and
follow-up activities.

Packaged measurements
and long-term feedback Project boundary

To external

0 Long-termfeedback: Unlike the medium-term feedback that is still limited to within a
single project, the long-term feedback is aimed at overall organizational improvement
over many projects and many years. Although all types of measurement data may
be used for this purpose, typically only those at the coarse granularity are commonly
used. We will explore this issue further in connection with some coarse-grain quality
models in Chapter 19.

& models 7 databases

31 6 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

18.4.2 A refined quality engineering process

With the above discussion of the different types of data sources and different types of feed-
back and associated feedback passages, we can further refine the quality engineering process
depicted in Figure 18.1. The resulting process with this detailed information included is
depicted in Figure 18.2, in particular:

0 The analysis and modeling activities not only take measurements from and provide
feedback to the quality engineering process, but also interact with the overall soft-
ware development or maintenance processes. Consequently, we expanded the quality
planning to product planning, and QA activities to development/maintenance activ-
ities. Quality planning is depicted as part of product planning, and QA activities as
part of development/maintenance activities in Figure 18.2.

0 The product under study is represented in Figure 18.2 as 1) the object that the current
software development/maintenance activities are applied to, and 2) the source of
some measurement data (product internal measurements) for analysis and modeling
activities.

0 The project boundary is clearly marked in Figure 18.2 by the dashed rectangle to
distinguish within-project measurements and feedback from those cutting through
project boundaries.

The in-process measurements from the development/maintenance activities and re-
lated objects are the primarily data input. In particular, the single in-process mea-
surement link in Figure 18.1 is replaced by the following three links in Figure 18.2:

- Results and defects measurements are primarily from QA activities and are

- Activity measurements are depicted by a link from the overall development/-

- The link from the product to analysis/modeling activities depicts product inter-

depicted by a link from QA activities to analysis/modeling activities.

maintenance activities to analydmodeling activities.

nal measurements.

0 In addition, other measurement data and related sources are also depicted in Fig-
ure 18.2:

- Environmental measurements are depicted as from within the project boundary
but not from the (in-process measurement) sources above.

- External data input and related modeling results from industry,existing research,
etc., may also be used in the quality engineering process. This is also depicted
in Figure 18.2 as from beyond this single project boundary.

0 All types of feedback are depicted explicitly in Figure 18.2 by individual feedback
paths, including immediate, short-term, medium-term, and long-term feedback paths:

- Immediate feedback is depicted as a short loop from QA activities directly back
to the enclosing development/maintenance activities.

- Short-term feedback is depicted as directly coming from analysis and model-
ing activities to development/maintenance activities. Some specific short-term

IMPLEMENTATION, INTEGRATION, AND TOOL SUPPORT 31 7

feedback can also be provided from the above sources and destinations by way
of examining the product release question (“Quality and other goals satisfied?’).

- Medium-term feedback is depicted as based on measurement and modeling
results examined in connection to the product release question. The destinations
of this feedback are project planning, developmentlmaintenance activities, and
analysis and modeling activities.

- Long-term feedback is typically beyond the scope of a single project. There-
fore, it is explicitly depicted as going beyond project boundary in Figure 18.2.
Relevant results can be accumulated into some company-wide, industry-wide,
or even global databases and general quality models, such as discussed in Chap-
ter 19, for use as external input in future projects.

18.4.3 Tool support: Strategy, implementation, and integration

All the above measurement, analysis, and feedback activities need to be supported by various
automated tools to allow for an effective and efficient implementation. Three classes of
tools are needed to support these activities:

Data gathering tools: These tools support gathering of both direct and indirect quality
measurements and feed the analysis tools with the raw data:

- Direct quality measurements, such as defect information, can be gathered using
various defect tracking tools.

- Indirect quality measurements can be gathered using code measurement tools
that take source programs as input and produce code metrics data as output,
test logging tools that capture test activity and input information, and project
databases for environmental measurements.

0 Analysis tools: These tools help us perform data processing, analysis, and modeling:

- Various models can be used to analyze the collected data with the support of
these tools.

- The raw measurement data often need to be processed before model fitting, and
the modeling results often need to be transformed to examine various entities
of interest. These additional data processing tasks are also supported by these
analysis tools.

Presentation tools: These tools help us examine the analysis results and present
them to the interested parties so that appropriate actions can be taken to improve
quality. Appropriate presentation tools need to be selected or constructed to make
the interpretation of analysis results easy and to support exploration of alternatives.

Unfortunately, there is no single tool that satisfies all the needs for data collection,
analysis, and presentation. One option is to construct a comprehensive tool to satisfy all
our needs. However, this solution is impractical because of the significant effort required.
It is also wasteful because many individual tools are commonly used to support various
activities within software development organizations. As a viable alternative, a collection
of loosely integrated tools can be used. Existing tools can be adapted to support some of our

31 8 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

individual needs. Some special purpose tools can be constructed for specific applications
where no appropriate tool existed. In general, the choice of tools depends on their internal
characteristics and external constraints. Several important issues need to be considered:

0 Functionality and availability: Are there software tools with the desired function-
ality? If some functionality is not supported by any existing tool, some specialized
tools need to be constructed.

0 Usability: Is the tool easy to use? The platform on which the tool runs and end user
preferences also need to be considered.

0 Flexibility: Is the tool prepackaged or flexible (programmable)? Tools often need to
be modified to fit different needs.

0 Integration: Can these tools be integrated to work together toward the common goals?
This is particularly important when multiple tools are going to be used.

The issues of tool support are common problems faced by many large software devel-
opment organizations, who usually adopted their own strategies. For example, to support
the measurement, analysis, and feedback for the development and testing of various large
commercial software products, a particular strategy depicted in Figure 18.3 was adopted
by the IBM Toronto Laboratory (Tian et al., 1997). Key characteristics of this tool support
strategy include:

0 Overall strategy: To accommodate the diverse software measurement environments
and data sources, and to support different analyses and usages of the analysis results,
a comprehensive suite of tools, both those from within IBM and external ones, were
used for data gathering, analysis, and result presentation. In Figure 18.3, each tool
is shown graphically as a rectangle, with its name identified in boldface and its main
functions listed. The sources for the data capturing tools and the reports produced
by the presentation tools are shown in ovals. The interconnections (directed links)
show the information flow among the different tools, data sources, and reports.

0 Data gathering tools: The development and test groups used existing IBM tools to
track various data. CMVC (Configuration ManagementNersion Control, an IBM
product) and IDSS (Integrated Development Support System, an IBM internal tool)
were used to record and track defect data. Home-grown applications, such as TestLog
and SlaveDriver, were used to provide manual or semi-automatic data recording of
test cases and execution information, under access control and automated consistency
checking. These tools were also used, with minor modifications, to gather defect
and test data. Product internal data defined on source programs were computed in
two ways: 1) using REFINE' and related utilities based on some earlier work on
program understanding analysis (Buss and Henshaw, 1992), or 2) using W-Analyzer,
a specifically constructed set of utilities, to analyze the intermediate code (W-code)
generated by the compilers (Tian and Troster, 1998).

0 Analysis tools: The analyses techniques used for these projects included reliability
growth modeling, integrated test data analysis using tree-based models, and predictive
modeling linking code metrics to quality data. A commercial tool S-PLUS2 was used

'REFINE is a trademark of Reasoning Systems Inc.
'S-PLUS is a trademark of Mathsoft, Inc.

IMPLEMENTATION, INTEGRATION, AND TOOL SUPPORT 31 9

Regression Analysis ;

Resul IsFeedback

Visualization

and Analysis

Result

Reports

Figure 18.3 Tools for quality measurement, analysis, and feedback

to support tree-based modeling, data analysis, and several commonly used SRGMs.
Another external tool, SMEFWS (Farr and Smith, 1991), was used for additional
SRGMs when necessary. The statistical analysis tool SAS3 was also used for various
statistical analyses of the measurement data.

Presentation tools: Many of the data collection and analysis tools discussed above do
not have good user interfaces or presentation facilities, nor are they always available
on the desired platforms. Various new utilities were developed within S-PLUS to
support visual and graphical presentation techniques. TreeBrowser, a new tool on
the OS/2 and AIX platforms was also developed for interactive exploration of the
analysis results (Troster and Tian, 1996).

0 Tool integration: Integration of tools were achieved by: 1) adopting external rules
for data contents and formats to ensure inter-operability of tools, 2) using common
tools for multiple purposes, and 3) using other utility programs that convert data for
interoperability of tools.

3SAS is a trademark of the SAS Institute Inc.

320 FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLEQUALITY IMPROVEMENT

18.5 CONCLUDING REMARKS

Various parallel and follow-up activities to the main QA activities are needed to support
quantifiable quality improvement through a measurement-analysis-feedback loop. These
activities and how they support our overall goals are summarized below:

0 Monitoring and measurement activities: They provide direct quality quantification if
some quality measures can be directly extracted from raw measurement data. How-
ever, most common ways to quantify quality require further analyses and modeling.
Under such situations, these activities provide the measurement basis and data input
for quality quantification.

0 Analysis and modeling activities: They provide quantitative assessments of quality
based on the measurement data collected in the above activities. Sometimes, various
quality improvement opportunities can be identified through these analyses.

0 Feedback and improvement activities: The analysis and modeling results from the
above activities can be fed back to the QA and the overall software development and
maintenance activities for project management. The quality improvement actions
can be initiated as follow-ups to the analyses that identified such opportunities.

Therefore, these parallel and follow-up activities in the feedback loop play a central role
in quantifiable quality improvement. With the operational and support aspects covered in
adequate detail in this chapter, we can now turn our attention to the analysis and modeling
activities for quantifiable quality improvement in the remaining chapters of Part I V

0 A general description of the models and measurements that can be used for quantifi-
able quality improvement is presented in Chapter 19.

0 The major types of analyses and models, including defect analysis, risk analysis and
identification, and software reliability engineering, are described in Chapters 20,2 1,
and 22, respectively.

Problems

18.1
categories: pre-QA, parallel to QA, post-QA.

18.2 Many of the above activities last over a period of time. Repeat the above question
to identify the start and finish time of each activity, or draw a rough activity profile (similar
to Figure 5.3 in Chapter 5).

18.3 Measurement data were classified in this chapter by what they measure (direct vs.
indirect quality) or by where they come from (data sources). Provide a mapping between
these two classification schemes.

18.4 Can you think of other classification schemes for (quality-related) measurement
data? What is the classification scheme for software measurements in your organization?
Can you map them to our classification schemes in this chapter?

18.5 In actual collection of measurement data, there are many practical problems and
obstacles. For example, detailed discussions of such problems related to reliability mea-
surement and modeling are included in Musa et al. (1987). Particularly relevant to this

Examine the activities described in this chapter, and classify them into the three

PROBLEMS 321

chapter is the discussion on failure determination, timing and activity measurement. Exam-
ine some of your practical measurement implementation problems, and propose/describe
appropriate solutions to them.

18.6 We have examined many different data usages and feedback paths. Draw a feedback
loop for each of them separately.

18.7
them to that in Figure 18.3.

What are the measurement and analysis tools used in your organization? Compare

This Page Intentionally Left Blank

CHAPTER 19

QUALITY MODELS AND MEASUREMENTS

The primary purpose of the measurement and analysis activities is to provide feedback
and useful information to manage software quality, the quality engineering process, and
the overall software development/maintenance process and activities. The feedback and
information provided are based on the analysis results using various models on the data
collected from the quality assurance (QA) and the general development activities. In this
chapter, we examine and classify these models, relate them to the required measurements,
compare the different models, and outline a general strategy to select appropriate models and
measurements to satisfy specific quality assessment and improvement goals under specific
application environments. A preliminary survey (Tian, 2004) is expanded in this chapter
with more details and examples based on actual scenarios from software testing in IBM
(Tian, 1998).

19.1 MODELS FOR QUALITY ASSESSMENT

We define quality assessment models as analytical models that provide quantitative assess-
ment of selected quality characteristics or sub-characteristics based on measurement data
from software projects. Such models can help us obtain an objective assessment of our
current product quality, in contrast to the often unreliable subjective assessment based on
personal judgment or imprecise qualitative assessment. When applied over time, these
models can provide us with an accurate prediction of the future quality, which can be used
to help us make project scheduling, resource allocation, and other management decisions.

323

324 QUALITY MODELS AND MEASUREMENTS

Generalized Quality Evaluation Models

J. customize t generalize

Product-Specific Quality Evaluation Models

Semi-Customized Obscrvation-Based Measurement-Driven
Predictive Models

Figure 19.1 Classification of quality assessment models

In addition, some models can also help us identify problematic areas so that appropriate
remedial actions can be applied for quality and process improvement.

The existence of a defect indicates non-conformance to specific specification items.
Therefore, various defect measurements, such as defect density (Kan, 2002), can be used as
direct indicators of quality. Sometimes, the correctness aspect of quality can be measured
and derived directly from its definitions. For example, reliability can be defined as proba-
bility of failure-free operations for a specific period or input set and measured accordingly
(Musa et al., 1987; Lyu, 1995a; Tian, 1995). Once such direct quality data are gathered,
we can use them in corresponding models to evaluate product quality defined accordingly.
However, as noted in the above reliability assessment, some measure of time or input set is
needed in addition to the direct quality measurement.

As described in the previous chapter, quality and correctness are also affected by various
product internal attributes, the interaction between software products and their users, and the
general characteristics of the product, the development process,and the overall environment.
In addition, direct quality measurements can only be measured with accuracy towards the
end of software development, while various indirect quality measurements can be available
much earlier and provide the basis for early quality predictions. As a result, we also need
to monitor these indirect quality measurements and analyze them using various quality
assessment models, so that we can assure and improve quality by controlling these indirect
entities, particularly in the early part of software development process.

When interpreted under this context, quality assessment models provide direct quality
assessment results using various direct or indirect quality measurements. Depending on
whether product-specific measurements and results are used and provided, we can classify
existing quality assessment models into two broad categories: generalized models and
product-speciJic models, as depicted in Figure 19.1, with detailed descriptions in subsequent
sections.

19.2 GENERALIZED MODELS

Many existing models provide rough estimates of product quality in the form of industrial
averages or general trends for a wide variety of application environments with little or no
project-specific data required. We call these models generalized quality assessment models,
or generalized models for short. There are three subcategories of generalized models:

0 An overall model provides a single estimate of overall product quality.

GENERALIZED MODELS 325

0 A segmented model provides different quality estimates for different industrial seg-
ments.

0 A dynamic model provides quality trend or distribution over time or development
phases.

We next examine each subtype in turn and give some examples.

Overall models

Overall quality models are the most general subtype of generalized quality models, which
provide a rough estimate of product quality without requiring any product specific measure-
ment or even a general characterization of the product segment. Because of this general
nature, such models only provide a very rough estimate of product quality. However, if some
additional information is available about the product under study, better quality estimated
can be provided by alternative models.

As an example of overall models, defect density can be defined as:

total defects
product size ’ defect density =

where the product size is often measured by the lines of code (LOC), function points, etc.
(Kan, 2002). This model would lump all products together, and provide a single defect
density estimate based on all observed defects for all products. Various product sizing
models can also be used in conjunction with defect density to estimate the total defects for
a given product.

An overall model can also be an abstraction of the commonly observed facts about quality
generally true over all kinds of application domains or product segments. One example of
this is the uneven distribution of defects summarized in the so-called 80:20 rule, which states
that 80% of the defects are concentrated in 20% of the product modules or components.
Similarly, various general observations about software defect (Boehm and Basili, 2001),
software risk (Boehm, 1991), and the general linkage between process maturity (CMM
level) and quality (Humphrey, 1989; Paulk et al., 1995), can also be considered as examples
of overall quality models.

Segmented models

If some general information about the product under study is available, we can use segmented
models instead of overall models to get a better quality estimate. For example, the above
defect density model can be refined into a segmented model if we use market segmentation
to group products and provide different defect density estimates accordingly. Similarly,
sizing models tailored for different product segments can be used with such defect density
models to estimate the total defects for a given product.

Table 19.1 gives another example of segmented models, based on empirical data (Leve-
son, 1995; Lyu, 1995a), which estimates reliability levels for different product segments.
There are three products segments: 1) safety-critical software, such as control software for
medical devices or nuclear reactors, 2) commercial software, such as telecommunication
software and business applications, and 3) auxiliary software, such as computer games
and other low-cost PC software. The reliability level is measured by the failure rate, or the
average number of failures per operating hour.

326 QUALITY MODELS AND MEASUREMENTS

Table 19.1 A segmented model for reliability level estimation

Product Type Failure Rate (per hour) Reliability Level

safety-critical software 10-7 ultra-high
commercial software 10-3 to 10-7 moderate
auxiliary software > 10-3 low

0.0 0.5 1 .o 1.5 2.0 2.5 3.0

time

Figure 19.2 Effort or defect profile in the Putnam Model

Dynamic models

As a subset of generalized models, the dynamic models provide information about quality
over time or development phases. For example, a general profile of defect distribution over
different development phases can be considered a quality model of this type.

Alternatively, fine grain dynamic models may measure the precise time instead of the
rough time corresponding to development phases. The most well-known model in this
category is the Putnam model (Putnam, 1978), that generalizes empirical effort and defect
profiles over time into a Rayleigh curve. Figure 19.2 gives an example of such an profile,
with failure rate

r = 2Bc~te-"~*

or, equivalently, with cumulative failures F = B(1 - e--at2). It is used to estimate defects
from a specific development phase in Example A (Section 19.6).

Various other general observations about systems dynamic behavior related to defects
or quality can also be considered as examples of dynamic models. For example, the overall
expectation of reliability growth during product testing and defect removal commonly as-
sumed in software reliability engineering (Musa et al., 1987; Lyu, 1995a) can be considered
a generalized dynamic model.

PRODUCT-SPECIFIC MODELS 327

Table 19.2
releases of a product

DRM (defect removal model): defect distribution for previous

Requirement Design Coding Testing Support

5% 10% 35% 40% 10%

Sometimes, dynamic models and segmented models can be combined to give us seg-
mented dynamic models. For example, if general defect or reliability patterns emerge for a
product segment, we can use these new patterns to better estimate the defect or reliability
dynamics for this product segment instead of using the general dynamic models for it.

19.3 PRODUCT-SPECIFIC MODELS

Product-specific quality assessment models, or product-spec$c models for short, provide
more precise quality assessments using product-specific data. They can be further divided
into three sub-categories:

0 Semi-customized models extrapolate product history to predict quality for the current
project.

0 Observation-based models estimate quality based on observations from the current
project.

0 Measurement-driven predictive models establish predictive relations between various
early measurements and product quality, and use them for QA and improvement.

We next examine each subtype in turn and give some examples.

Semi-customized models

Semi-customized models make use of general characteristics and historical information
about the product, process, or environment, to provide quality extrapolations. For example,
various defect removal models (DRMs) commonly used in industry (Kan, 2002), such as
the one in Table 19.2, provide a defect distribution profile over development phases based
on previous releases of the same product. The difference between this DRM and the general
defect profile we mentioned in the above generalized dynamic models is that it is based
on the previous releases of the same product instead of a general profile for all available
products. Consequently, the use of this relevant local information can help provide more
accurate quality estimates.

The information from these semi-customized models can be directly used to predict
defect distribution for the current release. For example, with the DRM in Table 19.2, if we
have found 20 design defects in the current product, we can predict that the total defects
will be around 20/10% = 200.

A more detailed semi-customized model is the defect dynamics model and orthogonal
defect classification (ODC) model (Chillarege et al., 1992), both of which will be introduced
in Chapter 20. In these models, more detailed information about defects are profiled by
individual phases where they were injected, where they were discovered, and by categories
according to a systematic classification scheme. Such models can help developers and

328 QUALITY MODELS AND MEASUREMENTS

testers focus on high-defect areas for timely and cost-effective problem resolution and
quality improvement.

Observation-based models

Observation-based models relate observations of the software system behavior to informa-
tion about related activities to provide more precise quality assessments. Examples of such
models include various software reliability growth models (SRGMs) (Lyu, 1995a), where
observed failures and associated time intervals are fitted to SRGMs to evaluate product
reliability. For example, in the Goel-Okumoto SRGM (Goel and Okumoto, 1979), the
relationship between the expected number of failures m(t) and testing time t is given by
the function:

m(t) = ~ (1 - e--bt).

N and b are model parameters that can be estimated from the observation data.
Unlike generalized models that use industrial averages and semi-customized models that

use historical data, observation-based models usually only use data from the current project.
For example, SRGMs only need the failure and time data from the current project to make
their reliability assessments. Details about these models are covered in Chapter 22.

Measurement-driven predictive models

Measurement-driven predictive models establish predictive relations between quality and
other measurements based on historical data, provide early predictions of quality, and
identify problems early so that timely actions can be taken to improve product quality.
Various statistical analysis techniques and learning algorithms can be used to establish such
predictive relations (Tian, 2000), which are covered in Chapter 21.

Once such predictive relations are established, we can affect the development process by
using them to identify high-risk areas for focused remedial actions. For example, tree-based
models were used to analyze the relationship between defect fixes (DF) and various design
and code measurements for two IBM software products LS and NS (Tian and Troster, 1998).
Table 19.3 lists subsets of modules with the highest DF per module. The analysis results
indicated that the high-defect modules of legacy products such as LS are associated with
numerous changes and high data complexity, while high-defect modules for new products
such as NS are associated with complex design and control structures. Various development
teams have since used these predictive relations to focus their inspection effort on a few
selected modules to effectively utilize limited resources.

19.4 MODEL COMPARISON AND INTERCONNECTIONS

Different types of quality assessment models and their relations can be compared by look-
ing at their ability to provide useful information, their applicability to different project
environments, and their inter-connections. Specifically, we can compare the following:

0 Usefulness of the modeling results, in terms of how accurate the quality estimates
are and the applicability of the models to different environments.

Model inter-connections, which can be examined in two opposite directions:

MODEL COMPARISON AND INTERCONNECTIONS 329

Table 19.3 High-defect modules for two products identified by tree-based modeling

Product Subset #Modules Mean-DF

LS lrrr 16 9.81
rlr 53 10.74
rr 17 22.18

whole product 1296 1.8

NS rlll 8 55.0
rr 5 77.0

whole product 995 7.9

Table 19.4 Summary of quality assessment models and their applications

Model Type Sub-Type Primary Result Applicability

generalized models rough quality estimates all or by industry
overall overall product quality across industries

segmented industry-specific quality within an industry
dynamic quality trend over time trend in all

product-specific quality models better quality estimates specific product

observation-based quality assessments current product
semi-customized quality extrapolation prev+cur release

measurement-driven quality predictions both above

- Customizution of generalized quality models to provide better quality estimates

- Generalization of product-specific models when enough empirical evidence

when product-specific information is available.

from different products or projects is accumulated.

Table 19.4 summarizes the primary results and applicability for all the model types and
sub-types. The usefulness of a model mainly depends on two factors:

0 Is it applicable to the specific development environment and the specific product
under development or maintenance?

0 If so, how accurate the model is in its quality estimates?

Then, this usefulness can be weighted against its cost, in particular, the cost of collecting
the required measurement data, which is typically the dominant part of the modeling cost.

Generalized models provide rough quality estimates based on empirical data from in-
dustry. Product-specific models provide more precise quality assessments using product-
specific measurements. However, generalized models are more widely applicable and less
expensive to use than product-specific models, because they do not require product-specific
measurements.

Consequently, generalized models may be more useful in the product planning stage, and
in the early phases of product development, when most product-specific data are unavailable.
One exception to this general rule is when there exist historical data for the previous releases
of the current product. Semi-customized models can be used to provide better estimates

330 QUALITY MODELS AND MEASUREMENTS

under this situation. However, under most circumstances, these historical data are not
expected to be complete and cover all aspects of product quality. Therefore, generalized
models can still be used to complement semi-customized models.

As development or maintenance activities progress, more measurement data can be
collected and various detailed quality models in the category of product-specific models,
such as observation-based models and measurement-based predictive models, can be used to
better manage the QA activities as well as the overall software development or maintenance
processes. We will see some examples about the different concerns at different stages of
software development, and the selection of different quality models in Section 19.6.

As we have already seen in the above examples of different quality models, there are
generally counterparts in generalized models to product-specific models, and vice versa.
We can obtain corresponding product-specific models by customizing generalized models
using the product-specific data and results. In the other direction, we can generalize product-
specific models if enough empirical evidence from a wide variety of products and their
related product-specific quality models is available.

In the direction of model customization, various generalized models can be customized
into corresponding product-specific ones depending on the kind of measurement data and
analysis results available. For example, if defect and size data for previous releases are
available, the overall defect profile, a generalized quality model, can be customized into
defect removal model (DRM), a semi-customized one. The resulting model, DRM, can be
used to extrapolate past defect densities into quality estimates for the current project. This
issue is examined further in connection with model data requirements in Section 19.5.

Product-specific models can be generalized into corresponding generalized models if
modeling results from a wide variety of projects form a general pattern. For example, if
reliability data and modeling results are available for many products, they can be generalized
into an overall model similar to the overall defect density model, to a segmented model
similar to that in Table 19.1, or to a general reliability profile of expected shapes and
reliability growth.

19.5 DATA REQUIREMENTS AND MEASUREMENT

Different types of quality assessment models have different data requirements. All models
discussed above make use of direct quality measurements. Many of them also make heavy
use of other indirect quality measurements for quality assessment, mostly in-process mea-
surements, but also some environmental or external measurements. These measurements
were described in Chapter 18. What we would like to do next is to make the connection
between specific models and the specific measurements required. This connection can be
examined in two directions, tracing the model requirements back to specific measurements
(backward tracing or backtracking), and measurement support for different models (forward
linkage).

We first examine the different kinds of data measurements required by different models,
with the quality models as the driving force.

Generalized models are based on industrial averages and general profiles for all the
products or for a specific product segment. Therefore, no measurement data from
the current project is needed directly. However, measurements taken at the current
project can be accumulated into the empirical base to calibrate these models for future
applications.

DATA REQUIREMENTS AND MEASUREMENT 331

Table 19.5 Summary of measurements required by different quality models

Model Type Sub-Type Measurement Data

generalized industrial averages
overall

segmented
average: all industries Section 19.2
average: own industry Table 19.1

dynamic trend: all industries

product-specific product-specific data

obser.-based current observations
meas.-driven current & historical data

semi-customized rough historical data Table 19.2

0 Product-specijic models use product specific measurement data to make better quality
assessments and predictions, which are given in the form of values or ranges of
selected direct quality measurements. The different sub-types use different indirect
quality measurements to make such quality assessments or predictions, as described
below:

- Measurement-driven models attempt to establish predictive relations between
direct quality measurements and other early measurements. All three types of
indirect quality measurements, especially those available early in the software
development process, are used as primary measurements in these models.

- Semi-customized models use environmental measurements to characterize the
current project and extrapolate quality estimates from previous product releases.
Sometimes, they also use coarse-grain activity measurements.

- Observation-based models relate direct quality measurements to activity mea-
surements, with the environmental characteristics implicitly assumed.

These measurement data requirements for different models are summarized in Table 19.5.
We next examine the different quality models that are supported by different kinds of

data measurements, with the quality measurement as the driving force.

0 Both direct and indirect quality measurements from industry form the empirical basis
for generalized models to provide quality estimates for the current project before
it is completed or even before it is started, although they are not used directly in
generalized models.

Direct quality measurements are used in all the product-specific models: as product-
specific extrapolations in semi-customized models, related to development activi-
ties in observation-based models, or predicted by various early measurements in
measurement-driven models.

Environmental measurements are mainly used in semi-customized models to char-
acterize the current product and its predecessors so that direct extrapolations can be
made. They are often implicitly assumed, but not directly used, in generalized and
observation-based models to evaluate quality. Some of the environmental measure-
ments, especially those available early, are used in measurement-driven predictive
models.

332 QUALITY MODELS AND MEASUREMENTS

Quality Measurements Quality Evaluation Models

Generalized Quality Models

Indirect Quality Measurements Product-Specific Quality Models

Environmental Semi-customized
Models

Activity Observation-Based
Measurements Models

I
Measurement-Driven
Predictive Models

Product Internal 1 I I j 1 4 1 Measurements

(primary usage) (secondary usage) - - - - - - - - - -
Figure 19.3 Relating measurements to quality assessment models

Product internal measurements are often used in measurement-driven predictive mod-
els to provide early assessments of product quality and to identify problematic areas
for focused quality improvement. The main reason for this is their early availability,
with most product internal measurements available before testing, and many avail-
able in requirement and design phases. In contrast, most direct quality measurements
cannot be obtained early or predicted with accuracy using other models.

a Activity measurements can be used in various models to predict quality from QA and
development activities. Coarse-grain activity measurements can be used in semi-
customized models, for example, defect data grouped by development phases and
sub-phases can be used to predict defect profile over time. Fine-grain activity mea-
surements can be used in observation-based models, for example, test runs and work-
loads can be used in various software reliability growth models to assess and predict
product reliability.

Notice that direct quality measurements can sometimes be used in isolation (that is,
without relating to other measurements) in generalized models. For example, we can use
average defect density from industry to estimate quality for the current product before
it starts. Nevertheless, direct quality measurements are mostly used in conjunction with
various indirect quality measurements in product-specific models, because these product-
specific data are typically those about the product itself, the product environment, and
specific activities carried out in the product development.

The relationships between quality assessment models and measurements can be summa-
rized in Figure 19.3. A solid line depicts primary usage and a dotted line depicts secondary
usage. Some key points are summarized below:

SELECTING MEASUREMENTS AND MODELS 333

0 The usage of measurement data in generalized models is depicted as a secondary one,
because they are not used directly in these models but rather indirectly through the
accumulated data as the basis for future adjustment to these models.

0 Direct quality measurements are used as primary measurements in all the product-
specific models.

0 All three types of indirect quality measurements that are available early in the soft-
ware development process are used as primary measurements in measurement-driven
models.

0 Environmental measurements are primarily used in semi-customized models.

0 Activity measurements are used directly, thus depicted as a primary usage, to predict
quality in observation-based models.

0 When some measurements are used indirectly in some models, or used occasionally
but not always, the specific usage is depicted as a secondary one. For example,
coarse-grain activity measurements are used sometimes in semi-customized models,
and environmental characteristics are implicitly assumed (but not directly used) in
observation-based models.

19.6 SELECTING MEASUREMENTS AND MODELS

Based on the characteristics of quality assessment models and the relationships between
these models and relevant measurements discussed above, we next outline an approach for
measurement and model selection, and illustrate it with some practical examples.

Selection guidelines and a recommended procedure

A goal-oriented approach for software measurement and continuous improvement called
GQM-paradigm (Basili and Rombach, 1988) has been successfully used in various prac-
tical applications (van Solingen and Berghout, 1999), which was described in Chapter 13
in connection to defect prevention and process improvement. An approach for selecting
quality assessment models and measurements was developed under the guidance of GQM-
paradigm, while making use of analysis results above (Tian, 2004). Using this approach,
we can follow the following three steps to set quality goals and select appropriate models
and measurements:

Step 1. Set speciJic quality goals. For example, if we are concerned with problem-free
services, reliability measurement and improvement should be the goal. This step
restricts the “G” in the GQM-paradigm to specific quality goals instead of general
measurement goals.

Step 2. Choose spec@c quality assessment models that can answer our questions and con-
cerns about the quality goals under the constraints of the application environment. For
example, if we need precise reliability estimates, we can consider using SRGMs. This
step roughly corresponds to “Q’ in the GQM-paradigm, but the model classification
scheme in this chapter is used to select appropriate quality assessment models.

334 QUALITY MODELS AND MEASUREMENTS

Step 3. Choose appropriate measurements based on the model data requirements. For
example, we can take failure and test execution time measurements in order to evaluate
product reliability using SRGMs. This step roughly corresponds to “M’ in the GQM-
paradigm, but the model-data relations summarized in Figure 19.3 are used to select
appropriate measurements.

We next consider actual scenarios during the testing of several large commercial soft-
ware systems developed in IBM (Tian, 1998) to illustrate the use of this approach. These
systems include relational data base products, compilers, and computing environments, for
platforms ranging from mainframes to PCs. They can be characterized by their large size,
usually exceeding several hundred thousand lines of source code, high complexity, diverse
functionality, and components developed over a long period of time. The overall testing
effort usually lasts from over several months to more than a year.

Example A. Rough quality estimates

Before testing phase started, a rough defect estimate was needed for project planning.
Such rough estimates for a single development phase can be easily obtained using dynamic
generalized models based on empirical trend data from industry. Therefore, the Putnam
model (Putnam, 1978) was selected to estimate testing defects. This decision was also
influenced by the previous positive experience using the Putnam model and related tools
for software estimation in several projects within the lab.

For new releases of existing products, more precise quality estimates can be obtained
if the large amount of historical defect data routinely collected in IBM can be used with
selected semi-customized models. Therefore, these data were also extracted and used in the
semi-customized defect removal models (DRMs) (Kan, 2002) to estimate testing defects
for these new releases, and used to calibrate the Putnam models above.

One of the projects studied was also used as a pilot for ODC deployment (Chillarege
et al., 1992). Therefore, defect information according to ODC scheme were collected during
testing and an ODC defect profile was built to further analyze the data. This ODC defect
profile can also be used as a semi-customized model for successor projects. The details
about this application are described in Chapter 20.

Example B. Reliability assessment

Once the system testing started, the focus was shifted to providing more precise quality
assessments. Because this phase is the last one before the product is released to the cus-
tomers, measuring product reliability under a simulated customer usage environment and
meeting a specific customer reliability target were established as primary goals. After ex-
amining the match between the testing environment and the reliability model assumptions,
several software reliability growth models (SRGMs) were selected from the category of
observation-based models.

SRGMs require measurement of failures and related time intervals, and assume that the
elapsed time must reflect software usage (Goel, 1985). To account for the vast variations in
test workload for these IBM products, the detailed workload measure, cumulative transac-
tions were chosen as the usage time measurement despite its relatively higher measurement
cost. Figure 19.4 plots cumulative failures vs. cumulative transactions, and the fitted Goel-
Okumoto SRGM (Goel and Okumoto, 1979). As seen in Figure 19.4 and quantified earlier
(Tian, 1998), this model fits the observations fairly well, and provides good assessments

CONCLUDING REMARKS 335

0
N - r

0 0 - r

Actual data
Goel-Okumoto model

. .** - -*. .-

Goel-Okumoto model summary:

7
______________ ______--__----

m(t) = N (1 - exp b t
N= t3i.Y

b= 3.024~-09

failure rate: 7.737e-09
MTBF: 129,256,911

SSQ(residua1s): 6328

______________ _______-__----

0 2'10'9 4'10'8 VlW8 VlO"8 10'9 1.2.10'9

usage time t (cumulative transactions)

Figure 19.4 A fitted SRGM for an IBM product

and predictions of the product reliability. This and other applications of software reliability
engineering, as well as its overall context, are described in detail in Chapter 22.

Example C. Process/reliability improvement

Realizing that fault distribution within a software product and the chance for encountering
failures for a given set of operations are not uniform, an attempt was made to identify
high-risk areas in order to meet the pre-set goal of cost-effective reliability improvement
in a later project. Tree-based reliability models (TBRMs) developed earlier under similar
settings (Tian, 1995) were selected from the category of measurement-driven predictive
models, attempting to identify and correct problems early in testing.

Similar to other measurement-driven predictive models, TBRMs require the use of ex-
ternal result data as our direct quality measurement and various other early measurements
such as time, input state and personnel. Figure 19.5 presents a TBRM for an IBM product,
with all the data attributes shown in italic in Table 19.6. Such TBRMs can help us identify
groups of test runs with particularly low success rates for focused remedial actions. The
active use of these TBRMs resulted in much improved product reliability as compared to
earlier products where no such measurement-driven predictive models were used (Tian,
1998). This modeling technique and its applications are described in Chapters 21 and 22.

19.7 CONCLUDING REMARKS

There is a strong need for practical guidance to help software practitioners select appropriate
models and measurements for various QA and improvement initiatives. In this chapter, we

336 QUALITY MODELS AND MEASUREMENTS

Figure 19.5 A tree-based reliability model (TBRM) for an IBM product

Table 19.6 Data attributes used in Figure 19.5
~

Timing: calendar date (yeuc month, day), tduy (cumulative testing days since the start of
testing), and rsn (run sequence number, uniquely identifies a run in the execution
sequence).

Input state: SC (scenario class), SN (scenario number), log (corresponding to a sub-
product with a separate test log) and tester.

Result: result indicator of the test run, with 1 indicating success and 0 indicating failure.

compared and classified different models that can be used to evaluate the correctness aspect
of quality into the following hierarchical framework:

0 Generalized models that provide rough quality estimates without requiring product-
specific data. The sub-categories include:

- Overall models that provide the same quality estimates for all products.

- Segmented models that provide different estimates for different product seg-

- Dynamic models that provide quality profiles along the timeline.

ments.

Product-specificmodels that provide better quality assessments and predictions based
on product-specific data. The sub-categories include:

PROBLEMS 337

- Semi-customized models, which use coarse-granularity product data for quality

- Observation-basedmodels, which use fine-granularity activity data for progress

- Measurement-basedpredictive models, which use early-available data to predict

extrapolation from previous releases to current release of the product.

tracking and quality assessments.

quality ahead of time and to improve product quality.

We also examined data requirements for these models individually, and introduced an
approach to select quality assessment models and measurements designed under the guid-
ance of the GQM-paradigm (Basili and Rombach, 1988). The successful applications of
this approach in the testing of several IBM software products demonstrated its apparent
applicability and usefulness.

With this overall framework to select different quality models and the required mea-
surements for quality quantification and improvement, we can now turn our attention to
some important models and analysis techniques. In the rest of Part 111, we describe various
defect analysis models in Chapter 20, risk identification models in Chapter 21, and software
reliability models in Chapter 22.

Problems

19.1 Many models for quality assessment can also be used for effort estimation or predic-
tion, such as the Putnam model we discussed in this chapter. Can you find some examples
of such cross-usage for every category and sub-category of quality assessment models in
Figure 19.1?

19.2 When you use defect density models, should you count unique defects or all defects?
Briefly justify yourself.

19.3 Segmented models play an important role in software estimation, particularly at the
beginning of a software project. Why?

19.4 Compare the Putnam model with our quality engineering effort profile in Figure 5.3
(Chapter 5) , and discuss the similarities and differences.

19.5 Observation-based models are often used as or with control charts to track project
progress. Outline the approach to project progress tracking in your organization,and discuss
how observation-based models can be integrated into progress tracking in your project.

19.6 Why is “predictive” quality important in the measurement-drive predictive models?

19.7 For the example models given in this chapter, can you generalize or customize them
into a different model in the opposite category? Select one model and generalize it, and
select another model and specialize it.

19.8 List all the quality assessment models used in your organization, examine their
usage, and suggest some improvement actions.

This Page Intentionally Left Blank

CHAPTER 20

DEFECT CLASSIFICATION AND ANALYSIS

Analyses of discovered defects and related information from quality assurance (QA) activ-
ities can help both developers and testers to detect and remove potential defects, and help
other project personnel to improve the development process, to prevent injection of similar
defects and to manage risk better by planning early for product support and services. The
defect data are typically collected from the main QA activities. Some additional details
regarding the defects may need to be collected during this process or extracted from some
system records to provide better quality assessments, predictions, or identification of prob-
lematic areas. We next discuss these topics, and illustrate them through several case studies
analyzing defects from system testing for some IBM products, and web-related defects
for www . seas . smu. edu, the official web site for the School of Engineering and Applied
Science, Southern Methodist University (SMUKEAS).

20.1 GENERAL TYPES OF DEFECT ANALYSES

Once a defect is discovered, various individual analyses can be performed. When defect
data are accumulated over time, collective analyses can be performed. Although these two
forms of analysis have different focuses, the questions asked during the analyses are similar,
including:

0 What? The identification and classification of the discovered defects can be per-
formed to identify what they are and classify them by some consistent scheme. This
topic is the focus of this chapter, which is discussed in all subsequent sections.

339

340 DEFECT CLASSIFICATION AND ANALYSIS

0 Where? Where was the defect found or discovered? This information can be used
to provide valuable feedback to the development process through defect distribution
analysis.

0 When? The identification of the exact time or associated development phase or sub-
phase when a defect is injected and when it is discovered is important, because it
provides information to analyze the overall defect trend and serves as the basis for
quality prediction into the future. This topic is discussed later in this section, and fine-
grain defect timing analysis is covered in Chapter 22 as part of software reliability
engineering.

0 Pre- or post-release? An important extension to the “when” question is whether
a defect is a pre-release defect or a post-release defect, sometimes labeled as an in-
development (or in-process) or an in-field defect, respectively. Although the in-field
defects are the ones experienced by actual customers or users, and should receive ad-
equate attention, the scarcity of post-release data and business-sensitive information
they might contain leave most existing software engineering research with the use
of pre-release defect data only. This issue is discussed in relation to specific topics
throughout this chapter.

0 How and Why? How was the defect injected into the software, and why? These two
questions are closely related, both pertaining to the cause of the discovered defects.

Notice that all the analyses listed above are applied to defect information as the primary
target or focus. However, other information and measurements related to defect information
are often needed in these analyses, although sometimes used implicitly. Each of these
analyses, defect distribution, trend, and causal analyses, for the overall defect data are
described below.

20.1.1 Defect distribution analysis

Defect distribution analyses can help us answer the what and where questions above. In
answering the what question, we can find out the distribution of defects over different defect
types, and if certain defect types are associated with an overwhelming share of the overall
defects. If the latter is confirmed to be true, the identification of these dominant defect
types can help us select appropriate remed.ia1 or corrective actions to effectively address the
problems and improve product quality. Similarly, in answering the where question, we can
find out the distribution of defects over different areas or product components, and if there
are certain areas that are associated with an overwhelming share of the overall defects. If
the latter is confirmed to be true, the identification of these high-defect areas can help us
focus our remedial or corrective actions to effectively improve product quality.

The defect distribution analyses typically deal with faults or defect fixes instead of
failures or errors we defined in Chapter 2. “Defect fixes” is typically used if actual fixing
of discovered problem took place before defect analyses were performed, while “faults”
can be used as long as it is identified (but not necessarily fixed already). Defect fixes,
labeled DF in this book, are in response to observed failures during testing or to discoveries
of other problems during development or operation. We selected defect fixes instead of
raw defect counts because much of the defect propagation information is captured in the
former but not in the latter. Defect propagation is affected by the system structure, the
interconnection among different components, and product evolution. DF can be identified

GENERAL TYPES OF DEFECT ANALYSES 341

Table 20.1 Common error types and error distribution for SMU/SEAS

Error Type Description Number of Errors

A
B
C
D
E
F
G
H
I
J
K

permission denied
no such file or directory
stale NFS file handle
client denied by server configuration
file does not exist
invalid method in request
invalid URL in request connection
modmimemagic
request failed
script not found or unable to start
connection reset by peer

2079
14
4
2

2863 1
0
1
1
1

27
0

all types 30760

with specific modules, therefore permitting analysis and modeling using various software
metrics defined on modules. Both the pre-release and post-release defect data can be
analyzed and compared.

What: Distribution over defect types

For different product types or different application domains, the answer to the “what”
question can be analyzed by examining the defect types defined accordingly. For example,
the type of problems can be directly related to quality attributes, such as CUPRIMDS
(capability, usability, performance, reliability, installation, maintenance, documentation,
and service) used by IBM for their software products (Kan, 2002). Other information
regarding the discovered defects can also be used to answer the “what” questions, as we
describe late in connection with defect classification and analysis in Sections 20.2 and 20.3.

As a concrete example, consider the defects for web-based applications. Using the
terminology commonly adopted for WWW, the defects are actually operational failures
labeled as web errors and recorded in web server error logs. For the www . seas. smu . edu
web site, a total of 30760 errors were recorded for the 26 days covered by the web server logs
(Kallepalli and Tian, 2001). The distribution of these errors by error types was summarized
in Table 20.1. The first and immediate observation we can make from this distribution
analysis is the highly uneven distribution of web errors (or defects in our terminology) over
the different error types:

0 The most dominant error type is type E, “file does not exist”, which accounts for
93.08% of all the errors recorded.

0 Type A errors, “permission denied”, account for 6.76% of the total errors.

0 All the rest 9 error types account for only 0.16%, a truly negligible share of the total.

Because of this overwhelming share of type E errors, subsequent studies were focused on
this error type to assess and improve the quality for this web site.

342 DEFECT CLASSIFICATION AND ANALYSIS

Table 20.2 Characterizing web errors by file types

Type Errors %

.gif 12489 43.62

.class 4913 17.16
directory 4425 15.46
.html 3656 12.77
.jpg 1323 4.62

other 394 1.38

All 28631 100

Table 20.3 Distribution of DF for a commercial product LS

DF= 0 1 2 3 4 5 6 7 8 9 10-1920-37 all

module# 771 174 102 63 31 29 23 25 16 7 50 14 1295
% 58.8 13.4 7.9 4.9 2.4 2.2 1.8 1.9 1.2 0.5 3.9 1.1 100

DFsum 0 174 204 189 124 145 138 175 128 63 673 417 2367
% 0 7.4 8.6 8.0 5.2 6.1 5.8 7.4 5.0 2.7 28.4 17.6 100

Where: Distribution over defect locations

When the defects are located, we can answer the “where” question. As an example to
address the where question by distribution analysis, further analysis for the above web site
was performed (Li and Tian, 2003). Since the missing files (Type E errors) are the main
defect type, the question worthy of examination is: “What kind of files are missing?” The
results are summarized in Table 20.2. Of the more than 100 different file types, the top five
accounted for more than 98% of all the missing files. The identification of these missing
file types, in connection with their access information, could lead to more focused web site
maintenance effort to fix problems and improve web reliability.

The most common type of distribution analyses to answer the where question is in
connection with product components, such in the study of two IBM products LS and NS
(Tian and Troster, 1998). Tables 20.3 and 20.4 summarize DF (defect fixes) distribution for
LS and NS, respectively, giving the numbers and percentages of modules with given numbers
of DF. Although high-defect modules are relatively few, they represent an overwhelming
share of observed problems. For example, in LS, only 19.2% (248) of the modules have
more than 2 DF (DF > 2), but they represent 84.0% (1989) of the total DF; while 58.8% of
the modules are defect free. In NS, 20.5% (204) of the modules have more than 10 defect
fixes, but represent 59.5% (4653) of the total fixes. This kind of uneven distribution is
generally true for most software systems (Boehm and Basili, 2001).

General observations about defect distribution

Notice that in the above analysis, the generally uneven distribution of defects over types,
areas, or product components points to the importance of focusing on the identification
and strengthening of specific areas for focused quality improvement initiatives. Similar

GENERAL TYPES OF DEFECT ANALYSES 343

Table 20.4 Distribution of DF for a commercial product NS

DF= 0 1 2 3 4 5 6 7 8 9 10-1920-49 >50 all

module# 23 131 112 120 99 94 68 50 38 32 147 68 13 995
% 2.3 13.2 11.3 12.1 9.9 9.4 6.8 5.0 3.8 3.2 14.8 6.8 1.3 100

DF sum 0 131 224 360 396 470 408 350 304 288 2109 2040 910 7824
% 1.67 2.86 4.60 5.06 6.01 5.21 4.47 3.89 3.68 3.07 26.96 26.07 11.63 100

observations about uneven distributions by other defect attributes, such as severity, fix type,
functionality, usage scenarios, etc., have also shown to be true (Chillarege et al., 1992).

However, under most circumstances, we cannot wait until such defects are discovered and
such uneven defect distribution has been confirmed to take actions. Instead, we need to find
some way to identify such high-risk or potentially high-defect areas based on historical data.
Applicable risk identification techniques and related issues are described in Chapter 21.

20.1.2 Defect trend analysis and defect dynamics model

Most of the defect data contains some timing information. At a minimum, the discovered
defect is classified as either pre-release or post-release. This information can be used to
give us a general picture of the defect trend. When used with appropriate models, these
data can provide us with the basis for prediction into the future.

Sometimes, timing information for individual defects corresponds to some rough infor-
mation about the development phases or sub-phases recorded in relevant defect records.
When such information is available, we can examine the defect distribution over these
phases or sub-phases, much like the distribution analysis described above, but with phases
or sub-phases along some timeline. The defect removal model in the previous chapter can
be considered an example of such a trend analysis.

If the information about defect injection time is available, it can be used to augment the
defect removal models into the so called defect dynamics model, where both the injection
and removal of defects are tracked by development phases. This model is often represented
as a matrix, such as in Table 20.5, with the rows corresponding to defect injections in
each phase, and column corresponding to defect removals in each phase. The inner matrix
is always an upper triangular matrix because the removal of a defect is always after its
injection. The last row, summing up all the defects removed in different phases, actually
gives us a defect removal model similar to the one given in the previous chapter. The last
column, summing up all the defects injected in different phases, gives us information about
where the major defect sources are in terms of when they are injected.

However, the cost of each defect injected in phase X and removed in phase Y is not uni-
form. Typically, the cost increases substantially with the increase of the distance between X
and Y, or the number of phases when a defect lies dormant. Because a dormant defect might
trigger the injection of other related defects, and the further away a defect is removed from
when it is injected, the harder it gets to remove it because of all the intermediate decisions
and actions applied that obscure the linkage between causes and effects. Consequently, the
focus of defect dynamics models is typically on the off-diagonal ones, or those out-of-phase
defect removals. In addition, when the post-release defect data are available, they deserve
more attention as well, because these defects are the ones that escaped the software QA

344 DEFECT CLASSlFlCATlON AND ANALYSIS

Table 20.5 A sample defect dynamics model

Injection Removal Phase
Phase req. spec. design coding testing post-re1 all phases
~ ~ ~~ ~

requirement 10 22 8 0 5 2 47
specification 10 20 2 0 1 33
design 52 120 32 5 209
coding 198 320 46 564
testing 58 7 65
post-release 2 2

all phases 10 32 80 320 415 63 920

process to cause real damage to the customers and users. They also harm the development
organizations’ reputation and may lead to product liability problems.

When precise time information about the defect discoveries is available, it can be used
in various models of greater precision to provide finer-grain or better quality predictions.
For example, the Putnam model (Putnam, 1978) described in the previous chapter is an
example of such a model. Various software reliability growth models (SRGMs) to be
described in Chapter 22 can also be considered examples of fine-grain defect trend models.
However, typically other measurement data, such as testing or usage activities, are needed
for analyses with SRGMs. On the other hand, precise defect injection time information
is typically impossible to obtain, depriving us of the fine-grain defect injection or defect
dynamics models.

20.1.3 Defect causal analysis

Defect causal analysis can usually take two forms: logical analysis and statistical analysis.
Logical analysis is a deterministic analysis that examines the logical link between the effects
and the corresponding causes, and establishes general causal relations. Statistical analysis
is a probabilistic analysis that examines the statistical link between causes and effects and
deduces the probable causal relations between the two.

The effects in the defect causal analysis can be either the observed failures or discovered
(or fixed) faults, and the corresponding causes are the faults that caused the failures or the
errors that caused the injection of the faults, respectively. The causal relations between
faults and failures typically are determined by the developers or code owners who fix the
code or design in response to failure observations during testing, inspection, or normal
operational usage, as part of the normal development process where defects are fixed. The
causal relations between errors and faults are typically determined through dedicated defect
causal analysis beyond the normal development process. This kind of defect causal analysis,
particularly its logical instead of the statistical variation, is also referred to as root cause
analysis in literature.

Root cause analysis is human intensive, and should be performed by experts with thor-
ough knowledge about the product, the development process, the application domain, and
the general environment. Sometimes, it can be integrated into the development or specific
QA process. For example, in the Gilb inspection (Gilb and Graham, 1993) described in
Chapter 14, a phase called process brainstorming is added between inspection meetings and
follow-up actions. This process brainstorming is essentially a root cause analysis. Some-

DEFECT CLASSIFICATION AND ODC 345

times, root cause analysis can be performed selectively, for example, for all the critical
defects.

Statistical analysis is based on empirical evidence collected either locally or from other
similar projects. These empirical data can be fed to various models to establish the predictive
relations between causes and effects. Once such causal relations are established, appropriate
QA activities can then be selected and applied for fault or error removal. This kind of
analyses employ various statistical models. For example, the simplest of such models
is correlation analysis, which is often performed between defects and product internal
measurements. For example, we may find that for a product, the number of defects per
module may be closely correlated to module control flow complexity. Then we can conclude
that high control flow complexity is probably the cause for the modules to have high defect,
and focus our attention on the high-complexity modules in our QA activities even before
defects are discovered. This risk focus, or focus on high-risk or potentially high-defect areas
or product components, is the primary usage of statistical defect causal analysis. Various
statistical analysis techniques for this purpose will be described in Chapter 21.

20.2 DEFECT CLASSIFICATION AND ODC

When problems are encountered during operational use of a software or during development,
various detailed information can be collected and recorded regarding the problems or the
defects. Some part of this information is usually derived from explicit or implicit root
cause analysis. Such information can be organized in a systematic way for further analyses,
and the analysis results promise more valuable and specific feedback that pinpoint specific
problematic areas for focused problem resolution and quality improvement. These analyses
typically use statistical models. However, the causal analysis for individual defects and the
statistical analysis for the collective defect data are typically used disjointly.

The systematic classification and analysis of defect data bridge the gap between causal
analysis and statistical quality control, and provide valuable in-process feedback to the de-
velopment or maintenance process and help assure and improve product quality. Orthogonal
defect classification, or ODC, developed initially at IBM (Chillarege et al., 1992), is the
most influential among general frameworks for software defect classification and analysis.
ODC has been successfully used in various industrial applications, to identify problematic
areas, and to improve overall software product quality (Bhandari et al., 1993; Chaar et al.,
1993; Tian and Henshaw, 1994).

20.2.1 ODC concepts

ODC has a rich and extensive category of defect attributes, stemming from both the failure
view and the fault view. The attributes related to the former are typically completed by
software testers or inspectors who initially observed problems and opened defect reports;
while those related to the latter are typically completed by the software developers or system
maintenance personnel who fixed the reported problems and updated the corresponding
defect reports. The defect attributes are organized in the following hierarchy:

0 Key defect attributes from the failure view and information collected at defect dis-
covery include:

- Defect impact, with attribute values covering functionality, reliability, etc.

346 DEFECT CLASSIFICATION AND ANALYSIS

- Defect trigger, with attribute values corresponding to the specific types of testing

- Defect severity, with commonly used attribute values: critical, major, minor, or

or inspection activities or scenarios that triggered the defect detection.

some numerical scale.

0 Key information from the fault view collected at defect fixing includes:

- Defect type, with attribute values: function, interface, algorithm, timing, etc.

- Number of lines changed for the fixing.

0 Some additional causal analyses might be carried out, and the related results also
yield defect information and related attributes, such as:

- Defect source, with attribute values: vendor code, new code, base code, etc.

- Where the defect was injected, located to subsystems, modules, or components.

- When the defect was injected, typically identified with the development phase.

A complete description of these defect attributes and related values can be found in Chillarege
et al. (1992).

20.2.2 Defect classification using ODC: A comprehensive example

In an earlier study of defect classification and analysis for some relational database products
from IBM (Tian and Henshaw, 1994), various defect attribute data according to ODC were
collected in the system testing stage. Under this environment, once a defect is detected, a
formal report (called Problem Tracking Report or PTR in IBM) is recorded and tracked until
its final resolution. Various tools originally used to track defect reports were augmented to
collect additional defect information related to ODC. Table 20.6 lists the defect attributes
and pre-defined categories of possible values for each attribute.

The information, provided by testers at defect discovery, includes defect impact, trigger,
severity, and defect detection time identified with week:

0 Defect impact is based on the answers to the question: “If this defect is not fixed,
how will it impact the customer?’ Pre-defined impact categories (possible answers)
include performance, reliability, etc.

0 Defect trigger categories closely resemble test scenario classes used for managing
the testing process for this product. In fact, more detailed information is available
using the hierarchical test case organization recorded in the test execution data we
described in Table 7.1 (Chapter 7).

0 Defect severity can be 1 (critical problem), 2 (major problem), 3 (minor problem),
and 4 (minor inconvenience).

0 The week when the defect is detected, counted from the start of the project.

The information collected at defect fixing pertains to the actions taken by the developers
to locate, identify and correct the faults that caused detected failures:

0 Fix type: fix to design, code, etc.

DEFECT CLASSIFICATION AND ODC 347

Table 20.6 Some defect attributes and values for an IBM product
~~~~~ 

Label Name Possible Values or Categories & Labels 

imp impact c=capability, im=implementation, in=installation, 
ma=maintenance, mi=migration, p=performance, 
r=reliability, sec=security, ser=service, 
std=standard, u=usability 

c=communications, f=file ilo, co=coexistence, 
e=exception, hc=hlw config., sc=slw config., a=ad-hoc, 
ss=startup/shutdown, o=normal operation 
range from 1 (highest) to 4 (lowest) in severity 
week detected, counted from the start of the project 

t r i g  trigger i=installation, m=migration, s=stress, b=backup, 

sev 
w k  

f t y p e  fix o=other product, s=specification, hld=high-level design, 

act action a=add, d=delete, c=change 

src  code b=base, v=vendor, n=new, c=changed, 

severity 
week 

type lld=low-level design, c=code, b=build process 

source i=incremental (added to old), s=scaffolded, 
p=previous defect fix 

Ild=low-level design, c=coding, ut=unit test, 
ft=function test, st=system test, d=customer usage 

i n  j phase p=previous release, s=specification, hld=high-level design, 
injected 

0 Number of lines changed for the fixing. (Not shown in Table 20.6 because the values 
for this defect attribute are obvious.) 

0 Fix action: adding, deleting, or changing to design or code. 

Some simple causal analyses were performed by the developers when they fix the reported 
defects, leading to the following causal analysis results recorded in the ODC data: 

0 Defect source: vendor code, new code, base code, etc. 

0 The development phase when the defect was injected: previous release or waterfall- 
like development phases in the current release. 

20.2.3 Adapting ODC to analyze web errors 

For web-based applications, ODC-like defect classification can be defined and relevant 
defect data can be extracted from existing web server logs for analysis (Ma and Tian, 
2003). The availability of such information in web logs is a significant advantage for this 
situation over traditional applications of ODC, where data collection is always a big hurdle 
that requires developers and testers to devote substantial time to analyze the defects and 
report the findings. Among the various ODC attributes, the following can be adapted for 
web problem analysis: 

0 Defect impact corresponds to web error type, which indicates what problem was 
experienced by web users. It can be analyzed directly based on information extracted 



348 DEFECT CLASSIFICATION AND ANALYSIS 

from the error logs or from response code used in web access logs (Kallepalli and 
Tian, 2001). 

0 Defect trigger corresponds to specific usage sequences or referrals that lead to prob- 
lems recorded in the error logs. It can be analyzed by examining the referral pair 
information that can be extracted from the access logs (Ma and Tian, 2003). 

0 Defect source corresponds to specific files or file types that need to be changed, 
added, or removed to fix problems recorded in the error logs. It can be analyzed by 
examining both the specific errors and referral pairs. 

Various other attributes can also be adopted or adapted from the original ODC attributes 
through a close examination of the web environment and data availability. Such adaptation 
to different environments can help people analyze problems or issues of concern to them 
and fulfill different purposes. As an additional example, ODC has been adapted to help 
with ongoing requirement discovery in high-integrity systems (Lutz and Mikulski, 2004). 

20.3 DEFECT ANALYSIS FOR CLASSIFIED DATA 

Various techniques can be applied to analyze the classified data. The most obvious and most 
straightforward analyses are to apply defect distribution and trend analyses we described in 
Section 20.1 for unclassified defect data directly on classified data. In ODC terminology, 
this is called one-way analysis, because it examines one attribute at a time, either its overall 
distribution or its trend over time. Two-way analysis can be used to examine the cross- 
interaction of two attributes (Bhandari et al., 1993). Higher-order analysis is also possible, 
such as using tree-based modeling on all the ODC attributes (Tian and Henshaw, 1994). 

One fundamental assumption in all these analyses is that there exists an expected defect 
profile. The actual analysis results are supposedly compared to this profile, ranked by their 
differences to identify anomalies, or the ones with the greatest differences. These identified 
anomalies are analyzed by development personnel to see if they are expected; if not, some 
corrective actions need to be initiated to deal with the problems. However, under many 
application environments, such a profile does not exist. What is suggested is to use uniform 
distribution as the starting point, and gradually build such a defect profile for future use. 

20.3.1 One-way analysis: Analyzing a single defect attribute 

For each defect attribute, the overall distribution of its values can be examined. For example, 
Figure 20.1 gives the defect impact attribute distribution for the IBM product discussed in 
the previous section. The analysis shows that the distribution of defects among the different 
defect impact areas is very non-homogeneous. Expectedly, the largest proportion of defects 
is the reliability defects, representing 196 out of 474 overall failures, or 41% of the total 
share. The main reason is that the system testing is mainly concerned with the overall 
working and robustness of the product (that is, conformance to functional specifications). 

As another example, Table 20.1 gives us the overall distribution of the defect attribute 
error type for the web site www . seas. smu . edu. The overwhelming share of type E er- 
rors became the primary focus of follow-up studies on web defect analysis and quality 
improvement. 

When similar distribution data are available over time or different development phases, 
we can trace them to perform defect trend analysis. This analysis can be performed indi- 
vidually. For example, Figure 20.2 gives us the trend of type E errors for the SMU/SEAS 



DEFECT ANALYSIS FOR CLASSIFIED DATA 349 

NA 

Usability 

Standards 

Service 

Security 

Reliability 

Perfor'ce 

Migration 

Maint'lity 

Install'n 

ocument'n 

Capability 

0 50 100 150 200 

Defects (failures) by impact areas 

Figure 20.1 One-way analysis of defect impact for an IBM product 

web site over 26 days, with each day as a data point. Further analysis was performed to 
explain this profile by relating it to the number of daily hits (Kallepalli and Tian, 2001), 
also plotted in Figure 20.2. A clearly synchronized pattern is detected. This synchronized 
pattern can be captured by the input domain reliability model, such as the Nelson model 
(Nelson, 1978), to give us an estimate of the overall reliability under normal operational 
environment for this web site as R = 0.962 (or 96.2% reliable). Some additional details 
about this operational reliability analysis are presented in Chapter 22. 

20.3.2 Two-way and multi-way analysis: Examining cross-interactions 

Two-way analysis examines the interaction between two attributes, and can be applied to all 
the attributes in pair-wise fashion. The simplest form of two-way analysis is the conditional 
analysis of an individual attribute under the condition of another attribute taking a specific 
value. For example, in the web error analysis example above for the SMU/SEAS web 
site, Table 20.2 gives the type E error distribution by file type. This can be interpreted as 
a two-way analysis for the two attributes: error type (type E as the condition here), and 
missing file type. 

When such conditional distribution analysis is carried out for every attribution values 
used as conditions, we get the full fledged two-way analysis. For example, Table 20.7 gives 
the two-way analysis results for the IBM product in the example above, with the defect 
attributes impact and severity examined together. Usability problems are the second most 
observed failure types (defect impact), second only to reliability problems, most of them 
are low in severity (severity 3 and 4). However, there are 27 critical reliability problems 
(severity 1). Therefore, this two-way analysis clearly demonstrated the need to focus on 
reliability problems at this stage of software development. 



350 DEFECT CLASSIFICATION AND ANALYSIS 

0 0 
0 * 

0 
0 0 

. 
I ._ 
.c ?t 

0 
m o  
E Z  
G N  
?t 

0 0 

0 

0 5 10 15 20 25 

day 

Figure 20.2 Error (type E) and hit profiles for SMU/SEAS 

Following the general progression above from one-way analysis to two-way analysis, 
we can have general multi-way analysis. However, such analysis results are too numerous 
to track because of the combinatorial explosion of the multiple attributes, making it almost 
impossible to interpret and use the results for practical purposes. One way to cut down such 
combinatorial explosions is through the tree-based modeling technique to be described 
in Chapter 21. Our multi-way analysis for ODC data using tree-based modeling is also 
presented there. 

20.4 CONCLUDING REMARKS 

Analyses of discovered defects and related information can help both developers and testers 
to detect and remove potential defects, and help other project personnel to improve the 
development process, to prevent injection of similar defects, and to manage risk better by 
planning early for product support and services. As described in this chapter, these defect 
analyses can be performed at different levels of granularity and using different techniques: 

Overall defect distribution and trend analyses can give us an overall picture of product 
quality as well as some general areas for focused quality improvement. 

Defect causal analysis can help us identify causes of execution failures or internal 
faults and help initiate quality improvement actions. It can also provide valuable data 
for various additional analyses. 

Detailed classification and analysis of defect data, such as through ODC (orthogonal 
defect classification), can help us obtain more detailed information regarding poten- 
tially problematic areas to provide more specific and more valuable feedback to the 
software development or maintenance process for focused quality improvement. 



PROBLEMS 351 

Table 20.7 Two-way analysis results: Interaction between impact and severity 

Impact Severity 
1 2 3 4  

Capability 2 12 13 1 
Documentation 0 1 14 10 
Installability 0 6 6 4  
Maintainability 0 6 19 7 
Migration 0 0 0 1  
Performance 1 1 3 0  
Reliability 27 96 66 7 
Security 1 3 3 0  
Service 0 0 4 4  
Standards 0 1 2 1  
Usability 0 10 44 19 

No matter at what level we are performing the defect analysis, the general observation is 
that defects are typically concentrated in some specific areas instead of spread out evenly. 
Therefore, there is a strong need for analysis techniques and models that can help us identify 
these “high-risk” areas that are more likely to contain concentrated defects. We turn our 
attention to such risk identification techniques and related models in the next chapter. 

Problems 

20.1 What kind of analyses can be performed on the defect data? 

20.2 One of the primary reasons for many measurement programs to fail is that most of 
the collected measurement data are never used. Defect data are typically an essential part 
of such data. The collection of these data takes time, effort, and money. If not used, the 
cost is just pure cost, not associated with any benefit. How would you change the situation? 

20.3 Perform some defect distribution analyses based on data from your organization or 
data reported in literature. Is the 80:20 rule valid here? 

20.4 Perform some defect trend analyses based on data from your organization or data 
reported in literature. Pay special attention to time measurement: Is idle time counted or 
only activity time? Is the granularity proper? 

20.5 Perform some defect causal analyses based on data from your organization. (Data 
from literature would probably not be usable for this, because you probably don’t have 
needed information to determine the causes.) 

20.6 Is ODC adaptable to your development environment? If yes, list your defect at- 
tributes and attribute values. If not, justify yourself. 

20.7 Can you suggest some more defect attributes for web applications and related prob- 
lems? Pay special attention to how to obtain the information for the attributes you define. 

20.8 Try a three-way or four-way analysis to see how difficult it is. 



This Page Intentionally Left Blank



CHAPTER 21 

RISK IDENTIFICATION FOR 
QUANTIFIABLE QUALITY IMPROVEMENT 

This chapter describes and compares risk identification techniques that can be used to 
identify high-risk (low-quality) areas for focused quality improvement. Each technique 
is briefly described and illustrated with practical application examples from industrial or 
governmental projects. The techniques are compared using several criteria, including sim- 
plicity, accuracy and stability of results, ease of result interpretation, and utility in guiding 
quality assurance and improvement. A comprehensive example using a specific risk iden- 
tification technique to analyze defect data classified according to ODC (Chapter 20) is also 
included. 

21.1 BASIC IDEAS AND CONCEPTS 

As described in Chapter 2, a defect generally refers to a problem in the software, which 
may lead to undesirable consequences for both the software developmentlmaintenance 
organizations and the software users. The potential for such undesirable consequences, 
including schedule delays, cost overruns, and highly defective software products, is usually 
referred to as risk. Various statistical analyses and learning algorithm based techniques 
have been developed or adopted to identify and reduce such risks. 

On the other hand, fault distribution is highly uneven for most software products, regard- 
less of their size, functionality, implementation language, and other characteristics. Much 
empirical evidence has accumulated over the years to support the so-called 80:20 rule, 
which states that about 20% of the software components are responsible for about 80% of 
the problems (Porter and Selby, 1990; Tian and Troster, 1998; Boehm and Basili, 2001), 

353 



354 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

as also demonstrated by various defect distribution and analysis examples in the previous 
chapter. These problematic components represent high risks to both the software develop- 
menumaintenance organizations and software users. Therefore, there is a great need for 
risk identification techniques to analyze these measurement data so that inspection, testing, 
and other quality assurance activities can be more effectively focused on those potentially 
high-defect components. 

Similar concepts about risk related to other entities of concern, such as schedule, cost, or 
reliability reIated risk can also be defined (Boehm, 199 1). As we will describe in Chapter 22, 
reliability problems and related risk can be addressed through the use of appropriate risk 
identification techniques to identify low-reliability areas for focused reliability improve- 
ment. 

To measure and characterize these high-risk or potentially high-defect modules, various 
software metrics can be used to capture information about software design, code, size, 
change history, etc. (Fenton and PAeeger, 1996), as well as other product or process 
characteristics we described in Chapter 18. Once the measurement data are collected from 
existing project databases or calculated using measurement tools, various techniques can 
then be employed to analyze the data in order to identify high-risk modules. The basic 
idea of risk identification is to use predictive modeling to focus on the high-risk areas, as 
follows: 

First, we need to establish a predictive relationship between project metrics and actual 
product defects based on historical data. 

Then, this established predictive relation is used to predict potential defects for the 
new project or new product release once the project metrics data become available, 
but before actual defects are observed in the new project or product release. 

In the above prediction, the focus is on the high-risk or the potentially high-defect 
modules or components. 

Following the discussion in Chapter 20, we primarily use DF, or defect fixes as our 
defect measurement in this chapter, and relate it to other project measurements through 
measurement-based predictive models covered in Chapter 19, particularly those tailored 
for risk identification and analyses. 

Like any other statistical technique, these risk identification techniques cannot establish 
proof of a causal relationship. However, they can provide some strong evidence that there 
may be a causal relationship in an observed effect. By extracting the specific characteristics 
of existing high-defect modules, these analyses can help software professionals identify 
new modules demonstrating similar measurement characteristics and take early actions to 
reduce risks or prevent potential problems. Appropriate risk identification techniques can 
be selected to fit specific application environments in order to identify high-risk software 
components for focused inspection and testing. 

A preliminary survey of these risk identification techniques and their comparison can be 
found in Tian (2000), including: traditional statistical analysis techniques, principal com- 
ponent analysis and discriminant analysis, neural networks, tree-based modeling, pattern 
matching techniques, and learning algorithms. In this chapter, these techniques are de- 
scribed and illustrated with practical examples from industrial and governmental projects. 
Data, models, and analysis results presented in this chapter are extracted from several com- 
mercial software products from IBM (Tian, 1995; Khoshgoftaar and Szabo, 1996; Tian and 
Troster, 1998), governmental projects from NASA (Porter and Selby, 1990; Briand et al., 



TRADITIONAL STATISTICAL ANALYSIS TECHNIQUES 355 

h 

1993), as well as software systems used in aerospace, medical, and telecommunication 
industries (Munson and Khoshgoftaar, 1992; Khoshgoftaar et al., 1996; Tian et al., 2001). 

In addition, we compare these risk identification techniques according to several criteria, 
including: accuracy, simplicity, early availability and stability, ease of result interpretation, 
constructive information and guidance for quality improvement, and availability of tool 
support. We conclude the chapter with our recommendation for an integrated life-cycle 
approach where selected techniques can be used effectively through software development 
for quality assurance and improvement. 

21.2 TRADITIONAL STATISTICAL ANALYSIS TECHNIQUES 

Various traditional statistical analysis techniques (Venables and Ripley, 1994) can be used to 
understand the general relations between defects and various other software measurement 
data. These statistical relations and the general understanding can be used to a limited 
degree to identify high-defect modules. 

Correlation analysis 

The statistical correlation between two random variables 2 and y can be captured by the (lin- 
ear) correlation coefficient c(z, y), which ranges between -1 and 1. A positive correlation 
indicates that the two variables are generally moving in the same direction (for example, 
a larger 2 is usually accompanied by a larger y); while a negative correlation indicates the 
opposite. The closer to 1 the absolute value lc(z, y)I is, the more tightly correlated x and 
y are. Because software measurement data are often skewed, such as in Table 20.3, where 
many modules contain few DF while a few modules contain many, rank correlations are 
often calculated in addition to the linear correlations. 

If the observed defects are highly correlated to a software metric, we can then identify 
those modules with larger (or smaller, if negatively correlated) values of the given metric as 
high-defect modules. However, DF-metric correlations are generally low (Card and Glass, 
1990; Fenton and Pfleeger, 1996), which limits our ability to predict high-defect modules 
based on metrics data. For example, the highest DF-metric correlation is 0.73 1, between DF 
and CSI(changed source instructions or changed lines of code), for the product LS (Tian 
and Troster, 1998). 

Linear regression models 

Linear regression models express a selected random variable y, referred to as the dependent 
variable, as a linear combination of n other random variables, 21, z2, . . . , z,, referred to 
as independent variables, in the form of 

y = a 0  +a1 51 +a2 2 2  +.. .+a,  2, + €, 

where E is the error term, and parameters ao, a1, . . . , a, can be estimated from the obser- 
vation data. Because of the data skew, logarithmic transformation of data can also be used, 
yielding a log-linear regression. 

When regression models are fitted to defect and metrics data, DF can be expressed 
as a linear or log-linear function of other metrics. The correlation coefficient between 
the observed defects and the fitted linear or log-linear models, or the square root of the 



356 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

corresponding multiple R-squared value, can be interpreted in similar ways as for DF- 
metric correlations. However, these corrections are 0.767 and 0.789 respectively for the 
product LS (Tian and Troster, 1998), - only slightly higher than correlations between 
DF and the individual metrics. Similar patterns were also observed in studies of other 
products. In general, linear or log-linear regression models suffer from similar shortcomings 
as correlation analysis models, and do not perform well in predicting high-defect modules. 
In addition, parameter estimates for these models are usually unstable due to high correlation 
in the metrics data. 

Other models and general observations 

Various other traditional statistical analysis techniques, such as non-linear regression mod- 
els, generalized additive models, logistic regression models, etc. (Venables and Ripley, 
1994), can also be used to identify high-defect modules. Another alternative to use tradi- 
tional statistical models on these skewed measurement data is to perform data transformation 
before modeling. For example, logarithmic transformation is a commonly used technique 
to deal with data skewed towards the lower end (those with just a few data points at the 
higher end). But to overcome the undefined values for logo, which may even be the ma- 
jority of data point, such as the 58.8% modules with 0 defects in Table 20.3, alternative 
transformations such as y = log(z + 1) to transform original data 2 to transformed data 
y. However, such transformations obscure the relationship between different entities and 
make result interpretation harder. 

In general, all the above models suffer from similar limitations as correlation and linear 
regression models described earlier. The key problem is the data treatment: data from 
the majority of low-defect modules dominate these statistical results, which contain little 
information about high-defect modules. To overcome these limitations, alternative analysis 
techniques need to be used, as described below. 

21.3 NEW TECHNIQUES FOR RISK IDENTIFICATION 

Recently, various new techniques have been developed or adapted for risk identification 
purposes, including classification and analysis techniques based on statistical analysis, 
learning, and pattern matching. We next describe these techniques and illustrate how they 
can be used to identify high-defect modules. 

21.3.1 Principal component and discriminant analyses 

Principal component analysis and discriminant analysis are useful statistical techniques 
for multivariate data (Venables and Ripley, 1994). The former reduces multivariate data. 
into a few orthogonal dimensions; while the latter classifies these data points into several 
mutually exclusive groups. These analysis techniques are especially useful when there 
are a large number of correlated variables in the collected data. Software metrics data fit 
into this scenario, where many closely related metrics exist to measure design, size, and 
complexity of the data and control structures in the code (therefore, the measurement results 
are correlated, too). 

The principal components are formed by linear combinations of the original data vari- 
ables to form an orthogonal set of variables that are statistically uncorrelated. If the original 
data with n variables are linearly independent (that is, none of the variables can be expressed 



NEW TECHNIQUES FOR RISK IDENTIFICATION 357 

Table 21.1 Principal components for a commercial product 
pcl pc2 pc3 pc4 

eigenvalue X i  2.352 1.296 1.042 0.7 1 1 
% of variance 55.3% 16.8% 10.8% 5.1% 

cumulative % of variance 55.3% 72.1% 82.9% 88.0% 

as linear combinations of other variables), then their covariance matrix, C, an n x n matrix, 
can be expressed as its eigendecomposition, 

C = CT AC, 

where A is a diagonal matrix with eigenvalues A,, i = 1 ,2 ,  . . . , n, in decreasing order 
(representing decreasing importance). The original measurement data matrix 2 can be 
transformed into the corresponding principal-component data matrix D using a transfor- 
mation function also defined by the eigenvalues. 

Table 2 1.1 gives the first 4 principal components (pc 1 - pc4) for the product NS (Tian 
and Troster, 1998), where the original data contain 11 variables (for 11 different metrics 
for modules in NS). Among the principal components, pcl N pc4 explain 88% of the total 
variance. As a result, the original data can be reduced to these four principal components, 
without much loss of information. 

Once a few important principal components are extracted, they can be used in various 
models to identify high-defect modules. For example, selected principal components were 
used with discriminant analysis to classify software modules into fault-prone and other 
ones for software systems used in aerospace, medical, and telecommunication industries 
(Munson and Khoshgoftaar, 1992; Khoshgoftaar et al., 1996). The models using principal 
components have several advantages over similar models using the original (raw) data: The 
models are simpler because fewer independent variables are used. The parameter estimates 
are also more stable due to the orthogonality among the principal components. 

Discriminant analysis is a statistical analysis technique that classifies multivariate data 
points or entities, such as software modules characterized by different metrics, into mutually 
exclusive groups. This classification is done by using a discriminant function to assign data 
points to one of the groups while minimizing within group differences. For example, 
a discriminant function defined on selected principal components was derived to separate 
fault-prone software modules from the rest for some telecommunication software developed 
in Nortel (Khoshgoftaar et al., 1996): 

0 Assign d,  to G I ,  if 
f l ( d 2 )  n2 
f 2 ( d J  7rl 

> - 1  

where the entities are defined as: 

- d,  is the 2-th modules principal-component values (2-th row of the D matrix 

- GI and Gz are mutually exclusive classes representing normal (not fault-prone) 

- 7rk is the prior probability of membership in Gk. 

- fk(dz) gives the probability that d,  is in Gk. 

above). 

and fault-prone modules respectively. 



358 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

X 1  

Figure 21.1 Processing model of a neuron 

RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

X 1  

x 2  > h 

Figure 21.1 Processing model of a neuron 

Y 
___p 

0 Otherwise, assign di to Gp. 

These applications have yielded fairly accurate results for grouping modules in the current 
project, with misclassification rate at about 1%, and for predictions into the future, with 
misclassification at 22.6% or 3 1.1% for the two models used in Khoshgoftaar et al. (1996). . 

21.3.2 Artificial neural networks and learning algorithms 

Artificial neural networks are based on learning algorithms inspired by biological neural 
networks, and can be used to solve various challenging problems, including pattern classi- 
fication, categorization, approximation, etc. (Jain et al., 1996). Processing of an individual 
neuron is depicted by Figure 21.1, with: 

n 

h = c w i x i  and y = g ( h ) ,  

where X I ,  2 2 ,  . . . , x,  are the input, 201, wp, . . . , wn the input weights, g the activation 
function, and y the output. The commonly used activation functions include threshold, 
piecewise linear, sigmoid, and Gaussian. Sigmoid function depicted in Figure 21.1 and 
used in Khoshgoftaar and Szabo (1996) is defined by: 

i= 1 

An artificial neural network is formed by connecting individual neurons in a specific network 
architecture. 

When an artificial neural network is applied to a given data set, an iterative learning 
procedure can be followed to minimize the network error, or the difference between the 
predicted and actual output. This can be achieved by following various learning algorithms 
to adjust the weights at individual neurons. One of the most widely used such algorithms 
is backward propagation, summarized in Figure 2 1.2. 

Recently, artificial neural network models were used to identify high-defect modules for 
some system software (Kernel. 1, Kernel.2, and Kernel.3) developed in IBM (Khoshgoftaar 
and Szabo, 1996). Both the raw data and the principal component data from Kernel. 1 were 
used as input to the models, starting with a small number (20) of hidden layer neurons 
and gradually adding more neurons until the model converge. 40 hidden layer neurons 
were needed for the model with raw data as input to converge; while only 24 were needed 
for the principal component data. In addition, as show in Table 21.2, once they were 



NEW TECHNIQUES FOR RISK IDENTIFICATION 359 

0. Initialization: Initialize the weights to small random values. 

1. Overall control: Repeat steps 2 N 6 until the error in the output layer is below a 
pre-specified threshold or a maximum number of iterations is reached. 

2. Randomly choose an input. 

3. Propagate the signal forward through the network. 

4. Compute the errors in the output layer. 

5. Compute the deltas for the preceding layers by propagating the errors backward. 

6. Update the weights based on these deltas. 

Figure 21.2 Backward propagation algorithm for artificial neural networks 

Table 21.2 Predicting defects using artificial neural networks 

System Model Data Output Error 
mean std.dev min. max. 

Kernel.:! raw 
~~ ~ ~ 

11.4 6.6 0.19 32.8 
principal components 7.1 5.6 0.05 42.8 

Kernel.3 raw 11.0 6.3 0.12 31.6 
principal components 4.7 4.1 0.02 26.2 

applied to Kernel.:! and Kernel.3, the model based on principal components outperformed 
the one based on raw data by a significant margin. The combination of principal component 
analysis and neural networks also outperformed linear regression models (Khoshgoftaar 
et al., 1996). This combination offers an effective and efficient (takes less time to train the 
model with relatively fewer neurons) alternative to identify high-defect modules for quality 
improvement. 

21.3.3 Data partitions and tree-based modeling 

In general, different modules of a large software system may possess quite different char- 
acteristics because of the diverse functionalities, program sources, and evolution paths. 
Sometimes, it is not the particular values but specific ranges that have practical signifi- 
cance. Arguably, such data are more properly handled if they are partitioned, and analyzed 
separately to accommodate for the qualitative differences among the partitioned subsets. In 
this way, high-defect modules with different characteristics for different partitions can be 
identified, and different actions can be carried out to correct the problems. 

Tree-based modeling (Clark and Pregibon, 1993) is a statistical analysis technique that 
handles data partitions and related analysis. The model construction involves the data 
set being recursively partitioned, using split conditions defined on selected predictors (or 
independent variables), into smaller subsets with increasing homogeneity of response (or 
dependent variable) values. The binary partitioning algorithm,supported by the commerciaI 
software tool S-PLUS is summarized in Figure 21.3. Each subset of data associated with a 



360 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

0. Initialization. Set the list, Slist, to contain only the complete data set as its 
singleton element. Select the size and homogeneity thresholds T, and Th for the 
algorithm. 

1. Overall control. Repeatedly remove a data set from S l i s t  and execute step 2 
until Slist becomes empty. 

2. Size test. If IS\ < T,, stop; otherwise, execute steps 3 through 6. IS1 is the 
number of data points in set S. 

3.  Defining binary partitions. A binary partition divides S into two subsets using a 
split condition defined on a specific predictor p .  For numerical p ,  it can be defined 
with a cutoff value c: Data points with p < c form one subset (Sl) and those with 
p 2 c form another subset (5’2). If p is a categorical variable, a binary partition is 
a unique grouping of all its category values into two mutually exclusive subsets 
S1 and SZ. 

4. Computing predicted responses andprediction deviances. The predicted response 
valuev(S) forasetSistheaverageovertheset; thatis,v(S) = & CicS(v i ) ;  and 

the prediction deviance is D ( S )  = ciEs (vi - v ( S ) ) ~ ,  where vi is the response 
value for data point i. 

5 .  Selecting the optimal partition. Among all the possible partitions (all predictors 
with all associated cutoffs or binary groupings), the one that minimizes the de- 
viance of the partitioned subsets is selected; that is, the partition with minimized 
D ( S l )  + D(S2) is selected. 

6. Homogeneity test: Stop if ( 1 - D ( s $ ~ ( s z ) )  5 Th (that is, stop if there is no 
substantial gain in prediction accuracy in further partitioning); otherwise, append 
S1 and S2 to Slist. 

Figure 21.3 Algorithm for tree-based model construction 

tree node is uniquely described by the path and associated split conditions from the root to 
it. The results presented in such forms are natural to the decision process and, consequently, 
are easy to interpret and easy to use. The characterization of individual nodes and associated 
data subsets can also help us understand subsets of high-defect modules, and therefore can 
be used to guide remedial actions focused on those identified modules and on modules 
demonstrating similar characteristics in related products. 

Tree based models were first used in Porter and Selby (1990) to analyze data from NASA 
Software Engineering Laboratory, where various software metrics data were used to predict 
project effort and to identify high-risk areas for focused remedial actions. Recently, it was 
used to identify high-defect modules for several commercial software products (Tian and 
Troster, 1998). Figure 21.4 shows a tree-based model constructed for NS, one of these 
products, relating DF to 11 other design, size, and complexity metrics. The specific metrics 
selected by the tree construction algorithm include: 

HLSC, or high-level structural complexity (Card and Glass, 1990), a design complexity 
metric reflecting the number of external function calls. 



NEW TECHNIQUES FOR RISK IDENTIFICATION 361 

HLSC4J76.5 

n= 944 

7-r 
HLSCd32.5 HLSC>l32.5 

j atlrccutofl anrxurofl i 

HkC>870 5 

n= 51 

n= 46 

MLSCJs3.7 MLSC>263.7 

/ \ 

McCabe<i32 M.kabez132 

s.d.= 13.2 

DF= 77 0 
s.d.= 35.8 

Figure 21.4 Tree-based defect model for a commercial product 

Table 21.3 Characterizing high-defect modules for a commercial product 

Node: Split Conditions/Subset Characteristics #Modules Predicted-DF 

rlll: 870.5 < HLSC < 2450.5, MLSC < 263.7, McCabe < 132 8 55.0 
rr: HLSC > 2450.5 5 77.0 

0 MLSC, or module-level structural complexity (Card and Glass, 1990), a design com- 
plexity metric reflecting the number of internal function calls within the module. 

0 McCabe, or McCabe’s cyclomatic complexity (McCabe, 1976), a program complexity 
metric defined to be the number of independent control flow paths for a given program. 

The subsets with extremely high DF can be easily identified as those associated with leaf 
nodes “rlll” and “rr” in Figure 2 1.4. Each node is labeled by the series of decisions, “1” for 
a left branching, “r” for a right branching, from the tree root to the specific node. Table 2 1.3 
summarizes the data subsets associated with these nodes, characterized by the chains of 
split conditions. The identification of these high-defect modules and their characterization 
can lead to focused remedial actions directed at such modules. These and other results 
were used by the development teams to guide their selective software inspection effort for 
cost-effective quality assurance and improvement. 

As noted in Figure 21.3, tree-based modeling can handle categorical data or combined 
categorical and numerical data seamlessly - a unique advantage among all the risk iden- 
tification techniques covered in this chapter. The treatment of these different types of data 
as predictor variables is similar except in defining binary partitions in the algorithm in Fig- 
ure 21.3: cut off using “<” for an individual numerical predictor and binary grouping of its 



362 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

Step 1. Both the dependent (response) variable and the explanatory (predictor or inde- 
pendent) variables are discretized by using cluster analysis or some other method 
if they are continuous. 

Step 2. Select all statistically significant subsets defined by a pattern whose entropy 
(or uniformity) is within a threshold of the minimal entropy. 

Step 3. Step 2 is repeated until no significant gain can be made in entropy reduction. 

Figure 21.5 Algorithm for optimal set reduction 

category values for an individual categorical predictors. The latter is more computationally 
intensive but still handled automatically in the tool S-PLUS. When the response variable 
is a numerical one, a regression tree similar to the examples earlier in this chapter and in 
Chapter 22 results. However, when the response variable is itself a categorical variable, the 
resulting tree is called a classification tree, as illustrated in Figure 21.7 (Section 21.5). 

21.3.4 Pattern matching and optimal set reduction 

In the above tree-based models, each subset of data can be uniquely described by a set of 
split conditions. Therefore, the data subset can be viewed as following a unique “pattern”. 
However, many commonly defined patterns in practical applications do not have to be mu- 
tually exclusive, and they can be used in combination and in parallel to identify problematic 
areas. This kind of analysis can be carried out using a pattern matching technique called 
optimal set reduction (Briand et al., 1993). 

The model construction for optimal set reduction can be summarized by the recursive 
algorithm in Figure 21.5. Thepattern for a subset is defined by a condition on an explanatory 
(independent) variable, similar to the split conditions in tree-based models. The entropy is 
defined on the dependent variable values, capturing the uniformity of a subset. For example, 
for a subset of data, S ,  all mildly changed modules (subset 5’1, characterized by the pattern: 
1 5 CSI 5 10, where CSI is the changed lines of code) are likely to have high defects 
(DF > 5, which defines the high-defect class). All modules with high data content (subset 
Sz, characterized by the pattern: operand-count > 50) are also likely to have high defects. 
Then, S1 and S, can be extracted from S in parallel, because of the low entropy for these 
subsets (most of these modules are high-defect modules). Notice that these subsets may 
overlap, yielding a general graph instead of a tree structure, as illustrated by Figure 21.6. 

Optimal set reduction was recently used to analyze various project effort and metrics 
data from NASA Software Engineering Laboratory, and to identify high-risk (high-effort) 
modules (Briand et al., 1993). It performed better (with 92.1 1% accuracy) than various other 
techniques, including classification trees, logistic regression without principal component, 
logistic regression with principal component (with 83.33%, 76.56%, and 80.00% accuracy, 
respectively). In addition, the combination of patterns for high-risk modules was also 
identified by the modeling result, which can be used to guide focused remedial actions. 

21.4 COMPARISONS AND INTEGRATION 

Similar to the cost-benefit analysis under different application environments for different 
quality assurance techniques in Chapter 17, we can compare the cost and benefit of individual 



COMPARISONS AND INTEGRATION 363 

Figure 21.6 Example hierarchy for optimal set reduction 

risk identification techniques. On the benefit side, the primary criteria include accuracy of 
the specific risk identification technique, the early availability of risk identification results 
and the related stability, and constructive information or guidance for quality improvement. 
These issues are individually examined below: 

Accuracy of analysis results can be measured by the difference (error) between pre- 
dicted and actual results. The standard deviation of error can be used to measure 
accuracy for models with numerical response (for example, defect count), and pro- 
portion of misclassification for those with categorical response (for example, high- 
defect vs. low-defect). Since the data and applications are from diverse sources, 
only a qualitative comparison of result accuracy is possible here. In general, new 
techniques for risk identification discussed in Section 21.3 perform much better than 
traditional statistical techniques discussed in Section 21.2. 

Early availability and stability: There is a strong need for early modeling results, 
because problems found late in development are much harder and cost significantly 
more to fix. Ideally, models could be fitted to observations early and remain fairly 
stable so that timely and consistent remedial actions can be applied. All the techniques 
discussed in this chapter can be used early, but their stability differs considerably: 
Linear regression models are usually highly unstable due to high correlation in the 
metrics data, while models using principal component analysis are much more stable. 
On the other hand, techniques depending on data ranges (for example, tree-based 
modeling and optimal set reduction) are more likely to be stable than those depending 
on numerical values (for example, traditional statistical models). 

Constructive information and guidance for quality improvement: Tree-based models 
and optimal set reduction can characterize identified high-defect modules by their split 
conditions or patterns defined by certain metrics values or ranges. Such constructive 
information can be used to guide quality improvement activities. For example, if the 
identified high-defect subset of modules are characterized by numerous changes and 
high data contents, this information can be used in several ways: to minimize change 
for such modules, to reduce data contents by restructuring the modules, or to take 
extra precautions toward these modules. 



364 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

Table 21.4 Comparison of risk identification techniques 

Technique Benefiflerformance CosWsability 
accuracy stability guidance simplicity interp. tool sup. 

correlation poor fair fair simplest easiest wide 
regression poor poor poor simple moderate wide 
discriminant good excellent fair moderate moderate moderate 
neural net. good fair poor complex hard moderate 
tree-based model good good excellent moderate easy moderate 
opt. set reduction good fair excellent complex moderate limited 

On the cost side, the primary cost item is the software professionals’ time spent on 
performing the analysis, which can be affected by the complexity (or simplicity) of the 
technique itself and available tool support. Similarly, ease of result interpretation also affect 
the cost because of the possible time required not only to interpret the analysis results, but 
also to convince developers, tester, and managers to initiate follow-up activities for quality 
improvement. These issues are considered individually below: 

Simplicity of the analysis technique has many ramifications. A simple technique is 
generally easy to understand, easy to use, easy (and less costly) to perform on a given 
set of data, and is more likely to be supported by existing tools. Minimal amount 
of training is needed before a software quality professional can learn and master 
the technique. Among the risk identification techniques, correlation and regression 
analyses are simple statistical techniques, while others are more complex, with arti- 
ficial neural networks (multiple parallel, hidden neurons) and optimal set reduction 
(overlapping subsets extracted in parallel) among the most complex. 

Ease of result interpretation plays an important role in model applications. A good 
understanding of the analysis results is a precondition to follow-up actions. For ex- 
ample, tree-based models present results in a form similar to decision trees commonly 
used in project management. Therefore, the results are easy to interpret and easy to 
use. On the other extreme, artificial neuron networks employ multiple hidden layer 
neurons and give the result as if from a “black-box”, making result interpretation 
hard. 

Availability of tool support also has a significant influence on the practical appli- 
cations of specific techniques. Traditional statistical analysis techniques covered 
in Section 21.2 are supported by many statistical packages. Some modern statisti- 
cal packages also support principal component analysis, discriminant analysis, and 
tree-based modeling. However, special tools are needed to support artificial neural 
networks (several such tools are available) and optimal set reduction (a tool developed 
at the University of Maryland). 

Table 21.4 summarizes our comparison of the risk identification techniques. Notice that 
principal component analysis is not listed as a separate entry, but rather included as part of 
discriminant analysis. 

Like any other analysis techniques, the risk identification techniques are only a tool to 
provide us with evidence or symptoms of existing problems. The ultimate responsibility to 



RISK IDENTIFICATION FOR CLASSIFIED DEFECT DATA 365 

use the analysis results and to make changes lies with the development teams and their man- 
agers. Tree-based modeling technique seems to combine many good qualities appropriate 
for this kind of applications: It is conceptually simple, and is supported by a commercial 
tool S-PLUS. It provides accurate and stable results, and excellent constructive information, 
both in a consistent and uniform structure (tree) intuitive to the decision process. Therefore, 
tree-based modeling is an excellent candidate that can be used effectively to solicit changes 
and remedial actions from developers and managers. The analysis results and remedial 
action plans can often be cross-validated by other techniques, taking advantage of their 
individual strengths. 

To facilitate practical applications of selected risk identification techniques, the analysis 
and follow-up activities need to be integrated into and carried out throughout the existing 
software development process. Such an integrated approach can be used to track quality 
changes and to identify and characterize problematic areas for focused remedial actions. 
This approach can be implemented in several stages: Initially, the analyses can be handled 
off-line by a dedicated quality analyst to minimize disruption to existing processes and to 
provide timely feedback. Thereafter, the analysis activities can be gradually automated, so 
that minimal effort is needed by the project teams to produce analysis results for remedial 
actions. 

All the data and examples presented so far in this chapter are based on software ar- 
tifacts, for example, defects and metrics data associated with specific software modules. 
However, similar risk identification techniques can also be applied to process or activity 
based data. For example, tree based modeling was used to link test results (successful vs. 
failed executions) to various timing and input state information for several IBM software 
products (Tian, 1995). The modeling results were used to identify clusters of test execu- 
tions associated with abnormally high failures for focused remedial actions, which lead 
to significantly higher quality for these products as compared to earlier products. Similar 
analyses can also be performed on inspection data typically gathered in the earlier phases of 
software development. Each individual inspection can be treated as a data point, with all the 
circumstantial information associated with the inspection, such as components inspected, 
inspection method used, inspectors and time spent, as predictors, to build similar tree-based 
models to identify high-defect areas for focused quality improvement. 

21.5 RISK IDENTIFICATION FOR CLASSIFIED DEFECT DATA 

For classified defect data using ODC in Chapter 20, various analyses can be performed, 
such as the one-way and two-way analysis. However, the combinatorial explosion renders 
it impossible to perform multi-way analyses indiscriminately. We next examine the use 
of tree-based models to analyze such classified data and perform multi-way analysis, and 
illustrate it with examples for an IBM database product (Tian and Henshaw, 1994). 

Defect impact analysis using TBM 

For TBM analysis, we need to first select the response variable, and then examine its 
relationship to other variables used as predictor variables. In effect, we are performing 
1-to-N analysis instead of isolated one-way analysis or the 1-to-1 two-way analysis. This 
1-to-N analysis can be repeated for other variables if we select them as the response variable 
in individual analyses. 



366 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

root 
v= reliab 
f= 0.51 

trig: e.a.,b,f,i,o,sc trig: c.co,m.ss.s 

wkc216 wk>216 

/ \  
inj: p,c,lld,ft,st inj:hld,ut wk c 231.5 wk > 231.5 src: n.s src: b,c,i,p,v 

/ , i" \ , v= usabi v= reliab V= capab v= reliab v= reliab v= reliab 

, l l i  /, , ,llr \ 

//o / ,lr;\, , f=0.375 f= 0.583 f=O.2 f=0.376 f= 0.536 f= 0.888 
d=64 d= 12 d=55 d=125 d=41 d=125 

src: c,i,s src: b,n,p,v wk c 248.5 wk 248.5 

,1111 / . , c/\, , , / , ,~rrr \ , 
V= sew v= usabi V= reliab v= docum 
f= 0.333 f= 0.442 f= 0.392 f=0.6 

d= 12 = 52 d= 120 d=5 

node label 

f= frequency of v 

d= 46 

Figure 21.7 Predictions of defect impact for an IBM product 

Defect impact is a classification of the defect itself, while all other defect attributes 
capture circumstantial information associated with the defect discovery and fixing. With 
the increased focus on customers in today's competitive environment, understanding of 
defect impact to customers takes on an increased importance. As a result, tree-based 
models to study the link between defect impact and other attributes would be of interests to 
project personnel, so that they can understand the linkage and devise appropriate corrective 
and preventive actions. The specific attributes used in the tree-based models were listed in 
Table 20.6. 

Figure 21.7 shows the classification tree constructed for defect impact analysis. 438 
defect entries and related ODC information were used after screening out data points with 
missing data. At each node (corresponding to a set of defects), the predicted defect impact 
ZI is the most frequently cited category by the testers for this set of defects. The analysis 
shows that the distribution of defects (defect impacts) is very non-homogeneous, and the 
relationship to other .ODC attributes is highly nonlinear. 

Detailed information associated with each tree node can be shown in stack-up barplot 
such as in Figure 21.8, where the vertical bar sequence of different shades represents the 
distribution of defect impact at this node. For example, the overall defect impact distribution 
among the impact areas is presented in the middle histogram stack in Figure 21.8. The left 
and right bars represent the defect impact distributions at nodes 1 and r of Figure 21.7 
respectively. 



RISK IDENTIFICATION FOR CLASSIFIED DEFECT DATA 367 

256 defects; trig: e,a,b,f,i,o,sc 

All 438 defects 

182 defects; trig: c,co,m,ss,s 

LEFT SUBTREE ROOT TREE RIGHT SUBTREE 

Figure 21.8 Defect impact distributions for an IBM product 

Interpretation and usage of the analysis results 

The primary partition for the defect impact is the defect trigger. After the partition, the 
reliability related defects become overwlt~elmingly dominant for the defects triggered by 
test cases from communication, coexistence, migration, stress, startupkhutdown scenario 
classes (trig: c , co ,m, s , ss, see Table 20.6 in Chapter 20). For defects triggered by test 
cases from other scenario classes, although reliability remains a major problem (82 or 32% 
of the 256 defects), there is a disproportionate number of usability defects (78 or 30% of 
the 256 defects). The visual representation of this result in Figure 21.8 makes the impact 
of the primary partition obvious. 

In the right sub-tree (rooted at node r), reliability impact is consistently predicted, 
although with different levels of f ,  which represents to some degree the confidence of the 
prediction. In the left sub-tree (rooted at node l), several other defect types are identified as 
the dominant defects in certain subsets. For example, usability defects are mostly triggered 
by testing scenarios of the ad-hoc and installation types. The defects were injected to base, 
new, refixed and vendor codes in the phases of coding, previous release, and system testing. 
This result can lead to a focused effort on the identified phases and types of code to remove 
the usability defects and enhanced test cases to thoroughly test for usability. 

In part of the left sub-tree, data sets were partitioned into significantly smaller subsets to 
identify certain dominating defect impacts. For example, security defects dominate among 
the six defects associated with node l l l r l ,  and documentation defects dominate among the 
five defects associated with node lrrr. In practical application, the information presented 
should only be used with both the set size d and frequency f in mind. Greater values for 
both f and d provide stronger evidence than smaller f or d. 

The subsets of defects where certain impacts dominate can be easily identified in clas- 
sification trees, together with their associated symptoms, by linking them to characteristics 



368 RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT 

used to navigate through the tree. Some of these symptoms may well be causes if confirmed 
or corroborated by developers and testers involved. In the context of the current analysis, 
there are essentially two ways to use the classification trees: 

Passive tracking and occasional correction: The classification trees can be used per- 
sistently over time to track problems, to identify certain high-risk or abnormal patterns 
of defect impact and associated symptoms, to guide additional causal analysis, and 
to derive appropriate remedial actions. 

0 Active identification and control of product quality: This use relies on externally 
identified targets of product quality and the identification of symptoms by classi- 
fication trees. For example, if usability represents the primary concern for certain 
products, further analysis of usability-dominant subsets of defects needs to be done 
to actively identify and act upon corrective and preventive actions. 

Many intricate links between data attributes can only be understood by the people with 
product-specific knowledge. Effective usage of modeling results requires close collabo- 
ration between the people from quality and process organizations and people intimately 
involved with the product development, testing, and data collection. 

21.6 CONCLUDING REMARKS 

Because of the highly uneven distribution of defects in software systems, there is a great 
need for effective risk identification techniques so that high-defect modules or software 
components can be identified and characterized for effective defect removal and quality 
improvement. The survey of different risk identification techniques presented in this chap- 
ter brings together information from diverse sources to offer a common starting point for 
software quality professionals and software engineering students. The comparison of tech- 
niques can help them choose appropriate techniques for their individual applications. 

The tree-based modeling (TBM) technique was found to possess various desirable prop- 
erties as an effective risk identification technique and is therefore highly recommended for 
various practical applications. Another example of the effective use of TBM for effective 
reliability risk identification and product reliability improvement is presented in Chapter 22. 
In addition, tree-based modeling can handle categorical data or combined categorical and 
numerical data seamlessly - a unique advantage among all the risk identification techniques 
covered in this chapter. Therefore, as a general recommendation, tree-based models should 
be considered in many situations for risk identification and quality improvement initiatives, 
either as the primary technique or to be integrated with other techniques to achieve the 
common goal of focused remedial actions on the identified problematic areas for effective 
quality improvement. 

Besides the risk identification techniques based on empirical data we described in this 
chapter, there are various other techniques for risk identification, analysis, and management 
(Boehm, 199 1; Charette, 1989). For example, software prototyping or rapid software 
prototyping can be used in software development or evolution to proactively identify and 
address various risks or potential problems (Luqi, 1989; Tanik and Yeh, 1989). Quantitative 
risk analyses based statistical decision theory (Pratt et al., 1965) can also be adapted to work 
with software prototypes to make management decisions based on related risk analysis 
(CBrdenas-Garcia et al., 1992; CBrdenas-Garcia and Zelkowitz, 1991). Risk identification 
also play a very importantrole in the spiral development process (Boehm, 1988) in assessing 
the project risk and initiating the next development spiral. 



PROBLEMS 369 

Problems 

21.1 What is the primary motivation for risk identification? 

21.2 Have you heard of the 80:20 rule before reading this book? If so, in what context? 
If not, do you think it applies to many situations that you are familiar with? Give some 
specific examples. 

21.3 Most of the risk identifications we described in this chapter are about defects. Can 
you list some other risks related to software projects from both the internaYdevelopment 
view and the externalher view? 

21.4 Are traditional statistical techniques commonly used in analyzing software defect 
and other data from your organization? What about some of the newer techniques covered 
in Section 21.3? If not, do you think that some of them can be applied? 

21.5 Principal component analysis is often used as a data transformation techniques in 
various software engineering studies. Compare the relative merits and drawbacks of this use 
and the use of other data transformations (for example, log-transformation we mentioned 
in Section 21.2). 

21.6 Besides artificial neuron networks, various learning algorithms and artificial intelli- 
gence techniques have also found valuable applications in software engineering and other 
application domains. Do you know of some such applications or can you find some such 
examples in software engineering/quality literature? (Hint: Pay special attentions to genetic 
programming, expert and decision support systems, pattern matching, heuristic algorithms.) 

21.7 What are the similarities and differences between decision trees and tree-based 
models? 

21.8 In Selby and Porter (1988), the first known application of tree-based models in 
software engineering, the trees has fixed partitions (either a 4-way or an 8-way partition). 
What are the relative advantages and disadvantages of this model and the binary partitions 
supported by S-PLUS? 

21.9 Trace through the tree-based modeling algorithm in Figure 21.3, and explain how a 
tree like that in Figure 2 1.4 can be obtained. 

21.10 Compare the relative advantages and disadvantages between tree-based modeling 
and optimal set reduction. 

21.11 We didn’t explicitly compare the applicability to different application environments 
and different types of data, although several of the criteria are related to applicability. Can 
you perform a formal applicability comparison? 

21.12 Besides using tree-based models to perform multi-way analysis for ODC data, what 
other analysis or modeling techniques can your suggest? 



This Page Intentionally Left Blank



CHAPTER 22 

SO FTWAR E RE Ll AB I Ll TY EN G I N E E R I N G 

This chapter introduces the general topic of software reliability engineering (SRE) (Musa 
et al., 1987; Malaiya and Srimani, 1990; Lyu, 1995a) and illustrates its applications through 
examples for several large software products developed in the IBM Software Solutions 
Toronto Laboratory (Tian et al., 1995; Tian and Palma, 1997; Tian, 1998; Tian and Palma, 
1998; Tian, 1999). The specific topics include: 

0 After a brief introduction to SRE in Section 22.1, the general testing environment 
for large software systems is characterized and matched against SRE assumptions in 
Section 22.2. 

0 Two types of existing models, input domain reliability models (IDRMs) and software 
reliability growth models (SRGMs), are introduced and adapted to work in practical 
applications in Section 22.3 and Section 22.4, respectively. 

0 A new integrated modeling technique, tree-based reliability modeling (TBRM), is in- 
troduced to analyze diverse measurement data and improve reliability in Section 22.5. 

0 Some implementation issues and software tool support for SRE are discussed in 
Section 22.6. 

22.1 SRE: BASIC CONCEPTS AND GENERAL APPROACHES 

As mentioned in our general discussion about quality and quality attributes in Chapter 2, 
one important aspect of software quality is reliability. Reliability can be defined as the 

371 



372 SOFTWARE RELIABILITY ENGINEERING 

probability of a software system to perform its specified functions correctly over a long 
period of time or for different input sets under the usage environments similar to that 
of its target customers (Goel, 1985; Musa et al., 1987; Tian, 1995). Software reliability 
engineering (SRE) is the branch of software engineering that studies the issues related to the 
measurement, modeling, and improvement of software reliability. Two general approaches 
are commonly used to analyze reliability: 

Erne domain approach: The failure arrival process is viewed as a stochastic process 
and analyzed using various software reliability growth models (SRGMs) to assess 
current reliability, to predict future reliability, to serve as an exit criterion to stop 
testing, or to estimate time or resources needed to reach a reliability target. Many 
SRGMs have been proposed and used in various practical applications (Goel, 1985; 
Lyu, 1995a; Musa et al., 1987). 

0 Input domain approach: Input domain reliability models (IDRMs) are used to analyze 
input states and failure data, providing valuable information relating input states to 
reliability. Many IDRMs have been proposed and used to estimate reliability (Brown 
and Lipow, 1975; Nelson, 1978; Ramamoorthy and Bastani, 1982), typically as a 
weighted ratio between input states that result in successful executions over the total 
sampled input states, based on the common assumption of repeated random sampling 
without error fixing. 

In this chapter, we characterize the typical testing environment for large software systems, 
select appropriate measurements to assess product reliability using IDRMs and SRGMs, and 
use tree-based reliability models (TBRMs) (Tian, 1995) to analyze the combined time and 
input domain data for reliability improvement. Implementation and software tool support 
issues are also discussed. 

22.2 LARGE SOFTWARE SYSTEMS AND RELIABILITY ANALYSES 

In a series of recent studies (Tian et al., 1995; Tian and Palma, 1997; Tian, 1998; Tian and 
Palma, 1998; Tian, 1999), the reliability of several software systems developed in the IBM 
Software Solutions Toronto Laboratory were analyzed. The size of these systems range 
from several hundred thousand to several million lines of source code. They share many of 
the common characteristics of large software systems, and therefore are used in this chapter 
to illustrate the use of software reliability engineering under similar environments. 

Characterizing a typical system testing environment 

For many large software systems, system testing is mainly used to assess the overall quality 
from a customer’s perspective, and is executed in an environment that attempts to resemble 
the actual usage environment by target customers. Because of the large product size and the 
lack of precise customer usage information due to the large user population and diverse usage 
environments, a scenario-based testing strategy is often used: The test scenarios roughly 
describe customer usage situations, based on existing product information or customer 
surveys. These scenarios are generally grouped into scenario classes according to high- 
level functionalities. Actual test cases are derived from these scenarios. Each observation 
of a failure generally triggers related test runs to locate the faults and additional test runs 
to verify the fixes. Typically large numbers of test cases are run, with hundreds or even 



LARGE SOFTWARE SYSTEMS AND RELIABILITY ANALYSES 373 

thousands of failures being observed during system testing for such large software systems, 
which provides large amounts of data for statistical modeling. 

Scenario-based testing for large software systems can be characterized by the mixture 
of structured (centered around the framework of scenario classes), clustered (focused on 
locating faults and verifying fixes), and randomized testing. This environment has a strong 
effect on the choice of reliability measurements and models. 

Satisfiability of general assumptions for SRE 

The following general assumptions (A1 through A4) made by SRGMs and IDRMs (Goel, 
1985) have to be matched against this testing environment before appropriate models can 
be selected and used for reliability analysis: 

0 Assumption Al .  The software usage resembles that of its target customers, or the 
testing follows operational profiles (OPs) we described in Chapters 8 and 10. 

Although precise OPs were not available for these products, the test scenarios roughly 
describe customer usage situations and the scenario distribution across scenario 
classes roughly corresponds to customer usage frequencies. Therefore, this assump- 
tion is generally satisfied. 

0 Assumption A2. Failure intervals or observations are independent, which implies 
randomized testing. 

Despite the individual dependencies due to structured testing according to scenarios, 
testing is generally conducted by different testers in parallel, interleaving in some 
arbitrary fashion. And, despite short-term dependencies among clusters of test runs 
used to locate faults and verify fixes, there is no long-term dependency among test runs 
used to deal with different failures. Therefore, random testing can be approximated 
by scenario-based testing. 

Assumption A3. Probability of failure in SRGMs is a function of the number of 
faults existing in the software system, which implies a homogeneous distribution of 
faults. 

Although faults are generally distributed unevenly across components in large soft- 
ware systems, this distribution evens out as testing progresses if risk identification 
and management techniques can be used to focus on problematic areas for remedial 
actions early in testing (Section 22.5). Consequently, SRGMs can be used late in 
testing for reliability analyses. 

0 Assumption A4. Time is used as the basis to define failure rates in SRGMs, which 
requires that appropriate time measurement be selected from the following two cat- 
egories: 

- Usage-independent time measurement which marks failure instances but ignores 
software usage information. Calendar time and wall-clock time fall into this 
category. 

- Usage-dependent time measurement that counts only the time when software 
is used. Such measurements include: 1) test run count, where each test run 
represents a well defined unit of software usage linked to some user-oriented 
operations (Tian et al., 1995), 2) execution time (Musa et al., 1987), and 3) 



374 SOFWARE RELIABILITY ENGINEERING 

0 -  In 

0 )  Ill 
1 

0 50 100 150 

Date index (cumulative testing days) 

Figure 22.1 Measured runs (per day) for products D 

detailed task measurement, generically referred to as transactions (Tian and 
Palma, 1997). 

Usage-independent time measurements are generally unsuitable for reliability anal- 
yses for large software systems, because of the large variations in software usage 
and test activities typified by the test run count per testing day for product D (Tian, 
1995) and transactions per run for product E (Tian and Palma, 1997) plotted in Fig- 
ure 22.1 and Figure 22.2, respectively. Such variations are caused by shifting focuses 
during testing, partial dependencies in test scenarios, staffing level fluctuations, etc. 
Therefore, appropriate usage-dependent time measurement needs to be used with 
SRGMs. 

To summarize, appropriate reliability measurements and models can be selected to analyze 
the reliability of large software systems under scenario-based testing. 

22.3 RELIABILITY SNAPSHOTS USING IDRMS 

In the input domain reliability analysis, the reliability of a software system is defined to 
be the probability of failure-free operation for specific input states. Therefore, the key to 
reliability measurement in the input domain reliability modeling is both failure and input 
state measurement. The latter captures the information of precise input state for the software 
systems, which can be related to testing results by using various input domain reliability 
models (IDRMs). 

IDRMs generally use data from repeated random sampling to analyze product reliability. 
When used for data at different stages of testing, they can provide a series of reliability 
snapshots. Therefore, they can be used directly for current reliability assessment and as an 
exit criterion for stop testing. 



RELIABILITY SNAPSHOTS USING IDRMS 375 

0 100 200 300 400 

Test runs in execution seqeunce 

Figure 22.2 Measured transactions (per run) for products E 

The successive reliability snapshots above can also help us analyze reliability change 
over time. Similarly, when we apply IDRMs to different areas or product components, they 
can help us analyze reliability variations and identify high-risk (low-reliability) areas for 
focused reliability improvement. These novel usages of IDRMs will be explored further in 
Section 22.5. 

Some commonly used IDRMs 

In Nelson’s input domain reliability model (Nelson, 1978), an unbiased estimation of reli- 
ability R is the ratio between input states that result in successful executions over the total 
sampled input states. R can be derived from observations of running the software for a 
sample of n inputs according to the following setup: 

0 The n inputs are randomly selected from the set {Ei : i = 1 ,2 ,  . . . , N } ,  where each 
Ei is a set of data values needed to make a run. 

Sampling probability is according to the probability vector {Pi : i = 1 ,2 ,  . . . , N } ,  
where Pi is the probability that Ei is sampled. This probability vector defines the 
operational profile (OP). 

0 If the number of failures is f, then the estimated reliability R is: 

where T is the failure rate. The estimated reliability R for a given input set equals to 
the number of successes over the total number of runs. 



376 SOFTWARE RELIABILITY ENGINEERING 

Table 22.1 Estimated reliability (k)  and failure rate (A) for successive time segments 

Segment rn Range Ri ii 

1 0 < rn 5 137 0.241 0.759 
2 137 < rn 5 309 0.558 0.442 
3 309 < rn  5 519 0.176 0.824 
4 519 < rn 5 1487 0.454 0.546 
5 1487 < rn 5 1850 0.730 0.270 
6 1850 < rn 5 3331 0.930 0.070 

Notice that in the Nelson model, the OP and sampling probability distribution are handled 
implicitly. 

In the model proposed by Brown and Lipow (Brown and Lipow, 1975), the whole input 
domain is partitioned into sub-domains. That is, each Ei from input domain {Ei, i = 
1,2, .  . . , N }  represents a specific sub-domain. The estimated reliability is: 

N 

R = 1 - (5) P(Ej ) ,  
j=1 

where nj is the number of runs sampled from sub-domain Ej, fj is the number of failures 
observed out of nj runs, and P(Ej)  explicitly defines the probability that inputs in sub- 
domain Ej are used in actual customer operational environment. This model adjusts for 
the different usage frequencies between the testing environment (as reflected by ni as a 
proportion of all test runs) and the customer usage environment (as captured in P(Ei)). 
Therefore, it is more widely applicable than the Nelson model. When there is an exact 
match between the two frequencies (that is, P(Ei) = ni/ Cj=l nj), the Brown-Lipow 
model reduces to the Nelson model. 

N 

IDRMs applications and related analyses 

Table 22.1 gives several different reliability snapshots by applying the Nelson model to 
data in different time segments indexed by the run number rn in the overall test execution 
sequence for an IBM product during its testing process, showing both the estimated reli- 
ability (a) and failure rate (i) for each segment. Notice that these estimated reliabilities 
vary considerably, but following a general trend of later segments being more likely to be 
associated with higher reliability than earlier ones. This reliability change (or growth) can 
be analyzed by using SRGMs, such as in Section 22.4. In addition, data associated with 
these segments can be treated as grouped input data to SRGMs to produce more stable 
reliability assessments and predictions (Tian, 2002). 

On the other hand, for normal operational usage where no observed defect is immediately 
fixed, the Nelson estimate of reliability is more like to be more stable. For example, applying 
the Nelson model (Nelson, 1978) to daily data of web errors (= failures) and web hits (= 
number of sampled input) for the SMU/SEAS web site described in Chapter 20, we can 
obtain the daily reliability snapshots or related daily failure rates based on data extracted 
from both the access and error logs. Table 22.2 gives the range (min to max), the mean, and 
the standard deviation (std.dev), for these daily error rates. We also include the daily error 
counts for comparison. Because these rates and error counts have different magnitudes, we 



LONGER-TERM RELIABILITY ANALYSES USING SRGMS 377 

Table 22.2 Daily error rate (or failure rate) for SMUlSEAS 

Daily Error Rate min max mean std.dev rse 

errorslhits 0.0287 0.0466 0.0379 0.00480 0.126 
errorslday 50 1 1582 1101 312 0.283 

use the relative standard error, or rse, defined as: rse = std.dev / mean, to compare their 
relative spread in Table 22.2. These daily error rates fall into tighter spread than daily error 
counts, which indicates that they provide more consistent and stable reliability estimates 
than counting the daily errors alone. 

In both the Nelson model and the Brown-Lipow model described above, as well as other 
IDRMs (Thayer et al., 1978), one common assumption is repeated random sampling without 
error fixing. Therefore, one of the primary use of IDRMs is as the product release criterion 
based on results from acceptance testing. 

However, in practical testing environments before the final stage of acceptance testing, 
whenever a failure is observed, appropriate actions are taken to identify, locate, and remove 
the underlying faults that have caused the failure. The reliability is changed due to defect 
removals. To assess the reliability at this point, another batch of runs needs to be executed, 
and the defect fixing problem arises again. A small subset of runs towards the end of 
testing can be used as a biased estimate of reliability. In general, the smaller the sampling 
window, the less bias there is. However, the confidence levels of the estimation are severely 
compromised because of the smaller sample size. This situation points to the need of 
using relevant time domain information to strengthen IDRMs, such as in the tree-based 
reliability models (Tian, 1995) using both time and input domain information discussed in 
Section 22.5. 

Realizing the impracticality of failure detection without fixing during software develop- 
ment, many researchers focus instead on maximizing the product coverage of test suites. 
The implicit assumptions here are twofold: 1) all detected defects will be removed, and 
2) higher coverage leads to higher reliability. Consequently, the focus of this approach is 
not on the reliability assessment, but rather on increasing the various coverage measures 
that can be defined and gathered, and maximizing testing effectiveness defined accordingly 
(Weyuker and Jeng, 1991; Tsoukalas et al., 1993). An alternative way of using coverage 
information in reliability modeling is to weigh time intervals by the coverage analysis re- 
sults for individual test runs (Chen et al., 2001), based on the assumption that only test runs 
that cover new territories are more likely to trigger failures. 

22.4 LONGER-TERM RELIABILITY ANALYSES USING SRGMS 

Many software reliability growth models (SRGMs) have been proposed and used to analyze 
reliability growth through software testing and related defect removal. We next define 
reliability in the time domain, describe several commonly used such SRGMs, and illustrate 
their use in assessing reliability and reliability growth. 

In the time domain approach, the reliability of a software system is defined to be the 
probability of its failure-free operations for a specific duration under a specific environment 
(Musa et al., 1987; Malaiya and Srimani, 1990; Lyu, 1995a). Reliability is usually char- 
acterized by hazard and reliability functions. The hazard function (or hazard rate) ~ ( t )  is 



378 SOITWARE RELIABILITY ENGINEERING 

defined as: 
~ ( t ) A t  = P{t < T < t + At 1 T > t } ,  

where T marks the failure time, P is the probability function, and z ( t )A t  gives the prob- 
ability of failure in time interval ( t ,  t + At), given that the system has not failed before t. 
The reliability function R(t) is defined as: 

- J*t z (z )dz  R(t) = e , 
which gives the probability of failure free operations in the time interval (0, t) .  MTBF 
(mean time between failure) is commonly used as a measureof reliability for-its intuitiveness. 
MTBF can be calculated as: 

M 

MTBF = R(z)dz. 

In practical applications, comparing to other reliability measures, the measure MTBF is easy 
to interpret and directly meaningful to customers as well as software managers, developers, 
and testers. 

Various measurement data are necessary for model fitting and usage. There are three key 
elements to time domain reliability measurement: failure, time, and usage environment. The 
key to failure measurement is consistency in failure definition and data interpretation. The 
environment is generally assumed to be similar to the actual customer usage environment, 
so that the analysis results can be directly extrapolated to the likelihood of in-field product 
failures (Musa, 1998). For time measurement, the basic requirement is that actual usage 
amount or intensity is reflected. Therefore, if we do not have constant usage intensity over 
calendar date or wall-clock time, some usage-dependent time measurements are needed, 
which are generally harder and more expensive to obtain. 

Some commonly used SRGMs 

De-eutrophication models link failure probability to the number of defects remaining in the 
current system in a functional form, thus capturing reliability growth (or de-eutrophication) 
in testing as a result of defect observations and removals. In the Jelinski-Moranda model 
(Jelinski and Moranda, 1972), one of the earliest and most widely used models, chance 
of failure for unit time is proportional to the number of defects remaining in the current 
system. That is, the hazard rate zi for the i-th failure is: 

zz = qh(N - (2 - l)), 

where N is the total number of defects at the beginning of testing (that is, before discovering 
the first failure), and C#I a proportionality constant for the model. The hazard rate between 
successive failure observations remains constant, and the discovery and removal of each 
defect contribute the same to the hazard rate reduction. Therefore, the failure rates over suc- 
cessive failures form a step function of time, with uniform downward steps at corresponding 
failure observations. 

The failure arrivals can also be viewed as a stochastic process and analyzed accordingly 
(Karlin and Taylor, 1975). The most commonly used such process is the non-homogeneous 
Poisson process (NHPP), with the number of failures X ( t )  for a given time interval (0, t )  
prescribed by the probability P [ X ( t )  = n] as: 

(m( t ) ) ecrn(Q 
n! 

P [ X ( t )  = n] = , 



LONGER-TERM RELIABILITY ANALYSES USING SRGMS 379 

where m(t) is the mean function, and the failure rate X(t) (used in place of ~ ( t )  in such 
situations) is the derivative of m(t), that is, X ( t )  = m’(t). Different choices of the mean 
function m(t)  can be used to model different failure arrival patterns. One of the earliest and 
most wide used NHPP model is the Goel-Okumoto model, also known as the exponential 
model, (Goel and Okumoto, 1979) with 

m(t)  = ~ ( 1  - e P t ) ,  

where N (estimated total defects) and b are constant. Another NHPP model commonly 
used in industry is the S-Shaped model (Yamada et al., 1983) with 

m(t)  = N(l  - (1 + bt)e-bt). 

This model allows for a cumulative failure arrival pattern with a slow start, a steep middle 
part, and a more saturated late part. 

Also popular in software reliability engineering are the two execution time model by 
Musa et al. (1987). The basic Musa model (Musa, 1975) is essentially the same as Jelinski- 
Moranda model, but with the emphasis of using CPU-execution time as the time measure- 
ment. This model also includes a predictive element, enabling the user of this model to 
estimate model parameters from product and process characteristics even before actual fail- 
ures are observed. Logarithmic execution time model by Musa and Okumoto (1984) is a 
variation of NHPP model with 

1 
m(T) = - log (A067 + I), e 

where T measures CPU-execution time, XO is the initial failure intensity, and 8 is a model 
parameter. Both these models have been used successfully in various telecommunication 
systems (Musa et al., 1987), and are often used together to bound the reliability predictions 
from above (basic Musa) and below (Musa-Okumoto). 

SRGMs application examples 

Using SRGMs, product reliability at a given time can be estimated by the slope of the fitted 
SRGMs, and overall reliability change (or reliability growth due to failure observations and 
fault removals) can be characterized by the slope change from the beginning of testing to 
the current time. 

Figure 22.3 plots the failure arrivals against cumulative test runs for product D, and shows 
the fitted Goel-Okumoto and S-Shaped SRGMs (labeled GO and S) .  Various other SRGMs 
were also fitted, but were omitted in Figure 22.3 because they provide similar results. With 
such plots, flatter curves indicate slower failure arrivals and higher product reliability. These 
assessments can be quantified by the current failure rate and MTBF (mean-time-between- 
failures) derivable from fitted SRGMs, such as shown in Figure 22.3. Future reliability 
as well as time or resources to reach a reliability target can also be predicted from these 
models by extrapolating fitted curves into the future. These results and related studies of 
other products or systems (Tian et al., 1995; Tian, 1995; Tian and Palma, 1997; Tian et al., 
2004) point to several important conclusions, including: 

Many uses oftest run counts: Test run data over time can be easily collected (Sec- 
tion 22.6), consistently used to track testing progress, and can lead to accurate re- 
liability assessments with SRGMs if runs are homogeneous, such as for product D 
plotted in Figure 22.3. 



380 SOFTWARE RELIABILITY ENGINEERING 

0 1000 2000 

cumulative runs 

3000 

Figure 22.3 SRGMs for test run indexed failures for product D 

Limited applicability of execution time: For large software systems studied here, 
because many test runs involve little execution and much setup and manual operations, 
SRGMs fitted to execution time data do not perform well. 

Using transactions: When run homogeneity cannot be assured, detailed usage mea- 
surements, such as measured by transactions, can be used effectively for reliability 
analyses with SRGMs. An example of this was given in Figure 19.4 (Chapter 19). 

To summarize, SRGMs can be used effectively to assess current reliability, to predict fu- 
ture reliability and timehesources to reach given reliability targets, when consistent failure 
measurement and appropriate time measurements are used. 

22.5 TBRMS FOR RELIABILITY ANALYSIS AND IMPROVEMENT 

SRGMs offer overall reliability assessments and predictions for software products, but 
provide little information on how to improve reliability. Therefore, we need alternative 
models and analysis techniques, such as tree-based reliability models (TBRMs), to identify 
and correct problems for effective reliability improvement. In an earlier study (Tian et al., 
1995), noticeable reliability variations across different sub-groups of test scenarios or testing 
sub-phases were observed. Such input domain information can be used in conjunction with 
time domain information for problem identification and reliability improvement. 

In IDRMs, the reliability of a software system is the probability of failure-free operation 
for a set of input states randomly sampled according to its OP, as described above. In 
Nelson’s IDRM described earlier, an unbiased estimate of reliability (k) is the ratio between 
input states that result in successful executions over the total sampled input states. IDRMs 
can be easily extended to model reliability for data subsets, to analyze reliability variations, 



TERMS FOR RELIABILITY ANALYSIS AND IMPROVEMENT 381 

to identify problematic areas, and to guide remedial actions for reliability improvement. 
Much of the input and timing information can be used to partition the runs into different 
subsets. However, to handle the large number of possible partitions and the mixed numerical 
timing data and categorical input state data, an appropriate analysis method with automated 
tool support is required. To fulfill these needs, a statistical analysis technique called tree- 
based modeling described in Chapter 21 can be used, as described below. 

22.5.1 Constructing and using TBRMs 

In tree-based models, modeling results are represented in tree structures, where each node 
represents a set of data and each edge from its parent node represents a property or condition 
for data associated with the node. The data used in such models consist of multiple attributes, 
with one attribute identified as the response variable and several other attributes identified 
as predictor variables. The data is recursively partitioned into smaller subsets by selecting 
a split condition defined on a predictor variable to minimize the difference between the 
predicted response values and the observed response values. A binary variant of recursive 
partitioning, summarized in Figure 21.3 in the previous chapter, is used in this chapter. The 
use of such models in reliability analyses that integrate both time and input domain data 
leads to the tree-based reliability models or TBRMs (Tian, 1995). 

In TBRMs, each run is treated as a data point, the result indicator rij (rij = 1 if the j-th 
run of subset i is a success, rij = 0 otherwise) as the response variable, and the timing and 
input state information as the predictor variables. Let there be ni runs with fi failures for 
subset i. The predicted result si for subset i according to Step 4 of Figure 21.3 is: 

which is exactly the estimated reliability R, by the Nelson model restricted to a subset of 
runs. 

When the success rate is measured in units other than runs, the above TBRM need to be 
modified accordingly. Let tij be the transactions (or execution time) for run number j in 
subset i, then the individual success rate sij for that run is sij = rij /tij .  The overall success 
rate si for subset i is the total number of successes Si divided by the total transactions Ti. 
When the individual failure rates were weighed by the corresponding individual transactions 
(an option available in S-PLUS (StatSci, 1993), with modified Step 4 of Figure 21.3), we 
have: 

Therefore, the success rate si for each subset i and the partition selection for both variations 
of the TBRMs can be automatically handled by S-PLUS. 

Each node in a TBRM gives the estimated reliability for a specific subset of runs charac- 
terized by the series of split conditions from tree root to the current node, linking estimated 
reliability to input state or timing predictors. The selected partitions and associated split 
conditions are local optimums according to the selection criterion in Figure 21.3. For an 
interior node, if an input state variable is selected to partition the data set, it indicates that 
the product is more reliable in handling certain subsets of input states than others. This 
information can be used to identify problematic areas for focused remedial actions. On 
the other hand, if a time predictor is selected to partition the data set, it indicates that re- 
liability change over time is predominant. The partition distinguishes one cluster of runs 



382 SOFWARE RELIABILITY ENGINEERING 

of higher estimated reliability from another one of lower reliability, separated by a cutoff 
time. Primary usages of TBRMs include: 

Identifring problematic areas for focused remedial actions. Subsets of runs with 
exceptionally low reliability can be easily identified in TBRMs and characterized by 
the split conditions leading to the corresponding tree nodes. The identification of such 
problematic areas represents opportunities for cost effective reliability improvement 
through focused remedial actions. 

Monitoring reliability change and enhancing existing exit criteria. The progression 
of TBRMs over time helps us track reliability progress and reliability distribution 
across different subsets of runs. A product should exit from testing only if it achieves 
uniformly high quality across different functions and components, as typified by 
TBRMs with major partitions defined on time variables, with later runs demonstrating 
higher reliability than earlier ones. 

22.5.2 TBRM Applications 

TBRMs have been used in several large software products developed in the IBM Software 
Solutions Toronto Laboratory, including products D and E discussed earlier. The data for 
product D in the subsequent example include several attributes: 

Timing: date (calendar year, month, day), tday (testing day), et (execution time). 

0 Input state: SC (scenario class), SN (scenario number), log (corresponding to a sub- 
product with a separate test log) and tester; 

Test result. 

The tree in Figure 22.4, covering data at approximately the halfway point of testing for 
a sub-product in product D, represents typical results in the earlier part of testing. Here, 
the most important factor linked to the estimated reliability is the test scenario information 
(SC and SN), which indicates that different parts or function groups are of different quality. 
From this tree some subsets with very low success rates can be easily identified: the leftmost 
node, and the center node with s = 0.143 A n = 7. Appropriate remedial actions were 
taken to detect and remove related faults. 

In contrast, the tree in Figure 22.5, covering the whole testing phase for the same sub- 
product, represents typical results toward the end of testing. The time information has 
become a major factor linked to success rate, and all the subsets associated with low success 
rates are associated with early runs. The primary split at the root indicates that later test 
runs (tday > 37.5) have much higher success rate (0.846) than earlier ones (0.526 for 
tday < 37.5). 

The final TBRM for the whole product was shown in Figure 19.5 (Chapter 19). which 
shares some of the common characteristics for late trees. In particular, tree nodes associated 
with late runs have substantially lower failure rate than early ones. As demonstrated by 
this example, a series of conscious decisions can be made throughout testing to focus on 
problematic areas for reliability improvement with the use of TBRMs, leading to products 
exiting testing with uniformly high quality. 



TBRMS FOR RELIABILITY ANALYSIS AND IMPROVEMENT 383 

Figure 22.4 TBRM 1 for product D 

........................................................... 

Figure 22.5 TBRM2 for product D 



384 SOFTWARE RELIABILITY ENGINEERING 

0.0 0.2 0.4 0.6 0.8 1 .o 
Cumulative Runs / Total Runs 

Figure 22.6 Comparing failure arrivals for products A, B, C, and D 

Table 22.3 Comparing purification levels for products A, B, C, and D 

Purification Product 
Level p A B C D 

maximum 0.715 0.527 0.542 0.990 
median 0.653 0.525 0.447 0.940 

minimum 0.578 0.520 0.351 0.939 

A0 - AT AT p = ___ = 1 - - 
X O  X O  

XO: failure rate at start of testing 
AT: failure rate at end of testing 

Where: 

22.5.3 TBRM's impacts on reliability improvement 

To assess the effectiveness of TBRMs in reliability improvement, the failure arrivals for 
product D and three similar products (A, B, and C, where TBRMs were not used (Tian et al., 
1995)) are plotted in Figure 22.6, using normalized scales (cumulative runs or failures as 
a proportion of total number of runs or failures). Visibly more reliability growth (or slope 
change, see Section 22.4) was realized for product D than for the other products. 

To compare the reliability growth quantitatively, the reliability growth measure puriJi- 
cation level p (Tian, 1995) can be used. p is the ratio of the failure rate reduction during 
testing over the initial failure rate at the beginning of testing. Table 22.3 shows p values 
estimated by different fitted SRGMs, with the maximum, minimum, and median estimates 
shown, for the four products. In product D, where TBRMs were actively used, there is a 



IMPLEMENTATION AND SOFTWARE TOOL SUPPORT 385 

much stronger reliability growth as captured in the purification level p than in the earlier 
products. 

22.6 IMPLEMENTATION AND SOFTWARE TOOL SUPPORT 

The implementation of the above approach to reliability analysis and improvement involves 
close collaboration between quality analysts and relevant test and development teams in 
defining measurements, gathering data, building TBRMs and SRGMs, and performing 
remedial actions. Weekly meetings were held to ensure timeliness and usefulness of analysis 
results in addressing project problems. Analyzing product reliability using SRGMs and 
TBRMs requires good understanding of the analysis techniques and familiarity with various 
software tools. This, in turn, requires the involvement of some dedicated quality analysts 
in the beginning, and the gradually maturation of the technology and its eventual transfer 
to the test and development teams. 

An effective implementation of this strategy also calls for automated support for data 
collection, analysis, and result presentation. Among the various tools that can be adapted 
and used, there is no single tool that satisfies all the needs, and it is too costly to construct 
a comprehensive tool to satisfy all these needs. Consequently, a collection of loosely 
integrated tools were used to work together toward the common goals (Tian et al., 1997): 
Existing tools were adapted to support some individual needs, and special purpose tools 
were constructed where no appropriate tool existed. This approach can be considered an 
adaptation of the general tool support strategy we outlined in Chapter 18 to support SRE. 

For reliability analysis and improvement, failure, timing and input information associ- 
ated with individual test runs needs to be captured. In many large software development 
organizations, failure and test case information is routinely collected and tracked during 
software development and testing, using various configuration management and defect 
tracking tools. With minor modifications, failure, input state, and test run count can be eas- 
ily captured using these tools. Execution time information can be captured by independent 
system monitors that record the utilization of system resources during testing. Transactions 
need to be captured using specifically designed data collection tools (Tian et al., 2004) or 
application program interfaces (MIS) (Tian and Palma, 1997). 

The collected data need to be screened for errors and noise to ensure data consistency. 
They often need to be transformed into different forms for different analyses. Support for 
visualization and presentation of measurement data and analysis results was also needed, 
including: 

0 Progress trucking: Plots of testing effort (days, runs, execution time and transac- 
tions), and failures over calendar time can be used for progress tracking and schedule 
management. 

Visualizing reliability growth: Failure arrivals can be plotted against different mea- 
surements of time, such as in Figure 22.6, to examine reliability growth. 

0 Presenting modeling result: Modeling results can be presented in graphical forms 
like in Figure 22.3 for SRGMs or in Figure 22.5 for TBRMs. 

The above functions are supported by the extended S-PLUS facilities and additional utility 
programs implemented in C and AWK by the quality analyst and other project personnel. 

As mentioned in Section 22.5, the above TBRMs are supported by S-PLUS. Various 
SRGMs can also be easily implemented in S-PLUS by fitting the built-in nonlinear models 



386 SOFTWARE RELIABILITY ENGINEERING 

to observed failures indexed by test runs, execution time or transactions. For example, 
the fitted models presented in Figure 22.3 were produced by S-PLUS. Existing reliability 
modeling tools, such as SMERFS (Farr and Smith, 1991), were used to fit other SRGMs, 
with the help of the utility programs mentioned above to make these tools more accessible 
and usable. 

To summarize, an integrated implementation and support strategy for software relia- 
bility measurement and improvement is both feasible and effective, as demonstrated by 
the successful application of this approach in several large commercial software products 
developed in the IBM Software Solutions Toronto Laboratory. Careful planning for the 
implementations that minimize disruption to existing development process can help the re- 
ception and technology transfer. To accommodate the diverse data sources, and to support 
different analyses and usages of the analysis results, a comprehensive suite of software 
tools can be used. The tools can be integrated to work together by observing common 
data content and format rules, using common tools for multiple purposes, and using utility 
programs specifically constructed for tool integration. 

22.7 SRE: SUMMARY AND PERSPECTIVES 

Analysis and improvement of software reliability are of great practical importance to soft- 
ware development organizations and software users. Testing environment and software 
system characteristics have to be analyzed and matched against model assumptions to en- 
sure that proper measurements and models are selected. As demonstrated in this chapter, 
properly selected measurement data can be fitted to SRGMs for reliability assessment. The 
TBRMs provide both reliability assessment and effective reliability improvement, com- 
bining the ability to provide overall reliability assessment by SRGMs and the ability to 
associate product reliability to input states in IDRMs. 

Appropriate infrastructure and tool support are essential for industrial applications. The 
implementation described in this chapters has proved to be practical and effective in several 
large software products developed in the IBM Software Solutions Toronto Laboratory. 

Current research and future development of software reliability engineering concentrate 
on several areas, including: 

0 New application domains: Traditionally, SRE has be used successfully in various 
large software systems such as telecommunication and commercial software sys- 
tems, which are generally classified as medium-reliable systems in Chapter 19. One 
direction is to combine SRE with various safety analysis, assurance and improvement 
techniques (Leveson, 1995) to work for safety-critical systems. The other direction 
is to adapt SRE to work for mass-market, low-cost software, which can be restarted 
easily without incurring much damage if failures occur, and where other quality con- 
cerns, such as usability and maintainability, may be more important. Some systems, 
such as web-based applications, cover a whole spectrum of concerns and variety of 
systems both in size and in functionality (Kallepalli and Tian, 2001 ; Tian et al., 2004). 
These new application domains require additional research to adopt and mature SRE 
for effective applications to ensure and improve reliability for such systems. 

0 Early reliability prediction and improvement: One of the most severe drawbacks of 
traditional SRE is its late applicability, although TBRMs described in this chapter 
pushed it earlier to the early part of system testing. However, much of the quality 
assurance activities that can be applied in earlier phases of development, such as 



PROBLEMS 387 

inspection and formal verification, are not typically used with SRE. Again, certain 
adaptations and customizations are necessary to allow us to predict and improve 
product reliability based on data from these early activities (Tian, 1999). 

0 Reliability composition and maximization: Another trend in software engineering is 
the component-based software engineering, or CBSE, where software systems are 
assembled from reusable components instead of developed from scratch. This new 
paradigm also calls for appropriate adaptation of SRE, so that component reliability 
can be assessed, and the whole system can be assembled to maximize overall system 
reliability based on the different system architecture and interconnections among the 
components. Component OPs (Hamlet et al., 2001) can also be developed to ensure 
component reliability, which is of critical importance to CBSE. 

0 Testing-reliability relation: Some investigations focus on the relationship between 
different types of testing and reliability (Duran and Ntafos, 1984; Hamlet and Taylor, 
1990; Tsoukalas et al., 1993; Frank1 et al., 1998). A good understanding of this 
relationship would provide a means to assess product reliability earlier during soft- 
ware development based on testing techniques used, time, structure, coverage, etc. 
(Horgan and Mathur, 1995; Chen et al., 2001; Malaiya et al., 2002), before statistical 
testing based on operational profiles (OPs) can be used on the whole system. 

The above effort should help us apply SRE effectively to a wider variety of products, 
with product reliability measured early and improved continuously throughout the software 
development process to meet and exceed our customers’ quality expectations. 

Problems 

22.1 Among the quality measures, defect count, defect density, reliability, and safety, 
which one is more meaningful to customers and users? Why? 

22.2 Can you still estimate your system reliability if coverage-based testing instead of 
OP-based statistical testing is used? 

22.3 Characterize the software testing environment in your organization, and answer the 
question: Is software reliability analysis and modeling applicable to your environment? 

22.4 Among the existing SRGMs and IDRMs, the simplest models are typically the most 
commonly used ones. Explain why. 

22.5 When there is a mismatch between your reliability model and your testing and 
defect data, what would you do? Change the model? Transform or change the data? Or do 
something else? 

22.6 Software reliability engineering is both an active area of research and an area with 
great potentials for practical applications. What do you think is the potential for its appli- 
cation in the web-based applications and software, or other emerging market? 



This Page Intentionally Left Blank



BIBLIOGRAPHY 

Aldemir, T., Siu., N., Mosleh, A., Cacciabue, C., and Goktepe, P. G. (1994). Reliability and 
Safety Assessment of Dynamic Process Systems. NATO AS1 Series. Springer-Verlag, 
New York. 

Allen, F. E. and Cocke, J. (1972). Graph theoretic constructs for program control flow 
analysis. Technical Report RC3923, IBM T. J. Watson Research Center. 

Aviiienis, A. A. (1995). The methodology of N-version programming. In Lyu, M. R., 
editor, SofhYare Fault Tolerance, pp. 23-46. John Wiley & Sons, Inc., New York. 

Avritzer, A. and Weyuker, E. J. (1995). The automatic generation of load test suites and the 
assessment of the resulting software. IEEE Trans. on Software Engineering, 21(9):705- 
716. 

Bachiochi, D. J., Berstene, M. C., Chouinard,E. F., Conlan, N. M., Danchak, M. M., Furey, 
T., Neligon, C. A., and Way, D. (1997). Usability studies and designing navigational 
aids for the World Wide Web. Computer Networks and ISDN Systems, 29(8- 13): 1489- 
1496. 

Basili, V. R. (1995). The experience factory and its relationship to other quality approaches. 
In Zelkowitz, M. V., editor, Advances in Computers, Vol. 41, pp. 65-82. Academic 
Press, San Diego, CA. 

Basili, V. R. and Mills, H. D. (1982). Understanding and documenting programs. IEEE 
Trans. on SofhYare Engineering, 8(3):270-283. 

389 



390 BIBLIOGRAPHY 

Basili, V. R. and Rombach, H. D. (1988). The TAME project: Towards improvement- 
oriented software environments. IEEE Trans. on Software Engineering, 14(6):758- 
773. 

Basili, V. R., Zelkowitz, M. V., McGarry, F. E., Page, J., Waligora, S., and Pajerski, R. 
(1995). SEL’s software process-improvement program. IEEE Software, 12(6):83-87. 

Beck, K.  (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley, 
Reading, MA. 

Beck, K. (2003). Test-Driven Development. Addison-Wesley, Reading, MA. 

Behlandorf, B. (1996). Running a Perfect Web Site with Apache, 2nd Ed. MacMillan 
Computer Publishing, New York. 

Beizer, B. (1990). Sojhvare Testing Techniques, 2nd Ed. International Thomson Computer 
Press, Boston. 

Beizer, B. (1995). Black-Box Testing: Techniques for Functional Testing of Software and 
Systems. John Wiley & Sons, Inc., New York. 

Beizer, B. (1998). Software is different. Software QuaEity Professional, 1( 1):44-54. 

Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., and Chillarege, R. (1993). A 
case study of software process improvement during development. IEEE Trans. on 
Software Engineering, 19( 12):1157-1170. 

Biffl, S. and Halling, M. (2003). Investigating the defect detection effectiveness and cost 
benefit of nominal inspection teams. IEEE Trans. on Software Engineering, 29(5):385- 
397. 

Binder, R. V. (2000). Testing Object Oriented Systems, Models, Patterns, and Tools. 
Addison-Wesley, Reading, MA. 

Bisant, D. B. and Lyle, J. R. (1989). A two-person inspection method to improve program- 
ming productivity. IEEE Trans. on Software Engineering, 15( 10):1294-1304. 

Black, R. (2004). Critical Testing Processes. Addison-Wesley, Reading, MA. 

Blum, B. I .  (1992). Software Engineering: A Holistic View. Oxford University Press, New 
York. 

Boehm, B. and Basili, V. R. (2001). Software defect reduction top 10 list. IEEE Computer, 
34(1):135-137. 

Boehm, B. W. (198 1). Software Engineering Economics. Prentice-Hall, Englewood Cliffs, 
NJ. 

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE 
Computer, 21:61-72. 

Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE Software, 
8(1):32-41. 

Bowers, N. (1996). Weblint: Quality assurance for the World-Wide Web. Computer Net- 
works and ISDN Systems, 28(7-11):1283-1290. 



BIBLIOGRAPHY 391 

Briand, L. C., Basili, V. R., and Hetmanski, C. J. (1993). Developing interpretable models 
with optimal set reduction for identifying high-risk software components. IEEE Trans. 
on Software Engineering, 19( 1 1): 1028-1044. 

Briand, L. C., Bunse, C., and Daly, J. W. (2001). A controlled experiment for evaluating 
quality guidelines on the maintainability of object-oriented designs. IEEE Trans. on 
Sofhyare Engineering, 27(6):5 13-530. 

Brooks, F. P. (1987). No silver bullet, essence and accidents of software engineering. IEEE 
Computer, 20(4): 10-19. 

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniver- 
sary Edition. Addison-Wesley, Reading, MA. 

Brown, J. R. and Lipow, M. (1975). Testing for software reliability. In Proc. Int. Cont 
Reliable Sojiware, pp. 5 18-527, Los Angeles. 

Burnstein, I. (2003). Practical Software Testing. Springer-Verlag, New York. 

Buss, E. and Henshaw, J. (1992). Experiences in program understanding. Technical Report 
TR-74.105, IBM PRGS Toronto Laboratory. 

Card, D. N. and Glass, R. L. (1990). Measuring Sofhyare Design Quality. Prentice-Hall, 
Englewood Cliffs, NJ. 

Cbrdenas-Garcia, S. R., Tian, J., and Zelkowitz, M. V. (1992). An application of decision 
theory for the evaluation of software prototypes. Journal of Systems and Software, 
19( 1):27-39. 

Cbrdenas-Garcia, S. R. and Zelkowitz, M. V. (1991). A management tool for evaluation of 
software designs. IEEE Trans. on Software Engineering, 17(9):961-97 1. 

Chaar, J., Halliday, M., Bhandari, I., and Chillarege, R. (1993). In-process evaluation for 
software inspection and test. IEEE Trans. on Software Engineering, 19( 11): 1055- 
1070. 

Charette, R. (1989). Software Engineering Risk Analysis and Management. McGraw-Hill, 
New York. 

Chen, M. H., Lyu, M. R., and Wong, W. E. (2001). Effect of code coverage on software 
reliability measurement. ZEEE Trans. on Reliability, SO(2): 165-170. 

Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., and Wong, M.-Y. 
(1992). Orthogonal defect classification - a concept for in-process measurements. 
IEEE Trans. on Software Engineering, 18( 11):943-956. 

Chow, T. S. (1978). Testing software design modeled by finite-state machines. IEEE Trans. 
on Software Engineering, 4(3):178-187. 

Chruscielski, K. and Tian, J. (1997). An operational profile for the cartridge support soft- 
ware. In Proc. 8th Int. Symp. on Software Reliability Engineering, pp. 203-212. 

Clark, L. A. and Pregibon, D. (1993). Tree based models. In Chambers, J. M. and Hastie, 
T. J., editors, Statistical Models in S, chapter 9, pp. 377419. Chapman & Hal1,London. 



392 BIBLIOGRAPHY 

Clarke, L. A. (1976). A system to generate test data and symbolically execute programs. 
IEEE Trans. on Software Engineering, 2(3):215-222. 

Clarke, L. A., Hassel, J., and Richardson, D. J. (1982). A close look at domain testing. 
IEEE Trans. on Software Engineering, 8:380-390. 

Cohen, E. I. (1978). A Finite Domain-Testing Strategy for Computer Program Testing. 
Ph.D. thesis, Ohio State University. 

Denning, P. J. (1992). What is software quality? Communications of the ACM, 35( 1): 13-15. 

Deo, N. (1974). Graph Theory with Applications to Engineering and Computer Science. 
Prentice-Hall, Englewood Cliffs, NJ. 

Dijkstra, E. W. (1968). Go To statement considered harmful. Communications of the ACM, 
11(3):147-148. 

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy, and formal derivation of 
programs. Communications of the ACM, 18(8):453457. EWD472. 

Dromey, R. G. (1995). A model for software product quality. IEEE Trans. on Software 
Engineering, 13(2): 146-162. 

Dromey, R. G. (1996). Cornering the chimera. IEEE Software, 13( 1):33-43. 

Dugan, J. B. (1995). Software system analysis using fault trees. In Lyu, M. R., editor, 
Handbook of Software Reliability Engineering,pp. 615-659. McGraw-Hill, New York. 

Dunsmore, A., Roper, M., and Wood, M. (2003a). The development and evaluation of 
three diverse techniques for object-oriented code inspection. IEEE Trans. on Software 
Engineering, 29(8):677-686. 

Dunsmore, A., Roper, M., and Wood, M. (2003b). Practical code inspection techniques for 
object-oriented systems: An experimental comparison. IEEE Software, 20(4):21-29. 

Duran, J. W. and Ntafos, S. C. (1984). An evaluation of random testing. IEEE Trans. on 
Software Engineering, SE- 10(4):438444. 

Fagan, M. E. (1976). Design and code inspections to reduceerrors in program development. 
IBM Systems Journal, 3: 182-21 1. 

Farr, W. J. and Smith, 0. D. (1991). Statistical modeling and estimation of reliability 
functions for software (SMERFS) users guide. Technical Report NSWC TR 84-373, 
Revision 2, Naval Surface Warfare Center. 

Fenton, N. and Pfleeger, S. L. (1996). Software Metrics: A Rigorous and Practical Ap- 
proach, 2nd Edition. PWS Publishing, Boston. 

Frankl, P. G., Hamlet, R. G., Littlewood, B., and Strigini, L. (1998). Evaluating testing 
methods by delivered reliability. IEEE Trans. on Software Engineering, 24(8):586- 
601. 

Frankl, P. G. and Weyuker, E. J. (2000). Testing software to detect and reduce risk. Journal 
of Systems and Software, 53(3):275-286. 



BIBLIOGRAPHY 393 

Fromme, B. (1998). Web software testing: Challenges and solutions. In ZnterWorks’98. 

Garg, V. K. (1999). IS-95 CDMA & CDMA 2000: CeElular/PCS Systems Implementation. 
Prentice-Hall, Englewood Cliffs, NJ. 

Gerhart, S. A., Craigen, D., and Ralston, T. (1994). Experience with formal methods in 
critical systems. ZEEE Software, 11( 1):2O-28. 

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2003). Fundamentals of Software Engineering, 
2nd Edition. Prentice-Hall, Englewood Cliffs, NJ. 

Gilb, T. and Graham, D. (1993). Software Inspection. Addison-Wesley Longman, London. 

Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and applicability. 
IEEE Trans. on Software Engineering, 1 l(12): 141 1-1423. 

Goel, A. L. and Okumoto, K. (1979). A time dependent error detection rate model for 
software reliability and other performance measures. ZEEE Trans. on Reliability, 
28(3):206-211. 

Goodenough, J. B. and Gerhart, S. A. (1975). Toward a theory of test data selection. ZEEE 
Trans. on Software Engineering, 1:156-173. 

Gries, D. (1987). The Science of Programming. Springer-Verlag, New York. 

Guttag, J. V., Horowitz, E., and Musser, D. R. (1978). Abstract data types and software 
validation. Communications of the ACM, 21( 12). 

Hamlet, D., Mason, D., and Woit, D. (2001). Theory of software reliability based on 
components. In Proc. 23rd Int. Con$ on Software Engineering, pp. 36 1-370, Toronto. 

Hamlet, D. and Taylor, R. (1990). Partition testing does not inspire confidence. ZEEE Trans. 
on Software Engineering, 16(12): 1402-141 1. 

Hamlet, R. G. (1977). Testing programs with the aid of a compiler. ZEEE Trans. on Software 
Engineering, 3:279-290. 

Hatton, L. (1998). Does 00 sync with how we think? ZEEE Software, 15(3):46-54. 

Henley, E. J. and Kumamoto, H. (198 1). Reliability Engineering and Risk Assessment. 
Prentice-Hall, Englewood Cliffs, NJ. 

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications 
of the ACM, 12(10):576-580. 

Holmes, J. S. (2003). Identifying code-inspection improvements using statistical black belt 
techniques. Software Quality Professional, 6( 1):4-14. 

Horgan, J. R. and Mathur, A. P. (1995). Software testing and reliability. In Lyu, M. R., 
editor, Handbook of Sojbvare Reliability Engineering, pp. 53 1-566. McGraw-Hill, 
New York. 

Howden, W. E. (1976). Reliability of the path analysis testing strategy. ZEEE Trans. on 
Software Engineering, 2( 3):208-2 15. 



394 BIBLIOGRAPHY 

Howden, W. E. (1980). Functional testing. IEEE Trans. on Software Engineering, SE- 
6(2): 162-169. 

Howden, W. E. (1982). Weak mutation testing and completeness of test sets. IEEE Trans. 
on Software Engineering, SE-8:371-379. 

Humphrey, W. (1998). The software quality profile. Software Quality Professional, 1( 1):8- 
18. 

Humphrey, W. S. (1989). Managing the Software Process. Addison-Wesley, Reading, MA. 

Humphrey, W. S. (1995). A Discipline for Software Engineering. Addison-Wesley, Reading, 
MA. 

Huo, Q., Zhu, H., and Greenwood, S. (2003). A multi-agent software environment for testing 
web-based applications. In Proc. 27th Int. Computer Software and Applications ConJ, 
pp. 210-215, Dallas, TX. 

IBM (199 1). Programming Process Architecture, Version 2.1. IBM. 

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE STD 
6 10.12- 1990. 

IS0 (2001). ISO/IEC 9126-1:2001 Software Engineering - Product Quality - Part I :  
Quality Model. ISO. 

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. 
IEEE Computer, 29(3):3 1-44. 

Jelinski, Z. and Moranda, P. L. (1972). Software reliability research. In Freiberger, W., 
editor, Statistical Computer Performance Evaluation, pp. 365-484. Academic Press, 
New York. 

Jeng, B. and Weyuker, E. J. (1994). A simplified domain-testing strategy. ACM Trans. on 
Software Engineering and Methodology, 3(3):254-270. 

Kallepalli, C. and Tian, J. (2001). Measuring and modeling usage and reliability for statis- 
tical web testing. IEEE Trans. on Software Engineering, 27( 11): 1023-1036. 

Kan, S .  H. (2002). Metrics and Models in Software Quality Engineering, 2/e. Addison- 
Wesley, Reading, MA. 

Kaner, C., Falk, J., and Nguyen, H. Q. (1999). Testing Computer Software. John Wiley & 
Sons, Inc., New York. 

Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd Ed. 
Academic Press, New York. 

Khoshgoftaar, T. M., Allen, E. B., Kalaichelvan, K. S., and Goel, N. (1996). Early quality 
prediction: A case study in telecommunications. IEEE Software, 13( 1):65-7 1. 

Khoshgoftaar, T. M. and Szabo, R. M. (1996). Using neural networks to predict software 
faults during testing. IEEE Trans. on Reliability, 45(3):456-462. 

King, S., Hammond, J., Chapman, R., and Pryor, A. (2000). Is proof more cost-effective 
than testing. IEEE Trans. on Software Engineering, 26(8):675-686. 



BIBLIOGRAPHY 395 

Kitchenham, B. and Pff eeger, S .  L. (1996). Software quality: The elusive target. IEEE 
Sofhyare, 13( 1): 12-21. 

Knight, J. C. and Myers, E. A. (1992). An improved inspection technique. Communications 
ofthe ACM, 36(11):51-61. 

Knuth, D. E. (1973). The Art of Computer Programming. Addison-Wesley, Reading, MA. 

Koru, A. G. and Tian, J. (2003). An empirical comparison and characterization of high defect 
and high complexity modules. Journal of Systems and Sofhyare, 67(3): 153-163. 

Koru, A. G. and Tian, J. (2004). Defect handling in medium and large open source software 
projects. IEEE Sofpware, 21(4):54-61. 

Krishnan, M. S .  and Kellner, M. I. (1999). Measuring process consistency: Implications 
for reducing software defects. IEEE Trans. on Sofhyare Engineering, 25(6):800-815. 

Kung, D. C., Hsia, P., and Gao, J. (1998). Testing Object-Oriented Software. IEEE Computer 
Society Press, Los Alamitos, CA. 

Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Koch, G., and Saukonen, S .  (1994). Soft- 
ware Process Assessment and Improvement: the BOOTSTRAP Approach. Blackwell 
Publishers, Oxford, UK. 

Leveson, N. G. (1995). Safeware: System Safety and Computers. Addison-Wesley, Reading, 
MA. 

Li, 2. and Tian, J. (2003). Analyzing web logs to identify common errors and improve 
web reliability. In Proc. IADIS International Conference on e-Society, pp. 235-242, 
Lisbon, Portugal. 

Lu, P. and Tian, J. (1993a). Applying software reliability engineering in large-scale software 
development. In Proc. 3rd Int. Con5 on Software Quality, pp. 323-330, Lake Tahoe, 
NV. 

Lu, P. and Tian, J. (1993b). Software reliability engineering experience in the 
IBM Toronto Laboratory. In Proc. IBM Sofhyare Engineering ITL Con$, pp. 459- 
467, Toronto. 

Luqi (1989). Software evolution through rapid prototyping. IEEE Computer, pp. 13-25. 

Lutz, R. R. and Mikulski, I. C. (20Q4). Ongoing requirements discovery in high-integrity 
systems. IEEE Sofhyare, 21(2):19-25. 

Lyu, M. R., editor (1995a). Handbook of Sofhyare Reliability Engineering. McGraw-Hill, 
New York. 

Lyu, M. R., editor (1995b). SofhYare Fault Tolerance. John Wiley & Sons, Inc., New York. 

Lyu, M. R. and Aviiienis, A. A. (1992). Assuring design diversity in N-version software: 
A design paradigm for N-version programming. In Meyer, J. F. and Schlichting, R. D., 
editors, Dependable Computing for Critical Applications 2 .  Springer-Verlag, New 
York. 



396 BIBLIOGRAPHY 

Ma, L. and Tian, J. (2003). Analyzing errors and referral pairs to characterize common 
problems and improve web reliability. In Proc. 3rd International Conference on Web 
Engineering, pp. 3 14-323, Oviedo, Spain. 

Mackenzie, D. (1994). Computer-related accidental death: An empirical exploration. Sci- 
ence and Public Policy, pp. 233-248. 

Maddux, R. (1985). A study of program structure, Ph.D. dissertation. Ph.D. thesis, Uni- 
versity of Waterloo. 

Malaiya, Y. K., Li, M. N., Bieman, J. M., and Karcich, R. (2002). Software reliability 
growth with test coverage. IEEE Trans. on Reliability, 5 1(4):420-426. 

Malaiya, Y. K. and Srimani, P. K. (1990). Sofrware Reliability Models: Theoretical Devel- 
opments, Evaluation & Applications. IEEE Computer Society Press, Los Alamitos, 
CA. 

DeMillo, R. A., McCracken. W. M., Martin, R. J., and Passafiume, J. F. (1987). Sofrware 
Testing and Evaluation. BenjamidCummings, Menlo Park, CA. 

McAllister, D. F. and Vouk, M. A. (1995). Fault-tolerant software reliability engineering. 
In Lyu, M. R., editor, Handbook of Sofrware Reliability Engineering, pp .  567-614. 
McGraw-Hill, New York. 

McCabe, T. J. (1976). A complexity measure. IEEE Trans. on Soffware Engineering, 
2( 6) ~308-320. 

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell System Technical 
Journal, 34: 1045-1079. 

Miller, E. (2000). The Website Quality Challenge. Software Research Inc., San Francisco, 
CA. 

Miller, E. F. and Howden. W. E. (1981). Tutorial: Sofrware Testing and Validation Tech- 
niques, 2nd Ed. IEEE Computer Society. 

Mills, H. D. (1972). On the statistical validation of computer programs. Technical Report 
72-6015, IBM Federal Syst. Div. 

Mills, H. D., Basili, V. R., Gannon, J. D., and Hamlet,R. G. (1987a). Principles of Computer 
Programming: A Mathematical Approach. Alan and Bacon, Inc., Boston. 

Mills, H. D., Dyer, M., and Linger, R. C. (1987b). Cleanroom software engineering. IEEE 
Sofrware, 4(5): 19-24. 

Moore, E. F. (1956). Gedanken experiments on sequential machines. Automata Studies. 
Annals of Mathematical Studies #34. 

Munson, J. C. and Khoshgoftaar, T. M. (1992). The detection of fault-prone programs. 
IEEE Trans. on Sofrware Engineering, 18(5):423433. 

Musa, J. D. (1975). A theory of software reliability and its application. IEEE Trans. on 
Sofrware Engineering, 1(3):3 12-327. 



BIBLIOGRAPHY 397 

Musa, J. D. (1993). Operational profiles in software reliability engineering. ZEEE Software, 
lO(2): 14-32. 

Musa, J. D. (1998). Software Reliability Engineering. McGraw-Hill, New York. 

Musa, J. D. and Everett, W. W. (1990). Software-reliability engineering: Technology for 
the 1990s. IEEE Software, 7(6):36-43. 

Musa, J. D., Iannino, A., and Okumoto, K. (1987). Software Reliability: Measurement, 
Prediction, Application. McGraw-Hill, New York. 

Musa, J. D. and Okumoto, K. (1984). A logarithmic Poisson execution time model for 
software reliability measurement. In Proc. 7th Int. Con$ on Software Engineering, pp. 
230-238, Orlando, FL. 

Myers, G. J. (1979). The Art of Software Testing. John Wiley & Sons, Inc., New York. 

Nelson, E. (1978). Estimating software reliability from test data. Microelectronics and 
Reliability, 17( 1):67-73. 

Offutt, J. (2002). Quality attributes of web applications. IEEE Software, 19(2):25-32. 

Oivo, M. and Basili, V. R. (1992). Representing software engineering models: The TAME 
goal oriented approach. IEEE Trans. on Software Engineering, 18( 10):886-898. 

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. 
Communications of the ACM, 15(12):1053-1058. 

Parnas, D. L. and Madey, J. (1995). Functional documentation for computer systems. Sci. 
Comput. Program, 25(1):41-61. 

Parnas, D. L. and Weiss, D. M. (1985). Active design reviews: Principles and practices. In 
Proc. 8th Int. Con$ on Software Engineering, pp. 215-222. IEEE Computer Society 
Press. 

Paulk, M., Weber, C. V., Garcia, S. M., Chrissis, M. R., and Bush, M. W. (1993). Key 
practices of the capability maturity model, version 1.1. Technical Report CMU/SEI- 
93-TR-24, DTIC Number ADA263432, Software Engineering Institute. 

Paulk, M. C., Weber, C. V., Curtis, B., and Chrissis, M. B. (1995). The Capability Maturity 
Model: Guidelines for Improving the Software Process. Addison-Wesley, Reading, 
MA. 

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall, 
Englewood Cliffs, NJ. 

Pfleeger, S. L. and Hatton, L. (1997). Investigating the influence of formal methods. IEEE 
Computer, 30(2):33-43. 

Pfleeger, S. L., Hatton, L., and Howell, C. C. (2002). Solid Software. Prentice-Hall, Upper 
Saddle River, NJ. 

Porter, A. A. and Johnson, P. M. (1997). Assessing software review meetings: Results 
of a comparative analysis of two experimental studies. IEEE Trans. on Software 
Engineering, 23(3): 129-145. 



398 BIBLIOGRAPHY 

Porter, A. A. and Selby, R. W. (1990). Empirically guided software development using 
metric-based classification trees. IEEE Software, 7(2):46-54. 

Porter, A. A., Siy, H., and Votta, L. G. (1996). A review of software inspections. In 
Zelkowitz, M. V., editor, Advances in Computers, Vol. 42, pp. 39-76. Academic Press, 
San Diego, CA. 

Porter, A. A. and Votta, L. G. (1997). What makes inspections work. IEEE Sofhyare, 
14(5) 199- 102. 

Prahalad, C. K. and Krishnan, M. S. (1999). The new meaning of quality in the information 
age. Harvard Business Review, 77(5): 109-1 18. 

Pratt, J. W., Raiffa, H., and Schlaifer, R. (1965). Introduction to Statistical Decision Theory. 
McGraw-Hill. New York. 

Pratt, T. W. and Zelkowitz, M. V. (2001). Programming Languages: Design and Imple- 
mentation. Prentice-Hall, Upper Saddle River, NJ. 

Prechelt, L. (2000). An empirical comparison of seven programming languages. IEEE 
Computer, 33( 10):23-29. 

Putnam, L. H. (1978). A general empirical solution to the macro software sizing and 
estimation problem. IEEE Trans. on Software Engineering, pp. 345-361. 

Ramamoorthy, C. V. and Bastani, F. B. (1982). Software reliability: Status and perspectives. 
IEEE Trans. on Software Engineering, 8(4):359-37 1. 

Raymond, E. S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source 
by an Accidental Revolutionary. O'Reilly and Associates, Sebastopol, CA. 

Reichheld Jr., F. F. and Sasser, W. E. (1990). Zero defections: Quality comes to services. 
Harvard Business Review, 68(5): 105-1 1 1. 

Rosenblum, D. S. and Weyuker,E. J. (1997). Using coverage information to predict thecost- 
effectiveness of regression testing strategies. IEEE Trans. on Software Engineering, 
23(3): 146-156. 

Rothermel, G. and Harrold, M. J. (1996). Analyzing regression test selection techniques. 
IEEE Trans. on Software Engineering, 22(8):529-55 1. 

Seaman, C. B. and Basili, V. R. (1997). Communication and organization in software 
development: An empirical study. IBM Systems Journal, 36. 

Seaman, C. B. and Basili, V. R. (1998). Communication and organization: An empirical 
study of discussion in inspection meetings. IEEE Trans. on Software Engineering, 
24(7):559-572. 

Selby, R. W., Basili, V. R., and Baker, F. T. (1987). Cleanroom software development: An 
empirical evaluation. IEEE Trans. on Software Engineering, SE- 13(9): 1027-1037. 

Selby, R. W. and Porter, A. A. (1988). Learning from examples: Generation and evaluation 
of decision trees for software resource analysis. IEEE Trans. on Software Engineering, 
14( 12): 1743-1757. 



BIBLIOGRAPHY 399 

Shneiderman, B. (1977). Measuring computer program quality and comprehension. Int. J. 
of Man-Machine Studies, 9. 

Shneiderman, B. (1980). Software Psychology. Winthrop Publishers, Cambridge, MA. 

Spiliopoulou, M. (2000). Web usage mining for web site evaluation. Communications of 
the ACM, 43(8):127-134. 

StatSci (1993). S-PLUS Programmer’s Manual, Version 3.2. StatSci, A Division of Math- 
Soft, Inc., Seattle, WA. 

Tai, K.-C. (1984). A program complexity metric based on data flow information in control 
graphs. In 7th Int. Con$ on Software Engineering, pp. 239-248, Orlando, FL. 

Tanik, M. M. and Yeh, R. T. (1989). Rapid prototyping in software development. IEEE 
Computer, 22:9-10. 

Thayer, R., Lipow, M., and Nelson, E. (1978). Software Reliability. North-Holland, New 
York. 

TIA/EIA (1994). Mobile Station-Base Station Compatibility Standardfor Dual Mode Wide- 
band Spread Spectrum Cellular System, Version 0.04. TIA/EIA/IS-95-A. 

Tian, J. (1995). Integrating time domain and input domain analyses of software reliability 
using tree-based models. IEEE Trans. on Sofhyare Engineering, 2 I( 12):945-958. 

Tian, J. (1996). An integrated approach to test tracking and analysis. Journal of Systems 
and Software, 35(2): 127-140. 

Tian, J. (1998). Reliability measurement, analysis, and improvement for large software 
systems. In Zelkowitz, M. V., editor, Advances in Computers, Vol. 46: The Engineering 
of Large Systems, chapter 4, pp. 159-235. Academic Press, San Diego, CA. 

Tian, J. ( 1999). Measurement and continuous improvement of software reliability through- 
out software life-cycle. Journal of Systems and Software, 47(2-3): 189-195. 

Tian, J. (2000). Risk identification techniques for defect reduction and quality improvement. 
Software Quality Professional, 2(2):32-41. 

Tian, J. (2001). Quality assurance alternatives and techniques: A defect-based survey and 
analysis. Sofhyare Quality Professional, 3(3):6-18. 

Tian, J. (2002). Better reliability assessment and prediction through data clustering. IEEE 
Trans. on Software Engineering, 28( 10):997-1007. 

Tian, J. (2004). Quality-evaluation models and measurements. IEEE Software, 21(3):84-9 1. 

Tian, J. and Henshaw, J. (1994). Tree-based defect analysis in testing. In Proc. 4th Int. 
Conj on Sofhyare Quality, McLean, VA. 

Tian, J. and Lin, E. (1998). Unified Markov models for software testing, performance eval- 
uation, and reliability analysis. In 4th ISSAT International Conference on Reliability 
and Quality in Design, Seattle, WA. 



400 BIBLIOGRAPHY 

Tian, J., Lu, P., and Palma, J. (1995). Test execution based reliability measurement and mod- 
eling for large commercial software. IEEE Trans. on Software Engineering.2 1(5):405- 
414. 

Tian, J., Ma, L., Li, Z., and Koru, A. G. (2003). A hierarchical strategy for testing web-based 
applications and ensuring their reliability. In Proc. 27th In?. Computer Software and 
Applications Con$ (1st IEEE Workshop on Web-based Systems and Applications), pp. 
702-707, Dallas, TX. 

Tian, J. and Nguyen, A. (1999). Statistical web testing and reliability analysis. In Proc. 9th 
Int. Con$ on Software Quality, pp. 263-274, Cambridge, MA. 

Tian, J., Nguyen, A., Allen, C., and Appan,R. (2001). Experience with identifying andchar- 
acterizing problem prone modules in telecommunication software systems. Journal 
of Systems and Software, 57(3):207-215. 

Tian, J. and Palma, J. (1997). Test workload measurement and reliability analysis for large 
commercial software systems. Annals of Software Engineering, 4:201-222. 

Tian, J. and Palma, J. (1998). Analyzing and improving reliability: A tree based approach. 
IEEE Software, 15(2):97-104. 

Tian, J.. Rudraraju, S., and Li, Z. (2004). Evaluating web software reliability based on work- 
load and failure data extracted from server logs. IEEE Trans. on Software Engineering, 
30( 1 1):754-769. 

Tian, J. and Troster, J. (1998). A comparison of measurement and defect characteristics of 
new and legacy software systems. Journal of Systems and Software, 44(2): 135-146. 

Tian, J., Troster, J., and Palma, J. (1997). Tool support for software measurement, analysis, 
and improvement. Journal of Systems and Software, 39(2): 165-178. 

Trivedi, K. S. (2001). Probability and Statistics with Reliability, Queuing, and Computer 
Science Applications, 2nd Edition. John Wiley & Sons, Inc., New York. 

Troster, J. and Tian, J. (1995). Measurement and defect modeling for a legacy software 
system. Annals of Software Engineering, 1 :95-118. 

Troster, J. and Tian, J. (1996). Exploratory analysis tools for tree-based models in software 
measurement and analysis. In Proc. 4th Int’l Symp. on Assessment of Software Tools, 
pp. 7-17, Toronto. 

Tsoukalas, M. Z., Duran, J. W., and Ntafos, S. C. (1993). On some reliability estimation 
problems in random and partition testing. IEEE Trans. on Software Engineering, 
19(7):687-697. 

van Solingen, R. and Berghout, E. (1999). The GoaWQuestiodMetric Method: A Practical 
Method for Quality Improvement of Software Development. McGraw-Hill, New York. 

Vatanasombut, B., Stylianou, A. C., and Igbaria, M. (2004). How to retain online customers. 
Communications of the ACM, 47(6):65-69. 

Venables, W. N. and Ripley, B. D. (1994). Modern AppliedStatistics with S-Plus. Springer- 
Verlag, New York. 



BIBLIOGRAPHY 401 

Vixie, P. (1999). Open Sources: Voices from the Open Source Revolution, chapter Software 
Engineering, pp. 91-100. O’Reilly & Associates, lnc, Sebastopol, CA. 

Voas, J. (1998). Software Fault Injection - Inoculating Programs Against Errors. Wiley 
Computer Publishing, New York. 

Voas, J. M. (1999). Certifying software for high-assurance environments. IEEE Software, 
16(4):48-54. 

Voas, J. M. (2000). Developing a usage-based software certification process. IEEE Com- 
puter, 16(8):32-37. 

von Mayrhauser, A. ( 1990). Software Engineering: Methods and Management. Academic 
Press, San Diego, CA. 

Wallace, D. R., Ippolito, L. M., and Cuthill, B. (1996). Reference Znformation for the 
SofnYare Verijication and Validation Process. NIST Special Publication 500-234. 

Weiser, M. D. (1984). Program slicing. IEEE Trans. on Software Engineering, 10:352-357. 

Weyuker, E. J. (1998). Testing component-based software: A cautionary tale. IEEE Soft- 
ware, 15(5):54-59. 

Weyuker, E. J. and Jeng, B. (1991). Analyzing partition test strategies. IEEE Trans. on 
SofhYare Engineering, 17(7):703-7 11. 

Weyuker, E. J., Ostrand, T. J., Brophy, J., and Prasad, R. (2000). Clearing a career path for 
software testers. IEEE Software, 17(2):76-82. 

White, L. J. and Cohen, E. I. (1980). A domain strategy for computer program testing. 
IEEE Trans. on Sofhyare Engineering, 6:247-257. 

Whittaker, J. A. (2001). Software’s invisible users. IEEE Software, 18(3):84-88. 

Whittaker, J. A. and Poore, J. H. (1993). Markov analysis of software specifications. ACM 
Trans. on Software Engineering and Methodology, 2( 1):93-106. 

Whittaker, J. A. and Thomason, M. G. (1994). A Markov chain model for statistical software 
testing. IEEE Trans. on Software Engineering, 20( 10):8 12-824. 

Wiener, R. (1998). Watch your language! IEEE Software, 15(3):55-56. 

Wirth, N .  (1995). A plea for lean software. IEEE Computer, 28(2):64-68. 

Yamada, S., Ohba, M., and Osaki, S. (1983). S-shaped reliability growth modeling for 
software error detection. IEEE Trans. on Reliability, 32(5):475478. 

Yih, S .  and Tian, J. (1998). Developing and checking prescriptive specifications for safety 
improvement. Microprocessors and Microsystems, 2 I( 10):587-594. 

Zelkowitz, M. V. (1988). Resource utilization during software development. Journal of 
Systems and Software, 8:331-336. 

Zelkowitz, M. V. (1993). Role of verification in the software specification process. In 
Yovits, M. C., editor, Advances in Computers, Vol. 36, pp. 43-109. Academic Press, 
San Diego, CA. 



402 BIBLIOGRAPHY 

Zhao, L. and Elbaum, S .  (2003). Quality assurance under the open source development 
model. Journal of Systems and Sojhvare, 66( 1):65-75. 



INDEX 

8020 rule, 36, 325, 353 

acceptance testing, see testing sub-phases 
accident, 23, 38, 89, 142, 268-283 

analysis, 278 
damage control, 38, 278 
definition, 268 
prevention, 275-278 

measurement, 324, 332 
model, 360, 362, 363 

ad hoc testing, 75, 80, 89, 95, 104, 211 
ADR (active design review), 246 
ADT (abstract data type), 262 
agile development, 46, 231, 242 
ambiguity, see partition problem 
analysis tool 

accuracy 

S-PLUS, 318, 381, 385 
SAS, 319 
SMERFS, 319, 386 

ANN (artificial neuron network), see risk identi- 

API (application program interface), 98, 385 
assignment 

fication techniques 

data, see data, D-operation 
statement, 260 

ATAC, see test automation 
availability, see quality attribute 
AWK, 385 
axiom, see formal verification 

axiomatic correctness/proof, see formal verifica- 
tion 

background knowledge, see pre-requisite 
basic Musa model, see SRGM 
BBT (black-box testing), see functional testing 
beta testing, 29, 47, 101, 208-209 
block, 193, 256 
book organization, 6 
boundary 

closed, 129 
definition, 128-129 
linear, 129 
loop, 184 
open, 129 
other boundaries, 141-144 

buffer, 142 
capacity, 141 
data, 141 
dynamic, 141 
loop, 141 
output, 141 
queue, 142 

point, 129 
boundary problems, 131-132 

boundary shift, I31 
boundary tilt, 131 
changing closure, 141 
closure, 130, 131 
detected by EPC, 133-134 

403 



404 INDEX 

detected by Weak1 x 1, 139-140 
detected by WeakN x 1, 136139 
extra boundary, 131 
missing boundary, 131 
non linear boundary change, 141 

boundary testing, 36, 72, 127-146, 156, 184, 185, 
197 

approximate strategies, 140 
definitions, 128-1 29 
EPC (extreme point combination), 132-134 
other boundaries, 141-144 
points, see test point 
problems, see boundary problems 
queuing, 142 
strong strategies, 140 
Weak 1 x 1, 139-140 
Weak N x 1, 135-139 

branching statement, see conditional statement 
Brown-Lipow model, see IDRM 
bug, 20 

C, 33, 205, 206, 230, 385 
C++, 205 
causal analysis, 34, 224, 293, 344-345, 368 
CBSE, 97, 206, 210, 229, 387 
cellular communication system, 134, 137, 150, 

CFG (control Aow graph), 176 
construction, 178-180 
decision node, 176 
junction node, 176 
link, 176 
loop, see loop 
node, 176 
path, 177 
processing node, 176 
segment, 177 

concatenation, 180 
concept, 176 
execution, 182 
loop, see loop testing 
model construction, 178-180 
model decomposition, 180 
nesting, 180 
oracle, 182 
path combination, 180 
path selection, 18&181 
path sensitization, 181-182 
usage, 186 

chapter dependency, 9 
chapter overview, 6 
checklist, 36, 72 

162 

CFT (control flow testing), 36, 72, 176-186 

artifact based, 247 
basic types of, 104 
black-box, 104 
combined, 105 
component, 104 
feature, 104 

hierarchical, 105 
implicit, 104 
inspection, 243, 247 
limitations, 106 

complex interactions, 106 
coverage, 106 
holes, 106 
redundancy, 106 

property based, 247 
specification, 104 
standards, 104 
use of, 104 
white-box, 104 

209 
checklist-based testing, 36, 75, 86, 103-107, 207, 

Cleanroom, 13, 32, 162, 227, 229 
CMM (capability maturity model), 13, 232, 325 

CMVC, see measurement tool 
code reading, 244-246, 248, 261 

stepwise abstraction, 245 
combinatorial explosion, 182, 200 
compiler, 98, 244 
complexity, 33, 36, 37, 241, 242 
component testing, see testing sub-phases 
concatenation, 183, 255 
conditional statement 

CMM/CMMI/P-CMMISA-CMM, 233 

cascading if's, 179 
if, 190, 255 
if-then, 178, 193, 195, 255, 257 
if-then-else, 178, 255, 256 
switch-case, 178, 190 

contradiction, see partition problem 
correctness, 19-24, 251-257, 259-265 

cost 
verificatiodproof, see formal verification 

comparison, see QA comparison, cost 
defect fixing, 29, 34 
poor quality, 31 

COTS, 206, 210, 229 
coupling, 17, 38, 247, 278, 309 
coverage-based testing, 81-82 

checklist coverage, see checklist-based test- 

data coverage, see DFT 
decision coverage, see partition coverage 

path coverage, see CFT 

ing 

testing 

crash, see failure 
CVS, see measurement tool 

damage control, see accident 
data 

C-use, 187, 190 
D-D relation, 187 
D-operation, 187 
D-U relation, 187 
dependency, 187 



INDEX 405 

items (variables and constants), 175, 185, 
187-200 

operation, 187 
P-use, 187, 190 
relation, 187 
U-D relation, 188 
U-operation, 187 
U-U relation, 187 

data dependency analysis, 188 
data slice, 187, 189, 190, 194-197 

coverage testing, 195-198 
fan-shape, 198 
frequently used, 199 
important, 199 
sensitization, 195 

characteristics, 19 1 
construction, 189-195 

DDG (data dependency graph), 188-195 

backward data resolution, 191 
forward data tracing, 191 
indirectly via CFG, 192-194 
information source, 191 
procedure, 19 1 

data selector node, 190 
input node, 189 
intermediate node, 189 
loops, 194 
output node, 189 
storage node, 189 
unconnected node, 192 

dead (DDG) node, 192 
dead (DDG) sub-graph, 192 
dead state, see unreachable state 
debug, 20 
debugger, 76, 97, 205, 246 
decision (other than programming), see quality 

engineering 
decision (programming) 

combination, 11 1 
node, I10 
path, 110 
predicate, see predicate 
predicate testing, see predicate testing 
table, 110 
tree, 110, 120 

decision tree modeling, see TBM 
defect, 2C24 

absence, 251 
accident, see accident 
bug, see bug 
classification, 345-348 
definition, 20 
error, see error 
error source, see error 
fault, see fault 
hazard, see hazard 
location, 342 
measurement, 304, 306 
post-release, 340 

prerelease, 340 
presence, 25 1 
relation, 22 
tracking, see defect handling 
type, 341 

defect analysis, 339-351 
classified, 348-350 
defect dynamics model, 327, 343-344 
density, 324, 325, 330, 332 
distribution, 340-343 
general types, 339-340 
trend, 343-344 

defect containment, 37-39, 267-283 
defect handling, 41-43, 306, 308 
defect injection test, 21 1 
defect prevention, 3 1-33, 39, 223-236 

education and training, 225-228 
error blocking, 224 
error source removal, 224 
formal method, 229 
methodology-based, 230 
process-based, 23 1-234 
standards-based, 230 
technology-based, 229 
tool-based, 230-231 

defect reduction, 34-37, 39 
defect-free, 68, 232 
desk check, see inspection 
DFT (data flow testing), 72, 186-200 

application, 198-200 
coverage testing, 195-198 
data slice, see data slice 
model construction, 189-195 
synchronization testing, 199-200 

doing the right things, see validation 
doing the things right, see verification 
domain testing, see boundary testing 
DRM, see quality model 
dynamic analysis, 213 

ETA, see ETA (event-tree analysis) 
prototyping, see prototyping 
sequencing, 214 
simulation, see simulation 
timing, 214 

EF (experience factory), 234 
equivalence class, 107-110, 112, 125, 126, 131, 

error 
136, 144, 149, 154, 156, 181, 184 

blocking, see defect prevention 
definition, 20 
source, 20 
source removal, see defect prevention 

ETA (event-tree analysis), 214, 277 
execution 

symbolic, see symbolic execution 
test. see test execution 

Fagan inspection, 34, 239-243, 247, 248, 275 



406 INDEX 

observations and findings, 241 
participants, 240 
process, 239 

analysis, see defect analysis 
catastrophic, see accident 
containment, see defect containment 
crash, 75 
definition, 20 
determination, see test oracle 
impact, see ODC 
rate, see reliability 

failure 

fat software, 5 
fault 

definition, 20 
tolerance, see fault tolerance 

backup, 269 
checkpoint-and-recovery, see recovery blocks 
duplication, 269 
failure independence, 268 
NVP, see NVP (n-version programming) 
rare event, 268 
recovery blocks, see recovery blocks 

fault tolerance, 5, 37, 267-275 

flat operational profile, see Musa’s OP 
flow chart, 150, 178, 179, 189, 192 
formal method, 31-33, 50, 225, 251, 281 
formal specification, 32, 252 

algebraic, 262 
descriptive, 252 
logical, 253 
operational, 253 
post-condition, 254 
pre-condition, 254 

formal verification, 32, 48-50, 229, 251-266, 
278, 281 

algebraic, 262 
axiomatic, 32, 253-259 

assignment schema, 256 
schema, 254 

functional, 33, 253, 260 
model checking, see model checking 
wp (weakest pre-condition), 253, 260 
wp (weakest precondition), 33 

FORTRAN, 205, 206 
FSM (finite-state machine), 36, 72, 148-152, 253, 

262 
deterministic, 149 
dynamic element, 149 
input, 149 
Mealy model, 149 
Moore model, 149 
output, 149 
probabilistic, see Markov chain, 149 
representation, 151-152 

graphical, 149, I51 
list, 152 
tabular, 152 

state, 149 

static element, 149 
transition, 149 

FSM testing, 153-160 
FTA (fault-tree analysis), 275-277 
functional correctness, see formal verification 
functional testing, 35, 74-76, 216 

Gilb inspection, 243, 308 
Goel-Okumoto model, see SRGM 
goto, 180, 182, 183 
goto considered harmful, 178 
GQM (goal-question-metric paradigm), 234, 333 
graph (for testing) 

CFG, see CFG 
DDG, see DDG 
entry node, 176 
exit node, 176 
final state, 150 
initial state, 150 
inlink, 176 
outlink, 176 

GUI (graphical user interface), 17, 122, 213, 215, 
288 

hazard, 38, 268, 275, 293 
indices, 277 

hazard analysis, 275-277 
other techniques, 277 

hazard function, see reliability 
hazard resolution, 278 

control, 38, 278 
elimination, 38, 278 
reduction, 38, 278 

heterogeneous system, 279-281 
modeling, 279-280 

hole (in checklist), see partition problem 
HTML, 113, 157, 159, 160, 168, 215 

IDRM (input domain reliability model), 372, 374- 
377 

application, 376-377 
Brown-Lipow model; 376 
Nelson model, 375, 376, 380, 381 

IDSS, see measurement tool 
IEEE Standard 610.12, 20 
information hiding, 33, 206, 226 
input, 87, 88, 90, 92-94, 99 

domain, 128, 129 
space, 128 
sub-domain, 129 
vector, 128 

input domain partition 
definition, 128-129 
domain analysis, 128, 130, 132 
problems, 130-132 
testing, 130-132 

input domain testing, see boundary testing 
inspection, 5, 237-250 

ADR, see ADR (active design review) 



INDEX 407 

checklist-based, 247 
code reading, see code reading 
desk check, 244 
detection technique, 247-248 
effectiveness, 248-249 
Fagan, see Fagan inspection 
Gilh, see Gilb inspection 
meetingless, 242 
phased, 243 
review, 244 
static analysis, see static analysis 
two-person, 242 
walkthrough, 244 

integrated testing techniques, 214-21 7 
integration testing, see testing sub-phases 
interaction (software), 22, 32, 89, 91, 106, 126, 

145, 147, 149, 157, 172, 175, 205, 
293 

interaction in CCSCC, 280 
interaction testing, 175-202, 206-208, 212 
interface, see interaction 
Internet, 3, 46, 142, 160, 167, 209, 212, 230 
IS0  9000, 232 

lV&V (independent verification and validation), 
ISO-9126, 18 

16, 78, 97, 206, 210 

Java, 159, 160, 205, 215 
Jelinski-Moranda model, see SRGM 

large software systems, 4, 372 
lean software, 5 
legacy product, 211 
link, see graph 
LOC, see quality measurement 
loop, 177, 182-184 

combination, 184 
combinatorial explosion, 182, 200 
concatenation, 184 
deterministic, 183 

for-loop, 183 
nesting, 184 
non-deterministic, 183 
repeat-until-loop, 183 
verification, see formal verification 
while-loop, 183, 195, 256, 257 

do-loop, 183 

loop testing, 182-186 

maintenance process, 39, 51, 64, 264, 286, 305, 
309, 316, 323, 330, 350 

Markov chain, 72, 160-162 
definition, 161 
memoryless property, 16 1 
state transition probability, 161 

McCabe, see quality measurement 
McCabe Test, see test automation 
Mealy model, see FSM 
meaning, see semantics 

measurement, see quality measurement 
measurement tool 

CMVC, 43, 230, 318 
CVS, 230 
IDSS, 43, 318 
REFINE, 318 

memoryless property, see Markov chain 
model checking, 33, 261 
Moore model, see FSM 
MTBF, see reliability 
Musa’s OP (operational profile), 111-125 

case study, 121-125 
construction, 115-125 

Musa-1, 117-1 19 
Musa-2, 119-121 

graphical, 120 
implicit, 119, 120, 123 
participants, 1 17 

customer, 117 
high-level designers, 117 
manager, 122 
planning and marketing personnel, 117 
system engineers, 117 
test planners, 117 
tester, 122 

tree-structured, 120 
Musa-Okumoto model, see SRGM 
mutation testing, 21 1 

Nelson model, see IDRM 
nesting, 154, 155, 157, 178, 180-183 
NHPP, see SRGM 
node, see graph 
NVP (n-version programming), 272-275 

diversity, 273 
independency, 273 
other applications, 274 

ODC (orthogonal defect classification), 248, 327, 
334, 345-350 

analysis, 348-350 
attributes, 345-346 
causal analysis, 346 
concept, 345 
failure view, 345 
fault view, 346 
multi-way analysis, 365-368 
one-way analysis, 348-349 
risk identification, 365-368 
two-way analysis, 349-350 
web error, 347-348 

00 (object-oriented developmentkchnology), 13, 
157, 206, 210, 230, 245, 249 

OP (operational profile), 104, 111, 160, 207, 216, 
373, 375, 376, 380, 387 

benefit, 1 14 
construction, 115 
Markov, see Markov chain 
Musa, see Musa’s OP 



408 INDEX 

usage, 114 
open-source development, 46, 230 
output, 87, 88 

analysis, see quality analysis and assess- 
ment 

over-defined input, see partition problem 

parallel conditional assignment, 190 
partition, 107, 128 

definition, 108 
problem 

ambiguity, 130 
contradiction, 130 

partition coverage testing, 107-1 11 
partition-based testing, see partition coverage test- 

PASCAL, 205, 206 
path, see CFG 
path testing, see CFT 
people, 95-97 

ing 

(code) reader, 244-246 
consumer, 22, 23 
customer, 16, 17, 19 
designer, 95 
developer, 95 
in inspection 

author, 240-242, 245. 246, 248 
author-inspector pair, 242 
inspector, 237-248 
moderator, 240, 241 

OP constructor, see Musa’s OP. participants 
programmer, 95 
test manager, 96 
tester, 95 

career path, 95 
1V&V, see IV&V 
programmer as, 95 
team, see testing team 
third-party, 97 
user as, 95, 96 

extension to non-human user, 17 
user, 15-20 

Petri-net, 200, 262 
pre-requisite, 11 

computer science, 12 
mathematics, 11 
software engineering, 12 
statistics, 11 

predicate, 109, 110, 254, 255, 260 
predicate testing, 109-1 11 
predicate transform, see formal verification 
prime program, 180 
probability, see OP 
program calculus, see formal verification 
program comprehension, 245 
program decomposition, 180 
prototyping, 36. 91, 213, 218, 368 
PSC (prescriptive specification checking), 281 
purification level, 384 

Putnam model, see quality model 

QA (quality assurance), 3-5, 8, 24, 27-39 
activities, see QA activities 
alternatives. see QA alternatives and tech- 

niques 
classification, 27-3 1 

techniques, see QA alternatives and tech- 
Strategy, 54-56, 58-59 

niques 
QA alternatives and techniques 

comparison, see QA comparison 
defect prevention, see defect prevention 
failure containment, see failure containment 
fault tolerance. see fault tolerance 
formal verification, see formal verification 
inspection, see inspection 
testing, see testing 

applicability, 289-291 

effectiveness, 286, 291-295 
environment, 285 
questions, 285 
summary. 297 

QA comparison; 285-299 

cost, 287, 295-297 

QIP (quality improvement paradigm), 55, 234 
quality, 3, 15-26 

ment 
analysis, see quality analysis and assess- 

aspect, see quality aspect 
assessment, see quality assessment 
assurance, see QA (quality assurance) 
characteristics, 15 
engineering, see quality engineering 
evaluation, see quality evaluation 
expectation, 3, 15-17 
feedback, see quality feedback loop 
framework, 18 
goal setting, see quality engineering 
historical perspective, 24 
improvement, see quality improvement 
management, see quality management 
measurement, see quality measurement 
modeling, see quality modeling 
perspective, see quality view 
planning, see quality engineering 
prediction, see quality prediction 
service. 25 
view, see quality view 

306-3 12 
data granularity, 305 
explicit, 3 1 1 
failure-based, 310 
fault-based, 310 
implicit, 309 
indirect, 3 10 
model, see quality model 
reliability assessment, 3 10 

quality analysis and assessment, 59. 301, 303, 



INDEX 409 

safety, 310 
quality assurance, see QA (quality assurance) 
quality attribute, 18, 19 

availability, 37, 268 
correctness, see correctness 
CUPRIMDS, 19 
dependability, 37, 132, 268, 279, 290 
ISO-9126, see ISO-9 I26 
sub-attributes, see ISOI-9126 

quality characteristics, 19 
quality engineering, 3, 5, 24, 53-64 

activities, 60 
analysis and follow-up, 4 
effort, 61 
execution, 4 
feedback, see quality feedback loop 
planning, 4 

further refined, 3 1 6 3  17 
refined, 303 

quality feedback loop, 303-321 
analyses, 309-3 13 
analyses and modeling, 3 12-3 13 
external, 313 
immediate, 308-309 
implementation, 313-3 17 
long-term, 313 
management, 311-312 
product release, 309-31 1 
tool support, 317-319 

quality engineering process, 5, 313, 314 

quality goals, 6, 53, 55, 68, 79, 80, 301, 309, 
312, 313, 315, 333 

defect density, see defect 
reliability, see reliability 
safety, see safety 

'setting, 54, 5 6 5 7  
quality improvement, 301, 337 
quality measurement, 4, 56, 59, 304-308 

activity, 307 
defect, see defect measurement 
direct, 304, 306 
environment, 306 
in-process, 330 
indirect, 304, 306308 
product internal, 307 

LOC (line of code), 227 
McCabe, 361 

reliability, see reliability 
result, 304, 306 
safety, see safety 
selection, 333-335 

comparison, 328-330 
customization, 330 
data requirement, 33&333 
DRM (defect removal model), 327, 330, 

generalization, 330 
generalized, 324-327 

quality model, 56, 58, 59, 323-337 

334 

dynamic, 326 
overall, 325 
segmented, 325 

interconnection, 330 
product-specific, 327-328 

measurement-driven predictive, 328 
observation-based, 328 
semi-customized, 327 

Putnam model, 326, 334, 344 
selection, 333-335 

quality planning, 56-59 
quality quantification, 63, 301, 303, 320, 337 
quaIity view, 15, 56, 57 

consumer, see quality view, external 
customer, see quality view, external, 56 
developer, see quality view, internal 
external, 16, 17, 22 
internal, 16, 22 
manager, see quality view, internal 
manufacturing, 16, 24 
product, 16 
tester, see quality view, internal 
transcendental, 16 
user, see quality view, external, 16, 56 
value-based, 16 

quantifiable quality improvement, 8, 63, 64, 298, 

queue, 142 
301, 303, 304, 320 

batching, 143 
capacity, 142 
pre-emptive, 143 
priority, 142 

FCFS, 142 
FIFO, 142 

priority class, 142 
synchronization, 143 

queuing testing, 142 

reader preparation, see pre-requisite 
reading, see code reading 
recovery block, 270-272 
REFINE, see measurement tool 
regression testing, 88, 92, 98, 205, 211 
relation, 108 

reflexive, 109 
symmetric, 109 
transitive, 109 

reliability, 17-19, 23-25, 36, 39, 55-57, 60, 70, 
72, 79-81, 111, 114, 159-164, 167, 
216, 268, 305, 325, 340, 371 

approaches, see SRE 
assessment, 334 
estimate, 375 
failure rate, 375 
hazard function, 378 
improvement, 335, 384-385 
MTBF (mean time between failure), 378 
reliability function, 378 

result 



410 INDEX 

analysis, see quality analysis and assess- 

checking, see result checking and test oracle 
data, see quality measurement 

result checking, 68, 91, 93, 97, 131, 144, 153, 
156, 166, 178, 185, 189 

review, see inspection 
right software, 4, 232 
risk, 325, 353 

trees, 211 
risk identification, 29, 36, 216, 353-369 

classified data, 365-368 
risk identification techniques, 353 

comparison, 362-365 
correlation analysis, 355 
DA (discriminant analysis), 356358 
new, 356362 
NN (neural network), 358-359 
OSR (optimal set reduction), 362 
pattern matching, 362 
PCA (principal component analysis), 356- 

regression model, 355 
TBM, see TBM (tree-based modeling) 
traditional, 355-356 

ment 

358 

run, see test 

S-PLUS, see analysis tool 
S-shaped model, see SRGM 
S-TCAT, see test automation 
safety, 23, 38, 39, 56, 269, 275-279, 297 
safety assurance, 23, 45, 47, 50 

accident prevention, see accident prevention 
ETA, see ETA (event-tree analysis) 
FTA, see FTA (fault-tree analysis) 
hazard analysis, see hazard analysis 
hazard resolution, see hazard resolution 

safety-critical softwarekystems, see software, safety- 

SAS, see analysis tool 
scenario-based testing, 372 
semantics, 246, 260 
sensitization, 87, 110, 142, 148, 153, 156, 166, 

179, 181, 182, 185, 186, 189, 195, 
196, 198 

critical 

silver bullet, 5 
simulation, 36, 91, 213, 218 
simulator, 91, 213 
slice, see data slice 
Smalltalk, 205 
SMERFS, see analysis tool 
software 

auxiliary, 56, 325 
aviation, 5, 121 
business, 325 
commercial, 4, 56, 98, 99, 116, 308, 318, 

325, 334, 354, 359, 360, 386 

embedded, 16, 89, 207, 212, 267, 269, 270, 

government, 97, 116, 118, 353, 354 
in heterogeneous systems, 91, 96, 207, 212, 

menu-driven, 156-158, 167, 172 
operating systems, 4, 87, 116, 167, 263 
quality, see quality 
safety, see safety 
safety-critical, 29, 36, 38, 57, 58, 89, 141, 

213, 214, 246, 263, 264, 268, 325 
telecommunication, 29, 87, 207, 212, 227, 

267, 325, 355, 357, 379, 386 
testing, see testing 

software maintenance, 21 1 
adaptive, 211, 286 
corrective, 211, 286 
perfective, 211, 286 

BOOTSTRAP, 233 
CMM, see CMM (capability maturity model) 
conformance, 23 1 
definition, 23 1 
development process, 24, 29, 32, 34, 41, 

4346, 48, 50, 51, 59, 60, 62-64, 68, 
167, 274, 305, 308, 310, 344, 365, 
386, 387 

improvement, 59, 94, 233, 234, 243, 248, 
308, 324, 333 

incremental, 32, 35, 44, 49, 60, 63, 167, 
23 1 

incremental process, 46 
IS0 9000, see IS0 9000 
iterative, 35, 44, 49, 60, 63, 167, 231 
iterative process, 46 
maintenance process, 43 
maturity, 232 
PSP (personal software process), 232 
SPICE, 233 
spiral, 35, 44, 49, 60, 63, 167, 231 
spiral process, 46 
waterfall, 44-45, 48, 60, 231, 232 

275, 276, 279. 281 

279 

software process, 43, 59, 70 

SRE (software reliability engineering), 340, 371- 
387 

assumptions, 373-374 
concept, 371 
implementation, 385-386 
input domain approach, 372 
models, see SRGM and IDRM 
time domain approach, 372 
tools, 385 

SRGM (software reliability growth model), 328, 
372, 377-380 

application, 379-380 
basic Musa model, 379 
Goel-Okumoto model, 328, 334, 379 
Jelinski-Moranda model, 378 

defense, 5, 97, 116, 233 Musa-Okumoto model. 379 



INDEX 411 

NHPP (non-homogeneous Poisson process), 
378 

failure rate function, 379 
mean function, 379 

NHPP (non-homogeneous Poisson process) 

S-shaped model, 379 
model, 378 

state explosion, 262 
state transition, see FSM 
state transition probability, see Markov chain 
static analysis, 246 
statistical web testing, 167-171 
statistics, see quality model 
stochastic process, 161, 372, 378 

Markov chain, see Markov chain 
stationary, 165 

29 1 
structural testing, 35, 71, 74, 76-77, 205, 216, 

symbolic execution, 33, 36, 246, 260, 261, 264 
synchronization, 143 
synchronization testing, see DFT 
syntax 

checking, 215 
error, 248 
testing, 160, 215 

system testing, see testing sub-phases, 47 

T3, see test automation 
TBM (tree-based modeling), 328, 359-362 
TBRM (tree-based reliability model), 335, 371, 

372, 380-385 
application, 382 
construction, 381-382 
reliability improvement, 384-385 

case, 87 
cases, see test preparation 
failure determination, see test oracle 
models, see testing techniques 
oracle, see test oracle 
result checking, see result checking and test 

run, 87, 106, 112, 114 
script, 98 
sensitization, see sensitization 
suite, see test preparation, 88 

execution, 88, 90-92, 97-99 
planning, 85-86 
preparation, see tesb preparation 
test analysis and follow-up, 93-94 

test analysis and follow-up, see test activities 
test automation, 85, 97-100 

test 

oracle 

test activities, 68-70, 73, 85-94 

ATAC, 99 
instrumentation, 99 
McCabe Test, 99 

T3, 98 
Testworks, 99 

S-TCAT, 99 

web-testing, see web-testing tools 
test execution, see test activities, 182 
test management, 85, 90, 95-97. 
test measurement, 90, 92-93 
test oracle, 76, 91-92, 97, 100, 131, 144, 148, 

153, 154, 182, 198, 214 
test point 

boundary point, 129 
definition, 128 
exterior point, 129 
interior point, 129 
OFF, 135-141 
ON, 135-141 
vertex point, 129 

test preparation, 85-90 
test cases, 86-89 

test procedure, 89-90 
test suite, 88-89 

concept, 67-7 1 
exit criteria, 78-80 
informal, 69, 104 
management, see test management 
object, 74 
people, see people 
performance, 2 13 
process, 68, 69 
questions, 71-74 
record-and-replay, 88 
regression, see regression testing 
specialized, 213 
stress, 213 
technique, see testing techniques 
tester, see people 
transaction flow, 200 
usability, see usability testing, 213, 218 

testing sub-phases, 35, 73, 75, 203-210 
acceptance testing, 45, 47, 208, 377 
beta testing, see beta testing 
component testing, 206 
integration testing, 206 
system testing, 207, 372 
unit testing, 205 

horizontal model, 96 
IV&V, see IV&V 
mixed model, 96 
vertical model, 96 

black-box testing, see functional testing 
coverage-based testing, see coverage-based 

testing 
defect diagnosis, 210 
defect injection, 21 1 
defect risk based, 21 1 
defect-based, 21 1 
functional testing, see functional testing 
integration, 214 

systematic, see test techniques 

testing, 5 ,  7, 65 

testing team, 95-96 

testing techniques, 72 



412 INDEX 

models, 72, 86 
checklist, see checklist-based testing 
FSM, see FSM, Markov chain, and UMM 
partition, see partition-based testing, bound- 

ary testing, and Musa’s OP 
mutation, 21 1 
specialized, 21CL214 
structural testing, see structural testing 
usage-based testing, see usage-based testing 
white-box testing, see structural testing 

tree-structured operational profile, see Musa’s OP 
truth value. 178 

UBST (usage-based statistical testing), see usage- 

UMM (unified Markov model), 160, 162-167, 
based testing 

216 
construction, 164 
coverage testing, 165 
hierarchical testing, 166 
implementation, 166 
overall usage testing, 165 
selective state testing, 165 
selective transition testing, 165 
usage testing, 164 
web testing, 167-171 

UMM testing, 160-171 
under-defined input, see partition problem 
unit testing, see testing sub-phases 
unreachable state. 153 

identification, 155 
usability, 17, 19, 215 
usability testing, 95, 101 
usage-based testing, 80-81, 11 1, 160 

Markov chain, see Markov chain 
Musa, see Musa’s OP 
OP, see OP 
UMM, see UMM 

V-model, 48-50, 204, 205 
validation, 4, 4647  
VDM. 254 
verification, 4, 4 7 4 8  

formal, see formal verification 

walkthrough, see inspection 
WBT (white-box testing), see structural testing 
web logs, 216 

access log, 168, 169, 171-173, 217, 348, 
376 

error log, 341, 348, 376 
web reliability, 376 
web testing 

browser rendering, 2 15 
form, 215 
FSM, 150 
FSM-based, 157-1 60 
functional, 215 
HTML syntax, 215 
integrated strategy, 2 14-2 17 
Java, 215 
link checking, 215 
load, 215 
OP-based, 112 
statistical, see statistical web testing 
transaction, 215 
usability, 21 5 
usage 

2-stage model, 120 
by file type, 112 

uneven distribution, 1 13 

Doctor HTML, 215 
Net Mechanic, 215 
W3C Validator, 215 
Weblint, 215 

web usage 

web-testing tools 

wp (weakest pre-condition), see formal verifica- 

WWW (world wide web), 3, 142, 150, 157, 212, 
tion 

341 

XP (extreme programming), 13, 46, 231, 242 

2, 254 
zero defect, 25, 57 
zero defection, 25, 57 


	Cover
	Contents
	Preface
	OVERVIEW AND BASICS
	OVERVIEW
	WHAT IS SOFTWARE QUALITY?
	QUALITY ASSURANCE
	QUALITY ASSURANCE IN CONTEXT
	QUALITY ENGlN EERl NG

	SOFTWARE TESTING
	TESTING: CONCEPTS, ISSUES, AND TECHNIQUES
	TEST ACTIVITIES, MANAGEMENT, AND AUTOMATION
	COVERAGE AND USAGE TESTING BASED ON CHECKLISTS AND PARTITIONS
	INPUT DOMAIN PARTITIONING AND BOUNDARY TESTING
	COVERAGE AND USAGE TESTING BASED ON FINITE-STATE MACHINES AND MARKOV CHAINS
	CONTROL FLOW, DATA DEPENDENCY, AND INTERACTION TESTING
	TESTING TECHNIQUES: ADAPTATION, SPECIALIZATION, AND INTEGRATION

	QUALITY ASSURANCE BEYOND TESTING
	DEFECT PREVENTION AND PROCESS IMPROVEMENT
	SOFTWARE INSPECTION
	FORMAL VERIFICATION
	FAULT TOLERANCE AND FAILURE CONTAINMENT
	COMPARING QUALITY ASSURANCE TECHNIQUES AND ACTIVITIES

	QUANTIFIABLE QUALITY IMPROVEMENT
	FEEDBACK LOOP AND ACTIVITIES FOR QUANTIFIABLE QUALITY IMPROVEMENT
	QUALITY MODELS AND MEASUREMENTS
	DEFECT CLASSIFICATION AND ANALYSIS
	RISK IDENTIFICATION FOR QUANTIFIABLE QUALITY IMPROVEMENT
	SOFTWARE RELlABILlTY ENGINEERING

	BIBLIOGRAPHY
	INDEX

